Résumé
We prove the existence of a Markov-perfect equilibrium in randomized stopping times for a model of the war of attrition in which the underlying state variable follows a homogenous linear diffusion. We first prove that the space of Markovian randomized stopping times can be topologized as a compact absolute retract. This in turn enables us to use a powerful fixed-point theorem by Eilenberg and Montgomery [22] to prove our existence theorem. We illustrate our results with an example of a war of attrition that admits a mixed-strategy Markov-perfect equilibrium but no pure-strategy Markovperfect equilibrium.
Mots-clés
War of Attrition, Markovian Randomized Stopping Time, Markov-Perfect Equilibrium, Fixed-Point Theorem.;
Référence
Jean-Paul Décamps, Fabien Gensbittel et Thomas Mariotti, « Mixed Markov-Perfect Equilibria in the Continuous-Time War of Attrition », TSE Working Paper, n° 24-1562, août 2024, révision juillet 2025.
Voir aussi
Publié dans
TSE Working Paper, n° 24-1562, août 2024, révision juillet 2025