Article

Identification-Robust Nonparametric Inference in a Linear IV Model

Bertille Antoine et Pascal Lavergne

Résumé

For a linear IV regression, we propose two new inference procedures on parameters of endogenous variables that are robust to any identification pattern, do not rely on a linear first-stage equation, and account for heteroskedasticity of unknown form. Building on Bierens (1982), we first propose an Integrated Conditional Moment (ICM) type statistic constructed by setting the parameters to the value under the null hypothesis. The ICM procedure tests at the same time the value of the coefficient and the specification of the model. We then adopt a conditionality principle to condition on a set of ICM statistics that informs on identification strength. Our two procedures uniformly control size irrespective of identification strength. They are powerful irrespective of the nonlinear form of the link between instruments and endogenous variables and are competitive with existing procedures in simulations and application.

Mots-clés

Weak Instruments; Hypothesis Testing; Semiparametric Model;

Codes JEL

  • C120:
  • C130:

Remplace

Bertille Antoine et Pascal Lavergne, « Identification-Robust Nonparametric Inference in a Linear IV Model », TSE Working Paper, n° 19-1004, avril 2019, révision mai 2021.

Référence

Bertille Antoine et Pascal Lavergne, « Identification-Robust Nonparametric Inference in a Linear IV Model », Journal of Econometrics, vol. 234, n° 1, juillet 2023, p. 1–24.

Voir aussi

Publié dans

Journal of Econometrics, vol. 234, n° 1, juillet 2023, p. 1–24