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Chapter 1

Introduction

1.1 Reminders

1.1.1 Probability

Definition 1 (σ-algebra). Let X be a set. We call σ-algebra on X, a set A of all the parties of
X satisfying

• A is not empty,

• A is stable by complement,

• A is stable by countable unions.

Exercice 1. 1. Describe possible σ-algebra of X = {a, b, c, d}.

2. Describe possible σ-algebra of a set X.

▶

1. A possible σ-algebra is A = {∅, {a}, {b, c, d}, X}. Another is A = {∅, {a, b}, {c, d}, X}.

2. A possible σ-algebra is A = {∅, X}. Another is A = P(X) where P(X) represents all the
parties of X (the set of all the subset of X).

Definition 2 (Borel sets). A Borel σ-algebra is the smallest σ-algebra Σ which contains all the
open sets. The couple (X,Σ) is called a Borel space.

A Borel set is an element of a Borel σ-algebra.

Exercice 2. Prove that

1. R is Borel σ-algebra.

2. RN is a Borel σ-algebra.

▶

1. Spanned by {(a,+∞), a ∈ R}, by {[a,+∞), a ∈ R}, {[a, b), (a, b) ∈ R2}

2. Spanned by the open Euclidian balls, the closed Euclidian balls, the cuboid, etc...

Definition 3 (Measure). Let X be a set and Σ a σ-algebra over X. A set function µ : Σ → R̄ =
R ∪ {±∞} is called a measure if the following hold:

• Non-negativity: ∀E ∈ Σ, µ(E) ≥ 0.

• µ(∅) = 0.

3
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• Countable additivity (or σ-additivity): For all countable collections {Ek}∞k=1 of pairwise
disjoint sets in Σ

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek).

A triple (X,Σ, µ) is called a measure space.
A probability measure is a measure with total measure one that is, µ(X) = 1.

Definition 4 (Borel measure). Let X be a set and Σ a σ-algebra over X. A Borel measure is
any measure µ defined on the σ-algebra of Borel sets.

Example 1. Let µ be the measure which to any interval (a, b] assigns µ((a, b]) = |b − a|. This
measure is often called «the» Borel measure on R.

Definition 5 (Borel map). Let (X,Σ) and (Y,Σ′) be Borel spaces. A function f : (X,Σ) → (Y,Σ′)
is called a Borel map if it is a measurable function i.e. for every E ∈ Σ′ the pre-image of E under
f is in Σ; that is, for all E ∈ Σ′,

f−1(E) := {x ∈ X | f(x) ∈ E} ∈ Σ.

Example 2. Continuous functions are Borel maps (but not the reverse).

1.1.2 Weak and weak-* topologies

Definition 6 (Dual). Let E be a vector space. The continous dual space of E, denoted E∗ is the
set of the continous linear forms on E.

Exercice 3. Determine (R3)∗.

▶ It is the set of all the forms:

(x, y, z) 7→ ax+ by + cz

where a, b and c are given real numbers.

Definition 7 (Strong convergence). Let (X, ∥ · ∥) a normed vector space. A sequence (xn)n in X
converges strongly to x ∈ X if

lim
n→∞

∥xn − x∥ = 0 .

Exercice 4. For all p ∈ [1,∞) and a general index set I, we define

lp :=

{
(xn)n∈I :

∑
n∈I

|xn|p <∞

}

Let p′ be such that 1/p+ 1/p′ = 1. We also define

H : lp
′ × lp → R

(xn), (yn) 7→
∑
n∈N

xn yn

1. Prove that H is bilinear and continuous.

2. Prove that we can define a linear and continous map aH : lp
′ → (lp)∗ such as

⟨aH(y), x⟩ = H(y, x)

3. Prove that aH is an isomorphism so that lp′ identifies to (lp)∗.

▶
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1. Obvious.

2. By Riesz’ representation theorem: For every continuous linear functional φ ∈ H∗, there
exists a unique vector fφ ∈ H, called the Riesz representation of φ, such that

φ(x) = ⟨x, fφ⟩ for all x ∈ H.

3. Obvious by uniqueness.

Exercice 5. In the space (l2, ∥ · ∥2), consider the sequence (en)n of general term en = (δn(i))i =
(0, · · · , 0, 1, 0, · · · , 0, · · · ).

1. Compute ∥en − em∥2.

2. Prove that the sequence (en)n is not a Cauchy sequence.

3. Prove that the sequence (en)n does not converge strongly.

▶

1. ∥en − em∥ =
√
2.

2. By definition of a Cauchy sequence.

3. Any converging sequence is a Cauchy sequence.

Definition 8 (Weak convergence). Let (X, ∥ · ∥) be a normed vector space. A sequence (xn)n in
X converges weakly to x ∈ X if

∀f ∈ X∗, lim
n→∞

⟨f, xn⟩ = ⟨f, x⟩ .

We denote xn ⇀ x.

Exercice 6. In the previous exercise prove that en ⇀ 0.

▶ For every (xn) ∈ l2,
⟨x, en⟩ = xn → 0

Definition 9. Let X be a normed vector space. A sequence (fn)n weak*-converges to f ∈ X∗ if

∀x ∈ X, lim
n→∞

⟨fn, x⟩ = ⟨f, x⟩ .

Exercice 7. Let
c0 := {(xn) ∈ l∞ : xn → 0} .

Consider a sequence (en)n in c∗0 ∼ l1 defined by en = (δn(i))i = (0, · · · , 0, 1, 0, · · · , 0, · · · )

1. Prove that (en)n weak*-converges to 0.

2. Prove that (en)n does not weak-converge to 0.

▶

1. We have, for all (xi)i in c0

⟨en, (xi)i⟩ =
∑
i∈N

ei xi = xn → 0 .

Hence (en)n weakly*-converges to 0.
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2. Now consider ϕ = (ϕi)i ∈ l∞ = (l1)∗. We have

⟨ϕ, en⟩ =
∑
i∈N

ϕi ei = ϕn .

But there is no reason why ϕn would go to 0. Take for instance ϕ = (1, · · · , 1, · · · ) ∈ l∞.

Theorem 1 (Banach-Alaoglu). Let E be a vector space. The closed ball {f ∈ E∗ : ∥f∥ ≤ 1} is
compact for the weak*-topology.

Cf. [6][Theorem 3.15, p. 42].

Theorem 2 (Kakutani). Let E be a vector space. The closed ball {x ∈ E : ∥x∥ ≤ 1} is compact
for the weak-topology if and only if (E∗)∗ = E.

Cf. [6][Theorem 3.16, p. 44].
Hence, from any sequence bounded in Lp for p ∈ (1,∞) we can extract a subsequence weakly

converging in Lp. While from any sequence bounded in L∞ we can extract a subsequence weakly-*
converging in L∞.

Note this kind of result cannot be true for L1 as prove the following exercise:

Exercice 8. Consider the sequence (gn)n defined in [0, 1] by

gn(x) :=

{
−2n2x+ 2n if x ∈ [0, 1/n)

0 otherwise

1. Prove that ∥gn∥1 = 1.

2. Prove that (gn)n converges neither weakly no weakly-* in L1(0, 1).

We can decide to work in a space which is much bigger that the space of L1 functions :

Definition 10 (Finite signed measure). Let X be a metric space. A map which associate to every
Boret set A ⊂ X a value λ(A) ∈ R such that, for every countable disjoint union we have∑

i

|λ(Ai)| <∞ and
∑
i

∪iλ(Ai) =
∑
i

λ(Ai)

is called a finite signed measure. We denote M(X) the set of finite measures on X.

Theorem 3. Let X be a compact set. Consider the space E := C(X) of continuous functions on
X endowed with the sup-norm. E∗ is isomorphic to M(X) endowed with the norm ∥λ∥ = |λ|(X).

Remark 1. If X is not bounded, we may consider the space of continous function which vanish
at infinity, which dual is M(X). The convergence in finite signed measures M(X) in the duality
C0(X) is the weak* convergence. There is another notion of convergence, called the narrow
convergence, in the duality Cb(X), of bounded continuous functions:

∀ϕ ∈ Cb(X),

∫
X
ϕ dµn →

∫
X
ϕ dµ .

But all those notions coincide when X is compact.
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1.2 The Monge and the Kantorovich problems

In 1781, the french mathematician Gaspard Monge, first considered the problem of «remblais et
déblais» which asks what is the most efficent (that is work minimizing) way to move a pile of
soil or rubble to an excavation or fill. Imagine that the soil initially occupies the bounded region
A ⊂ R3 and that the excavation is the region B, assume also that A and B have the same volume.
One then looks for a map T : A → B, (here T (x) ∈ B represents the destination of the element
of mass initially located at x ∈ A), the total work involved is∫

A
|x− T (x)| dx

and one has to minimize it in the set of volume preserving maps T : A→ B. It is this constraint
(of incompressibility) that makes the problem difficult (and in fact, the first rigorous existence
proofs for a minimizer were given in the mid 90’s!). We will come back to the original Monge
problem in more details.

More generally, assume that X and Y are two compact sets (to make things as simple as
possible) metric spaces and that µ and ν are two Borel measures with the same total mass (which
we shall of course normalize to 1) and that we are also given a continuous transportation cost
function c : X × Y → R. Transport maps are then maps that fulfill some mass conservation
requirement that is naturally defined as follows:

Definition 11. Let T : X → Y be a Borel map. The push-forward or (image measure) of µ
through T is the Borel measure, denoted T#µ defined on Y by

∀φ ∈ C(Y ),

∫
Y
φ(y) dT#µ(y) =

∫
X
φ (T (x)) dµ(x)

A Borel map T : X → Y is said to be a transport map (from µ to ν) if T#µ = ν.

Remark 2. The map T is a transport from µ to ν is equivalent to

∀φ ∈ C(Y ),

∫
Y
φ(y) dν(y) =

∫
X
φ (T (x)) dµ(x)

Remark 3. The image measure T#µ can equivalently be defined by

T#µ(B) = µ
(
T−1(B)

)
, for all Borel subest B of Y .

Definition 12. Monge’s problem consists in finding a cost minimising transport from µ to ν, it
reads:

inf
T : T#µ=ν

∫
X
c (x, T (x)) dµ(x) . (MP)

If a solution to this problem exists it is called an optimal transport map.

We should now remark, that Monge’s problem presents serious difficulties and in the first
place the fact that there may be no transport map : if µ = δ0 then it is impossible to transport
µ on the Lebesgue measure! This example is somehow extreme and can be ruled out when one
assumes that µ is nonatomic. One should also remark that the Monge’s formulation is rather
rigid in the sense that it requires that all the mass that is at x should be associated to the same
target T (x).

In the 1940’s, Kantorovich proposed a relaxed formulation that allows mass splitting. More
precisely, he introduced the problem which is by now known as the (Monge-)Kantorovich problem
and reads as:

inf
γ∈Π(µ,ν)

∫∫
X×Y

c(x, y) dγ(x, y) (KP)

where Π(µ, ν) is the set of transport plans i.e. the set of Borel probability measures on X × Y
which have µ and ν as marginals:

γ(A× Y ) = µ(A); , γ(X ×B) = ν(B), for every Borel set A ⊂ X, and B ⊂ Y .
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Or equivalently

∀(φ,ψ) ∈ C(X)× C(Y ),

∫∫
X×Y

(φ(x) + ψ(y)) dγ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) .

Exercice 9. Prove that the set Π(µ, ν) is never empty.

▶ For instance µ⊗ ν belongs to Π(µ, ν) where

(µ⊗ ν)(A×B) = µ(A) ν(B), for every Borel set A ⊂ X, and B ⊂ Y .

Kantorovich’s problem is much simpler. We have

Theorem 4. Let c : X×Y → R be a continous map. The Kantorovich problem admits a solution.
Such solutions are called optimal transport plans.

Proof.

Exercice 10. 1. Prove that

F : γ 7→
∫∫

X×Y
c(x, y) dγ(x, y)

is linear.

2. Prove that Π(µ, ν) is weakly-* compact.

3. Prove that F is continuous for the weak-* topology.
▶

1. It is obvious.

2. Obvious as the set of probability measures on a compact set is compact (i.e. every sequence
of points in X has a convergent subsequence converging to a point in X) and for all (φ,ψ) ∈
C(X)× C(Y ),∫

X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) =

∫∫
X×Y

(φ(x) + ψ(y)) dγn(x, y)

→
∫∫

X×Y
(φ(x) + ψ(y)) dγ(x, y) .

3. Since c is continuous on a compact set, which is the predual of the set of the probability
measures as P(X)∗ ∼ C0(X), we have

⟨c, γn⟩ → ⟨c, γ⟩

By Weierstrass’ theorem there exists a minimum.

Existence of transport plans is therefore a straightforward fact but it does not say much about
existence of optimal transport maps in general. However, let us remark that if T is a transport
map then it induces a transport plan γT by γT := (id, T )#µ i.e.∫∫

X×Y
φ(x, y) dγT (x, y) =

∫
X
φ (x, T (x)) dµ(x), ∀φ ∈ C(X × Y ) .

As for the cost one has ∫
X
c (x, T (x)) dµ(x) =

∫∫
X×Y

c(x, y) dγT (x, y) .

This proves that the minimum in the Kantorovich problem is smaller than the infimum of the
Monge problem. It also means that if we are lucky enough to find an optimal plan that is of the
form γT (which roughly speaking means that it is supported by the graph of T ) then T is actually
an optimal transport map.

A related question is whether the Kantorovich problem has a minimum. The answer is positive
when µ is non-atomic:
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Theorem 5. If µ is non-atomic then

inf
T : T#µ=ν

∫
X
c (x, T (x)) dµ(x) = min

γ∈Π(µ,ν)

∫∫
X×Y

c(x, y) dγ(x, y) .

The proof uses Lyaponov’s convexity theorem. We refer to [25, 22, 1] for details. As we already
mentioned if the source measure has atoms there may be no such transport map, the previous
theorem says in particular that without atoms, transport maps exist (and actually form a set that
is large enough to be dense in transport plans). The presence of atoms actually is therefore the
only serious source of nonexistence of transport maps.
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Chapter 2

Existence of solutions

2.1 Duality of the Kantorovich problem

A key feature of the linear Monge-Kantorovich formulation is that it has a nice dual formulation
that we are going to describe here in an informal way (a rigorous proof via the Fenchel-Rockafellar
duality theorem can be found in [9]). As we shall see later, the dual problem is an essential tool
to understand the geometry of optimal transport as well as for establishing existence of optimal
transport maps for certain cost functions.

Theorem 6 (Kantorovich’s duality). The Kantorovich problem (KP) is equivalent to

sup
(φ,ψ)∈C(X)×C(Y )
φ(x)+ψ(y)≤c(x,y)

{∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

}
. (DP)

This problem is called the dual formulation of the transport problem (KP).

Proof. The idea, which is standard in problems of this kind, is to rewrite the constrained infimum
problem as an «inf sup» problem and exchange the two operation «inf sup» and «sup inf» by
formally applying a min-max principle. We will not give a full proof of this result in this lecture
but some heuristics as follows.

The intuition behind the Kantorovich duality is to view the functions φ and ψ as Lagrange
multipliers associated to the constraints on the marginals:

Exercice 11. Prove that the problem (KP) can be rewriten in the form:

inf
γ≥0

sup
(φ,ψ)∈C(X)×C(Y )

{∫
X
φ(x) dµ(x)+

∫
Y
ψ(y) dν(y)+

∫∫
X×Y

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}
.

▶ for γ ≥ 0, γ ∈ Π(µ, ν) if and only if

∀(φ,ψ) ∈ C(X)× C(Y )

∫∫
X×Y

(φ(x) + ψ(y)) dγ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) .

or

sup
(φ,ψ)∈C(X)×C(Y )

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y)−

∫∫
X×Y

(φ(x) + ψ(y)) dγ(x, y)

=

{
0 if γ ∈ Π(µ, ν)

+∞ otherwise

Hence, if the contraint is satisfied nothing has been added and if not we get +∞ (which will be
avoided by the minimisation).

11
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We would like this optimization problems «inf sup» to be equivalent to the following «sup
inf» problem:

sup
(φ,ψ)∈C(X)×C(Y )

{∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) : c(x, y) ≥ φ(x) + ψ(y) on X × Y

}
. (DP)

This equivalence is not always possible, and the main tool to do it is a theorem by Rockafellar
requiring concavity in one variable, convexity in the other one, and some compactness assumption.
Yet, Rockafellar’s statement concerns finite-dimensional spaces, which is not the case here. To
handle infinite-dimensional situations one needs to use a more general mini-max theorems. In
this lecture, we prefer not to investigate anymore the question of obtaining the duality equality.
For the moment, let us accept it as true and see the intuition behind it.

Exercice 12. Prove (KP) ≥ (DP)

▶ Consider then the «sup inf» problem:

sup
(φ,ψ)∈C(X)×C(Y )

inf
γ≥0

{∫
X
φ(x) dµ(x)+

∫
Y
ψ(y) dν(y)+

∫∫
X×Y

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}

= sup
(φ,ψ)∈C(X)×C(Y )

{∫
X
φ(x) dµ(x)+

∫
Y
ψ(y) dν(y)+inf

γ≥0

∫∫
X×Y

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}
.

Note that
inf
γ≥0

{∫∫
X×Y

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}
,

is 0 whenever the inequality c(x, y) ≥ φ(x) + ψ(y) holds everywhere (take γ = 0) and −∞
otherwise (take γ = λδx0,y0 is a point where c(x0, y0) ≥ φ(x0) + ψ(y0) and let λ go to infinity).
Hence, while looking for the sup, if a solution to the «sup inf» problem, (φ,ψ) atomatically
satisfies the constraints of (DP). As a consequence the «supp inf» problem is equivalent to (DP).

The shipper problem: here is an informal interpretation which is due to Caffarelli. Suppose
that you are a mathematician and an industrial willing to transfer a huge amount of coal from
your mines to your factories. Both the amount of coal which you can extract from each mine and
the amount of coal which should be received by each factory are fixed. You can hire trucks to do
this transport, but you have to pay them c(x, y) for each ton of coal which is transported from
a place x to a place y. As you are trying to solve a Kantorovich problem in order to minimise
the price you have to pay, another mathematician comes to you and tells you «my friend, let me
handle this for you: I will ship all your coal with my own trucks and you will not have to care
of what goes where. I will just set a price φ(x) for loading one ton of coal at place x, and a
price ψ(y) for unloading it at destination y. I will set the price in such a way that your financial
interest will be to let me handle all your transport. Indeed, you can check easily that for all x
and y, the sum φ(x) + ψ(y) ≤ c(x, y).»

What Kantorovich’s duality tells you is that if the shipper is clever enough, then he can
arrange the prices is such a way that you will pay him as much as you would have been ready to
spend for the other method.

Theorem 7 (Existence of minimumum to (DP)). The supremum is attained in (DP).

We will give the main ingredient of the proof, which is the double-convexification trick which
is based on

Definition 13 (c-concave transform). Let g ∈ C(Y ). The c-concave transform of g, denoted gc,
is defined as for all x ∈ X by

gc(x) := inf
y∈Y

{
c(x, y)− g(y)

}
.
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Proof. For (φ,ψ) ∈ C(X)× C(Y ), let us denote by J the criterion in (DP):

J(φ,ψ) :=

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) .

Exercice 13. 1. Prove that φ ≤ ψc.

2. Prove that J(ψc, ψ) ≥ J(φ,ψ).

3. Prove that ψcc ≥ ψ.

4. Prove
(DP) = sup

ψ∈C(Y )
J(ψc, ψcc) .

▶

1. The constraint on (φ,ψ) my be rewritten as

∀(x, y) ∈ X × Y, φ(x) ≤ c(x, y)− ψ(y) .

or taking the infimum in y

∀x ∈ X, φ(x) ≤ inf
y∈Y

{
c(x, y)− ψ(y)

}
.

2. By construction (ψc, ψ) is admissible and for an admissible pair (φ,ψ), since ψc ≥ φ, we
have

J(ψc, ψ) ≥ J(φ,ψ) .

3. As
∀(x, y) ∈ X × Y c(x, y)− ψc(x) ≥ ψ(y)

we have
ψcc = inf

x∈X
{c(x, y)− ψc(x)} ≥ ψ(y) .

4. Remark again that (ψc, ψcc) is admissible (it is easy to check that it is continuous) and we
have

J(ψc, ψcc) ≥ J(ψc, ψ) ≥ J(φ,ψ)

It turns out that the pairs (ψc, ψcc) form a sufficiently rigid set (because their modulus of
continuity is controlled by that of c) to get compactness and thus prove the result.

2.2 Brenier’s theorem

Under suitable assumption, we can prove the existance of an optimal map. We will present it
for a general cost c as it was later done in [19] but all these ideas where just adapatation of the
original ideas of Yann Brenier in [5].

Theorem 8 (Existence of an optimal map). Let B be a ball of RN . Consider µ and ν be two
probability measures on B. Assume that µ is absolutely continuous with respect to the Lebesgue
measure. Assume that c : B → R is a strictly convex function of class C1 such that c(x, y) =
c(x− y). There exists a unique transport map T in Problem (MP). Moreover T is of the form

T (x) = x−∇c∗ (∇φ(x)) , for almost every x (2.1)

where f∗ is the inverse of f , for some c-concave potential φ. Moreover (id, T )#µ is the only
optimal transport plan in (KP).

For refinements of this result, we refer to [12].
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Proof. Let γ be an optimal transport plan i.e. a solution to

min
γ∈Π(µ,ν)

∫∫
B×B

c(x− y) dγ(x, y)

We will prove that γ is induced by a transport map i.e. is of the form γ = (id, T )#µ for some
transport map T .

Let (φ,ψ) be an optimal solution to the dual problem (DP). We know by Kantorich duality
that∫∫

X×Y
c(x, y) dγ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y) =

∫∫
X×Y

[φ(x) + ψ(y)] dγ(x, y)

or equivalently ∫∫
X×Y

[φ(x) + ψ(y)− c(x, y)] dγ(x, y) = 0

As the function in the bracket is nonnegative it has to vanish dγ-a.e.
We already know that φ can be chosen such that φ = ψc. We can deduce that φ is Lipschitz

continuous with a constat less than ∥∇c∥L∞(2B). By Rademacher’s theorem φ is therefore differ-
ential Ld-almost everywhere. Let us denote S the negligible set where φ fails to be continuous.

Exercice 14. Prove that for all x ∈ B \ (S ∪ ∂B) and y ∈ B be such that φ(x)+ψ(y) = c(x− y)
we have

∇φ(x) = ∇c(x− y)

▶ For h small enough we have on one hand

φ(x+ h) = φ(x) +∇φ(x) · h+ o(h)

and on the other hand

φ(x+ h) = c(x+ h− y)− ψ(y) = c(x− y) +∇c(x− y) · h− ψ(y) + o(h)

= φ(x) +∇c(x− y) · h+ o(h) .

We obtain de result by combining the two.

Exercice 15. Prove that, for every x in B \ (S ∪ ∂B), the set

{y ∈ B , φ(x) + ψ(y) = c(x− y)}

consists in the single element
T (x) = x−∇c∗ (∇φ(x)) .

▶ By the previous exercice, x ∈ B \ (S ∪ ∂B) and y ∈ B, ∇φ(x) = ∇c(x − y). Since c is
strictly convex, ∇c is injective and we have

(∇c)−1∇φ(x) = x− y .

Which we can write
y = x− (∇c)−1∇φ(x) .

As the boundary points of B and the set S are µ-negligible, γ = (id, T )#µ. We thus deduce
that T is an optimal map.
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2.2.1 The quadratic case

Let us focus on the quadratic case which was initially solved by Yann Brenier in his pathbreaking
article [5].

Theorem 9 (Brenier’s theorem). There exists a unique, up to a µ-negligible set, map of the form
T = ∇u with u convex which transports µ onto ν. This map T is the optimal tranport between µ
and ν for the quadratic cost.

In other words, the optimal transport is the gradient of a convex function. The optimal map
∇u is called the Brenier map between µ and ν.

Proof. We already know from the previous section that there is a unique optimal transport T
which is characterised by

φ(x) + ψ (T (x)) =
|x− T (x)|2

2

where φ and ψ are related by the conjugacy relations

φ(x) = inf
y

{
|x− y|2

2
− ψ(y)

}
and ψ(x) = inf

x

{
|x− y|2

2
− φ(y)

}
This relation can be rewritten

|x|2

2
− φ(x) = sup

y

{
x · y − |y|2

2
+ ψ(y)

}
and

|y|2

2
− ψ(y) = sup

x

{
x · y − |x|2

2
+ φ(y)

}
.

Define

u : x 7→ |x|2

2
− φ(x) and v : y 7→ |y|2

2
− ψ(y)

In the quadratic case Formula (2.1) can thus be rewritten

T (x) = x−∇φ(x) = ∇u(x) .

2.2.2 The Monge-Ampère equation

Consider that µ and ν are absolutely continuous with respect to the Lebesgue measure: µ = ρ0.Ld
and ν = ρ1.Ld. Brenier’s map ∇u then satisfied, at least formally:

By definition of a transport map

∀φ ∈ C(Y ),

∫
Y
φ(y) dρ1(y) =

∫
X
φ (∇u(x)) dρ0(x)

By taking the change of variable y = ∇u(x) on the left hand side we obtain∫
Y
φ(y) dρ1(y) =

∫
X
φ (∇u(x)) det(D2u(x)) dρ1 (∇u(x))

so that, equalling the two, we obtain the Monge-Ampère equation

det(D2u)ρ1(∇u) = ρ0 .

This Monge-Ampère equation could give a way to determine the optimal transport. Unfortu-
nately this partial differential equation is extremely difficult to handle. A deep regularity theory
due to Luis Caffarelli, [7] establishes conditions under which the Brenier map is actually smooth.
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2.2.3 The one-dimensional case

Let f and g be two probability densities. Denote F and G their cumulative distribution functions.
If there is an optimal transport map T transporting f ·L onto g ·L then by definition of a transport
map

∀φ ∈ C(Y ),

∫
Y
φ(y)g(y) dy =

∫
X
φ (T (x)) f(x) dx .

Let a ∈ R. Consider φ = 1l(∞,T (a)], we have∫ T (a)

−∞
g(y) dy =

∫ a

−∞
f(x) dx .

Hence for all a ∈ R,
G(a) = F ◦ T (a) .

As a consequence, the optimal transport is explicitely given by

T = F−1 ◦G ,

where F−1 is the generalized inverse of F :

F−1(t) := inf
x∈R

{F (x) > t} .

This expresses that the solution to the transport problem is given by the monotone rearrange-
ment of µ onto ν: one has to proceed by transfering the sand into the hole starting from the
left. Note that discountinuity points of G correspond to atoms for ν. Whenever ν has an atom,
G−1 ◦ F is constant on some interval: when encountering an atom in the filling process, one hs
to keep putting mass in this atom for some time.



Chapter 3

Geometry of optimal transport

In this chapter we will consider only the quadratic case c(x, y) = |x − y|2/2. Whenever ρ is
absolutely continuous with respect to le Lebesgue measure in RN , space which we denote Pac(RN ),
we shall identify it with its Lebesgue density. and write dρ(x) = ρ(x) dx.

Introduce the Monge-Kantorovich distance, also called the Wasserstein distance, by

W2(µ, ν) =

√
inf

T :T#µ=ν

∫
X

|x− T (x)|2
2

dµ(x) .

W2 defines indeed a distance on the set of probability measures.

3.1 The Benamou-Brenier dynamic formulation: geodesics

Jean-David Benamou and Yann Brenier, in [3], gave a very interesting and fruitful dynamic
formulation of the quadratic optimal transport problem. We aim to describe these ideas in an
informal way.

Consider ρ0 and ρ1 two probabilty densities. The starting point of the Brenier-Benamou
formulation is that we are now looking for a curve of measures connecting ρ0 and ρ1 while
minimising some action functional.

In a Lagrangian point-of-view, classical in fluid dynamics, we will focus of the trajectories of
the particles: we label each particle according to their initial position and study the trajectory of
each labelled particle: Xt(x) designs the position at time t of the particle which intial position
was x. The dynamics can be described by the following:

X0(x) = x

∂tXt(x) = v (t,Xt(x))

If v is continous and Lipschitz with respect to the second variable, the Cauchy-Lipschitz theorem
ensures that there is a unique solution.

Let us denote ρ0 the initial distribution of the particles. How does the spatial distribution
starting from ρ0 and following the flow of v evolves with time? In other words, how is the initial
distribution ρ0 transported by the flow of v? In transport terms, this amounts to characterise
teh curve of measures t 7→ ρt = Xt#ρ0. In fluid dynamics, it is classical to realise that can be
described by a continuity equation:

∂tρ+∇ · (ρ v) = 0

ρ(0, x) = ρ0
(3.1)

Consider now the kinetic energy ∫
Rd

|v(t, x)|2 dρt(x)

17
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and the average kinetic energy:

E(ρ, v) =

∫ 1

0

∫
Rd

|v(t, x)|2 dρt(x) dt

The Benamou-Brenier problem reads as the average kinetic energy minimisation over the set of
all the curves/velocity following the continuity equation strating in ρ0 and ending in ρ1:

inf
ρ,v

{E(ρ, v) : The continuity equation (3.1) holds and ρ(0, ·) = ρ0 and ρ(1, ·) = ρ1} . (BBP)

Theorem 10 (The Brenier-Benamou dynamic formulation). The Benamou-Brenier Problem (BBP)
coincides with the square of the Monge-Kantorovich distance: W2(ρ0, ρ1)

2.

In the mean time we will determine the optimal curve.

Proof. Let (ρ, v) be admissible for Problem (BBP) and let Xt be the flow associated to v.

1. Prove ∫
Rd

|v(t, x)|2 dρt(x) =
∫
Rd

|v(t,Xt(x))|2 dρ0(x)

2. Prove

E(ρ, v) =

∫
Rd

∫ 1

0
|∂tXt(x)|2 dt dρ0(x)

3. Prove
E(ρ, v) ≥

∫
Rd

|X1(x)− x|2 dρ0(x)

4. Conclude that
E(ρ, v) ≥ W2(ρ0, ρ1)

2 .

▶

1. As ρt = Xy#ρ0, we have the desired resut.

2. By Fubini’s theorem we obtain

E(ρ, v) =

∫ 1

0

∫
Rd

|v(t, x)|2 dρt(x) dt =
∫ 1

0

∫
Rd

|v(t,Xt(x))|2 dρ0(x) dt

=

∫
Rd

∫ 1

0
|v(t,Xt(x))|2 dt dρ0(x) =

∫
Rd

∫ 1

0
|∂tXt(x)|2 dt dρ0(x)

3. By Jensen’s inequality

E(ρ, v) =

∫
Rd

∫ 1

0
|∂tXt(x)|2 dt dρ0(x) ≥

∫
Rd

∣∣∣∣∫ 1

0
∂tXt(x) dt

∣∣∣∣2 dρ0(x)

=

∫
Rd

|X1(x)− x|2 dρ0(x)

4. As X1 is a transport from ρ0 to ρ1 we obtain the result.

To prove that converse inequality let ∇u be the Brenier map between ρ0 and ρ1. Define

Xt(x) = ∇ut(x) where ut(x) := (1− t)
|x|2

2
+ tu(x) .

Exercice 16. 1. Prove
∂tXt(x) = ∇u(x)− x .
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2. Using that the associated velocity field is given by ∂tXt(x) = v(t,Xt(x)), deduce

v(t,∇ut(x)) = ∇u(x)− x

3. Conclude that
v(t, x) = ∇u (∇u∗t (x))−∇u∗t (x) .

4. We set ρt = Xt#ρ0. Prove that

E(ρ, v) = W2(ρ0, ρ1)
2 .

▶

1. We obviously have
Xt(x) = ∇ut(x) = (1− t)x+ t∇u(x) .

The result is readily obtained by differentiating in t.

2. The associated velocity field is defined by

∂tXt(x) = v(t,∇ut(x)) .

The previous question gives the desired result.

3. Since Xt = ∇ut is the gradient of a strictly convex function it is invertible with inverse ∇u∗t .
This yields the result.

4. By construction (ρ, v) is admissible for the Benamou-Brenier Problem (BBP) and

E(ρ, v) =

∫
Rd

|∇u(x)− x|2 dρ0 = W2(ρ0, ρ1)
2 .

This prove that the value of the Benamou-Brenier Problem (BBP) equals W2(ρ0, ρ1)
2 but

also that (ρ, v) is optimal for the Benamou-Brenier Problem (BBP). Note the special form of the
optimal curve of measures:

ρt = ∇ut#ρ0 = ((1− t)id + t∇u)#ρ0 .

This optimal ρt is thus obtained by interpolating linearly the optimal transport.
We introduce

Definition 14 (Displacement interpolation). Let ρ0 and ρ1 be two measures in Pac(RN ). Let ∇u
be the Brenier map between ρ0 and ρ1. We define the displacement interpolation (ρt)t≥0 between
ρ0 and ρ1, for all t ∈ [0, 1] by

ρt := [(1− t)id + t∇u] #ρ0 .

Moreover, since

(1− t)id + t∇u = ∇
[
(1− t)

| · |2

2
+ t u

]
is always the gradient of a convex function and pushes ρ0 onto ρt, it is the optimal map between
ρ0 and ρt.

Exercice 17. 1. Compute ρt|t=0 and ρt|t=1.

2. Prove that W2(ρ0, ρt) = tW2(ρ0, ρ1).

▶

1. Note that ρt|t=0 = ρ0 and ρt|t=1 = ρ1.
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2. As a consequence of Brenier’s theorem

W2(ρ0, ρt)
2 =

∫
Rn

|x− [(1− t)x+ t∇u(x)]|2 dρ0

= t2
∫
Rn

|x−∇u(x)|2 dρ0

= t2W2(ρ0, ρ1)
2

3.2 Otto’s interpretation: Metric structure

This section is out of the scope of this lecture but I would like to formally give the idea why the
Benamou-Brenier formulation looks very much like a geodesic formula in Riemaniann geometry.
Let us dig on this idea.

To develop the analogy, we would like to define a metric structure ⟨·, ·⟩ρ on each tangent space
TρP depending smoothly on ρ. How to think of an element of the tangent space? This is the time
derivative at time 0 of some trajectory t 7→ ρ(t) starting on ρ at time 0. As we have already seen,
this path (ρ(t))t can be seen as the time-evolving density of a set of particles moving continuously
with a velocity vt and satisfies the continuity equation:

dρ

dt
+∇ · (ρ v) = 0 .

So that the tangent space is the space of all the probability densities of the form −∇ · (ρ v).
Denote ∥ · ∥ρ the norm associated to ⟨·, ·⟩ρ. It is natural to define∥∥∥∥dρdt

∥∥∥∥2
ρ(t)

= inf

{∫
ρ|v|2 : v ∈ L2( dρ),

dρ

dt
+∇ · (ρ v) = 0

}
The square of the Monge-Kantorovich distance between ρ0 and ρ1 should be equal to

inf

{∫ 1

0

∥∥∥∥dρdt
∥∥∥∥2
ρ(t)

dt : for all path ρ(t) connecting ρ0 and ρ1
}
.

The intuition behind this formula is the following: let a density of particles ρ be given ; let
dρ/dt be an infinitesimal variation of this probability density, i.e. an element of the tangent space
TρP. We can assume that this infinitesimal variation corresponds to particles moving around. We
have no idea on the way these particles move but we see the effect of the probability density. Let
us try to guess the velocity field os partcicles, there are many possibilities, actually all the vector
fields v : Rd → R solving the continuity equation are compatible with the observed variation of ρ.
Among all these possible vector fields we try to select the one whose kinetic energy is the lowest.

Let us know prove that v0 should be a gradient. Assume ρ is smooth and positive. Let v0 be
a minimiser. Consider w a vector field with zero divergence. For any ε ̸= 0,

v0 + ε
w

ρ

is still admissible in the sense that

−∇ ·
[
ρ

(
v0 + ε

w

ρ

)]
=
dρ

dt

Since v0 is minimising, we should have∫
ρ|v2| ≤

∫
ρ

∣∣∣∣v0 + ε
w

ρ

∣∣∣∣2
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Expanding the square, simplifying out term of order 0 in ε, dividing by ε and letting ε go to 0,
we find ∫

v0 · w = 0

In other words, v0 should be orthogonal in L2-sense, to the set of divergence-free vector fields i.e.
v0 should be a gradient: v0 = ∇u0.

To sum up, we can write, at least very formally,

W2(ρ0, ρ1)
2 = inf

{∫ 1

0

∥∥∥∥∂ρ∂t
∥∥∥∥2
ρ(t)

dt : for all path ρ(t) connecting ρ0 and ρ1
}
.

with
∂ρ

∂t
+∇ · (ρ∇u) = 0 .

where ∥∥∥∥∂ρ∂t
∥∥∥∥2
ρ(t)

=

∫
ρ|∇u|2 .

This interpretation endows the set of probabilities with a Riemannian metric structure: indeed,
by polarisation we can define the scalar product of two tangent vectors (elements of the tangent
space): 〈(

∂ρ

∂t

)
1

,

(
∂ρ

∂t

)
2

〉
ρ

=

∫
ρ⟨∇u1,∇u2⟩

where u1 and u2 solve(
∂ρ

∂t

)
1

= −∇ · (ρ∇u1) and
(
∂ρ

∂t

)
2

= −∇ · (ρ∇u2) .

With the Riemaniannian structure come basic calculus rules for function defined on P(Rd).
In particular we can define the gradient operator, as usual using Riesz’ representation theorem,
denoted gradW by: 〈

gradWF (ρ),
∂ρ

∂t

〉
= DF (ρ) · ∂ρ

∂t
.

3.3 Displacement convexity

3.3.1 Definition

A natural question, which will arrise in many applications which we will see later, is the following:
let F be a functional on the space of probability measures, what can be said about the behaviour
of F (ρt) as t varies in [0, 1]? Among properties to study, convexity is of course in the first places.
This motivates the following definition:

Definition 15 (Displacement convexity). Let P be a subset of the set of probability measures
which are absolutely continuous with respect to the Lebesgue measure. Assume that P is stable
under displacement interpolation. Let F be a function defined on P with values in R ∪+∞.

• The functional F is said to be displacement convex on P if for all ρ0, ρ1 in P and (ρt) is
the displacement interpolation between ρ0 and ρ1 the function

t 7→ F (ρt)

is convex on [0, 1].

• The functional F is strictly convex on P if

ρ0 ̸= ρ1 ⇒ t 7→ F (ρt) is strictly convex on [0, 1].

• For λ > 0, the function F is λ-uniformly convex on P if

d2

dt
F (ρt) ≥ λW2(ρ0, ρ1)

2 .
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3.3.2 Basic examples

Potential energy

Let V : Rd → R ∪ {∞}. We define the potential energy by

V(ρ) =
∫
Rd

V (x) dρ(x) .

Theorem 11. Let P be a subset of P(Rd) of probability measure with finite second moment.
Assume that P is stable under displacement interpolation. If V is convex (resp. strictly convex,
resp. λ-uniformly convex) then V is convex then (resp. strictly convex, resp. λ-uniformly convex).

Proof. Let ρ0 and ρ1 be two measures in P. We consider displacement interpolation of the form

ρt = (id− t θ)#ρ0

where θ = id−∇φ with φ convex.

Exercice 18. 1. Prove that V is displacement convex on P.

2. If V is striclty convex, prove that V is stricty displacement convex.

3. If V is λ-uniformly convex, prove that V is λ-uniformly displacement convex.

▶

1. By definition of the image-measure:

V(ρt) =
∫
Rd

V (x) dρt(x) =

∫
Rd

V (x− t θ(x)) dρ0(x) .

The convexity of t 7→ V(ρt) is a direct consequence of the convexity of V .

2. If ρ0 ̸= ρ1 then θ ̸= 0 and the strict convexity of t 7→ V(ρt) is a direct consequence of the
strict convexity of V .

3. For all s, t and σ in [0, 1],

σV(ρt) + (1− σ)V(ρs)− V(ρσt+(1−σ)s) =

∫
Rd

[
σV (x− t θ(x)) + (1− θ)V (x− sθ(x))

− V [σ(x− t θ(x)) + (1− σ(x− s θ(x)))]
]
dρ0(x)

≥ λ
σ(1− σ)

2

∫
Rd

|(x− t θ(x))− (x− s θ(x))|2 dρ0

≥ λ
σ(1− σ)

2

∫
Rd

|θ(x)|2 dρ0(t− s)2

= W2(ρ0, ρ1)
2

Internal energy

Let U be a measurable map R+ → R ∪+∞. Consider the internal energiy of the form

U(ρ) :=
∫
Rd

U (ρ(x)) dx .

Theorem 12. Let P be a subset of Pac(Rd) stable under displacement interpolation. If U satisfies
U(0) = 0 and

r 7→ rdU(r−d)

is convex increasing on (0,+∞) then U is displacement convex on P.
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Among the most classical internal energies satisfying the assumption of the Theorem:

• U(ρ) = ργ with γ ≥ 1,

• U(ρ) = ρ log ρ,

• U(ρ) = −ργ with (1− 1/d) ≤ γ ≤ 1.

Proof. This proof is formal. Let ρ0 and ρ1 be two measures in P. We consider displacement
interpolation of the form

ρt = (id− t θ)#ρ0

where θ = id−∇φ with φ convex. We will denote ∇θ the Jacobian matrix of ut.

Exercice 19. 1. Prove

U(ρt) =
∫
Rd

U (ρt (x− t θ(x))) det (Id − t∇θ(x)) dx

2. Deduce

U(ρt) =
∫
Rd

U

(
ρ0(x)

det (Id − t∇θ(x))

)
det (Id − t∇θ(x)) dx

▶

1. We have

U(ρt) =
∫
Rd

U (ρt(y)) dy

By change of variable y = x− t θ(x) we obtain

U(ρt) =
∫
Rd

U (ρt (x− t θ(x))) det (Id − t∇θ(x)) dx

2. As ρt = (id− θ)#ρ0, the Monge-Ampère equation gives

det (Id − t∇θ(x)) ρt (x− t θ(x)) = ρ0 .

Hence

U(ρt) =
∫
Rd

U

(
ρ0(x)

det (Id − t∇θ(x))

)
det (Id − t∇θ(x)) dx

Now we will use

Lemma 1 (Concavity of det1/N ). Let S be a symmetric matrix. If S ≤ Id is not a scalar matrix
then the function

t 7→ det(Id − t S)1/n

is strictly concave.

Setting S = ∇θ and r = ρ0(x), we have the two mappings

t 7→ λ = det (Id − t∇θ(x))1/n and λ 7→ U
( r

λn

)
λn

As the two functions are respectively convex non-increasing and concave, their composition is
convex.
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Interaction energy

Consider the interaction potential W and

W(ρ) =
1

2

∫∫
Rd×Rd

W (x− y) dρ(x) dρ(y) .

Theorem 13. Let P be a subset of Pac(Rd) stable under displacement interpolation. If W is
convex then W is convex increasing on (0,+∞) then W is displacement convex on P. If W is
strictly convex then for all m ∈ Rd, W is strictly displacement convex on the subspace of probability
measure having mean m.

The mean or centre of mass of a probability measure ρ is∫
x dρ(x) .

Remark 4. The functional W is invariant under translation: if τa : x 7→ x + a for some a ∈ Rd,
then W(τa#ρ) = W(ρ). This is why strict displacement convexity can hold only if we rule out
translations, for instance by fixing the mean.

Proof.

Exercice 20. 1. If W is convex. Prove that W is displacement convex.

2. If W is strictly convex. Prove that W is stricty displacement convex on the subspace of
probability measure having mean m.

▶

1. We have
W(ρt) =

1

2

∫∫
Rd×Rd

W ([x− y]− t[θ(x)− θ(y)]) dρ0(x) dρ0(y) .

It follows immediately that t 7→ W(ρt) also is.

2. If w is strictly convex then equality occurs in the convex inequality if and only if θ(x) = a
for dρ0- almost all x ∈ Rd, where a is some element of Rd. This condition means that ρ0
and ρ1 are translates of each other:

dρ1(x) = dρ0(x+ a) .

This is ruled out by the same mean condition.

3.4 Application to the minimum

Theorem 14. Let U satisfy the conditions of the previous section, W be convex and V be strictly
convex. There is at most a minimiser on Pac(Rd) of∫

Rd

U (ρ(x)) dx+

∫
Rd

V (x) dρ(x) +
1

2

∫∫
Rd×Rd

W (x− y) dρ(x) dρ(y) .

Proof. Let ρ1 and ρ2 be two minimisers. Consider the displacement interpolant

ρt = ((1− t)id + t∇u)#ρ1

where ∇u is the Brenier map between ρ1 and ρ2.

Exercice 21. • Prove that
t 7→ F (ρt)

is strictly convex.
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• Prove
F (ρ1/2) <

F (ρ1) + F (ρ2)

2

• Conclude.

▶

1. This is the definition if strict convexity.

2. This is a direct consequence of the strict convexity.

3. Hence there is at most a minimiser.

3.5 Above the tangent formulation

It is a general fact that if a function Φ : [0, 1] → R ∪+∞ is λ-uniformly convex then

Φ(1) ≥ Φ(0) +
d

dt

∣∣∣∣+
t=0

Φ(t) +
λ

2

where
d

dt

∣∣∣∣+
t=0

Φ(t) = lim sup
t→0+

Φ(t)− Φ(0)

t

Let us give an explicit expression of
d

dt

∣∣∣∣+
t=0

Φ(t)

for the energy considered before.

Theorem 15. Let ρ0 and ρ1 be absolutely continuous probability measures in Rd. Let ∇φ be the
unique Brenier map which pushes ρ0 onto ρ1. We have

•
d

dt

∣∣∣∣+
t=0

V(ρt) =
∫
Rd

∇V (x) · (∇φ(x)− x)ρ0 dx .

•
d

dt

∣∣∣∣+
t=0

U(ρt) =
∫
Rd

[
U(ρ0)− ρ0U

′(ρ0)
]
· (∆Aφ(x)− d) dx .

where ∆A stands for the Laplace operator in the Alexandrov sense,

• and

d

dt

∣∣∣∣+
t=0

W(ρt) =

∫∫
Rd×Rd

∇W (x− y) · [(φ(x)− x)− (φ(y)− y)] dρ0(x) dρ0(y)

Proof.

Exercice 22. 1. Determine
V(ρt)− V(ρ0)

t
.

2. What is the limit of this quantity when t goes to 0?

3. Conclude for V.

4. Determine
U(ρt)− U(ρ0)

t
.
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5. What is the limit of this quantity when t goes to 0?

6. Conclude for U .
▶

1. By definition of the push-forward

V(ρt)− V(ρ0)
t

=

∫
Rd

V ((1− t)x+ t∇φ(x)− V (x))

t
dρ0

2. The intergrand on the right hand side converges to

∇V (x) · (φ(x)− x) a.e.

As V is convex the dominated convergence theorem allows to pass to the limit in the integral.

3. The conclusion follows from the monotone convergence theorem.

4. Using Theorem 12 we have

U(ρt)− U(ρ0)
t

=

∫
Rd

u(t, x)− u(t, 0)

t
dx

with
u(t, x) = U

(
ρ0(x)

det (Id − t∇θ(x))

)
det (Id − t∇θ(x))

5. Like before the fonction u(·, t) is convex and integrable. Therefore its slope

u(t, x)− u(t, 0)

t

is non-increasing as t goes to 0 and converges to

∂u

∂t
(0, x) .

Let us now compute this limit: denote

α(t) = det (Id − t∇θ(x))

We have
∂

∂t

[
U

(
ρ0
α(t)

)
α(t)

]
= α′(t)U

(
ρ0
α(t)

)
− U ′

(
ρ0
α(t)

)
ρ0
α′(t)

α(t)

As det(I + εA) = 1 + εTr(A) + o(ε) we have

α′(t) = ∆θ(x)− d

Hence in t = 0:

∂

∂t

[
U

(
ρ0
α(t)

)
α(t)

]
(0, x) = (∆θ(x)− d)U (ρ0)− U ′ (ρ0) ρ0 (∆θ(x)− d)

6. The conclusion follows from the monotone convergence theorem.

The last case W is left as an exercise.



Chapter 4

Gradient flows in the
Monge-Kantorovich metric

4.1 Gradient flows

Many differential systems arising on physics can be described by an energy functional E and a
gradient flow system:

dX

dt
(t) = −∇E(X(t)) .

These gradient flows appear in all branches of physics, computation sceince, engineering, IA, etc.
We intend to describe it in this chapter and to develop an application in economics in the next
chapter.

It is known that a gradient flow can be descretised using the following scheme: let τ > 0 be a
time step so that {iτ}i∈{0,··· ,n} is a uniform discretisation of [0, nτ = T ]. For any i ∈ {0, · · · , n},
we define a sequence (Xn

τ )n by

Xn+1
τ = Argmin

{
E(X) +

dist(Xn
τ −X)2

2 τ

}
In this Euclidean case, the Euler-Lagrange equation associated to this problem is

Xn+1
τ −Xn

τ

τ
= −∇E(Xn+1

τ )

which is exactly the time discretisation of the gradient flow. This scheme is called the (implicit
Euler) scheme. Note that we could have choosen to evaluate ∇E is ρi, in which case the scheme
is called the explicit Euler scheme. In the case of a explicit Euler scheme, the scheme is easier to
implement we it is known to be far less stable than the implicit Euler scheme.

Next, we define for instance Xτ on R+ as the piecewise constant function with value Xn
τ on

[nτ, (n+ 1)τ ]. Remains then to pass to the limit τ → 0.

4.2 The JKO scheme

This strategy was adapted to the framework of probability measures, using the Monge-Kantorovich
distance in a very inspiring article by Jordan, Kinderlherer and Otto, in [14]. In this chapter we
will follow the main steps of this article for the linear Fokker-Planck equation

∂ρ

∂t
(x) = ∆ρ(x) +∇ · (xρ(x))

But this strategy can be readily adapted to displacement convex functionals.
Let us consider

E(ρ) =

∫
log(ρ) dρ+

∫
|x|2

2
dρ

27
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As above, let τ be a time-step. Let ρ0 ∈ P(Rd) be an initial datum such that E(ρ0) < ∞. We
introduce the sequence (ρnτ )n defined by: ρ0τ = ρ0 and recursively by

ρn+1
τ = Argmin

{
E(ρ) +

W2(ρ
n
τ , ρ)

2

2 τ

}
. (4.1)

4.2.1 The Euler-Lagrange equation

Let (ρnτ )n be a sequence of minimisers. We will determine the equation satisfied by the minimisers.
For this purpose we will a suitable variation of the minimiser ρn+1

τ . In the context of mass
transport it is natural to proceed as follows: let Tε := id + ε∇ζ with ζ smooth with compact
support, we define ρε the image measure by the transport map Tε of ρn+1

τ

ρε = Tε#ρ
n+1
τ .

Exercice 23. Consider ∇φ be the Brenier map between ρnτ and ρn+1
τ .

1. Prove that
W2 (ρ

n
τ , ρε)

2 ≤ 1

2

∫
|x−∇φ(x)− ε∇ζ ◦ ∇φ(x)|2 dρnτ (x) .

2. Prove that,

lim
ε→0

W2(ρ
n
τ , ρε)

2 −W2(ρ
n
τ , ρ

n+1
τ )2

ε
=

∫
ζ(x) d

(
ρn+1
τ (x)− ρnτ (x)

)
+O

(
W2(ρ

n
τ , ρ

n+1
τ )2

)
.

▶

1. As (id+ε∇ζ)◦∇φ pushes forward ρnτ onto ρε, eventhough it is not the Brenier map between
the two, we have the expected result.

2. As ∇φ be the Brenier map between ρnτ and ρn+1
τ , we have

W2(ρ
n
τ , ρ

n+1
τ )2 =

∫
|x−∇φ(x)|2 dρnτ (x) .

Hence

W2(ρ
n
τ , ρε)

2 −W2(ρ
n
τ , ρ

n+1
τ )2 =

∫ [
|x−∇φ(x)− ε∇ζ ◦ ∇φ(x)|2 − |x−∇φ(x)|2

]
dρnτ (x)

= −
∫ [

|x−∇φ(x)|2 − |x−∇φ(x)− ε∇ζ ◦ ∇φ(x)|2
]
dρnτ (x) .

Dividing by ε and letting ε going to 0, we obtain

lim
ε→0

W2(ρ
n
τ , ρε)

2 −W2(ρ
n
τ , ρ

n+1
τ )2

ε
=

∫
⟨∇φ(x)− x,∇ζ ◦ ∇φ(x)⟩ dρnτ (x) .

By the Taylor expansion f(x+ h)− f(x) = ∇f(x) · h+O(h2), we have

ζ [∇φ(x) + x−∇φ(x)]− ζ [∇φ(x)] = ⟨∇ζ [∇φ(x)] , x−∇φ(x)⟩+O
(
|x−∇φ(x)|2

)
which we can recast

ζ [∇φ(x)]− ζ(x) = ⟨∇φ(x)− x,∇ζ [∇φ(x)]⟩+O
(
|x−∇φ(x)|2

)
Hence the above term can be recast as∫

ζ ◦ ∇φ(x) dρnτ (x)−
∫
ζ(x) dρnτ (x) +O

(∫
|x−∇φ(x)|2 dρnτ (x)

)
=

∫
ζ(x) dρn+1

τ (x)−
∫
ζ(x) dρnτ (x) +O

(
W2(ρ

n
τ , ρ

n+1
τ )2

)
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Exercice 24. 1. Prove that

E(ρε) =

∫
log

(
ρn+1
τ

det(I + εD2ζ)

)
dρn+1

τ +

∫
V (x+ ε∇ζ(x)) dρn+1

τ

2. Deduce

lim
ε→0

E(ρε)− E(ρn+1
τ )

ε
= −

∫
∆ζ(x) dρn+1

τ +

∫
⟨∇V (x) ,∇ζ(x)⟩ dρn+1

τ .

▶

1. This is a direct consequence of the definition of the image-measure and of the Monge-Ampère
equation as it was done in the previous chapter.

2. We have

E(ρε)− E(ρn+1
τ )

ε
= −

∫
log
(
det(I + εD2ζ)

)
ε

dρn+1
τ +

∫
V (x+ ε∇ζ(x))− V (x)

ε
dρn+1

τ .

As

lim
ε→0

log
(
det(I + εD2ζ)

)
− log (det(I))

ε
= Tr(D2ζ) = ∆ζ ,

we obtain the desired result.

Exercice 25. 1. Deduce from the two previous exercises that∫
ζ(x) d

ρn+1
τ (x)− ρnτ (x)

τ
+O

(
W2(ρ

n
τ , ρ

n+1
τ )2

)
=

∫
[(∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρn+1

τ .

▶

1. As ρn+1
τ is a minimiser we have

W2(ρ
n
τ , ρε)

2

2τ
+ E(ρε)−

W2(ρ
n
τ , ρ

n+1
τ )2

2τ
− E(ρn+1

τ ) ≥ 0 .

Dividing by ε and letting ε going to 0 we obtain∫
ζ(x) d

ρn+1
τ (x)− ρnτ (x)

τ
+O

(
W2(ρ

n
τ , ρ

n+1
τ )2

)
−
∫

[∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρn+1
τ ≥ 0 .

Changing ∇ζ to −∇ζ we obtain∫
ζ(x) d

ρn+1
τ (x)− ρnτ (x)

τ
+O

(
W2(ρ

n
τ , ρ

n+1
τ )2

)
=

∫
[∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρn+1

τ .

4.2.2 A priori estimates

Define the function ρτ by
ρτ (x) = ρnτ on [nτ, (n+ 1)τ) .

Let us first prove that E is bounded from below by a constant on P2(Rd):

Exercice 26. 1. Prove that
E(ρ) ≥

∫
log(ρ) dρ .

2. Prove that E(ρ) ≥ 0.
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▶

1. The second moment is non-negative.

2. As x 7→ x log x is convex and ρ is a probability measure. We use Jensen’s inequality:

E(ρ) ≥
∫

log(ρ) dρ ≥
∫

dρ log

(∫
dρ

)
= 0 .

We can now prove the estimates:

Exercice 27. 1. Prove the energy estimate:

sup
n
E(ρnτ ) ≤ E(ρ0)

2. Prove the total square distance estimate:∑
n≥0

W2(ρ
n
τ , ρ

n+1
τ )2 ≤ 2τ [E(ρ0)− inf E]

3. Deduce a Hölder estimate: there exists C > 0 such that

W2(ρτ (s), ρτ (t))
2 ≤ C [t− s+ τ ] .

▶

1. As ρn+1
τ is a minimiser of

E(ρ) +
W2(ρ

n
τ , ρ)

2

2 τ
,

we obviously have

E(ρn+1
τ ) +

W2(ρ
n
τ , ρ

n+1
τ )2

2 τ
≤ E(ρnτ )

Hence for any n, E(ρn+1
τ ) ≤ E(ρnτ ) and taking the supremum we obtain the desired result.

2. By summing up the above inequality we obtain the total square distance estimate.

3. By the triangular and the Cauchy-Schwarz inequality:

W2(ρτ (s), ρτ (t))
2 ≤

∑
E(s/τ)≤n≤E(t/τ)+1

W2(ρ
n
τ , ρ

n+1
τ )2

≤
[
t− s

τ
+ 1

]∑
n≥0

W2(ρ
n
τ , ρ

n+1
τ )2

≤ 2 [E(ρ0)− inf E] [t− s+ τ ] .

which leads to the desired estimate with C := 2 [E(ρ0)− inf E].

4.2.3 Compactness

To pass to the limit when τ → 0 we can rely on the energy estimates. Indeed, the energy estimates
ensures

E(ρτ ) =

∫
ρτ log dρτ +

∫
|x|2 dρτ < C =: E(ρ0) .

As a consequence (ρτ ) cannot vanish as∫
|x|>R

dρτ ≤ 1

R2

∫
|x|2 dρ ≤ C

R2
→R→∞ 0 .

On the other hand (ρτ ) cannot concentrate as ρτ log ρτ is uniformly bounded by Carleman’s
estimate, Lemma 2 and∫

ρτ>α
dρτ ≤ 1

logα

∫
log ρτ dρτ ≤ 1

logα

∫
| log ρτ | dρτ .
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Lemma 2 (Carleman’s estimate). For any u ∈ L1
+(Rd), if

∫
Rd |x|2 du and

∫
Rd log u du are

bounded from above, then u log u is uniformly bounded:∫
Rd

| log u| du ≤
∫
Rd

(
log u+ |x|2

)
du+ 2 log(2π)

∫
Rd

du+
2

e
.

Proof. Let ū := u1l{u≤1} and m =
∫
Rd ū dx ≤M . Then∫

Rd

ū
(
log ū+

1

2
|x|2
)
dx =

∫
Rd

U logU dµ−m log (2π)

where U := ū/µ, dµ(x) = µ(x) dx and µ(x) = (2π)−d/2e−|x|2/2. By Jensen’s inequality,∫
Rd

U logU dµ ≥
(∫

Rd

U dµ
)

log
(∫

Rd

U dµ
)
= m logm,∫

Rd

ū log ū dx ≥ m log
(m
2π

)
− 1

2

∫
Rd

|x|2ū dx ≥ −1

e
−M log(2π)− 1

2

∫
Rd

|x|2ū dx .

Using ∫
Rd

u | log u| dx =

∫
Rd

u log u dx− 2

∫
Rd

ū log ū dx ,

this completes the proof.

4.2.4 Limit equation

Let t1 and t2 be two arbitrary times. Summing up from n1 = [t1/τ ] to n2 = [t2/τ ]+1 we obtained
in Section 4.2.1∫

[ρτ (t2, x)− ρτ (t1, x)] ζ(x)+O

(
n2∑

n=n1

W2(ρ
n
τ , ρ

n+1
τ )2

)
=

∫ t2

t1

∫
[∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρτ (t)

Using the Hölder continuity estimate we deduce∫
[ρτ (t2, x)− ρτ (t1, x)] ζ(x) +O (τ) =

∫ t2

t1

∫
[∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρτ (t) (4.2)

As a consequence of the previous section, (ρτ )τ is weakly-L1 compact and Hölder-1/2 contin-
uous in time. All this is sufficient to guarantee that there exists a subsequence of (ρτ )τ , which
we will stille denote (ρτ )τ , which converges to some function ρ in the weak-L1 topology. As a
conseunce we can pass to the limit when τ goes to 0 in (4.2) to obtain∫

[ρ(t2, x)− ρ(t1, x)] ζ(x) =

∫ t2

t1

∫
[∆ζ(x) + ⟨∇V (x) ,∇ζ(x)⟩] dρ(t)

which is a weak formulation of the so called linear Fokker-Planck equation with potential V :

∂ρ

∂t
= ∆ρ+∇ · (ρ∇V ) .

We do not aim, in this lecture, to study further this partial differential equation but its study
in very classical. We refer to the lecture on functional analysis on Fourrier transform or to the
lecture of Pr. Miclo. Let us still note that the stationary solution has to satisfy

∆ρ̄+∇ · (ρ̄∇V ) = 0

or equivalently that there exists C such that

∇ρ̄+ ρ̄∇V = C
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which we can integrate to:

ρ̄ = λe−V where λ :=

∫
e−V (x) dx

to ensure that ρ̄ is a probability densiy. This is Gibbs measure and in the classical case when
V (x) = |x|2/2 the stationary state is a Gassian measure. Using functional inequalities we can
prove that the solution ρ converges exponentially fast to this Gaussian measure but this is another
story...



Chapter 5

An application to economics

There are many appications of optimal transports to economics, including nice connexion with
the matching-problem, see [10]. We refer to the book [11] for different application. Here we focus
on an application to urban equilibrium that we developped with my colleagues Carlier, Mossay,
and Santambroggio.

5.1 Game with a continuum of players

There are two main type of non-cooperative games

• conflicts among a small group of agents each of whom can make unilateral decisions which
may significantly affect the welfare of the others as well as his own welfare (ex.: Card games,
battles between opposing generals, etc.).

• the individualistic but not deliberately adversary behaviour of a large number of agents,
none of whom alone is able to affect the circumstances of anyone except himself but whose
actions in the aggregate determine the environment in which all must live (ex.: competitive
markets).

In individualistic game it is often relevant to consider that only the distribution of the actions of
the players matters rather than specifying the actions of each single individual. Such games are
called anonymous.

Nash’s result provides an existence result for all these games but such equilibria are more and
more difficult to describe when the number of agents increases, see [13]:

Microeconomics is full of elegant and persuasive arguments about the behaviour of
representative firms and representative consumers in competitive markets in general,
but in contrast it requires a great deal of elaborate computation to show that even
a simple model of non-cooperative exchange yields competitive outcomes when there
are many traders.

However, as was noticed by [24] when we deal with individualistics-type non-cooperative games:

Institutions having a large number of competing participants are common in political
and economic life (...) game theory has not yet been able so far to produce much in
the way of fundamental principles of mass competition that might help to explain how
they operate in practice. (...) it might be worth while to spend a little effort looking
at the behaviour of existing n-person solution concepts, as n becomes very large.

Such phenomenon is perfectly known in the physics literature and was already pointed out in [26]
in very explicit terms:

An almost exact theory of a gas, containing about 1025 freely moving particles, is
incomparably easier than that of the solar system, made up of 9 major bodies. (...)

33
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It is a well known phenomenon in many branches of the exact and physical sciences
that very great numbers are often easier to handle than those of medium size. This
is of course due to the excellent possibility of applying the laws of statistics and
probabilities in the first case. (...)

When the number of participants becomes really great, some hope emerges that the
influence of every particular participant will become negligible, and that the above
difficulties may recede and a more conventional theory become possible

Such a notion of games with a continuum of players was formalised in [2] as

The most natural model for this purpose contains a continuum of participants, similar
to the continuum of points on a line or the continuum of particles in a fluid. (...)

The continuum can be considered an approximation to the “true” situation in which
there is a large but finite number of particles.(...)

The purpose of adopting the continuous approximation is to make available the pow-
erful and elegant methods of a branch of mathematics called ’analysis’ in a situation
where treatment by finite methods would be much more difficult or hopeless.

Aumann even points that

The choice of the unit interval as a model for the set of traders is of no particular
significance. In technical terms, T can be any measure space without atoms. The con-
dition that T have no atoms is precisely what is needed to ensure that each individual
trader have no influence.

First results for this kind of game were obtained for non-atomic games described in [23] by

Non-atomic games enable us to analyse a conflict situation where the single player has
no influence on the situation but the aggregative behaviour of "large" sets of players
can change the payoffs. The examples are numerous: Elections, many small buyers
from a few competing firms, drivers that can choose among several roads, and so on.

[23] proves the existence of an equilibria in a non-atomic game with an arbitrary finite number of
pure strategies when the payoff of the player only depend on the mean of distribution of all the
payers actions. Note that such a result is wrong for a finite number of players as can be seen in
the matching penny example. See [16] for more references.

Mathematically, we use here the formalism of [17]: given a space of players types X endowed
with a probability measure µ ∈ M(X) (which gives the exogenous distribution of the type of the
agents), an action space Y and a cost Γ: X × Y ×M(Y ) → R. The θ-type agents taking action
x pay the cost Γ(θ, x, ν) where ν is the distribution of the players’ actions. A Cournot-Nash
equilibrium is a joint probability measure γ ∈ M(X × Y ) with first marginal µ such that

γ({(θ, x) ∈ X × Y : Γ(θ, x, ν) = min
z∈Y

Γ(θ, z, ν)}) = 1

where ν represents γ’s second marginal.
Concerning the externalities exerted by the action of all the players we will consider two types

• Rivalry/Congestion: The utility of the agent decreases when the number of players who
choose the same action increases. Examples:

– Consumption of the same public good (motorway game),

– Food supply in an habitat decreases with the number of its users (ex. Sticklebacks),

– More populated areas lead to higher competition for land.

• Social interactions The utility of the agents increases because some other agents play a
similar action. Examples:
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– Location to go spend holidays,

– Quality of a product in a differentiated industry (technological choice),

– The agents benefit from social interactions but there is a cost to access to distant
agents,

The results of [23, 17] and extensions see [15] assume that ν 7→ Γ(·, ·, ν) is, in some sense,
continuous. However this continuity assumption excludes the case of a purely local dependence
which is relevant to capture congestion effects.

5.2 Beckman’s model

We consider that agents have a type x ∈ X and that the cost depend on the type:

V : X × Y × P(Y ) → R
(x, y, ν) 7→ V(x, y, ν)

However in order to develop our optimal transport approach it seems necessary to assume that
the costs V is on the additive separable form

V(x, y, ν) := c(x, y) + V[ν](y) .

5.2.1 The equilibrium model

For simplicity we consider X and Y to be compact metric spaces but unbounded domains could be
considered too. To give a sense to the local congestion term we take m0 be a reference probability
measure. The definition of equilibrium reads:

Definition 16 (Cournot-Nash equilibrium). Let µ be a Borel probability measure on X giving the
exogenous distribution of the type of the agents. A Cournot-Nash equilibrium is a joint probability
measure γ ∈ P(X × Y ) such that

• γ ∈ Π(µ, ν) := {γ ∈ P(X × Y ) : πX#γ = µ, πY #γ = ν}

• and there exists φ ∈ C(X) such that for all x ∈ X and a.e. y{
c(x, y) + V[ν](y) ≥ φ(x)

c(x, y) + V[ν](y) = φ(x) for γ-a.e. (x, y).
(5.1)

To fix the idea let us give two examples where such equilibria arise:

Holiday choice

Let us consider a population of agents whose location is distributed according to some probability
distribution µ ∈ P(X) where X is some compact subset of R2 (say). These agents have to choose
their holidays destination (possibly in mixed strategy). The set of possible holiday destinations
is some compact subset of the plane Y (it can be X, a finite set, ...). The commuting cost from x
to y is c(x, y). In addition to the commuting cost, agents incur costs resulting from interactions
with other agents, this is captured by a map ν 7→ V[ν] that can be modelled as follows. A natural
effect that has to be taken into account is congestion, i.e. the fact that more crowded location
results in more disutility for the agents. Congestion thus requires to consider local effects and
actually imposes that ν is not too concentrated; a way to capture this is to impose that ν is
absolutely continuous with respect to some reference probability measure m0. Still denoting by
ν the Radon-Nikodym derivative of ν, a natural congestion cost is of the form y 7→ f(ν(y)) with
f non-decreasing. In addition to the negative externality due to congestion effect, there may be
a positive externality effect due to the positive social interactions between agents which can be
captured through a non-local term of the form y 7→

∫
Y ϕ(y, z) dν(z) where for instance ϕ(y, .) is
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minimal for z = y so that the previous term represents a cost for being far from the rest of the
population. Finally, the presence of purely geographical factors (e.g. distance to the sea) can be
reflected by a term of the form y 7→ v(y). The total externality cost generated by the distribution
ν combines the three effects of congestion, positive interactions and geographical factors and can
then be taken of the form

V[ν](y) = f(ν(y)) +

∫
Y
ϕ(y, z) dν(z) + v(y).

Technological choice

Consider now a simple model of technological choice in the presence of externalities. There is a
set of consumers indexed by a type x ∈ X drawn according to the probability µ, and a set of
technologies Y for a certain good (cell-phone, computer, tablet...). On the supply side, assume
there is a single profit maximising profit firm with convex production cost F (y, .) producing
technology y, the supply (equals demand at equilibrium) of this firm is thus determined by the
marginal pricing rule p(y) = ∂νF (y, ν(y)). Agents aim to minimise with respect to y a total cost
which is the sum of their individual purchasing cost c(x, y)+p(y) = c(x, y)+∂νF (y, ν(y)) and an
additional usage/maintenance or accessibility cost which is positively affected by the number of
consumers having purchased similar technologies i.e. a term of the form

∫
Y ϕ(y, z) dν(z) where

ϕ is increasing in the distance between technologies y and z.

5.2.2 Connexion with optimal transport

Let Wc be the value of the Monge-Kantorovich optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫∫
X×Y

c(x, y) dγ(x, y)

and let us also denote by Πo(µ, ν) the set of optimal transport plans i.e.

Πo(µ, ν) := {γ ∈ Π(µ, ν) :

∫∫
X×Y

c(x, y) dγ(x, y) = Wc(µ, ν)}.

Proposition 1 (Connexion with optimal transport). If γ is a Cournot-Nash equilibrium and ν
denotes its second marginal then γ ∈ Πo(µ, ν).

Proof. Indeed, let φ ∈ C(X) be such that (5.1) holds and let η ∈ Π(µ, ν) then we have∫∫
X×Y

c(x, y) dη(x, y) ≥
∫∫

X×Y
(φ(x)− V [ν](y)) dη(x, y)

=

∫
X
φ(x) dµ(x)−

∫
Y
V [ν](y) dν(y) =

∫∫
X×Y

c(x, y) dγ(x, y)

so that γ ∈ Πo(µ, ν).

In an euclidean setting, there are well-known conditions on c and µ which guarantee that
such an optimal γ necessarily is pure whatever ν is. It is the case for instance if µ is absolutely
continuous with respect to the Lebesgue measure, c(x, y) is a smooth and strictly convex function
of x − y (see [20] who extended the seminal results of [5] in the quadratic cost case), or more
generally, when it satisfies a generalised Spence-Mirrlees condition (see [8] for details):

Proposition 2 (Purification of equilibria). Assume that X = Ω where Ω is some open connected
bounded subset of Rd with negligible boundary, that µ is absolutely continuous with respect to the
Lebesgue measure, that c is differentiable with respect to its first argument, that ∇xc is continuous
on Rd × Y and that it satisfies the generalised Spence-Mirrlees condition:

for every x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective,

then for every ν ∈ P(Y ), Πo(µ, ν) consists of a single element and the latter is of the form
γ = (id, T )#µ hence every Cournot-Nash equilibrium is pure.
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5.2.3 Variational approach

In this section, we will see that in many relevant cases, one may obtain equilibria by the min-
imisation of some functional over a set of probability measures1. The main assumption for this
variational approach to be valid is that the interaction map V[ν] has the structure of a differential
i.e. that V[ν] can be seen as the first variation of some function ν 7→ E [ν]. In this case, the
variational approach is based on the observation that the equilibrium condition is the first-order
optimality condition for the minimisation of Wc(µ, ν) + E [ν].

Let D be defined by

D := {ν ∈ L1(m0) : V [ν] ∈ L1(ν)} = {ν ∈ L1(m0) :

∫
Y
|V [ν]| dν < +∞}.

Assume a(να − 1) ≤ f(y, ν) ≤ b(να + 1), for α ≥ 0 and that ϕ is symmetric.

V[ν](y) := f(ν(y)) +

∫
Y
ϕ(y, z) dν(z) + v(y) .

is the differential of E in D := P(Y ) ∩ Lα+1 where

E [ν] =
∫
Y
F (ν(y)) dy +

1

2

∫∫
Y×Y

ϕ(y, z) dν(y) dν(z) +

∫
Y
v(y) dν(y) ,

with F ′ = f .
Define the variational problem:

inf
ν∈D

Jµ[ν] where Jµ[ν] := Wc(µ, ν) + E [ν]. (5.2)

Proposition 3 (Existence of equilibria, [4]). If

• ν solves (5.2),

• and γ is an optimal transport between µ and ν

then γ is a Cournot-Nash equilibrium.
Moreover, (5.2) admits minimisers in P(Y )∩Lα+1 so that there exists Cournot-Nash equilibria.

The proof of this result uses a usual vertical perturbation of the functional. Let us mention
that the optimality condition for (5.2) is the following: there is a constant M such that{

φc + V[ν] ≥M

φc + V[ν] =M ν-a.e. ,
(5.3)

where φc is the c-transform of φ.

5.2.4 Hidden convexity and further uniqueness results

So far, our variational approach has enabled us to prove the existence of equilibria by the min-
imisation problem (5.2). However, the previous results are not totally satisfying since in general
there might exist equilibria that are not minimisers and even if we are only interested in the
special equilibria obtained by minimisation, optimality conditions:

ν(y) = f−1

(
M − φc(y)−

∫
Y
ϕ(y, z) dν(z)

)
. (5.4)

are not tractable enough to provide a full characterisation. In the case where

E [ν] =
∫
Y
F (y, ν(y)) dm0(y) +

1

2

∫∫
Y×Y

ϕ(y, z) dν(y) dν(z)

1Note the analogy with the variational approach of [21] for potential games, i.e. games for which the equilibria
can be obtained by minimising some potential function.
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there is a competition between the convexity of the congestion term that favours dispersion and the
non-convexity of the interaction term so that in general nothing can be said about the convexity
of E in the usual sense. However, for people familiar with optimal transport there is an hidden
convexity due to R. McCann [18] which would restore the equivalence between being a minimiser
and being an equilibrium. It would also give new uniqueness and characterisation results.

Throughout this section, we will assume the following:

• X = Y = Ω where Ω is some open bounded convex subset of Rd,

• µ is absolutely continuous with respect to the Lebesgue measure (that will be the reference
measure m0 from now on) and has a positive density on Ω,

• c is quadratic i.e.

c(x, y) :=
1

2
|x− y|2, (x, y) ∈ Rd × Rd,

• V again takes the form

V[ν](y) = f(ν(y)) + v(y) +

∫
Y
ϕ(y, z) dν(z)

where v is convex, f satisfies the Inada condition and ϕ ∈ C(Rd×Rd) is symmetric and C1,1
loc

(i.e. C1 with a locally Lipschitz gradient).

The variational problem (5.2) then takes the form

inf
ν∈P(Ω)

Jµ[ν] where Jµ[ν] :=
1

2
W2

2 (µ, ν) + E [ν] (5.5)

with W2
2 (µ, ν) is the squared-2-Wasserstein distance between µ and ν i.e.:

W2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫
X2

|x− y|2 dγ(x, y).

Two more structural assumptions are needed to guarantee the strict convexity of Jµ along
generalised geodesics with base µ, namely McCann’s condition:

ν 7→ νdF (ν−d) is convex non-increasing on (0,+∞) (5.6)

and that ϕ is convex. Note that McCann’s condition is satisfied for standard utility function as
the power functions νm with an exponent larger than 1 as well as by the entropy log(ν).

Proposition 4 (Uniqueness of the equilibrium, [4]). Under the above assumptions there is a
unique equilibrium (which is actually pure).

5.2.5 Welfare analysis

It would be tempting to interpret the above results as a kind of welfare theorem. If a planner
would decide where to allocate the players, he would do it in order to maximise the total social
cost SC[ν] defined by

SC[ν] =

∫
X×Y

(c(x, y) + V[ν](y)) dγ(x, y)

=

∫∫
X×Y

c(x, y) dγ(x, y) +

∫
Y
V[ν](y) dν(y)

=
1

2
W2

2 (µ, ν) +

∫
Y
V[ν](y) dν(y)

=
1

2
W2

2 (µ, ν) +

∫
Y
f(ν(y)) dν(y) +

∫
Y
V dν +

∫
Y
ϕ dν,
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However such a program leads to a result which differs from the equilibrium described above.
Indeed, the second term f(ν)ν is replaced in the functional minimised by the players by F (ν)
(with F ′ = f) and the interaction term is divided by 2. This individual minimisation has of
course no reason to correctly estimate the marginal effect of individual behaviour on the total
social cost. In other words, there is some gap between the equilibrium and the efficient (social-
cost minimising) configurations, and, since we are dealing with a situation with externalities, this
is actually not surprising. The computation of the equilibrium and the optimum can be done
numerically in dimension 1 by using the same kind of numerical computations, see Figure 5.1.
The natural way to restore efficiency of the equilibrium is the design by some social planner of a
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Figure 5.1: The optimum in continuous line and the equilibrium in dash line on the left. The correspond-
ing taxes on the right.

proper system of tax/subsidies which, added to V[ν], will implement the efficient configuration (or
at least a stationary point of the social cost). Thanks to our variational approach, a tax system
that restores the efficiency is easy to compute (up to an additive constant):

Tax[ν](y) = f(ν(y)) ν(y)− F (ν(y)) +

∫
Y
ϕ(y, z) dν(z).

The two terms in Tax[ν] represent respectively a correction to the individual estimation of con-
gestion cost and to the individual estimation of interaction cost.

5.3 Idea of the proof

5.3.1 A minimiser is an equilibrium

Let ν maximise F in Pac(C). We consider some admissible density ν̃ and a family of perturbations
indexed by 0 ≤ ε ≤ 1,

νε = (1− ε)ν + εν̃ .

Given that ν maximises F , we have

0 ≥ d

dε
F [νε]|ε=0 =

d

dε
U [νε]|ε=0 +

d

dε
V[νε]|ε=0 +

d

dε
W[νε]|ε=0 (5.7)

As U ′ = u, the derivative of the internal energy is given by

d

dε
U [νε]|ε=0 = −

∫
U ′(ν(x))

d

dε
νε(x) dx|ε=0 = −

∫
u(ν(x))[ν̃(x)− ν(x)] dx .

The potential energy is easy to compute and its derivative is given by

d

dε
V[νε]|ε=0 = −

∫
v(x)(ν̃(x)− ν(x)) dx.
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By using the symmetry of ϕ, the derivative of the interaction energy is given by

d

dε
W[νε]|ε=0

= −1

2

∫∫
ϕ(x− y) (ν(x)[ν̃(y)− ν(y)] + [ν̃(x)− ν(x)]ν(y))

= −
∫∫

ϕ(x− y)ν(y)[ν̃(x)− ν(x)] dx dy

= −
∫
ϕ∗ν(x)(ν̃(x)− ν(x)) dx .

By plugging the expressions into (5.7) we obtain∫
[u(ν(x)) + v(x) + ϕ∗ν(x)] ν̃(x) dx ≥

∫
[u(ν(x) + v(x) + ϕ∗ν(x)] ν(x) dx .

As this inequality holds for any admissible density ν̃, this implies that the density ν is concentrated
on the set where the function u(ν) + ϕ∗ν + v realises its minimal value.

5.3.2 Equivalence between equilibrium and minimiser

Assume now that ν is a solution to (5.5). Let ν̃ be some admissible density and ∇ψ the optimal
transport from ν to ν̃. Consider ψε(x) := (1−ε)x2/2+εψ and the family of perturbations defined
for 0 ≤ ε ≤ 1 by νε := ∇ψε#ν. The Monge-Ampère equation: ν(x) = νε(∇ψε(x)) det(D2ψε(x))
is equivalent to

νε(y) =
ν(∇ψ−1

ε (y))

det(D2ψε(∇ψ−1
ε (y))

. (5.8)

We will give an idea of the proof in the case when E is of the form

E [ν] =
∫
Y
F (ν) dy +

1

m+ 1

∫
Ym+1

ϕ dν⊗(m+1)

but a generalisation to any sum of symmetric interaction terms of different orders m is straight-
forward.

As ν is a minimiser, the derivative of Jµ[νε] in ε is 0. Let us compute

d

dε |ε=0
Jµ[νε] =

1

2

d

dε |ε=0
W2

2 (µ, νε) +
d

dε |ε=0

∫
Y
F (νε) dy +

1

m+ 1

d

dε |ε=0

∫
Ym+1

ϕ dν⊗(m+1)
ε .

• By (5.8) and the change of variable x = ∇ψ−1
ε (y), the differential of the second term formally

gives

d

dε |ε=0

∫
Y
F (νε) dm0 =

d

dε |ε=0

∫
Y
F

(
ν(∇ψ−1

ε (y))

det(D2ψε(∇ψ−1
ε (y)))

)
dy

=
d

dε |ε=0

∫
Y
F

(
ν(y)

det(D2ψε(y))

)
det(D2ψε(y)) dy

= −
∫
Y
ν [∆ψ − d]F ′(ν) dy +

∫
Y
F (ν) [∆ψ − d] dy

=

∫
Y

[
F (ν)− νF ′(ν)

]
[∆ψ − d] dy . (5.9)

Where, as det(I +H) = 1 + tr(H) + o(∥H∥), we have used

d

dε |ε=0
det(D2ψε(y)) =

d

dε |ε=0
det(I + ε(D2ψ − I)) = ∆ψ − d .
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By integrating by parts (5.9) we obtain

d

dε |ε=0

∫
Y
F (νε) dy = −

∫
Y
∇
[
F (ν)− νF ′(ν)

]
[∇ψ − id] dy

+

∫
∂Y

[
F (ν)− νF ′(ν)

]
[∇ψ − id] · n dσ .

By convexity of Y , (T − id) ·n ≤ 0. By convexity of F , x 7→ F (x)−xF ′(x) is non-increasing from
F (0) = 0. So that the boundary term is non-positive and

d

dε |ε=0

∫
Y
F (νε) dm0 ≤ −

∫
Y
∇
[
F (ν)− νF ′(ν)

]
[∇ψ − id] dy .

As ∇ [F (ν)− νF ′(ν)] = −ν∇ [F ′(ν)] = ν∇ [f(ν)], we have

d

dε |ε=0

∫
Y
F (νε) dy ≤ −

∫
Y
ν∇ [f(ν)] [∇ψ − id] dy .

• By symmetry of ϕ and definition of the push-forward, the last term formally gives

d

dε |ε=0

∫
Ym+1

ϕ(y, z1, . . . , zm) dνε(y) dνε(z1) · · · dνε(zm)

=
d

dε |ε=0

∫
Ym+1

ϕ(∇ψε(y),∇ψε(z1), . . . ,∇ψε(zm)) dν⊗(m+1)

= (m+ 1)

∫
Ym+1

∇ϕ(y, z1, . . . , zm)(∇ψ(y)− y) dν⊗(m+1)

• By the horizontal differentiability of the Monge-Kantorovich distance with v = ∇ψ − id, the
differential of the first term is

1

2

d

dε
W2

2 [µ, νε]|ε=0 =

∫
Y
⟨y −∇φ∗(y),∇ψ − id⟩ dν(y) .

• Collecting the above computations we obtain

0 =
d

dε |ε=0
Jµ[νε] ≤

∫
Y
ν∇

[
−f(ν) +

∫
Ym

ϕν⊗m + y −∇φ∗
]
[∇ψ − id] dy .

So that, on the support of ν, there exists a constant M such that

−f(ν) +
∫
Ym

ϕ dν⊗m + id−∇φ∗ =M m0-a.e. .

This is exactly the optimality condition (5.3) as

∇φc(y) = ∇
(
|y|2

2
− φ∗

)
= y −∇φ∗(y) .

In case ∇φε is not regular enough div is the distributional divergence and a rigorous justifi-
cation of this computation can be found in [25, Theorem 5.30] and [1, Theorem 10.4.13].
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Appendix A

The continuity equation

Since we do not make any regularity assumptions on ρ0, we have to understand the continuity
equation in some appropriate weak sense, in the sense of distributions. We shall say that th family
of probability measures t 7→ ρt is a measure valued solution of the continuity equation if for every
T > 0, and every test function φ ∈ C1([0, T ]×Rd) supported in Br such that φ(T, ·) = 0 we have∫ T

0

∫
Rd

[∂tφ(t, x) + v(t, x) · ∇φ(t, x)] dρt(x) dt = −
∫
Rd

φ(0, x) dρ0(x) .

Let us prove that the measure-valued curve t 7→ Xt#ρ0 is the only measure-valued solution
of the continuity equation.

We have by Fubini’s theorem∫ T

0

∫
Rd

[∂tφ(t, x) + v(t, x) · ∇φ(t, x)] dρt(x) dt =
∫
Rd

∫ T

0
[∂tφ(t, x) + v(t, x) · ∇φ(t, x)] dt dρt(x) .

Using that ρt = Xt#ρ0 we obtain∫ T

0

∫
Rd

[∂tφ(t, x) + v(t, x) · ∇φ(t, x)] dρt(x) dt =
∫
Rd

∫ T

0
[∂tφ(t,Xt(x)) + v(t,Xt(x)) · ∇φ(t,Xt(x))] dt dρ0(x)

=

∫
Rd

∫ T

0

d

dt
φ(t,Xt(x)) dρ0

= −
∫
Rd

φ(0, x) dρ0(x) .

We can even prove that t 7→ Xt#ρ0 is the unique solution to the continuity equation.
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Appendix B

Concavity of t 7→ det(Id − tS)1/d

Exercice 28. Let x ≥ 0 and N ∈ N∗. Consider

VN (x) = sup

{ N∏
i=1

xi : xi ≥ 0 ,
N∑
i=1

xi = x

}
.

1. Compute V1.

2. Prove that
VN (x) = sup

y∈[0,x]

{
y VN−1(x− y)

}
3. Prove that

VN (x) =
xN

NN

4. Deduce the arithmetico-geometric inequality:(∏
|xi|
)1/N

≤ 1

N

N∑
i=1

|xi| .

▶

1. We have obviously
V1(x) = x

2. Let us consider the sequence solution to

VN (x) = sup
y∈[0,x]

{
y VN−1(x− y)

}
We can rewrite it

VN (x) = sup
xN∈[0,x]

{
xN VN−1(x− xN )

}
or

VN (x) = sup
xN∈[0,x]

{
xN sup

xN−1∈[0,x−xN ]

{
xN−1VN−2(x− xN − xN−1)

}}
Iterating the procedure we obtain

VN (x) = sup
xN∈[0,x]

sup
xN−1∈[0,x−xN ]

· · · sup
x1∈[0,x−

∑N
i=2 xi]

{
xN xN−1 · · ·x1

}
The constraints require xi ≥ 0 for all i ∈ {1, · · · , N}. For the bound from above, the most
restrictive contraint is x1 ∈ [0, x−

∑N
i=2 xi or

∑N
i=1 xi = x, we can rewrite the problem as

VN (x) =

{ N∏
i=1

xi : xi ≥ 0 ,
N∑
i=1

xi = x

}
.

Which is the desired result.
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3. Let P(n) be the proposition

Vn(x) =
xn

nn

• By the first question P(1) is true.

• Assume that P(n) is true. We have

Vn+1(x) = sup
y∈[0,x]

{
yn

nn
(x− y)

}
=

xn+1

(n+ 1)n+1
.

Hence P(n) true implies that P(n+ 1) is true.

• As a consquence P(n) is true for any n ≥ 1.

4. We have for all positive xi:

xN

NN
≥
{ N∏
i=1

xi : xi ≥ 0 ,

N∑
i=1

xi = x

}
So that

1

N

N∑
i=1

xi ≥

(
N∏
i=1

xi

)1/N

The inequality is true for |xi|.
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