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1 Fourier transform

There are different functional frameworks to define the Fourier transform : £!, £2, etc.
Here we will introduce a space with is much more adpated to the definition of Fourier
transforms :

1.1 The Schwartz space

Definition 1 (The Schwartz space) The Schwartz space, denoted S(R), is the set of
C>(R) functions such that, for all k € N,

lul|ks == sup \azﬁu(a)(:vﬂ < 00
zeR,a<lk,B<k

The space S(R) is also called the space of functions rapidly decreasing, in the sense that f
and all its derivatives go to zero as x — oo faster than any reciproqual power of x.

Exercice 1 1. Prove that a C>®(R)-function which is compactly supported is in the
Schwartz space.

2. Prove that the gaussian functions, x — exp (—az?), a > 0, are in the Schwartz space.
Exercice 2 Prove that the space S(R) is a vector space.

To go further 1 The vector space S(R) can be seen as the intersection for all k € N of the
Banach spaces (exo) of the functions such that ||u||k.s is bounded. As the intersection of a
non-increasing family of a countable Banach spaces, we can define a distance on S(R) by

d(u,v) = ZQ_k min{1, [lu — vllys} -

keN
The topology of (S(R),d) is not the topology of a normed vector space.
Exercice 3 Let f € S(R).

1. Prove that for any 1 € N, f© is in S(R).
2. Prove that for any k € N, 2% f is in S(R).



1.2 Definition of the Fourier transform

Definition 2 For f € S(R) we define its Fourier transform as the function defined for all

§ER, by
+oo

f(&) = fla)e 2 da .
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Exercice 4 Let f € S(R). Prove the following assertions :
1. Linearity : let a € C and define h(z) = af(x) + g(x). We have h(€) = af(€) + §(£).
2. Translation : let h € R and define h(z) = f(x — x0). We have h(€) = e~ 2™ f(¢).
3. Modulation : let & € R and define h(z) = ™% f (). We have h(€) = f(£ — &).
4. Scaling : let a € R* and define h(z) = f(ax). We have

o= nd (£)

Derivatives : Let o € N and define h(z) = £ (). We have h(€) = (2mi&)* f(£).
Define h(x) = — = a™f(x). We have h(€) = )" ;2—’;(5)

(*) Conjugaison : define h(z) = f(:n) We have ﬁ(f) = f(—f).
(*) Real part : define h(x) = Re(f(zx)) then

o RS> &

©

(*) Imaginary part : define h(x) = Im(f(z)) then

. 1 /. .
we) = 5 (£&) - f(-9)
Exercice 5 Prove S(R) is stable by Fourier transform i.e. if f € S(R) then f € S(R).

Exercice 6 (Fourier transform of the Gaussian) Let a be such that (a) > 0. Consider
iz e Compute f.
Hint : complete the square.

Exercice 7 (Fourier transform of an exponential) Let a be such that () > 0. Consi-
der f :x — el Compute f

1.3 Inversion formula

Exercice 8 (Mollifiers) Consider for 6 > 0,

1
Ks:xzw— e/

Vo

1. Prove that Ks(&) = e ™%,
2. Prove that for any 6 € N,

/]R Kis(z)dz =



3. Prove that ,

sup/ |Ks(x)|dz < o0,
seN Jr

4. Prove that for all v > 0,

lim |Ks(x)|de=0.

0700 Jy<Ja|<+oo

5. Let f and g be in S(R). Define

(f * o)a /fx—

lim ||f* Ks— flloo =0
d——+00

Prove that if f € S(R)

Exercice 9 (Multiplication formula (*)) Let f and g be in S(R). Prove that

“+oo “+o00

~

f( ) 9(z)dx = f(y) g(y)dy

Hint : Use Fubini’s theorem

Exercice 10 (The Fourier transform is a one-to-one correspondence on S(R)) Let
feSR).

1. Fourier inversion formula : Prove that
+oo

flz) = f(&)ermede

Hint : Use the above mollifier sequence to approximate f and pass to the limit.

2. Prove that the Fourier transform is a one-to-one correspondence on S(R).

1.4 The Plancherel formula
Exercice 11 (Convolution) 1. Prove that f * g is in S(R).
2. Prove that (f x 9)=7Fg.
Hint : Use Fubini’s theorem
Exercice 12 (The Parceval formula (*)) Let f € S(R). Prove that

“+o00 —+00 R

(f:9)12 = f( ) g(z)dz = f(&) 9(§)dg

— —00

Exercice 13 (The Plancherel formula) Let f € S(R). Prove that || f|| = || f|.



2 Application to the Heat equation

The heat equation is a partial differential equation describing the distribution of heat
over time. In one spatial dimension, we denote u(z, t) as the temperature at time ¢ in x. The
function u obeys the relation

= @(% t) (1)
supplemented with the initial condition u(x,0) = ¢(x).
To go further 2 The transition density for Brownian motion satisfies the heat equation.

See http: //stat. math. uregina. ca/ “kozdron/Research/UgradTalks/BM_ and_ Heat/
heat_ and_ BM. pdf

Exercice 14 Let u be a solution to (1).
1. Prove that

o
5 (60 = —4r’¢ale. 1) 2
2. Solve (2).

Using the initial condition prove that u(§,t) = qg(ﬁ,t) exp(—4m2E%t).
Find the Gaussian G such that G(€,t) = exp(—472E2t).

Prove that u = (¢ % G).

Prove that u = ¢ * G.

Conclude.

Consider now ¢ to be defined by

{1 i<
¢'$H{ 0 if|z| > 1/2
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Determine the solution to (1) with ¢ as initial data.



