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Abstract

The recent financial crisis has highlighted the interconnectedness
between macroeconomic and financial stability, raising questions about
how to combine monetary and prudential policies. This paper charac-
terizes the jointly optimal monetary and prudential policies, setting the
interest rate and bank-capital requirements. The source of financial
fragility is the socially excessive risk taking by banks due to limited lia-
bility and deposit insurance. We provide conditions under which locally
(Ramsey) optimal policy dedicates the prudential instrument to pre-
venting inefficient risk-taking by banks, and the monetary instrument
to dealing with the business cycle, with the two instruments co-varying
either negatively, or positively and counter-cyclically.JEL: E32, E44,
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Monetary and prudential policies have traditionally been designed and
analyzed in isolation from one another. The 2007-2009 financial crisis,
however, has aroused interest in analyzing the interactions between these
policies. Policymakers [e.g., Bernanke (2010), Yellen (2014)] have commented
on the extent to which monetary policy can or should address concerns about
financial stability. And policy-oriented discussions [e.g., Canuto (2011),
Committee on International Economic Policy and Reform (2011), Cecchetti
and Kohler (2012)] have summarized alternative views about the potential
substitutability or complementarity of these policies and the need for policy
coordination. There is a general presumption that both policies will be
counter-cyclical most of the time, as reflected in the “counter-cyclical capital
buffer” [Basel Committee on Banking Supervision (2010)]. But policymakers
and commentators [e.g., Yellen (2010), Macklem (2011), Wolf (2012)] have
also envisioned scenarios that may put the two policies at odds with each
other over the business cycle.

In this paper, we develop a New Keynesian model with banks and use it to
study the optimal interactions between monetary and prudential policies. We
focus on a prudential policy that sets a state-contingent capital requirement
for banks. We first articulate a benchmark model in which the Tinbergen
separation principle applies and prescribes a particular assignment of goals to
the policy instruments: it is optimal to relegate the goal of financial stability
to prudential policy and assign a mandate of macroeconomic stabilization
to interest-rate policy.1 In this model, the bank-capital requirement is
optimally used to deter excessive risk taking by banks (countering the risk-
taking temptations that arise from limited liability and deposit insurance).
Monetary policy cannot deter risk-taking at all and optimally focuses on
macroeconomic stabilization, by adjusting the policy rate in response to
changes in macroeconomic conditions, including those that reflect optimal
changes in prudential policy.2 In this sense, our benchmark model is a stark

1In this context, the Tinbergen separation principle, as articulated by the Committee
on International Economic Policy and Reform (2011) among others, refers to the idea that
each goal should be pursued with a separate and dedicated instrument.

2To be clear, our paper is about optimal assignment of policy instruments, or optimal
interactions between instruments, when both policies have the common (Ramsey) objective
of maximizing welfare. De Paoli and Paustian (2013) study policy coordination in a
different setting that involves separate prudential and monetary authorities with potentially
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rendition of what Smets (2013) calls “the modified Jackson Hole consensus.”
Although our main goal is to fully articulate a model in which monetary
policy has no effect on financial stability, we also consider a simple extension
in which monetary policy does affect risk-taking incentives; and we highlight
how this changes the key features of optimal policy interactions.

We depart in two main ways from other recent contributions that study
the interactions between monetary and prudential policies from a normative
perspective. First, in our model excessive risk taking arises from limited
liability and involves the type (not necessarily the volume) of credit extended
by banks. By contrast, the literature typically views excessive risk taking in
terms of the aggregate volume of credit, as we elaborate below. Second, our
focus is on jointly Ramsey-optimal policies, i.e. on the state-contingent path
for the two policy instruments that maximizes the representative household’s
expected utility.3 By contrast, the existing literature usually compares simple
monetary and prudential policy rules with each other by computing welfare
numerically, and does not address the issue of the optimal capital requirement
in the steady state.4

Recent work on monetary policy and financial stability emphasizes the
credit cycle and the “risk-taking channel” of monetary policy [as discussed,
for example, in Borio and Zhu (2008)]. It typically views excessive risk taking
in terms of the aggregate volume of credit. Angeloni and Faia (2013), for
example, consider a link between the bank leverage ratio and the risk of
bank runs; Christensen, Meh and Moran (2011) postulate an externality that
links the riskiness of bank projects to the ratio of aggregate credit to GDP.
While abstracting from monetary policy, a number of other contributions
[e.g., Bianchi and Mendoza (2010), Jeanne and Korinek (2010), Bianchi
(2011)] similarly view financial instability as the result of excessive borrowing.

different objectives. They consider optimal policy interactions under discretion as well as
commitment.

3We characterize analytically the capital requirement under jointly optimal policies,
and this enables us to determine numerically the associated optimal interest rate.

4Loisel (2014) summarizes the main features of a number of contributions that consider
simple monetary and prudential policy rules [e.g., Christensen, Meh, and Moran (2011),
Benes and Kumhof (2012), Angeloni and Faia (2013)]. Two exceptions on this front are De
Paoli and Paustian (2013), who also study Ramsey-optimal policies but motivate prudential
policy differently, and Du and Miles (2014), who study output-maximizing policies in a
model with limited liability but without aggregate shocks.
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In these contributions, a pecuniary externality associated with a collateral
constraint plays a central role: it makes an economic expansion increase the
value of borrowers’ collateral and leads to excessive borrowing. A tax on
debt can then make borrowers internalize the externality.5 Benigno et al.
(2011) add monetary policy to this setting and examine how it may pursue
financial stability in addition to its conventional goals. They also consider
the role of a tax on debt, but do not characterize optimal policy. In all
these models, economic expansions − following, for example, a favorable
productivity shock or a period of low interest rates − lead to excessive risk
taking and/or excessive borrowing and call for a policy response that may
be either monetary or prudential.

We find these insights about the recent crisis persuasive.6 Nonetheless, we
can also envision other ways in which monetary and prudential policies may
interact with each other, and think that these alternative perspectives can
also serve to inform the design of future regulatory frameworks. To make our
point, we start with a benchmark model that deliberately abstracts from any
connection between risk taking and the volume of credit, and focuses instead
on the type of credit, i.e. the composition of banks’ loan portfolios. Our
model follows a branch of the micro-banking literature [surveyed by Freixas
and Rochet (2008)] in which the need for capital requirements arises from
limited liability and deposit insurance. These institutional features truncate
the distribution of risky returns facing investors, the banks lending to these
investors, and the depositors funding the banks; this is the externality that
leads to excessive risk taking. In our model, excessive risk taking involves
the type of projects that banks may be tempted to finance because limited
liability protects them from incurring large losses, and deposit insurance
decouples their funding costs from their risk taking.

More specifically, we develop a variant of Van den Heuvel’s (2008) model
5Bianchi (2011) discusses how this tax on debt may be a model proxy for prudential

policies (like capital requirements) that work through the banking system.
6There is now compelling empirical evidence in support of the risk-taking channel of

monetary policy [e.g., Ioannidou et al. (2009), Altunbas et al. (2010), Jimenez et al.
(2012)]. Schularick and Taylor (2012, p. 1032) claim that banking crises are “credit booms
gone wrong.” And Kashyap, Berner and Goodhart (2011) emphasize the relevance of the
downside of pecuniary externalities (contractions accompanied by fire sales of assets) for
the design of prudential policies.
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of optimal capital requirements, and embed it in a DSGE framework with
aggregate shocks, sticky prices, and monetary policy.7 Sufficiently high
capital requirements can always force banks to internalize the riskiness of
their loans and thus tame risk-taking behavior. But monetary policy may not
be suited to this task as it works primarily through the volume rather than
the composition of credit. In our benchmark model, due to the assumption
of perfectly competitive banks operating under constant returns to scale, the
interest rate has no effect on risk-taking incentives as it affects the cost of
funding all (safe or risky) projects equally. From this vantage point, capital
requirements and the interest rate are sharply distinct policy tools that do
not affect the same margins: monetary policy affects the volume but not the
type of credit, while prudential policy affects both the type and the volume of
credit. This makes monetary policy ineffective in ensuring financial stability.
As such, our framework accords with the standard view among policymakers
[expressed, for instance, in Bernanke (2011) and Yellen (2014)] that standard
interest-rate policy cannot serve as the first line of defense against financial
instability.

Our normative analysis highlights the desirability of a policy that sets
the capital requirement to the minimum level that prevents inefficient risk
taking by banks. First, we show that this policy is locally Ramsey-optimal.
Indeed, setting the capital requirement just below this threshold level is
not optimal because it triggers a discontinuous increase in the amount of
inefficient risk taken by banks. This discontinuity is due to banks’ limited
liability, which makes their expected excess return convex in the amount of
risk that they take, so that they take either the minimum or the maximum
amount of risk. And setting the capital requirement just above this threshold
level is not optimal because it has a negative first-order effect on welfare
that cannot be offset by any change in the interest rate around its optimal
value (as this change would have a zero first-order effect on welfare). This
negative first-order effect on welfare, in turn, is due to the fact that taxes
on banks’ profits make equity finance more expensive than debt finance for

7Martinez-Miera and Suarez (2012) examine capital requirements from a perspective
similar to ours; but their model incorporates systemic risk and abstracts from aggregate
shocks and monetary policy.
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the banks. This tax distortion implies that raising the capital requirement
above the threshold level increases banks’ funding costs and decreases the
(bank-loan-financed) capital stock, which is already inefficiently low due to
monopolistic competition and the tax distortion itself.8

Next, we show that this locally optimal policy may be globally optimal
within a class of policies. Specifically, we show that this policy maximizes
steady-state welfare under some condition on parameters (met in our cali-
bration exercise). Therefore, for sufficiently small fluctuations, this locally
optimal policy is globally optimal in the sense of dominating any other policy
that keeps the capital requirement in the neighborhood of any steady-state
value. Our calibration exercise suggests that prudential policy has a large
effect on the steady-state component of welfare and a small effect on its
fluctuations component; this makes a case for our state-dependent locally
optimal policy.

This state-dependent policy raises the capital requirement in response
to shocks that increase banks’ incentives to fund risky projects. In our
benchmark model, the interest rate and the capital requirement do not
affect the same margins, so there is a clear-cut optimal division of tasks
between monetary and prudential policies: in response to shocks that do not
affect banks’ risk-taking incentives, prudential policy should leave the capital
requirement constant, and monetary policy should move the interest rate in
a standard way. In response to shocks that increase (decrease) banks’ risk-
taking incentives, prudential policy should raise (cut) the capital requirement,
and monetary policy should cut (raise) the interest rate in order to mitigate
the effects of prudential policy on bank lending and output. In the latter
case, optimal prudential policy is pro-cyclical (as it is the proximate cause of
output fluctuations), while optimal monetary policy is counter-cyclical. So,
with this chain of causality, the two policies move in opposite directions over

8An alternative to our model with the tax distortion would be to follow Van den Heuvel
(2008) and model the cost of raising capital requirements as foregone liquidity from holding
bank deposits. In his model, liquid deposits and equity are the only sources of funding
for bank loans. So, when capital requirements are higher, banks don’t issue as much
liquid deposits, and households suffer a loss of utility. We don’t pursue this track because
commercial paper (rather than liquid deposits) is a more likely marginal source of funding
for US banks, as Cúrdia and Woodford (2009) point out. For the same reason, following
Cúrdia and Woodford (2009) and others, our modeling of optimal monetary policy will
abstract from the transactions frictions that motivate the Friedman Rule.
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the cycle − a situation that has been envisaged by some policymakers and
commentators [e.g., Yellen (2010), Macklem (2011), Wolf (2012)].

In this benchmark model, risk taking is exclusively related to the type of
credit extended by banks. We can, however, modify our setup to consider
situations in which both the type and the volume of credit matter. To
illustrate this, we develop an extension that incorporates a risk-taking channel
of monetary policy. In this extension, the cost of originating and monitoring
safe loans is an increasing function of the aggregate volume of such loans.9

Consequently, all the shocks that affect the volume of safe loans also affect
the cost of such loans and thus banks’ risk-taking incentives. Although
the particular extension that we consider is motivated by tractability, we
think it highlights the main features of optimal policy interactions in other
environments that link higher output levels and/or lower interest rates to
higher risk-taking incentives. Compared to our benchmark model, the main
novelty here is that both policies optimally take a counter-cyclical stance in
response to some shocks. A favorable productivity shock, for instance, raises
the volume and hence the cost of safe loans, which in turn increases banks’
risk-taking incentives. Following this shock, optimal prudential policy raises
the capital requirement, and optimal monetary policy raises the interest
rate.10 But the optimal interest-rate hike is smaller than it would be in our
benchmark model, because optimal monetary policy mitigates the effects of
the rise in the capital requirement on bank lending and output. Optimal
policy responses to other shocks (shocks that directly increase risk-taking
incentives) are also attenuated when we allow risk-taking incentives to rise
with the volume of credit. Nonetheless, the qualitative aspects of the optimal
policy responses to these shocks do not change: tighter prudential policy
tames the risk taking incentives, and easier monetary policy alleviates some
of the contractionary consequences.

The rest of the paper is organized as follows. Section 2 presents our
9We use this ad-hoc assumption about costs of banking to keep the extension brief.

Hachem (2010) develops a full model of this type of externality in banking costs. In her
model, banks ignore the effect of their own lending decision on the pool of borrowers, with
heterogeneous levels of risk, that is available to other banks.

10There are also other ways to make both policies optimally counter-cyclical in our setup.
As an example, we will present a case with correlated shocks.
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benchmark model. Section 3 derives some implications of banks’ optimization
problem. Section 4 studies prudential policies ruling out risk taking. Section
5 deals with jointly optimal monetary and prudential policies. Sections 6
presents our calibration and Section 7 reports our numerical results. Section
8 presents two extensions (one with an externality in the cost of banking, the
other with correlated shocks) that seem relevant for policy concerns. Section
9 contains concluding remarks.

1 Benchmark Model

To motivate the role of banks in our model, we assume that the capital stock
has to be refurbished at the end of each period by capital producers who
need to borrow the necessary funds. The capital producers have access to
two alternative technologies to furbish capital: one is safe and the other risky.
The latter technology is less efficient on average, but limited liability tempts
the capital producers to use it. Banks are needed to monitor the producers
who claim to use the safe technology, to ensure that they do so. Banks
themselves, however, may have adverse incentives due to limited liability and
deposit insurance, and these adverse incentives create a role for prudential
policy.

Each period is divided into two subperiods. At the beginning of the
first subperiod, all aggregate shocks are realized; households, production
firms, and banks observe these shocks and make their optimization decisions.
In the second subperiod capital producers borrow from banks and buy the
unfurbished capital from households. Capital producers using the risky tech-
nology (if there are any) will be subject to a failure shock that is identically
and independently distributed across these producers. The probability of
failure (which is equal to the fraction of risky producers who will fail) is
known up-front, but the identity of failing producers is only discovered in
the second subperiod.
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1.1 Households

Preferences are defined by the discount factor β ∈ (0, 1) and the period utility
u(ct, ht) over consumption ct and hours of work ht. Households maximize

E0

∞∑
t=0

βtu(ct, ht),

where the function u has the usual properties. All household decisions are
taken in the first subperiod of each period t. We assume that, during this
subperiod, households own the furbished capital stock kt and rent it, at the
rental price zt, to intermediate goods producers. At the end of the subperiod,
after production has taken place, households get back (1 − δ)kt worn-out
capital from intermediate goods producers, where 0 < δ < 1, and invest it in
new capital. Unfurbished capital xt, made of both worn-out capital and new
capital, has to be furbished before it can be used for production next period.
So, at this stage, households sell their unfurbished capital

xt = (1− δ)kt + it, (1)

at the price qxt , to capital goods producers, who can furbish it in the second
subperiod of period t. At the beginning of the next period, households buy
furbished capital kt+1, at a price qt+1, from capital goods producers.

Households also acquire st shares in banks at a price qbt . These banks
are perfectly competitive and last for only one period. Households face the
budget constraint

ct+dt+qbtst+qtkt+it = wtht+
1 +RDt−1

Πt
dt−1+st−1ω

b
t+ztkt+qxt xt+(ωkt +ωft −τht ),

(2)
where dt represents the real value of bank deposits with a nominal return RDt ,
Πt = Pt/Pt−1 is the gross inflation rate in the price index for consumption,
wt is the real wage, ωkt and ωft represent the profits of capital producers and
firms producing intermediate goods, ωbt stands for dividends paid by banks,
and τht is a lump-sum tax paid by households.11

11We do not need to model equity stakes in firms as we assume that the representative
household owns these firms forever.
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Households choose (ct, ht, dt, st, kt, it, xt)t≥0 to maximize utility subject
to (1) and (2). The first-order conditions for optimality are:

uc(ct, ht) = λt,

λt = β
(
1 +RDt

)
Et
{
λt+1
Πt+1

}
, (3)

−uh(ct, ht) = λtwt,

λtq
x
t = λkt ,

λt = λkt ,

λt (qt − zt) = λkt (1− δ),

λtq
b
t = βEt

{
λt+1ω

b
t+1

}
,

where Et {.} denotes the expectation operator conditional on the information
available in the first subperiod of period t, which includes the realization of
all the aggregate shocks. The optimality conditions imply in particular

qxt = 1, (4)

qt = 1− δ + zt. (5)

1.2 Intermediate Goods Producers

There is a unit mass of monopolistically competitive firms producing inter-
mediate goods. Firm j operates the production function:

yt(j) = ht(j)1−νkt(j)ν exp
(
ηft

)
,

where 0 < ν < 1, kt(j) is capital rented by firm j, ht(j) hours of work used
by firm j, and ηft is an exogenous productivity shock. We assume that firms
set their prices facing a Calvo-type price rigidity (with no indexation). Since
their optimization problem is standard, we don’t present the details. We
let α denote the probability that a firm does not get to set a new price at a
given date.

The firms’ cost minimization problem implies

zt
wt

=
(

ν

1− ν

)[
ht(j)
kt(j)

]
.
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1.3 Final Goods Producers

Producers of the final good are perfectly competitive and combine the
intermediate goods yt(j) to form the final good yt. The production function
is given by

yt =
(∫ 1

0
yt(j)

σ−1
σ dj

) σ
σ−1

, (6)

where σ > 1. Profit maximization leads to the demand for good j

yt(j) =
(
Pt (j)
Pt

)−σ
yt, (7)

and free entry leads to the price index

Pt =
(∫ 1

0
Pt (j)1−σ dj

) 1
1−σ

. (8)

The final good may be used for consumption, investment, and the monitoring
of firms.

1.4 Capital Goods Producers

The capital producing firms are owned by households and are perfectly
competitive. They buy unfurbished capital xt during the second subperiod
of period t to produce furbished capital kt+1 that they sell to households
at price qt+1 in the first subperiod of period t + 1. Each capital producer
chooses to operate either a safe technology (S for “safe” or “storage”) or a
risky technology (R for “risky”). A producer i choosing technology S uses
xt(i) units of unfurbished capital to produce kt+1(i) units of furbished capital
with

kt+1(i) = xt(i). (9)

Producers choosing technology R are subject to a failure shock θt that
is independently and identically distributed across risky producers. When
θt (i) = 0, producer i does not produce anything. More specifically, risky
producer i uses xt (i) units of unfurbished capital to produce

kt+1 (i) = θt (i) exp
(
ηRt

)
xt (i) (10)

units of furbished capital, with

θt (i) =
{

0 with probability φ,
1 with probability 1− φ,
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where φ is the exogenous probability of failure and ηRt is the exogenous
stochastic productivity (common to all risky producers) if the project is
successful. We assume that the realization of ηRt is always positive (ηRt > 0),
so that in the absence of failure, the risky technology is more productive than
the safe one. Producer i chooses whether to use technology S or technology
R after observing the realization of ηRt but before observing the realization
of θt (i).

Our setup with two technologies serves to highlight a familiar connection
between limited liability and excessive risk taking: if capital producers are
not monitored properly, they may take on more risk than a hypothetical
social planner would. For exposition purposes, and without affecting much
our main points, we assume that using the risky technology to any degree
is always inefficient from a planner’s perspective, as we elaborate below.12

However, capital producers may have an incentive to use the risky technology,
to the extent that they can hide the fact that they do so, because they have
limited liability. There is therefore a need to monitor capital producers who
claim to use the safe technology, and we assume that only banks have the
appropriate monitoring skills. This motivates a setup with capital producers
getting funds from banks to buy unfurbished capital.

More specifically, the risky technology is assumed to be inefficient in the
sense that, for all realizations of ηRt ,

(1− φ) exp
(
ηRt

)
≤ 1−Ψ, (11)

where Ψ > 0 is the exogenous marginal resource cost of monitoring a capital
producer who claims to use the safe technology.13 The left-hand side of
(11) represents the expected benefit of allocating one unit of unfurbished
capital to the risky technology. The right-hand side is the opportunity cost,
which is the output of the safe technology net of the monitoring cost. This
inefficiency condition is stronger than what we actually need for the risky
technology to be socially undesirable; but we use it because the necessary

12One way to extend our model to incorporate efficient risk taking would involve adding
a third technology that is risky but can be efficiently combined with the safe technology.
This would make the model more realistic by adding some desirable risk, but it would
require solving a portfolio problem that does not seem directly relevant for our purposes.

13In Section 8, we will consider an extension of the model in which this cost is time-varying
and endogenous.
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and sufficient condition involves the degree of risk aversion and we prefer to
define inefficiency only in terms of technology parameters.

Our model simplifies (we think in a harmless way) the relationship
between capital goods producers, their owners, and the creditor banks. In
reality non-bank firms prefer debt finance because they get a tax deduction.
They also need some equity, presumably because of the agency problem
associated with debt. Their owners absorb losses up to their equity stake. In
our model, for simplicity, we abstract from this agency problem and capital
goods producers have no equity. So this translates into a framework in which
their funding consists entirely of loans and they pay no tax; and any profits
or losses arising from stochastic disturbances in the absence of failure of the
risky technology accrue to households.14 Thus, a capital producer i choosing
technology j ∈ {S,R} borrows

qxt xt (i) = lt (i) (12)

at a nominal interest rate Rjt .15 Since capital producers have limited liability,
those using the risky technology will default on their loans in the event of
failure.16

A producer i using technology S chooses xt (i) and lt (i) to maximize

βEt

{
λt+1
λt

[
qt+1kt+1 (i)− 1 +RSt

Πt+1
lt (i)

]}

subject to (9) and (12). The optimality condition implies

Et {λt+1qt+1} = Et
{
λt+1
Πt+1

}(
1 +RSt

)
qxt . (13)

A producer i using technology R chooses xt (i) and lt (i) to maximize

(1− φ)βEt

{
λt+1
λt

[
qt+1kt+1 (i)− 1 +RRt

Πt+1
lt (i)

]}
14Our results however would be qualitatively unchanged if capital goods producers were

allowed to borrow only a fraction of the funds they need.
15There is no need to work with nominal loan contracts in our model. However, since we

will assume that monetary policy sets a nominal interest rate, and for the sake of realism,
we make loan contracts nominal.

16A capital producer, in our setup, will have no incentive to diversify across multiple
risky projects (or to combine risky and safe technologies). As we will elaborate in Section
3, the benefits of limited liability are maximized by undertaking a single risky project.
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subject to (10) and (12). The optimality condition implies

Et {λt+1qt+1} exp
(
ηRt

)
= Et

{
λt+1
Πt+1

}(
1 +RRt

)
qxt . (14)

Since our model allows for two distinct interest rates, banks need to
monitor the capital producers that borrow at the lower rate to ensure that
they use the associated technology. Our model has no equilibrium with
RRt < RSt .17 Therefore, there is no need for banks to monitor capital
producers that claim to use the risky technology. Accordingly, we will
associate a cost with monitoring capital producers that claim to use the safe
technology.

When both (13) and (14) hold, capital producers are indifferent between
the two technologies and

1 +RRt
1 +RSt

= exp
(
ηRt

)
. (15)

If the interest-rate ratio on the left-hand side is strictly higher than the critical
value on the right-hand side, then capital producers use only technology S.

1.5 Banks

Banks are owned by households. They are perfectly competitive. They can
make safe and risky loans (lSt and lRt ). They incur a cost ΨlSt of monitoring
safe loans, where Ψ satisfies (11). They can fund their loans by raising equity
(et) or issuing deposits (dt), so that their balance-sheet identity is

lSt + lRt = et + dt, (16)

as et is defined net of monitoring costs.
We will show, in Section 3 below, that each bank in our model will extend

risky loans to at most one capital producer employing the risky technology
(because the benefits of limited liability are maximized by concentrating the
risk in a single project). For now, we just assume this and use θt to refer
to the failure shock associated with the project that a particular bank may
fund.

17Indeed, if we had RRt < RSt , then funding the safe projects would strictly dominate
funding the risky projects because it would pay more in every state (whatever the realization
of the failure shocks) and incur no monitoring cost.
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Given our inefficiency assumption (11), risky projects reduce welfare. So,
if the regulators could detect any risky project, they would devise a sufficient
penalty to prevent it. We need an information friction to rule out a trivial
and unrealistic solution in which the regulators directly forbid risk taking.
Following Van den Heuvel (2008), we assume that banks can hide some risky
loans in their portfolio from regulators. More specifically, we assume that
regulators observe the total amount of loans made by each bank but cannot
detect its risky loans up to a given fraction γ of its safe loans. The prudential
authority imposes risk-weighted capital requirements on risky loans above
this fraction. We specify the capital requirement as

et ≥ κt
(
lSt + lRt

)
+ κmax

{
0, lRt − γlSt

}
. (17)

The higher the capital requirement, the more banks internalize the social
cost of risk, as they have more “skin in the game.” The prudential authority
will optimally choose a sufficiently high κ to ensure that lRt ≤ γlSt in equilib-
rium. Therefore, this is equivalent to rewriting the capital requirement as a
minimum ratio of equity to loans:

et ≥ κt
(
lSt + lRt

)
, (18)

and imposing the following constraint on banks:

lRt ≤ γlSt . (19)

In the first subperiod of period t + 1, regulators close the banks that
cannot meet their deposit obligations, i.e. the banks with

(1 +RSt )lSt + θt(1 +RRt )lRt − (1 +RDt )dt < 0,

or equivalently, using (16), the banks whose equity satisfies

et <

[
1− θt

(
1 +RRt
1 +RDt

)]
lRt −

(
RSt −RDt
1 +RDt

)
lSt .

We want our model to capture the fact that banks find equity finance more
costly than debt finance in reality. We attribute this to a tax distortion
(tax deduction for debt finance), although this interpretation is not essential
for our analysis. We take this distortionary tax to be a feature of the
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environment: the model does not explain why this tax is in place, and the
policymakers in our model (the monetary and prudential authorities) cannot
set this tax optimally.18 Specifically, we assume that gross revenues from
loans are taxed at the constant rate τ after deductions for gross payments
on deposits and monitoring costs.19 The amount of bank equity, net of
monitoring costs, is therefore et = qbtst − (1− τ)ΨlSt .

Banks choose et, dt, lRt and lSt to maximize

Et

{
β
λt+1 (1− τ)ωbt+1

λt

}
− et − (1− τ) Ψtl

S
t ,

where

ωbt+1 = max
{

0, 1 +RSt
Πt+1

lSt + θt
1 +RRt
Πt+1

lRt −
1 +RDt

Πt+1
dt

}
, (20)

subject to (16), (18) and (19).

1.6 Government and Market-Clearing Conditions

The government guarantees bank deposits. The lump-sum tax on households
balances the budget.20 The losses imposed by bank j on the deposit-insurance
fund amount to

ζt(j) = max
{

0,
1 +RDt−1

Πt
dt−1(j)−

1 +RSt−1
Πt

lSt−1(j)− θt−1 (j)
1 +RRt−1

Πt
lRt−1(j)

}
,

and the lump-sum tax paid by households is

τht =
∫ 1

0

{
ζt(j)− τ [ωbt (j) + ΨlSt (j)]

}
dj.

We consider two policy instruments: the deposit rate RDt for monetary
policy and the capital requirement κt for prudential policy. We will discuss our

18This feature of the tax code seems to be one of the primary reasons for banks to lobby
against higher capital requirements, at least in the US and the euro area. It is commonly
invoked in models with both debt and equity finance [e.g. Jermann and Quadrini (2009,
2012)], to break the Modigliani-Miller theorem about irrelevance of financial structure.

19Our specification is motivated by analytical tractability. In our model, gross revenues
from loans are received at date t+ 1, gross payments on deposits are made at date t+ 1,
but monitoring costs are paid at date t. Therefore, banks in effect receive a subsidy at date
t and pay a tax at date t+ 1. This has the (admittedly awkward) implication that a bank
in our model may collect the subsidy at t and subsequently fail, paying no tax at t+ 1.

20It is harmless to abstract from deposit insurance fees paid by banks and include these
in the lump-sum tax paid by households who own the banks.
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specifications of prudential policy in Sections 4 and 7. For each specification,
our monetary policy will be the Ramsey-optimal policy.

Firms producing intermediate goods rent their capital from the represen-
tative household; in equilibrium, their choices must satisfy∫ 1

0
kt(j)dj = kt.

Similarly obvious market-clearing conditions must be satisfied in the markets
for labor, loans, and unfurbished capital. The market-clearing condition for
goods is

ct + it + ΨlSt = yt. (21)

2 Implications of Banks’ Optimization

This section presents four implications of our banks’ optimization problem:
(1) each bank funds at most one risky project; (2) either all the banks take
no risk (lRt = 0), or they take the maximum undetected risk (lRt = γlSt );
(3) the capital constraint is binding; and (4) there is a financial wedge (a
non-zero spread between lending and deposit rates) that depends on capital
requirements and exogenous variables.

We first show that a bank in our setup (and, by a similar reasoning, a
capital goods producer) has no incentive to fund more than one risky project.
Clearly, a bank would not fund a continuum of risky projects: a fraction φ of
these projects would fail each period, and the overall return would be below
the safe rate. Suppose a bank funds the risky projects of a number of capital
producers i in some finite set I. The bank chooses the set I and the loan
amounts lt(i) for i ∈ I subject to∑

i∈I
lRt (i) = lRt .

We define
rt+1 ≡

(
1 +RRt

)∑
i∈I

θt (i) lRt (i)

as the gross nominal return on the bank’s portfolio of risky loans (the subscript
t+ 1 highlights the fact that this is a random variable with respect to the
information set at date t). The bank’s objective amounts to maximizing

Et {max [0, rt+1 − bt]} ,
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where bt ≡
(
1 +RDt

)
dt −

(
1 +RSt

)
lSt , for given values of lRt , lSt , and dt.

Since we have
Etrt+1 = (1− φ)

(
1 +RRt

)
lRt

regardless of the choices of I and lRt (i) for i ∈ I, we get

Et {max [0, rt+1 − bt]} = Pr {rt+1 > bt}E {rt+1 − bt| rt+1 > bt}

=Et {rt+1 − bt} − Pr {rt+1 ≤ bt}E {rt+1 − bt| rt+1 ≤ bt}

= (1− φ)
(
1 +RRt

)
lRt − bt

− Pr {rt+1 ≤ bt}E {rt+1 − bt| rt+1 ≤ bt} .

So, the bank’s objective amounts to minimizing the negative random
variable Pr {rt+1 ≤ bt}Et{rt+1− bt|rt+1 ≤ bt}. Loosely stated, maximizing
the gains to the bank when it does not default is equivalent to maximizing
the losses of the deposit-insurance fund when the bank defaults. These losses
are maximized when the bank does not diversify at all and puts lRt in a single
risky project (since this maximizes the probability of the worst outcome,
rt+1 = 0). We formalize this argument and prove the following proposition
in the Appendix.

Proposition 1 Each bank funds at most one risky project.

Next, we show that our model only admits two types of equilibria: one
with no bank taking any risk (lRt = 0), the other with all banks taking the
maximum amount of risk (lRt = γlSt ). The basic insight follows Van den
Heuvel (2008), but since we have made changes to his model, we prove the
following proposition in the Appendix.

Proposition 2 There are no equilibria with 0 < lRt < γlSt .

The intuition is as follows. If, given the loan portfolio, bank equity is
sufficiently small to be wiped out when risky projects fail, then banks do
not internalize the cost of additional risk taking. Additional losses from
increasing lRt , if risky projects fail, are truncated by deposit insurance and
limited liability. Consequently, the only candidate for an equilibrium with the
possibility of bank failure involves the corner solution lRt = γlSt . Alternatively,

18



if bank equity is sufficiently large for banks to remain solvent even when risky
projects fail, then banks internalize the cost of additional risk taking. In
that case, since we assume that the risky technology is inefficient, banks can
increase their market value by reducing lRt . Accordingly, the only candidate
for an equilibrium without the possibility of bank failure involves the corner
solution lRt = 0. In particular, if bank equity is large enough to make banks
residual claimants on their risky loans when lRt = γlSt , then there does not
exist an equilibrium with lRt = γlSt .

The next proposition establishes that there are no equilibria in which the
capital constraint is lax.

Proposition 3 In equilibrium, the capital constraint is binding:

et = κt
(
lSt + lRt

)
. (22)

This proposition follows almost directly from our assumption about the
tax advantage of debt finance over equity finance, but we provide a proof in
the Appendix.

Finally, we derive the spread between the lending and deposit rates at each
of the two candidate equilibria. Consider first the candidate equilibrium with
lRt = 0. Using (16) to eliminate dt and (22) to eliminate et, the representative
bank’s objective can be rewritten as

(1− τ)Et

{
β
λt+1ω

b
t+1

λt

}
− [κt + (1− τ) Ψ] lSt ,

where
ωbt+1 =

[
RSt −RDt

Πt+1
+ 1 +RDt

Πt+1
κt

]
lSt .

The representative bank chooses lSt so as to maximize its expected excess
return. Using (3), the first-order condition of this program can be written as

1 +RSt
1 +RDt

= 1 + Ψ + τκt
1− τ . (23)

The financial wedge is exogenous because banks live for only one period
in our model. The wedge reflects monitoring costs and the higher cost of
equity funding that arises from the interaction between the tax distortion
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and capital requirements. A more stringent prudential policy (an increase
in κt) increases the wedge by forcing banks to rely more heavily on equity
finance.

At the maximum-risk corner with lRt = γlSt , the balance-sheet identity
gives (1 + γ)lSt = et + dt, and the binding capital requirement implies
et = κt(1+γ)lSt . Using these, the representative bank’s optimization problem
amounts to choosing lSt to maximize

(1− τ) (1− φ)Et
{
β
λt+1
λtΠt+1

}[
(1 +RSt ) + γ(1 +RRt )

−(1 + γ)(1− κt)(1 +RDt )
]
lSt − [κt(1 + γ) + (1− τ) Ψ] lSt .

The optimality condition, in conjunction with (3) and (15), implies

1 +RSt
1 +RDt

= 1 + γ

1 + γ exp
(
ηRt
) [1 + τκt

1− τ + φκt
(1− τ)(1− φ) + Ψ

(1 + γ)(1− φ)

]
.

(24)
The financial wedge now depends on parameters (γ and φ) and shocks (ηRt )
related to the risky technology, because making safe loans enables banks
to make risky loans (given that hiding the risk is subject to the constraint
lRt ≤ γlSt in our model). In fact, banks at the maximum-risk corner incur
losses on their safe loans and make profits on their hidden risky loans that
compensate for these losses. If they did not incur losses on their safe loans,
then the maximum-risk corner would not be an equilibrium. The fact that
they do incur losses on their safe loans can be easily verified by showing that
the right-hand side of (24) is lower than the right-hand side of (23) for any
value of κt consistent with the maximum-risk corner, as (23) is the condition
for zero profits on safe loans at that corner.21

3 Prudential Policy

A prudential policy that is sufficient to rule out risk taking is one that makes
banks residual claimants to any losses they may incur, so that they internalize

21More specifically, for any value of κt such that κt < κ?t , where κ?t is defined in the next
section, the condition for the right-hand side of (24) to be lower than the right-hand side
of (23) can be written as τ < [(1 + γ)φ]/{γ(1− φ)[exp(ηRt )− 1]}. This condition is met
because τ < 1 < (1 + γ)/γ < [(1 + γ)φ]/{γ(1− φ)[exp(ηRt )− 1]}, where the last inequality
follows from the inefficiency condition (11).
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the externality arising from limited liability. This section first characterizes
this prudential policy, and then derives the least stringent prudential policy
that rules out risk taking.

Consider a bank that takes the maximum amount of risk by setting
lRt = γlSt . Using (16) and (22) to eliminate dt from (20), it is straightforward
to show that this bank remains solvent (ωbt+1 ≥ 0) when its risky project
fails (θt = 0) if and only if

κt ≥ κ̃
(
RDt , R

S
t

)
≡ 1− 1

1 + γ

1 +RSt
1 +RDt

. (25)

The solution for κ̃
(
RDt , R

S
t

)
, at the candidate equilibrium with lRt = 0,

follows from (23) and (25). This leads to the following proposition.

Proposition 4 (a) A sufficient condition for lRt = 0 in equilibrium is

κt ≥ κ̃ ≡
(1− τ) (γ −Ψ)

τ + (1− τ) (1 + γ) ; (26)

(b) κ̃ is increasing in γ and decreasing in Ψ.

We assume γ > Ψ, which implies κ̃ > 0, so that condition (25) may or
may not be met depending on the value of κt. Without this restriction, banks
would never be tempted to take risk even in the absence of (positive) capital
requirements. The threshold κ̃ is increasing in γ: the higher the fraction of
risky loans that a bank deviating from the safe corner can hide, the riskier
this bank, and the higher the capital requirement needed to make it remain
solvent in case of failure. And κ̃ is decreasing in Ψ: the higher the cost of
monitoring safe loans, the higher the spread between the interest rate on safe
loans and that on deposits; thus, the larger the cash flow from safe loans that
is available to redeem the deposits, and the lower the capital requirement
needed to make a deviating bank remain solvent if its risky project fails.

Although this policy is sufficient to rule out risk taking, it is more stringent
than necessary. The following proposition characterizes the least stringent
prudential policy that rules out risk taking.

Proposition 5 (a) A necessary and sufficient condition for lRt = 0 in
equilibrium is κt ≥ κ?t , where

κ?t ≡ (1− τ)
(1− φ) γ

[
exp

(
ηRt

)
− 1

]
+ Ψ

[
(1− φ) γ exp

(
ηRt

)
− φ

]
φ (1 + γ)− γτ (1− φ)

[
exp

(
ηRt
)
− 1

] ; (27)
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(b) κ?t < κ̃; (c) κ?t is increasing in the probability of success of the risky
technology 1− φ, the productivity of the risky technology conditionally on its
success ηRt , and the maximum ratio of risky to safe loans γ.

We prove this proposition in the Appendix by considering a bank that
deviates from a candidate equilibrium with lRt = 0. The same intuition we
gave for Proposition 2 applies: if there are profitable deviations, the most
profitable one is at the corner with maximum risk (lRt = γlSt ). To derive
the value of κ?t , we make this bank indifferent between staying at the safe
corner and moving to the maximum-risk corner. The bank turns indifferent
with less equity at stake than what would make it residual claimant (i.e.,
we have κ?t < κ̃) because risk is inefficient in our model. Indeed, when κt is
just below κ̃, the deviating bank benefits little from limited liability, as it
incurs most of the loss on its risky loans when the risk materializes. This
small benefit is dominated by the cost of risky loans due to their inefficiency,
as expressed in (11), so that the bank prefers to stay at the safe corner.
It is only when κt falls below κ?t that the limited-liability benefit starts to
outweigh the inefficiency cost, and the deviation to be profitable.

The preceding reasoning also helps us understand the nature of the state
dependence, in our model, of the constraint κt ≥ κ?t . Macro-prudential policy
must be tight enough to prevent risk taking in equilibrium. The threshold κ?t
depends positively on the productivity of the risky technology conditionally
on its success ηRt because an increase in this productivity raises risk-taking
incentives for banks. Similarly, κ?t depends negatively on the probability of
failure of the risky technology φ and positively on the maximum ratio of
risky to safe loans γ.22

Finally, κ?t may depend positively or negatively on Ψ because of conflicting
effects. To understand these effects, consider a deviating risky bank making
one unit of safe loans and γ units of risky loans, and rewrite the coefficient
of Ψ in the numerator of the fraction in (27) as the sum of three terms:

22Our model could be extended to allow the prudential authority to choose a state-
dependent level γt by incurring some supervision cost, following Van den Heuvel (2008).
The only change in (27) that this would entail is that the parameter γ on the right-hand
side should then be replaced by the endogenous variable γt. In this case, the prudential
authority would optimally respond to shocks that increase risk-taking incentives by devoting
more resources to supervision (i.e. lowering γt) and raising the capital requirement κt by
less.
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−1 + (1− φ) + (1− φ)γ exp(ηRt ). The first term, −1, is negative and reflects
a franchise-value effect: the deviating risky bank has incurred monitoring
costs on its one unit of safe loans and has a vested interest in remaining
solvent to recoup these costs. In a way, monitoring costs in our model work
like giving the banks some charter value that they would like to preserve by
avoiding bankruptcy. The second term, 1 − φ, is positive and reflects the
fact that with probability 1− φ, the bank gets at date t+ 1 gross interest
payments on its one unit of safe loans, whose discounted value at date t is
(1 + RSt )/(1 + RDt ), which increases one-to-one with monitoring costs (as
reflected in (23)). Similarly, the last term, (1− φ)γ exp(ηRt ), is also positive
and reflects the fact that with probability 1− φ, the bank gets at date t+ 1
gross interest payments on its γ units of risky loans, whose discounted value
at date t is γ(1 +RRt )/(1 +RDt ) = γ exp(ηRt )(1 +RSt )/(1 +RDt ), where the
spread (1 +RSt )/(1 +RDt ) increases one-to-one with monitoring costs. When
the sum of these three terms is positive, an increase in monitoring costs
leads to an increase in the expected excess return of the deviating risky
bank, without affecting the expected excess return of the representative safe
bank (which remains zero in equilibrium). Therefore, risk-taking incentives
increase, and so does κ?t .23

Perhaps a more surprising feature of (27) is that κ?t does not depend on
the monetary policy instrument RDt . This is because, in our model with
perfect competition and constant returns, the deposit rate RDt does not
affect the spread between the interest rate on risky loans RRt and the interest
rate on safe loans RSt , and therefore does not affect banks’ incentives for
risk taking. This implication of our model is in contrast to arguments that
periods of economic boom or low interest rates raise risk-taking incentives.
We will revisit this contrast in Subsection 8.1 and in the concluding section.

We assume that parameter values and shock processes are such that κ?t
is positive.24 Its steady-state value has to be positive for our analysis to be
relevant. To allow for realizations of ηRt that make κ?t negative, we would

23Monitoring costs may thus provide an additional source of risk-taking incentives in our
benchmark model. They are not, however, a necessary ingredient in the sense that all our
results are still valid when Ψ is equal to zero. It is only in our extended model (considered
in Subsection 8.1), with an externality in the cost of banking, that they play a key role.

24This implies that κ̃ > 0, given Point (b) of Proposition 5, and therefore that γ > Ψ.
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just need to replace κ?t with max(0, κ?t ).

4 Optimal Policies

This section presents our analytical results about jointly optimal monetary
and prudential policies. We first show that the policy setting κt to κ?t and
optimizing over RDt is locally optimal. Then, we study steady-state welfare
and use the results to extend our local-optimality result to a global-optimality
result under suitable conditions.

4.1 Locally Optimal Policies

We define locally Ramsey-optimal policies as follows: a policy (R̂Dτ , κ̂τ )τ≥0

is locally Ramsey-optimal if there exists a neighborhood of (R̂Dτ , κ̂τ )τ≥0

such that no other policy in this neighborhood gives a higher value for
the representative household’s expected utility than (R̂Dτ , κ̂τ )τ≥0 does. Let(
RD?τ

)
τ≥0

denote the monetary policy that is (globally) Ramsey-optimal
when the prudential policy is (κ?τ )τ≥0. The following proposition states that,
under a certain condition, setting jointly

(
RDτ

)
τ≥0

to
(
RD?τ

)
τ≥0

and (κτ )τ≥0

to (κ?τ )τ≥0 is locally Ramsey-optimal.

Proposition 6 If the right derivative of welfare with respect to κt at
(
RDτ , κτ

)
τ≥0

=
(
RD?τ , κ?τ

)
τ≥0

is strictly negative for all t ≥ 0, then the policy
(
RDτ , κτ

)
τ≥0

=
(
RD?τ , κ?τ

)
τ≥0

is locally Ramsey-optimal.

We prove this proposition in the Appendix. The basic idea is the following.
First, for any RDt in the neighborhood of RD?t , setting κt just below κ?t is not
optimal, because it moves the economy from the safe to the maximum-risk
corner.25 Under our inefficiency condition (11), this triggers a discontinuous
drop in the average productivity of capital goods producers and therefore in
welfare. Any other effect on welfare is continuous and, therefore, dominated
by this discontinuous negative effect provided that

(
RDt , κt

)
is close enough

to
(
RD?t , κ?t

)
. Second, if the right derivative of welfare with respect to κt at

25Our model has a unique equilibrium for any given value of κt, and this equilibrium is
symmetric across banks. That is, the threshold value of κt that makes a bank indifferent
between deviating or not deviating from a candidate equilibrium with lRt = γlSt is also κ?t .
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(
RD?t , κ?t

)
is strictly negative, then setting κt just above κ?t is not optimal

either, because it has a negative first-order effect on welfare that cannot be
offset by any change in RDt around its optimal value RD?t (as this change
would have a zero first-order effect on welfare).

The right derivative of welfare with respect to κt at
(
RD?t , κ?t

)
can

be expected to be strictly negative because raising κt from κ?t increases
banks’ funding costs and therefore decreases the capital stock, which is
already inefficiently low due to the monopoly and tax distortions, without
reducing the use of the risky technology, which is already zero. We will check
numerically in Section 7 that this condition is met. We now show analytically
that it is met at the steady state.

4.2 Steady-State Welfare

Since our model has no monetary distortion, the optimal steady-state rate
of inflation is zero regardless of the prudential policy in place. Accordingly,
we focus on zero-inflation steady states in the following. The Appendix
presents the solution for the steady-state values of some key endogenous
variables in our model, for a given prudential policy. We assume iso-elastic
consumption-utility and labor-disutility functions.

At the safe corner (i.e. for κ ≥ κ?, where variables without time subscript
denote steady-state values), the capital stock is inefficiently low, all the
more so as the capital requirement κ is high. To understand why, write the
marginal product of capital (MPK) as the product of the rental price of
capital (z) times the monopoly markup, and use the steady-state versions of
(3), (4), (5), (13), and (23) to rewrite it as

MPK =
(

σ

σ − 1

)
z =

(
σ

σ − 1

)[ 1
β
− (1− δ) +

τκ
1−τ + Ψ

β

]
.

As apparent from the latter expression, there are three forces that make
MPK too high relative to the first-best benchmark: the monopoly distortion
(σ/(σ − 1) > 1), the interaction between the tax distortion and the capital
requirement (τκ), and the monitoring cost (Ψ).26 As κ decreases (while

26In addition to distorting MPK, the monitoring cost also lowers welfare through the
goods-market-clearing condition.
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remaining above κ?), banks’ cost of financing loans declines (as banks can
finance these loans with a larger fraction of deposits, which are cheaper than
equity because of the tax distortion); therefore, capital goods producers’ cost
of borrowing declines too, so that the capital stock rises. As we show in the
Appendix, not only the capital stock, but also welfare rises as κ decreases to
κ?. The first two panels of Figure 1 illustrate this result using the calibration
that will be presented in the next section (in which κ? = 0.12). The last
two panels show that, under this calibration, consumption and hours worked
both rise too as κ decreases to κ?.

[FIGURE 1 ABOUT HERE]

As κ crosses the threshold κ? from above, banks move from the safe corner
to the maximum-risk corner. There is a discontinuous increase in the use of
the inefficient technology R and, therefore, in the resource cost of maintaining
a given capital stock, or, equivalently, in the effective depreciation rate.
Indeed, at the safe corner, this cost (steady-state investment and monitoring
cost) is (δ + Ψ)k, so that the effective depreciation rate is δS ≡ δ + Ψ.
Using the steady-state versions of (1), (4), (9), (10), (12), (19) with equality,
and (21), it is easy to show that, at the maximum-risk corner, the effective
depreciation rate is instead

δR ≡ 1 + γ + Ψ
1 + γ(1− φ) exp(ηR) − (1− δ) = δS +

γ
[
1− (1 + Ψ)(1− φ) exp(ηR)

]
1 + γ(1− φ) exp(ηR)

> δS +
γ(1 + Ψ)

[
1−Ψ− (1− φ) exp(ηR)

]
1 + γ(1− φ) exp(ηR) > δS ,

where the first inequality follows from 1/(1 + Ψ) > 1 − Ψ and the second
one from the inefficiency condition (11). Thus, as κ crosses the threshold
κ? from above, there is a discontinuous increase in the effective depreciation
rate. The only other effect of κ crossing the threshold κ? is a change in
the MPK distortion. Unlike the former one, however, the latter effect is
continuous in κ: it is easy to show that the steady-state versions of (23) and
(24) give the same value for the financial wedge at κ = κ?. This explains
why, in Figure 1, consumption decreases, hours worked increase, and welfare
decreases discontinuously as κ crosses the threshold κ? from above. Given
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the discontinuous increase in hours worked, there has to be a discontinuous
increase in the capital stock as well in order to maintain the marginal product
of capital constant, as illustrated in the second panel of Figure 1.

Finally, at the maximum-risk corner (i.e. for κ < κ?), the capital stock
rises as κ decreases to 0, as we show in the Appendix and as is illustrated in
the second panel of Figure 1. This happens for the same reason as above,
namely because of a decline in banks’ cost of financing loans. We also show
in the Appendix that, under a certain condition on the parameters (which is
met by our calibration, as apparent from the first panel of Figure 1), welfare
rises too as κ decreases to 0.27 This rise in welfare is associated with increases
in both consumption and hours worked, as shown in the last two panels of
Figure 1.

4.3 Globally Optimal Policies

Our discussion above implies that steady-state welfare is maximized either
at κ = κ?, or at some value for κ between zero and κ? (the latter value being
zero when welfare is decreasing in κ for 0 ≤ κ < κ?, as is the case under
the calibration that we consider). Which of these dominates will notably
depend on the size of the MPK distortion and the effective depreciation
rates. The condition on the structural parameters for steady-state welfare to
be maximized at κ = κ? can easily be obtained from the values of c and h

(as functions of κ) given in the Appendix. In the rest of this subsection, we
restrict the analysis to the set of structural-parameter values such that this
condition is met. Note that it is met in particular under the calibration that
we consider, as apparent from the first panel of Figure 1.

Turning to the dynamic model, consider alternative prudential policies
in conjunction with their respective Ramsey-optimal monetary policies. The
welfare ranking of these policies involves comparison of both the steady-
state and the fluctuations components of welfare across these policies. For

27When this condition is not met, welfare first increases and then decreases as κ falls
from κ? to 0. The latter decrease is due to the fact that the capital stock is then inefficiently
large because of banks’ limited liability. This can be seen by using the steady-state versions
of (3), (4), (5), (13), and (24) to express MPK as a function of κ and show that, for
sufficiently low values of κ, MPK can be lower than its optimal value conditionally on the
effective depreciation rate, i.e. lower than the value 1/β − (1− δR).
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sufficiently small fluctuations, this welfare ranking coincides with the ranking
of steady-state welfare levels, so that policies that keep κt in the neighborhood
of κ? dominate policies that keep κt in the neighborhood of any other steady-
state value. Now, our locally-optimal-policy result (Proposition 6) states
that the policy (κt, RDt ) = (κ?t , RD?t ) is optimal among all policies keeping
κt in the neighborhood of κ?. Therefore, this policy is globally optimal in
the sense of dominating any policy that keeps κt in the neighborhood of any
steady-state value.

We turn next to a calibration exercise to confirm that the policy (κt, RDt ) =
(κ?t , RD?t ) can be optimal under plausible parameter values and magnitudes
of shocks.

5 Calibration

Our calibration is reported in Table 1. Our parameter specifications for
households and firms are fairly standard. The period of time is a quarter.
We let

u(ct, ht) = log(ct)−
Ξ

1 + χ
h1+χ
t

and set Ξ = 3.409 and χ = 0.276 following Gertler and Karadi (2011).28

We also follow Gertler and Karadi (2011) in setting the Calvo parameter
α to 0.779, the capital elasticity in the intermediate-good technology ν to
0.330, and the depreciation rate δ to 0.025. The discount factor β is such
that the household discounts the future at the deposit rate, 2.76 percent per
year (see Van den Heuvel, 2008). The value of the elasticity of substitution
between intermediate goods σ is related to the degree of monopoly power
firms have. Estimates of markups fall in the 10–20 percent range, implying
that the elasticity of substitution lies in the 6–11 range. We follow Golosov
and Lucas (2007) and set the elasticity of substitution to 7, implying a firms’
markup of about 16 percent. We fit an AR(1) process on the detrended
logarithm of the TFP series corrected for utilization, as reported by Fernald
(2014), for the period 1993Q1-2007Q4. This leads to a persistence parameter

28Gertler and Karadi (2011) also allow for consumption habits and investment-adjustment
costs to get empirically plausible impulse-response functions (IRFs). Our model does not
incorporate these features, nor any other features added to medium-scale New Keynesian
models to match empirical IRFs.
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of 0.966 for the technology shock ηft and a standard error of 0.0068 for its
innovations.

The parameters pertaining to the banking system are set as follows. The
tax rate on bank profits is set to 2.29 percent. This value is chosen to equate
the after-tax return on bank equity in our model to the after-tax return in
US data.29 Other parameters and shock processes are set according to the
following interpretation of the 2007-2009 crisis. We assume that, before the
corresponding NBER recession (2007Q4-2009Q2), the U.S. economy was at
the safe corner with a constant value of κt equal to 10 percent (taken from
Van den Heuvel, 2008). We set the average spread between the safe loan rate
and the deposit rate to 2.26 percent per annum during that period (using
Van den Heuvel’s calculations for total loans between 1993 and 2004). We
then use (23) and obtain Ψ = 0.003 per quarter.30

We think of RRt as the rate of return on risky assets that are always
traded in the economy (although not necessarily by banks). We use Gilchrist
and Zakraǰsek’s (2012) spread as our proxy of RRt − RSt , and use (15) to
compute ηRt from 1993Q1 to 2012Q4. For our benchmark calibration, we
estimate an AR(1) process for ηRt over the 1993Q1-2007Q3 period, and obtain
the persistence parameter ρR = 0.905 and the innovation standard deviation
sdR=0.6e-03. We will also consider an alternative calibration estimating the
AR(1) process over 1993Q1-2012Q3. This does not change our estimate of the
persistence parameter, but more than doubles our estimate of the standard
deviation (to 1.5e-03). We will report the results under the alternative
calibration when the difference is noteworthy.

[TABLE 1 ABOUT HERE]

Van den Heuvel (2008) finds that a constant capital requirement of 10
29In the data, the after-tax return on equity is given by (1− τ c)π/e where τ c, π and e

respectively denote corporate tax rate, profits and equity. In our model, this quantity is
given by (1− τ)(π+ e)/e− 1 where τ denotes the proper tax rate that applies in our model.
By equating these two quantities, and using the fact that the average return on equity is 7
percent and the tax rate on corporate profits is 35 percent, we obtain the number reported
in Table 1.

30We also considered a shock on the monitoring cost, Ψt, and calibrated its stochastic
process using (23) (with Ψ replaced by Ψt) and Federal Reserve Bank of St. Louis data on
the bank prime loan rate and the deposit rate. We found this shock to be quantitatively
insignificant and chose therefore not to keep it.
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percent is sufficient to deter inefficient risk taking, and our interpretation of
the pre-crisis period is consistent with this finding. More recent contributions
suggest that higher capital requirements are necessary to deter risk taking in
the aftermath of the crisis. For example, Begenau (2015) obtains an optimal
capital requirement of 14 percent. For our calibration, we assume that the
steady-state value of κ?t is currently 12 percent; given the estimated shock
process for ηRt and the rest of our calibration, this implies that κ?t fluctuates
between 10 percent and 14 percent with probability 0.927.31

We assume that changes in the steady-state value ηR increased κ? and
triggered the crisis. Setting κ? to 12 percent and ηR to 0.012 (the average
value of Gilchrist and Zakraǰsek’s spread during the crisis, 2007M12-2009M6)
in the steady-state version of (27) leads to one relationship between γ and
φ. Moreover, in our model, when the economy switches from the safe to the
maximum-risk corner, the charge-off rate increases from 0 to (γφ)/(1 + γ).
Setting (γφ)/(1 + γ) to the observed increase in the charge-off rate during
the crisis leads to another relationship between γ and φ.32 Solving the
two-equation system leads to γ = 0.385 and φ = 0.034.33

It is easy to check that this calibration satisfies the two conditions imposed
on the parameters: the inefficiency condition (11) and, by construction, the
condition κ? > 0.

6 Numerical Results

We consider alternative specifications of prudential policy. One specification
sets κt = κ?t , which ensures that the risky technology is not used. The other
specifications set constant values of κt, either below 10 percent or above 14
percent. We treat these as low (or high) enough for the risky technology to
be always (or never) used, given the low probability that κ?t falls outside the
10−14 percent range under our baseline calibration. For each specification of

31In our alternative calibration with a more volatile ηRt , κ?t fluctuates between 8 percent
and 16 percent with probability 0.865.

32More specifically, using Federal Reserve data on the charge-off rate on total loans and
leases, we subtract the average charge-off rate before the crisis (1993Q1-2007Q3) from
the average charge-off rate during the crisis (2007Q4-2009Q2) and get (γφ)/(1 + γ) =
1.61− 0.67 = 0.94 percent.

33This two-equation system leads to a quadratic equation in γ, which has a unique
positive solution.
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prudential policy, we consider the Ramsey-optimal monetary policy. We use
the program Get Ramsey [developed by Levin and López-Salido (2004) and
used in Levin, Onatski, Williams and Williams (2005)] to get the optimality
conditions of the Ramsey monetary-policy problem. We then use Dynare to
solve numerically, at the first or second order, the resulting system.34

The condition stated in Proposition 6 is that the right derivative of welfare
with respect to κt at

(
RD?t , κ?t

)
is strictly negative. We check numerically

that this derivative is indeed strictly negative. We can infer this derivative
from the Lagrange multiplier associated to the constraint κt = κ?t in the
optimization problem that determines RD?τ . This Lagrange multiplier is
negative in the steady state, and remains negative (at the first order) in the
presence of shocks.35 Therefore, the policy

(
RDt , κt

)
=
(
RD?t , κ?t

)
is locally

Ramsey-optimal under our calibration.
We express the welfare cost of the constant-κt regimes relatively to the

κt = κ?t regime in units of consumption. We distinguish between a steady-
state component and a fluctuations component of these welfare costs. The
steady-state component xss solves

log [(1 + xss) c]− Ξ h1+χ

1 + χ
= log (c?)− Ξh

?1+χ

1 + χ
,

where c and h (respectively c? and h?) denote steady-state consumption
and hours worked in the constant-κt regime considered (respectively in the
κt = κ?t regime). Likewise, the fluctuations component xf solves

E
[+∞∑
t=0

βt
(

log
(
1 + xf

)
− (1 + χ) Ξh1+χ ĥ

2
t

2

)]

= E
[+∞∑
t=0

βt
(
− (1 + χ) Ξh?1+χ ĥ

?2
t

2

)]
,

where ĥt (respectively ĥ?t ) denotes the log-deviation of hours worked relatively
to their steady-state value in the constant-κt regime considered (respectively
in the κt = κ?t regime). Figure 2 reports these two components in percentages
(100× xss and 100× xf ), as a function of the constant value κ considered

34Following Benigno and Woodford (2006, 2012), the welfare computation is performed
using a second-order perturbation method.

35The mean of this Lagrange multiplier is −0.110 and its standard deviation is 0.002.
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for the capital requirement κt. The lines are dashed for κ within the 10-14
percent range to indicate that the corresponding figures should be taken
cautiously (as the assumption that the risky technology is always or never
used cannot reasonably be considered to be satisfied for κ within that range).

[FIGURE 2 ABOUT HERE]

The left panel of Figure 2 shows large steady-state welfare costs.36 Under
our baseline calibration, setting κt = κ?t dominates the next best policy, which
sets κt = 0, as we noted in Subsection 5.3. The welfare cost of the latter
policy is worth about half a percent of consumption per period. However,
this particular comparison (κt = κ?t versus κt = 0) is somewhat sensitive
to our calibration assuming a monopoly markup of about 16 percent; if we
raise the monopoly markup to about 30 percent, we can reverse the result.
One result that is quite robust across plausible parameter values is the high
steady-state welfare cost associated with capital requirements that are well
above zero but still fall short of taming risk taking. For example, the cost
of a policy that sets κt = 0.08 instead of κt = κ?t is over 2.7 percent of
consumption. These high costs arise from the effective depreciation rate and
the MPK distortion, as we discussed in Subsection 5.2. The steady-state
welfare costs are lower but still sizeable for policies that set a constant capital
requirement and make it high enough to deter risk taking. For example, the
cost of setting κt = 0.16 is over 0.7 percent of consumption. These costs
arise from aggravating the MPK distortion, as we discussed in Subsection
5.2.

The right panel of Figure 2 shows that the fluctuations component of
welfare costs is very small under optimal monetary policy. For κ > κ?,
this component is negative (i.e., corresponds to a welfare gain) because

36These welfare costs reflect differences across steady-state welfare levels, ignoring any
welfare effects arising from transitional dynamics in our model. Alternatively, we could
consider, for example, an economy that is in a steady state with a 14 percent capital
requirement and ask what is the welfare cost of raising the capital requirement to 16
percent. The welfare cost will be smaller than the difference across the two steady states
because the capital stock will be falling during the transition, and consumption can be
higher during the transition to a higher capital requirement. The welfare cost taking
account of the transition is 0.24 percent in our model, which is smaller than, but of the
same order of magnitude as the welfare difference of 0.40 percent across the two steady
states depicted in Figure 2.
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fluctuations are smaller in the κt = κ regime than in the κt = κ?t regime,
as the financial shock ηRt is not transmitted to the economy in the former
regime. The cost of setting κt = κ?t compared to setting κt = 0.16, for
example, only amounts to 0.0004 percent of consumption.37

We now turn to the impulse-response functions, focusing on three alter-
native specifications: κt = κ?t , κt = 0.14, and κt = 0.10, and expressing the
responses of output, hours worked, consumption, investment, and the capital
stock as percentage deviations from each steady state. Figure 3 reports the
responses to a favorable technology shock (a one standard-deviation innova-
tion to ηft ). Since a productivity shock does not affect risk-taking incentives
in our benchmark model, optimal prudential policy does not respond to this
shock, and the responses of optimal monetary policy are essentially the same
across our three specifications of prudential policy. Optimal policy raises the
deposit rate to keep inflation at zero; output, consumption, investment, and
hours rise. The patterns are familiar from standard New Keynesian models
with capital.38

[FIGURE 3 ABOUT HERE]

Figure 4 reports the responses to a favorable shock to the risky technology
for producing capital (a one standard-deviation innovation to ηRt ). Such a
shock increases the temptation for banks to finance risky projects. Optimal
prudential policy raises the capital requirement to avert risk taking. Because
the risky technology is not used, the only effect of the shock (in the absence
of a monetary-policy reaction) goes through the increase in the financial
wedge entailed by the rise in the optimal capital requirement. This effect is
contractionary, because it increases the cost of banking. In response, optimal
monetary policy cuts the deposit rate. The optimal monetary response is
analogous to how optimal monetary policy would respond to an exogenous

37The results for the fluctuations component of welfare costs are similar under our
alternative calibration (which uses the GZ-spread data until 2012). Under the latter
calibration, however, κ?t fluctuates substantially more, so that the assumption that κt = 0.14
always deters risk taking and κt = 0.10 always entails the use of the risky technology seems
no longer reasonable.

38In particular, the deposit rate is raised under optimal policy because both the favorable
productivity shock and the resulting increase in employment increase the marginal product
of capital and therefore the natural real interest rate.
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shock to the financial wedge. As Equation (23) shows, changes in the capital
requirement in our model essentially amount to exogenous shocks to the
financial wedge, as far as monetary policy is concerned. In the end, the
contractionary effect is very small; output only falls by about 0.05 percent
and inflation essentially remains at zero. The higher capital requirement
reduces investment and, with the lower deposit rate, the composition of
aggregate demand tilts slightly towards consumption.39

The ηRt shock has no effects (in Figure 4) when we set κt = 0.14 because
this policy is sufficient to deter risk taking, and there is no reason for
monetary policy to change. When we set κt = 0.10 and allow the the risky
technology to be used, the ηRt shock lowers the effective depreciation rate of
capital for a while (as the shock is persistent). This encourages investment,
hours and output increase, while consumption falls slightly upon impact.
The optimal monetary response is a small increase in the deposit rate to
moderate the expansion and keep inflation at zero. Overall, the effects of
ηRt when κt = 0.10 are similar to those of an investment-specific shock in
standard models.

[FIGURE 4 ABOUT HERE]

We find this thought experiment quite useful in the context of policy-
oriented discussions [e.g., Yellen (2010), Canuto (2011), Macklem (2011),
Cecchetti and Kohler (2012), Wolf (2012)] of how monetary and prudential
policies may be substitutes for each other or move to offset each other’s
effects. In our benchmark model, under jointly optimal policies, one policy
is contractionary and the other expansionary in order to manage risk-taking
incentives with the smallest possible adverse effects on investment. Thus,
our model highlights a distinction across policy instruments that we think
deserves more emphasis than it gets in the existing literature: changes in
the capital requirement can directly manage risk-taking incentives, while

39The same observations would apply (at least qualitatively) to optimal responses to
hypothetical shocks to the probability of failure of the risky technology (φt) and the
maximal risky/safe loans ratio (γt). These shocks would affect the economy only though
their effect on the optimal capital requirement κ?t (defined by (27) with φ and γ being
replaced by φt and γt respectively), which in turn would call for a monetary-policy response
to mitigate the macroeconomic effects.
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changes in the policy interest rate cannot. When the capital requirement
rises to curb risk taking, a contraction ensues, and the policy interest rate is
cut. With this chain of causality, optimal prudential policy is pro-cyclical,
and optimal monetary policy is counter-cyclical.

Nonetheless, our model also provides a framework for thinking about
some scenarios (or extensions) that can make optimal prudential policy
counter-cyclical, as we discuss below.

7 Extensions and Policy Concerns

Our benchmark model, while stylized, provides several useful insights. For
example, as Angeloni and Faia (2011) elaborate, the leading argument for
Basel III-type counter-cyclical capital requirements is the observation that
default risk rises during recessions; and risk-weighted (Basel II-type) capital
requirements automatically tighten policy in recessions, unless the regulatory
rate is lowered.40 Our model suggests a reason for the latter to happen,
that is, for cutting capital requirements when default risk is high: when the
banks have enough skin in the game, the increased default risk makes banks
less inclined to fund risky projects, allowing prudential policy to set lower
requirements without undermining the stability of the banking system.

In this section, we illustrate how (admittedly ad hoc) extensions can
provide additional insights. We consider two extensions: externalities in bank
lending, and correlation between shocks affecting the incentives to take risks
and shocks to the business cycle. We show that each of these two extensions
can make both policy instruments counter-cyclical under optimal policy.
We also show that, although the first extension gives rise to a risk-taking
channel of monetary policy, it does not qualitatively affect the optimal policy
responses to shocks that directly affect risk-taking incentives.

7.1 An Externality

Our model assumes perfect competition and constant returns in the banking
sector. As we noted earlier, these assumptions imply that shocks that directly

40See Covas and Fujita (2010) for a quantitative assessment of the procyclical effects of
bank-capital requirements under Basel II.
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affect the optimal policy interest rate (like standard productivity or fiscal
shocks) do not affect the optimal bank-capital requirement. We now consider
a simple (ad-hoc) extension that links the cost of banking to the aggregate
volume of safe loans and thus allows such shocks to affect both policy margins.
Hachem (2010) develops a model with an externality in banking costs. In
her model, banks ignore the effect of their own lending decision on the pool
of borrowers, with heterogeneous levels of risk, that is available to other
banks.41 Here, we only consider a simple example of such an externality − in
order to preserve our earlier derivations that treated Ψ as exogenous to the
banks’ decisions − but we think this example highlights the main features of
policy interactions that arise when an economic boom increases risk-taking
incentives. Specifically, we assume that the monitoring cost is now

log(Ψt) = log(Ψ) + %
[
log(lSt )− log(lS)

]
(28)

where the term log(lSt )− log(lS) is the log-deviation of the aggregate volume
of safe loans from its steady-state value, and % ≥ 0 (% = 0 corresponding
to our benchmark model). We report the impulse responses under optimal
policy for % = 0, 1, and 5. Figure 5 shows the responses to a favorable
productivity shock. Following this shock, the volume of safe loans increases,
and therefore so do the monitoring cost and risk-taking incentives. Optimal
prudential policy raises the capital requirement in order to discourage risk
taking. This makes optimal prudential policy counter-cyclical, which leads
optimal monetary policy to be less restrictive (raises the deposit rate by less,
and later on cuts it by more) than in the benchmark model.42

[FIGURE 5 ABOUT HERE ]

Figure 6 shows the optimal responses to an increase in ηRt , the productivity
of the risky technology conditionally on its success. Absent the externality
(looking at the solid black lines in the Figure), optimal prudential policy raises
the capital requirement because banks are more tempted to take risk, while

41Gete and Tiernan (2011) consider the role of capital requirements in Hachem’s (2010)
model, but abstract from monetary policy.

42Optimal monetary policy actually strikes a balance between this effect and another,
smaller effect stemming from the externality (which is that banks have a tendency to lend
too much as they ignore the effect of their own lending decision on monitoring costs).
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optimal monetary policy cuts the deposit rate to curb the contractionary
effects of prudential policy. With the externality, the contraction creates a
temptation to take less risk (as the cost of making safe loans decreases). So,
optimal prudential policy raises the capital requirement by less, and optimal
monetary policy cuts the deposit rate by less.43 In terms of optimal output
fluctuations in Figures 5 and 6, the externality always dampens the optimal
response (expansion or contraction) of output.

[FIGURE 6 ABOUT HERE ]

Thus, some key normative implications of the benchmark model are,
qualitatively speaking, robust to the introduction of a risk-taking channel of
monetary policy (via a lending externality). Optimal policy still uses capital
requirements to counter risk-taking incentives, i.e. still raises (respectively
cuts) capital requirements in response to shocks that increase (respectively
decrease) these incentives. In principle, the deposit rate could have been used
for this purpose, since the risk-taking channel of monetary policy implies
that it now affects risk-taking incentives. But optimal policy does not use
the deposit rate this way in response to shocks that directly affect risk-taking
incentives (as in Figure 6). Instead, in response to these shocks, it still uses
the deposit rate to mitigate the macroeconomic effects of capital requirements,
i.e. still cuts (respectively raises) the deposit rate when capital requirements
are raised (respectively cut). Moreover, as the strength of the risk-taking
channel of monetary policy varies, optimal monetary policy becomes more
accommodative (or less restrictive) when optimal prudential policy becomes
more restrictive (or less accommodative) in response to any given shock.

In terms of optimal institutional arrangement, the implications of the
benchmark model are also robust to the introduction of a risk-taking chan-
nel of monetary policy. In the absence of this channel, only prudential
policy can affect risk-taking incentives, so that the prudential authority
should be assigned a financial-stability mandate (to be fulfilled with minimal
damage in terms of increased banking costs) and the monetary authority a
macroeconomic-stability mandate. This separation principle remains optimal

43The dampening effect of the externality on the optimal capital requirement is quanti-
tatively very small and therefore little apparent in Figure 6.
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in the presence of that channel, in the sense that optimal policy can still be
implemented by assigning the same respective mandates to the prudential
and monetary authorities.44

7.2 Correlated Shocks

Correlations across shocks may also link risk-taking incentives to shocks
that have direct business-cycle effects and may make both optimal policies
counter-cyclical. As an example, we replace (9) by

kt+1(i) = exp
(
ηSt

)
xt(i),

thus adding a shock to the safe technology for producing capital goods, and
we allow for the possibility that ηSt is correlated with ηRt (the shock to the
risky technology). This modification changes our inefficiency condition (11)
to

(1− φ) exp
(
ηRt

)
≤ exp

(
ηSt

)
−Ψ,

the optimality condition (13) to

Et {λt+1qt+1} = Et

{
λt+1
Πt+1

}(
1 +RSt

)
exp

(
−ηSt

)
qxt ,

and our optimal capital requirement to

κ?t = (1− τ)
(1− φ) γ

[
exp

(
ηRt − ηSt

)
− 1

]
+ Ψ

[
(1− φ) γ exp

(
ηRt − ηSt

)
− φ

]
φ (1 + γ)− γτ (1− φ)

[
exp

(
ηRt − ηSt

)
− 1

] .

Figure 7 shows the optimal responses to a positive innovation in ηRt for
three values of its correlation with the innovation to ηSt : 0.25, 0.50, and 0.75.
The correlation makes both optimal policies act in a counter-cyclical way.
Optimal prudential policy raises the capital requirement to tame risk taking,
and optimal monetary policy raises the deposit rate to tame the effects of
the investment boom.

[FIGURE 7 ABOUT HERE]

44It should be noted, however, that within the realm of the model the optimal institutional
arrangement is not unique in the presence of a risk-taking channel of monetary policy. For
instance, swapping the two mandates would deliver the same allocation.
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8 Concluding Remarks

This paper models the optimal interaction of monetary and prudential policies
in a setting that views bank-capital requirements as a tool for addressing
the risk-taking incentives created by limited liability and deposit insurance.
In this section, we highlight the main policy implications of our model and
put some of our modeling choices, and the assumptions that are behind our
results, in the context of other work and recent commentary motivated by
the 2007-2009 financial crisis.

In our model, higher capital requirements increase the costs of banking
(because equity finance is costly), and this exacerbates other distortions
that make the capital stock too small. Absent sufficiently stringent capital
requirements, however, banks may be tempted to fund an inefficient tech-
nology for producing capital goods. Because of banks’ limited liability, this
technology is profitable to banks when it succeeds, but costly to the deposit
insurance fund when it fails. This technology is inefficient in the sense of
producing less than the safe technology on average (across the success and
failure states). So, banks may fund risky projects only to take advantage of
their limited liability − and when they do, they want to invest in a risky
project as much as they can hide from regulators because they know that
failure of the project will wipe out their equity anyway.

One way to view the 2007-2009 crisis through the lens of our model is to
argue that banks found a new way to increase the amount of risk they could
hide from regulators. In our model, this would be captured by an increase in
the parameter γ − while, in reality, it may have involved obfuscating risks
associated with off-balance-sheet positions. An increase in γ raises the critical
value κ?t of the capital requirement needed to dissuade banks from funding the
risky technology. If the capital requirement is left unchanged, the economy
may switch from the safe equilibrium to the equilibrium with maximal
undetected risk. And the switch in our model is analogous to the capital-
quality shock in the models of Gertler and Kiyotaki (2011) and Gertler and
Karadi (2011). Mechanically, it amounts to an increase in the depreciation
rate of capital, but Gertler and Karadi (2011) offer interpretations in terms

39



of the quality or usefulness of existing capital.45

Our benchmark model with perfectly competitive banks and constant
marginal costs leads to a simple optimal assignment of tasks to prudential
and monetary policies. The locally optimal mandate of prudential policy is
to ensure that banks never fund inefficient risky projects, but to achieve this
objective with minimal damage in terms of increased bank lending rates and
decreased capital stock. In other words, prudential policy should be assigned
the primary objective of financial stability, and the secondary objective of
minimal banking costs (conditionally on achieving the primary objective).
These objectives are achieved when capital requirements are state-dependent
and respond to shocks that affect the relative attractiveness of risky and safe
projects. Monetary policy, meanwhile, should be assigned the objective of
macroeconomic stability, taking into account the effects of prudential policy
on the economy. The optimal interaction across monetary and prudential
policies then boils down to cutting (raising) interest rates to moderate the
contractions (expansions) caused by changes in the capital requirement.
We show that this locally optimal policy is globally optimal under some
parameter restrictions that can be satisfied under plausible calibrations.

In our benchmark model, monetary policy (setting money-market rates)
does not affect risk-taking incentives. As we noted in the Introduction, this
is not meant to negate the importance of recent contributions that emphasize
the risk-taking channel of monetary policy. Our goal, rather, is to formalize
an alternative view that argues for relegating the goal of financial stability
to prudential policy. Nonetheless, the quantitative significance of departures
from our benchmark policy prescription may well depend on issues we have
not modeled. In particular, our model abstracts from how booms (and
periods with low interest rates) may lead to expansions of bank balance
sheets. In models following Gertler and Kiyotaki (2011) and Gertler and
Karadi (2011), for example, banks have an equity stake in firms − so, bank
equity rises automatically when the stock market booms. In our model,
banks are (narrowly) viewed as lenders, and they act competitively. So,

45Gertler and Karadi (2011) postulate a large and unexpected one-time drop in capital
quality as the shock that led to the financial crisis. In our model, losses in capital production
are smaller and may work over several periods (while the bank-capital requirement remains
too low).
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regardless of the state of the economy or the stance of monetary policy, bank
lending rates adjust in our model to ensure that our banks make zero profits.
In a similar vein, our model abstracts from changes in leverage that were
linked to higher risk, according to much of the commentary on the 2007-2009
crisis.

We think our extension with an externality in the cost of banking −
albeit ad-hoc and stylized − illustrates how policy interactions are more
complex when risk-taking incentives change over the business cycle. In this
extension, an increase in the aggregate volume of safe loans increases the
costs of originating and monitoring safe loans. This feature, which gives rise
to a risk-taking channel of monetary policy, matters for the optimal policy
interactions. In particular, it makes both policy instruments counter-cyclical
under optimal policy in response to certain shocks (like productivity shocks).
However, it does not affect the main implications of the benchmark model
for the optimal policy responses to shocks that directly affect risk-taking
incentives: in responses to these shocks, prudential policy should still be
used to tame risk-taking incentives (including those created by monetary
policy when it is accommodative) and monetary policy to mitigate the
macroeconomic effects of prudential policy. The presence of a risk-taking
channel of monetary policy does not invalidate the separation principle, in the
sense that optimal policy can still be implemented by assigning a financial-
stability mandate to the prudential authority and a macroeconomic-stability
mandate to the monetary authority.

The implementation of optimal state-dependent policy would obviously be
complicated in reality because risk-taking incentives are not easy to observe.
We have sidestepped the question of how the regulators in our model observe
the risk-taking incentives of banks by assuming that risky assets exist in
the economy even though banks do not hold these assets under optimal
policy.46 However, the broader point highlighted by our (benchmark and
extended) models is that time variation in capital requirements − raising

46We have also sidestepped questions about other determinants of the optimal capital
requirement in Equation (27), by treating them as known parameters − for example,
the maximum amount of risk that banks can hide in their portfolios plays a central role
in determining optimal policy, and we have assumed regulators know the value of this
parameter.
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the requirement when risk-taking incentives are likely to be high − can
serve to keep the average requirement over the cycle lower. Our welfare
calculations suggest this can be important. In our models, the optimal
capital requirement fluctuates considerably, but the welfare loss associated
with these fluctuations is much smaller than the welfare loss associated with
a higher steady-state capital requirement.

Our model takes deposit insurance as an institutional feature that does
not have to be rationalized within the model.47 The other institutional
feature is our assumption that a tax distortion makes equity finance more
expensive than debt finance. We are not aware of any arguments for claiming
that this is a feature of optimal policy in some expanded framework. To
the contrary, existing discussions of this tax distortion [e.g., Admati et al.
(2011), Mooij and Devereux (2011)] note its prevalence in OECD countries
and call for removing it. Our motivation for including this policy-induced
distortion in our model is this prevalence and the fact that central banks
and prudential regulators cannot change the tax code.48 We think this tax
distortion merits more attention in models of how the banking sector matters
for monetary-policy analysis.49

A Mathematical Appendix

PROOF OF PROPOSITION 1:
The bank chooses the set I and the loan amounts lt(i) for i ∈ I in order

to maximize
Et {max (0, rt+1 − bt)} ,

47Presenting an expanded model in which deposit insurance is optimal (rather than
taking it as an exogenous feature) seemed too much of a digression to us, but we could
motivate deposit insurance as usual [e.g., following Angeloni and Faia (2011)] in terms of
ruling out equilibria with bank runs.

48Besides, under an arbitrarily small tax distortion, all our analytical results (from
Proposition 1 to Proposition 6) would still hold, as banks would still prefer debt finance
to equity finance, though the condition stated in Proposition 6 (the “if” part of this
proposition) might not be met.

49For one thing, this may account for the fact that banks extend credit using loan
contracts in reality, even though loan contracts are not optimal according to most formal
models (with the notable exception of models with costly state verification).
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where
rt+1 ≡

(
1 +RRt

)∑
i∈I

θt (i) lRt (i),

subject to ∑
i∈I

lRt (i) = lRt and ∀i ∈ I, lRt (i) ≥ 0.

We focus on the non-trivial case in which lRt > 0, so that |I| ≥ 1, where |I|
denotes the cardinality of I. We note Vt ≡ (1−φ)

(
1 +RRt

)
lRt − bt the value,

independent of I and lt(i) for i ∈ I, taken by the function Et {rt+1 − bt}. The
latter function corresponds to the objective function Et {max (0, rt+1 − bt)}
without the max(0, .) operator.

In the case where lRt (i) ≥ bt/(1 +RRt ) for all i ∈ I, we have rt+1 − bt < 0
only when θt (i) = 0 for all i ∈ I, so that the objective function takes the
value Vt + φ|I|bt and is therefore maximized for |I| = 1.

In the alternative case where lRt (i) < bt/(1+RRt ) for at least one i ∈ I, let
S denote the non-empty set of integers i ∈ I such that lRt (i) < bt/(1 +RRt ).
The objective function then takes a value of type Vt + f [lRt (i)|i ∈ S], where
the function f is decreasing in each of its arguments.50 So in this case the
optimal value of each lRt (i) for i ∈ S is zero, and we are back to previous
case. Proposition 1 follows.

PROOF OF PROPOSITION 2:
To show that there is no equilibrium with 0 < lRt < γlSt , we suppose

that there is such an equilibrium and consider a perturbation satisfying
dlSt (j) = −dlRt (j) in the loan portfolio of a given bank j. Note that this
perturbation neither tightens nor loosens bank j’s balance-sheet identity

lSt (j) + lRt (j) = et (j) + dt (j) (29)

and its capital requirement

et (j) ≥ κt
[
lSt (j) + lRt (j)

]
,

given that lSt (j) + lRt (j) is left unchanged. So this perturbation should not
increase bank j’s expected excess return. The derivations of the effect of

50For instance, when S = {1}, f [lRt (i)|i ∈ S] = f [lRt (1)] = φ|I|bt + φ|I|−1(1 − φ)[bt −(
1 +RRt

)
lRt (1)] is decreasing in lRt (1).
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this perturbation on bank j’s expected excess return involves two cases,
depending on whether bank j goes bankrupt or not when its risky project
fails.

If bank j goes bankrupt when its risky project fails, then, using (3), the
change in bank j’s expected excess return can be written as

(1− τ)
[
β (1− φ)Et

{
λt+1
Πt+1

}
RRt −RSt

λt
+ Ψ

]
dlRt (j)

= (1− τ)
[
(1− φ) R

R
t −RSt

1 +RSt
+ Ψ

]
dlRt (j) .

As discussed in the main text, we must have RRt ≥ RSt in equilibrium.
Therefore, bank j’s expected excess return is increasing in lRt (j). This means
that bank j would like to take more risk, contradicting our conjecture about
the existence of an equilibrium with lRt < γlSt .

If bank j does not go bankrupt when its risky project fails, then, using
(3) and (15), the change in bank j’s expected excess return can be written as

(1− τ)
[
βEt

{
λt+1
λtΠt+1

[
θt(j)

(
1 +RRt

)
−
(
1 +RSt

)]}
+ Ψ

]
dlRt (j)

= (1− τ)

(1− φ)
(
1 +RRt

)
−
(
1 +RSt

)
1 +RDt

+ Ψ

 dlRt (j)

= (1− τ)
{[

(1− φ) exp(ηRt )− 1
] 1 +RSt

1 +RDt
+ Ψ

}
dlRt (j)

≤ (1− τ) Ψ
(

1− 1 +RSt
1 +RDt

)
dlRt (j)

where the inequality comes from (11). Now, we must have RSt > RDt at
this equilibrium; otherwise, banks would make negative profits on their safe
loans and would like to reduce the volume of safe loans (which would be
possible given that lRt < γlSt ). Therefore, bank j’s expected excess return
is decreasing in lRt (j). This means that bank j would like to take less risk,
contradicting our conjecture about the existence of an equilibrium with
0 < lRt . Proposition 2 follows.

PROOF OF PROPOSITION 3:
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Using (29), one can write the expected excess return of a bank j as

(1− τ)Et

{
β
λt+1ω

b
t+1 (j)
λt

}
− et (j)− (1− τ) ΨlSt (j) ,

where

ωbt+1 (j) = max
{

0, R
S
t −RDt
Πt+1

lSt (j) +
[
θt(j)

1 +RRt
Πt+1

− 1 +RDt
Πt+1

]
lRt (j)

+1 +RDt
Πt+1

et (j)
}

.

In the case where ωbt+1 (j) > 0 when θt(j) = 0, using (3), bank j’s expected
excess return can be rewritten as

(1− τ)
{
RSt −RDt
1 +RDt

lSt (j) +
[
(1− φ)

(
1 +RRt
1 +RDt

)
− 1

]
lRt (j) + et (j)

}
− et (j)− (1− τ) ΨlSt (j) .

Since this expression is strictly decreasing in et (j), it is maximized when
et (j) is minimal, that is to say when et (j) satisfies

et (j) = κt
[
lSt (j) + lRt (j)

]
. (30)

In the alternative case where ωbt+1 (j) = 0 when θt(j) = 0, bank j’s expected
excess return can be rewritten as

(1− τ) (1− φ)
{
RSt −RDt
1 +RDt

lSt (j) +
[

1 +RRt
1 +RDt

− 1
]
lRt (j) + et (j)

}
− et (j)− (1− τ) ΨlSt (j) .

Similarly, this expression is strictly decreasing in et (j), and is therefore
maximized for et (j) given by (30). This establishes Proposition 3.

PROOF OF PROPOSITION 5:
To prove Part (a) of Proposition 5, we look for a necessary and sufficient

condition on policy instruments for the existence of an equilibrium with
lRt = 0. This amounts to looking for a necessary and sufficient condition
on policy instruments for the demand and supply curves on the risky-loans
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market to intersect at one or several points
(
RRt , l

R
t

)
with RRt ≥ 0 and lRt = 0.

We proceed in several steps.
Step 1: condition for zero demand for risky loans. Given capital producers’

programme, the portion of the demand curve that is consistent with lRt = 0
is characterized by

1 +RRt
1 +RSt

≥ exp
(
ηRt

)
. (31)

Step 2: condition for zero supply of risky loans. The portion of the supply
curve that is consistent with lRt = 0 can be characterized by a necessary and
sufficient condition for an individual bank j not to deviate from the candidate
equilibrium with lRt = 0. We now look for such a condition. Appendix 10.2
implies that, if some deviations are profitable, then the most profitable
deviation is lRt (j) = γlSt (j). If bank j makes this deviation, then, using (29)
to eliminate dt (j) and (30) to eliminate et (j), its expected excess return can
be rewritten as

(1− τ)Et

{
β
λt+1ω

b
t+1 (j)
λt

}
− [κt (1 + γ) + (1− τ) Ψ] lSt (j) ,

where

ωbt+1 (j) = max
{

0,
[
RSt −RDt

Πt+1
+ θt(j)γ

1 +RRt
Πt+1

− γ 1 +RDt
Πt+1

+1 +RDt
Πt+1

κt (1 + γ)
]
lSt (j)

}
.

Using (3), one can rewrite bank j’s expected excess return as

(1− τ)Et

{
max

{
0,
[
RSt −RDt
1 +RDt

+ θt(j)γ
1 +RRt
1 +RDt

− γ + κt (1 + γ)
]
lSt (j)

}}
− [κt (1 + γ) + (1− τ) Ψ] lSt (j) .

In the case where the “max” that features in this expression is strictly higher
than zero when θt(j) = 0, that is to say in the case where κt > κ̃, we
know from Appendix 10.2 that bank j’s deviation is not profitable. In the
alternative case where the ‘max’ is equal to zero when θt(j) = 0, that is to
say in the case where κt ≤ κ̃, bank j’s expected excess return is{

(1− τ) (1− φ)
[
RSt −RDt
1 +RDt

+ γ
1 +RRt
1 +RDt

− γ + κt (1 + γ)
]

−κt (1 + γ)− (1− τ) Ψ} lSt (j) .
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Using (23) to eliminate RSt , we can rewrite it as{
(1− τ) (1− φ) γR

R
t −RDt

1 +RDt
− [φ (1 + γ) + γτ (1− φ)]κt − φt (1− τ) Ψ

}
lSt (j) .

Therefore, a necessary and sufficient condition for the deviation not to be
profitable is then

[φ (1 + γ) + γτ (1− φt)]κt+φ (1− τ) Ψ ≥ (1− τ) (1− φ) γR
R
t −RDt

1 +RDt
. (32)

To sum up, the portion of the supply curve that is consistent with lRt = 0 is
characterized by the condition that either κt > κ̃, or κt ≤ κ̃ and (32) holds.

Step 3: condition for zero risky loans in equilibrium. It follows from
Steps 1 and 2 that the demand and supply curves on the risky-loans market
intersect at one or several points

(
RRt , l

R
t

)
with RRt ≥ 0 and lRt = 0 if and

only if either (i) κt > κ̃, or (ii) κt ≤ κ̃, and (32) holds when (31) holds with
equality. Now, if (31) holds with equality, then, using (23), we can rewrite
(32) as

κt ≥ κ?t ≡ (1− τ)
(1− φ) γ

[
exp

(
ηRt

)
− 1

]
+ Ψ

[
(1− φ) γ exp

(
ηRt

)
− φ

]
φ (1 + γ)− γτ (1− φ)

[
exp

(
ηRt
)
− 1

] ,

(33)
since the denominator on the right-hand side of this inequality is strictly
positive:

φ (1 + γ)− γτ (1− φt)
[
exp

(
ηRt

)
− 1

]
= φ [1 + γ (1− τ)] + γτ − γτ (1− φ) exp

(
ηRt

)
> φ [1 + γ (1− τ)] + γτΨ > 0,

where the last but one inequality comes from (11). As a consequence, a
necessary and sufficient condition on policy instruments for the existence
of an equilibrium with lRt = 0 is that either κt > κ̃, or κ?t ≤ κt ≤ κ̃. This
condition can be equivalently rewritten as κt ≥ min {κ̃, κ?t }. Now, using (11)
to replace (1− φ) exp

(
ηRt

)
by 1−Ψ on the right-hand side of (33), we get

κ?t ≤ (1− τ) −γΨ2 + φ (γ −Ψ)
γτΨ + φ (1 + γ − γτ)

= κ̃

{
1− γΨ

γ −Ψ
γτ + Ψ (1 + γ) (1− τ)
γΨτ + φ (1 + γ − γτ)

}
< κ̃,
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where the last inequality comes from our assumption that γ > Ψ. Therefore,
a necessary and sufficient condition on policy instruments for the existence of
an equilibrium with lRt = 0 is simply κt ≥ κ?t . Parts (a) and (b) of Proposition
5 follow. Finally, Part (c) of Proposition 5 follows straightforwardly from the
fact that the denominator on the right-hand side of (33) is strictly positive,
as shown above.

PROOF OF PROPOSITION 6:
Define welfare as the representative household’s expected utility at date

0, E0
∑∞
t=0 β

tu(ct, ht). For any policy
(
RDτ , κτ

)
τ≥0

, define the distance from(
RD?τ , κ?τ )τ≥0 as

ε ≡ max
[
max
τ≥0

(∣∣∣RDτ −RD?τ ∣∣∣) ,max
τ≥0

(|κτ − κ?τ |)
]

.

Let us first compare
(
RD?τ , κ?τ

)
τ≥0

to policies
(
RDτ , κτ

)
τ≥0

such that ε is

arbitrarily small and ∃t ≥ 0, κt < κ?t . Moving from
(
RD?τ , κ?τ

)
τ≥0

to any such
policy triggers a discontinuous increase in the amount of risk, as it makes
banks’ risky loans lRt move from 0 to γlSt > 0 at some date t ≥ 0. Under our
inefficiency condition (11), this discontinuous increase in the amount of risk
has a discontinuous negative effect on welfare. Any other effect on welfare is
continuous and, therefore, dominated by this discontinuous negative effect
provided that ε is small enough. As a consequence, welfare is strictly higher
under

(
RD?τ , κ?τ

)
τ≥0

than under any such policy provided that ε is small
enough.

Let us now turn to policies
(
RDτ , κτ

)
τ≥0

such that ε is arbitrarily small
and ∀τ ≥ 0, κτ ≥ κ?τ . Among these policies, the optimal one maximizes the
following Lagrangian:

W
[
(Xτ )τ≥0

]
+

+∞∑
τ=0

λτf
(
Xτ , R

D
τ , κτ

)
+

+∞∑
τ=0

µτ (κτ − κ?τ ) ,

where W is the welfare function; Xτ is a vector of endogenous variables set
by the private sector and exogenous shocks realized at date τ or earlier; λτ
is a 1 × n vector of Lagrange multipliers, where n denotes the number of
structural equations; f

(
Xτ , R

D
τ , κτ

)
is a n×1 vector such that the structural
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equations can be written as f
(
Xτ , R

D
τ , κτ

)
= 0; and µτ is a scalar Lagrange

multiplier. The condition stated in Proposition 6, namely that the right
derivative of welfare with respect to κt at

(
RDτ , κτ

)
τ≥0

=
(
RD?τ , κ?τ

)
τ≥0

is
strictly negative for all t ≥ 0, can be written as

∀τ ≥ 0, λτ
∂f

∂κτ

(
X?
τ , R

D?
τ , κ?τ

)
< 0,

where (X?
τ )τ≥0 denotes the value of (Xτ )τ≥0 when

(
RDτ , κτ

)
τ≥0

=
(
RD?τ , κ?τ

)
τ≥0

.
Now, a first-order condition for Lagrangian maximization is

∀τ ≥ 0, λτ
∂f

∂κτ

(
X?
τ , R

D?
τ , κ?τ

)
+ µτ = 0.

Therefore, µτ > 0 for all τ ≥ 0, that is to say that the constraint κτ ≥ κ?τ

is binding for all τ ≥ 0. Since
(
RD?τ

)
τ≥0

is the monetary policy that
is Ramsey-optimal when (κτ )τ≥0 = (κ?τ )τ≥0, we conclude that the policy(
RDτ , κτ

)
τ≥0

=
(
RD?τ , κ?τ

)
τ≥0

is optimal among all policies
(
RDτ , κτ

)
τ≥0

such
that ε is arbitrarily small and ∀τ ≥ 0, κτ ≥ κ?τ . Since this policy has been
shown to dominate also policies

(
RDτ , κτ

)
τ≥0

such that ε is arbitrarily small
and ∃t ≥ 0, κt < κ?t , Proposition 6 follows.

A.1 Steady State Under Optimal Monetary Policy

In this appendix, we solve for some key variables at the steady state under
optimal monetary policy, for a given prudential policy. Whatever the pru-
dential policy in place, optimal monetary policy implies zero steady-state
inflation. Therefore, the twelve variables c, h, w, y, i, k, z, q, x, l, 1 +RD,
and 1 +RS are determined by the following twelve equations − representing
or characterizing respectively the Euler equation, the labor-leisure trade-off,
the rental price of capital, the production function, the capital-labor ratio,
the price mark-up, capital accumulation, loans, technology, the zero-profit
condition for safe capital-goods producers, the zero-profit condition for banks,
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and the goods-market-clearing condition:

1 = β(1 +RD), (34)

w = Ξhχcµ, (35)

q = 1− δ + z, (36)

y = kνh(1−ν), (37)
k

h
= ν

1− ν
w

z
, (38)

1 = σ

σ − 1
wh

(1− ν)y , (39)

x = (1− δ)k + i, (40)

l = x, (41)

k = ξ1(κ)x, (42)

q = 1 +RS , (43)
1 +RS

1 +RD
= ξ2(κ) + ξ3(κ)κ, (44)

y = c+ i+ ξ4(κ)l, (45)

where µ is the inverse of the intertemporal elasticity of substitution, χ is
the inverse of the labor-supply elasticity, and ξ1(κ), ξ2(κ), ξ3(κ), ξ4(κ) are
reduced-form parameters whose value depends on whether the economy is at
the safe or the maximum-risk corner. More precisely, when κ ≥ κ?,

ξ1(κ) = ξS1 ≡ 1,

ξ2(κ) = ξS2 ≡ 1 + Ψ,

ξ3(κ) = ξS3 ≡ τ

1− τ ,

ξ4(κ) = ξS4 ≡ Ψ,

and when κ < κ?,

ξ1(κ) = ξR1 ≡ 1 + γ(1− φ) exp(ηR)
1 + γ

,

ξ2(κ) = ξR2 ≡ 1 + γ

1 + γ exp(ηR)

[
1 + Ψ

(1 + γ)(1− φ)

]
,

ξ3(κ) = ξR3 ≡ 1 + γ

1 + γ exp(ηR)

[
τ

1− τ + φ

(1− τ)(1− φ)

]
,

ξ4(κ) = ξR4 ≡ Ψ
1 + γ

.
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Let us now solve this system for equations k, c, and h. (40), (41), (42), and
(45) give

y = c+
[1 + ξ4(κ)

ξ1(κ) − (1− δ)
]
k. (46)

(35), (37), and (39) give

Ξy
χ+ν
1−ν k

−ν(1+χ)
1−ν cµ = (σ − 1)(1− ν)

σ
. (47)

(34), (36), (43), and (44) give

z = ξ2(κ) + ξ3(κ)κ
β

− (1− δ). (48)

(38), (39), and (48) give
y = [ξ(κ)] k, (49)

where
ξ(κ) ≡

[
ξ2(κ) + ξ3(κ)κ

β
− (1− δ)

]
σ

ν(σ − 1) .

(46) and (49) give

c =
[
ξ(κ)− 1 + ξ4(κ)

ξ1(κ) + (1− δ)
]
k. (50)

(47), (49), and (50) give

k =

 (σ − 1)(1− ν)
Ξσ [ξ(κ)]

χ+ν
1−ν

[
ξ(κ)− 1+ξ4(κ)

ξ1(κ) + (1− δ)
]µ


1
χ+µ

, (51)

so that k is decreasing in κ. (37) and (49) give

h = [ξ(κ)]
1

1−ν k. (52)

Then, c and h are straightforwardly obtained from (51) using (50) and (52).

A.2 Steady-State Effect of Prudential Policy on Welfare

In this appendix, we study how welfare varies with capital requirements at
the steady state under optimal monetary policy. In particular, we show that
optimal prudential policy at the safe corner sets κ = κ?, and we derive the
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necessary and sufficient condition on the parameters for optimal prudential
policy at the maximum-risk corner to set κ = 0. (51) implies

dk

dξ(κ) = −
[

χ+ ν

(1− ν)(χ+ µ)

]
k

ξ(κ) −
(

µ

χ+ µ

)
k

ξ(κ)− 1+ξ4(κ)
ξ1(κ) + (1− δ)

.

(53)
(50), (52) and (53) imply

du(c, h)
dξ(κ) = c−µ

dc

dξ(κ) − Ξhχ dh

dξ(κ)

=
[
ξ(κ)− 1 + ξ4(κ)

ξ1(κ) + (1− δ)
]−µ

k−µ
{
k +

[
ξ(κ)− 1 + ξ4(κ)

ξ1(κ) + (1

−δ)] dk

dξ(κ)

}
− Ξ [ξ(κ)]

χ
1−ν kχ

[ 1
1− ν [ξ(κ)]

ν
1−ν k + [ξ(κ)]

1
1−ν

dk

dξ(κ)

]
=

[
ξ(κ)− 1 + ξ4(κ)

ξ1(κ) + (1− δ)
]−µ

k1−µ
{

χ

χ+ µ
−
[

χ+ ν

(1− ν)(χ+ µ)

]
ξ(κ)− 1+ξ4(κ)

ξ1(κ) + (1− δ)
ξ(κ)

− Ξ [ξ(κ)]
χ+ν
1−ν k1+χ

[
µ− ν

(1− ν)(χ+ µ)

−
(

µ

χ+ µ

)
ξ(κ)

ξ(κ)− 1+ξ4(κ)
ξ1(κ) + (1− δ)

 .

Using (51) and noting

A(κ) ≡
[(σ − 1)(1− ν)

Ξσ

] 1−µ
χ+µ

[ξ(κ)]
−(χ+ν)(1−µ)
(1−ν)(χ+µ)

[
ξ(κ)− 1 + ξ4(κ)

ξ1(κ) + (1− δ)
]−µ(1+χ)

χ+µ
,

B(κ) ≡

 1+ξ4(κ)
ξ1(κ) − (1− δ)

ξ2(κ)+ξ3(κ)κ
β − (1− δ)

(σ − 1
σ

)
,

C(κ) ≡ χ−
[1−B(κ)ν

1− ν

]
(χ+ ν) +

(
σ − 1
σ

)
(ν − µ) + µ

(
σ − 1
σ

)[ 1− ν
1−B(κ)ν

]
,

we then get [
χ+ µ

A(κ)

]
du(c, h)
dξ(κ) = C(κ)

and therefore [
β(1− β)ν(σ − 1)(χ+ µ)

A(κ)ξ3(κ)σ

]
dU(c, h)
dκ

= C(κ),

where U(c, h) ≡
∑∞
t=0 β

tu(c, h), so that dU(c, h)/dκ is of the same sign
as C(κ). Now, C(κ) depends positively on B(κ). In turn, B(κ) depends
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negatively on κ for 0 ≤ κ < κ? and for κ > κ?. Therefore, C(0) < 0 is
a necessary and sufficient condition on the parameters for U(c, h) to be
decreasing in κ for 0 ≤ κ < κ?, and, hence, for optimal prudential policy
at the maximum-risk corner to set κ = 0. Finally, for κ > κ?, U(c, h) is
necessarily decreasing in κ, since C(κ) < C(κ?) < −ν/σ < 0, where the last
but one inequality follows from

B(κ?) =

 1+ξS4
ξS1
− (1− δ)

ξS2 +ξS3 κ?
β − (1− δ)

(σ − 1
σ

)
<

 1+ξS4
ξS1
− (1− δ)

ξS2
β − (1− δ)

(σ − 1
σ

)
< 1.

Therefore, optimal prudential policy at the safe corner sets κ = κ?.
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Figure 1: Steady-State Effects of Capital Requirements
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Figure 2: Welfare Cost
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Figure 3: Response to a Favorable Technology Shock (ηft )
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Figure 4: Response to an Increase in the Productivity of the Risky Technology
(ηRt )
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Figure 5: Response to a Favorable Technology Shock (ηft )
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Figure 6: Response to an Increase in the Productivity of the Risky Technology
(ηRt )
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Figure 7: Response to an Increase in the Productivity of the Risky Technology
(ηRt )
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Table 1: Calibration

Parameter Description Value
Preferences

β Discount factor 0.993
Ξ Relative utility weight of labor 3.409
χ Inverse of labor supply elasticity 0.276

Technology
ν Capital elasticity 0.330
σ Elasticity of substitution 7.000
δ Depreciation rate 0.025

Nominal rigidities
α Price stickiness 0.779

Banking
τ Tax rate 0.023
κ? Steady-state optimal capital requirement 0.120
Ψ Marginal monitoring cost 0.003
φ Failure probability 0.034
γ Maximal risky/safe loans ratio 0.385
ηR Steady-state productivity of the risky technology 0.012

Shock processes
ρf Persistence of ηft 0.966
ρR Persistence of ηRt 0.905
sdf Standard deviation of innovations to ηft 6.8e-03
sdR Standard deviation of innovations to ηRt 0.6e-03


