

1 Fourier transform

There are different functional frameworks to define the Fourier transform : \mathcal{L}^1 , \mathcal{L}^2 , etc. Here we will introduce a space with is much more adpated to the definition of Fourier transforms :

1.1 The Schwartz space

Definition 1 (The Schwartz space) The Schwartz space, denoted $\mathcal{S}(\mathbb{R})$, is the set of $\mathcal{C}^{\infty}(\mathbb{R})$ functions such that, for all $k \in \mathbb{N}$,

$$||u||_{k,\mathcal{S}} := \sup_{x \in \mathbb{R}, \alpha \le k, \beta \le k} |x^{\beta} u^{(\alpha)}(x)| < \infty$$

The space $\mathcal{S}(\mathbb{R})$ is also called the space of functions rapidly decreasing, in the sense that f and all its derivatives go to zero as $x \to \infty$ faster than any reciproqual power of x.

- **Exercice 1** 1. Prove that a $C^{\infty}(\mathbb{R})$ -function which is compactly supported is in the Schwartz space.
 - 2. Prove that the gaussian functions, $x \mapsto \exp(-ax^2)$, a > 0, are in the Schwartz space.

Exercice 2 Prove that the space $\mathcal{S}(\mathbb{R})$ is a vector space.

To go further 1 The vector space $\mathcal{S}(\mathbb{R})$ can be seen as the intersection for all $k \in \mathbb{N}$ of the Banach spaces (exo) of the functions such that $||u||_{k,S}$ is bounded. As the intersection of a non-increasing family of a countable Banach spaces, we can define a distance on $\mathcal{S}(\mathbb{R})$ by

$$d(u,v) := \sum_{k \in \mathbb{N}} 2^{-k} \min\{1, \|u-v\|_{k,S}\}.$$

The topology of $(\mathcal{S}(\mathbb{R}), d)$ is not the topology of a normed vector space.

Exercice 3 Let $f \in \mathcal{S}(\mathbb{R})$.

- 1. Prove that for any $l \in \mathbb{N}$, $f^{(l)}$ is in $\mathcal{S}(\mathbb{R})$.
- 2. Prove that for any $k \in \mathbb{N}$, $x^k f$ is in $\mathcal{S}(\mathbb{R})$.

1.2 Definition of the Fourier transform

Definition 2 For $f \in \mathcal{S}(\mathbb{R})$ we define its Fourier transform as the function defined for all $\xi \in \mathbb{R}$, by

$$\hat{f}(\xi) := \int_{-\infty}^{+\infty} f(x) e^{-2i\pi x\xi} \mathrm{d}x$$

Exercice 4 Let $f \in \mathcal{S}(\mathbb{R})$. Prove the following assertions :

- 1. Linearity : let $a \in \mathcal{C}$ and define h(x) = af(x) + g(x). We have $\hat{h}(\xi) = a\hat{f}(\xi) + \hat{g}(\xi)$.
- 2. Translation : let $h \in \mathbb{R}$ and define $h(x) = f(x x_0)$. We have $\hat{h}(\xi) = e^{-2i\pi h\xi} \hat{f}(\xi)$.
- 3. Modulation : let $\xi_0 \in \mathbb{R}$ and define $h(x) = e^{2i\pi x\xi_0} f(x)$. We have $\hat{h}(\xi) = \hat{f}(\xi \xi_0)$.
- 4. Scaling : let $a \in \mathbb{R}^*$ and define h(x) = f(ax). We have

$$\hat{h}(\xi) = \frac{1}{|a|} \hat{f}\left(\frac{\xi}{a}\right)$$

- 5. Derivatives : Let $\alpha \in \mathbb{N}$ and define $h(x) = f^{(\alpha)}(x)$. We have $\hat{h}(\xi) = (2\pi i\xi)^{\alpha} \hat{f}(\xi)$.
- 6. Define $h(x) = = x^n f(x)$. We have $\hat{h}(\xi) = \frac{i}{2\pi} \Big)^n \frac{d\hat{f}}{d\xi^n}(\xi)$.
- 7. (*) Conjugaison : define $h(x) = \overline{f(x)}$. We have $\hat{h}(\xi) = \overline{\hat{f}(-\xi)}$.
- 8. (*) Real part : define $h(x) = \mathcal{R}e(f(x))$ then

$$\hat{h}(\xi) = \frac{1}{2} \left(\hat{f}(\xi) + \overline{\hat{f}(-\xi)} \right)$$

9. (*) Imaginary part : define $h(x) = \mathcal{I}m(f(x))$ then

$$\hat{h}(\xi) = \frac{1}{2} \left(\hat{f}(\xi) - \overline{\hat{f}(-\xi)} \right)$$

Exercice 5 Prove $\mathcal{S}(\mathbb{R})$ is stable by Fourier transform i.e. if $f \in \mathcal{S}(\mathbb{R})$ then $\hat{f} \in \mathcal{S}(\mathbb{R})$.

Exercice 6 (Fourier transform of the Gaussian) Let α be such that $(\alpha) > 0$. Consider $f: x \mapsto e^{-\alpha x^2}$. Compute \hat{f} . Hint : complete the square.

Exercise 7 (Fourier transform of an exponential) Let α be such that $(\alpha) > 0$. Consider $f: x \mapsto e^{-a|x|}$. Compute \hat{f} .

1.3 Inversion formula

Exercice 8 (Mollifiers) Consider for $\delta > 0$,

$$K_{\delta}: x \mapsto \frac{1}{\sqrt{\delta}} e^{-\pi x^2/\delta}$$
.

- 1. Prove that $\hat{K}_{\delta}(\xi) = e^{-\pi\delta\xi^2}$.
- 2. Prove that for any $\delta \in \mathbb{N}$,

$$\int_{\mathbb{R}} K_{\delta}(x) \mathrm{d}x = 1 \,,$$

3. Prove that,

$$\sup_{\delta \in \mathbb{N}} \int_{\mathbb{R}} |K_{\delta}(x)| \, \mathrm{d}x < \infty \,,$$

4. Prove that for all $\gamma > 0$,

$$\lim_{\delta \to \infty} \int_{\gamma \le |x| < +\infty} |K_{\delta}(x)| \, \mathrm{d}x = 0 \; .$$

5. Let f and g be in $\mathcal{S}(\mathbb{R})$. Define

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) dy$$

Prove that if $f \in \mathcal{S}(\mathbb{R})$

$$\lim_{\delta \to +\infty} \|f * K_{\delta} - f\|_{\infty} = 0.$$

Exercice 9 (Multiplication formula (*)) Let f and g be in $\mathcal{S}(\mathbb{R})$. Prove that

$$\int_{-\infty}^{+\infty} f(x)\,\hat{g}(x)\mathrm{d}x = \int_{-\infty}^{+\infty} \hat{f}(y)\,g(y)\mathrm{d}y$$

Hint : Use Fubini's theorem

Exercice 10 (The Fourier transform is a one-to-one correspondence on $S(\mathbb{R})$) Let $f \in S(\mathbb{R})$.

1. Fourier inversion formula : Prove that

$$f(x) = \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{2i\pi x\xi} \mathrm{d}\xi$$

Hint : Use the above mollifier sequence to approximate f and pass to the limit.

2. Prove that the Fourier transform is a one-to-one correspondence on $\mathcal{S}(\mathbb{R})$.

1.4 The Plancherel formula

Exercice 11 (Convolution) *1. Prove that* f * g *is in* $\mathcal{S}(\mathbb{R})$ *.*

2. Prove that $(\hat{f} * g) = \hat{f} \hat{g}$. Hint : Use Fubini's theorem

Exercice 12 (The Parceval formula (*)) Let $f \in \mathcal{S}(\mathbb{R})$. Prove that

$$\langle f,g \rangle_{L^2} = \int_{-\infty}^{+\infty} f(x) \,\overline{g(x)} \mathrm{d}x = \int_{-\infty}^{+\infty} \hat{f}(\xi) \,\overline{\hat{g}(\xi)} \mathrm{d}\xi$$

Exercice 13 (The Plancherel formula) Let $f \in \mathcal{S}(\mathbb{R})$. Prove that $||f|| = ||\hat{f}||$.

2 Application to the Heat equation

The heat equation is a partial differential equation describing the distribution of heat over time. In one spatial dimension, we denote u(x, t) as the temperature at time t in x. The function u obeys the relation

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t) \tag{1}$$

supplemented with the initial condition $u(x, 0) = \phi(x)$.

To go further 2 The transition density for Brownian motion satisfies the heat equation. See http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_ and_ Heat/ heat_ and_ BM. pdf

Exercice 14 Let u be a solution to (1).

1. Prove that

$$\frac{\partial \hat{u}}{\partial t}(\xi, t) = -4\pi^2 \xi^2 \hat{u}(\xi, t) \tag{2}$$

- 2. Solve (2).
- 3. Using the initial condition prove that $\hat{u}(\xi, t) = \hat{\phi}(\xi, t) \exp(-4\pi^2 \xi^2 t)$.
- 4. Find the Gaussian G such that $\hat{G}(\xi, t) = \exp(-4\pi^2\xi^2 t)$.
- 5. Prove that $\hat{u} = (\phi * G)$.
- 6. Prove that $u = \phi * G$.
- 7. Conclude.
- 8. Consider now ϕ to be defined by

$$\phi: x \mapsto \left\{ \begin{array}{ll} 1 & \textit{if } |x| \leq 1/2 \\ 0 & \textit{if } |x| > 1/2 \end{array} \right.$$

Determine the solution to (1) with ϕ as initial data.