
1 Lax-Milgram theorem
Theorem 1 (Lax-Milgram theorem) Let H be a Hilbert space. Consider b a coninuous
linear form on H and a bilinear form a on H such that

• there exists M > 0 such that

∀(u, v) ∈ H2, a(u, v) ≤ M∥u∥∥v∥ .

(a is continuous)
• there exists α > 0 such that

∀u ∈ H, a(u, u) ≥ α∥u∥2 .

(a is coercive)
Then there is a unique u ∈ H such that

∀v ∈ V, a(u, v) = b(v) . (1)

Corollary 1 Under the above assumptions if we moreover assume that a is symmetric then
the unique solution u ∈ H to (1) is also the unique solution of the following minimisation
problem

inf
v∈H

J(v) (2)

where the energy J is defined by

J(v) :=
1

2
a(u, v)− b(v) .

1.1 Proof of the theorem

1. Prove that there exists a unique w ∈ H such that

∀v ∈ H, b(v) = ⟨w, v⟩

2. Prove that for all u ∈ H, there exists a unique Au ∈ H, such that

∀v ∈ H, a(u, v) = ⟨Au, v⟩ .

3. We would like to prove that there exists a unique u ∈ H such that Au = w.
(a) Prove that

A : H → H
u 7→ Au

is linear.
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(b) Prove that A is continuous.
4. Introduce now

T : H → H

u 7→ u− α

M2
(Au − w)

We will prove that T has a unique fixed point.
(a) Prove that T is a contraction
(b) Prove that there exists a unique u ∈ H such that Au = w.
(c) Conclude

1.2 Proof of the corollary

1. Prove that a is a scalar product.
2. Prove that b is continuous for the norm ∥ · ∥a associated to a.
3. Deduce that there exists c such that b(u) = a(u, c).
4. Prove that

J(u) =
1

2
∥u− c∥a −

1

2
a(c, c) .

5. Deduce that there is a unique minimiser of J .
6. Conclude.

2 Application to partial differential equation
We are interested in anlysing mathematically linear elliptic problems made of :
• a partial differential equation (PDE),
• a boundary condition,
• a functional framework

The last point is more subtle but fundamental. Indeed, even the meaning of the sign “=”,
depends on the functional framework we consider. For the purpose of this part, the good
framework is the Sobolev space which we present in the following section.

To go further 1 In research, it is still a very exciting question. P.-L. Lions was awarded
the Fields medal in 1994 for his concept of viscosity solutions.

2.1 Introduction to Sobolev spaces

Set I be an open interval of R. Introduce

H1(I) =

{
u ∈ L2(I) : ∃g ∈ L2(I) such that ∀φ ∈ C1

c (I),

∫
I

uφ′ = −
∫
I

gφ

}
where C1

c (I) denotes the set of C1-functions on I which are compactly supported.

To go further 2 A better way to introduce H1(I) would have been to introduce the notion
of derivative in the distribution sense and the theory of distributions. The idea, as above, is
to transfer the derivative on the test function φ by integration by parts. We can remark that
if u ∈ C1(I) ∩ Lp(I) then u′ also is in Lp(I), where here u′ stands for the usual derivative.
This distribution derivatives is egal to the usual derivative in this situation. See Schwartz
“Théorie des distributions”
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To go further 3 The set H1(I) is called a Sobolev space. For more general Sobolev spaces
we can define, for p ∈ (1,∞)

W 1,p(I) =

{
u ∈ Lp(I) : ∃g ∈ Lp(I) such that ∀φ ∈ C1

c (I),

∫
I

uφ′ = −
∫
I

gφ

}
The set H1(I) corresponds to W 1,2(I).

We can even recursively define the set

Wm,p(I) =
{
u ∈ Wm−1,p(I) : u′ ∈ Wm−1,p(I)

}
The space H1(I) is equipped with the norm ∥ · ∥H1 defined by

∥u∥2H1 = ∥u∥L2 + ∥u′∥L2 =

∫ 1

0

(
|u(x)|2 + |u′|2

)
dx

To go further 4 This norm comes from the scalar product

⟨u, v⟩H1 = ⟨u, v⟩L2 + ⟨u′, v′⟩L2

2.2 Application to partial differential equations

We denote H = H0
1 (I) = C∞

c (I) in H1(I) where C∞
c (I) is the set of smooth functions

which are compatcly supported in I (the adherence of the support is in I) . This space is
equipped with the norm and scalar product of H1(I).

2.2.1 The Poisson problem

Theorem 2 (The Poisson problem) Let f ∈ L2(I) be given. There is a unique weak
solution u ∈ H to {

−u′′ + u = f on (0, 1)

u(0) = u(1) = 0
(3)

in the sense that

∀v ∈ H,

∫ 1

0

u′(x) v′(x)dx+

∫ 1

0

u(x) v(x)dx =

∫ 1

0

f(x) v(x)dx

Introduce for all (u, v) ∈ H2

a(u, v) :=

∫ 1

0

u′(x) v′(x)dx+

∫ 1

0

u(x) v(x)dx

and for all v ∈ H

l(v) =

∫ 1

0

f(x) v(x)dx

1. Prove that l is continuous in L2(I).
2. Prove that a is continuous in H.
3. Prove that a is coercive in H.
4. Conclude that there exists a unique weak solution to (3).
5. Prove that, if f ∈ C0 the weak solution is indeed a strong solution in the usual sense.
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2.2.2 The Sturm-Liouville problem

Theorem 3 (The Sturm-Liouville problem) Let p ∈ C1(Ī), (r, q) ∈ C0(Ī) and f ∈
L2(I) be given. We assume that q ≥ 1 and there is α > 0 such that p ≥ α and r2 ≤ α. There
is a unique weak solution u ∈ H to{

−(pu′)′ + ru′ + qu = f on (0, 1)

u(0) = u(1) = 0
(4)

in the sense that

∀v ∈ H,

∫ 1

0

p(x)u′(x) v′(x)dx+

∫ 1

0

r(x)u′(x) v(x)dx+

∫ 1

0

q(x)u(x) v(x)dx =

∫ 1

0

f(x) v(x)dx

The proof relies on the following very important theorem :

Theorem 4 (Poincaré inequality) There exists CP such that

∀u ∈ H, ∥u∥H1 ≤ CP∥u′∥2 .

1. Prove that for all u ∈ H
∥u∥22 ≤ ∥u′∥2 .

2. Conclude.

Introduce for all (u, v) ∈ H2

a(u, v) :=

∫ 1

0

p(x)u′(x) v′(x)dx+

∫ 1

0

r(x)u′(x) v(x)dx+

∫ 1

0

q(x)u(x) v(x)dx

and for all v ∈ H

l(v) =

∫ 1

0

f(x) v(x)dx

1. Prove that l is continuous in L2(I).
2. Prove that a is continuous in H.
3. Prove that a is coercive in H.
4. Conclude that there exists a unique weak solution to (4).
5. Prove that, if f ∈ C0 the weak solution is indeed a strong solution in the usual sense.
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