Résumé
This paper proves that the separation convergence toward the uniform distribution abruptly occurs at times around ln(n)∕n for the (time-accelerated by 2) Brownian motion on the sphere with a high dimension n. The arguments are based on a new and elementary perturbative approach for estimating hitting times in a small noise context. The quantitative estimates thus obtained are applied to the strong stationary times constructed in (Arnaudon, Coulibaly-Pasquier and Miclo (2020)) to deduce the wanted cut-off phenomenon.
Mots-clés
hitting times; separation discrepancy; small noise one-dimensional diffusions; spherical Brownian motions; strong stationary times;
Remplace
Marc Arnaudon, Koléhè Coulibaly-Pasquier et Laurent Miclo, « On the separation cut-off phenomenon for Brownian motions on high dimensional spheres », TSE Working Paper, n° 24-1510, février 2024.
Référence
Marc Arnaudon, Koléhè Coulibaly-Pasquier et Laurent Miclo, « On the separation cut-off phenomenon for Brownian motions on high dimensional spheres », Bernoulli, vol. 30, n° 2, mai 2024, p. 1007–1028.
Publié dans
Bernoulli, vol. 30, n° 2, mai 2024, p. 1007–1028