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 “The IBM patent portfolio gains us the freedom to do what we need to do
through cross-licensing—it gives us access to the inventions of others that are key to
rapid innovation. Access is far more valuable to IBM than the fees it receives from its
9,000 active patents. There’s no direct calculation of this value, but it’s many times
larger than the fee income, perhaps an order of magnitude larger.”  --Roger Smith, IBM
assistant general counsel, Intellectual Property (IBM, 1990)

Introduction

The patentability of software-related inventions changed dramatically over the

twenty years ending in 2001.  Prior to 1981, court decisions excluded mathematical

algorithms as patentable subject matter.  Although systems that included software could be

patented, inventions where the novelty lay exclusively in the software component could

not be patented.  This interpretation began to change after the Supreme Court decision in

Diamond v. Diehr in 1981.  Thereafter, a series of court decisions and administrative

decisions gradually lowered the requirements for obtaining patents on software-related

inventions (Hunt 2001).  Additionally, other court decisions lowered standards for

obtaining patents in general, while strengthening aspects of patent enforcement (Hunt

1999a, 1999b).  Although these changes affected all patents, they may have had a

disproportionate impact on software inventions.

This paper explores two aspects of the changes in software patenting during this

period. First, we explore general characteristics of these patents. Using a broad definition

of “software patent,” we assemble a comprehensive database of all such patents to explore

their numbers and characteristics. We find that over 20,000 software patents are now

granted each year, comprising over 15% of all patents. Compared to other patents,

software patents are more likely to be assigned to firms than to individuals, especially

larger U.S. firms. They are also more likely to have U.S. inventors and they receive more

citations from subsequent patents. Software patents are assigned to firms in a wide variety

of industries. Most are assigned to manufacturing firms and relatively few are actually

assigned to firms in the software publishing industry (SIC 7372).

The second part of the analysis explores the economics behind these changes. We

look at the economics behind the rise in software patenting and we look at the relationship

between this rise and firm R&D spending.
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To do this we use an analytical framework based on the cost of appropriability. A

large literature has used patents as a measure of inventions (see Griliches, 1990, Jaffe and

Trajtenberg, 2002). We take a somewhat different approach, formally modeling the firm’s

decision to obtain patents as an economic optimization problem. As is well-known, the

number of patents a firm obtains does not exactly equal the number of inventions

embodied in its products. Firms often choose to protect some inventions with trade

secrecy alone rather than using patents (Levin et al, 1987, Cohen et al, 2000). This occurs

because patents are costly—patents incur application and renewal fees, legal and search

costs, and they may often involve R&D beyond what is required just to develop a product.

On the other hand, firms sometimes obtain more patents than they actually use; for

instance, firms may build a “thicket” of patents on similar technologies to limit the ability

of competitors to enter the market (Bessen, 2002, Hall and Ziedonis, 2001). In general,

firms can increase their appropriability—the percent of potential profits that the firm

actually earns—by obtaining more patents.1 So there is a tradeoff between appropriability

and patent cost that determines the optimal number of patents for each firm.

In this framework, the changes in software patenting can be viewed as changing

the quality-adjusted cost of obtaining a patent—lower standards for patenting reduced the

legal costs and the amount of additional R&D needed specifically to obtain a patent. At

the same time, broader patent scope and stronger enforcement increased the

appropriability each patent delivered, reducing the quality-adjusted cost.2 If software

patents cost less to obtain, say, after 1990, then this would have reduced the average cost

of acquiring a portfolio containing software patents, increasing optimal portfolio size.

Moreover, firms able to obtain relatively more software patents would have benefited from

a relatively lower average cost of patenting.

Using this framework, we first examine the degree to which the relative increase in

software patenting can be attributed to reductions in the price of patenting as opposed to

                                               

1 By potential profits we mean all the rents a firm could earn if it could perfectly protect its inventions.

2 We mean quality-adjusted in a particular sense here - the amount of appropriability that can be obtained
from a given expenditure on patents.  We are agnostic about the quality of patent examination or of the underlying
invention.
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greater “technological opportunity” for software-related inventions. By technological

opportunity, we mean that firms may have found it more profitable to use software in

designing new products. They may have thus obtained more software patents not because

the cost of patenting declined, but because they were resorting more often to software,

rather than hardware, to solve technical problems.

In a regression analysis, greater technological opportunity is associated with a

larger profit stream, while a decline in the cost of patenting increases the rate of patenting

independently of profits. We find that prior to 1990, software patents tended to cost more

than other patents and firms obtained patents on software-related inventions in spite of this

cost (i.e., for reasons of technological opportunity). After 1990, however, we find that

software patents cost less than other patents and they are associated with proportionately

larger patent portfolios for any given level of profits. In other words, changes in the cost

of patenting software largely explain the widespread use of these patents after 1990.

The second question we examine using this framework is whether R&D and

software patents are complements or substitutes. In a simple model of patents, patents

should complement R&D. That is, a drop in the “price” of patenting should increase the

optimal level of appropriability; this should, in turn, increase the incentives to invest in

R&D, resulting in greater R&D investment.3

However, if firms pursue patent portfolio strategies, then patents may substitute

for R&D. This occurs for two reasons. First, firms can benefit from “knowledge

spillovers” from other firms’ R&D (Spence, 1984). Firms with large patent portfolios can

bargain for access to other firms’ technology—as IBM claims in the quote at the

beginning of this paper. This technology may then be used in lieu of R&D spending. A

drop in the price of patenting permits large portfolio holders to increase their spillover

access, effectively substituting other firms’ R&D for their own. On the other hand, holders

of small portfolios may choose to obtain more patents (defensively), but nevertheless see a

decline in net appropriability (Bessen, 2002). With lower potential profits, they will also

                                               

3 In dynamic models of innovation this intuition does not necessarily hold.  The reason is that it is possible
that grant more patents can actually dissipate more rents than they create.  See Bessen and Maskin 2001, Hunt 2001,
or O'Donoghue 1998.
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invest less in R&D. Thus strategic patent portfolio behavior may cause firms to substitute

software patents for R&D.

Using the software share of a firm’s patents as a proxy for the cost of patenting,

we find that, in fact, software patents do substitute for R&D. Those firms that increased

the share of software patents in their patent portfolios tended to reduce their R&D

spending relative to sales in the 1990’s. The magnitude of the substitution effect is

significant: at sample means, continuing firms would have spent 10% more on R&D if

patenting standards had not been changed for software. It is possible that R&D by new

firms might offset this decline, but our evidence suggests this is unlikely.4

Our results suggest that an economically important reason why firms acquired

software patents in the 1990’s was related to patent thicket strategies.  In effect, the

change in patent standards made it cheaper to acquire a patent thicket.  This explanation is

consistent with the fact that large firms, and manufacturing firms, acquired many more

software patents than were acquired by software publishers or other small firms and

independent inventors typically associated with software innovation.  Regression analysis

suggests that most of these patents were acquired without a corresponding increase in

expected profits, that is, they were acquired to improve appropriability of existing

technology rather than to protect new innovations.  And firms adjusted their R&D

spending consistent with a model of strategic patenting.

The first section presents a model of appropriability. The second section describes

our data and variables. The third section presents our empirical results and the fourth

section concludes.

                                               

4 A Heckman regression indicates that the exclusion of new public entrants did not skew our results, so it
appears they too would have followed a similar pattern. Moreover, if strategic patent portfolio behavior caused these
changes, then cheaper patents would reduce entrants’ R&D incentives. Finally, new firms simply do not conduct a
large portion of industry R&D.
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I. A Model of Appropriability

A. Background

The rise in the number of software patents should be viewed as a multi-factored

phenomenon. The first and most basic factor is the reversal of the subject matter exception

that precluded patents on software, as described in the introduction.

A second possible factor is the greater use of software in the design of new

inventions. Software has grown rapidly in economic importance. The BEA estimates that

the share of real (chain weighted) GDP accounted for by final sales of software tripled

(from 0.6% to 2.1%) between 1987 and 1998 (Parker and Grimm 2000).  Much of this

growth may have consisted of new products using software.5 To the extent that these new

products involved new inventions, they may have generated new patents. In other words,

software may have been especially productive in the design of new products. Kortum and

Lerner (1999) examine the rise of patenting generally and attribute it primarily to an

increase in the productivity of firms' R&D programs.6 Software patenting may be an

instance of this broader trend. We call this the “productivity” hypothesis.

But other factors may have contributed to the rise in software patenting as well.

One hypothesis is the “bad patent” theory. Some researchers argue that the patent office

was not prepared to examine applications for patents on software, and consequently many

more patents were granted than should have been (Jaffe 2000, Kesan 2002, Merges 1999).

They suggest that this is the result of the subject matter extension—patent examiners lack

the skills for analyzing software and they are unfamiliar with prior art in the field, thus they

grant patents for software inventions that are not novel.7  This view is supported by

anecdotal claims that software patents insufficiently cite non-patent prior art (Aharonian).

An implication of this view is that examination quality may improve as the patent office

                                               

5 These estimates include software developed for firms’ own use and custom software in addition to
packaged software products. Packaged products comprise somewhat less than a third of total software.

6 Hall and Ziedonis (2001), however, specifically reject this argument for the semiconductor industry.

7 For a particularly egregious example--the Compton's multimedia patent, see Yoches 1995.
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gets more experience and/or the funding to hire examiners with software experience.

Kesan and Merges suggest additional reforms to address this concern.

A fourth set of factors includes broader regulatory changes that affect patents in all

subject matter categories. Some researchers attribute broad changes in legal standards to

the creation of a unified appeals court for patents suits in 1982 (Merges, 1997 and Hunt

1999a).  The court raised the evidentiary standards required to challenge patent validity

and broadened the interpretation of patent scope (Rai, Merges, 1997). The court relaxed

the requirement that patents be granted only for inventions that are not obvious to

“practitioners skilled in the art” (Cooley 1994, Dunner et al 1995, Hunt 1999b, Lunney

2001). The court is more willing to grant preliminary injunctions to patentees during

infringement suits (Cunningham 1995, Lanjouw and Lerner 2001) and to sustain large

damage awards (Merges, 1997, Kortum and Lerner, 1999).  And plaintiff success rates

have increased substantially in patent infringement suits (Lerner, 1995).8

Although these changes affect all patent subject matter areas, some of these factors

may have outsized effects on software patenting.  For example, an invention that uses

software, rather than hard-wiring the logic, may be more easily adapted to specific

applications.  Lower patenting standards and broadening patent scope permit patents to

claim a broader set of applications.  American software patents tend to have abstract

claims and little in the way of detailed specifications of the claimed inventions (hardware

patents tend to have much more detailed specifications).  Software may be particularly

useful for writing patents that claim many applications or broader applications—the cost

of performing the R&D necessary to obtain a patent may be substantially less if the

invention incorporates software.  We call this the “cost of patenting” hypothesis.

Three of these factors affect the cost of appropriability: exclusion of software as a

subject matter for patents meant that they had a very high cost of appropriability (infinitely

high) that was later reduced.  When the patent office grants too many bad patents for

                                               

8 Case law for these changes includes the following. On evidentiary standards: Medtronics Inc. v.
Intermedics, Inc.  799 F.2d 734 (1986) and Hybritech Inc. v. Monoclonal Antibodies Inc. 802 F.2d 1367 (1986).  On
nonobviousness: Stratoflex, Inc. v. Aeroquip Corp., 713 F.2d 1530 (1983), and Simmons Fastener Corporation v.
Illinois Tool Works, 739 F.2d 1573 (1984).  On preliminary injunctions: Atlas Powder Co. v. Litton Systems, Inc.,
773 F.2d 1230 (1985).



8 – Bessen and Hunt - Software Patents – 12/2002

software, then the average cost of obtaining a patent is lower.  Lower standards and

broader scope for software patents also lowers the cost of appropriability. On the other

hand, changes in enforcement standards (such as interpretation of the doctrine of

equivalents or the extent to which patents are invalidated for reasons of obviousness)

affect the appropriability each patent achieves. If a given number of patents convey a

greater degree of appropriability because of enforcement changes, then the quality-

adjusted cost of appropriability also declines.9

Only the productivity hypothesis explains the rise in software patenting

independently of a drop in the cost of appropriability. Thus the cost of appropriability may

help us distinguish this hypothesis from the others. Moreover, as we develop below, the

specific pattern of changes in the relative cost of appropriability for software patents

provides information helpful to distinguish between the relative roles of patent subject

matter extension, bad patents and general cost measures in the rise of software patenting.

We begin by formalizing a model of the cost of appropriability.

B. Patents, R&D and Appropriability

We base our analysis of software patents on an economic model of patenting;

specifically we model the tradeoff between appropriability and the cost of obtaining patent

protection.

To formalize this notion, define appropriability, A, as the portion of the potential

profits that a firm actually collects. Let v be actual profits. Since the potential profits are

greatest when the firm has a monopoly, actual operating profits (ignoring the cost of

patenting and the cost of R&D) are QAmv = , where m is the monopoly markup and Q is

output (taking output price as numeraire).  Then if A = 1, the firm earns monopoly rents,

but if A = 0, competition dissipates all rents and there is no other form of appropriability

such as trade secrets.  Let ),( NnAA= , where n is the size of the firm’s own patent

portfolio and N represents the sizes of the patent portfolios of all other firms in the

                                               

9 We adjust the cost only for the quality of standards of enforcement. Stronger enforcement means that
appropriability is greater for a given cost of obtaining a patent, so the quality-adjusted cost of appropriability is less.
As in footnote 2,  we mean the cost is “quality-adjusted” in the sense that it corresponds to a given level of
appropriability.
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industry.  To keep notation simple, we consider only a single other firm, so N is a scalar

rather than a vector.

It is helpful to consider a simple example of this appropriability function. Suppose

a firm has multiple inventions and it can protect each of them as a trade secret (including

lead time and learning advantages) or with a patent. Suppose a patent achieves a higher

fixed level of appropriability than trade secrecy, but a patent costs more to obtain. The

firm’s average level of appropriability will increase with the number of inventions the firm

chooses to patent. That is, 0
A

n

∂
>

∂
.  Also, the firm will choose to obtain patents for those

inventions that are sufficiently valuable so that the additional appropriability of a patent

offsets the additional cost.  So the firm will patent the most valuable inventions first.

Consequently, 0
2

2

<
∂
∂

n

A
.  Now, if firms pursue patent portfolio strategies then it is also

possible that 0≠
∂
∂

N

A
. Specifically, with patent portfolio strategies, a firm’s

appropriability decreases with the size of other firms’ portfolios (Bessen, 2002). The

concavity of the appropriability function with regard to n also applies in the case of patent

portfolio strategies, so we assume this to be a general property.

We assume that the production function has constant returns to scale in

conventional input factors, and diminishing returns in the firm’s knowledge stock, K.

Factoring out the conventional input factors, we may write 

0,0),(
2

2

<
∂
∂

>
∂
∂

=
K

Q

K

Q
KQQ .  The firm’s knowledge stock consists of the depreciated

stock of the firm’s own R&D, r, plus spillovers from the inventive activity of other firms.

Assuming a static equilibrium for simplicity, stocks will be proportional to flows, so,

ignoring a possible constant, xrK += , where x represents spillover knowledge.10  We

                                               

10 This specification makes spillovers and own-R&D substitutes. Cohen and Levinthal (1989) propose that
some R&D may complement spillovers.  However, our purpose here is to explore a possible substitution effect (see
below), so we use this specification.
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assume, )(Nxx =  and 0≤
∂
∂

N

x
, that is, patents (weakly) reduce spillovers.

Let c be the quality-adjusted cost of obtaining a patent. Total profits are then

(1) ( ) rncNxrQNnAmrNn −⋅−+⋅⋅= )(),(),,(π .

This equation captures two basic tradeoffs: greater appropriability versus the cost

of patents and greater output (productivity) versus the cost of R&D. We assume that firms

optimize with respect to n and r, taking N as given. For simplicity, let

10,)( <<= γγKKQ . Then the first order maximizing conditions are
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∂
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==
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Am
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cQ
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or

(2)
Q

x
Am

Q

r

v

c

n

A
−==

∂
∂

γb.)(,
ln

 (a.) ,

recalling that QAmv = .

The first equation expresses the intuition that, given diminishing returns to

appropriability with n, an increase in the cost of patenting raises the marginal

appropriability, reducing the firm’s optimal patent portfolio size, all else equal. The second

equation expresses the intuition that, all else equal, R&D intensity will increase with

appropriability, but decrease with spillover intensity.11 Given an equilibrium in the

industry, conditions (2) applied to all firms in the industry yield optimal values

Nrn ˆand,ˆ,ˆ .

The total interaction between R&D intensity and patent cost varies depending on

the nature of the industry equilibrium, specifically whether firms pursue patent portfolio

strategies. This can be seen by taking the total derivative of (2b) subject to (2a) and the

industry equilibrium condition,

                                               

11 As noted above, spillovers might increase own-firm R&D, so the sign of this term is not really
determined theoretically. Our regression strategy, in fact, allows this term to have either sign.
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(3)
cd

d

cd

Ad
m

cd

d Q
x

Q
r ˆˆ ˆ

−= γ .

The sign of this derivative determines whether patent cost acts to increase or

decrease R&D intensity. It is often assumed that cheaper patents will increase R&D

incentives and therefore increase R&D intensity. In this case, the derivative would be

negative and patents would complement R&D. However, if firms pursue patent portfolio

strategies this might not be the case.

First, consider the case with no strategic portfolio behavior. In this case, a higher

cost of patents will reduce R&D intensity. Without strategic portfolio effects, 0=
∂
∂

N

A
.

Then it is easy to show that the first term in (3) is negative. An increase in patent cost

induces firms to obtain fewer patents, hence they have lower appropriability. Also, with

fewer patents, one would expect spillovers to be greater.12 Then the net sign of the second

term in (3) will also be negative. Thus (3) tells us that when firms do not use patent

portfolios strategically, 0
ˆ

<
cd

d Q
r

. In other words, R&D and patents are complements in

this case; a higher patent cost reduces R&D intensity.

On the other hand, if firms pursue portfolio strategies, then patents may substitute

for R&D. This occurs through both terms in (3). First, when firms’ portfolio sizes are

asymmetric and they pursue strategic portfolio behavior, 0<
∂
∂

N

A
. As shown in Bessen

(2002), a firm’s appropriability declines with the size of its competitors’ patent

portfolios—competitors are able to gain greater bargaining leverage with larger portfolios.

Then, under general conditions, it can be shown that a decrease in patent cost actually

decreases appropriability for small portfolio holders.  This occurs despite an increase in

portfolio size for all firms, i.e., small firms acquire “defensive” patent portfolios, but face

                                               

12 This might not be the case if patents disclosed much valuable technical information. Survey evidence and
anecdotal evidence suggest that although some useful information is revealed in patent disclosures (mostly
information about competitors’ technical direction), firms gain relatively little information that is useful for
innovation from them, except, perhaps, in Japan (Cohen et al, 2002, Macdonald, 1998, Oppenheim, 1998, Tang et al,
2001).
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reduced appropriability nevertheless.  In this case, 0>
cd

Ad
, for small portfolio holders.

Second, under general conditions, cheaper patents mean that more firms will engage in

strategic portfolio bargaining and cross-licensing (Bessen, 2002). But cross-licenses give

firms access to other firms’ technology, in other words, there may be greater spillovers

with cheaper patents.13 In effect, cross-licensing permits firms to literally substitute other

firms’ R&D for their own as in the IBM quote above. This means that the net sign of the

second term in (3) will also be positive a hence, 0
ˆ

>
cd

d Q
r

. Then patents and R&D are

substitutes. Section III explores whether R&D intensity increases or decreases with patent

cost.

C. The Cost of Appropriability and Software Patents

The role of software patents in the average cost of appropriability can be modeled

as follows. Designate the quality-adjusted costs of obtaining patents as sc  and oc  for

software patents and other patents, respectively. Let s be the software share of patents.

Then

(4)
o

so
oso c

cc
uusccscsc

−
≡−=+−= ),1()1(

where u is the relative cost advantage of software patents (positive or negative).

This equation relates the cost of patenting to the software share of patents. Since

the cost of patenting is unobserved, our estimation strategy is to use s as a proxy.

Consider how this may be done in equation (2a). Give A a functional form such

that 10,ˆ
ln 1

<<∝
∂

∂ −
ββn

n

A
.14  Then  (2a) can be written

                                               

13 Cross-licensing agreements typically do not provide for transfer of technical know-how. Usually they
only provide use of the other firm’s patents. However, even this may reduce the amount of R&D devoted to
“inventing around” those patents, so cross-licensing may substitute for own firm R&D.

14 Formally, ln A is an instance of a Pareto cumulative distribution function, 
(1 )ln 1A n β β− −= − .  This

specification meets the concavity requirement and it provides a skewed distribution of the marginal appropriability of
patents, corresponding to a skewed distribution of patent values (Scherer and Harhoff 2000)
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(5)
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where I(j=t) is an indicator function (1 if j=t, otherwise 0), v is profits, i designates firm

and t designates year. This specification assumes that firms face similar costs of patenting

for each type of patent (within an industry at any time) but that firms are heterogeneous in

the degree to which they can use software in their products. The approximation is valid as

long as the software share of patent costs is not too large.

Equation (5) is similar in form to “propensity to patent” regressions estimated in

the patent literature (Scherer 1965, Bound et al, 1984, Pakes and Griliches, 1984,

Griliches, Hall and Hausman, 1986, Hall and Ziedonis, 2001).  Those regressions place the

log of R&D or log sales on the right in place of log profits.  In theory, R&D generate

potential profits and potential profits are protected with patents.  Here we focus on just

the latter part of this relationship, the link between profits and patents, although we, too,

include log R&D in some of our regressions. In any case, our main interest is in the s

interaction terms that correspond to the constant in the patent propensity regressions.  In

Section III we estimate this equation, although with some different econometric

considerations than this literature.

II. Description of Data

A. Definition of Software Patent

Software is always used as part of a system with hardware. However, patent law

has changed the extent to which software innovations could be patented and the degree to

which those innovations had to be related to specific hardware systems. In the 70’s,

software could be included in the embodiment of an invention, but the hardware

configuration had to be novel. Through a series of court and administrative decisions

during the 80’s and 90’s, innovations in the software components could themselves get

patent protection if the software controlled a physical process or even if it merely

produced meaningful data.
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Some observers have sought to distinguish “pure” software patents from those

patents that simply included software as part of a hardware-software system (Aharonian,

Allison and Lemley, 2000). These former patents presumably are ones where the novelty

lies in the software component (entirely or partially) and/or the hardware involved is a

general purpose technology (PC, network, etc.). Some of these distinctions are necessarily

arbitrary, however, because this determination depends substantially on the manner in

which the patent is drafted and may not reflect a real difference in the scope or

enforceability of the patent.

The approach here is simpler. We aim to include all patents for inventions that use

software. Since we are concerned with multiple regulatory changes that may have affected

software patenting, we need not restrict ourselves to those patents that would have been

excluded under old subject matter rules. The changes in the cost of appropriability affect

all software/hardware systems, although this cost reduction may have been greater for

those systems that use general purpose hardware.

B. Data Sources

A list of utility patents (excluding re-issues) was obtained from the database of the

U.S. Patent and Trademark Office meeting the following conditions:

1. Uses the word “software” in the specification OR

2. Uses the words “computer” AND “program” in the specification AND

3. Does NOT use the words “semiconductor,” “chip,” “circuit,” “circuitry” or

“bus” in the title (these patents more often execute software than use it).

This procedure generated a list of 134,690 software patents granted between 1976

and 1999. This list was then merged with the NBER Patent Citations Data File (Hall,

Jaffe, Trajtenberg, 2001) to obtain characteristics of each patent.

In addition, patent assignees in this dataset were matched with firm data from

Compustat for a limited number of U.S. firms. This allowed annual patent count data for

1,646 individual firms to be combined with detailed financial information from 1981-99.

The match used U.S. firms in the NBER match file; in addition, the largest 25 public firms

in the software publishing industry (SIC 7372) were specifically included. (These firms
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obtain few software patents, so only one was included in the NBER match file.) These

matched firms accounted for 42% of all US software patents and 38% of all US patents

issued during 1981-99.

III. Empirical Analysis

A. Numbers of Software Patents

Table 1 reports the number of software patents and other patents granted per year.

As can be seen, the numbers have grown dramatically in absolute terms and also relative

to other patents. Today over 15% of all patents granted are software patents. The growth

in software patents accounts for over 25% of the total growth in the number of patents

between 1976 and 2001.

Table 1 also shows estimates of the number of “true” software patents published

by Gregory Aharonian (PATNEWS).15 The overall trends are quite similar and the

numbers in recent years are also quite close. Clearly, our definition of software patents is

more inclusive, especially during the early years.

Allison and Tiller (forthcoming) performed a more careful evaluation of “pure”

software patents, examining 1,000 randomly selected patents from 1996-8 in detail. They

found that 9.2% of these patents were totally embodied in software.16 For our sample, we

classified 12.2% of all patents as software patents for these years. Hence, it is fair to say

that our measure largely comprises “pure” software patents in any case.

B. Characteristics of Software Patents

Table 2 shows characteristics of software patents compared to other patents using

data from the NBER patent database. Software patents are more likely to be owned by

firms than by individuals or government. They are also more likely to be owned by U.S.

                                               

15 Aharonian used the “I know one when I see one” criterion (private communication).

16 An initial analysis identified only 76 of the patents as software patents (Allison and Lemley, 2000).
However, subsequent analysis based on better knowledge of the drafting of software claims increased the number of
software patents in the sample to 92 (private communication from John Allison).
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assignees and to have U.S. inventors.17 They tend to receive a larger number of

subsequent citations, but in other aspects they are similar to other patents.18

One might want to know the extent to which some of these differences are

explained by who gets the software patents. The third column of Table 2 shows means for

non-software patents weighted by the total number of software patents each assignee

received.19 These means are thus representative of the heavy software patenters. As can be

seen, much (but not all) of the difference between software patents and other patents can

be explained by the patenting behavior of the firms who obtain the most software patents.

To obtain more information about the firms who obtain software patents, Table 3

shows means of firm characteristics weighted by the number of patents (software and

total) the firm receives. Relative to other patents, software patents tend to be obtained by

firm with larger market value, sales and R&D budgets and are less likely to be obtained by

newly public firms. Allison and Lemley (2000) also find that software patents are more

likely to be obtained by larger entities as classified by the patent office.

Table 4 shows the industries of the firms obtaining software patents in the sample

matched to Compustat. Most of the software patents are obtained by manufacturing firms.

Software publishers (SIC 7372) acquire only 6% of the patents in this sample and other

software service firms excluding IBM account for 2%.20 These numbers are highlighted by

the last column showing differences in patent propensity. Software publishing firms get

only a third of the number of patents per dollar of R&D that other firms obtain. This

corresponds to the views expressed by software publishing executives that software

patents are of little value to them (USPTO, 1994).

                                               

17 Allison and Lemley (2000) find that their sample of software patents has about the average portion of
U.S. inventors, although they use a somewhat different method to classify inventors’ national origins.

18 See Hall, Jaffe, and Trajtenberg (2001) for a description of the citation data.

19 This is an appropriate weighting under a null hypothesis that the process that generates patents in
general is also the process that generates software patents.  Of course that hypothesis may be incorrect, and the
significant differences we see in the table seems to suggest that is so.

20 The data set oversamples SIC 7372 somewhat. If each industry in the sample is weighted to match the
employment for that industry in the 1997 economic census, then SIC 7372 would account for 5% of software patents.
IBM itself accounts for 20% of the software patents in our sample. IBM is consistently the largest software patenter
and we break it out separately because it is not representative of the software services industry overall.
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Overall, software patents are more likely to be obtained by larger firms, established

firms, U.S. firms, and firms in manufacturing (and IBM); they are less likely to be obtained

by individuals, small firms, newly public firms, foreign firms and software publishers. They

are also more likely to be subsequently cited in other patents.

This pattern conflicts with the simple view that firms are equally likely to obtain

software patents to protect individual software inventions. BEA analysis of software

investment (Parker and Grimm, 2000) implies that about 30% of software is produced as

packaged software, the primary product of firms in SIC 7372. Yet the software publishing

industry acquires a much smaller portion of software patents. Anecdotal evidence suggests

that, compared to other technologies, relatively more software innovations are developed

by individuals and small firms. Yet large firms acquire proportionately more software

patents. In fact, the firms that acquire the largest share of software patents appear to be

just those firms that pursue patent thicket strategies: large firms in electronics, computers,

instruments, transportation and other manufacturing industries and IBM. As we argue

below, this is no coincidence, but, in fact, indicates that software patents (because they are

a cheap form of appropriability) are particularly useful for firms building strategic patent

portfolios.

C. Exploring the Rise in Software Patenting

The increase in the rate of software patenting is part of a broader trend as seen in

Table 1, although the number of software patents has increased an order of magnitude

more rapidly than other patents. As discussed above, concomitant regulatory changes did

not necessarily cause this increase. It is possible that firms acquired more software patents

because they found it more profitable to use software in developing their products (the

“productivity” hypothesis). They may have acquired more software patents simply because

they used more software in product design. This section explores how much of the rise in

software patenting can be attributed to a lower quality-adjusted cost of software patents

or whether, instead, software patents have been acquired because technological

opportunities for using software have become more profitable.
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Each factor is captured by a different term in equation (5), which we estimate in

this section. This equation relates the log of the target number of patents to: a.) a measure

of target profits, and b.) the software share of patents, s, interacted with time dummies. If

firms found it more profitable to use software in products, then greater use of software

patents would be captured in the profits term. If, on the other hand, firms could obtain

software patents at a lower cost for a given year, then this would be captured in the s term

for that year.

The coefficients of the s terms, tδ , provide information about the relative cost of

obtaining software patents compared to other patents:

If 0<tδ , then software patents are more costly than other patents and firms will

only obtain software patents if they need to protect software that is used for technological

reasons.

If tδ<0 , then there is a cost advantage to using software patents. For a given

level of profits, firms may obtain software patents because appropriability costs less.

To implement equation (5), we assume that the target number of patents can be

approximated by the actual number of patents granted, n, plus a stochastic error term,

ititit nn ε+= lnˆln . We use patents granted as opposed to patent applications under the

assumption that corporate intellectual property departments anticipate appropriability

needs and control the patenting process to meet those needs. Any errors in this process

give rise to the stochastic disturbance term. Since neither ln n nor s are meaningful when n

= 0, these observations are excluded. Below we explore the effect of this sample selection

(and the selection imposed by the matching of firms to patents) on parameter estimates.

Also, this approach does not require a Poisson estimation, although sampling variance

does introduce heteroscedasticity.

The variable s is measured as the simple share of software patents in total patents

granted. It is possible that the error term is correlated (negatively) with the current year

measure of s. For this reason, we use the lagged value, 1, −tis . We interact s with dummies

for four periods (1981-85, 1986-90, 1991-95, 1996-99) to yield coefficients, tδ , for each

of these periods. Note that this measure of s will have a large variance for small values of
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n—the observed value will have a sampling variance that is proportional to 1/n. This

measurement error will tend to bias the estimates of tδ  toward zero.

The exposition of (5) assumes a static equilibrium for simplicity and it uses a

current measure of profits accordingly. In a dynamic setting, firms will adjust their target

patent portfolio size based on their expected stream of future profits. To capture this

variable, we use two measures: the market value of the firm (long term debt plus the

carrying value of preferred stock plus the end-of-year value of common stock) and the

mean cashflow for the following four years (measuring cashflow as operating income

before depreciation plus R&D spending, if not missing). Under rational expectations, both

of these measures may differ from expected profits because of measurement error—

“animal spirits” for market value or forecasting error for cashflow. To correct for this

possibility, we perform an instrumental variable estimation below. Also, it is possible that

these profit measures (and instruments based on current year variables) might be positively

correlated with the error term—that is, firms will adjust profit expectations upwards upon

receiving “windfall” patents. To prevent endogeneity problems, we use lagged instruments

for E[v].21

Other factors may also affect the cost of patenting and the calculation of optimal

patent portfolio size. Time dummies and firm fixed effects are also included in the

regressions to accounts for general trends in patenting and unobserved firm characteristics.

Patent acquisition costs might also vary according to firm size—larger firms may realize

economies of scale in the patenting process, e.g., with an in-house legal department. Since

v is already included in the regression, positive economies of scale will tend to bias

estimates of β upwards. Other possible control variables are included below.

Taking account into these considerations, the actual equation we estimate is then

                                               

21 In the regressions shown below, we instrument with log sales and log employment lagged one year. We
also performed these regressions with longer lags. The results were similar (although with larger errors). Moreover,
the estimates of β increased with longer lags, suggesting that endogeneity was not a major issue.
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(6) ∑ +⋅=⋅+⋅++= −
j

ittiTittiit sTjIvn εδβµα 1,)(lnln

where I is an indicator function as above and T represents four different groups of years

(1981-85, 1986-90, 1991-95, 1996-99).

The regressions are shown in Table 5. The first column uses forward cashflow to

proxy for expected profits (with a truncated sample period).  The estimates of δ show a

distinct upward trend, beginning strongly and significantly negative and becoming strongly

and significantly positive during the early 90’s.  This implies that software patents were at

a substantial cost disadvantage during the early 80’s, but they had a large cost advantage

during the 90’s.

The second column adds additional controls. We add the log of lagged R&D to

proxy changes that might not be captured in the profit measure. Firms with capital

intensive technologies may more easily acquire patents, so we add a measure of capital

intensity. Also, differences in the global dispersion of R&D and profits may influence

patenting, so we include the portion of inventors from the U.S. Also, firms may choose to

substitute patent quality for quantity; we include subsequent citations as a measure of

quality. And firms who cite their own patents heavily may be engaging in strategic “fence

building” behavior, getting more patents to block competitors from using related

technologies. These additional variables do appear to have some effect, but the overall

picture remains the same although the estimate of δ is slightly less for the early 90’s..

The third and fourth columns repeat these estimations using market value as the

proxy for profits. This permits estimates for the late 90’s. The estimates of δ are similar,

although slightly more negative and with a slightly poorer fit. However, the differences

between the coefficients for the early 90’s and late 80’s are close. Also, the estimates for

the late 90’s suggest that the cost advantage of software patents continued to increase.

The fifth column shows the coefficients from a two stage “Heckit” estimation to

explore the effects of sample selection. First a probit is performed where the dependent

variable is one if the observation is included in the least squares regression and zero

otherwise. An observation will be included if the firm is matched to the patent file and has

at least one patent for the observation year. The total sample includes all Compustat
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observations for U.S. firms with non-missing data. The probit regressors are log sales, log

employment, a flag if firm went public during last 5 years, and year dummies. A likelihood

ratio test weakly rejects the null hypothesis that the disturbances of the two equation are

uncorrelated (they are negatively correlated at the 5% level) and the reported coefficients

are adjusted for this correlation. This procedure corrects for Compustat firms that are not

included in the regression sample, but it does not address the selection of firms for the

Compustat sample, i.e., publicly owned firms. The resulting coefficients are similar.

To interpret the shift in coefficients, consider what would happen if a firm were to

increase the number of software patents it obtains from 0 to sn , with no change to its

profits. Then its optimal number of patents would also increase. It is easy to show that

stit nn ⋅≈∆ δˆ  as long as s is not large. This means that if we observe a firm with sn

software patents at time t, we can say that tδ  percent of these software patents increased

the firm’s patent portfolio without any increase in profits (assuming tδ  is positive). In

other words, tδ  percent of these software patents can be attributed solely to the cost

advantage of software patents.22 So 31%-42% of the software patents obtained during the

early 90’s can be attributed to the cost advantages of software patents as can 56%-60% of

the software patents acquired during the late 90’s.

To evaluate the change in software patents over time, the difference in st n⋅δ

between two periods reflects the combined effect of changes in tδ  and changes in s.

Using the aggregate counts in Table 1 averaged over 5 year periods, the combined

changes account for an increase of 2,400 - 3,100 patents/year (using Columns 1 and 2)

between the late 80’s and early 90’s; actual software patents/year grew by about 3,200

during this period. Changes in the cost of appropriability of software patents account for

an increase of 10,800 - 11,500 patents/year between the late 80’s and late 90’s (using

Columns 3 and 4); actual software patents/year grew by about 14,100. In other words,

                                               

22 If tδ  were negative, then st n⋅δ  represents the number of patents the firm would choose not to obtain

because of the cost disadvantage of software patents. These patents are presumably obtained in spite of the cost
disadvantage for reasons of technological opportunity.
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changes in the relative cost of appropriability account for about 80% of the increase in

software patenting during the 90’s.

Software patents have become cheap. Considering that the estimates of δ are likely

attenuated because of sampling variance, our results indicate that the productivity

hypothesis has little explanatory power, most likely accounting for less than 20% of the

increase in software patents.

Moreover, the extension of subject matter to software can only explain part of the

observed trend. If this were the only factor involved, then one would expect that software

patents would cost about the same as other patents, once the exclusion was removed. This

would imply δ should be near zero for the 90’s. However, the actual estimates are

significantly positive. This implies that software patents have a substantial cost advantage,

either because many bad software patents are granted and/or software patents are

particularly useful for taking advantage of lower patenting standards.

Finally, the magnitude of the shift in δ suggests that bad patents alone cannot

explain the shift unless one is willing to posit that most software patents are invalid (and

that this is not true for other patents). If, say, only 10-20% of software patents were

granted improperly, this could not explain the large estimated shift in the cost of

appropriability that accounts for 80% of the increase in software patents. Moreover, it is

not clear that the examination process is all that different for software patents.  On

average, software patents actually spend a longer time in prosecution than other patents,

and, despite anecdotal comments (Aharonian), software patents actually cite more non-

patent prior art than other patents (Allison and Lemley, 2000). Of course, perhaps the

“right” prior art is not cited, nevertheless, the gross statistics suggest that the quality of

software patent examination is roughly similar to the quality of examination for other

patents. And now that 150,000 software patents have been granted, it seems difficult to

argue that patent examiners are any less familiar with prior art in this area than in any

other. Yet our results indicate a substantially lower cost of appropriability for software

patents.23

                                               

23 The issue we address is the relative quality of patent examination. The quality of all patent examination
may be poor, in which case, some of the reforms suggested may be appropriate (Kesan, 2002, Merges, 1999).
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Thus we conclude that the fall in the cost of appropriability of software patents

was largely caused by more basic factors than examination quality, although examination

quality likely contributed. Perhaps software patents are particularly well-suited to take

advantage of lower patenting standards and broader patent scope because of the abstract

nature of their claims. Indeed, Allison and Lemley (2000) find that software patents

contain more claims and more independent claims than other patents on average.

Surveying 14 technology areas, software patents had more claims per patent than any

other technology except acoustical patents. This suggests that general regulatory changes

combined with the extension of patents to software inventions allowed firms to

inexpensively build patent portfolios. And this drove the acquisition of many software

patents.

D. Software Patents and R&D

These results imply that during the 1990’s, s∆  should be negatively correlated

with c∆ —those firms that increased their software share of patents should have decreased

their average cost of patenting relative to other firms.  Accepting this interpretation,

s∆ can be used to explore whether software patents tended to complement R&D or

substitute for it.  Following the analysis in Section II, if software patents complement

R&D, then R&D intensity (R&D to sales ratio) should increase with s∆ ; if software

patents substitute for R&D, the relationship should be negative.

We do find a significant negative association below. However, this does not

necessarily mean that software patents substitute for R&D. For instance, it is possible that

greater use of software decreased the cost of performing R&D and R&D demand was

sufficiently inelastic that the R&D share of output decreased. We first perform the

estimation and then explore alternative explanations below.

Table 6 shows regressions for the 1990’s using five year differences. The first

column shows a simple regression with year and industry dummies. All the regressions are

weighted to correct for sampling variance in s∆ .24  The coefficient of s∆  is significantly

                                               

24 The weight used is ( )51/11 −+ tt nn  since the sampling variance for s is proportional to n.
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negative, suggesting a substitution effect.  It is possible that some third factor might be

correlated with both the change in R&D intensity and the change in software share

(negatively), producing a spurious correlation in this regression.  The second column adds

variables to control for possible size effects, effects related to new firms, and risk (the

year-to-year standard deviation of the stock price).  These additional variables do not

significantly alter the coefficient of s∆ .

The third column explores how this substitution effect differs between firms with

large number of patents and other firms.  As discussed above, the mechanism of

substitution may be somewhat different for large portfolio holders.  This appears to be the

case; the coefficient is significantly larger for s∆  interacted with an indicator of more than

100 patents per year.  However, the coefficient for the remaining firms is still significantly

negative.

The fourth column repeats the basic regression with firm fixed effects to capture

firm specific factors that may affect the growth of R&D intensity. The coefficient of s∆  is

still negative and significant, although slightly smaller in magnitude. The fifth column

explores whether the substitution effect changed during the 90’s by interacting s∆  with

time indicator dummies. The effect appears substantially stronger during the later 90’s and

the coefficient for the early 90’s is not statistically significant. This suggests that the cost

advantage was greater during the later 90’s (there is evidence of this in Table 5) and/or the

substitution effect lags the cost changes. This trend also holds if we account for large

patenters separately (regression not shown). When we interacted s∆  with both time

period (early and late 90’s) and the firm’s patenting level (more or less than 100

patents/year), both groups of firms had statistically significant coefficients during the late

90’s but not during the early 90’s. Moreover, the difference between the groups was not

as great during the late 90’s as indicated in column three.

One possible estimation problem may arise because we measure Qr  as the ratio

of R&D to sales.  However, the sales deflator does not accurately correct for changes in

the markup that should accompany greater appropriability, so there may be a slight

negative bias in the coefficient of s∆ .  Thumbnail calculations suggest that this bias should

not be large.  Nevertheless, in the sixth column we use a dependent variable that should
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not be affected by changes in the markup, namely, the change in R&D per employee. Here

the coefficient is again negative and significant.

Two other regressions are not shown. We also performed a Heckman two stage

regression similar to the one in the previous section. Here, however, the disturbance of the

probit equation was not significantly correlated with the least squares disturbance. And we

also performed a three stage least squares regression for a system of equations including

two appropriability equations as in the previous section (one for the current year and one

for the lagged year). These results were also similar to the regressions shown.

Finally, Table 7 shows the first regression repeated for five industry groups. The

coefficients are all negative and significant except for business services (SIC 73), which

includes software services, and machinery (SIC 35), which includes computer equipment.

The substitution effect is strongest in electronics (SIC 36). This is consistent with results

found in Hunt (1996).

Thus there does appear to be a robust negative association between the growth in

software patent share and the growth in R&D intensity. Moreover, this effect appears

stronger among large portfolio holders and among firms outside computer and software-

related industries.

One possible explanation for this association is based on the productivity of

software in R&D. If greater use of software reduced the cost of performing R&D and if

the demand for R&D were sufficiently inelastic, then greater use of software would be

associated with lower R&D intensity. For two reasons, however, this effect is unlikely to

explain the relatively large effect measured in Table 6. First, the results of the previous

section suggest that most of the software patenting in the 90’s was not driven by the

productivity of software. This makes it seem unlikely that the growth of software patents

proxy for changes that have a large effect on the cost of performing R&D. Second,

evidence from studies of the effect of the R&D tax credit on R&D spending suggests that

demand for R&D is elastic. Berger (1993) found that reductions in the tax price of R&D

increased R&D intensity. More generally, Hall and Reenen (1999) survey a number of

recent empirical studies examining the response of R&D spending to changes in the tax

treatment of R&D. They find a tax price elasticity approximately equal to one in absolute
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magnitude, and possibly larger.  Assuming that R&D demand responds to changes in the

cost of performing R&D the same way it responds to the tax cost of R&D, this elasticity

implies that decreases in the cost of R&D should not decrease R&D intensity and may

well increase it somewhat.25  Hence any effect of software on R&D productivity is an

unlikely explanation for the decrease in R&D intensity associated with increased use of

software patents.

Another possible explanation for a link between software patents and R&D

intensity involves accounting changes. Beginning in 1985, FASB required firms to

capitalize software development expenses (but not research or maintenance expense,

which usually account for most software cost). Reported software R&D includes directly

expensed items plus the amortization of capitalized software. Typically, software is

amortized over 30 months. This means that a rapid increase in software development

might take two years to fully appear in R&D measures. However, this is unlikely to

explain our results for two reasons. First, the change in accounting practice occurred

during the late 80’s and early 90’s, yet our substitution effect is strongest in the late 90’s.

Second, while this might weaken a positive association between changes in software

patents and R&D intensity, it is unlikely to explain a negative relationship. Moreover, the

amortization lag is still shorter than the average lag between application and grant for

software patents (3.15 years according to Allison and Lemley 2000), so the effect of

amortization is likely to be quite weak over five year differences.

Thus, finding no suitable alternative explanation, we conclude that software

patents have substituted for R&D in the 1990s, an outcome that is consistent with a model

where firms pursue patent thicket strategies.

The magnitude of this substitution effect is substantial. Assigning s∆  a value of

10% over the 90’s (see Table 1), R&D intensity would have been about 0.35% higher had

the quality-adjusted cost of software patents remained the same over 90’s. The mean

R&D intensity of the regression sample was 3.6% in 1990, suggesting that relative R&D

                                               

25 Assuming a cost function with constant returns to scale, changes in the price of R&D will have no effect
on the R&D share of output if the absolute magnitude of the price elasticity of demand for R&D is 1-S, where S is the
R&D share of output. If demand is more elastic than this, the R&D share will increase with a price decrease.
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spending would have been about 10% higher among continuing firms by the end of the

decade if patenting regulation had not changed for software. It is possible that the net

effect of entering and exiting firms may have offset this reduction in R&D. However,

entering firms do not perform a large share of R&D. Furthermore, we interpret our results

as evidence of strategic portfolio behavior; such strategic behavior would have reduced

R&D incentives for entrants.

IV. Conclusion

We conclude that the rise in software patenting has been driven largely by patent

portfolio strategies. Lower standards for obtaining patents (plus tougher enforcement of

those patents) substantially reduced the cost of patenting inventions that use software.

Cheap patents enabled firms to accumulate large portfolios of patents at low cost.

This explanation is consistent with the fact that larger U.S. firms in manufacturing

industries (plus IBM) have acquired a disproportionate share of software patents. Many of

these industries, such as semiconductors and computers, have well-known patterns of

strategic behavior using patent thickets (Hall and Ziedonis, 2001, Grindley and Teece,

1997).  Large firms in these industries also have experienced in-house counsel or

established relationship with law firms specializing in intellectual property.

The effect of software patents on R&D is also consistent with strategic portfolio

patenting. Firms that acquired software patents performed relatively less R&D. Patents

appear to substitute for R&D because large portfolio holders gain access to other firms’

R&D and/or portfolio strategies reduce incentives to invest in R&D.

The social welfare effects of this substitution are ambiguous. In some models, it

may actually be socially beneficial to reduce R&D. For example, in some patent race

models, firms may duplicate each other’s R&D and this duplication is socially wasteful. In

such cases, if patents lead to less R&D, this decrease may reduce duplicative R&D and

thus benefit society.  On the other hand, society may benefit when multiple firms pursue

parallel R&D paths (Bessen and Maskin, 2000).

However, policy analysts usually assume that greater R&D incentives are

desirable, perhaps recognizing from Arrow (1962) that there may be a general tendency to

under-invest in R&D. Indeed, advocates for broadening patent coverage for software in
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Europe have argued that such changes are needed in order to increase R&D incentives

(e.g., Hart et al, 2000). To the contrary, our results indicate that cheaper software patents,

as implemented in the U.S., may have significantly reduced R&D investments.
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Tables

Table 1. Number of Software Patents Granted
Software

Patents
Aharonian
Estimates

Other
Utility

Patents

Software/
Total

1976 766 100 69,460 1.1%
1977 885 100 64,384 1.4%
1978 902 150 65,200 1.4%
1979 800 200 48,054 1.6%
1980 1,080 250 60,739 1.7%
1981 1,281 300 64,490 1.9%
1982 1,404 300 56,484 2.4%
1983 1,444 350 55,416 2.5%
1984 1,941 400 65,259 2.9%
1985 2,460 500 69,201 3.4%
1986 2,666 600 68,194 3.8%
1987 3,549 800 79,403 4.3%
1988 3,507 800 74,417 4.5%
1989 5,002 1,600 90,535 5.2%
1990 4,738 1,300 85,626 5.2%
1991 5,401 1,500 91,112 5.6%
1992 5,938 1,624 91,506 6.1%
1993 6,902 2,400 91,440 7.0%
1994 8,183 4,569 93,493 8.0%
1995 9,186 6,142 92,233 9.1%
1996 11,664 9,000 97,981 10.6%
1997 12,810 13,000 99,173 11.4%
1998 20,411 17,500 127,108 13.8%
1999 21,770 21,000 131,716 14.2%
2000 23,141 -- 134,454 14.7%
2001 25,973 -- 140,185 15.6%

Note: Excludes re-issues.
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Table 2. Characteristics of Software Patents (1990-95)

Software
Patents

Other Patents Other Patents,
weighted mean

Assignee type
  Non-gov’t. org. (firm) 88% 80%
  Individual/ unassigned 11% 18%
  Government 2% 2%

U.S. assignee (if assigned) 70% 51%

U.S. inventor 70% 53% 66%

Mean citations received 9.7 4.6 6.1
Percent of self-citations 12% 13% 13%

Percent of patents owned by
top 5% of assignees

63% 64%

Note: Total patents: 40,348 software, 545,410 other. Self-citations is average of upper
and lower bounds (see Hall, Jaffe, and Trajtenberg, 2001). Differences between the means
in the first two columns are all significant at the 1% level. Third column weights means by
the number of total number of software patents the assignee received.

Table 3. Firm Characteristics by Patent Type (1990-95)

Weight Software Total Patents

Ln(firm market value)
  (million $96)

9.36 9.12

Ln( firm sales)
  (million $96)

9.38 9.03

Ln( R&D)
  (million $96)

6.58 5.96

Newly public firm 1.5% 2.1%

Note: Table shows firm means weighted by patent numbers for firm for each year 1990-95
from the sample matched to Compustat. Covers 1,170 firms with 112,041 patents of
which 12,518 were software patents. Newly public firms first appeared in the Compustat
file within the last 5 years.
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Table 4. Software Patents by Industry (1995-99)

Software patents All patents Patents/R&D

Manufacturing 69% 85%

  Machinery (SIC 35) 27% 17% 2.5

  Electronics (SIC 36) 22% 22% 2.8

  Other 20% 45% 1.8

Non-manufacturing 31% 15%

  Software publishers (SIC 7372) 6% 1% 0.7

  Other software services (exc. IBM) 2% 1% 4.4

  Other non-manufacturing 3% 3% 2.8

  Addendum: IBM 20% 9% 4.7

Note: covers 22,954 software patents and 109,509 total patents for firms the sample
matched to Compustat. Last column shows patents granted per $10 million of R&D in 96
dollars.
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Table 5. Appropriability Regressions (1981-99)
Dependent variable: Ln( number of patents granted)

1 2 3 4 5

IV IV IV IV Heckit

8581−δ -.71* (.15) -.71* (.14) -.82* (.13) -.81* (.13) -.77* (.11)

9086−δ -.04 (.10) -.05 (.10) -.18 (.10) -.20 (.09) -.18 (.08)

9591−δ .42* (.11) .31* (.11) .24* (.09) .12 (.10) .10 (.08)

9996−δ .60* (.09) .56* (.09) .73* (.08)

Ln(cashflow) .95* (.06) .52* (.07)

Ln(market value) .80* (.03) .50* (.05) .19* (.01)

Ln(lagged R&D) .29* (.03) .23* (.03)

Capital/employee .28 (.22) -.13 (.14)

U.S. inventors -.21 (.11) -.32* (.09)

Citations rec’d. -.00 (.00) -.01* (.00)

Self-citations .24 (.09) .36* (.08)

90869591 −− − δδ .46* .36* .42* .32* .28*

90869996 −− − δδ .77* .76* .91*

N 6,635 5,697 9,844 8,435 102,11
0

Adjusted R-sq. .813 .859 .784 .825

Note: Standard errors are in parentheses and asterisk indicates significance at the 1% level. All
regressions include firm fixed effects and year dummies. The δ‘s are coefficients on terms where the
independent variable is the lagged software share of patents interacted with a time period indicator
dummy.  Market value is deflated millions. Cashflow is mean deflated cashflow (millions) for following
four years. In the IV regressions, log cashflow and log market value are instrumented with lagged log
deflated sales, lagged log employment and a dummy variable that equals one if the firm went public
within the last five years. Capital per employee is deflated gross plant and equipment. U.S. inventors is
the percent of patents with U.S. inventors.  Citations received is the mean number of subsequent citations
each patent receives; self-citations is the mean of upper and lower bound percentage of patents citing the
firm’s own patents (see Hall, Jaffe and Trajtenberg, 2002).  The “Heckit” regression performs a Probit on
whether the observation was included in the sample (whether the firm was matched to the patent database
and had positive patents). Probit variables are log sales, log employment, a flag if firm went public during
last 5 years, and year dummies. A likelihood ratio test rejects the hypothesis that the OLS and Probit
equations are independent at the 5% level (the disturbances are weakly negatively correlated).



36 – Bessen and Hunt - Software Patents – 12/2002

Table 6. R&D and Software Patents: Complements or Substitutes?

Dependent Variable: 
sales

DR &
∆ (columns 1-5)

1 2 3 4 5 6

s∆ -.035* (.005) -.036* (.005) -.019* (.006) -.030* (.005) -5.97* (1.09)

s∆  x  (n >100) -.047* (.010)

s∆  x  (1991-95) -.010   
  
(.007)

s∆  x  (1996-99) -.048* (.007)

Ln(sales) .001 (.000)

New public firm -.001 (.004)

Stock std. dev. -.003 (.004)

Industry f.e. ü ü ü 

Firm f.e. ü ü ü 

N 3,464 3,416 3,464 3,464 3,464 3,417

Adj R-sq .087 .124 .092 .579 .580 .550

Note: Standard errors in parentheses. All regressions include year dummies and either firm
fixed effects or 2-digit industry dummies. Asterisk indicates significance at the 1% level.
Dependent variable is change in R&D/Sales ratio for columns 1-5. For column 6,
dependent variable is change in R&D/Employment. Time differences are five years;
observations from 1991-99. Sample includes firms matched to patent file with positive
patents. Covers 611 firms in an unbalanced panel. All regressions are weighted by

( )51/11 −+ tt nn  where n is the number of patents granted. s is software share of patents

granted. Excludes observations where R&D > ½ sales.
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Table 7. Regression of R&D Intensity by Industry

Industry SIC 35 SIC 36 Other manu. SIC 73 Other Non-
manu.

s∆ -0.009 -0.060* -0.028* .008 -.067*
(0.006) (0.014) (0.008) (.014) (.015)

N 629 618 2,008 91 122

Adj R-sq 0.743 0.480 0.563 0.972 0.945

Note: Regressions same as previous table column 4, but for specific industries. Asterisk
designates significance at the 1% level.


