Separation versus Integration in International Rail Markets: A Theoretical Investigation∗

Guido Friebel† Marc Ivaldi‡ Jerome Pouyet§

March 19, 2013

Abstract

This paper investigates various options for the organization of the railway industry when network operators require the access to multiple national networks to provide international (freight or passenger) transport services. The EU rail system provides a framework for our analysis.

Returns-to-scale and the intensity of competition are key to understanding the impact of vertical integration or separation between infrastructure and operation services within each country in the presence of international transport services. We also consider an option in which a transnational infrastructure manager is in charge of offering a coordinated access to the national networks. In our model, it turns out to be an optimal industry structure.

Keywords: Regulation, competition, vertical integration, rail passenger transporta-

JEL: R48, L92, L51.

∗The authors acknowledge with gratitude the advice and research support of SNCF, but note that the views expressed remain those of the authors alone and in no way represent the views of SNCF or its representatives. This paper was produced as part of the SCIFI-GLOW Collaborative Project supported by the European Commission’s Seventh Framework Programme for Research and Technological Development, under the Socio-economic Sciences and Humanities theme (Contract no. SSH7-CT-2008-217436).

†Department of Economics and Business, Goethe University Frankfurt. Address: Goethe-Universität, Grüneburgplatz, 1, Hauspostfach 52, 60323 Frankfurt/Main, Germany. Phone: +49(0)6979834826. E-mail: gfriebel@wiwi.uni-frankfurt.de

‡Toulouse School of Economics. Address: Université des Sciences Sociales, Manufacture des Tabacs, 21 Allée de Brienne, 31000 Toulouse, France. Phone: +33(0)561128592. E-mail: marc.ivaldi@tse-fr.eu

§Paris School of Economics. Address: 48 boulevard Jourdan, 75014 Paris, France. Phone: +33(0)143136392. E-mail: pouyet@pse.ens.fr
1 Introduction

Following the Second Railway Package of the European Union, the Rail freight market across the EU Member States and Switzerland is liberalized, adopting an open access regime in each country. Since 2010, international passenger services is also open to competition within the European Union as part of the Third Railway Package; the recent Fourth Railway Package emphasizes the opening to competition of all rail services. These decisions aim to foster this rail activity which represents a significant part of railways’ revenues and market shares - more precisely, ten percent of railway undertakings’ passenger turnover and twenty percent of international traffic. While international rail services face a fierce competition from low-cost airlines, it is deemed that they would profit from the enlargement of the European high-speed network and its interconnection if intramodal competition is implemented. To do so, it is required that all Member States grant the right of access to their rail infrastructure. Now, this policy raises in particular the question of designing what could be the optimal organization of the European rail industry, i.e., the industrial structure that would yield the highest level of consumer welfare. We provide some insights on this key question by developing a model allowing explicitly for an international (i.e., between countries) competition with the railway industry in the background.

The traditional model of railway organization in Europe involves a single firm in charge of both the fixed infrastructure, i.e., the network of rail tracks and its associated equipment of signals and stations, and the operational services, which include rolling stock management and all the transport services. More precisely, the firm is vertically integrated. The main reason advanced to support this organization is that there is a need for cooperation between the two layers.

Along these lines, a few econometric analysis of railroad cost functions document the existence of cost complementarities between infrastructure and operations. Ivaldi and McCullough (2001) manage to account for the vertical structure of railroads, which allow them to evaluate the cross-elasticities between the infrastructure output and the different service operations by fitting a translog cost function to a panel dataset of U.S. freight railroads. A recent article by Ivaldi and McCullough (2008) tests for sub-additivity in the cost function between infrastructure and freight operations. The results indicate that firms running each activity separately would have up to 24 percent higher operational costs than a vertically integrated firm. A study by Cantos (2001) undertakes a similar approach to Ivaldi and McCullough (2001) for European services. Using a translog cost function, the author analyzes economies of scope between infrastructure output and transport operations (passenger and freight) for 12 major European railways along the 1973-1990 period. The main finding is that the marginal cost of passenger output is increas-
ing with the level of infrastructure value while the opposite result is obtained for freight operations. Other evidence comes from Mizutani and Shoji (2001), who studied the case of Kobe-Kosoku Railway in Japan. They found that vertically separated firms cost 5.6 percent more than an integrated system. Cantos et al (2010) and Mituzani and Uranishi (2013) both show, however, that vertically separated firms tend to perform better than integrated ones.¹

These results just indicate that vertical disintegration might be costly from a technical point of view. They must be balanced with gains that could be expected from managing the rail infrastructure separately from the different rail service operations. In particular, from a regulatory perspective, it could be more difficult for authorities to obtain the information required for effective regulation of access than in the disintegrated case. With separation, all firms that would enter the market are treated on an equal footing and face the same rules of access. Moreover, it could be easier to compare productivity and performance of the firms operating on the same track. Separation is viewed as a way to foster competition to the benefit of customers. It remains that well-known advantages of vertical integration are the diminished incentives for double marginalization and the better coordination through the value chain. This is probably why the organization of railways differs substantially across countries, ranging from complete separation (Sweden, Norway, Denmark, Spain, Portugal, the Netherlands, the UK for instance) to strong integration (the USA, passenger services in Japan, India and China for instance).

With these economic results and facts in mind, we question here the relevance of the European reform of the international rail service. Indeed, most empirical and theoretical analyses on the costs and benefits associated to integration do not consider international services which require the use and access to several infrastructure networks. Our objective is to shed light on both the working of competition and the optimal industry organization for the international rail services, i.e., to provide a theoretical setup to understand and illustrate the issues at stake. Incidentally, at this stage, we expect that this model would draw directions for future empirical research.

In this perspective, we develop a model in which two (downstream) railroad operators compete on a final market to provide transport services to end-users; since inter-modal competition is also important, we assume that end-users could also travel by another transport mode, which we take to road for instance. Our focus is on international transport services, that is, transport services from one country to the other. Therefore, to provide one unit of transport services, transport operators have to get access to both

¹Shires et al. (1999a) compared the cost of the Swedish operator after a reform involving vertical separation, and found that operating costs have been reduced by 10 percent. However, it is difficult to know to what extent such reductions were due to vertical separation per se rather than to other aspects of the reforms.
infrastructures; the pricing of a given network is under the control of a country-specific (upstream) infrastructure manager.

Our analysis emphasizes two elements: The nature of the returns-to-scale and the nature of the final services provided by the transport operators. More precisely, we consider that either the upstream segment (network) or the downstream segment (transport operator) can exhibit some increasing or decreasing returns-to-scale. As we show in the sequel, the optimal industry organization depends on these returns-to-scale, in particular at the level of the upstream sector.

When the industry features downstream returns-to-scale only, then vertical integration ought to be favored with respect to any other organizational choices which would imply some form of separation. With upstream returns-to-scale, a somewhat similar conclusion emerges: Integration (in both countries) dominates provided that the returns-to-scale parameter is not too large; when it increases, a mixed industry organization, in which one firm is integrated whereas the other is separated, becomes optimal; when it further increases, separation in both countries becomes optimal.

In our working paper, we also consider the situation in which final transport services are local only; that is, there are two national markets and railway operators are active on both markets. The comparison between the case of international services and the case of local services leads to the following conclusion. When the share of international services becomes greater with respect to the total level of transport services, some kind of separation tends to be preferred when the infrastructure is characterized by decreasing returns-to-scale; integration would be optimal, by contrast, under increasing returns-to-scale at the infrastructure level.

Concerning international services, whether it is for freight or passengers, the incumbents of different countries sometimes have cooperative agreements to provide combined services whose revenues they share, based on some rule in a transparent way for the users. Allowing the railroad operators to coordinate their pricing decisions on the final market has the obvious drawback of increasing their market power.

Another option, much less discussed in the academic literature, is to allow some coordination between national infrastructure managers. We compare the situations of vertical integration or vertical separation in both countries with the situation in which both national infrastructure managers are merged into a single entity, called the transnational infrastructure manager. The creation of a transnational infrastructure manager always dominates the situation with vertical separation in both countries since the horizontal externalities between the national access pricing decisions are now perfectly internalized. The comparison with the case of vertical integration in both countries is less immediate:

\footnote{The paper is available from the authors upon request.}
Vertical integration allows to alleviate the double marginalization problem within each country (a vertical externality is internalized) but the horizontal externality between national infrastructure managers remains; with a transnational infrastructure manager, the horizontal externality is internalized, but not the vertical ones. With the specification of our model, we found that the situation with a transnational infrastructure manager always dominates any other industry organization. This result holds whatever the nature of the returns-to-scale on the upstream and the downstream segment.

Our analysis departs from the traditional analysis of vertical integration by considering, first, increasing or decreasing returns-to-scale at the various segments of the industry, and, second, final services which require the access to several networks whose access is controlled by non-cooperative infrastructure managers. We build on Bassanini and Pouyet (2005) and Agrell and Pouyet (2004). While these papers are more interested in the optimal regulation of the industry, we leave aside such issues and consider that regulatory choices are limited to the decision to integrate or separate the industry. However, we consider that railroad operators are imperfectly competitive, which seems a sensible assumption in the railway industry. De Borger et al (2010) analyze the interaction between various forms of competition (price or capacity) and the nature of the network (parallel or serial), as well as the impact of tolling transit.

Section 2 introduces the notations, the setup and the basic ingredients of the model. The main results of international competition are derived in Section 3. Then we discuss the case for a transnational infrastructure manager in Section 4. We finally draw some concluding remarks in Section 5. Proofs are gathered in the Appendix.

2 Model

The basic setting we consider is the following. There are two countries, denoted by 1 and 2. In each country, there is an infrastructure manager in charge of the pricing of access to the national railway network. Final customers have unit demands for (round-trip) transport services from one country to the other and can use different transport modes.

Market for transport services

There are two railway operators, one in each country, also denoted by 1 and 2 (the historical incumbent in country i is called ‘operator’ i), which offer international transport services to final customers. These railway operators compete in prices on the final market (that we describe below). Let p_i be the price set by the railway operator in country $i = 1, 2$ for one unit of transport service.

As inter-modal competition is important in the transport sector, we consider that those railway operators face downstream competition by road. Let p_0 be the price for one
unit of transport service using road instead of either of the railway operators. Since road transportation is carried out by many uncoordinated players, we assume that competition between these players drives road price close to its marginal cost; hence, \(p_0 \) stands for the marginal cost of transportation.\(^3\) The vector of downstream prices is denoted by \(p \equiv (p_0, p_1, p_2) \).

In order to obtain closed-form solutions, we adopt the Hotelling-Salop model of price competition with differentiated products. We assume that there is a unit mass of consumers which is uniformly distributed around a unit circle. The two railway operators and the ‘fictitious road actor’ are located symmetrically on this circle. A consumer located at a given point \(x \) on the circle has a unit demand for transport services. To fulfill this demand, the consumer can use the services of either the railway operators or the road operator. The consumer’s utility when using the service of transport operator \(i \) is given by \(u - p_i - td(x, i) \) where \(u \) is the gross utility for the consumer associated to the transport service,\(^4\) \(p_i \) is the price paid to the transport operator \(i \) and \(td(x, i) \) is the so-called ‘transportation cost’ (which might be slightly misleading in the context of competition between transport operators!): This cost stems, for instance, from the discrepancy between the services that the consumer located in \(x \) would ideally desire and the service actually offered by transport operator \(i \). Behind this modeling is the idea that transport products are differentiated (both in terms of geographical convenience and in terms of product lines) and final customers have heterogenous needs. The extent of the differentiation between products is given by parameter \(t \); the inverse of \(t \), \(1/t \), characterizes the intensity of competition between transport operators on the final market.

Let us now determine the pattern of demands. Suppose, for instance, that \(x \) is the distance between the consumer and railway operator 1, and \(1/3 - x \) is the distance to transport operator 2. That consumer has three options: either he chooses railway operator 1 and gets a utility level \(u - p_1 - tx \), or he chooses the services of railway operator 2 and earns a utility level \(u - p_2 - t(1/3 - x) \), or, finally, he chooses road and obtains utility \(u - p_0 - \min\{1/3 + x; 2/3 - x\} \).\(^5\) For each consumer, we can characterize the optimal choice of transport mode and, in the event the consumer chooses railway, the optimal choice of railway operator. This allows to determine the following demand pattern:

\[
D_i(p) = \frac{1}{3} - \frac{2p_i - p_j - p_k}{2t},
\]

\(^3\)Moreover, to streamline the welfare analysis, we assume that road transport operators make no profit.
\(^4\)Parameter \(u \) is assumed to be large enough in order to ensure that the market is fully covered in the various configurations that we study later on.
\(^5\)Around a circle there are two ways for a consumer to ‘travel’ until the points where the transport operators are located. To minimize transportation costs, that consumer always chooses the path of smallest length.
for $i, j, k \in \{0, 1, 2\}$ and $i \neq j \neq k$.

The transport operators. Since we consider international transport services, for each unit of service provided to the customers, a transport operator has to get access to the network of both countries. Hence, the profit of the railway operator in country i writes as follows:\(^6\)

$$\pi_{di}(p) = p_i D_i(p) - C_d(D_i(p)) - (a_1 + a_2) D_i(p),$$

where $D_i(p)$ is the final demand that addresses transport operator i when downstream prices are given by p, $C_d(D_i(p))$ is the cost associated to that level of final demand, and a_i is the unit access price set in country i. Since access to both networks is required to complete one unit of final service, that transport operator pays access charges in both countries.

The infrastructure managers. In each country, the pricing of the access to the railway network is decided by an infrastructure manager. The profit of the infrastructure manager in country i writes as follows:\(^7,\(^8\)

$$\pi_{ui}(a_i, a_j, p) = a_i \sum_{k=1,2} D_k(p) - C_u \left(\sum_{k=1,2} D_k(p) \right).$$

Indeed, since each unit of international transport services requires to use both national infrastructures, the total quantity of transport services which uses the network in country i is $\sum_{k=1,2} D_k(p)$. The cost function associated to the management of the network is given by $C_u(\cdot)$.

Regulatory choices. Our analysis assumes that both the upstream and the downstream segments are not regulated: Infrastructure managers, as well as railroad operators, choose their prices in order to maximize their profits. Regulatory choices only bear on the decision to integrate or separate vertically the industry.

Welfare. Total welfare is defined in our context as the sum of consumers’ surplus, the railway operators’ and the infrastructure managers’ profits. As usual, consumers’ surplus is defined as the gross utility minus the price and the transportation cost.

We will sometimes be interested in defining the welfare of a given country, say in country i. In that case, we assume that half of the customers are part of country i’s

\(^6\) Subscript ‘d’ stands for ‘downstream’.

\(^7\) Fixed infrastructure costs play no role in our analysis and hence are omitted.

\(^8\) Subscript ‘u’ stands for ‘upstream’.
constituency, the remaining part belonging to the other country. Therefore, welfare in
country i is defined as half the total surplus of consumers, plus the profits of transport
operator i and of infrastructure manager i.

The vertical and horizontal organization of the industry. In each country, we
shall consider the possibility of ‘vertical integration’ or ‘vertical separation’ between the
upstream infrastructure manager and the downstream network operator. Under vertical
separation in country i, the access price a_i and the final price p_i are decided so as to maxi-
mize the profit of the joint entity formed by the corresponding infrastructure manager and
railway operator. By contrast, under vertical separation in country i, the infrastructure
manager and the transport operator decides non-cooperatively a_i and p_i respectively.

The timing. The timing we consider goes as follows. In a first step, access prices are
decided. Then, in a second stage, railway operators choose their prices. Organization
choices, if any, are decided before the setting of access charges and final prices.

Figure 1 summarizes the main ingredients of our model.

8 We feel confident that our results do not depend too strongly on the specification of the countries’ welfare.
Cost functions and returns-to-scale. In order to assess the impact of the returns-to-scale in the industry on the optimal organization of the railway sector, we use the following specification:

- \(C_d(q) = c_dq + c_{dd}q^2 \), where \(c_d \) is strictly positive (and sufficiently large to ensure that the downstream marginal cost is positive) and \(c_{dd} \) can be either positive or negative. Therefore, \(c_{dd} \) is an indicator of the nature of the returns-to-scale in the downstream segment of the railway industry.

- \(C_u(q) = c_uq + c_{uu}q^2 \), where \(c_u \) is strictly positive (and sufficiently large to ensure that the upstream marginal cost is positive) and \(c_{uu} \) can be either positive or negative. Therefore, \(c_{uu} \) is an indicator of the nature of the returns-to-scale in the upstream segment of the railway industry.

3 International competition

The timing of the game under consideration is the following. At the first stage of the game, infrastructure managers choose simultaneously and non-cooperatively their access charges. Then, at the second stage of the game, transport operators simultaneously and non-cooperatively choose their final prices.

To ensure that the games we study are well-behaved, we maintain the assumption that parameters are such that \(c_{dd}/t \geq -1/2 \) (respectively, \(c_{uu}/t \geq -1/2 \)) in the case of downstream returns-to-scale (respectively, upstream returns-to-scale).

3.1 The horizontal double marginalization problem

In this context, infrastructure managers generate externalities on each other. Indeed, when deciding of the charge to access its network, an infrastructure manager does not take into account the impact of such a decision on the profit of the network manager in the other country. Since infrastructure managers offer complementary inputs to the downstream sector (because a railroad operator must access both networks to provide international transport services), this non-internalized externality typically results in excessive access charges at equilibrium, which ultimately increases final prices. This externality is of a different nature than the vertical double marginalization that we have emphasized in the previous section.

Hence, when thinking about the optimal design of the industry, both the vertical double marginalization problem (i.e., within a country between an infrastructure manager and the downstream operators) as well as the horizontal double marginalization issue (i.e.,
across national infrastructure managers) have to be accounted for. As we illustrate below, this may change the relative merits of integration and separation.

Essentially three possible industry organizations are thus possible: both countries choose vertical integration (denoted with an index ii), both countries choose vertical separation (denoted with an index ss), or one country chooses integration and the other chooses separation (denoted with an index is or si depending on which country decides to integrate/separate).

3.2 Downstream returns-to-scale

Our first result concerns the optimal organization of the railway industry, among the three possible ones.

Proposition 1. With international transport services and downstream returns-to-scale, from the perspective both of the industry’s profit and of consumers’ surplus, it is optimal to have vertical integration in both countries.

Proposition 1 shows that vertical integration in both countries ought to be favored when only the downstream sector features returns-to-scale. Moreover, the nature (i.e., increasing or decreasing) of the returns-to-scale does not play a significant role in this assessment.

In order to grasp some intuition about this result, let us compare the situation in which both industries are integrated with the situation in which they are both separated. Remind that, were the downstream sector perfectly competitive, integration would be equivalent to separation whatever the nature of the downstream services (i.e., local or international). Comparing the access and downstream prices under integration and separation with international services, we obtain:

\[
p_{1}^{ii} = p_{2}^{ii} \leq p_{1}^{ss} = p_{2}^{ss} \quad \text{and} \quad a_{1}^{ii} = a_{2}^{ii} \geq a_{1}^{ss} = a_{2}^{ss}.
\]

In words, with international services, integration leads to higher access prices but lower final prices than separation. In our working paper, we show that with local services only, downstream prices are lower under integration than under separation, but a reverse conclusion holds for the access prices. The conclusion immediately follows: with international services, the horizontal double marginalization across infrastructure managers is exacerbated under integration, leading to excessive access price. However, under integration, the vertical double marginalization is removed, leading ultimately to lower final prices.

A detailed comparison between the case of integration in both countries and the situation with integration in one country and separation in the other is not very illuminating and bears some qualitative resemblance with the previous comparison.
While the optimal organization is clearly defined in the presence of downstream returns-to-scale only, one is left wondering whether countries or national industries will manage to reach this socially desirable outcome if they can decide non-cooperatively of the organization of their respective industries. We investigate this issue in the following proposition.

Proposition 2. With international transport services and downstream returns-to-scale, suppose that, prior to the setting of access charges and final prices, each national industry decides non-cooperatively integration or separation. Then, separation is a dominant strategy and the unique Nash equilibrium features separation in both industries.

Proposition 2 shows that industries are caught in a prisoner’s dilemma when they have to choose their internal organization. Indeed, we show in the Appendix that, for any choice of organization made by industry j, industry i prefers to be vertically separated as this allows to increase more the infrastructure’s profit than the reduction in the profit made by the corresponding transport operator. These free-riding incentives push each national industry to choose vertical separation, leading to a sub-optimal choice at the equilibrium.

Proposition 2 also shows that delegating the choice of the industry’s organization to the industry is probably not a good idea. One is left asking whether a national government, which would be interested in its country’s welfare only, would choose the socially optimal industry organization.

Proposition 3. With international transport services and downstream returns-to-scale, suppose that, prior to the setting of access charges and final prices, each country decides non-cooperatively integration or separation. Then, separation is a dominant strategy and the unique Nash equilibrium features separation in both industries.

Proposition 3 highlights that the very same free-riding incentives that national industries have when choosing their vertical organization is present when countries, instead of industries, have to make this decision.

3.3 Upstream returns-to-scale

We now tackle the same set of questions but under the assumptions that only the upstream segment of the industry exhibits returns-to-scale.

As a first step, let us determine the optimal organization. It turns out that different cases have to be considered depending on the value of c_{uu}/t.

Proposition 4. With international transport services and upstream returns-to-scale:
• From the perspective of the industry’s profit, integration in both countries is optimal when $c_{uu}/t \leq 1$; otherwise, separation in both countries is optimal.

• From the perspective of consumers’ surplus, if $c_{uu}/t \leq 0.30$ (approximation), then integration in both countries is optimal; if $0.30 \leq c_{uu}/t \leq 1.65$, then integration in one country and separation in the other country is optimal; finally, when $c_{uu}/t \geq 1.65$, separation in both countries is optimal.

• From the viewpoint of total welfare, if $c_{uu}/t \leq 0.85$, then integration in both countries is optimal; if $0.85 \leq c_{uu}/t \leq 1.05$, then integration in one country and separation in the other is optimal; finally, when $c_{uu}/t \geq 1.05$, separation in both countries is optimal.

In order to understand the various forces at play in that case, we look at the impact of the choice of organization on, first, the level of access prices, and, second, on the level of final prices. Again, as in the case of downstream returns-to-scale, for conciseness we limit our attention to the comparison between integration and separation in both countries.

Computations reveal that the total level of access charges paid, at equilibrium, by the downstream sector (i.e., $a_1 + a_2$) is always larger under integration in both countries than under separation in both countries:

$$a_{ii}^1 + a_{ii}^2 \geq a_{ss}^1 + a_{ss}^2 \iff c_{uu}/t \geq -0.377 \text{(approximation)}.$$

Therefore, integration in both countries tends to lead to larger access prices than separation when (competition-adjusted) returns-to-scale are decreasing or moderately increasing.

Regarding the final prices, we obtain the following comparison:

$$p_{ii}^1 + p_{ii}^2 \geq p_{ss}^1 + p_{ss}^2 \iff c_{uu}/t \geq 1.$$

Hence, three zones of parameters seem to emerge. With sufficiently increasing returns-to-scale, access prices are lower under integration and lead to lower final prices. Low access prices indeed allow to reduce the horizontal double marginalization problem across infrastructure managers, and integration allows to reduce the vertical double marginalization within each country. As a result, integration in both countries is the socially optimal organization.

With moderate returns-to-scale, there is a tension. Access prices tend to be larger under integration, but final prices tend to be smaller. For this range of parameters, integration tends to be preferred by the industry, whereas consumers tend to prefer a mixed regime in which one firm is integrated whereas the other is separated.
Finally, with sufficiently decreasing returns-to-scale, separation is preferred as this leads to lower access and final prices.

We now focus on the industries’ incentives to choose integration or separation in a non-cooperative way.

Proposition 5. With international transport services and upstream returns-to-scale, suppose that, prior to the setting of access charges and final prices, each national industry decides non-cooperatively either integration or separation. Then, the equilibrium is characterized as follows:

- If $c_{uu}/t \leq -0.25$, then the equilibrium is unique and involves both industries choosing integration.
- If $-0.25 \leq c_{uu}/t \leq -0.15$, then there exist two asymmetric equilibria in which one industry chooses integration whereas the other chooses separation.
- If $c_{uu}/t \geq -0.15$, then the equilibrium is unique and involves both industries choosing separation.

Proposition 5 shows that, again, there remains some discrepancy between the private and the social incentives towards the choice of organizations, although to a less dramatic extent than in the case of downstream returns-to-scale. Indeed, in the case where c_{uu}/t is large enough ($c_{uu}/t \geq 1.05$), the Nash equilibrium in organization choices by national industries coincide with the socially optimal choice, namely separation in both countries. Similarly, when c_{uu}/t is small enough ($c_{uu}/t \leq -0.25$), then the Nash equilibrium in organization choices is integration in both countries, which coincides with the socially optimal outcome. Otherwise, for values of c_{uu}/t in between, private incentives are biased towards excessive separation.

4 A transnational infrastructure manager

We now investigate the following scenario, whose relevance might be reinforced with the development of international transport services: The management of the networks is delegated to a single infrastructure manager, which is kept separated from the downstream railway operators. Clearly, the advantage of the creation of a such a unique transnational infrastructure manager is to alleviate the horizontal double marginalization phenomenon, i.e., the fact that national infrastructure managers do not account for the negative externalities they create on each other via their access pricing decisions.

10 Qualitatively similar conclusions would be obtained had we assumed that the choice of integration/separation in a country is made by the government of that country.
In the following, we shall compare this situation with a unique infrastructure manager with other possible organizations studied in the previous section. Note that we do not consider here the issue of the sustainability of such an organization since we consider only the sum of the national industries’ profit or the sum of the countries’ welfare and leave aside the issue of the sharing of the unique infrastructure manager’s profit across countries or industries.

We obtain the following comparison.

Proposition 6. Whatever the nature of the returns-to-scale (either downstream or upstream), from the viewpoint of both the sum of the industries’ profit or the sum of the countries’ welfare, the creation of a unique transnational infrastructure manager is always the best organizational choice.

This proposition shows that distortions arising from the horizontal double marginalization are so important that getting rid of them, through the creation of a unique infrastructure manager, offsets any potential losses due to non-integrated vertical double marginalization externalities.

We can qualify this result by introducing a slightly different model. Instead of assuming that transport operators compete in prices on the final market, let us assume that they compete in quantities. Denote by \(q_i \) and \(q_j \) the quantities set by railway operator \(i \) and \(j \) respectively, and \(q = q_i + q_j \). The (inverse) demand function is assumed to be linear: \(P(Q) = \alpha - \beta q \). In this context, the strategic effects are profoundly modified as quantities tend to be strategic substitutes in a Cournot framework. Nevertheless, we can show\(^{11}\) that from the viewpoint of consumers’ surplus, the creation of a transnational infrastructure manager always dominates separation in both countries (that is, whatever the nature of the returns-to-scale). More interestingly, it also dominates integration in both countries if and only if \(\beta^2 - 4c_{uw}c_{dd} \geq 0 \). From the viewpoint of the industry profit, no general lessons can be drawn unfortunately.

Again, costs and demands parameters are key to understanding the role of the vertical organization of the industry. Note that the previous condition implies that, as long as one segment of the industry features constant returns-to-scale, then a transnational infrastructure manager dominates integration in both countries. It would be worth investigating whether other specifications of the nature of the competition between railroad operators (i.e., Cournot or Bertrand with product differentiation) affect our results significantly or not.

\(^{11}\)The proofs are available from the authors upon request.
5 Conclusion

The message conveyed in this paper can be summarized as follows. While the economic literature has paid a great amount of attention to the pros and cons of vertical integration/separation in network industries, relatively little is known when, first, the upstream as well as the downstream segments exhibit increasing or decreasing returns-to-scale and, second, when the transport operators may require access to several networks. The need to access several networks gives rise to a horizontal double marginalization problem since a given infrastructure manager does not take into account the impact of its pricing decisions on the profit of the other infrastructure manager.

The analysis undertaken here shows that, when the industry features downstream returns-to-scale only, then vertical integration ought to be favored with respect to any other organizational choices which would imply some form of separation. This holds true whatever the nature of the final transport services, that is, whether we consider purely local or purely international services.

With upstream returns-to-scale, the analysis becomes less clear-cut. With purely international services, integration (in both countries) dominates provided that c_{uu}/t is not too large; when c_{uu}/t increases, a mixed industry organization, in which one firm is integrated whereas the other is separated, becomes optimal; when c_{uu}/t continues to increase, separation in both countries becomes optimal. A somewhat similar conclusion emerges with local services only.

As an implication, when the share of international services becomes greater with respect to the total level of transport services, our analysis argues that some kind of separation tends to be preferred. Importantly, note that the competitive environment, embodied in parameter t, must be taken into account in such a reasoning: greater competition between transport operators (including our fictitious operator ‘road’) should tend to favor integration over separation.

As argued at the end of the paper, our analysis bears on an archetypical model of the railway industry. Clearly, one should not take too literally our conclusions based on such a representation of the industry. However, the various effects (the two double marginalization phenomena, the strategic effects associated to access pricing) are present whatever the underlying theoretical model. An empirical validation appears to be the next step of this analysis. Such a validation would necessitate to evaluate the nature of the competition between transport operators, the nature of the returns-to-scale in the various segments of the industry, and should be differentiated depending on whether we consider local or international services. This is left for future research.

\footnote{In other words, the threshold of c_{uu}/t below which integration is optimal is smaller when services are international than when services are national.}
6 References

A Appendix

A.1 International competition

A.1.1 Downstream returns-to-scale

By analogy with the notations adopted in the previous sections, denote by S_{ij}, Π_{ij} and $W_{ij} = \frac{1}{2} S_{ij} + \Pi_{ij}$ the surplus of consumers, the welfare and the industry profit in country j when the industry is vertically integrated in both countries. Similar notations are used for the other cases.

Comparing the cases of integration and separation in both countries, we obtain:

$$ p_{1i} - p_{1s} = \frac{(3cd + 6cu - 3p_0 - 2t)(16(c_{dd}/t)^2 + 30(c_{dd}/t) + 15)}{9(2(c_{dd}/t) + 3)(22(c_{dd}/t)^2 + 57(c_{dd}/t) + 33)}, $$

$$ a_{1i} - a_{1s} = \frac{(3cd + 6cu - 3p_0 - 2t)(2(c_{dd}/t)^2 + 9(c_{dd}/t) + 6)}{9(22(c_{dd}/t)^2 + 57(c_{dd}/t) + 33)}. $$

The former expression is negative whereas the latter is positive over the relevant range of parameters.

Tedious computations lead to:

$$ (W_{1i} + W_{2i}) - (W_{1s} + W_{2s}) \propto [16(c_{dd}/t)^2 + 30(c_{dd}/t) + 15], $$

$$ \times [160(c_{dd}/t)^3 + 718(c_{dd}/t)^2 + 1017(c_{dd}/t) + 447], $$

which is always positive over the relevant range of values for c_{dd}/t.

Moreover, we have:

$$ (\Pi_{1i} + \Pi_{2i}) - (\Pi_{1s} + \Pi_{2s}) \propto \frac{4(5(c_{dd}/t) + 7)}{(2(c_{dd}/t) + 3)^2} + \frac{9(10(c_{dd}/t) + 9)(34(c_{dd}/t)^2 + 85(c_{dd}/t) + 48)}{(22(c_{dd}/t) + 57(c_{dd}/t) + 33)^2}, $$

which is always positive over the relevant range of values for c_{dd}/t. This concludes the proof of Proposition 1.

Let us now focus on Proposition 3. After some cumbersome manipulations, and focusing on country 1 for instance, we obtain:

$$ W_{1i} - W_{1s} \propto -[12201984(c_{dd}/t)^9 + 115468800(c_{dd}/t)^8 + 487134400(c_{dd}/t)^7 $$

$$ + 1202368896(c_{dd}/t)^6 + 1912159632(c_{dd}/t)^5 + 2029666128(c_{dd}/t)^4 $$

$$ + 1436101524(c_{dd}/t)^3 + 652322736(c_{dd}/t)^2 + 172413279(c_{dd}/t) + 20184255], $$

which is negative over the relevant range of values for c_{dd}/t.

Similarly, we have:

\[W_{1ı}^{ıs} - W_{1ı}^{ııı} \propto -[165888(c_{dd}/t)^7 + 1021824(c_{dd}/t)^6 + 2581904(c_{dd}/t)^5 \\
+ 3410624(c_{dd}/t)^4 + 2444184(c_{dd}/t)^3 + 842664(c_{dd}/t)^2 + 56385(c_{dd}/t) - 26820], \]

which is negative over the relevant range of values for \(c_{dd}/t \).

Similarly, one can show that:

\[\Pi_{1ı}^{ısı} - \Pi_{1ı}^{ııı} \propto \frac{(10(c_{dd}/t) + 9)(34(c_{dd}/t)^2 + 85(c_{dd}/t) + 48)}{(22(c_{dd}/t)^2 + 57(c_{dd}/t) + 33)^2} \\
- \frac{8(48672(c_{dd}/t)^5 + 238272(c_{dd}/t)^4 + 461296(c_{dd}/t)^3 + 442076(c_{dd}/t)^2 + 209934(c_{dd}/t)^4 + 39555)}{(720(c_{dd}/t)^3 + 2396(c_{dd}/t)^2 + 2532(c_{dd}/t) + 861)^2}, \]

which is negative over the relevant range of parameters.

Moreover:

\[\Pi_{1ı}^{ısı} - \Pi_{1ı}^{ııı} \propto \frac{(-5(c_{dd}/t) - 7)}{(2(c_{dd}/t) + 3)^2} \\
+ \frac{36(6(c_{dd}/t) + 5)(26(c_{dd}/t) + 23)(108(c_{dd}/t)^3 + 364(c_{dd}/t)^2 + 387(c_{dd}/t)^2 + 132)}{(720(c_{dd}/t)^3 + 2396(c_{dd}/t)^2 + 2532(c_{dd}/t) + 861)^2}, \]

which is also negative over the relevant range of parameters.

This concludes the proofs of Proposition 6 and Proposition 7.

A.1.2 Upstream returns-to-scale

We obtain the following comparison:

\[a_{ıı}^{ıı} + a_{ıı}^{ısı} - (a_{ıı}^{ıs} + a_{ıı}^{ııı}) \propto \frac{14(c_{uu}/t)^2 + 53(c_{uu}/t) + 18}{3(8(c_{uu}/t) + 9)(4(c_{uu}/t)^2 + 48(c_{uu}/t) + 33)^3}, \]

which is positive for \(c_{uu}/t \geq -0.377 \).

Moreover:

\[p_{ıı}^{ıı} + p_{ıı}^{ısı} \geq p_{ıı}^{ıs} + p_{ıı}^{ııı} \Leftrightarrow c_{uu}/t \geq 1. \]

Let now us focus first on Proposition 4. Straightforward but tedious computations leads to the following (notations are identical to the ones adopted in the previous section):

\[(W_{ıı}^{ııı} + W_{ıı}^{ııı}) - (W_{ıı}^{ıs} + W_{ıı}^{ııı}) \propto (-c_{uu}/t + 1)[116(c_{uu}/t)^2 + 627(c_{uu}/t) + 447]. \]

Therefore, integration in both countries dominates separation in both countries when \(c_{uu}/t \leq 1 \).
We also obtain:

\[
(W_1^{ii} + W_2^{ii}) - (W_1^{si} + W_2^{si}) \propto 3136(c_{uu}/t)^7 + 140944(c_{uu}/t)^6 + 626460(c_{uu}/t)^5
- 2851977(c_{uu}/t)^4 - 20377926(c_{uu}/t)^3 - 25883568(c_{uu}/t)^2
+ 16120566(c_{uu}/t) + 19869165,
\]

which is negative if and only if \(c_{uu}/t \in [0.86; 5.22] \) (approximation).

Finally, we have:

\[
(W_1^{ss} + W_2^{ss}) - (W_1^{si} + W_2^{si}) \propto 3136(c_{uu}/t)^5 + 72736(c_{uu}/t)^4 + 425076(c_{uu}/t)^3
+ 657624(c_{uu}/t)^2 - 510489(c_{uu}/t) - 771615,
\]

which is positive for \(c_{uu}/t \geq 1.05 \) (approximation) and negative otherwise (in the relevant range of values for \(c_{uu}/t \)).

As regards the access charges, we have:

\[
(a_1^{ii} + a_2^{ii}) - (a_1^{ss} + a_2^{ss}) = \frac{2(3c_d + 6c_u - 3p_0 - 2t)[14(c_{uu}/t)^2 + 53(c_{uu}/t) + 18]}{3(8(c_{uu}/t) + 9)[4(c_{uu}/t)^2 + 48(c_{uu}/t) + 33]},
\]

which is always negative over the relevant range of values for \(c_{uu}/t \).

Let us now focus on Proposition 5. This proposition is obtained from the characterization of the industries’ incentives to integrate or separate non-cooperatively which are described in the next Lemma.

Lemma 1. If one industry chooses integration, the other industry chooses integration if and only if \(\frac{c_{uu}}{t} \leq -0.25 \).

If one industry chooses separation, the other industry chooses integration if and only if \(\frac{c_{uu}}{t} \leq -0.15 \).

Indeed, computations unveil the following comparisons. First:

\[
\Pi_1^{ii} - \Pi_1^{si} \propto \frac{9(c_{uu}/t + 9)(2(c_{uu}/t)^2 + 29c_{uu}/t + 24)}{(4(c_{uu}/t)^2 + 48c_{uu}/t + 33)^2}
- \frac{4(2352(c_{uu}/t)^3 + 21128(c_{uu}/t)^2 + 56763(c_{uu}/t) + 39555)}{(84(c_{uu}/t)^2 + 409(c_{uu}/t) + 287)^2},
\]

\[
\Pi_1^{ss} - \Pi_1^{si} \propto \frac{9(4c_{uu}/t + 7)}{(8c_{uu}/t + 9)^2}
- \frac{4(28(c_{uu}/t) + 115)(28(c_{uu}/t)^2 + 147(c_{uu}/t) + 132)}{(84(c_{uu}/t)^2 + 409(c_{uu}/t) + 287)^2}.
\]
Therefore, we have $\Pi^i_i \geq \Pi^*_i \Leftrightarrow c_{au}/t \leq -0.25$ (approximation). Similarly, $\Pi^*_{i} \geq \Pi^*_i \Leftrightarrow c_{au}/t \leq -0.15$ (approximation). Proposition 5 immediately follows.