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Chapter 1

Introduction

Dynamic optimisation is a central pillar of modern economic analysis. It allows modeling and
analyzing intertemporal decision-making in various contexts: consumption and savings, optimal
control of economic systems, dynamic game theory, etc. A rigorous mathematical approach is
essential for fully mastering its implications and ensuring the correct application of results. This
course, by emphasizing the formal structure and rigour of the employed methods, aims to provide
students with a deep and applicable understanding of dynamic optimisation tools.

The relevance of dynamic optimisation extends beyond theoretical interest; it has practical
applications in fields such as financial modeling, resource management, and policy design. By
understanding how agents optimize their decisions over time, we can derive insights into eco-
nomic stability, growth trajectories, and optimal investment strategies. The mathematical rigour
underlying these analyses ensures that the derived conclusions are logically sound and broadly
applicable.

Dynamic optimisation relies on deep mathematical concepts such as differential equations,
variational inequalities, and functional analysis. While economists often use these tools in an
applied manner, a rigorous understanding of their foundations is essential to avoid conceptual
errors and ensure correct interpretation of results.

An important aspect of this lecture is the ability to formally prove optimality conditions.
Many economic problems involve constraints, whether they are budgetary, technological, or insti-
tutional. Understanding the underlying mathematical structure of these constraints enables us to
apply sophisticated tools such as Lagrange multipliers and the Hamiltonian approach to derive
meaningful and actionable insights.

Even though the numerical aspects will not be studied in this lecture, mathematical reasoning
also enhances computational methods. With the increasing use of numerical techniques in eco-
nomic research, a strong foundation in mathematics ensures the correct application of algorithms
such as dynamic programming and numerical solutions to Hamilton-Jacobi-Bellman equations.
Without a proper mathematical background, researchers risk misinterpreting numerical results or
applying methods outside their valid range.

Each chapter of this course begins with a reminder of the mathematical tools necessary for
the topics covered. This ensures that students have a strong foundation before delving into
the core concepts of dynamic optimisation. Additionally, at the end of each chapter, students
will find exercises designed to reinforce their understanding, featuring numerous applications in
economics. These exercises will cover a wide range of topics, from optimal investment strategies
to macroeconomic policy design, providing hands-on experience in applying theoretical concepts
to real-world problems.

The objective is to enable students, whether economists or mathematicians, to acquire a rig-
orous and applied understanding of these concepts. Through exercises and practical applications,
we will demonstrate how these tools are used in real economic contexts. Examples will include
optimal consumption paths, environmental policy optimisation, and monetary policy adjustments.

Furthermore, this course will emphasize the connections between mathematical optimisation
techniques and their real-world economic interpretations. By bridging the gap between abstract
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4 CHAPTER 1. INTRODUCTION

mathematical formulations and applied economic reasoning, students will develop the ability to
both construct and critically evaluate dynamic models in economic research.

1.1 Reminders

Definition 1 (Partial order). A partial order, is a map on a set P that is such that for all a , b
, c in P :

• Reflexivity: a ≤ a, i.e. every element is related to itself.

• Antisymmetry: if a ≤ b and b ≤ a then a = b, i.e. no two distinct elements precede each
other.

• Transitivity: if a ≤ b and b ≤ c then a ≤ c.

Remark 1. In consumer theory the consumption space is some set X, usually the positive orthant
of some vector space so that each x ∈ X represents a quantity of consumption specified for each
existing commodity in the economy. Preferences of a consumer are usually represented by a total
preorder ⪯ so that x, y ∈ X and x ⪯ y reads: x is «at most as preferred as y». When x ⪯ y
and y ⪯ x it is interpreted that the consumer is indifferent between x and y but is no reason to
conclude that x = y. preference relations are never assumed to be antisymmetric.

Exercice 1. Check if the following are partial orders sets:

1. The real numbers ordered by the standard «less or equal than» relation ≤.

2. The real numbers R, the usual «less than» relation <.

3. The real numbers R, the usual «bigger or equal than» relation ≥.

4. The set of subsets of a given set ordered by inclusion.

5. The set of natural numbers equipped with the relation of divisibility.

6. For a set X and a partially ordered set P , the function space containing all functions from
X to P , where f ≤ g if and only if f(x) ≤ g(x) for all x ∈ X.

7. A collection of people ordered by genealogical descendancy (define properly «≤»).

8. The set N×N, ordered with the lexicographical order: (a, b) ≤ (c, d) if a < c or (a = c and
b ≤ d).

9. The set N× N, ordered with the product order: (a, b) ≤ (c, d) if a ≤ c and b ≤ d.

Definition 2 (Upper bound, infimum). Let (P,≤) be a partially ordered set. Consider a subset
S of P .

An upper bound of S is an element y of P such that

y ≤ x ∀x ∈ S.

An upper bound b in S is called a supremum (or least upper bound, or join) of S if for all upper
bounds z of S in P ,

z ≥ b

(b is less than any other upper bound).
A lower bound of S is an element y of P such that

y ≥ x ∀x ∈ S.

An lower bound b in S is called an infimum (or greatest lower bound, or meet) of S if for all lower
bounds z of S in P ,

z ≤ b

(b is larger than any other lower bound).
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Exercice 2. Do suprema necessarily exist?

▶ No. Existence of an supremum of a subset S of P can fail if S has no upper bound at
all, or if the set of upper bounds does not contain a smallest element. (An example of this is the
subset {x ∈ Q : x2 > 2} of Q. It has upper bounds, such as 1.5, but no supremum in Q.)

Exercice 3. In R, determine the supremum of

1. sup{x ∈ R : 0 < x < 1}

2. sup{x ∈ R : 0 ≤ x ≤ 1}.

3. sup {(−1)n − 1/n : n = 1, 2, 3, . . .} .

4. sup
{
x ∈ Q : x2 < 2

}
.

▶

1. 1

2. 1

3. 1

4.
√
2. The supremum of a set of rationals is irrational, which means that the rationals are

incomplete.

Exercice 4. Let (a, b) ∈ (R∗
+)

2. Do the following set have upper bounds? suprema?

1. {a+ bn; n ∈ N},

2. {a+ (−1)nb; n ∈ N},

3. {a− b/n; n ∈ N∗}

▶

1. A has no upper bound : we can always have a+ bn ≤M for all n ∈ N, if not we would have
n ≤ (M − a)/b and N would have an upper bound.

2. If n ∈ 2N, a+ (−1)nb = a+ b and if n ∈ N \ 2N, a+ (−1)nb = a− b. The set is thus made
of two elements a+ b and a− b. It thus has an upper bound and sup(A) = a+ b.

3. The elementes of A are a − b, a − b/2, a − b/3, .... So that A has a upper bound a. Let us
prove that a is the supremum of A. If c was an upper bound of A greater than a, then for
all n ∈ N∗, we have

a+
b

n
≥ c ⇐⇒ n ≤ b

c− a
.

As N has no upper bound, c is not an upper bound of A. a is thus the lowest of the upper
bounds of A, it is thus its supremumu.

Definition 3 (Maximum, minimum). Let (P,≤) be a preordered set and let S ⊆ P. A maximal
element of S with respect to ≤ is an element m ∈ S such that

∀s ∈ S, m ≤ s⇒ s ≤ m.

Similarly, a minimal element of S with respect to ≤ is an element m ∈ S such that

∀s ∈ S, s ≤ m,⇒ m ≤ s.
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Example 1. 1. In Pareto efficiency, a Pareto optimum is a maximal element with respect to the
partial order of Pareto improvement, and the set of maximal elements is called the Pareto
frontier.

2. In decision theory, an admissible decision rule is a maximal element with respect to the
partial order of dominating decision rule.

3. In modern portfolio theory, the set of maximal elements with respect to the product order
on risk and return is called the efficient frontier.

Exercice 5. Consider

A =

{
n

mn+ 1
; (m,n) ∈ N∗2

}
, B =

{
n

mn+ 1
; (m,n) ∈ N2

}
.

Do A and B have an upper bound? A lower bound? supremum? Infimum? Maximum? Mini-
mum?

▶ For n,m ∈ N∗, we have

0 ≤ n

nm+ 1
≤ n

nm
≤ 1

m
≤ 1.

A has an upper bound 1 and a lower bound 0. Let us prove that inf(A) = 0. If c > 0 is a lower
bound of A, then for all (m,n) ∈ N∗2, we would have

c ≤ n

nm+ 1
.

Taking n = 1, we obtain

c ≤ 1

m+ 1
⇐⇒ m ≤ 1

c
− 1.

which is a contradiction. Thus 0 is the greates lower bound of A, and inf(A) = 0.
Let us now prove that 1 = sup(A). If d < 1 is an upper bound of A, then for all (m,n) ∈ N∗2,

we would have
d ≥ n

nm+ 1
.

Taking m = 1, we obtain

d ≥ n

n+ 1
⇐⇒ d ≥ n(1− d) ⇐⇒ n ≤ d

1− d
.

Hence sup(A) = 1. Moreover 0 does not belong to A and neither does 1, as nm + 1 > n for
n,m ≥ 1.

Now for B: 0 is still a lower bound of B, but this time it belongs to B. Hence inf(B) =
min(B) = 0. Moreover N ⊂ B (take m = 0). So that, B has no upper bound.

Exercice 6. Let A be a bounded non-empty set of R. We denote B = {|x− y|; (x, y) ∈ A2}.

1. Justify that B has a upper bound.

2. Let δ(A) be the supremum of B. Prove that δ(A) = sup(A)− inf(A).

▶

1. Let (x, y) ∈ A2 and M ∈ R be such that x ∈ A =⇒ |x| ≤M . We have

|x− y| ≤ |x|+ |y| ≤ 2M,
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2. Set m = inf(A) and M = sup(A). Let (x, y) ∈ R2. We have

m ≤ x ≤M and −M ≤ −y ≤ −m =⇒ −(M −m) ≤ x− y ≤M −m

so that |x − y| ≤ M − m. We deduve that M − m is an upper bound of B and that
δ(A) ≤M −m.
To prove the reverse inequality, set ε ≥ 0. There exists (x, y) ∈ A2 such that

x ≥M − ε/2 and y ≤ m+ ε/2.

Then x− y ≥M −m− ε.

Exercice 7. LetA andB be two non-empty subsets of R. Consider a bounded map f : A×B → R.
Compare inf(sup(f(x, y);x ∈ A); y ∈ B) and sup(inf(f(x, y); y ∈ B);x ∈ A).

▶ Let x0 ∈ A. Consider y ∈ B. We have

f(x0, y) ≤ sup(f(x, y);x ∈ A).

Let us take the infimum in this inequality for y ∈ B. On a donc

inf(f(x0, y); y ∈ B) ≤ inf(sup(f(x, y);x ∈ A); y ∈ B).

We then take the supremum on x0 ∈ A to obtain

sup(inf(f(x0, y); y ∈ B);x0 ∈ A) ≤ inf(sup(f(x, y);x ∈ A); y ∈ B)

The reverse inequality is not true in general: take A = [0, 1], B = [0, 1] and f(x, y) = |x− y|.
Set x ∈ A. We have inf(f(x, y); y ∈ B) = 0 by taking y = x. So that, sup(inf(f(x, y); y ∈ B);x ∈
A) = 0. While setting y ∈ B, we have

sup(f(x, y); y ∈ B) ≥ 1/2

(choose either x = 0 or x = 1 depending if y ≥ 1/2 or y ≤ 1/2). We then have

inf(sup(f(x, y); y ∈ B);x ∈ A) ≥ 1/2.

1.2 Dynamic programming problems

We are interested in optimisation problems with finite horizon of the form:

sup
(xt)

{
T−1∑
t=0

Vt(xt, xt+1) + VT (XT ))

}
under the constraints x0 = x is given, and for all t ∈ {0, · · · , T − 1}, xt ∈ A and xt+1 ∈ Γ(xt).
Here T is the finite horizon, A models the contraints on the dynamics and is called the state
space, Γt is a correspondance from A to A, Γ(xt) is the set of all possible successors of xt, the
functions Vt are the instantaneous payoff and VT is the terminal payoff.

We will also consider problems with infinite horizon with discount factor of the form

sup
(xt)

{ ∞∑
t=0

βtVt(xt, xt+1)

}
under the constraints x0 = x is given, and for all t ≥ 0, xt ∈ A and xt+1 ∈ Γ(xt). we interpret A,
Γ and V as before and β ∈ (0, 1) is the discount factor.

The natural questions include: existence of solution and tractable characterisation. We will
use teh recursive strucure od these problems by making use of a very efficient and inuitive idea due
mainly to Richard Bellman, the dynamic programming program, the value function and Bellman’s
equation.

These problems are frequently met in economics: growth models, stock management, natural
ressources exploitation. Let us see a few examples :
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1.3 Examples

1.3.1 Shortest path problem

The problem of the shortest route can be thought of as transmitting a message from one computer
to another. I prefer this interpretation to that of optimising the journey of a commercial traveller,
because the commercial traveller and his boss have lost sight of the fact that it is beneficial to
waste time, to be open to encounters and to the unknown. In praise of slowness. “There are
empty, hollow hours that carry within them destiny” Stefan Sweig.

This is a typical finite-horizon dynamic programming problem with a finite state space, which
amounts to an optimisation problem on a graph. Its solution illustrates the principle of dynamic
programming in a simple way.

Consider a commercial traveller who has to get from city A to city E via several intermediate
cities. The possible paths are modelled by a graph with A and E as initial and final vertices (the
other vertices representing the stopover cities), the edges of this graph represent the intermediate
routes. From A we can go either to B (time to travel this edge: 1) or to B′ (time to travel this
edge: 1). From B we can go either to C (time to travel this edge: 2) or to C ′ (time to travel this
edge: 1). From B′ we can go either to C ′ (time to travel this edge: 2) or to C ′′ (time to travel
this edge: 4). From C we can to D (time to travel this edge: 1). From C ′ we can go either to
D (time to travel this edge: 2) or to D′ (time to travel this edge: 1). From C ′′ we can go to D′

(time to travel this edge: 1). From D we can go to E (time to travel this edge: 5). From D′ we
can go to E (time to travel this edge: 2).

Exercice 8. Draw the problem in a graph.

Exercice 9. Prove that the problem is a problem of finite horizon (precise A, the xt, Γ(xt) and
the Vt(xt, xt+1)

▶ We have

• A = {A,B,B′, C, C ′, C ′′, D,D′, E},

• Γ(A) = {B,B′}, Γ(B) = {C,C ′}, Γ(B′) = {C ′, C ′′}, Γ(C) = {D}, Γ(C ′) = {D,D′},
Γ(C ′′) = {D′}, Γ(D) = Γ(D′) = {E}.

• We also have V4(D,E) = 5, V4(D′, E) = 2, V3(C,D) = 1, V3(C ′, D) = 2, V3(C ′, D′) = 1,
V3(C

′′, D′) = 1, V2(B,C) = 2, V2(B,C ′) = 1, V2(B′, C ′) = 2, V2(B′, C ′′) = 4, V1(A,B) = 1,
V1(A,B

′) = 1.

To determine the shortest path or paths we could of course try them all, but it is much
better to use the following remark (which is precisely the principle of dynamic programming in
its simplest version):

If an optimal path from A to E passes through M , then it is still optimal between
M and E.

Let us introduce the value function V (M) := “the minimum travel time between M and E”.
Obviously, V is easily calculated by starting from the end:

Exercice 10. Compute V (D) and V (D′).

▶ We have
V (D) = 5 V (D′) = 2 .

The principle of dynamic programming suggest to then proceed by backward induction.

Exercice 11. Compute V (C), V (C ′) and V (C ′′).

▶ We have

V (C) = 6 V (C ′) = min{1 + V (D), 2 + V (D′)} = 3 V (C ′′) = 3
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Exercice 12. Iterating, compute V (B) and V (B′).

▶ We obtain

V (B) = min{1 + V (C), 2 + V (C ′)} = 4 V (B′) = min{2 + V (C ′), 4 + V (C ′′)} = 5

Finally

Exercice 13. Compute V (A).

▶ We have
V (A) = min{1 + V (B), 1 + V (B′)} = 5 .

Exercice 14. Conclude.

▶ The minimal time path is then equal to 5 and corresponds to the unique path ABC ′D′E.

1.3.2 Optimal growth

I am not going to get up in arms about the fact that we are calling growth the razing of an area
teeming with life to build a supermarket car park. But I would call growth more social links, a
connection to nature, philosophy and poetry.

Consider an economy in which a single good is produced each period for both consumption
and investment. We note respectively ct, it, kt and yt the consomption, the investment, the capital
and the production at time t. We assume that yt = F (kt), F being the production function. We
also assume that the capital is depreciated at a rate δ ∈ [0, 1]. We then have

ct + it = yt = F (kt) and kt+1 = (1− δ)kt + it .

We impose that ct and kt are non-negatif. We finally assume that the economy maximises the
intertemporal utility

∞∑
t=0

βtu(ct) . (1.1)

Exercice 15. Setting
f(k) := F (k) + (1− δk)

1. Rewrite ct as a function of (kt).

2. Rewrite the non-negativity constraints on kt and ct.

3. Rewrite (1.1).

▶

1. We have
ct = f(kt)− kt+1 .

2. So that
0 ≤ kt+1 ≤ f(kt) . (1.2)

3. As a function of the capital the problem becomes

sup

{ ∞∑
t=0

βtu (f(kt)− kt+1)

}
.

under the constraint (1.2), k0 being given.
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1.3.3 A forest exploitation problem

With a title like that, you might expect me to protest against the unreasonable exploitation of
Nature for the profit of a few, to the detriment of the human and non-human animal populations
that inhabit or visit it, as well as all the species of plants, minerals and invisible entities. Not to
mention the dramatic aspect of the forest as a financial investment or the madness of licences to
destroy biodiversity. But no, I am here to simply give you the tools you need to arrive at the cold
conclusion of an exploitation devoid of all affect.

Consider a forest of initial size x0 , where xt is its size at date t (state variable). A logger
chooses at each period a cutting level vt (control variable), and the evolution of the forest is
assumed to be governed by the dynamics :

xt+1 = H(xt)− vt

where H is an exogeneous growth function of the forest. Assuming that the price of the wood is
constant equal to 1 (ouf no financial market hopefully) and that the cost of felling the tree is C,
the actualised payoff to exploit the forest is

∞∑
t=0

βt (vt − C(vt)) .

We impose vt ≥ 0 and xt ≥ 0.

Exercice 16. Rewrite the problem as a function of the state variable xt.

▶ We obtain

sup

{ ∞∑
t=0

βt [H(xt)− xt+1 − C (H(xt)− xt+1)]

}
.

under the constraint
0 ≤ xt+1 ≤ H(xt) ∀t ≥ 0 .



Chapter 2

Finite horizon

2.1 Reminders

Definition 4 (Multivalued function). Let X and Y be two sets. The multivalued function
f : X ⇒ Y can be seen as a map from X to the set P(Y ) of all the parties of Y (=the set of
all the subsets of Y ).

We denote graph(f) the graph of the multivalued function f :

graph(f) := {(x, y) ∈ X × Y : y ∈ f(x)} .

Example 2. • If f is an ordinary function, it is a multivalued function by taking its graph

graph(f) = {(x, f(x)) : x ∈ X}.

• The antiderivative can be considered as a multivalued function. The antiderivative of a
function is the set of functions whose derivative is that function.

• Each nonzero complex number has two square roots, three cube roots, and in general n nth
roots.

• The reciprocal function of a non-injective application: any point in its image is matched by
the reciprocal image formed by the antecedents of that point.

2.2 Dynamic programming problems in discrete time and finite
horizon

We propose to study dynamic programming problems in discrete time and finite horizon:

sup
(xt)

{
T−1∑
t=0

Vt(xt, xt+1) + VT (xT ))

}
(2.1)

under the constraints x0 = x is given (x0 is the initial condition), A is a given set (called the
state space) and for all t ∈ {0, · · · , T}, xt ∈ A and xt+1 ∈ Γ(xt) (Γ(xt) is the set of all possible
successors of xt ; Γ is a multivalued function which models the constraints of the dynamics). Here
T is call the finite horizon, the functions Vt : A × A ∈ R are the instantaneous payoff and VT is
the terminal payoff. With no loss of generality we will assume here that VT = 0.

We solved a problem of type (2.1) in the previous chapter. In this chapter, which is intended to
be as non-technical as possible, we will see how to generalise the strategy for solving the shortest
path problem of Section 1.3.1.

We will assume that for all x ∈ A, Γt(x) ̸= ∅.

11
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2.3 Dynamic programming principle

Given the recursive structure of the problem, it makes sense to introduce value functions at
different dates. For x ∈ A we define:

v(0, x) := sup
{∀t∈{0,··· ,T−1}, xt+1∈Γt(xt),x0=x}

T−1∑
t=0

Vt(xt, xt+1)

v(1, x) := sup
{∀t∈{1,··· ,T−1}, xt+1∈Γt(xt),x1=x}

T−1∑
t=1

Vt(xt, xt+1)

...

v(τ, x) := sup
{∀t∈{τ,··· ,T−1}, xt+1∈Γt(xt),xτ=x}

T−1∑
t=τ

Vt(xt, xt+1)

...
v(T − 1, x) := sup

{xT∈ΓT−1(xT−1),xT−1=x}
VT−1(xT−1, xT )

v(T, x) := sup
{xT=x}

VT (xT ) = 0

Definition 5 (Admissible sequence). A sequence (xτ , · · · , xT ) is said to be admissible for the
problem v(τ, x) if for all t ∈ {τ, · · · , T − 1}, xt+1 ∈ Γt(xt) and xτ = x.

The dynamic programming principle states the following:

Proposition 1 (Dynamic programming principle). Soit x ∈ A, if (x0, x1, · · · , xT ) = (x, x1, · · · , xT )
is a solution to problem v(0, x) then for all τ ∈ {1, · · · , T − 1}, the sequence (xτ , · · · , xT ) is a
solution to problem v(τ, xτ ).

Proof. Assume that at a time τ the admissible sequence (xτ , · · · , xT ) is not a solution of v(τ, xτ ).

Exercice 17. Prove that there exists an admissible sequence (zτ , · · · , zT ) such that

T−1∑
t=τ

Vt(xt, xt+1) <
T−1∑
t=τ

Vt(zt, zt+1) .

▶ By definition of the supremum.

Exercice 18. Prove that the sequence (y0, · · · , yT ) = (x, x1, · · · , xτ = zτ , zτ+1, · · · , zT ) is ad-
missible for v(0, x) and

v(0, x) <
T−1∑
t=0

Vt(yt, yt+1) ,

▶ By definition of admissible sequence. The equation comes easily.

Exercice 19. Conclude.

▶ This contredicts the definition of v(0, x).

2.4 Backward induction

Note that the proposition assumes the existence of an optimal sequence. Without making this as-
sumption (and allowing the value functions to take the value +∞), we obtain recursive functional
relationships, called Bellman’s equations, linking the value functions to successive dates:

Proposition 2 (Bellman’s equations). Let x ∈ A. For all t ∈ {0, · · · , T − 1} we have

v(t, x) = sup
y∈Γt(x)

{Vt(x, y) + v(t+ 1, y)}
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Proof. We prove the proposition for t = 0 as the proof would be very similar for any t ∈ {0, · · · , T−
1}.

• Let us first prove v(0, x) ≥ supy∈Γ0(x) {V0(x, y) + v(1, y)}: Consider the sequence (x, y1, · · · , yT )
where for all t ∈ {1, · · · , T −1}, yt+1 ∈ Γ(yt) so that (x, y1, · · · , yT ) is admissible for v(0, x).

Exercice 20. 1. Prove

v(0, x) ≥ V0(x, y1) +
T−1∑
t=1

Vt(yt, yt+1) .

2. Deduce that v(0, x) ≥ V0(x, y1) + v(1, y1) .

3. Deduce that
v(0, x) ≥ sup

y∈Γ0(x)
{V0(x, y) + v(1, y)} .

▶

1. We have

v(0, x) ≥
T−1∑
t=0

Vt(yt, yt+1) = V0(x, y1) +
T−1∑
t=1

Vt(yt, yt+1) .

2. We take the supremum in (y2, · · · , yT ).
3. We take the supremum in y1 ∈ Γ0(x).

• Let us now prove v(0, x) ≤ supy∈Γ0(x) {V0(x, y) + v(1, y)}: Let ε > 0 and the sequence
(x0 = x, · · · , xT ) be admissible for v(0, x) be such that

v(0, x)− ε ≤
T−1∑
t=0

Vt(xt, xt+1) .

Exercice 21. 1. Prove

sup
y∈Γ0(x)

{V0(x, y) + v(1, y)} ≥ V0(x, x1) + v(1, x1)

2. Prove

V0(x, x1) + v(1, x1) ≥
T−1∑
t=0

Vt(xt, xt+1)

3. Deduce
sup

y∈Γ0(x)
{V0(x, y) + v(1, y)} ≥ v(0, x)− ε .

▶ We have

sup
y∈Γ0(x)

{V0(x, y) + v(1, y)} ≥ V0(x, x1) + v(1, x1) ≥
T−1∑
t=0

Vt(xt, xt+1) ≥ v(0, x)− ε .

Exercice 22. Conclude.

▶ This completes the proof as ε can be taken arbitrarly small.
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Using Proposition 2 and the terminal relation v(T, x) = VT (x) for all x ∈ A, it is possible,
at leat in theory but also in many easy applications, to compute all the value functions starting
from the final time T by backward induction:

v(T − 1, x) = sup
y∈ΓT−1(x)

VT−1(x, y)

v(T − 2, x) = sup
y∈ΓT−2(x)

{VT−2(x, y) + v(T − 1, y)}

...
v(0, x) = sup

y∈Γ0(x)
{V0(x, y) + v(1, y)}

Knowing v(0, x), · · · , v(T − 1, x), we easily deduce

Proposition 3 (Characterise the optimal sequences (or politics)). The sequence (x, x1, · · · , xτ )
is a solution of v(0, x) if and only if for all t ∈ {0, · · · , T − 1}, xt+1 is a solution to

sup
y∈Γt(xt)

{Vt(xt, y) + v(t+ 1, y)}

Note that in practice, when solving Bellman equations, we have often already calculated the
solutions to the static problems appearing in Proposition 2

It is important to remember the two-step approach of this chapter:

1. value functions are determined by backward induction,

2. we then determine the optimal policies (if any) by solving the sequence of static Proposition 3
which consist in determining the optimal successors x1 of x0 then the optimal successors of
x1 etc...

Finally, it should be noted that the method presented here (the same as that adopted in the
shortest path problem) is robust because it can also solve all the intermediate problems posed at
any intermediate date with any initial condition at that date.

2.5 Exercises

Exercice 23. Let

Γ0(x0) := [0, x40 + 2x0 + 3], Γ1(x1) :=
[x1
2
, x21 + x1

]
, Γ2(x2) :=

[
0,
x22 + 4

x22

]
.

Define

f(x1, x0) := 2x1x0 − x21 + x1, g(x2, x1) := − 1

2x2
+ x2x1 −

x22
2

and h(x3, x2) :=
√
x3 −

x3x2
2

.

Consider the following problem:

sup
x1,x2,x3

{f(x1, x0) + g(x2, x1) + h(x3, x2) : ∀i ∈ {1, 2, 3}, xi ∈ Γi−1(xi−1)

where x0 ≥ 0 is given.

1. Compute the value functions.

2. Compute the optimal politics.

▶



2.5. EXERCISES 15

1. We compute

v(2, x) = sup
y∈Γ2(x)

h(x, y) =
1

2x

as the argmax is y∗ = 1/x2 which is in Γ2(x). We also have

v(1, x) = sup
y∈Γ1(x)

{g(x, y) + v(2, y)} =
x2

2

as the argmax is y∗ = x which is in Γ1(x). Finally we also have

v(0, x) = sup
y∈Γ0(x)

{f(x, y) + v(1, y)} = 2x2 + 2x+
1

2

as the argmax is y∗ = 2x+ 1 which is in Γ0(x).

2. The optimal politics is (
2x0 + 1, 2x0 + 1,

1

(2x0 + 1)2

)
.

Exercice 24. Let x ≥ 0 and N ∈ N∗. Consider

VN (x) = sup

{ N∏
i=1

xi : xi ≥ 0 ,
N∑
i=1

xi = x

}
.

1. Compute V1.

2. Prove that

VN (x) = sup
y∈[0,x]

{
y VN−1(x− y)

}
3. Prove that

VN (x) =
xN

NN

4. Deduce the arithmetico-geometric inequality:

(∏
|xi|
)1/N

≤ 1

N

N∑
i=1

|xi| .

▶

1. We have obviously
V1(x) = x

2. Let us consider the sequence solution to

VN (x) = sup
y∈[0,x]

{
y VN−1(x− y)

}
We can rewrite it

VN (x) = sup
xN∈[0,x]

{
xN VN−1(x− xN )

}
or

VN (x) = sup
xN∈[0,x]

{
xN sup

xN−1∈[0,x−xN ]

{
xN−1VN−2(x− xN − xN−1)

}}
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Iterating the procedure we obtain

VN (x) = sup
xN∈[0,x]

sup
xN−1∈[0,x−xN ]

· · · sup
x1∈[0,x−

∑N
i=2 xi]

{
xN xN−1 · · ·x1

}
The constraints require xi ≥ 0 for all i ∈ {1, · · · , N}. For the bound from above, the most
restrictive contraint is x1 ∈ [0, x−

∑N
i=2 xi or

∑N
i=1 xi = x, we can rewrite the problem as

VN (x) =

{ N∏
i=1

xi : xi ≥ 0 ,
N∑
i=1

xi = x

}
.

Which is the desired result.

3. Let P(n) be the proposition

Vn(x) =
xn

nn

• By the first question P(1) is true.

• Assume that P(n) is true. We have

Vn+1(x) = sup
y∈[0,x]

{
yn

nn
(x− y)

}
=

xn+1

(n+ 1)n+1
.

Hence P(n) true implies that P(n+ 1) is true.

• As a consquence P(n) is true for any n ≥ 1.

4. We have for all positive xi:

xN

NN
≥
{ N∏

i=1

xi : xi ≥ 0 ,

N∑
i=1

xi = x

}
So that

1

N

N∑
i=1

xi ≥

(
N∏
i=1

xi

)1/N

The inequality is true for |xi|.

Exercice 25. Let x ≥ 0. Solve the problem

inf

{ N∑
i=1

x2i , xi ≥ 0
N∑
i=1

xi = x

}



Chapter 3

Infinite horizon

3.1 Reminders

3.1.1 Banach and compact spaces

Let S be a normed vector space.

Definition 6 (Banach space). A sequence (xn)n in S converges to x ∈ S if

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0 ⇒ ∥xn − x∥ < ε) .

A sequence (xn)n in S is a Cauchy sequence if

∀ε > 0, ∃n0, ∀(p, q) ∈ N2, (p ≥ n0, q ≥ n0 ⇒ ∥xp − xq∥ < ε) .

The space S is a Banach space if the metric space (S, ∥.∥) is complete (that is, every Cauchy
sequence in S converges to an element in S).

Exercice 26. Let X ⊂ Rl, and let B(X) be the set of bounded functions f : X → R with the
sup norm,

∥f∥ = sup
x∈X

|f(x)|

Prove that B(X) is a Banach space.

▶ Let (fn) be a Cauchy sequence in B(X). Set x ∈ X. For all p, q in N, we have :
|fp(x) − fq(x)| ≤ ∥fp − fq∥. The sequence (fn(x)) is thus a Cauchy sequence in R. As R is
complete, the sequence (fn(x)) converges. Let us denote f(x) its limit. We can thus define a
map f : X → R. The sequence (fn) is a Cauchy sequence it is thus bouded by M . Hence for all
x ∈ X, we have : |fn(x)| ≤ ∥fn∥ ≤ M . Passing to the limit we have |f(x)| ≤ M . This proves
that f ∈ B(X) with ∥f∥ ≤ M . Remains to prove that (fn) converges toward f in B(X). Let
ε > 0. The exists N such that for all p, q > N , we have:

∥fp − fq∥ ≤ ε.

Set x ∈ X. We have:
|fp(x)− fq(x)| ≤ ε.

Letting p going to +∞. We obtain :

|f(x)− fq(x)| ≤ ε.

As this inequality is true for any x ∈ X, we have :

∥f − fq∥ ≤ ε.

This is true for any q ≥ N , hence (fq) converges toward f .
Finally any Cauchy sequence (fn) of B(X) converges, hence B(X) is complete.

17
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Exercice 27. Let X ⊂ Rl, and let C(X) be the set of the bounded continuous functions f :
X → R with the sup norm,

∥f∥ = sup
x∈X

|f(x)|

Prove that C(X) is a Banach space.

Definition 7 ((Sequential) compactness). A set X is compact if any sequence (xn)n of point of
X admits a subsequence which converges to x ∈ X.

Exercice 28. Let X be a compact set. If Y is a closed subset of X then Y is compact.

▶ Consider a converging sequence in Y . As it is a converging sequence in X which is compact
there exists a subsequence converging in X. But as the subsequence is made of points in Y which
is closed, the subsequence converges in Y . Hence Y is also compact.

3.1.2 The contraction mapping theorem

Definition 8 (Contraction mapping). Let S be a normed vector space and T : S → S be
a function mapping S into itself. T is a contraction mapping (with modulus β) if for some
β ∈ (0, 1),

∀(x, y) ∈ S2, ∥Tx− Ty∥ ≤ β∥x− y∥.

Theorem 1 (Contraction mapping theorem). If S is a Banach space and T : S → S is a
contraction mapping with modulus β, then

1. T has exactly one fixed point v in S,

2. for any v0 ∈ S, and all n ≥ 0, ∥Tnv0 − v∥ ≤ βn∥v0 − v∥.

Corollary 1 (N -stage Contraction Theorem).
Let S be a Banach space, let T : S → S. Assume that for some integer N , TN : S → S is a
contraction mapping with modulus β. Then

1. T has exactly one fixed point v in S,

2. for any v0 ∈ S and all k ≥ 0, ∥T kNv0 − v∥ ≤ βk∥v0 − v∥.

Exercice 29. Are the following maps contractions on (R+, | · |)?

1.
f : R+ → R+

x 7→
√
x+ 1

2.
f : R+ → R+

x 7→
√
x2 + 1

Exercice 30. Consider the map
T : R2 → R2

x 7→ Ax

where (
1/2 5
0 1/2

)
1. Is T a contraction on R2 equipped with the norm ∥(x, y)∥ = |x|+ |y|?

2. Is T a contraction on R2 equipped with the norm ∥(x, y)∥ = |x|+ 20|y|?
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Exercice 31 (A Cauchy-Lipschitz theorem). Let M > 0. The aim of this exercise is to prove
that in C([0,M ],R) there is a unique solution to{

y′(t) = y(t) ∀t ∈ [0,M ]

y(0) = 1
(3.1)

Consider the operator

Φ : C([0,M ],R) → C([0,M ],R)

y 7→
(
t 7→ 1 +

∫ t

0
y(s)ds

)
1. If M < 1, prove that Φ is a contraction on (C([0,M ],R), ∥ · ∥∞).

2. Prove that for all (y, z) ∈ C([0,M ],R)2,

∀t ∈ [0,M ], |Φn(y)(t)− Φn(z)(t)| ≤ ∥y − z∥∞
tn

n!

3. Prove that for any M > 0 there is a n, depending on M , such that Φn is a contraction on
(C([0,M ],R), ∥ · ∥∞).

4. Deduce that for any M > 0 there is a unique y ∈ C([0,M ],R) of (3.1).

▶

1. For all t ∈ [0,M ] we have

|Φ(y)(t)− Φ(z)(t)| ≤
∫ t

0
|y(s)− z(s)|ds ≤ t∥y − z∥∞ < M∥y − z∥∞

2. Consider P the proposition defined by P(n):”

∀t ∈ [0,M ], |Φn(y)(t)− Φn(z)(t)| ≤ ∥y − z∥∞
tn

n!

” We have already proven that P(1) is true.
Let us assume that P(n) is true. We have

|Φn+1(y)(t)−Φn+1(z)(t)| ≤
∫ t

0
|Φn(y)(s)−Φn(z)(s)|ds ≤ ∥y−z∥∞

∫ t

0

tn

n!
= ∥y−z∥∞

tn+1

(n+ 1)!

Hence P is true for any n ≥ 1.

3. From the previous question we have

∀t ∈ [0,M ], |Φn(y)(t)− Φn(z)(t)| ≤ ∥y − z∥∞
Mn

n!

As Mn/n! converges to 0 when n→ ∞, there exists N large enough such that for all n > N ,
Mn/n! < 1. For all n > N , Φn is a contraction.

4. By the fixed point theorem, there exists a unique fixed point of Φn. Let us call y this fixed
point we have

y = Φn(y) .

Thus applyng Φ:
Φ(y) = Φ [Φn(y)] = Φn [Φ(y)]

So that Φ(y) is a fixed point of Φn. But as Φn has a unique fixed point Φ(y) = y. Hence Φ
also has a fixed point.
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Remark 2. The same strategy can be adopted to the following: Consider k ∈ C([0, 1]× R,R) be
uniformly Lipschitz with a Lipschitz constant L > 0 with respect to the second variable. Let
α ∈ R. The aim of this exercise is to prove that in C([0,M ],R) there is a unique solution to the
Cauchy problem {

y′(t) = k(t, y(t)) ∀t ∈ [0, 1]

y(0) = α

Let E = C([0, 1],R) be equipped with ∥ · ∥∞. Consider the operator

Φ : E → E

y 7→ t 7→ α+

∫ t

0
k(s, y(s))ds

1. Assume L < 1. Prove that Φ is a contraction on (E, ∥ · ∥∞).

2. Deduce that there is a unique y ∈ E such that

∀t ∈ [0, 1], y(t) = α+

∫ t

0
k(s, y(s))ds .

3. Conclude for the case L < 1.

4. Let now L ≥ 1. Define
∥y∥L = sup

t∈[0,1]
e−2Lt|y(t)| .

(a) Prove that the norms ∥ · ∥L and ∥ · ∥∞ are equivalent.

(b) Prove that Φ is a contraction on (E, ∥ · ∥L).
(c) Conclude for the case L ≥ 1.

▶

1. For all t ∈ [0, 1] we have

|Φ(y)(t)− Φ(z)(t)| ≤
∫ t

0
|k(s, y(s))− k(s, z(s)|) ds ≤ L

∫ t

0
|y(s)− z(s)|ds ≤ L∥y − z∥∞

2. We can thus apply the fixed point theorem.

3. There is a unique solution to the Cauchy-problem.

4. (a) For all t ∈ [0, 1] we have

e−2L ≤ e−2Lt ≤ 1 ⇔ e−2L|y(t)| ≤ e−2Lt ≤ |y(t)| ⇒ e−2L∥y∥∞ ≤ ∥y∥L ≤ ∥y∥∞

(b) For all t ∈ [0, 1] we have

|Φ(y)(t)− Φ(z)(t)| ≤
∫ t

0
|k(s, y(s))− k(s, z(s)|) ds ≤ L

∫ t

0
|y(s)− z(s)|ds

≤ L

∫ t

0
e2Lse−2Ls|y(s)− z(s)|ds ≤ L

e2Ls

2L
∥y − z∥L =

e2Ls

2
∥y − z∥L

Hence Φ is a contraction as e2Ls/2 < 1.

(c) By the fixed point theorem, there exists a unique fixed point which is the unique
solution to the Cauchy problem.
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3.1.3 Continuity of multi-valued functions

Definition 9 (Upper hemicontinuity). Let A and B be non-empty compact sets. A multi-valued
function Γ : A⇒ B is said to be upper hemicontinuous (uhc) at a point x ∈ A if, for every se-
quence (xn)n converging to x in A, and all sequence of terms yn ∈ Γ(xn), there exists a subsequence
(ynk

)k converging to Γ(x).

Definition 10 (Lower hemicontinuity). Let A and B be non-empty compact sets. A multi-
valued function Γ : A⇒ B is said to be lower hemicontinuous (lhc) at the point x ∈ A if for every
sequence (xn)n converging to x in A, and all y ∈ Γ(x), there exist subsequences (xnk

)k and (ynk
)k

of points in Γ(xnk
) such that lim ynk

= y.

Definition 11 (Continuity). If a multi-valued function is both upper hemicontinuous and lower
hemicontinuous, it is said to be continuous.

Remark 3. When X is compact, the closed graph theorem states that Γ is uhc is equivalent to
say that its graph

graph(Γ) := {(x, y) : x ∈ X, y ∈ Γ(x)}

is closed.

Exercice 32. Are the following function from [−1, 1] → [−1, 1] upper hemicontinuous? lower
hemicontinuous? Continuous?

1.

x 7→


0 if x < 0

[0, 1] if x = 0

1 if x > 0

2.

x 7→

{
0 if x ≤ 0

[−1, 1] if x > 0

3.
x 7→ |x|

▶

1. The function is not lower hemicontinuous at 0. To see this, consider a sequence that con-
verges to 0 from the left. The image of 0 is a vertical line that contains the point 1/2. But
every sequence in the image of Γ is contained in the bottom horizontal line, so it cannot
converge to 1/2. In contrast, the function is upper hemicontinuous everywhere. For exam-
ple, considering any sequence (xn)n that converges to 0 from the left or from the right, and
any corresponding sequence (yn)n, the limit of (yn)n is contained in the vertical line that is
the image of the limit of (xn)n.

2. The function is not upper hemicontinuous at 0. To see this, let (xn)n be a sequence that
converges to 0 from the right. The image of (xn)n contains vertical lines, so there exists a
corresponding sequence (yn)n in which all elements are 1/2. The image of the limit of the
sequence contains a single point Γ(x), so it does not contain the limit of (yn)n. In contrast,
that function is lower hemicontinuous everywhere. For example, for any sequence a that
converges to x, from the left or from the right, Γ(x) contains a single point, and there exists
a corresponding sequence (yn)n that converges to Γ(x).

3. Any single-value continous function is continous

∀(xn)n∈N ⊂ D : lim
n→∞

xn = c⇒ lim
n→∞

f(xn) = f(c) .



22 CHAPTER 3. INFINITE HORIZON

3.2 Dynamic programming problems in discrete time and infinite
horizon

We are intersted in

sup
(xt)

{ ∞∑
t=0

βtVt(xt, xt+1)

}
(3.2)

under the constraints x0 = x is given, and for all t ≥ 0, xt ∈ A and xt+1 ∈ Γ(xt). we interpret A,
Γ and V as before and β ∈ (0, 1) is the discount factor.

Definition 12 (Admissible sequences). For x ∈ A, let us denote Adm(x) the set of all the
admissible sequences starting from x:

Adm(x) = {(xt)t≥0 ∈ AN : x0 = x and ∀t ≥ 0, xt+1 ∈ Γ(xt)} .

3.3 Existence of solutions

Assumption H 1. Let (A, d) be a compact metric space.

Let AN the set of all the sequences with values in A. We equip AN with the following distance

∀ ((ui)i, (vi)i) ∈ AN ×AN d∞((ui)i, (vi)i) =

∞∑
i=0

1

2i
d(ui, vi) .

Exercice 33. Prove that d∞ is finite and defines a distance.

▶ Obvious. Check that

• The distance between an object and itself is always zero.

• The distance between distinct objects is always positive.

• Distance is symmetric: the distance from x to y is always the same as the distance from y
to x.

• Distance satisfies the triangle inequality: if x, y, and z are three objects, then d(x, z) ≤
d(x, y) + d(y, z).

Proposition 4. The set (AN, d∞) is a compact set.

Proof. The proof is classical (it uses the compactness of A and a diagonal extraction).

Assumption H 2. Assume that Γ is continuous.

Lemma 1. For any x ∈ A, Adm(x) is a compact set of (AN, d∞).

Proof. It is enough to prove that Adm(x) is closed. Let ((xnt )t≥0)n a sequence of Adm(x) con-
verging to (xt)t≥0 in AN (for d∞).

Exercice 34. 1. Prove that x0 = x.

2. Prove that for all t ≥ 0, xt+1 ∈ Γ(xt).

▶

1. By definition of the sequence, for all t ≥ 0, (xnt )n converges to xt in A.

2. For all n, (xnt , xnt+1) ∈ graph(Γ) and Γ is a closed graph hence for all t ≥ 0, xt+1 ∈ Γ(xt).

Assumption H 3. Assume that V is continuous on A×A.
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Let x ∈ A. For any (xt)t≥0 in Adm(x) define

u ((xt)t≥0) :=

∞∑
t=0

βtV (xt, xt+1) .

Lemma 2. The function u is continuous on (AN, d∞).

Proof. Let (xt)t≥0 ∈ AN.
• For t large:

Exercice 35. Let ε > 0. Prove that there exists τ > 0 such that
∞∑
t=τ

βtV (xt, xt+1) ≤
ε

4
. (3.3)

▶ The function V is continuous and A×A is a compact set, so for any t0
∞∑
t=τ

βtV (xt, xt+1) ≤ max
(x,y)∈A×A

|V (x, y)|
∞∑
t=τ

βt .

As β ∈ (0, 1) the serie converges which gives the desired result.
• For t smaller:

Exercice 36. Prove that for any ε′ > 0 there exists δ0 such that for all (y, z) ∈ A×A:

d(xt, y) + d(xt+1, z) < δ0 ⇒ |V (xt, xt+1)− V (y, z)| < ε′ (3.4)

▶ It comes from the continuity of V on A×A.

Exercice 37. Prove that, for t < τ − 1,

d∞((xt)t, (yt)t) <
δ0

2τ+1
⇒ d(xt, yt) + d(xt+1, yt+1) < δ0 .

▶ We have

d∞((xt)t, (yt)t) =

∞∑
t=0

1

2t
d(xt, yt) <

δ0
2τ+1

⇒
τ∑

t=0

1

2t
d(xt, yt) <

δ0
2τ+1

⇒
τ∑

t=0

2τ+1

2t
d(xt, yt) < δ0

⇒ 2
τ∑

t=0

d(xt, yt) < δ0

⇒ ∀t ∈ {0, · · · , τ − 1}, d(xt, yt) + d(xt+1, yt+1) < δ0

• Conclusion:

Exercice 38. Prove that there exists δ > 0 such that for all (yt)t

d∞((xt)t, (yt)t) < δ ⇒ |u ((xt)t)− u ((yt)t)| < ε .

▶ Set
δ =

δ0
2τ+1

and ε′ =
ε

2τ
.

Applying (3.4) to (y, z) = (yt, yt+1) and (3.3), we have

|u ((xt)t)− u ((yt)t)| ≤
τ−1∑
t=0

βt |V (xt, xt+1)− V (yt, yt+1)|+
∞∑
t=τ

βt |V (xt, xt+1)− V (yt, yt+1)|

≤
τ−1∑
t=0

ε

2τ
+

∞∑
t=τ

βt |V (xt, xt+1)|+
∞∑
t=τ

βt |V (yt, yt+1)|

≤ ε

2
+ 2

ε

4
= ε .

Which ends the proof.
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Theorem 2. For all x ∈ A, there exists (xt)t≥0 in Adm(x) which is optimal i.e. v(x) = u((xt)t).

Proof. This result is a direct consequence of the two previous lemmata by Weierstrass’ theorem.

For any x ∈ A, Problem (3.2) can be rephrased as

v(x) := sup
(xt)t≥0∈Adm(x)

u ((xt)t≥0) . (3.5)

We will say that (xt)t≥0 is a solution to v(x). Theorem 2 states that this problem has a solution
and that the supremum is actually a maximum.

3.4 Optimal politics

Mimicking the proof of Proposition (1) and (2) it is easy to check the two following propositions:

Proposition 5 (Dynamic programmation principle). Let x ∈ A. If (xt)t ≥ 0 ∈ Adm(x) is a
solution to v(x) then for any τ ≥ 0 the sequence (xt)t≥τ is a solution to v(xτ ).

Proposition 6 (Bellman’s equation). Moreover, v is solution to Bellman’s equation:

v(x) = sup
y∈Γ(x)

{V (x, y) + βv(y)} .

However the backward induction of the previous section cannot be used here. The idea is to
define

Tf(x) := sup
y∈Γ(x)

{V (x, y) + βf(y)}

and to prove that T has a fixed point, which would be a solution to Bellman’s equation. In order
to apply the fixed point theorem we state:

Theorem 3 (Blackwell’s theorem). Let H be an operator B(A) → B(A) satisjying

1. H is monotone i.e.

∀(f, g) ∈ B(A)× B(A), (f ≤ g on A ⇒ Hf ≤ Hg on A )

2. there exists η ∈ (0, 1) such that

∀a > 0, ∀f ∈ B(A), H(f + a) ≤ Hf + ηa

then H is a η-contraction of B(A) for ∥ · ∥∞.

Proof.

Exercice 39. 1. Using f ≤ g + ∥f − g∥∞, prove

Hf ≤ Hg + η∥f − g∥∞ .

2. Deduce
∥Hf −Hg∥∞ ≤ η∥f − g∥∞ .

▶

1. By the assumptions on H,

Hf ≤ H(g + ∥f − g∥∞) ≤ Hg + η∥f − g∥∞ .

2. Inverting the roles of f and g in the previous exercice, and taking the supremum we obtain
the desired result.
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Corollary 2. Bellman’s equation (6) has a unique solution which a solution to (3.5). Moreover,
for any f ∈ B(A), v is the uniform limit of the sequence (Tnf)n.

As in the previous chapter, (xt)t≥0 ∈ Adm(x) is a solution to v(x) if and only if for all t ≥ 0,
xt+1 is a solution to the following static problem

max
y∈Γ(xt)

{V (xt, y) + βv(y)} .

Hence to detrmine the optimal politics we first determine v by solving Bellman’s equation. We
then define the multi-valued function

M(x) := {y ∈ Γ(x) : v(x) = V (x, y) + βv(y)} .

The multi-valued function M(x) can be interpreted as the set of all the optimal successors of x,
and the optimal politics starting from x are the iterates of this multi-valued function.

In this chapter, we only considered the case when V is continuous and A bounded. It is,
however, natural in economic applications to consider unbounded utility functions (typically a
logarithm), and the essential ingredients of the chapter are generally easily adapted.
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Chapter 4

Dynamic programming in continuous
time

4.1 Calculus of Variation

We are now interested in (finite horizon) problems in continuous time. Such problems consist in
maximising a criterion of the type

J(x) =

∫ T

0
L(t, x(t), ẋ(t))dt+ g (x(T )) + f (x(0))

on a set of functions [0, T ] → Rn. The good functional framework is the Sobolev space but to
simplify the lecture we will be working here in the set of C1-functions or piecewise C1-functions.

The map (t, x, v) 7→ L(t, x, v) is called the Lagrangian. The maps g and f are the terminal
and intial gain. We will assuma that L ∈ C1([0, T ]×Rd×Rd,R), g ∈ C1(Rd,R) and f ∈ C1(Rd,R).

We can also consider a variant of the problem with prescribed limit conditions: we want to
maximise

J(x) =

∫ T

0
L(t, x(t), ẋ(t))dt

on the set of functions such that x(0) = x0 and x(T ) = xT .
Historically, the calculation of variations has developed since the 17th century (the brachis-

tochrone problem solved by Bernoulli) in conjunction with the development of physics (mechanics
in particular, but also the problem of minimum resistance posed by Newton in his Principia, which
is still largely unresolved today) and the geometry (of geodesics or harmonic applications, for ex-
ample). Some of the great names among the mathematicians of the past three centuries have
left their mark on its development: Euler, Lagrange, Hamilton, Jacobi, Legendre, Weierstrass,
Noether, Carathéodory... Its use in economics is more recent, and it became truly popular in the
1960s in models of growth, investment, stock management and, more recently, in the theory of
incentives and auctions. In finance, it is also common practice to use continuous-time models,
since the realistic dynamics in this framework are of a random nature, stochastic control is often
used instead.

About existence

Solving a calculus of variations problem means solving an optimisation problem in an infinite-
dimensional functional space. There is therefore nothing obvious a priori about the existence of
solutions, and I would like to warn the reader on this point. The aim here is not to develop a
theory of existence - for that, consult the book by I. Ekeland and R. Temam [?, ?, ] for example
- but to point out that most existence results require the concavity (if we maximise; convexity if
we minimise) of the Lagrangian with respect to the variable v.

27
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Exercice 40. Consider the problem

inf J(x) where J(x) :=

∫ 1

0

[(
ẋ(t)2 − 1

)2
+ x2(t)

]
dt

where x(0) = x(1) = 0. Let for t ∈ [0, 1],

t 7→ 1

2
−
∣∣∣∣t− 1

2

∣∣∣∣ ,
which we extend in a map u0 to R by periodicity. Consider the sequence

un(t) =
u0(nt)

n

1. Prove that un satisfies the limit conditions.

2. Determine the limit of J(un).

3. Deduce the value of the infimum.

4. Conclude.

▶

1. Indeed, un(0) = un(1) = 0.

2. As u̇n = 1 alsmost everywhere and |un| ≤ 1/(2n), J(un) converges to 0 when n goes to ∞.

3. The infimum is then 0.

4. If this infimu is a minimum: consider u solution to the problem. We would have J(u) = 0.
Due to the structure of J is would imply u ≡ 0 and u̇ ∈ {−1, 1} alsmost everywherewhich
is impossible.

4.2 The Euler-Lagrange equation

We denote

Lxi :=
∂L

∂xi
, Lvi :=

∂L

∂vi
, ∇xL :=

Lx1

...
Lxd

 and ∇vL :=

Lv1
...
Lvd


Theorem 4 (Euler-Lagrange equation). Let x be a solution of classe C1([0, T ],Rd) to

sup
x∈C1([0,T ],Rd)

J(x) (4.1)

We have

1. The map x is a solution to the Euler-Lagrange equation:

d

dt
[∇vL(t, x(t), ẋ(t))] = ∇xL(t, x(t), ẋ(t)) .

2. The map x satisfies the transversality conditions:

∇vL(0, x(0), ẋ(0)) = ∇f (x(0))

and
∇vL(T, x(T ), ẋ(T )) = −∇g (x(T )) .
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The proof of this result is based on the following:

Lemma 3 (Dubois-Reymond lemma). Let φ and ψ be in C0([0, T ],R). The two propositions are
equivalent

1. ψ is in C1([0, T ],R) and ψ′ = φ,

2. for all h ∈ E1 := {h ∈ C1([0, T ],R) : h(0) = h(T ) = 0}∫ T

0
(φ(t)h(t) + ψ(t) ḣ(t))dt = 0 .

Proof.

Exercice 41. 1. Prove the implication.

2. Let Φ be an antiderivative of φ. Prove∫ T

0
(ψ(t)− Φ(t))ḣ(t)dt = 0, ∀h ∈ E1 .

3. Define

c :=
1

T

∫ T

0
(ψ(t)− Φ(t)) dt

4. Consider the map

α : t 7→
∫ t

0
(ψ(s)− Φ(s)− c)ds .

Prove that α belongs to E1.

5. Prove that ∫ T

0
(ψ(t)− Φ(t)− c)2dt = 0, ∀h ∈ E1 .

6. Conclude.
▶

1. The implication is obvious by integration by parts.

2. This is just an intergration by parts.

3. We have obviously ∫ T

0
(ψ(t)− Φ(t)− c)ḣ(t)dt = 0, ∀h ∈ E1 .

4. We can take the aboce α as a test function.

5. This implies ψ = Φ+ c and gives the result.

Proof of Theorem 4.

Exercice 42. 1. Let h ∈ C1([0, T ],Rd). Compute

lim
ε→0

J(x+ εh)− J(x)

ε

2. Prove∫ T

0

[
∇xL(t, x(t), ẋ(t)) · h(t) +∇vL(t, x(t), ẋ(t)) · ḣ(t)

]
dt

+∇g (x(T )) · h(T ) +∇f (x(0)) · h(0) = 0 .
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3. Prove that for any i ∈ {1, · · · , d},∫ T

0

[
Lxi(t, x(t), ẋ(t)) · h(t) + Lvi(t, x(t), ẋ(t)) · ḣ(t)

]
dt = 0

4. Prove that x satisfies the Euler-Lagrange equation.

5. Deduce that, for any i ∈ {1, · · · , d},

d

dt
[Lvi(t, x(t), ẋ(t))] = Lxi(t, x(t), ẋ(t)) .

6. Prove that

[∇vL(T, x(T ), ẋ(T )) +∇g (x(T ))] · h(T ) + [∇f (x(0))−∇vL(0, x(0), ẋ(0))] · h(0) = 0 .

7. Conclude
▶

1. We use the mean value and the dominated convergence theorem to prove

lim
ε→0

J(x+ εh)− J(x)

ε
=∫ T

0
∇xL(t, x(t), ẋ(t)) · h(t) +∇vL(t, x(t), ẋ(t)) · ḣ(t)dt

+∇g (x(T )) · h(T ) +∇f (x(0)) · h(0)

2. As x is the maximum

lim
ε→0

J(x+ εh)− J(x)

ε
≤ 0 .

Taking h 7→ −h we obtain the result.

3. It is just a rewriting of the Euler-Lagrange equation lone by line.

4. Let
Ed := {h ∈ C1([0, T ],Rd) : h(0) = h(T ) = 0} .

Taking h ∈ Ed we obtain from the previous question∫ T

0

[
∇xL(t, x(t), ẋ(t)) · h(t) +∇vL(t, x(t), ẋ(t)) · ḣ(t)

]
dt = 0 .

The result comes by writing this equality coordinates by coordinate.

5. Let h be in C1([0, T ],Rd). As h is arbitrary, an integration by part in the Question 1 provides
the desired result

Theorem 5. Under the same assumptions as in Theorem 4. We moreover assume that g and f are
concave functions in Rd and for all t ∈ [0, T ], L(t, ·, ·) is concave in Rd. The map x ∈ C1([0, T ],Rd)
is a solution to the Euler-Lagrange equation and the transversality condition if and only if x is a
solution to Problem 4.1.

Proof.

Exercice 43. Let x and y be two solutions to Problem 4.1.
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1. Prove

J(y)− J(x) ≤
∫

[∇xL(t, x(t), ẋ(t)) · (y(t)− x(t)) +∇vL(t, x(t), ẋ(t)) · (ẏ(t)− ẋ(t))] dt

+∇g (x(T )) · (y(T )− x(T )) +∇f (x(0)) · (y(0)− x(0))

2. Conclude.

▶

1. By concavity and by integration by parts.

2. By the Euler-Lagrange equation and the transversality condition the right hand side is equal
to 0.

In the case the criterion to maximize is of the type

J(x) =

∫ T

0
L(t, x(t), ẋ(t))dt+ g (x(T ))

on a set of functions [0, T ] → Rn such that x(0) is given. The solution satisfies the Euler-Lagrange
equation and the transversality condition:

∇vL(T, x(T ), ẋ(T )) = −∇g (x(T )) .

When maximising

J(x) =

∫ T

0
L(t, x(t), ẋ(t))dt+ f (x(0))

x(T ) being given lead to the transversality condition:

∇vL(0, x(0), ẋ(0)) = ∇f (x(0)) .

4.3 Dynamic programming principle

We define the value function:

v(t, x) := sup

{∫ T

t
L(s, y(s), ẏ(s))ds+ g (y(T )) : y ∈ C1([t, T ],Rd), y(t) = x

}
.

It is clear that for all x ∈ Rd, v(T, x) = g(x) so that v satisfies the limit condition. Using a proof
similar to the case of finite horizon we can prove:

Proposition 7 (Dynamic programming principle). The value function satisfies for all x ∈ Rd

and t ∈ [0, T ]

v(0, x) := sup

{∫ t

0
L(s, y(s), ẏ(s))ds+ v (t, y(t)) : y ∈ C1([t, T ],Rd), y(0) = x

}
.

This proposition states that «if a curve y starting in x in t = 0 is optimal between 0 and T
then it is still optimal between t and T among the curve starting from y(t) at time t.
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4.4 Hamilton-Jacobi equation

In this section we will prove that v is the solution to a partial differential equation called Hamilton-
Jacobi equation.

Proposition 8. Assume that v is smooth. The value function v is solution to the Hamilton-Jacobi
equation.

d

dt
v(t, x) +H (t, x,∇xv(t, x)) = 0

where H is the Hamiltonian defined for all p ∈ Rd by:

H(t, x, p) := sup
q∈Rd

{
q · p+ L(t, x, q)

}
.

The proof we will provide is formal as we will assume that some optimal trajectories and that
v is regular. In general this is not the case. To obtain this result without this unrealistic regularity
assumption we can work with viscosity solution, see [?].

Proof. Let [t, t+∆t] ⊂ [t, T ], q ∈ Rd. Consider z an optimal solution of v(t+∆t, x+ q∆t). Set

y : s 7→

{
s+ q(t− s) on [t, t+∆t]

z on [t+∆t, T ]

Exercice 44. 1. Prove that

v(t, x) ≥ v(t, x) + ∆t [L(t, x, q) + ∂tv(t, x) + q · ∇xv(t, x)] + o(1)

2. Deduce in this case that

∂tv(t, x) + q · ∇xv(t, x) + L(t, x, q) ≤ 0

3. Conclude that v is a sub-solution of the Hamilton-Jacobi equation i.e.

∂tv(t, x) +H (t, x,∇xv(t, x)) ≤ 0

▶

1. By definition on the integral, we have

v(t, x) ≥
∫ t+∆t

t
L(s, x+ q(s− t), q)ds+ v(t+∆t, x+ q∆t)

≥ ∆tL(t, x, q) + v(t, x) + ∆t∂tv(t, x) + ∆t q · ∇xv(t, x) + o(1)

≥ v(t, x) + ∆t [L(t, x, q) + ∂tv(t, x) + q · ∇xv(t, x)] + o(1)

2. The resutt comes by dividing by ∆t and letting ∆t going to 0.

3. As this is true for any q, we can take the supremum in q and obtain the desired result.

Exercice 45. Let now y be optimal for the problem v(t, x).

1. Prove that y is also optimal for v(t+∆t, y(t+∆t)).

2. Prove that
0 = ∆t [L(t, x, ẏ(t)) + ∂tv(t, x) + ẏ(t) · ∇xv(t, x) + o(1)]

3. Deduce that
∂tv(t, x) + ẏ(t) · ∇xv(t, x) + L(t, x, ẏ(t)) = 0
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4. Conclude that v is a super-solution to the Hamilton-Jacobi equation i.e.

∂tv(t, x) +H (t, x,∇xv(t, x)) ≥ 0

▶

1. It is an immediate consequence of the dynamic programming principle.

2. As y is also optimal for v(t+∆t, y(t+∆t)), we have

v(t, x) =

∫ t+∆t

t
L(s, y(s), ẏ(s))ds+ v(t+∆t, y(t+∆t))

= v(t, x) + ∆t [L(t, x, ẏ(t)) + ∂tv(t, x) + ẏ(t) · ∇xv(t, x)] + o(∆t)

3. The result comes by dividing by ∆t and letting ∆t going to 0.

4. By definition of the supremum we obtain the desired result.

4.5 Exercises

Exercice 46. Solve the problem
inf J(x)

where

J(x) :=

∫ 1

0

[
ẋ(t)2 + t x(t)

]
dt+ x(1)2 .

▶ Introduce
L(t, x, v) = tx+ v2 .

The Euler equation is
2x′′(t) = t

which general form of the solutions is

t 7→ t3

12
+ αt+ β .

Using the transversality conditions

2x′(0) = 0 and 2x′(1) = −2x(1)

The problem is convex so the unique solution is

t 7→ t3

12
− 1

3

Exercice 47. Solve the problem
inf J(x)

where

J(x) :=

∫ 1

0

[
ẋ(t)2 + t x(t)

]
dt+ x(1)2

with x(0) = 1.
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▶ The Euler-Lagrange equation is the same as above and so is the transvesality condition in
1. But there is no transversality condition in 0 but we use x(0) = 1. This leads to determine the
unique solution, the problem being convex again,

t 7→ t3

12
− 2

3
t+ 1

Exercice 48. Solve the problem
inf J(x)

where

J(x) :=

∫ 1

0

[
ẋ(t)2 + x(t)2

]
dt .

▶ The integrand is positive, the infimum is obviously

t 7→ 0 .

Exercice 49. Solve the problem
inf J(x)

where

J(x) :=

∫ 1

0

[
ẋ(t)2 + x(t)2

]
dt .

where x(0) = 0 and x(1) = 1.

▶ The general form of the solutions is

t 7→ αet + βe−t, (α, β) ∈ R2 .

Using the transversality conditions we find

α =
e

e2 − 1
and β = − e

e2 − 1

As the problem is convex the unique solution is

t 7→ e

e2 − 1

(
et − e−t

)
.

Exercice 50. Consider the problem
inf J(x)

where

J(x) :=

∫ 1

0

[
ẋ(t)2 + x(t)2

]
dt .

where x(0) = 1.

1. Solve this problem.

2. What is the equation satisfied by the value function?

▶ The general form of the solutions is

t 7→ αet + βe−t, (α, β) ∈ R2 .

Using the transversality condition and x(0) = 1 we find

α =
1

1 + e
and β =

e

e + 1

As the problem is convex the unique solution is

t 7→ 1

1 + e2
et +

e

1 + e2
e−t .
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Exercice 51. We are interested in the problem

inf
{x :x(0)=1,x(1)=0}

∫ 1

0
tẋ(t)2dt

1. What is the value of the integral for

xN : t 7→


1 on

[
0,

1

N

]
− log(t)

log(N)
on
(

1

N
, 1

]
2. What is the infimum?

3. Is the infimum attained?

Exercice 52. Using a clever change of function, solve

inf

{∫ 1

0

[
x′(t)2

x(t)2
− log

(
x(t)2

)]
dt

}
on the set such that x(0) = 1 and x(1) = e.

▶ We perform the change of variable y(t) = log(x(t)). For y teh problem is

inf

{∫ 1

0

[
y′(t)2 − 2y(t)

]
dt

}
on the set such that y(0) = 0 and y(1) = 1. The Euler-Lagrange equation is

y′′(t) = −1 .

As a consequence the candidat to be a solution is

t 7→ − t
2

2
+

3

2
t .

Coming back to x we obtain
t 7→ e−t2/2+3t/2

The value is −1/12.

Exercice 53. Let f : R → R a C2 function which is strictly convex.

inf

∫ 1

0
f(ẋ(t))dt

such that x(0) = x0 and x(1) = 1.

▶ The Euler-Lagrange equation is

d

dt
f ′(x(t)) = 0 .

Hence, there exists C such that
f ′(x(t)) = 0 .

As f is strictly convex, f ′ is a one-to-one correspondance and there exists v such that we have

ẋ(t) = v .

As a consequence the solution is of the forme t 7→ vt+α where (v, α) ∈ R2. Using the initial and
final conditions we find that, as it is a convex problem, the unique solution is the straight line

t 7→ (1− x0)t+ x0.
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Exercice 54. We are interested in the optimal way to eat a cake between the dates 0 and T .
Initially the cake is of size 1. The objective of the consumer is to consume the cake in the most
satisfactory way. The satisfaction being measured by

V (c) :=

∫ T

0
U(c(t))e−δtdt ,

where c(t) designs the instantaneous consumption at time t. The map U is a C1 map which is
strictly concave and non-decreasing.

1. Give a relation between the size of the cake and the consumption.

2. Write the problem as a calculus of variation problem.

3. Prove that V is stricty concave.

4. What is the relation that should satisfy the optimal solution?

5. Solve the problem in the case U(c) = log(c).

▶

1. Let x(t) be the size of the cake at time t. We have

x(t) = 1−
∫ t

0
c(s)ds .

2. The problem is then

sup
x

∫ T

0
U(ẋ(t))e−δtdt ,

with x(0) = 1 and x(T ) = 0.

3. As U is strictly concave so is V .

4. We set the Lagrangian L(t, x, v) = U(v)e−δt. The Euler-Lagrange equation is

d

dt

[
U ′ (ẋ(t)) e−δt

]
= 0 .

As a consequence there exists a constant K such that

U ′ (ẋ(t)) e−δt = K .

5. In this case the Euler-Lagrange equation becomes:

1

ẋ(t)
= Keδt .

Using the initial conditions we find that the unique solution (remind that the problem is
concave) is

x 7→ 1− 1− e−δt

1− e−δT
.

Coming back to c we obtain the optimal consumption:

t 7→ δe−δt

1− e−δT
.
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Exercice 55 (A saving-consumption economics model). Let T > 0 and δ > 0. We consider a
household whose instantaneous wealth, wage, consumption and saving are denoted respectively
x(t), w(t), c(t) and s(t). The wage w(t) is assumed to be a constant w exogeneously given. Let
V be a given continuous map. The household tries to maximise its utility given by∫ T

0
e−δt log (c(t)) dt+ e−δTV (x(T )) .

We have the relations

w(t) = c(t) + s(t) and ẋ(t) = s(t) + rx(t) .

where r is a exogeneous and constant interest rate.

1. The initial wealth x(0) being given and equal to x0. Write the variational problem in terms
of x.

2. Characterise the solution in terms of c.

3. Characterise the solution in terms of x.

4. Conclude.

▶

1. The variational problem is
max

x :x(0)=x0

J(x)

where

J(x) =

∫ T

0
e−δt log (w(t) + rx(t)− ẋ(t)) dt+ e−δTV (x(T ))

2. It is a concave problem. Setting

L(t, x, v) := e−δt log [w(t) + rx− v] .

The Euler-Lagrange equation is

− d

dt

e−δt

c(t)
=
re−δt

c(t)
.

Setting

y(t) :=
e−δt

c(t)

we obtain

y(t) =
e−rt

c(0)

and hence
c(t) = e(r−δ)tc(0) .

3. Let us come back to the state variable x. As

ẋ(t)− rx(t) = w(t)− c(t)

we have to solve
ẋ(t)− rx(t) = w(t)− e(r−δ)tc(0)

A solution to the homogeneous equation is given by

t 7→ λert .
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Using varying the constant method we consider a solution of the form

t 7→ λ(t)ert .

Plugging into the equation we obtain

λ̇(t) = w(t)e−rt + e−δtc(0)

and hence

λ(t) =

∫ t

0

[
w(s)e−rs + e−δsc(0)

]
As w is assumed to be constant we obtain

λ(t) = w
1− e−rt

r
+

1− e−δt

δ
c(0) .

Finally we obtain that the solution is of the form

t 7→
[
w
1− e−rt

r
+

1− e−δt

δ
c(0)

]
ert .

Using the transversality condition

V ′ (x(T )) =
1

c(T )

where we compute from the expression of x

c(T ) = 2w + e(r−δ)T c(0) .

We determine c(0) as the unique solution to

V ′
{[
w
1− e−rT

r
+

1− e−δT

δ
c(0)

]
erT
}

=
1

2w + e(r−δ)T c(0)
.



Chapter 5

Introduction to optimal control (not at
the programme of the exam)

This section is a short introduction to optimal control. Control theory is concerned with dynamic
systems that depend on a parameter (called control or command) that can be acted upon to, for
example, move the position of the system from one point to another. In optimal control, the aim
is to act on the control of the dynamic system in such a way as to optimise a given criterion.
Dynamic systems can be of different types (discrete or continuous time, with or without noise,
etc.) and have different origins (mechanical, electrical, chemical, economic, etc.). For example, in
mathematical finance, the evolution of a portfolio is frequently modelled as a stochastic dynamic
system that is influenced (in discrete or continuous time) by the sale or purchase of financial
assets. Another example of an application in economics is the theory of rational expectations,
which makes extensive use of optimal control (see the monograph by Lucas and Stokey, which
contains a large number of economic examples and also deals with Markov programming, which
is outside the scope of this course).

We will see that it is also possible to write necessary conditions for optimality in the context
of optimal control: the Pontryagin’s maximum principle.

5.1 Introduction

Let V be a metric space, T > 0, and x ∈ Rd. Consider u : [0, T ] → V a continuous map and
f : [0, T ]× Rd × V → Rd a continuous map such that

|f(t, x, u)− f(t, x, v)| ≤ L|x− y| and |f(t, x, u)| ≤ C(1 + |x|) .

Consider the Cauchy problem {
ẏ(t) = f (t, y(t), u(t))

y(0) = x
(5.1)

This differential equation is controlled. The variable u, called the control variable, influences the
dynamics of the state variable y.

Under the above assumption the Cauchy-Lipschitz theorem applies: for any x ∈ Rd and
u ∈ C0([0, T ], V ) there exists a unique solution which we denote yx,u or yu when no confusion is
possible.

A Lagrangian L ∈ C0([0, T ] × Rd × V,Rd) and a terminal gain function g ∈ C0(Rd,R) being
given, we are interested in the following optimal control problem:

sup
u
J(u) (5.2)

where

J(u) :=

∫ T

0
L (t, yu(t), u(t)) dt+ g (yu(T )) .

The state variable yu being linked to u by the dynamics (5.1), with x given.

39
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Remark 4. In the case the dynamics is given by ẏ = u, this problem is a problem of calculus of
variation.

The adapted functional framework with the concept of viscosity solutions is out of the scope
of this lecture. We will rather assume here that the control u is piecewise continuous.

5.2 Pontriaguine principle

Let us add a new variable p ∈ Rd, called the adjoint variable and can be interpreted as a multiliper
associated to (5.1). We define the Hamiltonian

H : [0, T ]× Rd × V × Rd → R
(t, x, u, p) 7→ supu∈V {L(t, x, u) + p · f(t, x, u)} .

We will assume, in this lecture, that H is continuous, differentiable with respect to x and p. We
shall not give a proof of Pontriaguine principle, it would take at least 15 pages. However, let us
notice that similarly to KKT’s theorem, Pontriaguine principle requires a qualification condition.
The interested reader could refer to the book of the Soviet school:[?].

Theorem 6. Under suitable regularity and qualification assumptions; if u is an optimal control
which is piecewise continuous solution of (5.2) and y = yu is the associated trajectory, then there
exists p ∈ C0([0, t],Rd) ∩ C1

p([0, t],Rd) such that

H(t, y(t), p(t)) = sup
u∈V

{L(t, y(t), u(t)) + p(t) · f(t, y(t), u(t))} .

Moreover, (y, p) is a solution to the Hamiltonian system:{
ṗ(t) = −∇xH(t, y(t), p(t))

ẏ(t) = ∇pH(t, y(t), p(t))

with the limit conditions

y(0) = x and, the transversality condition, p(T ) = ∇g(y(T )) .

If «everything goes well» (i.e. if a global existence-uniqueness result in Cauchy-Lipschitz type
applies), the Hamiltonian system, which is a first-order system admits a unique solution satisfying
the boundary conditions given by the theorem. If we’re «lucky», we can also calculate this solution
(y, p). A necessary condition on the command u is then provided by the maximisation condition.
However, we must be aware that Pontriaguine’s principle only provides necessary conditions for
optimality. In other words, even in the «nice» cases where the maximum principle makes it
possible to determine a control u, the corresponding state y and the adjoint variable p, there is
no guarantee that u is actually an optimal control. We shall see below, using ideas from dynamic
programming and Bellman’s approach, that we can obtain sufficient conditions for optimality.
These are often used in practice to check whether a solution provided by the by the maximum
principle is indeed an optimal control.

5.3 Dynamic programming principle

We define the value function of the control problem:

v(t, x) := sup
u : yu(t)=x

{∫ T

t
L(s, yu(s), u(s))ds+ g(yu(T ))

}
.

It is obvious that v satisfies the limit condition:

∀x ∈ Rd, v(T, x) = g(x)

The dynamic programming principle states that «if a control u is optimal between 0 and T for
the initial condition x then u is also optimal between t and T with the intial condition yu(t) at
the date t«. Mathematically we state it:
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Proposition 9. For all x ∈ Rd and t ∈ [0, T ],

v(0, x) = sup
u : yu(0)=x

{∫ T

0
L(s, yu(s), u(s))ds+ g(yu(T ))

}

5.4 Hamilton-Jacobi-Bellman equation

Following a proof very similar to the previous chapter we can prove:

Proposition 10. Assume that v is regular. The map v is solution to the Hamilton-Jacobi-Bellman
(HJB) equation:

d

dt
v(t, x) +H(t, x,∇xv(t, x)) = 0 .

5.5 Exercises

Exercice 56. We are interested here in Ramsey’s optimal growth model for a single production
sector. For the sake of simplicity, we will restrict ourselves to a finite horizon T > 0. We will
denote c(t) the instantaneous consumption of a representative household whose satisfaction is
assumed to be measured by the quantity∫ T

0
U (c(t)) e−δtdt .

The instantaneous consumption c(t) has to be non-negative for all time t. The rate δ > 0 is given
and U is striclty concave, non-decreasing, and differntiable. We will denote y(t), k(t) and i(t)
the production, capital and investment in the economy at time t. We have y(t) = f(k(t)) where
the production function is supposed to be striclty concave, non-decreasing and differentiable. We
also havee

y(t) = c(t) + i(t)

and
i(t) = k̇(t)

1. Write the problem on the form of an optimal control problem.

2. Write the necessary condition given by the Pontriaguine principle.

3. Write the Hamilton-Jacobi-Bellmman equation.

4. Give a sufficient condition of optimality.

Exercice 57. For x > 0 and T > 0, we consider the real optimal control problem

inf
u
x(T )

where x is a solution to
ẋ(t) = u(t)x(t) +

1

2
u(t)2

with x(0) = x.

1. Compute the Hamitonian.

2. Write the necesary conditions given by the Pontriaguine principle.

3. Find a solution (x∗, p∗) of the Hamiltonian system.

4. Compute the associated control u∗.

5. Compute x∗(T ).

6. Give that HJB equation associated to this problem.

7. Solve the HJB equation associated to the initial condition x at the initial time t.


