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Abstract

We consider the case where a parameter, �; is estimated by maximizing a criterion

function, Q(X ; �). The estimate, �̂ = �̂(X ); is then used to evaluate the criterion
function with the same data, X , as well as with an independent data set, Y. The in-
sample �t and out-of-sample �t relative to that of the true, or quasi-true, parameter,

��; are de�ned by � = Q(X ; �̂)�Q(X ; ��) and ~� = Q(Y; �̂)�Q(Y; ��), respectively. We
derive the joint limit distribution of (�; ~�) for a broad class of criterion functions and the

joint distribution reveals that � and ~� are strongly negatively related. The implication

is that good in-sample �t translates into poor out-of-sample �t, one-to-one.

The result exposes a winner�s curse problem when multiple models are compared in

terms of their in-sample �t. The winner�s curse has important implications for model

selection by standard information criteria such as AIC and BIC.
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1 Introduction

Much of applied econometrics is motivated by some form of out-of-sample use of the esti-

mated model. Perhaps the most obvious example is the forecasting problem, where a model

is estimated with in-sample data, while the objective is to construct a good out-of-sample

forecast. The out-of-sample motivation is intrinsic to many other problems. For example,

when a sample is analyzed in order to make inference about aspects of a general population,

the objective is to get a good model for the general population, not necessarily one that

explains all the variation in the sample. In this case one may view the general population

(less the sample used for the empirical analysis) as the �out-of-sample�.

The main contribution of this paper is the result established in Theorem 1, which reveals

a strong relation between the in-sample �t and the out-of-sample �t of a model, in a general

framework. This exposes a winner�s curse that has important implications for model selec-

tion by information criteria, because these are shown to have some rather unfortunate and

paradoxical properties. Theorem 1 also provides important insight about model averaging

and shrinkage methods.

It is well known that as more complexity is added to a model the better will the model

�t the data in-sample, while the contrary tends to be true out-of-sample. See, e.g. Chat�eld

(1995). For the purpose of model selection, this has motivated the use of information criteria

that involve a penalty term for the complexity. The following example serves to illustrate

some of the results in this paper.

Example 1 Let X = (X1; : : : ; Xn) and Y = (Y1; : : : ; Yn) represent the in-sample and out-
of-sample, respectively. Suppose that Xi; Yi � iidN(��; 1); i = 1; : : : ; n; so that Z1 =

n�1=2
Pn

i=1(Xi���) and Z2 = n�1=2
Pn

i=1(Yi���) are independent standard normal random
variables. Using the log-likelihood function, or equivalently the criterion function, Q(X ; �) =
�
Pn

i=1(Xi � �)2; we �nd that �̂ = �̂(X ) = �X = n�1
Pn

i=1Xi; solves max�Q(X ; �). The
in-sample �t at �̂ relative to that at the true parameter �� is

� = Q(X ; �̂)�Q(X ; ��) =
(
n�1=2

nX
i=1

(Xi � ��)
)2

= Z21 ;

which is distributed as a �2(1): The fact that Q(X ; �̂) > Q(X ; ��) (almost surely) is called
over�tting, and the expected over�t is E(�) = 1: The out-of-sample criterion function is

more interesting. We have

~� = Q(Y; �̂)�Q(Y; ��) =
nX
i=1

(Yi � ��)2 � (Yi � �̂)2
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=

nX
i=1

(Yi � ��)2 � (Yi � �� + �� � �̂)2

=

nX
i=1

�(�� � �̂)2 + 2(Yi � ��)(�̂ � ��)

= �
(
n�1=2

nX
i=1

(Xi � ��)
)2
+ 2

nX
i=1

(Yi � ��)n�1
nX
i=1

(Xi � ��)

= �Z21 + 2Z2Z1:

So the out-of-sample relative �t, ~�; has a non-standard distribution that involves a product of

two independent Gaussian variables minus a �2 distributed random variable. We note that

the expected in-sample over�t is positive, E(�) = +1; and the converse is true out-of-sample

since E(~�) = �1: Thus E(��~�) = +2 and this di¤erence has motivate Akaike�s information
criterion (and related criteria) that explicitly make a trade-o¤ between the complexity of a

model and how well the model �ts the data.

Our theoretical result sheds additional light on the connection between in-sample over�t

and out-of-sample under�t. In the example above, we note that Z21 appears in both expres-

sions with opposite signs. This turns out to be a feature of the limit distribution of (�; ~�)

in a general framework. The connection between � and ~� is therefore far stronger than one

of expectations. For instance, in Example 1 we note that the conditional distribution of ~�

given X is N(��; 4�); so that
E (~�jX ) = ��:

This shows that in-sample over�tting results in a lower out-of-sample �t � not only in

expectation �but one-to-one.

In this paper we derive the joint limit distribution of (�; ~�) for a general class of crite-

ria, which includes loss functions that are commonly used for the evaluation of forecasts.

The limit distribution for the out-of-sample quantity, ~�; has features that are similar to

those seen in quasi maximum likelihood analysis, see White (1994) for a comprehensive

treatment. The limit distribution is particularly simple when an information-matrix type

equality holds. This equality holds when the criterion function is a correctly speci�ed like-

lihood function. When Q is a correctly speci�ed log-likelihood function and � 2 � � Rk we
have an asymptotic multivariate version of the result we found in Example 1, speci�cally

(�; ~�)
d! (Z 01Z1;�Z 01Z1 + 2Z 01Z2);

where Z1 and Z2 are independent Gaussian distributed random variables, Z1; Z2 � Nk(0; Ik):
The fact that in-sample over�t translates into out-of-sample under�t has important
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implications for model selection. Model selection by standard information criteria, such as

AIC and BIC, tend to favor models that have a large � in the sample used for estimation. We

shall refer to this as the winner�s curse of model selection. The winner�s curse is particularly

relevant in model-rich environments where many models may have a similar expected �t

when evaluated at their respective population parameters. So we will argue that standard

information criteria are poorly suited for the selecting a model with a good out-of-sample

�t in model-rich environments. In the context of forecasting this can explain the empirical

success of shrinkage methods and combining models, such as model averaging.

Another implication of the theoretical result is that one is less likely to produce spurious

results out-of-sample than in-sample. The reason is that an over-parameterized model tends

to do worse than a more parsimonious model out-of-sample. In an out-of-sample comparison,

it will take a great deal of luck for an overparameterized model to o¤set its disadvantage

relative to a simpler model, in particular when both models nests the true model. Therefore,

when a complex model is found to outperform a simpler model out-of-sample, it is stronger

evidence in favor of the larger model, than had the same result been found in-sample (other

things being equal).

Parameter instability is an important issue for forecasting, because it may result in major

forecast failures, see e.g. Hendry and Clements (2002), Pesaran and Timmermann (2005),

and Rossi and Giacomini (2006), and references therein. Interestingly, we will show that a

major discrepancy between the empirical in-sample �t and out-of-sample �t can be induced

by model selection, even if all parameters are constant. This phenomenon is particularly

likely to occur in model rich environments where a model is selected by a conventional

model selection method such as AIC or BIC.

2 The Joint Distribution of In-Sample Fit and Out-of-Sample

Fit

We consider a situation where the criterion function and estimation problem can be ex-

pressed within the framework of extremum estimators/M-estimators, see e.g. Huber (1981).

In our exposition we will adopt the framework of Amemiya (1985).

The objective is given in terms of a non-stochastic criterion function Q(�); which attains

a unique global maximum, �� = argmax�2�Q(�):We will refer to �� as the true parameter

value. The empirical version of the problem is based on a random criterion function Q(X ; �);
where X = (X1; : : : ; Xn) is the sample used for the estimation. In Example 1 we have,

Q(�) = �E(X1��)2; whereas the empirical criterion function is Q(X ; �) = �
Pn

t=1(Xt��)2;
so that �Q(X ; �) = n�1Q(X ; �) p! Q(�):
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The extremum estimator is de�ned by

�̂ = �̂(X ) = argmax
�2�

Q(X ; �);

and we de�ne S(X ; �) = @Q(X ; �)=@� and H(X ; �) = @2Q(X ; �)=@�@�0: Throughout this
paper we let k denote the dimension of �; so that � 2 � � Rk:We shall adopt the following
standard assumptions from the theory on extremum estimators, see e.g. Amemiya (1985).

Assumption 1 �Q(X ; �) = n�1Q(X ; �) p! Q(�) uniformly in � on a open neighborhood of

��; as n!1:
(i) H(X ; �) exists and is continuous in an open neighborhood of ��;
(ii) �n�1H(X ; �) p! I(�) uniformly in � in an open neighborhood of ��;
(iii) I(�) is continuous in a neighborhood of �� and I0 = I(��) 2 Rk�k is positive

de�nite.

(iv) n�1=2S(X ; ��) d! N(0;J0); where J0 = limn!1 E
�
n�1S(X ; ��)S(X ; ��)0

	
:

Assumption 1 guarantees that �̂ (eventually) will be given by the �rst order condition

S(X ; �̂) = 0: In what follows, we assume that n is su¢ ciently large that this is indeed the
case.1 The assumptions are stronger than necessary. The di¤erentiability (both �rst and

second) can be dispensed with and replaced with weaker assumptions, e.g. by adopting the

setup in Hong and Preston (2008).

We have in mind a situation where the estimate, �̂; is to be computed from n observa-

tions, X = (X1; : : : ; Xn): The object of interest is Q(Y; �̂); where Y = (Y1; : : : ; Ym) denotes
m observations that are drawn from the same distribution as that of X: In the context

of forecasting, Y will represent the data from the out-of-sample period, say the last m

observations as illustrated below.

X1; : : : ; Xn| {z }
=X

; Xn+1; : : : ; Xn+m| {z }
=Y

:

We consider the situation where � is estimated by maximizing the criterion function in-

sample, Q(X ; �); and the very same criterion function is used for the out-of-sample evalua-
tion, Q(Y; �): We are particularly interested in the following two quantities

� = Q(X ; �̂)�Q(X ; ��); and ~� = Q(Y; �̂)�Q(Y; ��):

The �rst quantity, �; is a measure of in-sample �t (or in-sample over�t). We have Q(X ; �̂) �
Q(X ; ��); because �̂ maximizes Q(X ; �): In this sense, Q(X ; �̂) will re�ect a value that is

1When there are multiple solutions to the FOC, one can simply choose the one that yields the largest
value of the criterion function, that is �̂ = argmax�2f�:S(X ;�)=0gQ(X ; �):
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Figure 1: The joint density of (�; ~�) for the case with k = 3 and � = I:

too good relative to that of the true parameter Q(X ; ��); hence the label �over�t�. The
second quantity, ~�; is a measure of out-of-sample �t. Unlike the in-sample statistic, there is

no guarantee that ~� is non-negative. In fact, ~�; will tend to be negative because �� is the

best ex-ante value for �. We have the following result concerning the limit distribution of

(�; ~�):

Theorem 1 Given Assumption 1 and m
n ! �; we have

2

 
�

~�

!
d!
 

�1

2
p
��2 � ��1

!
; as n!1;

where �1 = Z 01�Z1, �2 = Z 01�Z2 and Z1 and Z2 are independent Gaussian random variables

Zi � Nk(0; Ik); and � = diag (�1; : : : ; �k) ; �1; : : : ; �k being the eigenvalues of I�10 J0:

The joint distribution for the case with k = 3; � = I; and � = 1 is plotted in Figure 1.

The left panel has the joint density and the right panel is the corresponding contour plot.

The plots illustrates the joint distribution of � and ~� and the negative correlation between �

and ~� is evident in the contour plot. The downwards sloping line in the contour plot shows

the conditional mean, E(~�j�) = ��:
Remark. Too good in-sample �t (over�t), � � 0; translates into mediocre out-of-sample
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�t. This aspect is particularly important when multiple models are compared in-sample for

the purpose of selecting a model to be used out-of-sample. The reason is that the observed

�t can be written as,

Q(X ; �̂j) = Q(X ; ��j ) +Q(X ; �̂j)�Q(X ; ��j ) = Q(X ; ��j ) + �j :

If several models are approximately equally good, and have roughly the same value of

Q(X ; ��j ); then is it quite likely that the best in-sample performance, as de�ned bymaxj Q(X ; �̂j);
is attained by a model with a large �j ; which translated directly into poor out-of-sample

�t.

The theoretical result formulated in Theorem 1 relates the estimated model to that of

the model using population values for the parameters. The implications for comparing two

arbitrary models, nested or non-nested, is straight forward and we address this issue in the

next Section.

Next we consider the special case where the criterion function is a correctly speci�ed

log-likelihood function.

2.1 Out-Of-Sample Likelihood Analysis

In this section we study the case where the criterion function is a correctly speci�ed

likelihood function. We denote the log-likelihood function by `(X ; �); and suppose that
Q(X ; �) = 2`(X ; �) where � 2 � � Rk: In this case �̂ = �̂(X ) is the maximum likelihood

estimator, and in regular problems with a correctly speci�ed likelihood function, it is well

known that the likelihood ratio statistic,

LR = � = 2f`(X ; �̂)� `(X ; ��)g;

is asymptotically distributed as a �2 with k degrees of freedom. So on average, `(X ; �̂) is
about k=2 larger than the log-likelihood function evaluated at the true parameters, `(X ; ��):

It is less known that the converse is true when the log-likelihood function is evaluated

out-of-sample. In fact, the asymptotic distribution of the out-of-sample statistic,

fLR = ~� = 2f`(Y; �̂)� `(Y; ��)g;
has an expected value that is �k; when X and Y are independent and identically distributed.
Again we see that expected in-sample over�t translates into expected out-of-sample under�t.

The out-of-sample log-likelihood function, `(Y; �̂); is related to the predictive likelihood
introduced by Lauritzen (1974). We could call `(Y; �̂) the plug-in predictive likelihood. Due
to over�tting, the plug-in predictive likelihood need not produce an accurate estimate of the
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distribution of Y; which is typically the objective in the literature on predictive likelihood,
see Bjørnstad (1990) for a review.

Let fXig be a sequence of iid random variables in Rp with density g(x); and suppose
that

g(x) = f(x; ��); almost everywhere for some �� 2 � � Rk; (1)

so that the model is correctly speci�ed model. The in-sample and out-of-sample log-

likelihood functions are given by

`(X ; �) �
nX
i=1

log f(Xi; �); and `(Y; �) �
n+mX
i=n+1

log f(Xi; �):

The in-sample maximum likelihood estimator, �̂ = argmax� `(X ; �); is given by @
@� `(X ; �̂) =

0:

Corollary 2 Assume that `(X ; �) satis�es Assumption 1, and that `(X ; �) is correctly spec-
i�ed as formulated in (1). Then the information matrix equality holds, I0 = J0; and with
� =  

LRfLR
!

d!
 

Z 01Z1

2
p
�Z 01Z2 � �Z 01Z1

!
; as n!1 and m

n ! �;

where Z1 and Z2 are independent with Zi � Nk(0; Ik); for i = 1; 2:

When n = m we see that the limit distribution of (two times) the in-sample log-likelihood

and the out-of-sample log-likelihood, 2f`(X ; �̂)�`(Y; �̂)g = LR�fLR; has the expected value,
E f�1 � (2�2 � �1)g = E f2�1g = 2k:

This expectation motivated the Akaike�s information criterion (AIC), see Akaike (1974).

The AIC penalty, 2k; is derived under the assumption that the likelihood function is cor-

rectly speci�ed. The proper penalty to use for misspeci�ed models was derived by Takeuchi

(1976), who derived this results within the quasi maximum likelihood framework.

Corollary 3 When m = n the limit distribution of (�; ~�)0 = (LR; fLR)0 has mean (+k;�k)0;
and variance-covariance matrix,

2

 
k �k
�k 3k

!
;

and the conditional distribution of ~� given � is, in the limit, N(��; 4�):

The conditional density of ~� given � is plotted in Figure 2, for various values of �:
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An implication is that the unconditional limit distribution of ~� is mixed Gaussian, ~� �
N(��; 4�); with a �2-distributed mixing parameter.

The negative correlation between LR and fLR that we formulated in Corollary 2, o¤ers
a theoretical explanation for the so-called AIC paradox in a very general setting. Shimizu

(1978) analyzed the problem of selecting the order of an autoregressive process, and noted

that AIC tends to select too large an order when it is most unfortunate to do so.

2.2 Related Results and Some Extensions

The expected value of ~�, as computed from the limit distribution in Theorem 1, is related to

results in Clark and West (2007). They consider the situation with two regression models

�one being nested in the other �where the parameters are estimated by least squares and

the mean squared (prediction) error is used as criterion function. The observation made in

Clark and West (2007) is that the expected MSPE is smaller for the parsimonious model.2

In our notation, Clark and West are concerned with E(~�) which increases with the number

of regressors in the model. Clark and West (2007) use this �nding to motivate a correction

of a particular test. The joint distribution of (�; ~�) reveals some interesting aspects of this

problem, and shows that the results in Clark and West (2007) hold in a general framework,

beyond the regression models and the MSPE criterion.

Out-of-sample forecast evaluation is often analyzed with di¤erent estimation schemes,

known as the �xed, rolling, and recursive schemes, see e.g. McCracken (2007). Under the

�xed scheme the parameters are estimated once and this point estimate is used throughout

the out-of-sample period. In the rolling and recursive schemes the parameter is reestimated

every time a forecast is made. The recursive scheme uses all past observations for the

estimation, whereas the rolling scheme only uses a limited number of the most recent ob-

servations. The number of observations used for the estimation with the rolling scheme is

typically constant, but one can also use a random number of observations, de�ned by some

stationary data dependent process, see e.g. Giacomini and White (2006).

The results presented in Theorem 1 are based on the �xed scheme, but can be adapted to

forecast comparisons using the rolling and recursive schemes. Still, Theorem 1 speaks to the

general situation where a forecast is based on estimated parameters, and have implications

for model selection and model averaging as we discuss in the next section.

For example under the recursive schemes, the expected out-of-sample under�t for a

correctly speci�ed model is approximately

k

mX
i=1

1

n+ i
= k

1

m+ n

m+nX
s=n+1

m+ n

s

2This feature is also used to motivate and derive Akaike�s information criterion.
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Figure 2: The conditional distribution of ~� given � is, in the limit, N(��; 4�); when Q is
a correctly speci�ed log-likelihood function. Here we have plotted conditional density for
three values of �: In this case � is the usual in-sample likelihood ratio statistic and ~� can
be interpreted as an out-of-sample likelihood ratio statistic.
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� k

Z 1

1
1+�

1

u
du! k

Z 1

1
1+�

1

u
du = k log(1 + �);

where � = limn!1
m
n : This is consistent with McCracken (2007) who, in the context of re-

gression models, derived the asymptotic distribution of what can be labelled as an aggregate

out�of-sample �t. Given our previous results it is evident that the aggregate out-of-sample

�t will be negatively correlated with the aggregate in-sample over�t, yet the joint depen-

dence is more complicated than that of Theorem 1.

3 Implications of Theorem 1

We now turn to a situation where we estimate more than a single model. The relation be-

tween models is important in this context. For example the joint distribution of (�1; : : : ; �m);

where �j is the in-sample over�t of the j-th model is important for model selection.

Consider M di¤erent models that each have their own �true�parameter value, denoted

by ��j : It is useful to think of the di¤erent models as restricted version of a larger nesting

model, � 2 �: The jth model is now characterized by � 2 �j � �; and its true value is

��j = argmax�2�j Q(�): We shall assume that Assumption 1 applies to all models, so that

�̂j
p! ��j ; where �̂j = argmax�2�j Q(X ; �): So ��j re�ects the best possible ex-ante value for

� 2 �j : The nesting model need not be interesting as a model per se. In many situations
this model will be so heavily parameterized that it would make little sense to estimate it

directly.

When we evaluate the in-sample �t of a model, a relevant question is whether a small

value of Q(X ; �̂j) re�ects genuine superior performance or is due to sampling variation.
The following decomposition shows that the sampling variation comes in two �avors, one

of them being particularly nasty. The in-sample �t can be decomposition as follows:

Q(X ; �̂j) = Q(��j )| {z }
Genuine

+Q(X ; ��j )�Q(��j )| {z }
Ordinary noise

+Q(X ; �̂j)�Q(X ; ��j )| {z }
Deceptive noise

: (2)

We have labelled the two random terms as ordinary noise and deceptive noise, respectively.

The �rst component re�ects the best possible value for this model, that would be realized

if one knew the true value, ��j : The second term is pure sampling error that does not

depend on �̂; so this term simply induces a layer of noise that makes it harder to infer

Q(��j ) from Q(X ; �̂j): The last term is the culprit. From Theorem 1 we have that �j =

Q(X ; �̂j) � Q(X ; ��j ) is strongly negatively related to ~�j = Q(Y; �̂j) � Q(Y; ��j ): So �j is
deceiving as it increases the observed criterion function, Q(X ; �̂j); while decreasing the
expected value of Q(Y; �̂j):
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3.1 Model Selection by In-Sample Information Criteria

An important implication of (2) arises in this situation where multiple models are being

compared. We have seen that sampling variation comes in two forms, the relative innocuous

type, Q(X ; ��j )�Q(��j ); and the vicious type Q(X ; �̂j)�Q(X ; ��j ): The latter is the over�t
that translate into an out-of-sample under�t, and the implication of this term is that we

may not want to select the model with the largest value of Q(��j ): Instead, the best choice

is the solution to:

argmax
j

�
Q(��j )� �jg

	
:

It may seem paradoxical that we would prefer a model that does not (necessarily) explain

the in-sample data as well as alternative models, but it is the logical consequence of Theorem

1, speci�cally the fact that in-sample over�tting translates into out-of-sample under�t.

In a model-rich environment we view this to be a knockout blow to standard model

selection criteria such as AIC. The larger the pool of candidate models, the more likely is

it that one of these models has a better value of Q(��j ): But the downside of expanding a

search to include additional models is that it adds (potentially much) noise to the problem.

If the models being added to the comparison are no better than the best model, then

standard model selection criteria, such as AIC or BIC will tend to select a model with

an increasingly worse expected out-of-sample performance, i.e. a small Q(Y; �̂j): Even if
slightly better models are added to the set of candidate models, the improved performance,

may not o¤set the additional noise that is added to the selection problem. If the model with

the best in-sample performance, j� = argmaxj Q(X ; �̂j); is indeed the best model in the
sense of have the largest value of Q(��j ); then this does not guarantee a good out-of-sample

performance. The reason is that the model with the best in-sample performance (possibly

adjusted for degrees of freedom) is rather likely to have a large in-sample over�t, �j � 0:

Since this reduces the expected out-of-sample performance, Q(Y; �̂j); it is not obvious that
selecting the model with the best (adjusted) in-sample �t is the right thing to do.

This phenomenon is often seen in practice. For example, �exible non-linear speci�cations

will often �t the data better than a parsimonious model in-sample, but substantially worse

out-of-sample. This does not re�ect that the true underlying model is necessarily linear, only

that the gain from the nonlinearity is not large enough to o¤set the burden of estimating the

additional parameters. See e.g. Diebold and Nason (1990). The terminology �predictable�

and �forecastable� is used in the literature to distinguish between these two sides of the

forecasting problems, see Hendry and Hubrich (2006) for a recent example and discussion.

Suppose that a large number of models are being compared and suppose for simplicity

that all models have the same number of parameters, so that no adjustment for the degrees

of freedom is needed. We imagine a situation where all models are equally good in terms

12



of Q(��j ): When the observed in-sample criterion function, Q(X ; �̂j), is larger for model A
than model B, this would suggest that model A may be better than B. However, if we were

to select the model with the best in-sample performance,

j� = argmax
j
Q(X ; �̂j);

we could very well be selecting the model with the largest sampling errorQ(X ; �̂j)�Q(X ; ��j ):
When all models are equally good, one may be selecting the model with the worst expected

out-of-sample performance by choosing the one with the best in-sample performance. This

point is illustrated in the following example.

Example 2 Suppose we estimate K regression models,

yi = �jxj;i + "j;i;

by least squares, so that �̂j =
Pn

i=1 xj;iyi=
Pn

i=1 x
2
j;i; j = 1; : : : ;K: Here �j = E(yixj;i)=E(x

2
j;i)

and we let � = (�1; : : : ; �K)
0 and consider the least squares criterion, Q(X ; �) = �

Pn
i=1(yi�

�0Xi)
2: In this setting, �j ; which is associated with the j-th regression model, is an K-

dimensional vector with all but the j-th element being equal to zero.

We have

�Q(X ; �̂j) =

nX
i=1

(yi � �̂jxj;i)2 =
nX
i=1

"2j;i + (�̂j � �j)2x2j;i � 2(�̂j � �j)xj;i"j;i

=

nX
i=1

"2j;i �
(
Pn

i=1 xj;i"j;i)
2Pn

i=1 x
2
j;i

;

so that

�j = Q(X ; �̂j)�Q(X ; ��j ) =
(
Pn

i=1 xj;i"j;i)
2Pn

i=1 x
2
j;i

:

Suppose that ("i; xj;i); i = 1; : : : ; n; j = 1; : : : ;K are mutually independent, all having a

standard normal distribution, and the true model be yi = "i; so that "j;i = "i for all j: It

follows that Q(X ; ��j ) = �
Pn

i=1 "
2
i for all j; and we have0BBBBB@

n�1=2
Pn
i=1 x1;i"iq

n�1
Pn
i=1 x

2
1;i

...
n�1=2

Pn
i=1 xK;i"iq

n�1
Pn
i=1 x

2
K;i

1CCCCCA d! NK(0; IK);

so that the limit distribution of (�1; : : : ; �K)
0 is a vector of independent �2(1)-distributed

13



random variables.

In our previous notation we have

�j = �
nX
i=1

var("i) = �n;

�j =

nX
i=1

(1� "2i );

�j =

nX
i=1

("2i � "̂2j;i); with "̂j;i = yi � �̂jxj;i:

With m = n; the out-of-sample criterion is

�Q(Y; �̂j) =
2nX

i=n+1

"2i + �̂
2

jx
2
j;i � 2�̂jxj;i"i

=
2nX

i=n+1

"2i +
(
Pn

i=1 xj;i"i)
2Pn

i=1 x
2
j;i

P2n
i=n+1 x

2
j;iPn

i=1 x
2
j;i

� 2
Pn

i=1 xj;i"i
P2n

i=n+1 xj;i"iPn
i=1 x

2
j;i

and it follows that

AICj = �
nX
i=1

"2i +
(
Pn

i=1 xj;i"i)
2Pn

i=1 x
2
j;i

� 2;

is such that E(AICj) � EQ(Y; �̂j) ! 0 as n ! 1: However, the AIC of the selected

model, AICj� = maxj AICj ; is not an unbiased estimate of its out-of-sample performance

EQ(Y; �̂j�):

In Example 2 we have the paradoxical outcome that AICj picks the model with the

worst expected out-of-sample �t, and the model with the best expected out-of-sample �t is

the one that minimizes AIC: Table 1 contains the expected value of AICj� for K = 1; : : : ; 20;

the average value of Q(Y; �̂j�); their di¤erence. The average value of the smallest AICjy
and its corresponding average value for Q(Y; �̂jy):

Note that one would be better of by selecting a model at random in this situation.

Rather than selecting a single model, a more promising avenue to good out-of-sample

performance is to aggregate the information across models, in some parsimonious way, such

as model averaging.

There may be situations where the selection of a single model potentially can be use-

ful. For example, in on unstable environment one model may be more robust to parameter

changes than others. See Rossi and Giacomini (2006) for model selection in this environ-

ment. Forecasting the level or increment of a variable is e¤ectively the same problem. But

the distinction could be important for the robustness of the estimated model, as pointed

14



Maximum AIC Minimum AIC
K AICmax Q(Y; �̂j�) Bias AICmin Q(Y; �̂jy)

1 -101.00 -101.01 0.01 -101.00 -101.01
2 -100.36 -101.66 1.30 -101.63 -100.37
3 -99.90 -102.13 2.23 -101.80 -100.19
4 -99.54 -102.50 2.97 -101.88 -100.12
5 -99.24 -102.81 3.57 -101.91 -100.08
6 -98.99 -103.07 4.08 -101.94 -100.06
7 -98.77 -103.30 4.53 -101.95 -100.04
8 -98.57 -103.49 4.92 -101.96 -100.03
9 -98.40 -103.67 5.28 -101.97 -100.02
10 -98.24 -103.84 5.60 -101.97 -100.02
11 -98.09 -103.98 5.89 -101.98 -100.01
12 -97.96 -104.12 6.17 -101.98 -100.01
13 -97.83 -104.25 6.42 -101.98 -100.01
14 -97.72 -104.36 6.65 -101.99 -100.01
15 -97.61 -104.48 6.87 -101.99 -100.00
16 -97.51 -104.58 7.07 -101.99 -100.00
17 -97.41 -104.68 7.27 -101.99 -100.00
18 -97.32 -104.77 7.45 -101.99 -100.00
19 -97.23 -104.86 7.63 -101.99 -100.00
20 -97.15 -104.94 7.79 -101.99 -100.00

Table 1: The expected values of the largest and smallest AIC are compute as a function of
the number of models, K; along with the corresponding out-of-sample criterion values. In
this setup, AIC selects the worst model, whereas the model with the smallest AIC is indeed
the best model.
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out by Clements and Hendry (1998), see also Hendry (2004). They argue that a model for

di¤erences is less sensitive to structural changes in the mean than a model for the level, so

the former may be the best choice for forecasting if the underlying process has time-varying

parameters.

The literature on model selection: Inoue and Kilian (2006)... Ng and Perron (2005).

3.2 Local Model Asymptotics

[To be completed].

3.3 Resolution to Winner�s Curse

Shrinkage and model combination are methods that implicitly dodge the winner�s curse

problem. Thus methods are helpful in reducing �; which in turn improved the out-of-

sample performance. A particular for of shrinkage amounts to adding restrictions on �;

such as � = �( ) where  is of lower dimension, and this will tend to reduce �: A drawback

is that shrinkage and model combination can reduce �: For instance, shrinkage of the type

above will be useful if there exists a  �; so that �� = �( �). However, if no such  � exits,

the value of shrinkage becomes a trade-o¤ between the positive e¤ect it has on � and loss

associates with, Q(��)� sup Q(�( )) > 0:
The idea of combining forecast goes back to Bates and Granger (1969), see also Granger

and Newbold (1977), Diebold (1988), Granger (1989), and Diebold and Lopez (1996). Fore-

cast averaging has been used extensively in applied econometrics, and is often found to

produce one of the best forecasts, see e.g. Hansen (2005). Choosing the optimal linear

combination of forecasts empirically has proven di¢ cult (this is also related to Theorem

1). Successful methods include the Akaike weights, see Burnham and Anderson (2002),

and Bayesian model averaging, see e.g. Wright (2003). Weights that are deduced from a

generalized Mallow�s criterion (MMA) has recently been developed by Hansen (2006, 2007),

and these are shown to be optimal in an asymptotic mean square error sense. Clark and

McCracken (2006) use a very appealing framework with weakly nested models. In their

local-asymptotic framework, the larger model is strictly speaking the correct model, how-

ever it is only slightly di¤erent from the nested model, and Clark and McCracken (2006)

shows the advantages of model averaging in this context.

To gain some intuition, consider the average criterion function,

M�1
MX
j=1

Q(X ; �̂j) =M�1
MX
j=1

Q(X ; ��j ) +M�1
MX
j=1

fQ(X ; �̂j)�Q(X ; ��j )g: (3)

Suppose that model averaging simply amounts to take the average criterion function (it does
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Figure 3: Winner�s curse of model selection illustrated by contour plots for the joint distri-
bution of (�j� ; ~�j�); where j

� = argmaxj=1;:::;m �j :
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not). The last term in (3) is trivially smaller than the largest deceptive term,minjfQ(X ; �̂j)�
Q(X ; ��j )g. Therefore, if the models are similar in terms of Q(X ; ��j ); then averaging can
eliminate much of the bias caused by the deceptive noise, without being too costly in terms

of reducing the genuine value. Naturally, averaging over models does not in general lead to

a performance that is simply the average performance. Thus for a deeper understanding we

need to look at this aspect in a more detailed manner.

4 Empirical Application

We present empirical results for three problems. The �rst application studies the term

structure of interest rates, and will illustrate the connection between � and ~�: The second

considers the forecasting problem using the Stock and Watson data that consists of 131

macro economic variables, see Stock and Watson (2005). This application will demonstrate

the severity of the winner�s curse. The third application studies a portfolio selection prob-

lem. Simulating time series of returns, using a design based on empirical estimates from

Jobson and Korkie (1980), we seek the portfolio weights that maximizes certainty equiva-

lent returns. This application will illustrate that shrinkage can substantially improve the

out-of-sample performance, because it reduces the over�tting problem.

4.1 An Empirical Illustration: VAR for the US Term Structure

Let Xt denote a vector of interest rates with �ve di¤erent maturities, 3, 6, 12, 60, 120

months. The monthly time series of interest rates were downloaded from the Federal Reserve

Economic Data (FRED). (TB3MS, TB6MS, GS1, GS5, and GS10). The time-series span

the period 1959:01�2008:05. We estimate the cointegration vector autoregressive (VAR)

model,

�Xt = ��0Xt�1 +

p�1X
j=1

�j�Xt�j + �+ "t;

using di¤erent laglength, p = 1; : : : ; 12; and di¤erent cointegration rank r = 0; : : : ; 5: The

VARs are estimated by least squares, which is equivalent to maximum likelihood when a

Gaussian speci�cation is used, see Johansen (1991).

Rather than estimating the parameters with the full sample we divided the sample into

odd months, Todd, and even months, Teven; and estimate the parameters, � = (�; �;�1; : : : ;�p�1; �);
by maximizing, either

Qodd(�; �) = �
Todd
2
log

������ 1

Todd

X
t2Todd

"t"
0
t

������ ;
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or

Qeven(�; �) = �
Teven
2

log

����� 1

Teven

X
t2Teven

"t"
0
t

����� ;
where "t = �Xt � ��0Xt�1 �

Pp�1
j=1 �j�Xt�j � �; and with Todd and Teven being the

cardinality of Todd and Teven; respectively. We only include observations from 1960:01

and onwards in Todd and Teven; such that we always have a su¢ cient number of initial
observations for p = 1; : : : ; 12: This is done such that it makes sense to compare the log-

likelihoods for di¤erent values of p:

Let �̂odd and �̂even denote the two sets of parameter estimates. The in-sample �ts,

Qodd(�; �̂odd) and Qeven(�; �̂even); are reported in the upper panel of Table 2, and the corre-
sponding out-of-sample �ts, Qodd(�; �̂even) and Qeven(�; �̂odd); are reported in the lower panel
of Table 2. Interestingly, the best out-of-sample �t is provided by (p; r) = (2; 5) in both

cases. For comparison, AIC and BIC selects (p; r) to be (10; 2) and (2; 0) respectively, for

the odd sample and (10; 4) and (1; 3) respectively, for the odd sample. The AIC and BIC

statistics are reported in Table 7. The AIC and BIC statistics in Table 7 are (compared

with the conventional way of computing these statistics) scaled by minus a half to make

them directly comparable with out-of-sample criterion.

The (column-wise) increments in Q(�; �) as the laglength, p; is increased in steps of one,
are reported in Table 8. Theorem 1 predict a linear relationship between the in-sample and

out-of-sample increments. Figure 4 provides a scatter plot of these increments, for using

increments where the smaller model is always p � 3:

4.2 Forecasting macroeconomic variables: The winners curse

In this section we analyze the 131 macro economic time series from Stock and Watson

(2005). We estimate a relatively simple benchmark model, and compare the out-of-sample

performance of this model to a model that adds an additional regressor. The regressor being

added is the one that improves the in-sample �t the most.

From Xi;t; i = 1; : : : ; 131 macro economic variables, we �rst compute the principal

components, PCi;t using data for the period 1960:01-1994:12.

The benchmark prediction model for each of the variables is given by

X̂i;t+h = �+ �Xi;t + PC1;t;

with h = 12; such that we consider the problem of one-year-ahead prediction. The parame-

ters, �; ' and  are estimated by least squares over the in-sample period, 1960:01-1994:12.
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Figure 4: Changes in the out-of-sample �t plotted against the corresponding change in in-
sample �t, that results from adding one lag to the VAR, starting with p = 3: We have nine
observations for each of the two subsamples and each of the six possible values for r:

The larger model includes an additional regressor,

X̂i;t+h = �+ �Xi;t + PC1;t +  Zt;

where Zt�1 is chosen from the pool of 260 regressors, that consists of the other 130 macro

variables and the other 130 principal components, i.e. , Zt�1 = Xj;t�1 with j 6= i; or

Zt�1 = PCj;t�1; j � 2: The parameters of this model are also estimated by least squares.
We evaluate the in-sample and out-of-sample residual sum of square

�̂2X = n�1
nX
t=1

"̂2t and �̂2Y = m�1
n+mX
t=n+1

"̂2t :

Stock and Watson (2005) focus on the nine series in Table 3: PI, IP, UR, EMP, TBILL,

TBOND, PPI, CPI, PCED.

We note the winners curse in Figure that is a scatter plot of �QY against �QX :

Figure 5 presents the result for all 131 variables. This �gure is a scatter plot of the

percentage change in out-of-sample �t relative to the percentage change of in-sample �t.

We note the strong negative relation, as illustrated by the estimated regression line.
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�̂2X �̂2Y
PI 3.61 2.95
IP 21.02 10.38
UR 1.02 0.26
EMP 46.67 25.05
TBILL 2.75 1.54
TBOND 1.21 0.62
PPI 26.57 24.13
PCI 10.79 14.76
PCED 7.52 3.17

�̂2�;X �QX
2.75 27.21%
11.96 56.36%
0.55 62.44%
36.06 25.78%
2.41 13.28%
0.95 24.53%
23.48 12.35%
10.27 4.92%
6.96 7.82%

�̂2�;Y �QY
4.19 -34.98%
12.09 -15.22%
0.56 -76.75%
34.39 -31.70%
2.41 -45.04%
0.44 35.61%
24.61 -1.94%
14.71 0.35%
3.32 -4.57%

Table 3: The average residual sum of squares for the benchmark model and extended
model. The extended model substantially improves the in-sample �t, whereas the out-of-
sample �t tends to be substantially worse than that of the benchmark. Among the nine
variables, the largest percentage in-sample improvement is found for the unemployment
rate, UR, +62:44%. This is also the variable where the out-of-sample �t deteriorates the
most, �76:75%

Figure 5: A scatter plot of the percentage reduction in the out-of-sample MSE plotted
against the percentage reduction of the in-sample MSE.
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4.3 Portfolio Choice

In this section we consider a standard portfolio choice problem where the over�tting is

known to be very problematic. This problem will illustrate three issues. First it will

show that the over�tting problem can be worse in small samples. The basic reason is

that our asymptotic result in Theorem 1 relies on certain quantities having converged to

their probability limit, which is the same in-sample and out-of-sample. However, in �nite

samples the may be a sizable di¤erence between the relevant in-sample and out-of-sample

quantities. Second, we will use the portfolio choice problem to illustrate the means by which

shrinkage is bene�cial as well as the drawbacks associated with shrinkage. Third, adding

constraints to the optimization problem is a way to reduce the over�tting problem, and

because over�tting is very problematic in this setting, almost any form of restriction will

tend to improve the out-of-sample �t. Thus, the observation that a particular constraint is

helpful need not be evidence that the imposed structure has a deeper meaning. The main

point here is that in empirical applications where the over�tting problem is large, one might

be prone to think that a given structure has a deeper explanation, because it is found to

be very useful out-of-sample. However, such conclusions may be spuriously driven by the

over�tting problem.

Let Xt be an N -dimensional vector of returns in period t; and consider the case where

Xt � iidNN (�;�); for t = 1; : : : ; T: Suppose that the criterion is to maximize certainty

equivalent returns. Formally, the problem is

max
w2RN

w0�� 
2w

0�w; subject to �0w = 1;

in the absence of a risk-free asset, while in the presence of a risk-free asset the problem is

given by

max
w2RN

w0�0 + w
0�� 

2w
0�w; subject to �0w = 1� w0:

The solutions to these two problems are well known and given by

w� = ��1
�
� 1 + �

1����1�=
�0��1�

�
and w� = �1��1(�� �0�);

respectively.

The empirical criterion function is given by

Q(X ; w) =
TX
t=1

w0Xt � 
2w

0
TX
t=1

(Xt � �X)(Xt � �X)0w:

Here T plays the role of n, and the average in-sample certainty equivalent return may be
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de�ned by �Q(X ; w) = 1
TQ(X ; w):

Using empirical estimates taken from Jobson and Korkie (1980). They estimated the

mean and variance-covariance matrix for 20 randomly selected assets using monthly for the

sample period: December, 1949 to December 1975. We use their empirical estimates as the

population parameters in our simulations. Our results are based on 100,000 simulations,

and we set  = 2=30 that results in reasonably values of the CER.

First we consider the case with �ve assets. Table 4 presents results for this case using

various sample sizes. Table 5 presents the corresponding results for the case with 20 assets,

where the over�tting problem is more severe. It takes a ridiculously large sample for the

empirically chosen portfolio, ŵ; to produce better CER out-of-sample than the equi-weighted

portfolio.

Over�tting can be reduced by shrinkage methods. We shrink the unrestricted estimator

by imposing the constraint

kŵc � ek2
kŵ � ek2

� c; with kxk2 =
p
x0x and c � 0;

where e denotes the equi-weighted portfolio, i.e. ei = 1
N for all i = 1; : : : ; N: The solution

to the constrained optimization problem is simply ŵc = cŵ+(1� c)e: Imposing constraints
a¤ects the value of the population parameter. In this case, the population parameter under

c-shrinkage is given by w�c = cw� + (1 � c)e; for c � 1 and w�c = w� for c > 1: Naturally,

we have �Q(w�c ) � �Q(w�) and this reduction of the criterion function at the population

parameters is the drawback of shrinkage. The advantages of shrinkage is that it reduces

the over�t. The smaller is c, the more concentrated is the distribution of �c near zero.

This in turn reduced the out-of-sample under�t, and the question is whether the gains in

~�c = Q(Y; ŵc) � Q(Y; w�c ) are su¢ ciently large to o¤set the reduction in the population
criterion function.

For simplicity we focus on the case without a risk-free asset. The average in-sample

CER, �Q(X ; ŵc); and out-of-sample CER, �Q(Y; ŵc); are presented in Figure 6, along with
the average in-sample over�t in CER, de�ned by �c=T:

5 Estimation

For the purpose of estimation we will assume that the empirical criterion function is additive,

Q(X ; �) =
Pn

t=1 qt(xt; �), and is such that fqt(xt; �)gnt=1 is stationary and

st(xt; �) =
@
@�qt(xt; �);
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Without a risk-free asset (N = 5)

T � ~� �=T ~�=T �Q(X ; w�) �Q(X ; ŵ) �Q(Y; ŵ) �Q(Y; we)
60 36.67 -43.73 0.61 -0.73 0.34 0.95 -0.38 0.07
120 34.92 -37.89 0.29 -0.32 0.34 0.63 0.02 0.06
180 34.24 -36.23 0.19 -0.20 0.34 0.53 0.14 0.06
240 34.06 -35.42 0.14 -0.15 0.33 0.48 0.19 0.05
360 33.68 -34.45 0.09 -0.10 0.33 0.43 0.24 0.05
480 33.69 -34.32 0.07 -0.07 0.33 0.40 0.26 0.05
600 33.49 -34.12 0.06 -0.06 0.33 0.39 0.27 0.05
1200 33.54 -33.54 0.03 -0.03 0.33 0.36 0.30 0.05
6000 33.38 -33.48 0.01 -0.01 0.33 0.34 0.33 0.05

With a risk-free asset (N = 5)

T � ~� �=T ~�=T �Q(X ; w�) �Q(X ; ŵ) �Q(Y; ŵ) �Q(Y; ŵe)
60 45.29 -56.71 0.75 -0.95 0.42 1.17 -0.53 0.17
120 42.53 -47.32 0.35 -0.39 0.41 0.77 0.02 0.25
180 41.49 -44.53 0.23 -0.25 0.41 0.64 0.17 0.27
240 41.18 -43.39 0.17 -0.18 0.41 0.58 0.23 0.28
360 40.62 -41.86 0.11 -0.12 0.41 0.52 0.29 0.29
480 40.56 -41.60 0.08 -0.09 0.41 0.49 0.32 0.30
600 40.31 -41.25 0.07 -0.07 0.41 0.48 0.34 0.30
1200 40.38 -40.61 0.03 -0.03 0.41 0.44 0.38 0.31
6000 40.08 -40.28 0.01 -0.01 0.41 0.42 0.40 0.31

Table 4: Certainty equivalent return (CER) using di¤erent portfolio choices with N = 5
assets and di¤erent sample sizes that are listed in the �rst column. The average in-sample
over�t and out-of-sample under�t in Q are reported in columns two and three. These
translate into over�t and under�t in CER are �=T and ~�=T; respectively. So �=T measures
how much over�tting in�ates the in-sample CER. The last four columns report CER for the
(infeasible) optimal portfolio weights, w�; the empirical weights, ŵ; and equal weights, we:
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Without a risk-free asset (N = 20)

T � ~� �=T ~�=T �Q(X ; w�) �Q(X ; ŵ) �Q(Y; ŵ) �Q(Y; we)
60 234.42 -540.35 3.91 -9.01 0.86 4.76 -8.15 0.43
120 186.06 -268.06 1.55 -2.23 0.85 2.40 -1.38 0.42
180 174.23 -220.70 0.97 -1.23 0.85 1.82 -0.38 0.42
240 169.06 -201.31 0.70 -0.84 0.85 1.55 0.01 0.42
360 164.08 -184.04 0.46 -0.51 0.85 1.30 0.34 0.42
480 161.89 -176.24 0.34 -0.37 0.85 1.19 0.48 0.42
600 160.30 -171.30 0.27 -0.29 0.85 1.11 0.56 0.42
1200 157.32 -162.72 0.13 -0.14 0.84 0.98 0.71 0.42
6000 155.23 -156.37 0.03 -0.03 0.85 0.87 0.82 0.42

With a risk-free asset (N = 20)

T � ~� �=T ~�=T �Q(X ; w�) �Q(X ; ŵ) �Q(Y; ŵ) �Q(Y; ŵe)
60 266.52 -667.30 4.44 -11.12 0.89 5.33 -10.23 0.30
120 206.31 -309.14 1.72 -2.58 0.88 2.60 -1.69 0.37
180 191.91 -249.55 1.07 -1.39 0.88 1.94 -0.51 0.40
240 185.53 -225.31 0.77 -0.94 0.88 1.65 -0.06 0.41
360 179.54 -203.95 0.50 -0.57 0.88 1.37 0.31 0.42
480 176.83 -194.38 0.37 -0.40 0.88 1.25 0.47 0.43
600 174.96 -188.47 0.29 -0.31 0.88 1.17 0.56 0.43
1200 171.35 -177.90 0.14 -0.15 0.87 1.02 0.73 0.44
6000 168.80 -170.36 0.03 -0.03 0.87 0.90 0.85 0.44

Table 5: Certainty equivalent return (CER) using di¤erent portfolio choices with N = 20
assets and di¤erent sample sizes that are listed in the �rst column. The average in-sample
over�t and out-of-sample under�t in Q are reported in columns two and three. These
translate into over�t and under�t in CER are �=T and ~�=T; respectively. So �=T measures
how much over�tting in�ates the in-sample CER. The last four columns report CER for
the (infeasible) optimal portfolio weights, w�; the empirical weights, ŵ; and equal weights,
we: For the case with a risk-free asset, the ratio of wealth invested in the risk-free asset is
chosen empirically.
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Figure 6: Average certainty equivalent returns obtained in-sample and out-of-sample with
N = 5 and N = 20 and four di¤erent sample sized. The value of the skrinkage parameter, c;
is given by the x -axis. The solid line is the in-sample CER, �Q(X ; �̂c), the dashed line is the
average in-sample over�t �c, and the dash-dotted line is the out-of-sample CER, �Q(Y; �̂c):
The vertical lines identi�es the value of c that maximizes the out-of-sample CER.
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evaluated at the true parameter value; st(xt; ��); is a martingale di¤erence sequence. In

addition to Xt; the variable, xt, may also include lagged values of Xt: For example, if

the criterion function is the log-likelihood for an autoregressive model of order one, then

xt = (Xt; Xt�1)0 and qt(xt; �) = �1
2flog �

2 + (Xt � 'Xt�1)2=�2g
Recall the decomposition (2),

Q(X ; �̂) = Q(��) +Q(X ; ��)�Q(��) +Q(X ; �̂)�Q(X ; ��):

The properties of the last term, may be estimated by splitting the sample into two halves,

X1 and X2; say. We estimate � using X1 and leaving X2 for the �out-of-sample�evaluation.
Hence we compute �̂(X1) and the relative �t,

 = Q(X2; �̂(X1))�Q(X1; �̂(X1)):

We may split the sample in S di¤erent ways, and index the quantities for each split by

s = 1; : : : ; S: Taking the average
1

S

X
s

 s;

will produce an estimate of 2E
n
Q(X ; ��)�Q(X ; �̂)

o
; thereby give us an estimate of the

expected di¤erence between the in-sample �t and the out-of-sample �t. (This approach

would also produce an estimate of the proper penalty term to be used in AIC).

More generally we could consider a di¤erent sample split n = n1 + n2; and study  =

Q(X1; �̂(X1))� n1
n2
Q(X2; �̂(X1)):

Bootstrap resampling, will also enable us to compute

"b = Q(X �b ; �̂)�Q(X ; �̂);

which may used to estimate aspects of the quantity, Q(X ; ��)�Q(��):
Related references... Shibata (1997), Kitamura (1999), Hansen and Racine (2007)

Estimation by the jackknife, as in Hansen and Racine (2007) is also a possibility.

6 Concluding Remarks

[To be completed]

An implication of the �Winner�s Curse Problem�is that a parsimonious model may not

possess the traits of a parsimonious model, when the model is selected from a larger family

of parsimonious models.

Selecting the true model, or the (in population) best approximating model should not
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be the dominant criterion when the purpose is to select a model with good out-of-sample

properties. The reason is that the true model need not be the best choice, because it may

have a larger over�t than another model, and the over�t can more that o¤set the degree to

which the true model dominates the other model in population.

Under the out-of-sample paradigm the relevant question for model selection is �how

good is the selected model, relative to other models� rather than �how frequently is the

true model selected�. For instance, it may be the case that the true model is only selected

with its over�t is large.

A tightly parameterized model that is selected after an extensive search may not be

parsimonious due to the winner�s curse.

Cross-validation IC better than in-sample ICs such as AIC and BIC.

This result forms the basis for a uni�ed framework for discussing aspect of model selec-

tion, model averaging, and the e¤ects of data mining.

Much caution is warranted when asserting the merits of a particular model, based on

an out-of-sample comparison. Estimation error may entirely explain the out-of-sample

outcome. This is particular relevant if one suspects that parameters are poorly estimated.

Thus critiquing a model could back�re by directing attention to the econometrician having

estimated the parameters poorly, e.g. by using a relatively short estimation period, or by

estimating the parameters with one criterion but evaluating the models with a di¤erent

criterion. These aspects are worth having in mind, when more sophisticated models are

compared to a simple parsimonious benchmark model, as is the case in Meese and Rogo¤

(1983) and Atkeson and Ohanian (2001).

In empirical problems where over�tting is very problematic, such as portfolio choice over

a large number of assets, almost any type of constraint on the optimization problem will

improve out-of-sample performance. So to conclude that a particular structure has a deeper

meaning (beyond reducing the over�tting problem) would require additional arguments

beyond the fact that it improves the out-of-sample �t.
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A Appendix of Proofs

Proof of Theorem 1. To simplify notation we write Qx(�) as short for Q(X ; �); and with
a similar simpli�cation for Sx(�) and Hx(�): Assumption 1, it is well known that �̂

p! ��,

that �̂ is characterized by Sx(�̂) = 0; and that n�1=2Sx(��)
d! N(0;J0): Thus,

0 = Sx(�̂) = Sx(�
�) +Hx(~�)(�̂ � �); where ~� 2 [��; �̂]
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so that (�̂� ��) =
h
�Hx(~�)

i�1
Sx(�

�): A second order Taylor expansion of Qx(��), about �̂

yields,

Qx(�̂)�Qx(��) =
1

2
(�̂ � ��)0

�
�Hx(��)

�
(�̂ � ��)

=
1

2
Sx(�

�)0 [�Hx(�
�)]�1 Sx(�

�) + op(n
0);

with �� 2 [��; �̂]: Here we used that Hx(�n) �Hx(�) = op(n); whenever �n
p! ��; and that

Sx(�
�) = Op(n

1=2): Out-of-sample, a Taylor expansion of Qy(�̂) about �� yields

Qy(�̂)�Qy(��) = Sy(�
�)0(�̂ � �) + 1

2
(�̂ � ��)0Hy(��)(�̂ � ��)

= Sy(�
�)0
h
�Hx(~�)

i�1
Sx(�

�)

�1
2
Sx(�

�)0
h
Hx(~�)

i�1
[�Hy(��)]

h
Hx(~�)

i�1
Sx(�

�);

with �� 2 [��; �̂]:
Now de�ne V1;n = n�1=2J �1=20 Sx(�

�) and V2;n = m�1=2J �1=20 Sy(�
�): Since�n�1Hx(~�)

p!
I0 and �m�1Hy(��)

p! I0; it follows that

Qy(�̂)�Qy(��) =

r
m

n
V 02;nJ

1=2
0 I�10 J 1=20 V1;n

+
1

2

m

n
V 01;nJ

1=2
0 I�10 J 1=20 V1;n + op(1):

D Then by Assumption 1 and independence between X and Y; it follows that (V 01;n; V 02;n)0
d!

N2k(0; I2k); so that

2(�; ~�)
d! (V 01AV1; 2V

0
1AV2 � V 01AV1);

where A = J 1=20 I�10 J 1=20 : Now write Q0�Q = A where Q0Q = I and � being a diagonal

matrix with the eigenvalues of A = J 1=20 I�10 J 1=20 ; and de�ne Z1 = QV1 and Z2 = QV2:

Since Ax = �x for � 2 R and x 2 Rk implies that I�10 J0y = �y with y = J �1=20 x, it

follows that the eigenvalues of J 1=20 I�10 J 1=20 coincide with those of I�10 J0: This completes
the proof.

B Special Cases and Additional Empirical Results

B.1 Log Likelihood for Regression Model

Here we look at the results of Corollary 2 in the context of a linear regression model.

33



Example 3 Consider the linear regression model,

Y = X� + u:

To avoid notational confusion, we will use subscripts, 1 and 2; to represent the in-sample

and out-of-sample periods, respectively. In sample we have Y1; u1 2 Rn; X1 2 Rn�k; and
u1jX1 � iidNn(0; �

2In); and the well known result for the the sum-of-squared residuals,

û01û1 = Y 01Y1 � �̂
0
1X

0
1Y1 � Y 01X1�̂1 + �̂

0
1X

0
1X1�̂1

= Y 01(I � PX1)Y1 = u01(I � PX1)u1;

where we have introduced the notation PX1 = X1(X
0
1X1)

�1X 0
1; and we �nd

2
n
`1(�̂1)� `1(�0)

o
= �û01û1=�2 + u01u1=�2 = u01PX1u1=�

2 � �2(k):

Similarly, out-of-sample we have

û02û2 = Y 02Y2 � 2�̂
0
1X

0
2Y2 + �̂

0
1X

0
2X2�̂1

= Y 02Y2 � 2Y 01X1(X 0
1X1)

�1X 0
2Y2 + Y

0
1X1(X

0
1X1)

�1X 0
2X2(X

0
1X1)

�1X 0
1Y1

= u02u2 � 2u01X1(X 0
1X1)

�1X 0
2u2 + u

0
1X1(X

0
1X1)

�1X 0
2X2(X

0
1X1)

�1X 0
1)u1

+�00X
0
2X2�0 � 2�00X 0

1X1(X
0
1X1)

�1X 0
2X2�0 + �

0
0X

0
1X1(X

0
1X1)

�1X 0
2X2(X

0
1X1)

�1X 0
1X1�0

+u01(�2X1(X 0
1X1)

�1X 0
2X2 + 2X1(X

0
1X1)

�1X 0
2X2)�0 + u

0
2(2X2 � 2X2X 0

1X1(X
0
1X1)

�1)�0;

where the last two terms are both zero. If we de�ne W = n
m(X

�
1X1)

�1X�
2X2

p! I; we �nd

2�2
n
`2(�̂2)� `2(�0)

o
= u02u2 � û02û2

= 2u01X1(X
0
1X1)

�1=2
r
m

n
W 1=2(X 0

2X2)
�1=2X 0

2u2 + u
0
1X1

m

n
W (X 0

1X1)
�1X 0

1)u1

= �2
nq

m
n 2Z

0
1Z2 � m

n Z
0
1Z1

o
+ op(1)

where we de�ned Z1 = ��1(X 0
1X1)

�1=2X 0
1u1 and Z2 = ��1(X 0

2X2)
�1=2X 0

2u2 so that u
0
1PX1u1�

2Z 01Z1;

since Z1 and Z2 are independent and both distributed as Nk(0; I); and the structure of The-

orem 1 and Corollary 2 emerges.
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�k AIC ��+ �j� �� �� ��j� ��ave
Equal 3.2610 95.70 122.68 108.50 5.16 14.18 101.21
Linear 3.3180 95.55 126.99 112.75 9.59 14.25 106.85
Quadratic 3.3880 95.44 130.40 116.02 12.98 14.38 111.70
Cubic 3.4360 95.38 132.16 117.67 14.68 14.49 114.67

Table 6: The �rst column identi�es the design in the simulation experiment. The average
number of regressors, AIC, etc, are reported. The last column states the genuine quality of
the �model�that is a simple average across all estimated models.

B.2 Simulation

Example 4 Consider the family of regression models,

Yt = �0(j)Z(j);t + "(j);t; t = 1; : : : ; n;

where Z(j);t; j = 1; : : : ;M; is a subset of a pool of explanatory variables, Z1;t; : : : ; ZK;t:

Suppose that

Zi;t = Xt + Vi;t; i = 1; : : : ;K;

where Xt � iid N(0; 1) and Vt � iid NK(0; 2IK); while the dependent variable is given by

Yt = �(Xt + w
0Vt) + Ut; Ut � iid N(0; 1); w0w = 1: (4)

The family of regression models will consist of all subset regressions with k regressions, with

k = 1; : : : ; kmax � K:

For a given value of � 2 (0; 1); we set � = �p
(1��2)(1+2)

so that �2 is the population R2

in (4).

We choose the vector of �weight�, w, in four di¤erent ways. Equal: wi = 1=
p
K, Linear:

wi _ i; Quadratic:wi = i2; and Cubic: wi _ i3.

Taking average over simulations: �k is the number of regressors in the selected model.

AIC is the AIC value of the selected model, ��j = E(U 0(j)U(j)); �j = E(U
0
(j)U(j))�U

0
(j)U(j);

and �j = U 0(j)U(j) � Û
0
(j)Û(j):

It is rather paradoxical that AIC will tend to favor the model with the worst expected

out-of-sample performance in this environment, and that the worst possible con�guration

for AIC is the one where all models in the comparison are as good as the best model. This

is a direct consequence of the AIC paradox, mentioned earlier. This is not a criticism of

AIC per se, rather it is a drawback of choosing a single model from a large pool of models.
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B.3 Additional empirical results for the US Term Structure of Interest
Rates

B.4 Another Application: ARMA Estimation for Realized Kernel Esti-
mator

Realized Kernel estimator applied to SPY xt =logRKt

xt = '1xt�1 + '2xt�2 + �+ "t � �1"t�1 � �2"t�2;

with "t �

QA = �
1

2

X
t odd

�
log �2 +

"̂2t
�2

�
; with "̂t =

IMA(1,1) ARMA(1,1) ARMA(1,2) ARMA(2,1)

A B A B A B A B

�1 1.00 1.00 0.90 0.81 0.87 0.88 0.57 1.26

�2 � � � � � � 0.23 -0.31

�1 0.62 0.55 0.53 0.32 0.52 0.40 0.23 0.78

�2 � � � � -0.06 0.11 � �

� 0.00 0.00 -0.12 -0.24 -0.15 -0.15 -0.23 -0.06

�2 0.19 0.18 0.18 0.17 0.18 0.17 0.18 0.17

max `A 142.57 140.31 150.82 143.79 151.45 141.02 152.10 140.32

max `B 152.18 153.70 165.50 170.12 162.90 171.52 159.14 172.06

B.5 Details concerning Portfolio Choice

Simulation design based on the estimates from Jobson and Korkie (1980) who randomly

selected 20 stocks. The mean vector and covariance matrix was estimated with monthly

returns for the sample December, 1949 to December 1975.

�̂ =�
0:50 0:90 1:10 1:74 1:82 1:11 0:91 1:18 1:35 1:07 1:16 1:23 0:81 1:18 0:88 1:20 0:72 1:16 0:92 1:25

�0

�̂ =
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