
1 Fourier transform
There are different functional frameworks to define the Fourier transform : L1, L2, etc.

Here we will introduce a space with is much more adpated to the definition of Fourier
transforms :

1.1 The Schwartz space

Definition 1 (The Schwartz space) The Schwartz space, denoted S(R), is the set of
C∞(R) functions such that, for all k ∈ N,

∥u∥k,S := sup
x∈R,α≤k,β≤k

|xβu(α)(x)| < ∞

The space S(R) is also called the space of functions rapidly decreasing, in the sense that f
and all its derivatives go to zero as x → ∞ faster than any reciproqual power of x.

Exercice 1 1. Prove that a C∞(R)-function which is compactly supported is in the
Schwartz space.

2. Prove that the gaussian functions, x 7→ exp (−ax2), a > 0, are in the Schwartz space.

Exercice 2 Prove that the space S(R) is a vector space.

To go further 1 The vector space S(R) can be seen as the intersection for all k ∈ N of the
Banach spaces (exo) of the functions such that ∥u∥k,S is bounded. As the intersection of a
non-increasing family of a countable Banach spaces, we can define a distance on S(R) by

d(u, v) :=
∑
k∈N

2−k min{1, ∥u− v∥k,S} .

The topology of (S(R), d) is not the topology of a normed vector space.

Exercice 3 Let f ∈ S(R).
1. Prove that for any l ∈ N, f (l) is in S(R).
2. Prove that for any k ∈ N, xkf is in S(R).
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1.2 Definition of the Fourier transform

Definition 2 For f ∈ S(R) we define its Fourier transform as the function defined for all
ξ ∈ R, by

f̂(ξ) :=

∫ +∞

−∞
f(x) e−2iπxξdx .

Exercice 4 Let f ∈ S(R). Prove the following assertions :
1. Linearity : let a ∈ C and define h(x) = af(x) + g(x). We have ĥ(ξ) = af̂(ξ) + ĝ(ξ).
2. Translation : let h ∈ R and define h(x) = f(x− x0). We have ĥ(ξ) = e−2iπhξf̂(ξ).
3. Modulation : let ξ0 ∈ R and define h(x) = e2iπxξ0f(x). We have ĥ(ξ) = f̂(ξ − ξ0).
4. Scaling : let a ∈ R∗ and define h(x) = f(ax). We have

ĥ(ξ) =
1

|a|
f̂

(
ξ

a

)
.

5. Derivatives : Let α ∈ N and define h(x) = f (α)(x). We have ĥ(ξ) = (2πiξ)αf̂(ξ).

6. Define h(x) = − = xnf(x). We have ĥ(ξ) = i
2π

)n df̂
dξn

(ξ).

7. (*) Conjugaison : define h(x) = f(x). We have ĥ(ξ) = f̂(−ξ).
8. (*) Real part : define h(x) = Re(f(x)) then

ĥ(ξ) =
1

2

(
f̂(ξ) + f̂(−ξ)

)
9. (*) Imaginary part : define h(x) = Im(f(x)) then

ĥ(ξ) =
1

2

(
f̂(ξ)− f̂(−ξ)

)
Exercice 5 Prove S(R) is stable by Fourier transform i.e. if f ∈ S(R) then f̂ ∈ S(R).

Exercice 6 (Fourier transform of the Gaussian) Let α be such that (α) > 0. Consider
f : x 7→ e−αx2. Compute f̂ .
Hint : complete the square.

Exercice 7 (Fourier transform of an exponential) Let α be such that (α) > 0. Consi-
der f : x 7→ e−a|x|. Compute f̂ .

1.3 Inversion formula

Exercice 8 (Mollifiers) Consider for δ > 0,

Kδ : x 7→ 1√
δ
e−πx2/δ .

1. Prove that K̂δ(ξ) = e−πδξ2.
2. Prove that for any δ ∈ N, ∫

R
Kδ(x)dx = 1 ,
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3. Prove that ,

sup
δ∈N

∫
R
|Kδ(x)| dx < ∞ ,

4. Prove that for all γ > 0,

lim
δ→∞

∫
γ≤|x|<+∞

|Kδ(x)| dx = 0 .

5. Let f and g be in S(R). Define

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy .

Prove that if f ∈ S(R)
lim

δ→+∞
∥f ∗Kδ − f∥∞ = 0 .

Exercice 9 (Multiplication formula (*)) Let f and g be in S(R). Prove that∫ +∞

−∞
f(x) ĝ(x)dx =

∫ +∞

−∞
f̂(y) g(y)dy

Hint : Use Fubini’s theorem

Exercice 10 (The Fourier transform is a one-to-one correspondence on S(R)) Let
f ∈ S(R).

1. Fourier inversion formula : Prove that

f(x) =

∫ +∞

−∞
f̂(ξ)e2iπxξdξ

Hint : Use the above mollifier sequence to approximate f and pass to the limit.

2. Prove that the Fourier transform is a one-to-one correspondence on S(R).

1.4 The Plancherel formula

Exercice 11 (Convolution) 1. Prove that f ∗ g is in S(R).
2. Prove that ˆ(f ∗ g) = f̂ ĝ.

Hint : Use Fubini’s theorem

Exercice 12 (The Parceval formula (*)) Let f ∈ S(R). Prove that

⟨f, g⟩L2 =

∫ +∞

−∞
f(x) g(x)dx =

∫ +∞

−∞
f̂(ξ) ĝ(ξ)dξ

Exercice 13 (The Plancherel formula) Let f ∈ S(R). Prove that ∥f∥ = ∥f̂∥.
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2 Application to the Heat equation
The heat equation is a partial differential equation describing the distribution of heat

over time. In one spatial dimension, we denote u(x, t) as the temperature at time t in x. The
function u obeys the relation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) (1)

supplemented with the initial condition u(x, 0) = ϕ(x).

To go further 2 The transition density for Brownian motion satisfies the heat equation.
See http: // stat. math. uregina. ca/ ~kozdron/ Research/ UgradTalks/ BM_ and_ Heat/
heat_ and_ BM. pdf

Exercice 14 Let u be a solution to (1).
1. Prove that

∂û

∂t
(ξ, t) = −4π2ξ2û(ξ, t) (2)

2. Solve (2).

3. Using the initial condition prove that û(ξ, t) = ϕ̂(ξ, t) exp(−4π2ξ2t).
4. Find the Gaussian G such that Ĝ(ξ, t) = exp(−4π2ξ2t).

5. Prove that û = ˆ(ϕ ∗G).
6. Prove that u = ϕ ∗G.
7. Conclude.
8. Consider now ϕ to be defined by

ϕ : x 7→
{

1 if |x| ≤ 1/2
0 if |x| > 1/2

Determine the solution to (1) with ϕ as initial data.
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