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Abstract

For a linear IV regression, we propose two new inference procedures on param-

eters of endogenous variables that are robust to any identification pattern, do not

rely on a linear first-stage equation, and account for heteroskedasticity of unknown

form. Building on Bierens (1982), we first propose an Integrated Conditional Mo-

ment (ICM) type statistic constructed by setting the parameters to the value under

the null hypothesis. The ICM procedure tests at the same time the value of the co-

efficient and the specification of the model. We then adopt a conditionality principle

to condition on a set of ICM statistics that informs on identification strength. Our

two procedures uniformly control size irrespective of identification strength. They

are powerful irrespective of the nonlinear form of the link between instruments and

endogenous variables and are competitive with existing procedures in simulations

and application.
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1 Introduction

We consider cross-section data observations and the linear model popular from micro-

econometrics

yi = Y ′2iβ +X ′1iγ + ui E (ui|X1i, X2i) = 0 i = 1, . . . n , (1.1)

where Y2 are endogenous variables, X1 are exogenous control variables, and X2 are exoge-

nous instrumental variables. We focus on inference on the parameter β of the endogenous

variables. Over the last 30 years, it has become clear that standard asymptotic approx-

imations may reflect poorly what is observed even for large samples when there is weak

correlation between instrumental variables and endogenous explanatory variables. Alter-

native asymptotic frameworks have then been developed to account for potentially weak

identification and tests have been proposed that deliver reliable inference about param-

eters of interest, see e.g. Staiger and Stock (1997), Stock and Wright (2000), Moreira

(2003), Kleibergen (2002, 2005), Andrews and Cheng (2012), Andrews and Guggenberger

(2019), Andrews (2016), and Andrews and Mikusheva (2016a,b). Surveys on weak iden-

tification issues include Stock et al. (2002), Dufour (2003), Hahn and Hausman (2003),

and Andrews and Stock (2007). Existing inference procedures are robust to identification

strength and uniformly control size, but rely on a parametric first-stage, and often on a

linear projection of endogenous variables on instruments. We argue that this feature can

artificially create a weak identification issue. If linear projection, or another parametric

form, does not capture enough of the variation of the endogenous variable, tests have

little power, and potentially no more than trivial one.

From an empirical perspective, Dieterle and Snell (2016) have documented signif-

icant nonlinearities in first-stage regression in several applied microeconomics papers.

By comparing linear and quadratic first-stage specifications, they show that (second-

stage) estimates of interest can be quite sensitive to the first-stage functional form. Since

practitioners typically have little prior information on the form of the relation between

endogenous variables and instruments, one may consider estimating the reduced form

nonparametrically, e.g. using an increasing number of approximating series. However,

nonparametrically estimated instruments cannot be relied upon under weak identifica-

tion, see Jun and Pinkse (2012) and Mikusheva and Sun (2020). Indeed, if identification

is not strong enough, the statistical variability of a nonparametric estimator will dominate

the signal we aim to estimate. Hence, an inference procedure that leaves the functional

form of the first stage equation unspecified, while being robust to identification strength
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should be extremely valuable for empirical analysis.

We propose two new inference procedures that are easy to implement, robust to any

identification pattern, and do not rely on a linear projection in the first-stage equation.

Our test statistics are constructed with practical convenience in mind, as well as their

resemblance with standard statistics used in the presence of weak instruments. We build

on the Integrated Conditional Moment (ICM) principle originally proposed by Bierens

(1982). We first combine this principle with the Anderson and Rubin (1949) idea of

setting the parameter value to the one under the null hypothesis H0 : β = β0. This

yields a statistic that tests at the same time for the value of the parameter and the

specification of the model. Second, we consider a quasi-likelihood ratio statistic and

we adopt the conditionality principle used by Moreira (2003) to condition upon another

ICM statistic (when Y2 is univariate, or a set of ICM statistics when Y2 is multivariate)

that informs on the strength of (nonparametric) identification in the first-stage equation.

The Conditional ICM (CICM) test does not test the whole specification of the model,

but only whether β0 is compatible with the data assuming the model is adequate. This

is valuable in practice even if the linear IV model is misspecified but provides relevant

information on average effects of endogenous variables. For both the ICM and CICM

tests, asymptotic critical values can be simulated under heteroskedasticity of unknown

form. We show that our tests control size uniformly and are thus robust to identification

strength. Our tests are consistent in case of semi-strong identification, following the

terminology of Andrews and Cheng (2012), and can have non-trivial power under weak

identification. Since we remain agnostic on the first-stage functional relation between

endogenous and instrumental variables, these properties are independent of its particular,

potentially nonlinear, form.

Our conditional ICM test is related to Andrews and Mikusheva (2016a) since it is

conditional upon a functional nuisance parameter. A key difference is that we consider

conditional moment restrictions while they focus on unconditional ones. Other work that

considers conditional moments or an increasing number of unconditional ones, thus yield-

ing “many instruments”, includes Han and Phillips (2006), Hansen et al. (2008), Newey

and Windmeijer (2009), Jun and Pinkse (2012), Hausman et al. (2012), and Mikusheva

and Sun (2020). Some procedures are optimal under strong identification, but only al-

low for some semi-strong identification. Unlike these authors, we cannot claim that our

procedures are optimal when identification is strong. For this reason, we do not address

the optimality of our procedures in terms of weighted average power, see Chernozhukov

et al. (2009) and Montiel Olea (2020). There is thus a price to be paid for identification
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robustness using our procedures, but we believe that if a practitioner is actually worried

about weak identification, optimality under strong identification would likely not be of

primary concern. Our tests are valid irrespective of identification strength and do not

necessitate the choice of the number of instruments.

We found that the level of our tests is well controlled in a series of simulations. Our

tests have significant power advantage compared to existing tests when the reduced form

equation is nonlinear. They also have good power for a linear reduced form, though

they cannot be more powerful than the conditional likelihood ratio test, which is nearly

optimal, see Andrews et al. (2006) and Andrews et al. (2019). In an empirical application

on the effects of population decline in Mexico on land concentration in the sixteenth

century, using the data and framework of Sellars and Alix-Garcia (2018), our procedures

provide sensible and empirically valuable inference.

Our paper is organized as follows. In Section 2, we introduce our framework, we recall

the main existing procedures for inference under possibly weak identification, and we

motivate our new tests from a power perspective. In Section 3, we recall the ICM principle

and we describe our two procedures, namely the ICM test and the conditional ICM test.

Here and in what follows, we do not formally address subvector inference - though it

is always possible to adopt a projection approach, see Dufour (1997) and Dufour and

Taamouti (2005). In Section 4, we discuss critical values and the properties of our test in

a Gaussian setup. In Section 5, we show that our procedures are generally asymptotically

valid with heteroskedasticity of unknown form. We prove uniform asymptotic validity

and study uniform power under strong and weak identification. In Section 6, we study

the small sample performance of our tests through Monte-Carlo simulations and compare

it to previous proposals. In Section 7, we present the results of our empirical application.

Proofs are gathered in Section 8.

2 Review and Motivation

We are interested in inference on the parameter β of the l endogenous variables Y2 in (1.1)

and thus in testing null hypotheses of the form H0 : β = β0. The influence of exogenous

control variables X1 can be projected out through orthogonal projection in (1.1), which

does not influence our reasoning, but simplifies exposition. Hence, in what follows, we

consider a structural equation of the form

yi = Y ′2iβ + ui E (ui|Zi) = 0 i = 1, . . . n . (2.2)
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This is augmented by a first-stage reduced form equation for Y2

Y2i = Π(Zi) + V2i E (V2i|Zi) = 0 . (2.3)

The exogenous Z, of dimension k, are the instrumental variables for Y2. For simplicity of

exposition, we assume in this section homoskedasticity of the error terms (ui, V
′

2i)
′.

The identification strength (of β) is introduced by letting the function Π(·) depend

on the sample size n. For instance, one could assume that Πn(Z) = C(Z)
rn

, where C(·) is a

fixed function and rn a diverging sequence. Extending the terminology of Andrews and

Cheng (2012), we will talk about weak identification when nEΠn(Z)Π′n(Z) converges to

a bounded positive definite matrix, and semi-strong identification when r2
n EΠn(Z)Π′n(Z)

does for some r2
n = o(n).

2.1 Linear First Stage

In most work, the first-stage (2.3) is modelled through a linear projection of the form

Zπ, where Z is the n × k matrix of observations of the instrumental variables. The

concentration parameter, defined as

µ2 =
π′Z ′Zπ

σ2
V2

when Y2 is scalar, is a unitless measure of the strength of the instruments. Under weak

identification, i.e. when π = n−1/2C, µ2 converges to a finite limit and no test for β is

consistent. If µ2 diverges, then β can be consistently estimated, a situation that arises

both under semi-strong identification (when π = C/rn with rn →∞ and n1/2r−1
n →∞),

and under strong identification (when rn = 1).

Well-known inference procedures are constructed to be robust to identification strength.

To test the null hypothesis H0 : β = β0, the statistic of Anderson and Rubin (1949) eval-

uates the orthogonality of (y − Y ′2β0) and Z and writes

AR =
b′0Y

′PZY b0

b′0Ω̂b0

.

Here b0 = (1,−β′0)′,

Y =

 y1 Y ′21
...

...

yn Y ′2n

 ,
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so that Y b0 is the vector of generic components yi − Y ′2iβ0 = ui under H0, PZ is the

orthogonal projection on the space spanned by the columns of Z, and Ω̂ = (n− k)−1 Y ′(I−
PZ)Y is an estimator of the errors’ variance Ω under the assumption of homoskedasticity.

Under linearity, one can rewrite the structural equation as

yi − Y ′2iβ0 = Z ′i∆ + εi, where ∆ = π (β − β0) and εi = ui + V2i (β − β0) .

The AR statistic is (up to a scale) the F statistic for the null hypothesis ∆ = 0. It tests

at the same time H0 and the correct specification of the model. The K test of Kleibergen

(2005) is derived as a score test of H0 under the assumptions of joint normality of u and

V2. The Conditional Likelihood Ratio (CLR) test is based on

LR =
b′0Y

′PZY b0

b′0Ω̂b0

−min
b

b′Y ′PZY b

b′Ω̂b
,

which is derived as an approximate likelihood ratio test statistic for H0 in the normal case

by Moreira (2003). Unlike AR, it tests only whether β = β0 irrespective of the validity of

the linear IV model.

Under weak identification, the above test statistics can be used to obtain valid infer-

ence, and the tests have been shown to control size uniformly, see our references in the

Introduction. Dufour and Taamouti (2007) further study the size robustness of such pro-

cedures to omitted relevant instruments and show that the AR procedure is particularly

well behaved in this respect. Here we focus instead on the power of inference procedures

with omitted instruments. Assuming a linear reduced-form for Y2 is not restrictive as

a linear approximation of the regression of Y2 on the instruments. However, a linear

approximation can yield little power for the tests.

As an example, assume Y2 is scalar, Z ∼ N(0, 1), and

Π(Z) =
1

rn
(3Z − Z3) +

1√
n

(Z2 − 1), rn ≥ 1 .

If one approximates the unknown function Π(·) by a linear form, then minπ1 E (π1Z − Π(Z))2

yields the first-order condition

E
[
Z

(
π1Z −

1

rn
(3Z − Z3)− 1√

n
(Z2 − 1)

)]
= 0 ,

and the solution π1 = 0.1 Hence relying on a linear approximation may yield no more

than trivial power for the above standard tests.

1If an intercept was included, it would be zero, so we dispense with it.
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We may want to allow for a nonlinear form of the first-stage equation. The power of

the tests, and then inference on parameters, will be affected by the accuracy of the chosen

functional form. In our example, if one approximates the unknown function Π(·) by a

quadratic form, then minπ1,π2 E (π1Z + π2(Z2 − 1)− Π(Z))
2

yields

E
[
Z

(
π1Z + π2(Z2 − 1)− 1

rn
(3Z − Z3)− 1√

n
(Z2 − 1)

)]
= 0

E
[
(Z2 − 1)

(
π1Z + π2(Z2 − 1)− 1

rn
(3Z − Z3)− 1√

n
(Z2 − 1)

)]
= 0 .

The solutions are π1 = 0 and π2 = 1√
n
. Thus, even if the relation between Y2 and the

instrument Z is not weak in the sense that rn <<
√
n, or is even strong with rn = 1,

the quadratic approximation will only pick up the weakest quadratic part. Hence, an

inadequate functional form may artificially create a weak identification issue.2

2.2 Many Instruments

We may consider estimating the first-stage (2.3) nonparametrically by increasing the

number of approximating polynomial or series terms with the sample size. We would

then consider a linear approximation Z̃π, where Z̃ is a n×kn matrix of series terms in the

variables in Z. Work on “many weak” instruments, see our Introduction for references,

relates the rate of increase on the number of instruments kn to the unknown identification

strength. There does not seem to exist any adaptive data-driven method to select kn.

One may consider a specification search to select kn and then the best functional form

of the reduced-form equation. However, specification tests may suffer from low power in

case of weak identification, and, in addition, one would need to account for pre-testing in

inference on parameters of interest.

The choice of kn will affect power. To see this, consider the case of normal homoskedas-

tic errors with known variance Ω and a scalar Y2. When testing H0 : β = β0, with β0 the

true value of the parameter,

AR(β0) =
b′0Y

′PZY b0

b′0Ωb0

∼ χ2
kn ,

2One can construct more involved examples where the same phenomenon shows up. For instance, if

Π(Z) = 1
rn

(Z5 − 10Z3 + 15Z) + 1√
n

(Z4 − 6Z2 + 3), then the best cubic approximation is identically zero

and the best quartic approximation only picks up a 1√
n

component.
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conditionally on the Zi. When testing H0 : β = β1, where β1 6= β0,

AR (β1) =
b′1Y

′PZY b1

b′1Ωb1

∼ χ2
kn

(
(β0 − β1)2 Π′PZΠ

b′1Ωb1

)
,

conditionally on the Zi, where Π is the vector with generic element Π(Zi). The test is

consistent only if the non-centrality parameter dominates the variability of AR (β0), as

measured by the standard deviation of order k
1/2
n . Said differently, the test has power

bounded away from one whenever Π′PZΠ/
√
kn is bounded from above. Mikusheva and

Sun (2020) show that the same is true for any test based on an increasing number of

instruments.

One should then select kn so that the above ratio is as large as possible. But the nu-

merator depends on the unknown functional form Π(·) and on the unknown identification

strength. While under strong identification (when Π′PZΠ diverges at rate n), nonpara-

metric optimal instruments should be used for efficiency as they maximize the numerator,

they cannot be relied upon under weak identification (when Π′PZΠ stays bounded) since

the above ratio would then converge to zero and power would be trivial. The power of

the AR test is also bounded away from one under some semi-strong identification. If

we assume that Π(Z) = c̃n
C(Z)√
n

, where EC2(Z) < ∞, then this happens whenever c̃2
n

is of order equal to or smaller than
√
kn. This does not depend on the method used to

estimate the first-stage. For instance, Jun and Pinkse (2012) propose an AR-type test

where optimal instruments are estimated using kn nearest-neighbors. Their arguments

can be used to show their test has power bounded away from one whenever c̃n is of order

equal to or smaller than
√
n/kn.3

By contrast, the tests we develop below do not necessitate the choice of the number

of terms in a series expansion or of a smoothing parameter to estimate the first-stage

equation. Consequently it is consistent under a fixed alternative for any diverging sequence

c̃n and has more than trivial power for a bounded but large enough c̃n, as shown in

Theorem 5.2 below. As little prior information is typically available to appropriately

parametrize the first-stage equation, a testing method that leaves the first-stage equation

unspecified while being robust to weak identification appears extremely valuable from a

practitioner’s viewpoint.

3The conclusions reached for series approximation and nearest-neighbors can be intuitively compared

by referring to degrees of freedom for each method. For series estimation, kn is the degrees of freedom,

while for a smoother such as the nearest-neighbors method, degrees of freedom are usually measured by

the trace of the smoothing matrix, that is n/kn.
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3 ICM and Conditional ICM Tests Statistics

Without assuming linearity of Π(·) in (2.3), we can write

y − Y2β0 = Π(Z) (β − β0) + ε, where ε = u+ V2 (β − β0) and E (ε|Z) = 0 .

The variables Z include the instruments X2 but also the exogenous X1 to account for

potential nonlinearities in X1 in the function Π(·). We consider testing

H̃0 : E (y − Y ′2β0|Z) = 0 a.s.

which is implied by the model when β = β0. That is, we consider at the same time H0

and the correct specification of the model, in the same way the AR test does. We then

apply a result of Bierens (1982) which states that H̃0 holds if and only if

E [(y − Y ′2β0) exp(is′Z)] = 0 ∀s ∈ Rk . (3.4)

To test this hypothesis, Bierens’ Integrated Conditional Moment (ICM) statistic is∫
Rk
|n−1/2

n∑
j=1

(
yj − Y ′2jβ0

)
exp(is′Zj)|2 dµ(s) , (3.5)

where µ is some symmetric probability measure with support Rk (except maybe a set of

isolated points). Let us define

w(z) =

∫
Rk

exp(is′z) dµ(s) =

∫
Rk

cos(s′z) dµ(s) ,

due to the symmetry of µ. We can then rewrite the statistic (3.5) as∫
Rk
n−1

n∑
j=1

n∑
m=1

(Y ′j b0)(Y ′mb0) exp(is′(Zj − Zm)) dµ(s)

= n−1

n∑
j=1

n∑
m=1

(Y ′j b0)(Y ′mb0)

∫
Rk

exp(is′(Zj − Zm)) dµ(s)

= b′0Y
′WY b0 ,

where W is a matrix with generic element n−1w (Zj − Zm). The condition for µ to have

support Rk translates into the restriction that w(·) should have a strictly positive Fourier

transform almost everywhere. Examples include products of triangular, normal, logistic,

see Johnson et al. (1995, Section 23.3), Student, including Cauchy, see Dreier and Kotz

9



(2002), or Laplace densities. To achieve scale invariance, we recommend, as in Bierens

(1982), to scale the exogenous instruments by a measure of dispersion, such as their

empirical standard deviation. The role of the function w(·) resembles the one of the

kernel in nonparametric estimation, but, in contrast, it is a fixed user-chosen function

that does not vary with the sample size. To make this explicit, we will impose that the

squared integral of w(·) equals one.4

If Z has bounded support, results from Bierens (1982) yield that H̃0 holds if and only

if

E [(y − Y ′2β0) exp(s′Z)] = 0

for all s in a (arbitrary) neighborhood of 0 in Rq. Hence µ in (3.5) can be taken as

any symmetric probability measure that contains 0 in the interior of its support. For

instance, we can consider the product of uniform distributions on [−π, π], so that w(·) is

the product of sinc functions. As noted by Bierens (1982), there is no loss of generality

to assume a bounded support, as his equivalence result equally applies to a one-to-one

transformation of Z, which can be chosen with bounded image. Moreover, if it is known

that

E (y − YZβ0|Z) = E (y − YZβ0|Ψ(Z)) ,

for some known dimension-reducing function Ψ(·), then W could be defined using this

transformation instead.

The ICM principle replaces conditional moment restrictions by a continuum of un-

conditional moments such as (3.4). Other functions have been used beyond the complex

exponential, see Bierens (1990) and Bierens and Ploberger (1997). Stinchcombe and

White (1998) give a characterization of a large class of functions that could generate an

equivalent set of unconditional moments. As detailed by Lavergne and Patilea (2013), this

yields a full collection of potential estimators under strong (or semi-strong) identification,

such as the ones developed by Dominguez and Lobato (2004), Antoine and Lavergne

(2014), and Escanciano (2018) among others. This would also yield a collection of test

statistics that could be used under weak identification, see Chen et al. (2021) for a recent

instance. We here focus on a particular application of the ICM suitable for theoretical

investigation and practical implementation, and we leave for future work the investigation

of the relative merits of these different ICM-type tests.

4A more involved restriction would be to impose a similar condition on the Frobenius norm of W .
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Let Ω̂ be a (semiparametric) estimator of Ω = E (Var(Y |Z)). Our first test statistic is

ICM(β0) =
b′0Y

′WY b0

b′0Ω̂b0

with b0 = (1,−β′0)′ . (3.6)

It is the ICM statistic with the value of the parameter set at β0 and standardized by an

estimator of the variance of Y ′i b0. It resembles the AR statistic, with W replacing PZ ,

the orthogonal projection on Z. The statistic is also related to Antoine and Lavergne

(2014) Weighted Minimum Distance objective function, though they chose a different

normalization and only consider semi-strong identification. Our normalization does not

affect the main properties of the ICM test, but is convenient when computing critical

values and studying theoretical properties. As apparent from its construction, ICM is

designed to test the correct specification of the model together with the parameter value,

as does the AR test under a linear reduced form. Since ICM equals (3.5) up to the positive

term b′0Ω̂b0, it is non-negative, and the test rejects the null hypothesis for large positive

values of the statistic.

Our conditional ICM (CICM) test is based on the statistic

CICM(β0) =
b′0Y

′WY b0

b′0Ω̂b0

−min
b

b′Y ′WY b

b′Ω̂b
. (3.7)

The statistic has the form of a quasi likelihood-ratio statistic and is always non-negative.

The test thus rejects the null hypothesis for large positive values of the statistic. It does

not test the whole specification of the model, but only whether β0 is compatible with the

data assuming the model is adequate.

The CICM statistic resembles the LR one of Moreira (2003), with W replacing PZ ,

the orthogonal projection on Z. We now follow his discussion and define

Ŝ ≡ Ŝ(β0) = Y b0

(
b′0Ω̂b0

)−1/2

, T̂ ≡ T̂ (β0) = Y Ω̂−1A0

(
A′0Ω̂−1A0

)−1/2

, A0 = [β0 I]′ .

Then ICM(β0) = Ŝ ′WŜ and

CICM(β0) = Ŝ ′WŜ − λmin

([
Ŝ ′

T̂ ′

]
W
[
Ŝ, T̂

])
, (3.8)

where λmin(A) is the smallest eigenvalue of the matrix A. When β0 is scalar,

CICM(β0) =
1

2

[
Ŝ ′WŜ − T̂ ′WT̂ +

√(
Ŝ ′WŜ − T̂ ′WT̂

)2

+ 4
(
Ŝ ′WT̂

)2
]
. (3.9)
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To establish (3.8), note that

min
b

b′Y ′WY b

b′Ω̂b
= λmin

(
Ω̂−1/2Y ′WY Ω̂−1/2

)
.

where λmin(M) is the minimum eigenvalue of M . Consider the orthogonal matrix

J =

[
Ω̂1/2b0

(
b′0Ω̂b0

)−1/2

, Ω̂−1/2A0

(
A′0Ω̂−1A0

)−1/2
]
,

where J ′J = I since A′0b0 = 0. The minimum eigenvalue of Ω̂−1/2Y ′WY Ω̂−1/2 is thus the

one of J ′Ω̂−1/2Y ′WY Ω̂−1/2J , and Y Ω̂−1/2J = [Ŝ, T̂ ]. We label our test as conditional be-

cause we will use conditional critical values. With homoskedastic errors, we will condition

on Z and T̂ . This allows to condition on the set of statistics T̂ ′WT̂ that convey infor-

mation on identification strength. Consider for simplicity the scalar case. Then T̂ ′WT̂

is the ICM statistic for testing Π(·) = 0 a.s. It can then be seen as the nonparametric

ICM equivalent of the first-stage F statistic. In particular, its large sample mean can be

viewed as some measure of identification strength similar to the concentration parameter.

4 Tests with Normal Errors and Known Covariance

Structure

We now explain how to obtain critical values and P-values. We assume normal errors

with a known covariance structure. We relax both assumptions in the next section, where

we show that estimation of the covariance structure has no first-order asymptotic effect

on the validity of our tests. Since Ω is considered known here, we replace Ŝ and T̂ by

S = Y b0 (b′0Ωb0)−1/2 and T = Y Ω−1A0 (A′0Ω−1A0)
−1/2

.

4.1 Homoskedastic Case

Under H0, S ∼ N(0, I) conditionally on Z. Then ICM = S ′WS follows a weighted sum

of independent chi-squares, specifically ICM ∼
∑n

k=1 λkG
2
k conditionally on Z, where

G1, . . . , Gn are standard independent normal random variables and λ = (λ1, . . . , λn) are

the positive eigenvalues of W , see e.g. de Wet and Venter (1973). The distribution of

ICM under H0 can thus easily be simulated by drawing many times G ∼ N(0, I), and

computing the associated quadratic form G′WG. Critical values are then obtained as the

quantiles of the empirical distribution of the simulated statistic. Equivalently, one can
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compute the P-value of the test as the empirical probability that the original test statistic

is lower than the simulated statistic.

Consider now the joint behavior of S = Y b0 (b′0Ωb0)−1/2 and the columns of T =

Y Ω−1A0 (A′0Ω−1A0)
−1/2

. Under H0, they are jointly normally distributed. Each column

of T is uncorrelated with S, and thus independent of S, conditionally on Z. This entails

that the distribution of CICM(β0) under H0 can be simulated keeping Z and T fixed by

replacing S by G ∼ N(0, I) in the formula of the statistic. The resulting quantiles now

depend on β0 via T = T (β0). This conditional method of obtaining critical values allows

in particular to condition on the matrix T ′WT that contains the set of ICM statistics

that evaluates the strength of the link of endogenous regressors to instruments.

4.2 Heteroskedastic Case

Heteroskedasticity is often encountered in microeconometric applications. The usual way

to account for potential unknown heteroskedasticity is to modify the test statistic at the

outset. For instance, Stock and Wright (2000) and Chernozhukov and Hansen (2008)

adapt the Anderson-Rubin statistic using a heteroskedasticity-robust estimator of the

covariance matrix. Conditional tests that are robust to heteroskedasticity have been pro-

posed by Andrews et al. (2006) (in the working paper version of their article), Kleibergen

(2007), Andrews (2016), Moreira and Ridder (2017), and Moreira and Moreira (2019).

Andrews and Mikusheva (2016a) note that standard CLR could be used in heteroskedas-

tic contexts by conditioning on the statistic of Kleibergen (2005), and more generally

that a wide class of QLR tests are valid when conditioning on a nuisance process. Here

we work with the statistics ICM and CICM and we adapt their critical values to het-

eroskedasticity. There may well be modifications of our statistics that could account for

heteroskedasticity, but they would be of a different form and thus would not have the

same intuitive interpretation. We leave this topic for future investigation.

Let us assume for now that the conditional variance function

Ωi ≡ Ω(Zi) = Var (Yi|Zi) =

(
Var(yi|Zi) Cov(yi, Y2i|Zi)

Cov′(Y2i, yi|Zi) Var(Y2i|Zi)

)
, (4.10)

is known, so that we can compute Σ = Var(S|Z). Then

ICM = SΣ−1/2Σ1/2WΣ1/2Σ−1/2S ,

and, under H0, ICM follows the same distribution as G′Σ1/2WΣ1/2G, where G ∼ N(0, I).

We can then again simulate the distribution of ICM under H0 and recover critical values.

13



The null distribution of CICM only depends on the covariance structure of S and T

conditional on Z under Lindeberg-type conditions, see Rotar’ (1979). Under H0, (Si, T
′
i )
′

has conditional mean (
0

Π(Zi)(A
′
0Ω−1A0)1/2

)
(4.11)

and conditional variance matrix(
(b′0Ωb0)−1 b′0Ωib0 (b′0Ωb0)−1/2 b′0ΩiΩ

−1A0 (A′0Ω−1A0)
−1/2

· (A′0Ω−1A0)
−1/2

A′0Ω−1ΩiΩ
−1A0 (A′0Ω−1A0)

−1/2

)
,

so that S and T are not conditionally independent with normal errors. We can however

condition on the part of T that is uncorrelated with S. Specifically, let

R = [R1 . . . Rn] Ri = Ti −
Cov(Ti, Si|Zi)

Var(Si|Zi)
Si .

Then, under H0, (Si, R
′
i)
′ has the same conditional mean (4.11) as (Si, T

′
i )
′ and conditional

variance matrix(
(b′0Ωb0)−1 b′0Ωib0 0

· (A′0Ω−1A0)
−1/2

(
A′0Ω−1ΩiΩ

−1A0 − A′0Ω−1Ωib0b
′
0ΩiΩ

−1A0

b′0Ωib0

)
(A′0Ω−1A0)

−1/2

)
.

Hence, with Gaussian errors, S and R are conditionally jointly Gaussian and independent,

S is pivotal under H0, while R is sufficient for Π. To simulate the distribution of CICM

keeping R and Z fixed, we generate Gi, i = 1, . . . n, as independent normal with mean 0

and variance Var(Si|Zi) for each i, and we compute CICM with drawings of Gi in place

of Si and

Ri +
Cov(Ti, Si|Zi)

Var(Si|Zi)
Gi

in place of Ti.

The above orthogonalization method is related to the one proposed by Andrews and

Mikusheva (2016a). In a linear IV model, they consider testing E [Z(y − Y ′2β0)] = 0.

They suggest to view the mean function E [Z(y − Y ′2β)] for all other values of β as

a nuisance parameter, and they propose to condition a test of the null hypothesis on

the process of sample moments evaluated at any other value β. To do so, the sam-

ple process n−1
∑n

i=1 Zi (yi − Y ′2iβ) needs to be orthogonalized with respect to the sam-

ple mean n−1
∑n

i=1 Zi (yi − Y ′2iβ0) through their estimated covariance function. The is-

sue with CICM is similar but more intricate, as we are interested in the mean pro-

cess E [(y − Y ′2β0) exp(is′Z)] for all s, and we consider E [(y − Y ′2β) exp(it′Z)] for all
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other values of β and all t as a nuisance parameter. To orthogonalize the process

n−1
∑n

i=1 (yi − Y ′2iβ) exp(it′Zi) with respect to n−1
∑n

i=1 (yi − Y ′2iβ0) exp(is′Zi), we use a

transformation that removes correlation at the level of individual observations.

4.3 Similarity of the Tests

Similar tests have been shown to perform well in weakly identified linear IV models, see

Andrews et al. (2006). The ideal normal setup may seem unrealistic, but retains however

the main ingredients of the problem. Indeed, the test statistics ultimately depend on

empirical processes that are jointly asymptotically Gaussian whatever the particular error

distribution, see Section 8. Hence the ideal setup allows to study the properties of our

test abstracting from finite-sample considerations.

Define the conditional critical values as

c1−α(Z) = inf {c : Pr [ICM (β0) ≤ c|Z] ≥ 1− α}
c1−α(Z,R(β0)) = inf {c : Pr [CICM (β0) ≤ c|Z,R(β0)] ≥ 1− α} .

Then, in the normal case with known Ω(·),

Pr [ICM(β0) > c1−α(Z)|Z] = Pr [ICM(β0) > c1−α(Z)] = α .

Pr [CICM(β0) > c1−α(Z,R(β0))|Z,R(β0)] = Pr [CICM(β0) > c1−α(Z,R(β0))] = α .

The ICM test is similar because Σ−1/2S ∼ N(0, I) conditionally on Z. For CICM, the

result follows because, in addition, (i) the components of
[
Σ−1/2S,R

]
are jointly condi-

tionally normal, and (ii) Σ−1/2S is conditionally uncorrelated with the components of R,

and thus conditionally independent of R.

5 Asymptotic Tests

The setup of normal errors with known conditional covariance structure is ideal but not

realistic. However, our method for simulating critical values remains asymptotically valid

when errors are not Gaussian, and conditional variances are estimated instead of known.

5.1 Homoskedastic Case

If we first drop the normality assumption, ICM asymptotically follows the conditional

distribution described in the last section. This is mainly based on the invariance principle
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developed by Rotar’ (1979). Specifically, ICM = S ′WS is a quadratic form in S, and its

asymptotic distribution only depends on the first two conditional moments of S. Under

homoskedasticity, S ∼ N(0, I) conditionally on Z, so replacing S by a standard Gaussian

vector G results in the same asymptotic distribution. The procedure explained in the

last section thus provides asymptotically valid critical value c1−α(Z, Ω̂), depending upon

a consistent estimator Ω̂, as the 1 − α quantile of the statistic obtained by simulations.

Under homoskedasticity, this critical value is independent of the particular value of β0.

The confidence set obtained by inverting the ICM test is
{
β0 : ICM(β0) < c1−α(Z, Ω̂)

}
.

When β0 is scalar, ICM (β0) is a ratio of two quadratic forms in β0, and the confidence

interval is obtained by solving a quadratic inequality, as is the AR confidence interval, see

Dufour and Taamouti (2005) and Mikusheva (2010). We thus obtain that our confidence

interval has four possible forms: (i) a finite interval (β1, β2); (ii) the union of two infinite

intervals (−∞, β2) ∪ (β1,+∞); (iii) the whole real line (−∞,+∞); (iv) the empty set.

The last possibility arises as our null hypothesis H̃0 states the validity of the model given

β0. Indeed, ICM is designed to test the correct specification of the model together with

the parameter value.

The conditional ICM statistic depends on S ′WS, S ′WT , and T ′WT as seen from (3.8),

which are linear and quadratic forms in S. Under homoskedasticity, S is uncorrelated

with the columns of T (conditional on Z), and the method exposed previously in the

Gaussian case provides asymptotically correct critical values. As any quasi-likelihood

ratio test, the CICM test is one-sided and rejects the null hypothesis when the statistic

is large. A confidence set for β is defined as
{
β0 : ICM(β0) < c1−α(Z, Ω̂, R̂(β0))

}
, where

c1−α(Z, Ω̂, R̂(β0)) is the 1− α quantile of the statistic obtained by simulations. However,

it does not seem possible to obtain a simple characterization of CICM-based confidence

intervals as done by Mikusheva (2010) for CLR.

5.2 Heteroskedastic Case

Accounting for unknown heteroskedasticity requires estimating conditional variances of

Y . In order to state our uniform asymptotic validity result, see Theorem 5.1 below, one

of our main tasks will be to establish asymptotic results accounting for estimation of

Ω = E Var(Y |Z) and Ω(·) = Var(Y |Z = ·). One should note that weak identification

does not preclude consistent estimation of these objects. If Ω is unknown, there are

many existing estimators in the literature, for instance the difference-based estimator of

Rice (1984) and generalizations by Seifert et al. (1993) among others. The conditional
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variance Ω(·) can be estimated parametrically if one is ready to make an assumption

on its functional form. Otherwise, we can resort to nonparametric conditional variance

estimation. Several consistent ones have been developed for a univariate Y , and generalize

easily. To make things concrete, we focus on kernel smoothing, which is used in our

simulations and application. Let

Y (z) = (nbn)−1
n∑
i=1

YiK ((Zi − z)/bn)

based on the n iid observations (Yi, Zi), a kernel K(·), and a bandwidth bn. With e =

(1, . . . 1)′, let f̂(z) = e(z) and Ŷ (z) = Y (z)/f̂(z). The conditional variance estimator of

Y is defined as

Ω̂(z) = (nbn)−1

∑n
i=1

(
Yi − Ŷ (Zi)

)(
Yi − Ŷ (Zi)

)′
K ((Zi − z)/bn)

f̂(z)
.

This estimator, studied by Yin et al. (2010), is a generalization of the kernel conditional

variance, and is positive definite whenever K(·) is positive. It provides a consistent

estimator of the variance matrix function Ω(·), and a consistent estimator of Ω using Ω̂ =

n−1
∑n

i=1 Ω̂(Zi). Note that we could equivalently consider an estimator of the uncentered

moment E (Y ′Y ) and then avoid preliminary estimation of E (Y |Z). Indeed E (S|Z) = 0

a.s. under H0 so that Var (S|Z) = E (S2|Z) and Cov (T, S|Z) = E (T ′S|Z).

With at hand a parametric or nonparametric estimator of Ω(·), one can estimate

the conditional variance of Si by V̂ar(Si|Zi) = b′0Ω̂ib0

(
b0Ω̂b0

)−1

, where Ω̂i ≡ Ω̂(Zi).

To approximate the asymptotic distribution of ICM = S ′WS, we generate independent

Gaussian Ĝi, i =, . . . n, with mean 0 and variance V̂ar(Si|Zi) for each i, and proceeds

similarly as above. The intuition carries over for CICM, provided we condition on the

part of T̂ which is asymptotically uncorrelated with Ŝ conditional on Z. The condi-

tional covariance of T̂i and Ŝi can be estimated as
(
A′0Ω̂−1A0

)−1/2

A′0Ω̂−1Ω̂ib0

(
b′0Ω̂b0

)−1/2

.

Then the asymptotic distribution of CICM will be approximated by first computing

R̂ =
[
R̂1 . . . R̂n

]
, with

R̂i = T̂i −
Ĉov(Ti, Si|Zi)

V̂ar(Si|Zi)
Ŝi =

(
A′0Ω̂−1A0

)−1/2
[
Y ′i Ω̂

−1A0 −
A′0Ω̂−1Ω̂ib0

b′0Ω̂ib0

Y ′i b0

]
,

then recomputing CICM with drawings of Gi in place of Ŝi and R̂i+
Ĉov(Ti,Si|Zi)

V̂ar(Si|Zi)
Gi in place

of T̂i.
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5.3 Uniform Asymptotic Validity

We consider the following assumptions.

Assumption A (i) The observations (yi, Y2i, Zi) form a rowwise independent triangular

array that follows (2.2) and (2.3), where the marginal distribution of Z remains un-

changed.

(ii) For some δ > 0 and M ′ <∞, supz E
(
‖Y ‖2+δ|Z = z

)
≤M ′ uniformly in n.

The assumption of a constant distribution for Z could be weakened, but is made to

formalize that identification strength is related to the conditional distribution of Y given

Z only. For the sake of simplicity, we will not use a double index for observations and will

denote by {Y1, . . . , Yn} the independent copies from Y for a sample size n. We denote by

P the class of distributions on which our observations lie.

Let E be a class of vector-valued functions Π(·) and let N (ε, E , L2(Q)) be the covering

number of E , that is the minimum number of L2(Q) ε-balls needed to cover E , where an

L2(Q) ε-ball around Π(·) is the set of vector functions
{
h ∈ L2(Q) :

∫
‖h− Π‖2 dQ < ε

}
.

Assumption B The conditional expectation vector E (Y2|Z = ·) belongs to a class of

vector functions E such that ∀Π(·) ∈ E, ‖Π(·)‖ ≤ F (·) with

lim
M→∞

sup
P

E
[
F 2(Z)I (F (Z) > M)

]
= 0

and

logN
(
εE 1/2

(
F 2(Z)

)
, E , L2(P )

)
≤ Kε−V for some V < 2 ,

for all P ∈ P and some K,V independent of P .

Andrews (1994) and van der Vaart (1994), among others, exhibit classes of smooth func-

tions that fulfill the above conditions.

Let O be a class of matrix-valued functions and let N (ε,O, L2(Q)) be the covering

number of O, defined similarly as above.

Assumption C (i) supP∈P Pr
[
‖Ω̂− Ω‖ > ε

]
→ 0 ∀ε > 0.

(ii) Ω(·) belongs to a class of matrix functions O such that O < λ ≤ infz λmin(Ω(z)) ≤
supz λmax(Ω(z)) ≤ λ <∞ for all Ω(·) ∈ O and

logN
(
ε,O, L2(P )

)
≤ Kε−V for some V < 2 ,

for all P ∈ P and some K,V independent of P .
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(iii) supP∈P Pr
(

Ω̂(·) ∈ O
)
→ 1 as n→∞

(iv) supP∈P
∫
‖Ω̂(Z)− Ω(Z)‖2 dP (Z)

p−→ 0.

This assumption entails in particular that conditional variance estimation does not affect

the asymptotic behavior of our statistics. There is a tension between the generality of

the class of functions O and the class of possible distributions P . When Ω(·) is of a

parametric form, Assumption C will be satisfied for a large class of distributions. When

Ω(·) is considered nonparametric and estimated accordingly, one typically assumes that its

components are smooth functions, and to prove (iii) one has to show that Ω̂(·) also satisfies

the same smoothness conditions with probability converging to 1. Such results have been

derived, see e.g. Andrews (1995) for kernel estimators or Cattaneo and Farrell (2013)

for partitioning estimators. Uniform convergence of nonparametric regression estimators

(and their derivatives) generally requires the domain of the functions to be bounded and

the absolutely continuous components of the distributions of the conditioning variables

to have densities bounded away from zero on their support. When they are not, Andrews

(1995) discusses the use of a vanishing trimming that is compatible with the stochastic

equicontinuity results of Andrews (1994). Condition (iv) is dealt with in the literature on

honest confidence intervals using L2 norm, see e.g. Robins and van der Vaart (2006) and

the references therein.

Assumption D w(·) is a symmetric, bounded density with
∫
w2(x) dx = 1. Its Fourier

transform is a density, which is positive almost everywhere, or whose support contains a

neighborhood of the origin if Z is bounded.

We respectively denote by c1−α(β0, Z, Ω̂(·)) and c1−α(β0, Z, Ω̂(·), R̂(β0)) the conditional

critical values of ICM and CICM obtained by the simulation-based method detailed

above.5 Let Pβ0 be the subset of distributions in P such that β = β0. The following

result establishes that our tests control size uniformly over a large class of probability

distributions.

Theorem 5.1 Under Assumptions A, B, C, and D,

lim sup
n→∞

sup
β0

sup
P∈Pβ0

Pr
[
ICM(β0) > c1−α(β0, Z, Ω̂(·))

]
≤ α

lim sup
n→∞

sup
β0

sup
P∈Pβ0

Pr
[
CICM(β0) > c1−α(β0, Z, Ω̂(·), R̂(β0))

]
≤ α .

5We neglect the approximation error due to a finite number of simulations by assuming the number

of simulations is infinite so that the critical values are exact.
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Our theorem readily implies that our tests are asymptotically valid whatever identification

strength. Indeed, for any sequence Πn(·), n geq1 of functions in E , that can decrease in

norm to zero arbitrarily fast, our result yields asymptotic validity under this sequence,

see e.g. van der Vaart and Wellner (2000, Chap. 2.8).

5.4 Asymptotic Power

We adopt here a large local alternatives setup similar to Bierens and Ploberger (1997).

Assumption E There exists a fixed matrix C(·) such that EC(Z)C ′(Z) is bounded and

positive definite, and either (i) Π(Z) = c̃n
C(Zi)√

n
or (ii) Π(Z) = C(Zi).

Condition (i) allows to study the power of our tests against weak and semi-strong identi-

fication, when considering a test of H0 : β = β1 where β1 6= β0, the true parameter value.

Condition (ii) is the strong identification case and we consider local alternatives of the

type H1n : β1n = β0 + c̃n
δ√
n
, where δ 6= 0 is fixed. In both cases, the object of interest is

the asymptotic power of our two tests when c̃n becomes large.

Theorem 5.2 Under Assumptions A, C, and D,

(i) under Assumption E-(i), for any fixed β1 6= β0,

lim inf
c̃n→∞

inf
P∈Pβ0

Pr
[
ICM(β1) > c1−α(β1, Z, Ω̂(·))

]
= 1

lim inf
c̃n→∞

inf
P∈Pβ0

Pr
[
CICM(β1) > c1−α(β1, Z, Ω̂(·), R̂(β1))

]
= 1 .

(ii) under Assumption E-(ii), for β1n = β0 + c̃n
δ√
n

and a fixed δ 6= 0,

lim inf
c̃n→∞

inf
P∈Pβ0

Pr
[
ICM(β1n) > c1−α(β1n, Z, Ω̂(·))

]
= 1

lim inf
c̃n→∞

inf
P∈Pβ0

Pr
[
CICM(β1n) > c1−α(β1n, Z, Ω̂(·), R̂(β1n))

]
= 1 .

Result (i) shows that under weak identification power is non trivial for a large enough c̃n.

For ICM, one can understand the result from the following arguments due to Bierens and

Ploberger (1997). The asymptotic distribution of ICM(β1) is given by
∑n

i=1 λi (Gi + ci)
2,
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where λi, i = 1, . . . n, are strictly positive real numbers, Gi, i = 1, . . . n, are indepen-

dent standard normals, and ci, i = 1, . . . n, are non-zero real numbers. This distribution

stochastically dominates at first order the asymptotic distribution of ICM(β0), which is

similar but with ci = 0 for all i. The behavior of CICM is more involved because it

depends on the behavior of the whole process ICM(β) for any β. Result (ii) implies

that, under strong identification, power is non trivial under a sequence of Pitman local

alternatives for c̃n large enough.

6 Small Sample Behavior

We investigate the small sample properties of our tests in the structural model

yi = α0 + Y2iβ0 + σ(Zi)ui , (6.12)

Y2i = γ0 +
c√
n
f(Zi) + σ(Zi)v2i .

where c is a constant that controls the strength of the identification and Y2i is univariate.

The joint distribution of (ui, v2i) is a bivariate normal with mean 0, unit unconditional

variances, and unconditional correlation ρ. We set α0 = β0 = γ0 = 0 and ρ = 0.8. We con-

sider three different specifications for the function f(·): (i) a polynomial function of degree

3 proportional to z−2z3/5 (ii) a linear function, and (iii) a function compatible with first-

stage group heterogeneity, see Abadie et al. (2016), proportional to (2z2 − 1) (z1 − 2z3
1/5).

Here Z (or Z1) is deterministic with values evenly spread between -2 and 2, and Z2 follows

a Bernoulli with probability 1/2. Also f(Z) is centered and scaled to have variance one

to make the different cases comparable. We consider heteroskedasticity depending on the

first component of Z of the form

σ(z) =

√
3(1 + z2)

7
.

We focus on the 10% asymptotic level tests for the slope parameter β0. In all our

experiments, w(·) is a triangle density, and conditional covariances are estimated through

kernel smoothing with Gaussian kernel and rule-of-thumb bandwidth. We compare the

performance of our two tests, ICM and the conditional ICM (CICM), to four inference

procedures: the heteroskedasticity-robust S test proposed by Stock and Wright (2000),

another heteroskedasticity-robust version of AR (CH) proposed by Chernozhukov and

Hansen (2008), the heteroskedasticity-robust conditional LR (RCLR) proposed by An-

drews et al. (2006), and the test by Jun and Pinkse (2012), see below for details on
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implementation. In homoskedastic models, we also considered the CLR test, which is

known to have excellent power. We consider 5000 replications for each value under test,

and 299 simulations for each replication to compute our tests’ p-values.6

Polynomial Model (i). Our benchmark is the heteroskedastic version of the polyno-

mial model, a degree of weakness c = 3, and a sample size n = 101, where the competitors

of our tests use a linear reduced form. We consider in turn the following variations of

our benchmark model: a homoskedastic version with σ(x) = 1; a sample size of 401;

increasing the number of instruments to 3 and 7; finally, 3 IV with a sample size of 401.

This represents a total of 6 versions of Model (i). In Table 1, we report the empirical sizes

associated with the different inference procedures for these six versions of the model. In

Figure 1, we display the power curves for different values β1 when testing H0 : β = β1.

Starting with the benchmark model, CH and RCLR are oversized, while ICM is un-

dersized. Only ICM and CICM have good power, while all the other methods have

trivial power. For the homoskedastic case, patterns in size and power are similar to the

benchmark case. When increasing the sample size, the over-rejection of CH and RCLR

disappears, but ICM and CICM are slightly undersized. Doubling the sample size does

not improve the power properties of our competitors.

We now consider increasing the number of instruments to 3 and 7. We do this by fitting

piecewise linear functions on intervals defined by the quartiles of Z. E.g. the three

considered instruments are I(z ≤ 0), z × I(z ≤ 0), and z. For JP, there is no automatic

method to choose the number of neighbors k, so we set it such that the number of degrees

of freedom, as measured by the trace of the smoothing matrix, equals the number of

instruments used in other procedures. E.g. for three instruments, k ≈ n/3.7

All tests now have good power, but size control deteriorates for CH, RCLR, and JP.

For instance, the size of RCLR is 0.144 and 0.266 with 3 and 7 IV, respectively, whereas

it is 0.107 for CICM. By contrast, size is well controlled for S, but at the cost of a smaller

power. Depending on the number of instruments, S has comparable or lower power than

ICM. Among the most powerful tests, only CICM controls size well. When increasing the

sample size with 3 IV, we observe that CH and RCLR now have the right size, while JP

is still oversized. The best power is obtained with RCLR and CICM.

6A supplementary appendix provides additional simulation results, where we vary endogeneity, sample

size, and the design.
7With one linear instrument, we do not implement JP.

22



ICM CICM CH RCLR S JP

Polynomial Model (i)

Homoskedastic 0.0644 0.1024 0.1180 0.1152 0.1086 n.a

Benchmark (Heter. 1 IV) 0.0844 0.1068 0.1168 0.1148 0.1068 n.a

Heter. 3 IV 0.1484 0.1442 0.1034 0.1840

Heter. 7 IV 0.2966 0.2658 0.0834 0.4260

Heter. 1 IV n = 401 0.0624 0.0888 0.0998 0.0986 0.0968 n.a

Heter. 3 IV n = 401 0.0982 0.1078 0.0872 0.1516

Linear Model (ii)

Homoskedastic 0.0644 0.1120 0.1180 0.1152 0.1086 n.a

Benchmark (Heter. 1 IV) 0.0844 0.1302 0.1168 0.1148 0.1068 n.a

Heter. 3 IV 0.1484 0.1522 0.1034 0.1376

Heter. 7 IV 0.2966 0.2370 0.0834 0.4326

Stronger identif. 1 IV 0.0844 0.1334 0.1168 0.1148 0.1068 n.a

No identif. 1 IV 0.0844 0.1002 0.1168 0.1148 0.1068 n.a

Group Heterogeneity Model (iii)

Benchmark (Heter. 3 IV) 0.1004 0.1050 0.1188 0.2806 0.0890 0.1138

Heter. 7 IV 0.1606 0.1866 0.0848 0.2654

Heter. 15 IV 0.3684 0.3260 0.0694 0.7106

Table 1: Empirical sizes associated with the different inference procedures for the three models

and their different variations considered in Section 6 for a theoretical 10% level. Note: the sizes

for ICM and CICM do not depend on the number of instruments and are only reported once for

each case; JP is not implemented with one instrument.

Linear Model (ii). For a linear reduced form, the standard tests are known to possess

good properties, so it is of interest to know how our tests comparatively behave in this

context. Our benchmark version of this model is heteroskedastic, a degree of weakness

c = 3, and a sample size n = 101, where the competitors of our test use the correct linear

reduced form. We then consider the following variations of our benchmark model: the

homoskedastic model; increasing the number of instruments to 3 and 7; increasing the

value of c to get stronger identification; setting c to 0 to get no identification at all. This

represents a total of 6 versions of Model (ii). Empirical sizes are reported in Table 1, and

power curves are gathered in Figure 2.

Starting with the benchmark model, CH, RCLR, and CICM are somewhat oversized,

S has a correct size, while ICM is undersized. ICM has least power, while all others

have similar power. In the homoskedastic case, CICM has only slightly lower power than

CLR. When increasing the number of instruments to 3 and 7, size control deteriorates for
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Figure 1: Power curves for Polynomial Model (i): homoskedastic case (top left), benchmark

heter. 1 IV (top right), heter. 3 IV (middle left), heter. 7 IV (middle right), heter. 1 IV with

sample size 401 (bottom left), and heter. 3 IV with sample size 401 (bottom right).
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all our competitors but S. When increasing identification strength, all methods display

similar power curves. In the case of no identification, the percentage rejection is constant

whatever the value under test for all procedures. Classical tests are oversized, and ICM

is undersized, while S and CICM maintain a 10% level across the board.

Group Heterogeneity Model (iii). This model is considered to investigate the be-

havior of the tests when we increase the number of instrumental variables. It also shows

how the tests behave when one of the instrumental variables is discrete, which is quite

common in applications. Abadie et al. (2016) consider this setup as empirical applications

of instrumental variable estimators often involve settings where the reduced form varies

depending on subpopulations. Our benchmark is the heteroskedastic version, a degree

of weakness c = 3, and a sample size n = 201, where the competitors of our test use

a reduced form with 3 instruments, namely the continuous Z1, the discrete Z2, and an

interaction term. We then consider increasing the number of instruments to 7 and 15. We

construct these instruments as piecewise linear and interaction terms on intervals defined

by the quartiles of z1. E.g. the seven considered instruments are I(z1 ≤ 0), z1× I(z1 ≤ 0),

z1, z2 × I(z1 ≤ 0), z2, z2z1 × I(z1 ≤ 0), z2z1. Empirical sizes are reported in Table 1, and

power curves are gathered in Figure 3. Starting with the benchmark model, the most

powerful inference procedures are ICM and CICM, while the other methods have trivial

power. In addition, both control size very well, while all other tests are oversized. When

we increase the number of instruments to 7 and to 15, the size distortions mentioned for

the competitors worsen, while CICM controls size well and is powerful.

Our results show that our tests are more powerful than competitors when the func-

tional form of the link between instrumental variables and endogenous regressors is non-

linear. When trying to account for nonlinearities, the standard tests get size-distorted

as more instruments are used under weak identification, as already noted by Jun and

Pinkse (2012). This phenomenon may be linked to the heteroskedasticity-robust versions

of the tests. Although these distortions disappear asymptotically, they are a concern in

moderate-size samples. By contrast, our tests perform well with heteroskedasticity of un-

known form. Overall, our two inference procedures have good power together with correct

size control.
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Figure 2: Power curves for Linear Model (ii): homoskedastic case (top left), benchmark heter.

1 IV (top right), heter. 3 IV (middle left), heter. 7 IV (middle right), stronger identification

(bottom left) and no identification (bottom right).

26



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

β1  *  c n

R
ej

ec
tio

n 
P

ro
ba

bi
lit

y

ICM
CICM
S
CH
RCLR
JP

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β1  *  c n

R
ej

ec
tio

n 
P

ro
ba

bi
lit

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β1  *  c n

R
ej

ec
tio

n 
P

ro
ba

bi
lit

y

Figure 3: Power curves for Group Heterogeneity Model (iii): benchmark 1 IV (top left), 7 IV

(top right), and 15 IV (bottom).
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7 Empirical illustration: Mexico’s 16th-century de-

mographic collapse and the Hacienda

We extend some of the results presented in Sellars and Alix-Garcia (2018) who trace the

impact of a large population collapse in 16th-century Mexico on land institutions through

the present day. Such demographic collapse - which reduced the indigenous population

by between 70 and 90 percent - is shown to have had a significant and persistent impact

on Mexican land tenure and political economy by facilitating land concentration and the

rise of a landowner class that dominated Mexican political economy for centuries. The

authors adopt an instrumental-variables empirical strategy based on the characteristics of

a massive epidemic in the mid-1570s which is believed to have been caused by a rodent-

transmitted pathogen that emerged after several years of drought were followed by a

period of above-average rainfall. Accordingly, proxies for these climate conditions are

used as instrumental variables. Sellars and Alix-Garcia (2018) rely on the Palmer Drought

Severity Index (PDSI), a normalized measure of soil moisture that captures deviations

from typical conditions at a given location: their excluded instruments are, (i) drought,

the sum of the 2 lowest consecutive PDSI values between 1570 and 1575 (more negative

numbers indicate severe and prolonged drought), (ii) rainfall, the maximum PDSI between

1576 and 1580 (as a measure of excess rainfall), and (iii) gap, the difference between the

minimum PDSI between 1570 and 1575 and the maximum between 1576 and 1580.

We focus here on the short-term effects of the population collapse: more specifically,

the sharp decline in population lowered the costs and increased the benefits of acquiring

land from indigenous villages in many areas. We used the data constructed in Sellars and

Alix-Garcia (2018) to estimate the model

yi = β0 + β1Y2i + γ′X1i + ui , E (ui|X1i, X2i) = 0

where yi is the inverse hyperbolic sine of the percent rural population living in hacienda

communities in 1900, Y2i is the population decline in municipality i measured as the log

ratio of 1650 and 1570 density, X2i represents the vector of the 3 climate instruments,

and X1i is a vector of control variables of geographic features related to population and

agriculture.8

8This specification corresponds to Column 6 in Table 2 in Sellars and Alix-Garcia (2018). It includes

their full set of 12 control variables (the standard deviation of PDSI, a measure of maize productivity,

various measures of elevation and slope) as well as the log of tributary density in 1570 and governorship-
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Next, we present our main empirical results followed by a counterfactual analysis.

They reveal a significant, negative, and economically relevant causal impact of the collapse

of the population between 1570 and 1650 on the hacienda population. We also document

first-stage heterogeneity and nonlinearities.

Main results. Our results are presented in Table 2, where we report the 95% confidence

intervals for the parameter of population decline constructed from the 2 tests proposed

in this paper, ICM and CICM. We also present confidence regions computed from two-

stage-least squares (TSLS) and standard weak-identification robust inference procedures

relying on a linear first-stage

Y2i = ΠX2i + δ′X1i + vi , E (vi|X1i, X2i) = 0 . (7.13)

With three instruments, the associated F-test statistic is moderate. Confidence inter-

vals from TSLS, CLR, RCLR, JP, and CICM indicate a significant and negative impact of

the log-ratio of 1650 to 1570 density on the dependent variable.9 Hence a decrease in the

ratio of 1650 to 1570 density increases the likelihood of having more large estates per area

in 1900, in line with the results of Sellars and Alix-Garcia (2018). Confidence intervals

obtained from ICM, AR, CH, and S tests are all empty. Since these are specification tests,

this implies rejection of the model.

To address concerns about the validity of the instruments, we re-estimate the model

using only the two most reliable of the three climate instruments, drought and gap.10 Our

results are reported in the second column of Table 2. The model is not rejected anymore

by either ICM, AR, CH, or S, which all indicate a significant and negative impact of the

log-ratio of 1650 to 1570 density on the dependent variable. Similar results are obtained

with CLR, RCLR and CICM. ICM and CICM confidence intervals are wider: this is in-

line with the simulation results we obtained where both our tests control size while others

are oversized.

level fixed effects, see their Sections 3 and 4 for a detailed description of the data and their identification

strategy. The inverse hyperbolic sine transformation can be interpreted similarly to a log transformation

and is preferable to it for a variety of reasons, see Burbage et al. (1988).
9Similarly to our simulation study, the number of neighbors k is chosen such that the degrees of

freedom are equal to the number of instruments used in other procedures. E.g. for three instruments,

k ∼ n/3.
10The remaining climate instrument is added to the set of control variables. The first-stage equation

(7.13) is updated accordingly.
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3 climate IV 2 climate IV 2 climate IV and additional controls

ICM ∅ [-2.16, -0.52] ∅
CICM [-2.26, -0.99] [-2.16, -0.58] [-0.87, -0.50]

TSLS [-1.77, -0.59] [-1.30, -0.69]

AR ∅ [-1.37, -0.65]

CLR [-1.52, -0.79] [-1.32, -0.70]

CH ∅ [-1.37, -0.68]

RCLR [-1.43, -0.68] [-1.31, -0.72]

S ∅ [-1.38, -0.68]

JP [-1.45, -0.51] [-1.49, -0.62]

F-stat 19.22 4.25

Adj. R2 0.21 0.05

Table 2: 95% Confidence Intervals for the population collapse, using either the 3 climate

instruments (column 1), 2 climate instruments (column 2), or 2 climate instruments with

additional controls (column 3) over the full sample of size equal to 1030.
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Figure 4: Generalized additive model explaining population collapse by a univariate function

of the two reliable climate instruments, drought (top panel) and gap (bottom panel) by region

for the 2 largest regions, NE (left panel) and NG (right panel).
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We now document heterogeneity and nonlinearities in the relationship between the

population decline and the two reliable climate instruments. We estimate a nonparametric

additive model for each geographic region using the mgcv package in R, see Wood (2017).

More specifically, after projecting out all the control variables, we estimate a generalized

additive model explaining population collapse by a univariate function of each climate

instrument by region; smoothing parameters are automatically selected by generalized

cross-validation. Figure 4 plots the population collapse as a function of each instrument,

drought (top panel) and gap (bottom panel), for the 2 largest regions, NE (left panel) and

NG (right panel). Analysis of variance tests on models that replace in turn each function

by a linear term reveal that relationships to drought and gap are indeed nonlinear, with

p-values smaller than 2.10−4.

Allowing for such regional heterogeneity and nonlinearities can easily be handled with

our ICM and CICM procedures by varying the information set of the conditional mo-

ments. Focusing on the model estimated with the two reliable instruments (gap and

drought), we report in the third column of Table 2 confidence intervals for ICM and

CICM obtained using a larger information set: specifically, we augment the original con-

ditioning information set (see also column 2 in Table 2) by adding regional dummies and

all control variables to allow for nonlinearities in the first-stage, not only with respect

to the instruments but also different first-stage specifications by region, as well as other

nonlinearities with respect to control variables. Allowing for these extensions with other

inference procedures (e.g. RCLR) is rather cumbersome as it would entail using a much

larger number of moments, and, as documented in our simulation study, this may also be

associated with size distortions. CICM still indicates a significant and negative impact

of the ratio of 1650 to 1570 density on the dependent variable; the confidence interval

is much narrower and is a subset of the confidence intervals obtained by all procedures

reported in the second column of Table 2. However, the model is rejected by ICM.

Counterfactual analysis. To conclude, we revisit part of the counterfactual analysis

in Sellars and Alix-Garcia (2018): we subtract off the predicted marginal effect of the

population change in each municipality from the actual 1900 outcome to obtain what

landholdings would be in the absence of a population collapse. We found that the dis-

tribution of hacienda population changes substantially under our counterfactual. The

median percentage of 1900 population living in haciendas in our data is 16.7%. When we

remove the effect of population collapse given by CICM in the third column of Table 2,

it drops between 2.8% and 4.6%. The change is even larger at the 3rd quartile. In actual
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1900 levels, 44.5% of the population lives on haciendas, but this drops between 9.0%

and 13.6% with our counterfactual estimate. Such an impact is economically meaningful,

practically relevant, and on par with the ones obtained from TSLS or RCLR.

Panel A: Changes for the median Panel B: Changes for the 3rd quartile

Counterfactual Difference Counterfactual Difference

CICM-low 2.8 13.9 CICM-low 9.0 35.5

CICM-up 4.6 12.1 CICM-up 13.6 30.9

IV 3.4 13.4 IV 10.3 34.2

CLR-low 1.8 14.9 CLR-low 6.9 37.5

CLR-up 5.4 11.3 CLR-up 15.9 28.6

RCLR-low 1.9 14.8 RCLR-low 7.0 37.4

RCLR-up 5.3 11.4 RCLR-up 15.4 29.1

Table 3: Counterfactual analysis of the causal impact of the demographic collapse: we

report the predicted marginal effect of the population change in each municipality under

”Counterfactual” as well as the difference from the actual collapse under ”Difference”;

the median and the 3rd quartile of the percentage of 1900 population living in haciendas

are respectively 16.7% and 44.5% in our data.

Overall, our empirical study emphasizes the advantage of using an inference procedure

such as CICM, that is robust to the presence of heteroskedasticity of unknown form and

and does not necessitate to pin down the (potentially nonlinear) relationship between

endogenous variable and instruments.

8 Proofs

8.1 Proof of Theorem 5.1

To simplify exposition, we consider the case where Ω is known and the statistic is based on

S = Y b0 (b′0Ωb0)−1/2. It is easy to adapt our reasoning to account for a consistent estimator of

Ω using Assumption C-(iv). However, we do not assume that the conditional variance Ω(·) is

known.

8.1.1 Uniform Convergence of Processes

The class of functions
{
s′Z, s ∈ Rk

}
has Vapnik-Červonenkis dimension k + 2 and thus has

bounded uniform entropy integral (BUEI). Since the functions t → cos(t) and t → sin(t) are
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bounded Lipschitz with derivatives bounded by 1, the class
{

cos(s′Z), sin(s′Z), s ∈ Rk
}

is BUEI,

see Kosorok (2008, Lemma 9.13).

By Assumption B, the class E is BUEI. From Kosorok (2008, Theorem 9.15), the class{
Π(Z) cos(s′Z),Π(Z) sin(s′Z),Π(·) ∈ E , s ∈ Rk

}
is BUEI, and from van der Vaart and Wellner

(2000, Lemma 2.8.3)(
n−1/2

∑n
i=1 [E (Yi|Zi) cos(s′Zi)− E (Y cos(s′Z))]

n−1/2
∑n

i=1 [E (Yi|Zi) sin(s′Zi)− E (Y sin(s′Z))]

)
 

(
G1(s)

G2(s)

)
,

uniformly in P ∈ P where (G′1(·),G′2(·)) is a vector Gaussian process with mean 0. Formally

weak convergence uniform in P means that

sup
P∈P

dBL(Gn,G)→ 0 where dBL(Gn,G) = sup
f∈BL1

|E f (Gn)− E f (G)|

is the bounded Lipschitz metric, that is BL1 is the set of real functions bounded by 1 and whose

Lipschitz constant is bounded by 1. This implies that

n−1/2
n∑
i=1

[
E (Yi|Zi) exp(is′Zi)− E

(
Y exp(is′Z)

)]
 G1(s) + G2(s) (8.14)

Since E ‖Y ‖2+δ <∞, and because E is BUEI,

n−1/2
n∑
i=1

(Yi − E (Yi|Zi)) exp(is′Zi) G3(s) + G4(s) (8.15)

Since Ω(·) is a variance matrix with uniformly bounded elements, the functions a′Ω(·)b for

‖a‖, ‖b‖ ≤M , and Ω ∈ O satisfies∣∣a′Ω1(·)b− a′Ω2(·)b
∣∣ ≤ ‖a‖‖b‖‖Ω1 − Ω2‖ ≤M2‖Ω1 − Ω2‖ .

From Assumption C and Kosorok (2008, Lemma 9.13), these functions forms a BUEI class.

Consider now the class of functions B = {a′Ω(·)b/b′Ω(·)b, ‖a‖, ‖b‖ ≤M,Ω ∈ O}. Since the func-

tion φ(f, g) = f/g is Lipschitz for f, g uniformly bounded and g uniformly bounded away from

zero, B is a BUEI class. Gathering results, for B ∈ B

Gn(B, s) = n−1/2
n∑
i=1

B(Zi) (Yi − E (Yi|Zi)) exp(is′Zi) G(B, s) , (8.16)

converges uniformly in P ∈ P to a centered Gaussian vector process. The joint uniform conver-

gence of the processes in (8.14)–(8.16) follows.

Now let us show that replacing Ω(·) by its estimator, or replacing B(·) = a′Ω(·)b/b′Ω(·)b by

B̂(·) = a′Ω̂(·)b/b′Ω̂(·)b, does not change the uniform weak limit of the process. From Assumption

C-(iii) and (iv), it is sufficient to show that

sup
P∈P

Pr

[
sup
m≥n

sup
s
‖Gm(B̂m, s)−Gm(B, s)‖B > ε

]
→ 0 ∀ε > 0 .
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This follows as Gn(B, s) is asymptotically equicontinuous uniformly in P , see van der Vaart and

Wellner (2000, Theorem 2.8.2).

8.1.2 Notations and Preliminary Results

For vector complex-valued functions h1(s) and h2(s), define the scalar product

〈h1, h2〉 =
1

2

(∫ (
h
′
1(s)h2(s) + h′1(s)h2(s)

)
dµ(s)

)
and the norm ‖h1‖ = 〈h1, h1〉1/2. Denote

hβ0,S(s) ≡ n−1/2
n∑
i=1

Si exp(is′Zi) ,

and note that ‖hβ0,S‖2 = S′WS, so that we can write ICM(β0) = ICM(hβ0,S) = ‖hβ0,S‖2. Let

hβ0,T (s) ≡ n−1/2
n∑
i=1

Ti exp(is′Zi) .

From (3.8), write CICM(β0) as of a function of hβ0,S and hβ0,T

CICM(hβ0,S , hβ0,T ) = ‖hβ0,S‖2 − min
‖a‖=1

‖aShβ0,S + a′Thβ0,T ‖2 , (8.17)

where a = (aS , a
′
T )′.

Lemma 8.1 Over the set {h : ‖h‖ ≤ C}, (a) ICM(h) is bounded and Lipschitz continuous in

h. (b) CICM(h, g) is bounded and Lipschitz continuous in (h, g).

Proof. (a) Boundedness is trivial. For Lipschitz continuity,

|ICM(h1)− ICM(h2)| =
∣∣‖h1‖2 − ‖h2‖2

∣∣ = |〈h1 − h2, h1 + h2〉|

≤ ‖h1 − h2‖‖h1 + h2‖ ≤ ‖h1 − h2‖(‖h1‖+ ‖h2‖) ≤ 2C ‖h1 − h2‖ .

(b) Since 0 ≤ CICM(h, g) ≤ ICM(h), boundedness follows. Let a∗ = (a∗S , a
∗′
T )′ be the value of a

that optimizes (8.17). Let a∗i , i = 1, 2 be the value that optimizes CICM(h, gi). Then

|CICM(h, g1)− CICM(h, g2)| =
∣∣∣∣ min
‖a‖=1

‖aSh+ a′T g1‖2 − min
‖a‖=1

‖aSh+ a′T g2‖2
∣∣∣∣

≤ max
a∈{a∗1,a∗2}

∣∣‖aSh+ a′T g1‖2 − ‖aSh+ a′T g2‖2
∣∣

= max
a∈{a∗1,a∗2}

∣∣〈a′T (g1 − g2) , (g1 + g2)′ aT + 2haS〉
∣∣

≤ max
a∈{a∗1,a∗2}

‖a′T (g1 − g2) ‖‖ (g1 + g2)′ aT + 2haS‖

≤ ‖g1 − g2‖ max
a∈{a∗1,a∗2}

‖ (g1 + g2)′ aT + 2haS‖ .
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By definition, ‖ha∗1,S + g′1a
∗
1,T ‖2 ≤ ‖h‖2 ≤ C2, and

‖ (g1 + g2)′ a∗1,T + 2ha∗1,S‖ ≤ 2‖g1a
∗
1,T + ha∗1,S‖+ ‖ (g1 − g2)′ a∗1,T ‖

≤ 2C + ‖g1 − g2‖ ,

A similar inequality holds true for a = a∗2. Hence

|CICM(h, g1)− CICM(h, g2)| ≤ ‖g1 − g2‖ (2C + ‖g1 − g2‖) .

If ‖g1 − g2‖ ≤ 2C, this yields the upper bound 4C‖g1 − g2‖, while if ‖g1 − g2‖ ≥ 2C,

|CICM(h, g1)− CICM(h, g2)| ≤ 2C2 ≤ C‖g1 − g2‖ .

These results show that CICM(h, g) is Lipschitz in g when {h : ‖h‖ ≤ C}. Similarly, define now

a∗i , i = 1, 2 as the value that optimizes CICM(hi, g), then

|CICM(h1, g)− CICM(h2, g)|

=

∣∣∣∣‖h1‖2 − min
‖a‖=1

‖aSh1 + a′T g‖2 − ‖h2‖2 + min
‖a‖=1

‖aSh2 + a′T g‖2
∣∣∣∣

≤
∣∣‖h1‖2 − ‖h2‖2

∣∣+ max
a∈{a∗1,a∗2}

∣∣〈aS (h1 − h2) , aS (h1 + h2) + 2g′aT 〉
∣∣

≤ 〈h1 − h2, h1 + h2〉+ 2 max
a∈{a∗1,a∗2}

‖aS (h1 − h2) ‖‖aS (h1 + h2) + 2g′aT ‖

≤ 2‖h1 − h2‖

(
C + max

a∈{a∗1,a∗2}
‖aS (h1 + h2) + 2g′aT ‖

)
.

Now

‖a∗1,S (h1 + h2) + 2g′a∗1,T ‖ ≤ 2‖a∗1,Sh1 + g′a∗1,T ‖+ ‖a∗1,S (h1 − h2) ‖

≤ 2C + ‖h1 − h2‖ ,

and a similar inequality obtains for a = a∗2. Hence

|CICM(h1, g)− CICM(h2, g)| ≤ 2‖h1 − h2‖ (3C + ‖h1 − h2‖) .

Reason as above to conclude that CICM(h, g) is Lipschitz in h over {h : ‖h‖ ≤ C}.

Lemma 8.2 Under Assumption A and D,

lim
M→∞

sup
β0

sup
P∈Pβ0

Pr [ICM(β0) > M ]→ 0 .
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Proof. By definition

ICM(β0) = S′WS = n−1
n∑
i=1

S2
i w(0) + n−1

n∑
i=1

∑
j 6=i

SiSjw(Zi − Zj) .

Hence, for some constants C,C ′, C ′′ > 0 independent of P ∈ Pβ0 and of β0,

Pr

[
n−1

n∑
i=1

S2
i w(0) > M/2

]
≤ 2w(0)

ES2
1

M
≤ C

M

Pr

n−1
n∑
i=1

∑
j 6=i

SiSjw(Zi − Zj) > M/2

 ≤ 4C ′
E 2(S2

1)

M2
≤ C ′′

M
,

using the boundedness of w(·) and Markov’s inequality.

8.1.3 ICM

Let Pβ0 = {P ∈ P : β = β0}. From (8.15),

hβ0,S(s) GS(s) , (8.18)

uniformly in P ∈ Pβ0 and in β0, where GS(s) is a centered complex Gaussian process. Let

Ω̂i = Ω̂(Zi) and

Ĝi =
(
b′0Ωb0

)−1/2
(
b′0Ω̂ib0

)1/2
εi ,

where the εi are independent N(0, 1). From our results in Section 8.1.1,

h
Ĝ

(s) = n−1/2
n∑
i=1

Ĝi exp(is′Zi) GS(s) ,

uniformly in P ∈ P. We say that hβ0,S uniformly weakly converges to h
Ĝ

in P ∈ P, i.e.

sup
β0

sup
P∈Pβ0

dBL(hβ0,S , hĜ)→ 0 ,

see Kasy (2018) for a similar terminology. Let F (x) = I [x < C1] + C2−x
C2−C1

I [C1 ≤ x ≤ C2] for

some 0 < C1 < C2 and consider the continuous truncation of ICM(hS) defined by ICMF (hS) =

ICM(hS)F (‖hS‖). Consider the conditional quantile of ICMF (h)

cF,1−α(h) = inf {c : Pr [ICMF (h) ≤ c] ≥ 1− α} .

Lemma 8.1 ensures that ICMF (h) is Lipschitz, and it follows that cF,1−α(h) is also Lipschitz.

Indeed,

1− α ≤ Pr [ICMF (h1) ≤ cF,1−α(h1)]

≤ Pr [ICMF (h2) ≤ cF,1−α(h1) +K‖h1 − h2‖] ,
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so that cF,1−α(h2) ≤ cF,1−α(h1) +K‖h1− h2‖ for some constant K > 0. Interverting the role of

h1 and h2 we get cF,1−α(h1) ≤ cF,1−α(h2) +K‖h1 − h2‖, so cF,1−α(h) is Lipschitz in h.

Assume now that the conclusion of Theorem 5.1 does not hold. Then there exists some

δ > 0, an infinitely increasing subsequence of sample sizes nj and a sequence of probability

measures Pnj ∈ Pβ0,nj , with corresponding sequences of β0,nj and Πnj (·), such that

Pr
nj

[
ICM(hβ0,nj ,S) > c1−α(h

Ĝ
)
]
> α+ 3δ ∀nj .

Choose C1 such that Prnj

[
ICM(hβ0,nj ,S) ≥ C1

]
< δ, which is possible from Lemma 8.2. Now

Pr [ICM(hβ0,S) > x] ≤ Pr [ICMF (hβ0,S) > x] + Pr [ICM(hβ0,S) ≥ C1]

for any β0 and any Pβ0 , and cF,1−α(h) ≤ c1−α(h), so that

Pr
nj

[
ICMF (hβ0,nj ,S) > cF,1−α(h

Ĝ
)
]
> α+ 2δ ∀nj .

As ICMF (h) is bounded and Lipschitz in h, by the uniform convergence of hβ0,S to h
Ĝ

,

sup
β0

sup
P∈Pβ0

sup
x

∣∣Pr [ICMF (hβ0,S) > x]− Pr
[
ICMF (h

Ĝ
) > x

]∣∣→ 0 .

Therefore for nj large enough

Pr
nj

[
ICMF (h

Ĝ
) > cF,1−α(h

Ĝ
)
]
≥ α+ δ ,

which contradicts the definition of cF,1−α(h
Ĝ

).

8.1.4 CICM

Write now hβ0,T = hβ0,S̃ + hβ0,R = hβ0,S̃ + hβ0,U + hβ0,E , where

S̃i =
(
A′0Ω̂−1A0

)−1/2 A′0Ω−1Ω̂ib0

b′0Ω̂ib0
Y ′i b0, Ri = Ti − S̃i, Ei = E (Ti|Zi), Ui = Ri − Ei .

Denote by Eβ0(s) the non-random function n1/2E (Y exp(is′Z)). Results in Section 8.1.1 show

joint uniform weak convergence of hβ0 =
(
hβ0,S , hβ0,S̃ , hβ0,U , hβ0,E − Eβ0

)
to a Gaussian complex

process with zero asymptotic covariance between the elements of
(
hβ0,S , hβ0,S̃

)
and those of

(hβ0,U , hβ0,E − Eβ0). Let

G̃i =
(
A′0Ω̂−1A0

)−1/2 A′0Ω−1Ω̂ib0

b′0Ω̂ib0
εj ,

where the εj are independent N(0, 1). Then ĥβ0 =
(
h
Ĝ
, hG̃, hβ0,U , hβ0,E − Eβ0

)
uniformly weakly

converges to hβ0 , i.e.

sup
β0

sup
P∈Pβ0

dBL(hβ0 , ĥβ0)→ 0 .
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Therefore
(
hβ0,S , hβ0,S̃ , hβ0,U , hβ0,E

)
uniformly weakly converges to

(
h
Ĝ
, hG̃, hβ0,U , hβ0,E

)
, be-

cause sequences of bounded Lipschitz functionals of hβ0 can be expressed as sequences of bounded

Lipschitz functionals hβ0 + (0, 0, 0, Eβ0).

Consider the continuous truncation of CICM(hS , hT ) defined by

CICMF (hS , hT ) = CICM(hS , hT )F (‖hS‖) ,

and the conditional quantile of CICMF

cF,1−α(h, g) = inf {c : Pr [ICMF (h, g) ≤ c] ≥ 1− α} .

Lemma 8.1 ensures that CICMF (h, g) is bounded and Lipschitz in h and g, and it follows that

cF,1−α(h, g) is also Lipschitz.

Assume now that the conclusion of Theorem 5.1 does not hold. Then there exists some

δ > 0, an infinitely increasing subsequence of sample sizes nj and a sequence of probability

measures Pnj ∈ Pβ0,nj , with corresponding sequences β0,nj and Πnj (·), such that

Pr
nj

[
CICM(hβ0,nj ,S , hβ0,nj ,S̃

+ hβ0,nj ,R) > c1−α(h
Ĝ
, hG̃ + hβ0,nj ,R)

]
> α+ 3δ ∀nj .

Choose C1 such that Prnj

[
ICM(hβ0,nj ,S) ≥ C1

]
< δ. Since for any β0 and any Pβ0

Pr [CICM(hβ0,S , hβ0,T ) > x] ≤ Pr [CICMF (hβ0,S , hβ0,T ) > x] + Pr [ICM(hβ0,S) ≥ C1]

and cF,1−α(hβ0,S , hβ0,T ) ≤ c1−α(hβ0,S , hβ0,T ) for all h, g and β0,

Pr
nj

[
CICMF (hβ0,nj ,S , hβ0,nj ,S̃

+ hβ0,nj ,R) > cF,1−α(h
Ĝ
, hG̃ + hβ0,nj ,R)

]
> α+ 2δ ∀nj .

Because CICMF (h, g + hR) is bounded and Lipschitz in (h, g) from Lemma 8.1,

sup
β0

sup
P∈Pβ0

sup
x

∣∣∣Pr
[
CICMF (hβ0,S , hβ0,S̃ + hβ0,R) > x

]
− Pr

[
CICMF (h

β0,Ĝ
, hβ0,G̃ + hβ0,R) > x

]∣∣∣→ 0 .

Therefore for nj large enough

Pr
nj

[
CICMF (h

Ĝ
, hG̃ + hβ0,nj ,R) > cF,1−α(h

Ĝ
, hG̃ + hβ0,nj ,R)

]
≥ α+ δ ,

which contradicts the definition of the quantile.

8.2 Proof of Theorem 5.2

Write

ICM(β1) = a′

[
S′

T ′

]
W [S, T ] a ,
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with a = (a1, a
′
2)′ = Qb1 (b′1Ωb1)−1/2 and Q =

[
(b′0Ωb0)−1/2 b′0Ω

(
A′0Ω−1A0

)−1/2
A′0

]
. Since

β1 6= β0, a2 6= 0 and

ICM(β1)− ICM(β0) = (a2
1 − 1)S′WS + a′2T

′WT a2 + 2a1a
′
2T
′WS

= (a2
1 − 1)‖hβ0,S‖2 + 2〈a1hβ0,S , a

′
2hβ0,T 〉+ ‖a′2hβ0,T ‖2 .

(i) From our previous results, ‖hβ0,S‖2 is uniformly bounded in probability. Moreover, under

Assumption E-(i), ‖c̃−1
n hβ0,T (s)− c̃−1

n (hβ0,E(s)− Eβ0(s)) ‖∞
as−→ 0 as c̃n →∞ and

‖c̃−1
n hβ0,E(s)−

(
A′0Ω−1A0

)−1/2 E
(
A0Ω−1C(Z) exp(is′Z)

)
‖∞

as−→ 0 ,

uniformly in P ∈ Pβ0 . Hence

c̃−2
n (ICM(β1)− ICM(β0))

as−→ a′2
(
A′0Ω−1A0

)−1/2
A0Ω−1E [C(Z1)C(Z2)w(Z1 − Z2)]

Ω−1A0

(
A′0Ω−1A0

)−1/2
a2 .

By the arguments of Bierens (1982, Theorem 1), this is a positive definite matrix since

a′E (C(Z1)C(Z2)w(Z1 − Z2)) a⇒ a = 0 or C(Z) = 0 ,

but the last statement would contradict Assumption E-(i). Then

lim
c̃n→∞

sup
P∈Pβ0

Pr [ICM(β1)− ICM(β0) > M ]→ 1 ∀M > 0 . (8.19)

Assume now that the conclusion of Theorem 5.2 does not hold. Then there exists some δ > 0,

an infinitely increasing subsequence of sample sizes nj and a sequence of probability measures

Pnj ∈ Pβ0 , with corresponding sequences Πnj (·) and c̃nj , such that

Pr
nj

[
ICM(β1) < c1−α(h

Ĝ
)
]
> δ ∀nj .

Then

Pr
nj

[
ICM(β1)− ICM(β0) < c1−α(h

Ĝ
)− ICM(β0)

]
> δ ∀nj .

But ICM(hβ0,S) is uniformly bounded in probability by Lemma 8.2 and so is the critical value

c1−α(h
Ĝ

). This contradicts (8.19).

For CICM, we can apply a similar reasonning because ICM(β1) − ICM(β0) = CICM(β1) −
CICM(β0), 0 ≤ CICM(β0) ≤ ICM(β0) is uniformly bounded, and thus its critical value is

uniformly bounded as well.

(ii) Under Assumption E-(ii), we have a similar decomposition as above for ICM(β1n) −
ICM(β0), with(

a1n, a
′
2n

)
=

[(
b′0Ωb0

)−1/2
(
b′0Ωb0 + b′0Ωd

c̃n√
n

) (
A′0Ω−1A0

)−1/2
A′0d

c̃n√
n

] (
b′1nΩb1n

)−1/2
,

where d = (0, δ). Note that A′0d = δ 6= 0. We then proceed as above to obtain that

c̃−2
n (ICM(β1)− ICM(β0)) converges to a positive definite limit. The rest of the proof follows

similarly.
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Supplementary Appendix

We provide here additional simulation results. Specifically, we consider the following
variations of our benchmark cases for polynomial and linear models presented in Section
6: (a) a moderate level of endogeneity with ρ = 0.3 (in our original design ρ = 0.8); (b) a
larger sample size n = 1, 001 (in our original design n = 101); (c) Z normally distributed
(in our original design Z is deterministic between -2 and 2). In Table 4, we present the
empirical sizes associated with ICM, CICM, S, CH, RCLR and JP; in Figure 5, we present
the corresponding power curves.

The main qualitative findings reported in Section 6 are not affected by the above-
mentioned changes in our DGP. Increasing the sample size to n = 1, 001 does not affect
the power curves of any of the test procedures as they remain practically the same as those
obtained when n = 101. This could be expected with weak identification. We notice,
however, that ICM is slightly more undersized. When considering normally distributed
instruments, power curves are virtually the same as with a fixed design; in addition, all
tests but S are slightly oversized under the null. When we increase the sample size to
n = 1, 001, all procedures control size appropriately.

ICM CICM S CH RCLR
Polynomial Model (i)
ρ = 0.3 0.0844 0.1036 0.1068 0.1168 0.1148
n = 1, 001 0.0606 0.0868 0.0944 0.0952 0.0962
Z ∼ N (.) 0.1286 0.1252 0.1004 0.1250 0.1264
Z ∼ N (.) and n = 1, 001 0.0838 0.1066 0.0964 0.0998 0.1004
Linear Model (ii)
ρ = 0.3 0.0844 0.1182 0.1068 0.1168 0.1148
n = 1, 001 0.0606 0.0926 0.0944 0.0952 0.0962
Z ∼ N (.) 0.1286 0.1310 0.1004 0.1250 0.1264
Z ∼ N (.) and n = 1, 001 0.0838 0.1060 0.0964 0.0998 0.1004

Table 4: Empirical sizes associated with 5 inference procedures for simulations designs (i) and
(ii) and three variations for a theoretical 10% level.
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Figure 5: Power curves associated with 6 inference procedures for simulations designs (i) and (ii)
and the three above-mentioned variations. Left: Polynomial Model (i); Right: Linear Model (ii).
First row: Lower endogeneity ρ = .3. Second row: n = 1, 001. Third row: Normal instruments.
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