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Abstract: Agricultural subsidies are ubiquitous around the world, representing at least

$749 billion per year in direct transfers. In the European Union (EU), they account for

45% of all federal expenditures since 1980. At the same time, the agricultural industry is

a major source of environmental disruptions, in part because of its use of chemicals, which

translate into air, soil and water pollution. Subsidies are large, but their influence on the

equilibrium use of agricultural chemicals is ambiguous. In this project I leverage farm-level

administrative data to study their impact on chemical pollution and economic surplus. A

shift-share design based on the 1992-1995 MacSharry reform of EU subsidies, the largest

reform to date, shows how combined decreases in subsidy levels and changes in their design

reduced farm profit, and led to exit and reallocations. The reform also lowered both farm-level

chemical use and water pollution as measured via remote sensing. In an empirical model of

dynamic land use, where producers differ in efficiency and propensity to pollute, I find that

more efficient farms pollute on average more. Counterfactual analysis shows that subsidies

which reallocate production towards low pollution producers have a small impact on aggregate

pollution. Budget-equivalent subsidies that shift the incentives for the use of polluting inputs

have larger effects and can reproduce part of the welfare gains of Pigouvian taxation.
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1 Introduction

Agricultural subsidies are ubiquitous around the world. Recent estimates place net govern-
ment agricultural transfers at $749 billion per year (Carisma and Boero (2024)). The outsize
role of agricultural subsidies within public spending is particularly salient in the European
Union (EU) where the Common Agricultural Policy (CAP) has accounted for 45% of all
federal spending since 1980. A long literature has detailed the negative effects of agricul-
tural subsidies for economic surplus, highlighting how they distort the farm-size distribution,
and inflate the share of output allocated to small and economically inefficient establishments
(Adamopoulos and Restuccia (2014)). The more elusive aspect of these subsidies is their
interaction with the environmental footprint of agriculture, and its emission of local and
global pollutants.1 Agricultural fertilization accounts for 23% of the global annual fixation
of nitrogen in marine and terrestrial ecosystems, with consequences for biodiversity and cli-
mate change (Fowler et al. (2013)). Recent research has also identified agricultural chemicals
as the main force behind the 57% decline in the EU farmland bird population over 1980-
2016 (Rigal et al. (2023)).2 Like other government subsidies to polluting or nature-depleting
industries (Davis (2017), Shapiro (2021)), the environmental consequences of agricultural
subsidies is a central concern for environmental policy.

This paper studies the impact of the EU CAP on the environmental pollution stem-
ming from the use of chemicals in agriculture, and compares it to its impact on economic
surplus. I focus on chemical use, as it is both a fundamental input in modern agriculture,
and a significant source of externalities. In France and for wheat, joint fertilizer and pesticide
expenses account for 24% of all production costs (Guillermet (2015)). Farm chemical pollu-
tion intensity is also easy to measure using production data, and some of its consequences on
water pollution can be tracked via remote sensing. To identify the role of subsidies on pollu-
tion, one needs to understand the drivers of aggregate chemical use. A key element for this
is the relation between farms’ reliance on chemicals and their production costs, and through
this how the allocation of production across producers affects total chemical use. If more
efficient producers pollute less, the efficient allocation of production across producers and
the environmentally sustainable one should match (Qi et al. (2021), Ryan and Sudarshan
(2021)). Distortions away from this allocation are not desirable, and externalities can be
directly addressed by shifting within-farm incentives of production and input choice. In this
world, the environmental concerns add to the usual efficiency argument for consolidation.
If there are complementarities between low production costs and high pollution intensity,
moving towards a more efficient equilibrium potentially entails moving away from a more

1Agricultural environmental externalities are diverse. They range from a reliance on slowly renewing aquifers for irrigation
(e.g. Hornbeck and Keskin (2014), Ryan and Sudarshan (2021), Carleton et al. (2023), Taylor (2024)), air, soil and water
pollution (Dias et al. (2023), Missirian (2020), Chabé-Ferret et al. (2021), Taylor (2022), Frank (2021)), significant greenhouse
gas emissions in the form of N2O and CH4, to local ecosystem disruptions directly stemming from the reshaping of rural
landscapes.

2Agriculture accounts for 21% of all emissions if I also include its impact on land use (Poore and Nemecek (2018)). Within
the EU, 10% of emissions are associated with agricultural production, and nitrous oxide emissions linked to fertilizer use account
for a third of them.
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sustainable one. In this case, the welfare consequences of selecting farms on efficiency are
hinged upon a trade-off between gains in economics surplus and increases in pollution. Be-
cause subsidies distort the allocation of production across producers, their consequences for
pollution are theoretically ambiguous and depend on this empirical relation.

The environmental implications of agricultural subsidies will be context-specific. I
study the EU CAP within the French cereal and oil crop market, which is the largest mar-
ket of the EU and one of the most important world exporter of grains.34 I make several
contributions to the analysis of agricultural subsidies. I propose the first causal estimates
for the 1992-1995 MacSharry reform, the largest CAP reform to date, and further develop
a welfare analysis of the contemporary CAP subsidies encompassing economic surplus and
environmental pollution. As a point of comparison, yearly CAP spending was on average
30% larger than the US Farm Bill around the reform (Johnson et al. (2010)). I rely on a dy-
namic model of land use, where I pay attention to cross-farm heterogeneity in efficiency and
pollution intensity. This allows me to understand both the direct effect of subsidies on farm
behavior, and the one on cross-farm reallocations. Importantly, farms are modeled as multi-
product establishments. Within a farm, chemical-use per euro produced will consequently
depend on its crop-mix composition, as I allow crops to have different chemical needs. It will
also depend on the farm’s idiosyncratic efficiency at using chemicals. Both crop-specific pro-
duction technologies, and the distribution of chemical efficiency are recovered using French
administrative micro-data. My functional form assumptions do not impose a sign for the
relation between farm efficiency and pollution intensity. The recovered parameters entail it
is a positive one. These relations are nested in a model where farms make dynamic decisions
which endogenize the equilibrium allocation of production across producers.

I start by studying the impact of the MacSharry reform of the CAP on the French
market. This reform was implemented in the EU to allow for the ratification of the Uruguay
Round of World Trade Organization negotiations (1986-1994). The analysis highlights key
channels through which subsidies impact farm behavior and aggregate pollution. The reform
removed or reduced commodity price floors for cereal and oil crops, leading European prices
to converge to international market levels. It further introduced a partial compensation in the
form of a land subsidy. While the fall in prices was heterogeneous across crops, land subsidies
were fairly homogeneous. As such, farms’ ex-ante exposure to the reform varied with their
pre-reform crop mix. I rely on a shift-share design which uses the heterogeneity across farms
in pre-reform crop mix for identification, and control for the endogenous determinants of crop
choice. I argue for causality following the framework of Goldsmith-Pinkham et al. (2020),
where the shift-share approach relates to a difference-in-difference analysis. At the farm
level, a one standard deviation increase in reform exposure leads to decreases in sales (25%)
and profits (38%), as well as in total chemical use (19%). Within French municipalities,

3For practical reasons, I will consistently address the European Community or European Union as the European Union
throughout the paper, regardless of whether I am talking of pre-1992 or post-1992 years. The EU was created by the 1992
Maastricht Treaty, and the pre-1992 corresponding entity was the European Community.

4See https://ourworldindata.org/grapher/cereals-imports-vs-exports?tab=table&time=2018.
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a one standard deviation increase in the median farm exposure leads to a .5 decrease in
farm population. For 36,000 municipalities in France, this represents a significant impact
of additional exposure on exit. Further, increased exposure raises the minimum farm size
within municipality by 1ha. I finally use remote sensing data from Landsat 5 to build an
index for algal blooms, following the method of Taylor and Heal (2023). These blooms are
regularly caused by over-fertilization and spikes in nitrogen which perturb an ecosystem’s
nutrient balance. They have detrimental consequences for ecosystem health, wildlife, human
health and for climate change through methane emissions (Rossi et al. (2023)). The decrease
in chemical use at the farm level is matched by a 7% decrease in algal blooms at the county
level by 1999, with respect to their 1991 level.

These results illustrate how subsidies impact profitability and survival, and how they
can also shift the incentives for relative input use. However, this analysis only recovers the
effect of marginal additional reform exposure, and does not distinguish between the role of
changes in subsidy level and design. My structural approach accounts for the equilibrium
effects of subsidies, and allows me to compare the effect of different designs through coun-
terfactual analyses. I develop a competitive partial equilibrium model of farm dynamics,
paying particular attention to entry, exit and capital accumulation. The model follows the
structure of Hopenhayn (1992), but allows for multi-product firms and capital accumula-
tion, respectively in the spirit of Mayer et al. (2014) and Clementi and Palazzo (2016). I
also specify entry costs which adjust with market size, using intuitions from Klenow and Li
(2024) for their estimation. The model generates two key equilibrium relations: one between
farm efficiency and pollution intensity, and another between aggregate production and total
chemical use.

The structural analysis is organized around a demand system composed of constant
elasticity demand curves, and the static and dynamic elements of supply: crop-specific pro-
duction functions, and a set of parameters for the farms’ dynamic decisions.5 There are two
important features to the estimation of production functions. The first one is the presence
of chemical-biased productivity shocks on top of input-neutral ones. The second is that I
model multi-product farms but observe most inputs at the farm-level. To recover chemical-
biased productivity shocks, I use the first order conditions of the parametrized farm problem,
following Doraszelski and Jomandreu (2018).6 To account for multi-product producers, I fol-
low De Loecker et al. (2016) and rely on single product farms for estimation. For these, the
observed farm-level inputs are all allocated towards the same crop. This sample selection
introduces an estimation bias which I address, adapting the selection correction of Olley
and Pakes (1996) and De Loecker et al. (2016) to my context. I then use the estimated
parameters to recover input allocations and unobserved shocks for the multi-product farms.
I find a positive relation between the chemical intensity of production and farm profit. In

5The main specification does not model a possibility for cross-crop substitution in demand – but my extension using mo-
nopolistic competition gives me within and across crop categories substitution patterns and serves as a point of comparison.

6Their approach differs from the semi-parametric one of Ackerberg et al. (2015), by deriving estimating equations from the
firms’ profit maximization problem.
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my competitive model, this also entails a positive relation between pollution intensity and
efficiency. Because of the substitutability between chemicals and land, a farm with a rela-
tively higher ability at using chemicals will switch its input shares towards chemicals and
away from land. One might intuitively expect land and chemicals to be substitutes. Or-
ganic farming tends to have lower yields, and to compensate for these by increasing land
use. I finally use indirect inference to estimate the costs of capital adjustment, a fixed cost
paid by farms every period, and the parameters governing the adjustment of the entry cost
to market size. Farm decisions are dynamic in at least two ways. Entry and exit rely on
expectations about future profit. Capital accumulation is similarly forward-looking. It is
also dynamic in the sense that accumulation might take time, especially if farms face convex
costs of adjustment. In my context, capital is composed of buildings and machines. Larger
investments might lead to larger disruptions in the production process, for example in the
form of learning costs for new machinery. The relative volatility of farm-level input-neutral
and chemical-biased shocks, and their interaction with capital accumulation determines how
production gets allocated across producers through both within-period production decisions,
and across-periods capital accumulation and exit decisions (Collard-Wexler (2013)).

Policy Implications: The counterfactual analysis is composed of three exercises. I
first revisit the MacSharry reform. The simulations show it led to a 20% decrease in the
average costs of production on the French market, and a 38% decline in its chemicals-to-
output ratio. Both the reform-induced exit of low efficiency producers and decreases in
production scales lowered costs. This same exit of low efficiency producers raised pollution,
as these farms pollute less. However, this effect was dominated by the introduction of a land
subsidy which significantly increased the relative price of chemicals.

I then study two different designs, which highlight two channels through which subsidies
interact with pollution. First a land subsidy, and then a lump-sum payment for low pollution-
intensity, or organic, producers. The subsidy leads to within-farm within-crop changes in the
relative use of chemicals. It impacts all producers and has a large effect on aggregate chemical
use. The lump sum payment allows low pollution producers to survive on the market. By
doing so, it reallocates production away from high pollution farms. However this lump-sum
only impacts aggregate outcomes through changes at the farm survival margin, and hence
focuses on the lowest market share producers. Consequently, the lump-sum has a small
impact on total chemical use. I recover the welfare impacts of these policies at different
levels of intervention, as well as their marginal value of public funds (MVPF). In so doing,
I follow the approach of Hahn et al. (2024) who study the effectiveness of climate change
policies in the United States. For larger valuations of chemical pollution, the land subsidy
has an MVPF above 1, comparable to the effects of the US electric vehicle policies and
appliance rebates studied by Hahn et al. (2024).

I finally compare the land subsidy to a chemical tax. For every subsidy level, the tax
leading to a similar change in the relative chemical-to-land price has a larger effect on total
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chemical use. Indeed, the tax shifts the price of chemicals relative to all inputs, and not
only land. I characterize the extent to which a land subsidy can replicate the welfare gains
of taxation. I compare the producers’ willingness to support the two policies by tracking the
evolution of their surplus. For a range of intervention levels, the subsidy potentially trades
lower welfare gains with larger political support from producers.

Related Literature: This paper makes a series of contributions. I first estimate the
elasticity of substitution between land and chemicals in French cereal and oil crop farming.
I combine it with the distribution of chemical-efficiency across farms to obtain a relation
between farm efficiency and pollution. Discussions of input-bias technological change in
agriculture go back at least to Binswanger (1974) and the comparative study of Hayami and
Ruttan (1971), and has been developed extensively to study the causes and consequences of
agricultural productivity growth (recent examples include Bustos et al. (2016) and Clemens
et al. (2018)). My production function is closed to the one outlined by Hayami and Ruttan
(1971), which was estimated using country-level observations due to the unavailability of
farm-level data. I can rely on micro-data to recover land-to-chemicals and fertilizers-to-
pesticides elasticities, as well as the distribution of input-biased production efficiency, while
addressing issues of selection and endogeneity in the estimation of production functions. By
nesting this within-farm relation between profitability and pollution intensity in a model of
farm dynamics, my analysis relates to the work of Oberfield and Raval (2021) who study
how cross-firm heterogeneity in labor-biased productivity drives the fall of the aggregate
labor share in U.S. manufacturing. Like them I recover an aggregate elasticity, here between
land and chemicals, from a micro-level elasticity and the allocation of production across
heterogeneous farms. In my implementation, I account for endogeneity in the estimation of
elasticities, by following the approach of Doraszelski and Jomandreu (2018). Substitution
between chemicals and land can be driven by both variation in relative input prices, or by
changes in within-farm chemical efficiency which is unobserved. I rely on a series of timing
and exogeneity assumptions to control for this second driver of the chemical-to-land ratio.
I further use the method of De Loecker et al. (2016) to recover crop-specific production
functions and account for the fact that farms are multi-product producers. Maue et al.
(2020) was a recent implementation of production function estimation to agriculture. I build
on their work by addressing these important features of agricultural production.

Farm-level heterogeneity and production functions are nested within a model of farm
dynamics. Farms make a series of dynamic decisions related to entry, exit, crop mix and
capital accumulation. Modeling multi-product farms with capital stocks adds to the grow-
ing industrial organization literature looking at dynamic land use, where farms often had
to be modeled as atomistic fields because of data limitations (Scott (2013), Hsiao (2022),
Burlig et al. (2024)). This paper also relates to the literature studying the environmental
externalities associated with agricultural production: from chemical pollution (Frank (2021),
Dias et al. (2023), Missirian (2020), Taylor (2022), Taylor and Heal (2023), Chabé-Ferret
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et al. (2021), Rossi et al. (2023)), deforestation (Balboni et al. (2023) for a review), im-
pacts on local climate (Braun and Schlenker (2023) and Grosset-Touba et al. (2024)) to
irrigation and groundwater depletion (Hornbeck and Keskin (2014), Burlig et al. (2024),
Carleton et al. (2023), Ryan and Sudarshan (2021)). I propose a model for the equilibrium
relation between efficiency and pollution intensity, which allows me to study the effects of
different policy designs on pollution. In so doing, the paper also relates to the literature
studying the environmental consequences of production subsidies. This literature has ana-
lyzed both the effects of input-biased subsidies favoring the use of polluting inputs such as
fuel (Davis (2017), Englander et al. (2023)), and the indirect subsidization via trade regula-
tion of relatively more polluting industries (Shapiro (2021)). Here I provide a reduced-form
causal analysis of the EU MacSharry reform. I can recover the equilibrium effect of the
reform thanks to my model, as the exogenous variation available for the reduced form only
captures the consequences of marginal additional reform exposure. The model also yields
the equilibrium environmental gains from EU agricultural subsidies, accounting for both
marginal and infra-marginal effects. It allows me to compute the marginal value of pub-
lic funds for different types of subsidy designs, following the comparative analysis of Hahn
et al. (2024) studying U.S. climate change policies. Focusing on equilibrium outcomes, my
analysis relates to the industrial organization literature looking at the equilibrium modeling
of environmentally relevant markets, and paying particular care to agent heterogeneity and
dynamics (Gowrisankaran et al. (2016), Souza-Rodrigues (2018), Blundell et al. (2020) Ryan
and Sudarshan (2021), Rafey (2023), Aronoff and Rafey (2024), Aspelund and Russo (2024)).
EU policy makers have been relying on the CAPRI general equilibrium model to study the
effects of the CAP on production and the environment (Britz et al. (2007)). Compared to
CAPRI, I propose a model of dynamic heterogeneous farms within the same crop market.
My model is estimated using micro-data, addressing endogeneity, and links subsidies to both
within farm decisions, and across farms allocations.

Finally, I study the impact of industrial policy intervention on market efficiency and so-
cial welfare, drawing from a rich literature on firm dynamics and specifically papers following
Hopenhayn (1992) and Hopenhayn and Rogerson (1993). I highlight the comparative effect
of policy on within-firm effects, and cross-firm reallocations, in that being close to Backus
(2020). Here, policy can change the farms’ behavior via changes in crop-level production, and
in crop mix composition. It can also lead to reallocation effects through changes in market
shares across incumbents, and through entry and exit movements. There is a large literature
studying misallocations within agriculture (Adamopoulos and Restuccia (2014), Foster and
Rosenzweig (2022), Lagakos and Waugh (2013), Gollin et al. (2021)). The French adminis-
trative data has the advantage to provide farm-crop level output, price and land use data.
This allows me to recover precise measures of farm production efficiency which is important
to recover the consequences of reallocations on aggregate efficiency.

This paper proceeds as follows: Section 2 provides background on the French market,
the CAP, the MacSharry reform and describes the data. Section 3 presents reduced form
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evidence on the consequences of the reform, and the channels at play regarding selection and
within-firm treatment. Section 4 outlines the structural model and the estimation strategy,
Section 5 presents counterfactual simulations. Section 6 concludes

2 Context and Data

I discuss in turn the French and European agricultural markets, and the goals of the European
Union Common Agricultural Policy within these markets. I then address the context in which
the MacSharry reform was introduced, and its likely impact on French agriculture. I end by
describing the data used for the analysis.

2.1 French and European Agriculture

The Common Agricultural Policy was first designed to foster the reconstruction of post-
World War II European agriculture, encourage production within the union and support
agricultural income (Petrick (2008)). It aimed at doing so by creating a common agricultural
market within the European Union, and by implementing a common support scheme directly
financed by the community’s budget.7 The free market for cereals was introduced in 1967.
It was accompanied by a system of price support—floor prices implemented through public
purchasing guarantees, export subsidies and import levies—jointly aimed at creating a buffer
between world prices and European prices in order to support farm revenue. Purchasing
guarantees were paired with minimum sales volumes, and were as such effective at the level
of wholesalers – indirectly influencing farm-gate prices.8 Price floors were seen as both
stabilizing and supporting agricultural income, and as a way to boost productivity by favoring
investments. The common market expanded to most of the other agricultural commodities
over the following decades, with the introduction of intervention prices for oil crops in the
late 1960s, and varying forms of price control for protein and textile crops, rice, sugar, meat,
milk and milk products, and some vegetables and fruits. In the mid to late 1980s, however,
the CAP faced a very different industry, and declining world prices following the boom of
the 1970s (Gardner (2002)). European agriculture was now producing large surpluses, and
internal pressure was building to reform the CAP.

2.2 The MacSharry Reform

The MacSharry reform was implemented between 1992 and 1995, after years of unsuccessful
reform attempts, and can be considered as the largest reform of the EU CAP to date. The

7The 1950s in the US were dominated by debates surrounding the farm problem (Gardner (2002)), broadly defined as the
combination of low earnings in agriculture, high income uncertainty, and an over-allocation of labor to agriculture (Schultz
(1945)). While Western Europe shared the concerns regarding low and stagnating agricultural income, the focus on increasing
productivity and decreasing the labor share of agriculture were amplified by the need to rebuild its industry, and by the desire
to have local supply meet demand.

8Intervention prices were first regionalized, and later harmonized across the Community in the 1970s. They were first set in
Unit of Accounts, a fictional common currency introduced for the purpose of the Common Agricultural Policy, later in ECUs,
and then euros. For that purpose, specific agricultural exchange rates, called the "green rates", were implemented to prevent
within community arbitrage following any re-evaluation of the members’ currencies.
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reform happened at a pivotal moment for the EU, and at the conjunction of the voting of
the 1992 Maastricht Treaty creating the European Union, and of ongoing trade negotiations
under the umbrella of the GATT Uruguay round. These external forces justify taking the
timing and design of the reform as exogenous to local French agricultural conditions.

The Maastricht Treaty was signed in 1992, and prepared for the introduction of the
European currency union and the deepening of the European single market. While the euro
itself was only introduced between 1999 and 2002, the treaty meant that the EU budget
needed sufficient reserves to provide financial transfers for the poorer member states in pre-
vision of their entry in the currency union (Moyer (1993)). These requirements compounded
with the growing European budgetary crisis. While originally manageable, the agricultural
budget grew exponentially with European agricultural capacity. Over 1980-1986, EU agricul-
tural spending doubled. In early 1991, expenses were expected to increase by an additional
25% in a single year. Figure A1 shows intervention stocks, spending and over-production
projections from the EU Commission in 1990. While the European Commission strongly
favored subsidy cuts, many member states opposed them. Among them was France, which
was one of the primary beneficiary of the policy. The emerging risk of a trade war between
the EU and the U.S., hinged upon questions of agricultural subsidy exports and internal
price management, added additional pressure for the reform of European agricultural pol-
icy. Uruguay round negotiations had started in 1986, but had stalled. The US-led Cairns
group insisted on the inclusion of agriculture in the negotiations, and more specifically for
the treaty to regulate both direct trade policies, and internal support mechanisms likely
to distort trade conditions across countries. This meant that European agricultural policy
would need to be modified.

The reform consisted of the following points.9 First, cereal intervention prices were
moved to international price levels, while they were fully removed for oil and protein crops.10

Second, these changes were partially compensated by the introduction of land use subsidies,
in the form of payment per ha. Third, the reform paired these payments with compulsory
set-aside requirements, effectively decreasing the rate of subsidization of land. In Figure 1 I
illustrate the removal or decrease in intervention prices. I show the evolution of farm gate
prices for a series of agricultural commodities. All variables are expressed in 2020 euros.
The intervention prices are in red,11 in grey the distribution of farm gate prices in France,
as observed in the FADN. The solid grey line shows the median, and the ribbon the spread
between the 25th and 75th percentiles. There is a clear co-variation in French farm gate
prices and intervention prices.12 Finally, the dashed and dot-dashed blue lines track US and

9A first reform plan was outlined by the Commission in 1991 – it proposed to cut intervention prices for cereals, oil and
protein crops to world price levels, and to introduce a progressive compensatory subsidy scheme in the form of marginally
decreasing payments per ha. This progressive structure was scrapped with pressure from the member states, to be replaced by
the reform described here.

10Council Regulation 1766/1992 which introduces the reform for the cereal market states "the objective can be achieved by
lowering the target price to a level representing an anticipated rate on a stabilized world market", making very clear the goal
of convergence to international prices.

11To the best of my knowledge, this corresponds to the first complete series of EU intervention prices, which I recovered from
commodity and year specific regulations.

12The intervention prices did not translate in a one-to-one fashion into minimum prices at the farm gate, and that farm gate
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Canadian farm-gate prices recovered from Faostat. Around the time of the reform, the U.S.,
Canada and France were by far the largest three exporters of cereals in the world – and
North American prices are hence useful points of comparison.13

Figure 1: Convergence of French and North American Prices Following the MacSharry Reform

Notes: Evolution of French and North American farm gate prices, as well as EU intervention prices for most cereal and oil crops.

French farm gate prices are shown with the grey ribbon, and taken from the FADN. The center dotted line corresponds to the

weighted mean, and the edges to the bottom and top 25th and 75th centiles of the distribution of prices. Intervention prices are

shown with the solid red line. The data is digitized, taken from the relevant EU directives published over time. US and Canadian

farm-gate prices are taken from Faostat, and shown with the dashed and dot-dashed blue lines. All prices are converted into 2020

euros using the relevant exchange rates and correcting for inflation using the Insee’s consumer price index.

This figure highlights two important points. The first is that intervention prices were
effective at maintaining a large wedge between French and North American prices, and that
this wedge disappeared with the reform. Prior to 1992, fluctuations in the gap between
French and North American are dominated by movements in North American prices – and
especially the 1984-86 commodity crisis (Morrison and Wattleworth (1986)). Around the
reform, however, the closure of the price gap is driven by movement on the European and
French side. Second, the size of these wedges significantly varied across crops. This implies
prices remain mostly lower than intervention prices. This is likely caused by the presence of minimum purchasing thresholds at
which intervention happened, shifting intervention to the secondary market and leaving room for intermediary to only partially
pass-through these price levels to farmers.

13See https://ourworldindata.org/grapher/cereals-imports-vs-exports?tab=table&time=1995
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that farm-level EU-led protections varied according to the farms’ crop mixes, and that the
losses incurred by the reform also likely varied with their mix. I build an average output
price across cereal and oil crops within farms, using land shares for the aggregation, and
show the associated one-number summary in Figure A2. While prices have a similar slow
decreasing trend pre and post-reform, there is a large jump happening between 1991 and
1993 corresponding to an average 33% decrease in prices, for which there is no recovery.

The second step of the reform was the introduction of land-use subsidies in the form of
payments per ha. These acted as a partial compensation for the removal of price intervention.
Land subsidies were considered to be sufficiently de-correlated from production because they
would not scale with yields, but only land-use thought to be more sticky. I show the evolution
of average land subsidies as measured in the FADN in Figure A3, and subsidies per unit of
output across crops in Figure A4. The subsidies were computed as the product of an EU-
wide price, multiplied by a regionalized historical yield. Because 1991-1995 output-price
movement varied across crops, but land subsidies were more homogeneous, the reform can
be seen as a relative homogenization of subsidies which were previously diversified across
crops.14

Finally, the reform implemented a set-aside requirement. Farms were required to set-
aside a fixed proportion of their land in order to receive land subsidies. Specifically, 10% of
their total land use had to be left fallow for them to receive subsidies. This fallow land was
also compensated for by the land subsidy.15 Small farms were not subject to this set-aside
policy. I account for set-aside requirements in our measure of the reform, and control for the
farms’ 1991 land use in order to capture their exposure to the set-aside requirement.

I end this section by showing suggestive evidence for large reallocations in production
happening in the decade surrounding the MacSharry reform. I show trends specific to the
cereal and oil crop market, which is the one I will focus on—but give a comparison with
the trends of the general agricultural market in Table A3. In Figure 2, I use the Census
of Agriculture to plot the evolution of the average cultivated area across farms active on
this market and the evolution of the land share allocated to the top decile of the farm-size
distribution. These two variables show perennial trends across decades, but a kink at the
time of the reform. The growth in average farm size accelerates between 1988 and 2000,
while the share of land allocated to the top decile of farms jumps from 25% to 49%. These
two trends are homogeneous across crops in the market, and I hence plot aggregate statistics
across crops. On the contrary, exit dynamics are clearly differentiated across crop categories.
There is no sharp change in exit trends around the reform for cereal crops, while the oil
market moves between 1988 and 2000 from a net decade-to-decade increase in its number
of producers, to a net decrease. Combining this with the differences in wedge decrease
observed in Figure 1, it seems the cereal and oil crop markets were differently impacted

14This yield computation differed across crops in its exact implementation, but kept the same general structure.For wheat,
it corresponded to a weighted average with two-thirds of the department-specific 1986-1990 yield, and one-third of the national
yield for the same period.

15Regulation 1765/92 introduced the land payment scheme, and the set-aside requirement was set by Commission Regulation
2293/92.
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by the MacSharry reform. Oil crops suffered a much larger decrease in profitability, and
this difference will drive identification in our reduced form section. Figure A6 adds to this
picture, and shows evidence for farm-level crop specialization accelerating around the time of
the reform. Table A4 presents a more detailed accounting of the farms’ crop mix composition,
which is discussed further in the structural part of the paper.
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Figure 2: Farm Growth, Reallocations and Exit around the MacSharry Reform

Notes: The data is computed using the full count agricultural census for years 1970, 1979, 1988, 2000, 2010 and 2020. Statistics

are only computed for farms active in the oil and cereal crop markets. Average farm size is measured in hectares, the share of

land allocated to the top decile of farms (in size of land) is expressed in percent. The evolution of the respective farm populations

is expressed wrt. to the 1970 baseline value, in order for the rates to be comparable across crops. The vertical line is for 1991, the

last year prior to the reform. The dotted line for the first two figures show the average trend over 1970-1988.
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2.2.1 Suggestive Evidence for Chemical-Biased Productivity Growth

I end the descriptive section by showing suggestive evidence for the mechanism through which
I introduce cross-farm heterogeneity in pollution intensity in the model. I do so following
the intuitions discussed by Doraszelski and Jomandreu (2018) in the context of labor-biased
productivity growth in Spanish manufacturing. I use farm-level data to compute fertilizer-to-
land and phytosanitary-to-land input ratios as observed in the FADN. They are normalized
to their 1980 level. Price ratios are computed at the country level, using national price
indices, and an average land price adjusted for land subsidies.

Figure 3: Suggestive Evidence for Chemical-Biased Productivity Changes

Notes: Evolution of relative input quantity ratios versus relative input price ratios. The binscatters are computed using combined

data from the FADN (input quantities), the INSEE Ipampa price index series (chemical prices), and the Valeur Venale des Terres land

price series (land prices). Land prices are corrected for the EU land subsidies in effect. I compute input-to-input price and quantity

ratios. Inputs are measured as deflated bills for pesticides and fertilizers, and in hectares for land. Prices for chemicals are Laspeyres

price indices, while land prices correspond to an average land price in France. All indices are normalized to 100 in 1980, in order to

focus on their relative evolution over time.

The two relative input price ratios increase significantly over 1980-2000, while volume
ratios increase more slowly but still significantly over the same period. This joint increase
is likely indicative of input-biased technological change. This change is chemical-enhancing
if land and chemicals are substitutes, or land-enhancing if they are complement. Because
soil and climatic conditions can reasonably be considered constant over such a short period
of time —meaning that land productivity should remain constant—these joint increases
are likely suggestive of chemical-biased productivity change. The European Union Nitrate
Directive was introduced in France between 1997 and 2000, limiting the quantity of nitrogen
which could be used by farms in at-risk area. This could explain part of the decrease
observed from 1999 onwards.16 I provide additional descriptive statistics regarding the role
of agricultural production in environmental pollution, and heterogeneity in chemical use

16See Chabé-Ferret et al. (2021) for an analysis of the causal effect of the Directive in France.
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across farm size in appendix B.2.

2.3 Data

I describe the two main datasets here, and leave the description of the others to appendix B.1.

2.3.1 Farm Accountancy Data Network (FADN)

Most of the analysis relies on a repeated panel of agricultural production developed to be
representative of European commercial farming. I will extensively use the French subset of
this dataset. The FADN was established in 1968, and for France currently samples around
8,000 farms a year.17 18 The FADN is extraordinarily detailed for an agricultural dataset,
and presents the clear advantage of being a repeated panel. It is built using accounting data
of the farms’ activities, and contains total and crop-specific sales, as well as sales volumes
allowing me to backtrack farm-level crop prices. It also contains farm-level input usage,
crop-specific land allocations and output production, and finally capital stock data. Finally,
the data is geocoded at the department level. I will then be able to match farms to their
department-level input prices as well as weather data.19

2.3.2 French Agricultural Census

The French agricultural census was first fielded extensively at the establishment level in 1955,
following the 1951 law on statistical secrecy guaranteeing that none of the collected data
would be used for fiscal purposes. The census is fielded approximately every ten years—and
for this paper’s purposes in 1970, 1979, 1988, 2000 and 2010. The French Census is notable
in that it can be accessed at the farm level. As a census, it covers virtually every agricultural
establishment in the country. Farms are defined as a unit of agricultural production with
independent management, and reaching at least one of the following thresholds: a total agri-
cultural area of .2ha, or a sufficient production level specific to the output type considered.
The original list of establishments filtered with these requirements is built out of a combina-
tion of land registries and data from the farmers’ family allowances mutual savings societies.
The Census, however, does not provide actual output or input data beyond crop-specific
acreage at the farm level. Furthermore, prior to the extension of stable fiscal numbers to
farms in 1998, these cannot be tracked across the wages of the Census.20 I will use the

17Many of the datasets I pair with the FADN are specific to France, preventing me to extend the analysis to the EU-wide
FADN.

18The FADN is not representative of all agriculture, but only of commercial farming. The definition of a commercial farm
changed in 2010, but this only led to the changing of the rules for choosing replacements for the farms leaving the sample, and
not to an overhaul of the sample population itself. A commercial farm used to be defined as a farm with a unique manager, which
sells more than half of their production, and whose manager’s working hours corresponds to at least 75% of their total annual
work hours. Finally, farms with less than 5ha of land were removed from the targeted population if they were not specialized.
In 2000, there were 380k such farms recorded in the Agricultural Census out of 663,800, but together they accounted for 95%
of the country’s total agricultural production. From 2010 onward, the working hours requirement was removed, and the 5ha
threshold was replaced by a requirement that farms have a production capacity (PBS or Production Brute Standard) of at least
e 25,000.

19Farms are geocoded at the village level from 2000 onwards, too late to cover the MacSharry reform.
20These fiscal numbers, or Siren numbers, are the equivalent of the US EIN number.
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Census to track net farm exit, and the distribution of farm size and crop mix composition
at the municipality level.

3 Reduced-Form Analysis: Consequences of the MacSharry Reform

This section highlights some key channels through which agricultural subsidies can impact
aggregate efficiency and pollution. At the farm level, increased exposure to the reform
translated into decreases in output prices, sales and profit. The reform also caused decreases
in total chemical use at the farm level. Post reform, subsidization happens through a land
subsidy which increases the relative price of chemicals. This subsidy then reduces incentives
to use chemicals in production. The reform also impacted the equilibrium allocation of
production. Increased median exposure across farms within a municipality also comes with
farm exit, likely at the bottom of the farm size distribution. Using a yearly remote-sensing
based index of water pollution, I finally show increased exposure to the reform at the county
level decreased pollution.

3.1 Empirical Strategy

The identification strategy relies on the variation in ex-ante exposure to the reform across
farms. Pre-reform, price intervention implied that the revenue protection farms were getting
depended on the wedges between EU intervention prices and international market prices.
Figure 1 highlights these were very different across crops. Post-reform, French prices con-
verged to international prices, and revenue protection happened through a land subsidy
conditioned on land set-asides. This subsidy still varied across crops, but less systematically,
and so did the cost of set-asides. I develop a design in order to isolate the exogenous part of
this cross-farm variation.

Approximating European Policy: EU policy shields European agricultural rev-
enues from world market competition. I write these crop-year revenue cushions (per unit of
output) introduced by EU policy as:

cushionct = 1{Interventionct}
(
P inter
ct − P

I

ct

)
+

(
Subct

Y ieldct
− setasidect

)
.

P inter
ct is the intervention price for crop c in year t in France, and P

I

ct is the corresponding
farm-gate price in North America.21 The first element is simply the difference between these
two, when intervention pricing is happening, which is denoted by the indicator. The second
element corresponds to the post-1992 land subsidy, conditioned on land set-asides. Subct

Y ieldct

translates the land subsidy into a price by dividing it by an average yield. I add to it the
21The US and Canada accounted for most of the export market over the 1980s to 2000s, making these prices a relevant

reference point for our analysis. I use USA prices but for colza, for which I use Canandian prices – given that the USA was not
a significant producer of colza at that time, but Canada was. All these prices are average farm gates prices from Faostat.
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cost of compulsory set-asides. The cost of the set aside is the cost of holding 10% additional
more land than the one used for the production of crop c (per unit of output). Its cost is
that of the price of land, minus the land subsidy which is also given for land set-aside. I use
the median subsidy per ha as observed in the FADN, and the average yield observed in the
same dataset.22

Figure 4: EU Subsidization per Unit of Output – Heterogeneity in Losses around the Reform

Notes: The figure plots crop-specific EU subsidies per unit of output over time, using data from the FADN, and digitized time series

of EU intervention prices over time, as well as US and Canadian farm gate prices from Faostat. The shaded area is for 1991-1995,

going from the last year pre-reform to the last year of the reform. Data on oats and sorghum is only introduced in 1980 in the FADN.

The evolution of crop-specific cushions is shown in Figure 4. The shaded area is for
1991-1995, the interval over which the cushion changes are evaluated, going from the last
year pre-reform to the last year of the reform. All crops have a decrease in their cushion
at the moment of the reform. For oil crops, the reform happens in 1992. The decrease in
cushion size is of a much smaller magnitude for cereal than oil crops.23

Building the Instrument: I can use a weighted sum of the revenue cushions to
22I rely on the median and not average subsidies, as the subsidy data recorded in the FADN shows significant mis-measurement.

The average subsidy per hectare decreases over time in the FADN, in a pattern that does not match EU policy, while the median
value does.

23In 1992, land subsidies are still zero in the data, and I use the same land subsidy value as in 1993. Because I do not use
the cushion values in 1992, this has no bearing on the following analysis.
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obtain an average cushion at the farm level.24 Setting the initial period to t0 = 1991, I use
the following aggregation formula:

Cushionjt =
∑

c∈Cj,t0

slj,c,t0∑
c′ s

l
c′,t0

cushionct.

1991 crop decisions were made in the fall of 1990, before any outline of the reform was
set forward. Here slj,c,t0 gives the land area allocated to crop c by j at t0. Ex-ante farm-level
exposure to the reform can then be captured by:

Expj = Cushionj,t=91 − Cushionj,t=95.

In appendix B.3, I show additional results where the instrument is constructed using
land shares to aggregate across crops for the land subsidy and set-asides, and output shares
to aggregate across intervention prices. Results are similar to the ones presented in this
section. Using the Rotemberg weights developed by Goldsmith-Pinkham et al. (2020), I
can decompose the source of the variation in Expj across crops. I do so in Table A14.
These weights show that variation in 1991 land shares across farms resp. sunflower, corn,
wheat, durum and colza account for most of the cross-farm variation in exposure. As such,
I cannot rely on the approach of Borusyak et al. (2022) to shift-share designs, which allows
for endogenous shares but requires a shock-level law of large numbers. The MacSharry
reform was not a set of many uncorrelated as-good-as-random shocks, but rather a few
shocks with varying intensities that interacted with varying cropping patterns at the farm
level. Hence, my design will follow the identification strategy outlined in Goldsmith-Pinkham
et al. (2020), recently for example implemented by Ager et al. (2024)—and will also relate
as such to the identification strategies of Topalova (2010), Ogeda et al. (2021) and Kovak
(2013). It is similar to a difference-in-difference framework where agents are assigned a
treatment intensity within a continuous interval of possible values, where the intensity (the
average shock value) is based on their type (their 1991 crop mix). I discuss the validity of
this identifying framework in turn at the farm and municipality levels.

3.2 Farm-Level Analysis

3.2.1 Design

The central design sets the analysis at the farm level and relies on FADN data. For this
analysis, I will be using the following estimating equation:

∆1991Yjt = Expjθt +Xjδt + ηd(j)t + εjt. (1)
24I include the following crops to compute the farm-level cushion: wheat, barley (winter), corn, rye, oats, sunflower, rapeseed,

barley (spring), durum, sorghum.
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∆1991Yjt is the outcome of interest differenced with its 1991 level. With this formulation,
every θt will give the effect of exposure in a given year relative to 1991. Expj is the farm-
constant treatment, which is allowed to have a year-specific effect. The {θt}t<1992 will provide
us with one test for the plausibility of the exogeneity of exposure. Figure A10 and Figure A9
resp. show the distribution of the standardized farm-level exposure, and its geographic
department-level distribution within the estimation sample. The distribution of exposure
varies quite systematically across space, likely because local climate and soil conditions
create spatial auto-correlation in cropping patterns. It is then important to control for local
trends, which could both influence cropping patterns and the farm-level outcomes I will be
studying. I do so by including department-by-year fixed effects in the form of ηd(j)t. Finally,
Xj is a vector of farm-level controls set to pre-reform values to avoid any confounding effect.25

Standard errors are clustered at the department-by-year level.
In order for the {θt}t to have a causal interpretation, I need both exogeneity in the

shocks and shares which enter the computation of Expj. Regarding shocks, Figure A8 shows
how the main driver in cross-crop heterogeneity in output price decrease was the level of
the 1991 price wedge—itself driven by an accumulation of thirty years of price intervention
decisions and world-market price variations. Figure 1 confirms there was relatively little vari-
ation across intervention price levels in the ten years before the reform. Land subsidies were
composed of homogeneous prices within cereal and oil categories, and average yields which
varied based on historical yields across departments. I use a country-level approximation of
the land subsidies in order to obtain the average subsidy based on average historical yields.
Once I control for department-by-year trends, these are unlikely correlated with finer scale
auto-correlated shocks. Finally, the reform was European in scope and happened following
external pressure from the US in the context of the WTO Uruguay round, which makes
the magnitude of these shocks even less likely to correlate with within-region trends in the
agricultural market.

Shares also need to be exogenous. The drivers of crop choice in fall 1990 need to be
conditionally uncorrelated to the factors impacting the growth rates of the outcome variables
studied. Crop choice reacts to supply and demand factors. In a multi-product setting such as
Mayer et al. (2014), a higher capital stock or farm productivity should imply a more diverse
and even crop mix. This would both directly change exposure and directly impact the farm’s
dynamic outcomes. It is then important to capture the elements of a farm’s state which would
relate to 1990 crop choice and outcome growth. Another source of supply-side endogeneity is
local variation in input prices, likely correlated over time. If crops have different input needs,
these would also lead to biases in the estimation results. On the contrary, the stickiness in
crop choice decisions—for example because farms face switching costs related to cropping
cycle, as discussed by Livingston et al. (2008) and Scott (2013)—could lead past transitory

25Xj contains the following elements: their 1991 capital stock, total labor used, total land use, their fertilizer and pesticide
use, the number of crops they grew, their fertilizer-to-land and pesticides-to-land ratios, and the share of their production which
corresponds to oil crops (colza and sunflower). I add this element in order to compare farms with relatively similar takes in oil
crop production. I expect farms who only grow cereal crops to differ quite significantly from those that also grow oil crops. I
also control for the farms’ 1983-1984 adoption trends in chemicals measured as their evolution of their chemical use.

18



shocks to generate exogenous variation in the farms’ crop mixes. On the demand side, auto-
correlated preference shocks could also lead to biases in estimation. Figure A11 shows balance
tests for farms with an above or below median exposure for a series of farm characteristics.
While the impact of the reform is clearly different across groups, trends in labor and land use
also differ across the groups prior to the reform—making it important to control for them
in the analysis.

The first set of controls focuses on the farms’ states in 1991: land use, capital stock,
total output, the number of crops in their crop mix composition, their fertilizer-to-land and
pesticides-to-land ratios. Static elements of the state with constant effects should be taken
care of by the differencing of the outcome. I add all observed flexible input decisions that
year (labor, fertilizer, pesticides) in order to target unobserved farm productivity. Following
Olley and Pakes (1996), the production function literature argues that I can use flexible input
decisions to control for a firm’s unobserved productivity shocks. If the number of controls
is higher than the dimensionality of the state, and under monotonicity and invertability as-
sumptions, flexible input decisions could be inverted to give a control function for unobserved
state shocks. While there is a lot of variation in the scale of exposure across oil and cereal
crops, one can also expect farms to differ most significantly depending on whether they grow
cereals or oil crops, as most cereal crops have relatively close production technologies, soil
requirements and growing seasons. Following the recommendations of Goldsmith-Pinkham
et al. (2020) to control for more aggregated shares pre-exposure, I add the relative share of
output coming from oil crops in our set of controls. Because I also look at outcomes related
to chemical use, I also want to make finer comparisons across farms with similar production
technologies pre-reform. I thus control for the farms’ 1983-1984 adoption trends in chemicals
measured as their evolution of their farm-level chemical use. All of these variables are inter-
acted with year-specific coefficients. I finally address auto-correlated shocks in demand with
department-by-year fixed effects, under the assumption that agricultural markets in France
are sufficiently integrated for finer geographic shock to have little bearing on farm decisions.

With these controls, the remaining identifying threat would take the form of auto-
correlated shocks either specific to a farm and not captured by Xj, or local shocks taking
place at a smaller scale than the department. Following Goldsmith-Pinkham et al. (2020),
I compute the Rotemberg weights after the inclusion of all these controls. They are shown
in table A13. The design will make comparisons with farms having relatively large or small
shares of corn, wheat, sunflower and barley – which are the major crops on the French row
crop market. I give balance tests comparing farms with an above and median crop share,
for all crops in appendix B.3.2. I also provide regressions with crop-specific effects in the
appendix. These are useful to test the heterogeneity of decreases in profitability across crops.
In our case, effect are generally homogeneous across crops. I perform all the analysis in this
section on a balanced panel of farms, present from 1985 to 2002, in order for changes in
outcomes to be purely driven by within-establishment trends. I use FADN sampling weights
in the regressions.

19



3.2.2 Farm-Level Results

Farm-level event studies results are shown in Figure 5.

Figure 5: Exposure to the Reform – Farm-Level Event Study

Notes: I plot the result of the event studies for the following outcomes – all measured as differences in logs with respect to the farm’s

baseline 1991 level: a farm-level output price index (average price across row crops, using relative areas as weights), total subsidies

received, profit measured as value added plus subsidies, and the farms’ deflated chemical bill. All coefficients correspond to the

year-specific coefficient associated to farm exposure, and give the effect of exposure in that given year relative to the effect in 1991. I

control for observed characteristics of the farms pre-reform, and allow for a time-varying intercept for each of these controls. I add

department-year fixed effects, and cluster the standard errors one-way at the department-year level. The table for these results in

Table A5.

The first of these plots serves as a validation of the design. It shows that farms’
average output price growth was unresponsive to their 1991 crop-mix prior to 1992, but
significantly declines from 1992 onwards, to reach an about 40% decrease in the late 1990s.26

Exposure is standardized here, hence a one standard deviation increase in exposure leads to
this additional 40% decrease in average output price. The reform itself led to a full removal
of intervention prices in oil crops, and an about 30% decrease in cereal crops. Figure A2
identifies a 33% decrease in average farm-level crop prices between 1991 and 1993, which

26I measure the farms’ output price as the weighted average of its crop-specific prices, using relative land allocations as shares.
I use the following crops to compute the average (those for which I observe a balance time series): wheat, winter barley, corn,
rye, oats, sunflower, colza, spring barley, durum.
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serves as a good benchmark for the potential total effect of the reform on prices. This larger
decrease in output prices can come from additional reliance on oil crops in 1991, or crop
switching away from oil crops. There are decreases in sales and profits as well, resp. of 25%
for sales, and 38% in profits. Table A15 gives the difference-in-difference results matching
the event-studies regressions. Lastly, there is an impact on farms’ chemical use, here their
total use of chemicals in production. A one standard deviation increase in exposure leads
to a 19% decrease in chemical use. Additional event-study results in Figure A21 show the
decrease in chemical use is driven by a decrease in fertilizer use specifically.

In appendix B.3, I discuss the robustness of the results, and show the sales, profit and
chemical use regressions with crop-specific instruments to test the homogeneity of the effects
across crops. I also show results with a difference-in-difference framework, and results using
our alternative instrument for exposure.

3.3 Municipality-Level Analysis

I move to the Census of Agriculture to study the consequences of the reform on farm exit
and the local distribution of land. The Census covers the entire population of French farms.
Effects on the farm population will hence be best identified in this dataset. Prior results
were based on the FADN as the Census does not contain any output, sales, profit or chemical
use data. The Census does not allow me to track farms across waves. I then aggregate our
measure of exposure at the municipality level, specifically I rely on the median exposure
across farms and within the municipality, denoted ˜Exposurek for municipality k.27 This
gives a measure of exposure which is less sensitive to tail exposure values. I discuss in the
appendix results using different centiles of the distribution, as well as mean exposure. Results
are similar across these different measures. I use the following design: for municipality k in
year t located in department d, ∆1988Ykt denoting outcomes differenced with municipality-
specific 1988 levels:

∆1988Ykt = ˜Exposurekθt +Xkδt + ηd(k)t + εkt. (2)

Xk accounts for the following 1988-valued municipality-level controls: average, minimum,
maximum and standard deviation in farm size, total municipality-level agricultural area,
total crop count at the municipality level and average crop count across farms, municipality-
level crop evenness and average crop evenness across farms, average area cultivated for oil
and cereal crops, as well as minimum and maximum cultivated area, and the fraction of farms
in the municipality affected by the reform. I cluster our standard errors at the department-
by-year level.

27Note there are about 36,000 municipalities in France, and that they correspond to the smallest geographic unit at which
I can observe data above the farm. I only use data from metropolitan France for this analysis, and results are robust to the
inclusion of Corsica.
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Figure 6: Exposure to the Reform – Municipality-Level Event Study

Notes: This figure gives the results for our municipality-level event study. Outcomes are differenced-out with respect to 1988 values.

Farm count corresponds to the number of farms operating in the row crop market within the municipality, and minimum size gives the

evolution of the minimum farm size within the municipality. Crop evenness is an index for the evenness of the distribution of land

across crops, measured both as the average value across farms, and as the municipality-level evenness. The regression includes a series

of controls set to their level in 1988 within the municipality, and interacted with a time-varying coefficients, as well as county-by-year

fixed effects. I weight observations by their relative share of total French agricultural area in 1988. Standard errors are clustered at

the department-by-year level. The tables associated to these results are Table A6 and Table A7.

I show balance tests for this measure of exposure, and its distribution in appendix B.3.5.
Municipalities with a median exposure to the reform below and above the French median
value have similar trends in farm count, average farm size and total agricultural area prior
to the reform, and slightly different trends in the homogeneity of their cropland. I control
for the 1988 farm and municipality-level evenness of cropland, in order to account for this.

Figure 6 plots results. The red line is for 1991, the last year pre-reform. Outcomes
are first the evolution of the farm count at the municipality level, then the evolution of the
minimum farm size in log terms, finally the evenness of land allocations across crops (the
average across farms within the municipality, and the evenness directly computed at the
municipality level). All are differenced with respect to the municipality’s 1988 value. θt
gives us here the relative effect of increasing median exposure by one standard deviation.
The estimated effects in 2000 of increasing median exposure by one standard deviation are:
a decrease in the number of farms by .5 within the municipality (with 36,000 municipalities
on average), an increase in minimum farm size of 1ha, and an increase in average crop
evenness of .01 (when the average value is .3, for a potential range between 0 and 1). I show
results using different methods of aggregation from farm to municipality-level exposure in
appendix B.3.5, results are comparable across measures. Figure A6 shows that larger farms
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are more diverse. The fact that the average evenness goes up, but not the municipality-level
one is suggestive that farm exit happens at the bottom of the farm-size distribution.

3.4 County-Level Pollution

I use the same design as the one for municipality level, but aggregate it further to the county
level to look at the impact of the reform on algal blooms. I focus on algal bloom as a visible
form of agricultural soil and water pollution, in part linked with the excessive use of fertilizers,
and specifically nitrogen, in row crop production (Rossi et al. (2023)). Algal blooms can be
measured using remote sensing data, by looking at the evolution of the spectral signature of
inland water bodies over time, blooms being characterized by a greening of water. I follow the
methodology of Taylor and Heal (2023), and use Landsat 5 data to compute a county-year
measure of blooms. The methodology is further described in appendix B.1.4. I aggregate our
data to the county level, as municipalities tend to be very small, and many will not overlap
with significant water bodies on which I can measure an index value. France has about 2,000
counties. I use the same set of controls from the Census this time measured at the county
level in 1988. I also add the average county-level precipitation, squared precipitation and
growing degree days. For county c, located in department d in year t, the regression follows:

∆1988Yct = ˜Exposurecθt +Xcδt + ηd(k)t + εct. (3)

The outcome is the evolution in log terms of the algal bloom index over time. Starting in
1995, higher exposure to the reform leads to a decrease in algal blooms within the county of
around 7% by 1999 (compared to 1991 levels). I show in Figure A26, the same results but
using different aggregations of exposure at the county level. Results are similar in levels and
signs.28

Overall, the results presented in this section indicate that the reform had important
effects on market dynamics: it decreased profits, and generated exit at the bottom of the farm
size distribution. It also reduced the use of chemicals, in so doing also reducing agricultural
pollution across France. If the farms that stayed were on average more productive, and either
more or less polluting, these reallocations likely had additional consequences for aggregate
efficiency and pollution. I investigate this equilibrium effect, as well as that of different
subsidy designs using the empirical model I present in the next section.

28Chabé-Ferret et al. (2021) analyze the effects of the EU-wide regulation of fertilizer use, within France, and from 2001
onwards. I stop the analysis in 2000 in order for the effects not to be confounded with this policy, as potential treatment areas
could correlate with counties more exposed to the 1992 reform.
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Figure 7: Exposure to the Reform – County-Level Event Study

Notes: This figure gives the results for our county-level event study. The outcome is differenced-out (in log terms) with respect to the

1991 value, and is a Landsat-5 based index of algal bloom intensity on the within-county water bodies. Algal blooms are generally

caused by the over-fertilization of agricultural land. The regression includes a series of controls set to their level in 1988 within the

county (last year of the Census prior to the reform), and interacted with a time-varying coefficients, as well as department-by-year

fixed effects. Standard errors are clustered at the department-by-year level. The table associated to these results are Table A8.

4 Empirical Model

The structural section is organized as follows. I start by outlining the model. First demand
for agricultural commodities, which I model as static. Then supply, which is a combination
of static input choices for production, and dynamic entry, exit, capital accumulation and
crop choice. I then discuss the estimation strategy, the recovered parameters, and their
implications.

4.1 Model Outline

The aim of the model is to deliver an equilibrium use of chemicals and economic surplus.
Both are then shifted by policy intervention. To introduce heterogeneity in pollution intensity
across farms, I will model variation in their efficiency at using chemicals. I distinguish this
inherent variation in ability from other factors which generate variation across farms in
pollution intensity—specifically crop choices, capital stocks, total factor productivity and
scale.

4.1.1 Static Demand

I consider demand for agricultural commodities. The set-up of our production function
estimation requires aggregating crops into categories. I then specify a demand function for
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each of these aggregated crop category c. For a crop c with price Pct in year t, demand is
isoelastic and ect is an idiosyncratic mean zero demand shocks:

QD
ct = exp(αc + ect)P

βc
ct .

Appendix B.9 discusses an alternative modeling path using a linear quadratic demand
for horizontally differentiated agricultural commodities themselves located within crop mar-
kets (eg. two producers will produce two varieties of wheat sold in a wheat market, which is
a subset of the general row crop market), following the work of Mayer et al. (2014).

4.1.2 Supply

Supply contains two key elements: the production function, and parameters related to capital
investment, entry and exit decisions.

Agents & Timing: Farms act as single agents in a competitive row crop market
with C differentiated crops. In a given period, a farm’s state is defined by the set: Υjt =

{ωh
jt, ω

ch
jt , S

o
jt, Kjt, σj,Cjt}. This set first contains productivity shocks: ωh

jt for a farm-level
TFP shock, and ωch

jt for a farm-level chemical-biased shock. Both ωh
jt and ωch

jt are exogenous
to the farm’s decisions, I later impose some structure on their process for identification
purposes. The set also characterizes the farm’s input stocks, the land it owns So

jt, as well as
its capital Kjt. Finally, Cjt is the farm’s crop mix for period t, and σj is its competence ladder
endowed at entry. The ladder is used to differentiate TFP shocks across crops within the
farm. The TFP has a geometric rate of decrease along the ladder, using the functional form
of Mayer et al. (2014). σj is a permutation of C which ranks a farm’s productivity at growing
crops. Given a crop’s rank, its TFP is set using the formula: ωh

jct = ωh
jtλ

∑dim(C)−1
n=0 n1{σj(n)=c}.

For example, if wheat is the first crop (rank n = 0) on farm j’s ladder, the farm will be most
efficient at producing wheat, and its TFP for wheat will be ωh

jtλ
0. The TFP for its second

crop will be ωh
jtλ, which will be strictly lower as I assume λ ∈]0, 1[.

Farms also face an aggregate market state Ωjt, which is defined as follows: Ωjt =

{µt, N
e
t , f

e
t , {Pjct}C, {P x

jt}x, PK
jt , Policyt}, µt is the measure describing the distribution of in-

cumbents over the market space, N e
t the mass of entrants, f e

t the fixed cost of entry, and
then vectors of output and input prices, as well as the state of the policy Policyt.

I assume decisions are made in the following order: incumbents first observe the evo-
lution of their productivity and of the state Ωjt, they then make their production decisions
for all the crops in their mix. Finally, they decide whether or not to remain on the market, a
decision I denote with ξxjt. If they remain on the market, they pay a fixed cost of incumbency
fk, and update their capital and land stocks, as well as decide on their crop mix for the next
period. The timeline is represented as follows:
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ωh
jt, ω

ch
jt ,Ωjt Qjct ∀ c ∈ Cjt

Remain : ξxjt = 0

Pay fk
Kjt+1, S

o
jt+1,Cjt+1

(state realized)

Exit : ξxjt = 1

Figure 8: Timing for Incumbent Farms

Entrants make decisions in the following order: they make an entry decision after
observing Ωjt, but prior to knowing their initial productivity and their competence ladder.
This entry decision is denoted ξejt, and associated with the fixed cost of entry f e

t . If they
enter, they observe their initial state, and end their entry period by deciding whether or not
to stay on the market—if they do stay they make their initial investment decisions and set
their crop mix for the next period.

Ωjt, ξ
e
jt

(entry decision) (type realized)

ωh
jt, ω

ch
jt , σj

Remain : ξxjt = 0

Kjt+1, S
o
jt+1,Cjt+1

Exit : ξxjt = 1

Figure 9: Timing for Entrants

I provide the Bellman equations linked with the incumbent and entrant problems, as
well as the law of motion of the measure µt and the equilibrium definition for the model in
appendix B.4.

Production: I consider that farms maximize profits independently across crops. Pro-
duction decisions are made independently across production lines, with flexible inputs fully
allocated across these lines.29 This means both that all flexible inputs are fully private when
it comes to their use, that input prices do not depend on the quantity purchased, and that

29The assumption that flexible inputs are fully attributable to production lines is frequent in the literature – implied in single
product settings, and formally made in multi-product ones by De Loecker et al. (2016), Orr (2022) or Valmari (2023). I discuss
and estimate an alternative joint production framework where inputs are shared publicly across products – with a penalization
– in Annex appendix B.6. I later discuss how this assumption impacts potential economies of scope in the spirit of Panzar and
Willig (1981) and Baumol (1977). The assumption that crop-specific profits can be maximized independently from each other
captures our assumption on flexible input allocations, on exogenous output prices – unaffected for example by cannibalization
concerns of Eckel and Neary (2010) and Nocke and Schutz (2018) – and of limited economies of scope. This also for example
assumes away the overhead costs modelled by Foster and Rosenzweig (2022) for agricultural labor.
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productivity shocks are exogenous to the size and composition of the crop mix. On the con-
trary, capital is taken to be fully shared across crops without penalization.30 The production
function for each crop c has the following outward Cobb-Douglas shape:

Qjct = eω
h
jct K

αc
k

jt L
αc
l

jct S̃
αc
s

jct e
εjct . (4)

Ljct is the amount of labor used in production, and S̃jct a composite input I use to
relate land, fertilizers and pesticides – and that I describe further below. εjct is a mean-zero
random shock uncorrelated over time, across firms. εjct is not known to firms prior to making
production decisions. The composite input takes the form:

S̃jct =
{
δcsS

ρ
jct + (1− δcs)

(
eω

ch
jt {δcpPestρ2jct + (1− δcp)Fertρ2jct}

1
ρ2

)ρ} 1
ρ .

S̃jct is an embedding of two CES nests. As discussed by Doraszelski and Jomandreu
(2018), CES are a flexible way to include input-biased productivity shocks within a produc-
tion function, where the impact of the shocks on equilibrium input ratios and input shares
are set by the elasticities of substitution of the CES. Here, there is a nest which relates
land and our two chemicals, for which substitution is governed by ρ. The chemical-biased
productivity shocks shifts the effective amount of chemicals used in production. The second
nest relates pesticides and fertilizers, following ρ2. I further note that all input shares are
crop-specific, and assume that

∑
x α

c
x = 1. An increase in ωch

jt will raise a farm’s chemical-to-
land and chemical-to-output ratios at the optimal level of production if ρ ∈]0, 1[. I discuss
this in further details in appendix B.5.

Dynamics: Entry, Exit and Capital Investment: The final model makes some
additional simplifying assumptions—which are not made prior in order to keep the produc-
tion function as general as possible. I remove the possibility for farms to own land So

jt,
and consider all land used is rented. I assume that all farms share the same competence
ladder σj = σ, ∀j. I finally aggregate fertilizers and pesticides in a unique input which I call
Chemicalsjct. As a consequence, σ drops out from a farm’s state. Additionally, input and
output prices will now be unique and homogeneous across all farms within a period. This
makes the exogenous market state Ωt identical across farms.

I allow for convex costs of capital adjustment, and for the cost of entry to adjust with
the mass of farms on the market, which is denoted by Mt. Costs of capital adjustments
follow:

C(Kjt, Kjt+1) = PK
t ijt + CQ

k 1{Kjt > 0}Kjt

(
ijt
Kjt

)2

.

30Its law of motion is Kjt+1 = (1 − δk)Kjt + ijt+1, where δk is the rate of capital depreciation, and ijt is investment.
Because land rental markets are perfect, I consider that So

jt is fully rented out, and that crop-specific land uses are flexible and
unconstrained. Land and labor are in reality ambiguous inputs, with an intermediary dynamic status. Labor is a composite of
farm owner and permanent labor, and of seasonal work sometimes paid hourly. Land is also a composite of owned and rented
land, with a likely wedge in price between the two. When addressing the choice of instruments, I will be careful in only using
lagged labor and land decisions to avoid any issues related to these dynamics from impacting estimation.
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The cost of entry f e
t follows:

f e
t =

1

αeAe

(
Mt

Ae

) 1−α
α

.

The idea behind this modeling choice is that as the number of farms increase in France,
the initial investment necessary to open another one goes up. This captures the scarcity of
the current stock of cleared agricultural land and built farm buildings.31 Practically, this
choice of modelization allows for the model to close when prices are set through intervention.
Indeed, under price intervention, the government provides an infinite purchasing guarantee
at a fixed price, and there is no market clearing equation. The adjustment of the cost of
the entry good provides a channel to pin down market size (mass of producers and total
production volume) under intervention.

Role of Dynamics: Farms make different dynamic decisions—capital adjustment,
crop choice, and entry and exit decisions. They also face an exogenous varying state in the
form of their TFP and chemical efficiency shocks, over which they form expectations when
it comes to making dynamic decisions. Crop choice and capital stock matter for production.
A farm’s chemical use and chemical-to-land ratio respond to its crop mix composition, while
a farm’s chemical-to-output ratio will decrease with its capital stock. Hence, these are
important elements to account for, if I want to evaluate the impact of subsidy design on
production externalities. Capital and its relation to productivity shocks also matters to
look at selection. Asker et al. (2014) discuss the relation between volatility and investment
patterns, and how too little and too much volatility de-correlate investment behavior from
shocks. Finally, all of these dynamic considerations are better accounted for in a model
with many periods, as under convex costs of capital adjustment, capital accumulation takes
time.32 As Collard-Wexler (2013) shows, recovering both costs of capital adjustment and the
volatility of productivity are key elements to correctly account for selection on productivity
within a market. Large capital stocks protect farms from low productivity shocks, and
lead to differential exit behavior – for a given productivity shock – across the capital stock
distribution. Dynamics in the form of varying productivity types, capital adjustment, crop
choice, entry and exit, are then all important to recover how different subsidy design will
interact with selection on productivity.

31Anecdotally, Table A2 shows that at the aggregate level and over 1970-2000, there is a small albeit monotone decrease in the
average ruggedness of farm land in France which accompanies the decline in the number of farms – this decrease in ruggedness
likely tracks with decreasing costs of entry.

32See Figure A14 showing the relation between farm size (in land use measured in ha) and their age in years of tenure. I
show this relation in the 2010 census. The relationship in prior years is heavily impacted by a trend in entry size growth, which
biases the overall size-tenure relation. I measure size in land use here, as this is the only available relevant variable observed in
the Census.
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4.2 Estimation & Results

The estimation of the model is done for a market with two crop categories: C = {wheat, other}.33

This coarse aggregation is required for the production function, as estimation is done using
only data from single crop farms. It however matches well the French row crop market
structure where wheat is the most common row crop grown, and is also the crop the most
frequently grown on its own. In the market, two-thirds of the farms grow at least two crops,
and about 90% of multi-crop farms grow wheat. See Table A4 for proportions taken from
the Census of Agriculture.

I present all the parameters in a joint table at the end of the section.

4.2.1 Demand

I estimate one demand equation per crop. They are recovered using data from the FADN
which I aggregate at the national level using sampling weights, I then rely on weather data
to construct supply side shifters and instrument for prices—weather shocks will impact the
production of row crops, but should not affect demand. Importantly, I build measures of
yearly local deviations from climate averages, that I interact with weather realizations and
use as instruments. These deviations are more likely to be orthogonal to demand—as they are
more likely to be orthogonal to EU-wide weather events. I also run a second design using only
post-reform observations, and additionally using seasonal weather forecasts as instruments
on top of realizations. I include a linear time trend as a control in all designs, and use the
Newey-West correction for standard errors in order to account for auto-correlation in the
error terms. The regressions with their different designs are shown in Table A9.

4.2.2 Production Function

The estimation of the production function is done in two steps, and estimating equations are
derived from the first order conditions for the farm’s present-discounted value maximization.
Because static input choice has no dynamic consequences, these conditions correspond to
the first order conditions for the maximization of static profit Πjt. Independence of crop
profits, and the fact that all flexible inputs are fully allocated to product lines finally means
that I will be looking at the first order conditions for crop-specific static profit maximization.
Throughout this section, I will assume interior solutions to input choice decisions for profit
maximization, and will hence remove FADN observations with zero flexible input use.

I will outline specific issues related to the FADN data structure and how they call
for additional care when deriving estimating equations. I then proceed to the derivations
giving me the two estimating equations, as well as the estimation procedure itself. The aim
of decomposing the estimation in two steps is that I can first recover an equation where
the non-Hicksian shock is the only endogenous unobservable—once recovered—I can then

33List of crops in other category: sunflower, colza, oats, barley, rye, triticale, corn, sorghum and durum. Splitting the crop
groups into finer categories, or along other lines dramatically reduces the amount of available observations. Adding more
categories also increases the time taken for the model to converge in a significant way.
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recover TFP shocks and remaining parameters in a second step with yet again a unique
endogenous unobservable.34

Input Observability: My analysis runs into the usual difficulty of the level of input
measurement in multiproduct production panels. Besides land, all the inputs are measured
at the farm level.35 My approach to this problem follows the method proposed by De Loecker
et al. (2016), and I estimate the parameters using only data from single product farms. This
bypasses the input allocation question, and I later use simple algebra and the problem’s
first order conditions—both described in appendix B.7—to recover the unobserved shocks
for the multi-product farms. Contrary to De Loecker et al. (2016), and because I observe
crop-specific land allocations, I can back-out these shocks while allowing for TFP shocks to
be heterogeneous within a farm across its crops. Using single product farms for estimation
is likely to induce a selection issue—farms with more products are likely to be more produc-
tive.36 Both Levinsohn and Petrin (2003) and De Loecker et al. (2016) argue that using an
unbalanced panel is helpful in reducing this selection issue. De Loecker et al. (2016) argue
one should keep observations related to both always single-product firms, and sometimes
single product firms when they happen to be single product. I follow their dataset construc-
tion guidelines for all my estimation. I also extend their modification of the Olley and Pakes
(1996) selection correction to this specific selection issue. The procedure is discussed in ap-
pendix B.8. As Olley and Pakes (1996), De Loecker et al. (2016) and Backus (2020) argue,
the selection-induced omitted variable bias will affect the coefficients of variables correlated
with the threshold rule used for resp. exit or the introduction of a second product. Such
variables are only present in the second step in the form of the farms’ capital stocks and
chemical productivity, justifying using this selection correction in our second step only.

Additional Considerations: A frequent issue posed by firm surveys is that they only
contain output data measured in sales rather than volume. The FADN is useful in that it
contains crop-level output in both volume and value, allowing us to recover precise output
data and firm-specific prices. Given the context, I also assume that cross-farm differences

34This follows the methodology of Doraszelski and Jomandreu (2018).
35This implies that the analysis has either to be run at the farm-level—as Doraszelski and Jomandreu (2018) do—adopt a

more general transformation function approach where input allocations do not have to be recovered—as Dhyne et al. (2022) and
as I do in appendix B.6—or use a method that gives us these input allocations. Traditionally, the production function literature
has relied on revenue shares (e.g. Foster et al. (2008) and De Loecker and Collard-Wexler (2015)), or on the number of products
observed at the establishment level (De Loecker (2011)) to recover these allocations. More recent work has used information
from demand to jointly recover input allocations and production function parameters (Orr (2022) or Valmari (2023)). My case
differs from these advances in that I want to recover non-Hicksian productivity shocks, while accounting for the farms’ varying
crop mixes and the related heterogeneity in the crops’ reliance on chemicals for production.

36The production function literature has for a long time discussed how market exit introduces a selection bias in observed
firm data. In their seminal paper, Olley and Pakes (1996) develop a selection correction which accounts for the fact that larger
firms are relatively more likely to withstand negative productivity shocks, and hence that they are more likely to be observed
in the data with a low productivity shock. The literature has since advanced that this correction does not significantly shift
estimated parameters, as long as researchers do not attempt to balance their panel. As argued by Levinsohn and Petrin (2003)
and Orr (2022). However, De Loecker et al. (2016) note that by selecting single product firms for estimation, a second type of
selection issue might be introduced, which is that if TFP shocks are shared or correlated across product lines, I might focus
on firms that repeatedly draw low productivity TFPs. One model making this selection issue transparent is the one of Mayer
et al. (2014) where a firm’s scope is a decreasing step function in one’s constant marginal cost of production.
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in output quality will not be too large. Organic farming was less developed in the years
surrounding the reform, and the general market is itself quite narrowly defined.

I observe both labor and land in volume, but only observe input bills for pesticides and
fertilizers.37 I deflate these bills into volumes using input-specific Laspeyres price indices at
the national level.38 As I observe aggregate input bills for both the chemical categories, I
cannot address issues of varying consumption basket composition—across farms or across
time. Homogeneous input quality updates at the country level might be reflected in prices.
Any upgrade in quality that comes with an increase in price not reflected in the national
price index—for example a farm starting to buy better and more expensive products—will
be manifested as a higher volume of chemicals used rather than an increase in quality. As
shown above, a higher chemical-to-land ratio unexplained by varying prices or a change in
crop mix will be classified as an increase in chemical productivity. In that sense, the non-
Hicksian productivity will not discriminate between for example input upgrading, learning
or changes in farm management that lead to increased chemical use.

First Stage: The first stage relies on the first order condition for the use of land
and chemicals, and follows the methodology of Doraszelski and Jomandreu (2018). Profit
maximization yields:

ρωch
jt =log

(P p
jt

P s
jt

)
+ log

( δcs
δcp[1− δcs]

)
+ (1− ρ2)pestjct − (1− ρ)sjct

+ (1− ρ

ρ2
)log

[
δcpPestρ2jct + (1− δcp)Fertρ2jct

]
.

(5)

This expression gives me a relation for the unobserved non-Hicksian shock depending
only on parameters and observables. Assuming that the non-Hicksian shock follows a first-
order Markov process, I can then create moment conditions on which can rely for estimation.
Specifically: ωch

jt+1 = E[ωch
jt+1|ωch

jt ]+ζchjt+1 = gch(ω
ch
jt )+ζchjt+1. This expression is combined with

Equation 5. I can then approximate gch with a high-order polynomial. I build moments—
with Az,ch

jt standing for our instrument matrix—and use them in a GMM estimation to
recover the following parameters {ρ, ρ2, {δcs, δcp}C}:

E
[
ζchjt+1A

z,ch
jt

]
= 0. (6)

Second Stage: The estimating equation for the second stage relies on the first order
condition for labor. It gives me a parametric function for the TFP shock that depends on

37I observe respectively labor in hours, and land in hectares.
38These Laspeyres indices are themselves built using an agricultural price survey to which I have access. However, an initial

inquiry ran in 1995 by Insee established that the geographic dispersion in agricultural input prices in France was too small
to warrant a stratification of the survey which would allow to build representative sub-national price indices. As such, the
survey has been run since in a way that only achieves representativeness at the country-level, and I similarly do not differentiate
fertilizer and pesticide prices across space. Labor and land prices will be specified at the department-by-year level using other
data sources.

31



observed variables and parameters that I will recover. It is written below. This expression
is useful to build an estimate of the predicted part of the TFP process.

ωh
jct = pljt − pjct − αc

kkjt − log(αc
l ) + (1− αc

l )ljct − αc
ss̃jct. (7)

I would ideally like to follow an estimation procedure similar to the one used for the first
step. That is, specify a (uncorrected) Markov process of the form: ωh

jct+1 = E[ωh
jct+1|ωh

jct] +

ζhjct+1, and then use the following expression (a combination of the log of the production
function and this Markov process) to form moments, where Equation 7 serves as a baseline
to construct the parametric one-period ahead prediction of the TFP:

ζhjct+1 + εjct+1 = qjct+1 − αc
kkjt+1 − αc

l ljct+1 − αc
ss̃jct+1 − E[ωh

jct+1|ωh
jct].

The issue, however, is that I introduced a selection bias in focusing on single product
farms—and that this bias is likely to interact with the coefficients of capital αc

k and of
aggregated land αc

s—as both the farm’s capital stock and non-Hicksian productivity will
enter the threshold used by farms to decide whether to produce a second crop. If I use Ξjct

to denote whether farm j only produces c in t, then the actual process observed for the
TFP in the unique-crop farm sample is: ωh

jct+1 = E[ωh
jct+1|ωh

jct,Ξjct+1 = 1] + ζhjct+1. The bias
introduced by using the uncorrected process rather than this one will be correlated to both
kjt+1 and s̃jct+1, and would bias the estimates of {αc

k, α
c
l}. The first stage had no variable

correlated with this bias—which, conditional on using an unbalanced sample—allowed me to
use an uncorrected specification of the non-Hicksian process. Here, I need a correction, and
rely on a procedure which follows the lines of Olley and Pakes (1996) and De Loecker et al.
(2016). I describe it in appendix B.8. With the additional control for selection, I denote
Az,h

jct the matrix of instruments—I use the following moments to recover {αc
k, α

c
l , α

c
s}:

E
[(

ζhjct+1 + εjct+1

)
Az,h

jct

]
= 0. (8)

Estimation: For both steps, I recover the parameters using the generalized method
of moments (GMM). I absorb the parameters related to the approximated functions gch(.)

and gh(.), following the approach of Wooldridge (2010) and Doraszelski and Jomandreu
(2018). The moments rely on the timing assumption related to input choice combined with
the assumed structure of the productivity processes, as well as on the exogeneity of the
policy environment specific to the CAP to these farm-level shocks. Instruments for the first
stage are: a constant, the lag pesticide-to-fertilizer input ratio, lag land use, the current
capital stock, hourly wage and land prices, and a measure of current-farm exposure to EU
agricultural policy using lagged crop land shares as weights. For the second stage, I use:
current and lag log capital stocks, lag log labor use, log wage and log land prices, the log of
the chemicals price ratio (pesticide to fertilizer relative prices), a lag log output price index
at the farm level, the current land subsidy, the lag log land use, and the log of our measure
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of farm exposure to EU agricultural policy.
I use Amemiya (1974) GMM weights and a Nelder-Mead minimization algorithm—

searching over the space of starting parameters to ensure homogeneous convergence to these
values.

Sensitivity of Results to Moments: I implement the procedure of Andrews et al.
(2017) in appendix B.11 to shed some light on the respective role of the moments in driving
the estimation of the production function parameters. I recover the sensitivity matrix as-
sociated with each of the estimation steps, which allows to understand the extent to which
any moment-specific failure of exogeneity would impact the estimates. For the first step,
the analysis shows the estimates are particularly sensitive to the assumption regarding the
exogeneity of the non-Hicksian innovation shock, as well as assumptions regarding the exo-
geneity of contemporaneous input prices faced by farms. Interestingly, their procedure shows
the crucial role played by the relative fertilizer-to-pesticides price ratio in the identification
of the fertilizer-to-pesticides parameter of substitution. The same analysis for the second
estimation step also shows the role of input prices in driving estimation. The role of rel-
ative input prices in the estimation of substitution parameters is thoroughly discussed by
Doraszelski and Jomandreu (2018) as central to their identification strategy. More generally,
the production function literature has largely discussed the potential for input prices as pow-
erful instruments for the identification of production parameters, under the condition that
they can be assumed to be exogenous to establishment unobserved characteristics (Griliches
and Mairesse (1998)).

4.2.3 Dynamic Parameters

There are four remaining parameters to recover: the cost of incumbency fk, the convex cost of
capital adjustment CQ

k , and the parameters for the production of the entry good: {Ae, αe}.
Together, these parameters will give the survival threshold in the farms’ type space, the
farms’ behavior when it comes to capital accumulation, and the speed of adjustment of
entry costs to market size. I rely on indirect inference for estimation. This means that I
perform a search over the parameter space, targeting moments which vary one-to-one with
the parameters and hence provide useful information for their estimation.

It is important to note that there are two categories of parameters, and hence that
I need two categories of moments. Given the parameters already estimated for the model,
{CQ

k , fk, fe} jointly determine a stationary equilibrium under a specific policy design. Differ-
ent pairs of {Ae, αe} can then relate fe to equilibrium market size. As such, moments that
relate to firm behavior and distribution within a stationary equilibrium can help recover
the effective cost of entry for that equilibrium, but not {Ae, αe}. To recover them, I need
moments that relate to transitions across equilibria, and can exploit observed changes in the
French market as EU policy switched from price intervention to the land subsidy.

I use the following moments related to within-equilibrium behavior: two moments
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related specifically to investment—the auto-correlation in investment rates within establish-
ment, and the correlation between investment rates and profit shocks, and two moments
more specifically targeting our fixed costs—the coefficient of variation in profits across es-
tablishments, and the coefficient of variation in tenure. I use the transition in market size
observed in the Census of Agriculture between 1988 and 2000 to get to the parameters that
govern the speed of adjustment of the cost of entry with market size.

The indirect inference procedure could directly recover these four parameters, targeting
the necessary moments for it. I however use a two-step procedures to reduces the dimen-
sion of the search space and, given the model is slow to converge, significantly increases
the precision that can be reached with the estimation. I rely on the intuition of Klenow
and Li (2024) to split the estimation in two stages. The authors remark that under the
assumption that the zero-profit condition holds, one can backtrack the fixed cost of entry
from the expected value of entry. Under the price intervention regime, the expected value
of entry only depends on {CQ

k , fk}. I can thus focus the indirect inference procedure on
recovering {CQ

k , fk, f
land subsidy
e }, with f land subsidy

e the effective cost of entry under the land
subsidy regime. Knowing f land subsidy

e and fprice intervention
e , the market size under the land

subsidy regime and the target I need to match for the change in market size going from
price intervention to the land subsidy, I can then recover {Ae, αe} by matching simulated
and observed change in market size—where the market size under price intervention is an
analytical expression which depends on these two parameters.

I use the following routine for the first step: for each candidate vector of parameters, I
solve the model to its stationary equilibrium under the land subsidy policy regime, recover
the policy functions and simulate a dataset akin to the actual farm-level data. I then recover
key moments in this simulated data and compare them to the observed data (for the period
when the land subsidy was effective). The estimates of the true parameters are be the one
minimizing the distance between the two. The use of indirect inference to recover dynamic
parameters is common in the literature. Cooper and Haltiwanger (2006) recover costs of
capital adjustment in US manufacturing using a similar estimation routine, and so do Asker
et al. (2014) for country-specific adjustment costs, and Johnston (2020) for the US paper
industry. Collard-Wexler (2013) and Gowrisankaran et al. (2024) similarly use it in dynamic
oligopolistic frameworks.

I discuss in turn the algorithmic routine used, the identification argument, and the
relevance of these chosen moments.

Algorithm: For a potential vector of parameters Θ, I solve the model to its stationary
equilibrium, and generate associated policy functions regarding capital investment, crop
choice and market incumbency. I then create a sample of 1,000 farms, drawing their initial
state at random from the equilibrium distribution of incumbents. I simulate their behavior
for T = 50 periods, and compensate for exit by continuously drawing in new entrants to keep
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the sample size constant.39 In order to address the impact of those random draws on the
composition of the data, I bootstrap this exercise B = 100 times, and then compute average
simulated moments over these farms, periods and bootstrap runs. I denote these moments
estimate Φs(Θ), and the observed moments in the FADN and the Census Φd. I then use a
grid search to find the vector of parameters that solves:

min
Θ

[
Φd − Φs(Θ)

]′
W

[
Φd − Φs(Θ)

]
. (9)

W is the weighting matrix. Because the moments are similarly scaled, I use the identity
matrix—following Asker et al. (2014).

Table 1: Moments for the Indirect Inference

Moment Observed Value Simulated Value

Auto-Correlation Investment -0.085 -0.091
Correlation Investment-Profit 0.175 0.142

Coef. Variation in Tenure 0.756 0.607
Coef. Variation in Profits 0.774 0.661

Change in Mass of Producers 1988-2000 1.711 1.770

S2 (scaled sum of squared errors) .990

Notes: The coefficient of variation in tenure is computed in the 2000 Census of Agriculture, which is the first census post-reform

for which land subsidies are effective. All other moments are computed using the FADN survey over the 1995-2007 period. The

auto-correlation in investment tracks the correlation in investment rates within farms over time, the correlation between

investment and profit the correlation between farm investment and profit levels. The coefficients of variation in tenure and profits

capture the spread in farm tenure and profits within the market at equilibrium.

Identification: Following Gouriéroux et al. (1993), identification relies on two ele-
ments. The first one is that the binding function Φs(.) is one-to-one between the parameter
vector and the moments – this one-to-one property defines a strong relevance requirement
for the chosen moments, conditional on the targeted parameters. The second one is that
the simulation routine should yield a consistent functional estimator of the binding function.
What is important for this part, is that the impact of the initial draws for the states of the
simulated farms wash away and do not impact the convergence of the binding function to
its asymptotic value at Θ.40

39New entrants are drawn from the distribution of entrants. Cooper and Haltiwanger (2006) and Asker et al. (2014) also rely
on indirect inference to recover their model’s costs of capital adjustment. They generate a sample and simulate it for a larger
number of periods, to only keep the last of them for the estimation of their simulated moments. This is aimed at addressing
the biases introducing by the random sampling of initial states. Because the firms can exit, I have to compensate for this by
drawing new firms – I cannot rely on the removal of early periods to address this bias. I note that Clementi and Palazzo (2016)
and Cao (2007) also face this issue of exit, and balance their simulated panel before computing moments. Depending on the
proposed value of fixed costs, balancing the panel is not a feasible option in this case, as firms potentially always exit the market
at some point. I address this by bootstrapping the simulation, rather than balancing the simulated dataset.

40Collard-Wexler (2013) notes that while maximum-likelihood estimation will be biased in the presence of simulation error
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Relevance of moments: While the parameters are recovered jointly from the match-
ing of all moments, it is useful to discuss the parameter-specific relevance of each moment.
I show in Figure A16 the distribution of the three variables from which I build moments
(investment rate, profit and tenure). Two of these moments relate more specifically to costs
of capital adjustment: the within-farm auto-correlation in investment, and the correlation
between investment rates and profit. Without any cost of capital adjustment, investment
would perfectly correlate with variations in profit—leading to both positive and negative in-
vestment shocks, little inaction, and little auto-correlation over time. On the contrary, larger
convex costs call for a smoothing of investment—this implies more frequent and smaller in-
vestments, and a larger auto-correlation over time.

The last two moments are cross-establishment coefficients of variation in resp. real-
ized profits and incumbency. Conditional on entry, tenure will depend on the value of fk,
the volatility of productivity shocks which I recover from production function estimation
(Collard-Wexler (2013), and the ease with which farms can accumulate capital The less it is
easy to accumulate it, the larger the option value of holding capital and the more farms can
sustain a large negative productivity shock relative to the value of fk. The higher fk, the
larger the productivity exit threshold and the shorter the tenure of farms—hence the shorter
the dispersion in tenure in the data.

This variation in tenure across farm is itself a good measure of turnover within the
market. In that sense, it is also related to the value of f land subsidy

e —as a higher fe relative
to fk will create a larger option value of incumbency. The spread in realized profits relates
in a similar way to the model’s fixed costs. A larger spread in profits indicate that farms
can sustain smaller profits and remain on the market, it also means that smaller profit levels
enter a farm’s expected value of entry—to which the fixed cost of entry is compared. As
discussed previously, in an economy where one expects the zero profit condition to bind,
one can also track entry costs by looking at expected profits of entry. In this context, these
expectations are driven by two key elements—the expected duration of firm tenure, and the
spread and level of realized profits. Recovering the spread for both of these should then be
extremely relevant in the effort to recover the cost of entry.

4.2.4 Results

I obtain the following set of results, and give in Table A10 the values I use for the additional
set of model parameters that I directly calibrate.
(Pakes et al. (2007)), indirect inference will be consistent as simulation error will wash out in expectation when computing
conditional means and moments.
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Table 2: Estimated Model Parameters

Coefficient Parameter Estimate Std. Error
Demand Parameters

Demand constant (wheat) αwheat 20.67 (0.83)
Demand constant (other) αother 20.22 (1.03)

Demand elasticity (wheat) βwheat -.29 (0.16)
Demand elasticity (other) βother -.24 (0.20)

Production Function
Substitution Land-Chemicals ρ 0.36 (0.22)

Substitution Fertilizers-Pesticides ρ2 -2.35 (1.09)
Land Share (Wheat) δwheat

s 0.83 (0.30)
Land Share (Others) δothers 0.16 (0.28)

Pesticide Share (Wheat) δwheat
p 0.35 (0.29)

Pesticide Share (Others) δotherp 0.64 (0.35)
Labor Share (Wheat) αwheat

L 0.24 (0.09)
Labor Share (Others) αother

L 0.18 (0.084)
Land-Nest Share (Wheat) αwheat

S 0.39 (0.099)
Land-Nest Share (Others) αother

S 0.52 (0.083)
Capital & Fixed Costs
Convex Adjustment Cost CQ

k 0.00 /
Fixed Cost of Incumbency fk .75 /

Returns to Scale (entry good) αe .12 /
Scaling (entry good) Ae 11.4e5 /

Notes: For demand, the parameters come from IV regressions of aggregate quantity sold on prices, using local weather deviations

as supply shocks. Standard errors are corrected for auto-correlation using the Newey-West procedure. For the production function,

the parameters are obtained from a two-step estimation, each step performed by GMM. The estimation is run on the FADN

French sample restricted to 1980-2007. Observations prior to 1980 are removed, as they do not contain output price data.

Observations post-2007 are removed, to focus on a period with significant variation in EU agricultural subsidies, both across time

and across crops. I keep farms observed for at least three periods in a row41, and that produce either only crops in the wheat

group, or in the other crops group. I remove farms that are not observed with positive input values for our set of considered

inputs (land, labor, capital, fertilizers, pesticides). standard errors are obtained using a block bootstrap procedure, where I draw

all the observations related to a farm at a time, using B = 1000. For capital and fixed costs, parameters are obtained using

indirect inference, and a random grid search for which the standard errors will be computed numerically.

The parameters estimated jointly imply that more profitable firms are more pollution-
intensive, as shown in Figure A28. In the competitive market, profitability is also a direct
measure of efficiency, hence there is also a positive relation between production efficiency
and pollution intensity.

Recovered Input Substitution: The elasticities of substitution across resp. land
and chemicals, and fertilizers and pesticides are the key parameters recovered. The first
elasticity is σ = 1.57, indicating that land and chemicals are substitutes, and the second

41This is done to smooth potential measurement issues, and follows from De Loecker et al. (2016) and Doraszelski and
Jomandreu (2018).
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is σ2 = .29, meaning that fertilizers and pesticides are complements. These elasticities can
be compared to those found in the literature.42Carpentier and Rainelli (1997) for France,
McGuirk and Mundlak (1991) for India, and Hayami and Ruttan (1971) generally, all discuss
the role of technical change in agriculture post-WW2 as a bundle of higher yield seed varieties
coming with either higher water, fertilizer or pesticides needs—this calls for technological
change to be chemical-using or land and chemicals to be substitutes. Carpentier and Rainelli
(1997) also discuss how new French wheat varieties could absorb more fertilizers at the cost
of more pest exposure, and hence higher pesticides needs. It does seem necessary to allow
for this complementarity in the production function, and both the specification and the
recovered value of σ2 go in this direction. In terms of the substitution between land and
chemicals, I obtain a relatively large value, which can be related to the studies of input-
biased technical change in agriculture discussed by Hayami and Ruttan (1971), and for
example the elasticity of 1.71 between labor and capital recovered for US agriculture by
Kislev and Peterson (1982). For Hayami and Ruttan (1971) this represents a move along
the meta-production function (a change in the production function structure) rather than an
elasticity of substitution across inputs holding production technology fixed. As such, larger
elasticities of substitution for them was the mark of input-biased technological change, which
matches very much my interpretation. σ here represents the substitution between land and
effective chemicals within the farm, and an increase in effective chemicals can come from a
rise in chemical use, or an increase in chemical productivity (arguably a change in production
practices and technology within the farm).43

5 Policy Analysis

I start this section by revisiting the effects of the MacSharry reform, then study in more
details the effects of different policy designs holding budget expenses constant. Finally, I
compare the welfare consequences of a land subsidy to a chemical tax, and do so for different
levels of subsidization.

42Note that there are debates surrounding how to specify production functions that include pesticides as inputs. Lichtenberg
and Zilberman (1986) for example argue for modeling pesticides as aiding for pest abatement rather than entering production
functions as a direct input. My approach aims at allowing for fertilizers and pesticides to potentially be complements, and for
chemicals intensity to be associated with increases in productivity.

43Discussions around the extension of the original Hicksian elasticity concept Hicks (1932) to more than two inputs originally
led to different elasticity concepts. Allen and Hicks (1934) introduced two extensions, one that Blackorby and Russell (1989)
call the Hick’s elasticity of substitution—applying the original two-input formula to each pair of inputs, holding all other input
quantities constant, as well as output. In the case of a CES function—additive and homothetic—this extension yields constant
elasticities across all inputs. This is the relation I recover here. The second extension is the Allen Uzawa partial elasticity of
substitution. As Blackorby and Russell (1989) discuss, this elasticity does not easily compare to the estimates I recover here, and
in a more than two inputs context, it does not map clearly with the original Hicksian concept. Specifically, the Allen elasticity
is not a measure of curvature of the isoquant, provides no information about relative factor shares, and cannot be interpreted
as a logarithmic derivative of a quantity ratio with respect to a price ratio. Most of the agricultural economics literature
which focused on input-biased technical change was relying on the Allen partial elasticities, making larger comparisons more
difficult – and which is why I focus on Kislev and Peterson (1982) here. The central Binswanger (1974) study of input-biased
technical change in agriculture for example relies on Allen elasticities. I also note that other results, such as those of Hayami
and Ruttan (1971) rely on national account data to estimate production function, recovering very different objects from the
establishment-level elasticities obtained here.
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5.1 Evaluating the MacSharry Reform

I first show the impact of the reform on the average costs of production, and chemical
intensity of production. Net changes are expressed with respect to pre-reform values.

Figure 10: Costs and Pollution Intensity Effects of the MacSharry Reform (Net Changes)

Notes: The figure describes the evolution of the average cost of production, and the average chemical-to-output ratio, comparing

the French market in its pre- and post-MacSharry stationary equilibrium.

The reform generated both decreases in the costs of production, and in chemical in-
tensity. On the cost side, there are have two mechanisms going in the same direction. First,
the market became less profitable. Inefficient producers exited the market which reduced
the average costs of production. Second, production scale was also reduced, which further
decreased costs. The impact of the reform on chemical intensity is more surprising, and is the
combination of two countervailing effects. First, because inefficient producers are on average
less pollution intensive, their exit raised the average chemical-output ratio. But second, the
land subsidy had a large impact on the relative chemical-to-land price ratio, incentivizing
farmers to use less chemicals in production. This second effect dominated, and led to a total
decrease in pollution intensity.

Welfare: I can study the effect of the reform on welfare. For this, I define welfare
as economic surplus plus environmental damages – with τ c the marginal cost of chemical
pollution:

Welfare = Revenue− Costs︸ ︷︷ ︸
Producer Surplus

+

∫ ∞

p⋆
QD(p)dp︸ ︷︷ ︸

Consumer Surplus

−Subsidies− τ cChemicals.

It is difficult to obtain a valuation for chemical pollution, as chemicals have varying
environmental impacts—even within fertilizer and pesticide categories—and because effects
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vary across space as discussed by Rossi et al. (2023). I benchmark τ c with the marginal
tax for the use of glyphosate under the French tax for pesticides (1.36e/kg), and for the
same product under the Danish tax for pesticides (9.79e/kg). While the French tax makes
sense given this context, the Danish one is largely seen as the most comprehensive within
the EU and was recently proposed as a blueprint for a potential EU-wide tax. I get the
following changes from the MacSharry, where I express changes in percent of the total value
of production under price intervention.

Figure 11: Welfare Effects of the MacSharry Reform (Net Changes)

Notes: The figure describes the net evolution of economic surplus and welfare following the MacSharry reform. For example, 77%

indicates a 77% gain in economic surplus. Economic surplus is defined as producer surplus, consumer surplus and the cost of the

policy. Welfare corresponds to economic surplus minus the cost from pollution. All values are expressed in percent of the total

market value pre-reform.

The MacSharry reform led to large economic gains, and even larger welfare gains de-
pending on the chosen valuation for chemical pollution. Importantly, I do not give any
weight here for its impact on farm exit, potential associated impacts on inequalities and
labor markets, nor other environmental externalities also impacted by the reform.

5.2 Relative Efficiency of Subsidies Targeting Chemical Use

I then investigate two types of agricultural subsidies which highlight mechanisms through
which policy can reduce environmental externalities. The first one is a land subsidy, which
is still the primary form of subsidization of agriculture in the EU, and will shift the relative
price of chemicals and land for producers. The second is a lump sum payment to organic
or low pollution producers. The CAP has introduced a "Greening Payment" in 2014, which
supplements the land subsidy for farmers respecting a series of pro-environmental measures.
Here, I model two subsidies to highlight two different channels of intervention: subsidies
that distort production choices within the farm, and lump-sum payments that distort the
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continuation decision of farms by favoring lower pollution producers and hence reallocating
production across producers. Lump-sum payments are here payments to all the farms with
a lower chemical efficiency than the lowest surviving farm under no-intervention. I express
the value of the lump-sum in terms of this farm’s equilibrium profit under no-intervention.
This section discusses the relative importance of these "within" and "between" channels.
Table A11 and Table A12 describe outcomes for different levels of intervention, and I plot
below the main conclusions drawn from this analysis.

Figure 12: Consequences on Chemical Use (Net Changes)

Notes: I first plot net changes in the average chemical efficiency across farms in the market, as well as in the amount of chemicals

per euro of output produced. I finally show the net change in total chemical use. All changes are expressed as net changes relative

to no-intervention levels. Lump-Sums are computed at a level which is ex-post budget equivalent to the different land subsidies.

The first panel of Figure 12 illustrates the impact of subsidies on selection along chem-
ical efficiency, which is the externality-inducing dimension of farm productivity. The lump-
sum heavily reduces selection along that dimension, which is precisely its goal, while the
land subsidy has almost no impact on selection. However, these effects on selection do not
really carry through to the chemical intensity of production. The lump-sum only leads to a
small decrease in chemical intensity, and consequently to a small decrease in total chemical
use. On the contrary, the land subsidy leads to large changes in chemical intensity and total
chemical use. Our conclusion is that for the French agricultural market, subsidies that target
selective forces and lead to reallocations only have a small impact on aggregate externalities.
On the contrary, subsidies that shift production behavior within the farm, for all farms on
the market, have a large impact on these aggregate outcomes. This pattern is similar to the
one highlighted by Backus (2020) when looking at the link between market competition and
productivity—there within-firm changes in production induced by changes in the market’s
competitiveness have a large impact on aggregate productivity, while reallocations across
firms through changes in competition only have a small aggregate impact. In this case, the
lump sum changes the type of farm which can remain on the market at the margin. These
farms are small and only account for a small fraction of the total market. Hence, subsidies
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that target them have marginally small effects. On the contrary, subsidies which target all
producers on the market like the land subsidy matter for aggregate outcomes. I conclude
this section by looking at the welfare consequences of these policies. I also give the marginal
value of public funds (MVPF) associated to these policies. The MVPF is a useful tool to
compare the effectiveness of policies across different contexts, and has been used by Hahn
et al. (2024) to compare a large set of policies targeting climate change in the U.S.. It cor-
responds to the net benefits of a policy relative to its net government cost. In our context,
the MVPF is given by the change in the sum of consumer surplus, producer surplus and
chemical pollution, relative to the cost of the policy. As for welfare, I give an MVPF for
both the valuations of chemical use implied by the French and Danish taxes for glyphosate.

Figure 13: Consequences on Welfare (Net Changes) & Policy MVPF

Notes: I plot the welfare and MVPF implied by the different policies, resp. for the valuation of chemical pollution implied by the

French and Danish taxes for glyphosate use. Lump-Sums are computed at a level which is ex-post budget equivalent to the

different land subsidies.

For the low valuations of chemical pollution implied by the French tax, all the policies
have negative effects on welfare, and consequently have MVPF values under 1 (their costs
is larger than their benefits). For the higher valuation implied by the Danish tax, the land
subsidy can lead to net welfare increases, up to a value of about 40% of the price of land.
Higher valuations for pollution would imply larger gains. Under the Danish tax, the MVPF
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of 1.11 for a 13% land subsidy is comparable to the range of MVPF found by Hahn et al.
(2024) for US electric vehicle policies, as well as appliance rebates.

5.3 Taxes versus Subsidies

In the last section, I compare the effect of a land subsidy to the one of a chemical tax.
Specifically, I want to know how close a land subsidy can get us to a chemical tax. The EU
recently debated the introduction of a tax for chemical use in agriculture, before withdrawing
this proposal under heavy pressure from large farm lobbies. A land subsidy is both easier to
implement politically, and potentially entails lower information requirements if the tax is to
be implemented with a lump-sum repayment to farmers.

Figure 14: Decomposing Effects on Total Chemical Use (Net Changes)

Notes: I decompose the effects of a 13.4% land subsidy, the budget equivalent lump-sum payment to organic farms (5.5% of the

marginal survivor’s profit under no-intervention), and a 15.5% chemical tax inducing a similar shift in the chemical-land price

ratio as the land subsidy. Effects are decomposed in changes in chemical-per-output intensity within-farm within-crop, changes in

chemical-per-output intensity within-farm across-crop, and changes in chemical use across farms. I give the formula for the

accounting decomposition in subsection B.10.

For each land subsidy level, I also study the impact of a chemical tax inducing a similar
change in the chemical-to-land price ratio. Prior to showing these results, I first describe the
channels through which the tax, the subsidy and the organic voucher impact total chemical
use. I modify for this the decomposition of De Loecker and Collard-Wexler (2015), for which
I give the formula in subsection B.10. There are three channels through which a policy can
impact total chemical use: changes within-farm within-crop in production practices (scale
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and input choice), within-farm and across crops (reallocations within the farm), and across
farms (entry, exit and reallocations across producers).

As discussed above, the lump-sum payment to organic farms has a small effect on
total chemical use through reallocations across farms. Lower pollution producers can remain
on the market and produce, leading to a small decrease in total chemical use. Most of
the effect is however counter-acted by equilibrium effects changing relative crop prices and
farms’ crop mixes in favor of the chemical-intensive crop. The land subsidy impacts total
chemical use through the same channel as the tax, which is within-farm within-crop changes
in production choices. Specifically, farms shift away from using the now relatively more
expensive chemicals. However, the tax changes the price of chemicals relative to all other
inputs, while the land subsidy only impacts the chemical-land price ratio. This explains that
the tax has a larger effect on total chemical use. The second difference of course, is that this
tax is budget neutral, while the subsidy has a cost. I conclude, by comparing the relative
performance of the land subsidy with respect to the tax.

Figure 15: Tax and Subsidy Welfare Effects (Net Changes)

Notes: The figure describes the effect of different taxes and subsidies on producer surplus and welfare. I plot the net changes

compared to the no-intervention equilibrium, and express net changes in percent of the no-intervention market value. Welfare

values for two different valuations of chemical pollution are shown, using resp. the pesticide taxes for glyphosate in France and

Denmark.

Welfare Considerations: Producer surplus can be taken as a measure of producer
willingness for the adoption of the policy (without considering the fiscal pressure coming
from the cost of the subsidies). For low levels of subsidies, and if the tax is paired with a
lump-sum payment, subsidies will be favored by producers over a tax. For a low valuation
of pollution reduction, the land subsidy and tax have comparable negative welfare effects.
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For the marginal valuation of chemicals implied by the Danish tax for glyphosate, both the
subsidy and the tax can generate positive welfare gains. This is always the case for the tax
for the values I study, but there is an inflection point in the curve, suggesting very high levels
of chemical taxation, or a complete ban on the use of chemicals might have a negative welfare
impact under this valuation for pollution. The subsidy starts having a negative impact of
welfare at 45%, or slightly above the current level of subsidization.

6 Conclusion

In this paper, I study the effect of EU agricultural subsidies on environmental pollution
within the French cereal and oil crop markets, and compare it to the impact of the CAP
on its economic surplus. This environmental effect is ambiguous, and depends both on how
subsidies impact production behavior at the level of the farm, and the allocation of produc-
tion across producers. Externalities come from the use of chemicals in production, and the
heterogeneity across producers in their propensity to pollute depends on their relative ability
at using chemicals. I first use a shift-share design to study the economic and environmental
effects of the 1992-1995 MacSharry reform of the CAP. I show it decreased farm profits, led
to exit and decreases in pollution. I then develop a model of the French market to propose
both an equilibrium study of the reform, and to run counterfactual analyses which focus on
the role of subsidy design on chemical use. Estimating my model, I show that in this market
there is a positive relation between farm efficiency and pollution intensity. I then investigate
how subsidies shift the allocation of production across producers, and incentivize producers
to use more or less chemicals in production. Land subsidies lead to decreases in economic
surplus, but raise the relative price of chemicals and decrease pollution. Their effects are
large, as they affect all producers on the market. On the contrary, lump-sum payments to
low pollution producers only have a small effect on aggregate pollution, through a marginal
reallocation of production away from high pollution producers towards these smaller farms.
This is the case, because these low pollution producers only account for a small total market
share. A natural direction along which to expand this research would be to study the spatial
reallocation of agriculture across EU member states, for example focusing on the effects of
the 2004 and 2007 enlargements to Eastern Europe. This phenomenon likely led to land
abandonment and potential forest growth in some areas of the EU, and in the intensification
of agriculture and pollution in others.
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Appendix for online publication:
An Empirical Model of Agricultural Subsidies with Environmental Externalities

A Additional Figures and Tables

A.1 Figures

Figure A1: Intervention on the Cereal Market

Notes: This figure taken from a 1990 report of the European Commission describes the growing gap between supply and demand

for cereals in the European Union, as well as the evolution of the stock of cereals purchased by the governmental agencies following

the purchasing guarantee set on the market. The figure comes from the 1990 The Agricultural Situation in the Community report.

The report can be accessed via the University of Pittsburgh at https://aei.pitt.edu/31386/1/CM5890934ENC_002.pdf .
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Figure A2: Average Farm Price

Notes: Binscatter for a farm-level average output price, computed over oil and cereal crops, using relative land shares as weights.

0

50

100

150

200

250

1980 1990 2000 2010 2020

S
ub

si
dy

 p
er

 H
a

Figure A3: EU Land Subsidies under the CAP

Notes: I show a binscatter for the land subsidies given under the CAP, as observed in the FADN survey of farms. Each vertical

red line indicates a reform of the subsidization scheme, the first one corresponding to the MacSharry reform.

54



Figure A4: EU Land Subsidies per Crop under the CAP

Notes: The figure shows the evolution of the average land subsidy per unit of output over time, as measured in the FADN. I

measure the average subsidy per hectare for cereals and oil crops, dividing the farms’ total subsidy for each crop category, by their

land allocated to each category. I then divide this measure by the average crop-specific yield observed in France in that year, in

order to recover a subsidy per unit of output. Subsidies per land are relatively stable across years, while yields increase, making it

so that subsidies slightly decrease over time absent any policy adjustment.

Figure A5: Farm Size Distribution in 1988 and 2000

Notes: The two distributions of the farm size distribution are recovered from the French Census of Agriculture, specifically the

1988 and 2000 waves. Farm area is measured using their total used agricultural area measured in ha. The distributions are

recovered using an Epanechnikov kernel. The distribution shifts significantly over time, and that density is reallocated in the right

tail of the distribution. This period corresponds to significant farm exit and average farm size growth, and this figure confirms

most of the exit is probably located among small farms.

55



0

1

2

3

0 50 100 150
Surface (HA)

R
ic

hn
es

s

Census

1979

1988

2000

2010

0.0

0.1

0.2

0.3

0.4

0 50 100 150
Surface (HA)

P
ie

lo
u

Census

1979

1988

2000

2010

Correlations between Size and Diversity

Binscatters of farm−level outcomes.

Figure A6: Evolution of Farm Crop Diversity

Notes: These binscatters are computed using data from the Agricultural Census. I take into account the maximum number of crops which can be tracked over the 1970-2010 waves

of the Census, which are: wheat, durum, barley, oats, rye, corn (grain), corn (seeds), sorghum, rice, beetroot, rapeseed, sunflower, soy. Crop richness is a simple count measure of

the number of crops being grown in a given farm. The Pielou index in a measure of how evenly land is allocated across the crops grown within a farm44.
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Figure A7: Evolution of Village-level Total Agricultural Area

Notes: This map shows the evolution of within-village total agricultural area between 1988 and 2000. I use the data from the

relevant waves of the French Agricultural Census. Decreases in agricultural area mainly happen in the center of France around

the Massif Central, as well as in Vendée and possibly lower Brittany.
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Figure A8: Convergence of Crop Cushions Post Reform

Notes: The figure illustrates the convergence of crop cushions post reform. Here the cushion is the French average of the

crop-specific cushions in the relevant year, computed according to the formula outlined in ??. The change in cushion is the

change observed between 1991 and 1995, corresponding to the period of the MacSharry reform.

Figure A9: Department Weighted Averages of Farm-Level Exposure

Notes: The figure shows the geographic distribution of our standardized measure of farm-level exposure. The exposure is computed

using data from the FADN, and department-level averages are computed using the extrapolation weights provided there. I plot the

geographic variation of the standardized exposure here.
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Figure A10: Distribution of Farm-Level Exposure

Notes: The figure shows the distribution of our standardized measure of farm-level exposure (our preferred instrument). The

exposure is computed using data from the FADN.

Figure A11: Balance in Levels and Trends

Notes: These binscatters are computed using data from the FADN, and use sampling weights to compute bin-specific averages

within each category. Profit corresponds to total farm profit, capital is the sum of total farm value in buildings and machinery,

sales is total sales. All of these values are computed in 2020 euros. Labor is total labor in hours per year, and land total utilized

agricultural area in hectares.

59



0

100

200

300

400

500

1980 1990 2000

Chemical−Biased

100

150

200

250

300

1980 1990 2000

Wheat TFP

100

150

200

250

300

1980 1990 2000

Others TFP

Shocks are winsorized, exponentiated, and scaled to the observed 1981 mean value.

(a)

0

1

2

3

−1.5 −1.0 −0.5 0.0 0.5
TFP

C
he

m
ic

al
 In

te
ns

ity

Wheat

−7.5

−5.0

−2.5

0.0

2.5

1 2 3 4
TFP

C
he

m
ic

al
 In

te
ns

ity
Others

(b)

Figure A12: Recovered Productivity Shocks

Notes: The first row of figures shows the evolution of productivity shocks as measured in the FADN, resp. the non-Hicksian shock

which I introduce as farm-specific and shared across crops, and the two TFP shocks which are differentiated across crops within

farms. Shocks for the first row of figures are standardized to their 1980 values, in order to make their evolution over time easier

to read. The second row of figures shows the correlations within farms across crop-specific TFP shocks and the non-Hicksian

shock. I use binscatters for that purpose, which give us the average values within bins of equal population size along the

two-dimensional distribution of our variables. Shocks here are directly measured as ωch
jt and {ωh,wheat

jt , ωh,other
jt }, explaining that

they sometimes take negative values.
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Figure A13: Recovered Productivity Shocks - Relations with Farm Stocks

Notes: The figures show correlations of within farms across crop-specific TFP shocks, the non-Hicksian shock and resp. the

farms’ capital stock and land use. I use binscatters for that purpose, which give the average values within bins of equal population

size along the two-dimensional distribution of our variables. Shocks here are directly measured as ωch
jt and {ωh,wheat

jt , ωh,other
jt },

explaining that they sometimes take negative values.
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Figure A14: Relation between Farm Size and Farm Age in the 2010 Census

Notes: The figure shows a binscatter showing the relation between farm size and farm tenure, as observed in the 2010 French

agricultural census. I use the 2010 Census to capture this relation, as the total number of farms ceases to decrease as quickly

between 2000 and 2010, and one can interpret the market as relatively more stable than in the previous decades. In previous

waves of the Census, older farms had likely entered the market under very different conditions, and were more likely to be small

non-commercial farms with different management styles.
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Figure A16

Notes: I plot the distributions from which I obtain our moments used for the indirect inference estimation routine. The

investment rate is recovered as the difference between lagged depreciated capital using an 8ppt depreciation rate, and the current

capital level. Profits are directly observed in the data, as well as farm tenure. The first two graphs are obtained from FADN data,

while the last one is built with 1988 and 2000 Census data.
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A.2 Tables
Table A1: Descriptive Statistics - Farm-Level Dataset

Statistic N Mean St. Dev.

Output Volume (sum) 308,984 1,791.687 3,031.357
Output Volume (wheat) 191,357 1,498.631 2,044.714
Output Volume (corn) 95,925 1,162.133 2,046.903
Output Volume (sunflower) 36,263 309.987 338.692
Output Price Index 169,219 213.341 94.838
Farm Surface 308,982 71.021 67.640
Capital 308,984 128,135.600 167,984.500
Total Labor Hours 308,982 4,406.731 3,738.925
Profit 308,984 161,576.600 264,341.700
Phytosanitary (bill) 268,893 8,071.386 11,066.410
Fertilizer (bill) 268,893 16,040.360 17,643.240

Table A2: Evolution of Agricultural Land Ruggedness

Year Average 10th 25th 75th 90th 99th

1970 33.2264 13.3583 19.3155 41.8313 58.5489 107.5599
1979 33.1215 13.3772 19.3356 41.6604 58.3028 105.9168
1988 33.0303 13.3583 19.2822 41.5127 58.0048 105.8695
2000 32.9716 13.3321 19.2807 41.4354 57.8952 105.8146

Notes. The data is computed using the full count agricultural census for years 1970,
1979, 1988 and 2000. Ruggedness data is extracted from the European Environ-
ment Agency’s "Elevation map of Europe based on GTOPO30" on a 1km grid. I
compute the average ruggedness of land within each French village, and then com-
pute area weights for the villages using their year-specific share of total agricultural
land within France.
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Table A3: Agricultural Market Trends

Panel A All Farms (0/1)

Year N Total Farm Surface Total Cultivated Land Mean Farm Surface Mean Cultivated Land Gini (all land) Gini (cultivated) Land Share of Top 10th Decile
1970 1583279 29904735.3300 18.8878 0.5813 .2323
1979 1257168 29496571.6300 23.4627 0.5792 .2952
1988 1006120 28595798.5400 28.4219 0.5816 .3744
2000 653090 27856312.8900 42.6531 0.6130 .6252
2010 518925 27832907.9000 53.6357 0.6263 .7390

Panel B Row Crops Farms (1/1)

Year N Total Farm Surface Total Cultivated Land Mean Farm Surface Mean Cultivated Land Gini (all land) Gini (cultivated) Land Share of Top 10th Decile
1970 1034687 25984231.5400 9006112.4200 25.1131 8.7042 0.4916 0.6571 .1497
1979 823432 25882409.8300 11568370.0200 31.4324 14.0490 0.4836 0.6578 .1878
1988 602476 23827571.5600 11189216.8300 39.5494 18.5721 0.4771 0.6534 .2514
2000 352098 22884643.2800 11105923.7700 64.9951 31.5421 0.4754 0.6295 .4929
2010 260731 21827942.3500 10979980.2300 83.7182 42.1123 0.4608 0.6008 .6303

Notes. The data is computed using the full count agricultural census for years 1970, 1979, 1988, 2000 and 2010. The average farm size and total agricultural land are both computed in hectares, and the total agricultural area for France cor-
responds to the sum of all total used agricultural areas at the farm level. Cultivated land for row crop farms is computed for the largest set of row crops that I can track across the years of the Census: wheat, durum, barley, oats, rye, corn,
sorghum, rice, beetroot, rapeseed, sunflower and soy. The Gini-Coefficient is computed at the country level, for the distribution of farm size.

Table A4: Crop Mixes within French Farms

Year Only Wheat Non-Wheat Only Wheat + Other + Only Barley Only Corn Only Oats Only Rye Only Sunflower Only Colza
1979 0.0414 0.1856 0.6380 0.1354 0.0476 0.1148 0.0106 0.0071 0.0002 0.0004
1988 0.0938 0.1788 0.6351 0.0925 0.0542 0.0850 0.0136 0.0107 0.0058 0.0023
2000 0.1294 0.1855 0.6197 0.0659 0.0454 0.0960 0.0126 0.0051 0.0090 0.0022
2010 0.1425 0.1690 0.6259 0.0629 0.0462 0.0787 0.0078 0.0057 0.0078 0.0042

Notes. The data is computed using the full count agricultural census for years 1970, 1979, 1988, 2000 and 2010.
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Table A5: Farm-Level Shift Share Results

Dependent Variables: ∆Prices (log) ∆Sales (log) ∆Profit (log) ∆Chemicals (log)
Model: (1) (2) (3) (4)

Variables
Exposurej × 1985 0.0015 0.0384 0.0314 0.0541

(0.2703) (0.0747) (0.1376) (0.1292)
Exposurej × 1986 0.5111 0.0432 0.0488 0.0347

(0.3910) (0.0735) (0.1143) (0.1112)
Exposurej × 1987 0.0423 0.0419 0.1816 -0.1719∗∗

(0.1017) (0.0705) (0.1975) (0.0808)
Exposurej × 1988 -0.2572 0.0271 0.1921∗ 0.0900

(0.1591) (0.0643) (0.1156) (0.0661)
Exposurej × 1989 -0.0289 -0.0579 -0.0903 -0.0718

(0.1269) (0.0777) (0.1867) (0.0807)
Exposurej × 1990 -0.0075 -0.0964∗ -0.1410 0.1147∗∗

(0.0909) (0.0584) (0.1390) (0.0583)
Exposurej × 1992 -0.3697∗∗∗ -0.1161∗∗∗ -0.3695∗∗∗ -0.0668

(0.0994) (0.0428) (0.1382) (0.0792)
Exposurej × 1993 -0.3816∗∗ -0.1614∗ -0.2110 -0.0783

(0.1748) (0.0847) (0.1323) (0.1203)
Exposurej × 1994 -0.2999∗∗ -0.0666 -0.1612 -0.1278

(0.1250) (0.0899) (0.2240) (0.1504)
Exposurej × 1995 -0.3718∗∗∗ -0.1477 -0.2792∗∗ -0.1212

(0.1366) (0.1370) (0.1131) (0.1495)
Exposurej × 1996 -0.5969∗∗∗ -0.1625 -0.2450 -0.1689

(0.1328) (0.1239) (0.1845) (0.1381)
Exposurej × 1997 -0.3853∗∗∗ -0.1167 -0.0347 -0.0637

(0.1148) (0.0995) (0.1746) (0.2166)
Exposurej × 1998 -0.4490∗∗∗ -0.0373 -0.1793 -0.1748

(0.1506) (0.1398) (0.1378) (0.1111)
Exposurej × 1999 -0.4658∗∗∗ -0.2249∗∗ -0.1714 -0.2583∗∗

(0.0546) (0.0889) (0.2021) (0.1044)
Exposurej × 2000 -0.6579∗∗∗ -0.3857∗∗ -0.3818∗∗∗ -0.2648∗

(0.2135) (0.1526) (0.1189) (0.1564)
Exposurej × 2001 -0.4307∗∗ -0.4491∗∗ -0.7017∗∗∗ -0.3099∗

(0.1980) (0.1928) (0.2291) (0.1868)
Exposurej × 2002 -0.5315∗∗ -0.4002∗∗ -0.3678∗∗ -0.1387

(0.2504) (0.1757) (0.1699) (0.1566)

Fixed-effects
Department-Year Yes Yes Yes Yes

Fit statistics
Observations 1,626 2,685 2,577 2,685
R2 0.93118 0.72107 0.73446 0.66998

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the results of our shift-share event-study design at the farm level, for our three outcomes of interest. These

coefficients correspond to the year-specific coefficient associated to farm exposure. Outcomes are differenced with respect to their

1991 value. I control for the farms’ 1991 total sales, capital stock, agricultural area and labor, allowing for a time-varying

intercept for each of these controls. I add department-year fixed effects, and cluster the standard errors at the department-year

level.
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Table A6: Village-Level Shift Share Results

Dependent Variable: ∆Farm Count
Model: (1) (2) (3) (4)

Variables
Exposurek (66th) × 1970 0.5932

(0.5231)
Exposurek (66th) × 1979 0.7326∗∗

(0.3269)
Exposurek (66th) × 2000 -0.5148∗∗

(0.2359)
Exposurek (66th) × 2010 -0.6191∗∗

(0.3085)
Exposurek (mean) × 1970 -0.4966

(0.5695)
Exposurek (mean) × 979 -0.1244

(0.3341)
Exposurek (mean) × 2000 -0.4552∗

(0.2711)
Exposurek (mean) × 2010 -0.6845∗

(0.3539)
Exposurek (median) × 1970 0.2874

(0.6402)
Exposurek (median) × 1979 0.4705

(0.3816)
Exposurek (median) × 2000 -0.5998∗∗

(0.3015)
Exposurek (median) × 2010 -0.7791∗

(0.4101)
Exposurek (33rd) × 1970 -0.4275

(0.6767)
Exposurek (33rd) × 1979 -0.1279

(0.3836)
Exposurek (33rd) × 2000 -0.2878

(0.3252)
Exposurek (33rd) × 2010 -0.4485

(0.4204)

Fixed-effects
Department-Year Yes Yes Yes Yes

Fit statistics
Observations 147,157 147,157 147,157 147,157
R2 0.80519 0.80505 0.80513 0.80501

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the results of our shift-share event-study design at the municipality level. These coefficients correspond to the

year-specific coefficient associated to farm exposure. Outcomes are first-differenced with respect to the level value in 1988,

standard errors are clustered at the year-department level.
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Table A7: Village-Level Shift Share Results

Dependent Variable: ∆Min. Farm Size (ha)
Model: (1) (2) (3) (4)

Variables
Exposurek (max) × 1970 -0.2187

(0.1855)
Exposurek (max) × 1979 -0.0180

(0.1788)
Exposurek (max) × 2000 1.250∗∗∗

(0.4316)
Exposurek (max) × 2010 0.5040

(0.4700)
Exposurek (mean) × 1970 -0.1916

(0.1910)
Exposurek (mean) × 1979 0.0050

(0.2077)
Exposurek (mean) × 2000 0.9959∗

(0.5217)
Exposurek (mean) × 2010 0.0440

(0.5762)
Exposurek (median) × 1970 -0.1551

(0.1829)
Exposurek (median) × 1979 -0.0479

(0.1739)
Exposurek (median) × 2000 0.9383∗∗

(0.4051)
Exposurek (median) × 2010 0.2179

(0.4707)
Exposurek (min) × 1970 -0.1131

(0.1566)
Exposurek (min) × 1979 0.0383

(0.1646)
Exposurek (min) × 2000 0.6867

(0.4663)
Exposurek (min) × 2010 -0.1898

(0.5100)

Fixed-effects
Department-Year Yes Yes Yes Yes

Fit statistics
Observations 147,157 147,157 147,157 147,157
R2 0.40543 0.40528 0.40530 0.40525

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the results of our shift-share event-study design at the municipality level. These coefficients correspond to the

year-specific coefficient associated to farm exposure. Outcomes are first-differenced with respect to the level value in 1988,

standard errors are clustered at the year-department level.
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Table A8: County-Level Shift Share Results

Dependent Variable: ∆Bloom (log)
Model: (1) (2) (3) (4)

Variables
Exposurec × 1986 -0.0125 -0.0027 -0.0222 -0.0112

(0.0256) (0.0289) (0.0243) (0.0310)
Exposurec × 1987 -0.0310 -0.0179 -0.0370∗ -0.0306

(0.0228) (0.0251) (0.0219) (0.0280)
Exposurec × 988 -0.0182 -0.0216 -0.0179 -0.0199

(0.0253) (0.0273) (0.0247) (0.0294)
Exposurec × 1989 0.0231 0.0088 0.0340 0.0212

(0.0278) (0.0289) (0.0269) (0.0299)
Exposurec × 1990 -0.0089 -0.0265 -0.0003 -0.0221

(0.0304) (0.0316) (0.0303) (0.0346)
Exposurec × 1992 -0.0539 -0.0368 -0.0578 -0.0507

(0.0347) (0.0343) (0.0354) (0.0398)
Exposurec × 1993 -0.0164 -0.0100 -0.0246 -0.0211

(0.0227) (0.0258) (0.0224) (0.0285)
Exposurec × 1994 -0.0173 -0.0100 -0.0274 -0.0194

(0.0254) (0.0275) (0.0240) (0.0274)
Exposurec × 1995 -0.0266 -0.0324 -0.0213 -0.0308

(0.0213) (0.0236) (0.0239) (0.0243)
Exposurec × 1996 -0.0544∗∗ -0.0519∗ -0.0676∗∗ -0.0716∗∗

(0.0267) (0.0274) (0.0270) (0.0324)
Exposurec × 1997 -0.0698∗∗∗ -0.0622∗∗ -0.0724∗∗∗ -0.0773∗∗∗

(0.0249) (0.0277) (0.0231) (0.0286)
Exposurec × 1998 -0.0278 -0.0325 -0.0186 -0.0312

(0.0206) (0.0216) (0.0217) (0.0258)
Exposurec × 1999 -0.0717∗∗∗ -0.0621∗∗ -0.0722∗∗∗ -0.0802∗∗

(0.0267) (0.0293) (0.0254) (0.0312)
Exposurec × 2000 -0.1571∗∗∗ -0.1451∗∗∗ -0.1593∗∗∗ -0.1663∗∗∗

(0.0486) (0.0500) (0.0445) (0.0533)

Measure Median 66th 33rd Mean

Fixed-effects
Department-Year Yes Yes Yes Yes

Fit statistics
Observations 23,693 23,693 23,693 23,708
R2 0.54261 0.54220 0.54282 0.54257

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. This table gives the results for our county-level event study. The outcome is differenced-out (in log terms) with respect to

the 1991 value, and is a Landsat-5 based index of algal bloom intensity on the within-county water bodies. The regression includes

a series of controls set to their level in 1988 within the county (last year of the Census prior to the reform), and interacted with a

time-varying coefficients, as well as department-by-year fixed effects. Standard errors are clustered at the department-by-year

level.
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Table A9: Demand Results

Dependent Variables: Wheat (log) Others (log) Wheat (log) Others (log)
Model: (1) (2) (3) (4)

Variables
Constant 21.03∗∗∗ 21.14∗∗∗ 20.67∗∗∗ 20.22∗∗∗

(0.4976) (0.5401) (0.8259) (1.031)
Wheat Price (log) -0.3507∗∗∗ -0.2934∗

(0.0868) (0.1577)
Other Price (log) -0.3836∗∗∗ -0.2391

(0.0906) (0.2039)
Time Trend 0.0087∗∗∗ 0.0101∗∗∗ 0.0107∗∗∗ 0.0154∗∗∗

(0.0023) (0.0028) (0.0029) (0.0036)

Fit statistics
Observations 42 42 25 25
R2 0.81418 0.72615 0.27735 0.47193

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I obtain estimates of total quantity sold and average prices for France for our two crop
categories using the FADN and its sampling weights. I then run regressions of sales on prices,
instrumenting the prices with weather shocks in order which should shift supply but not de-
mand. I include a linear time trend in all regressions, and use the Newey-West correction for
serial auto-correlation. Regressions in column 3 and 4 use weather forecasts as additional in-
struments, and only use post 1993 years for estimation – matching both the post-reform period,
and historical forecast availability.
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Table A10: Model Parameters

Coefficient Parameter Value
Other Estimated Parameters

Competence Ladder λ .80
Baseline TFP µ .58

Auto-Correlation TFP ρh .71
Shape TFP Pareto Distribution σh .12

Location TFP Pareto Distribution δh 0
Auto-Correlation Non-Hicksian shock ρch .83

Shape Non-Hicksian Pareto Distribution σh .16
Location Non-Hicksian Pareto Distribution δh 0

Calibrated Parameters
Time Preference 1

1−r .9
Capital Depreciation δk .08

Price Capital pk 1
Price Land ps 1.77

Price Chemicals pc 4.15
Price Labor pl .5

Notes: I use the recovered productivity shocks to estimate these other estimated parameters. Specifically, I demean TFP shocks,

and use the average as an estimate of µ. Demeaned TFP shocks are used to compute the following parameters. The competence

ladder corresponds to the average ratio of the highest crop TFP to lowest crop TFP within a farm, across farms and years. The

Pareto distribution parameters are recovered across farms and years, and the auto-correlation in both shocks are computed using

within-farm variation. For the additional calibrated parameters, the rate of time preference follows from the modelling choice of

Scott (2013), the rate of capital depreciation is set to 8%, the price of capital is normalized to 1 – and such that one unit of

capital accounts for a stock of 1,000e in capital. The relative price of land, to chemicals to labor follows from estimates of

per-hectare expenses in each category for wheat in France in Guillermet (2015), and their ratio to the cost of capital is normalized

so that the average type farm in our model has the average observed labor to capital ratio in the FADN.
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Table A11: Budget Equivalent Policy: Aggregate Outcomes

Aggregate Statistics

Land Subsidy Lump-Sum Mass of Farms Average Profit Average Size Average. TFP Average Chemical Productivity
0.005% 0 99.899 100.857 100.549 100.000 100.000
0.039% 0 99.132 101.273 104.502 100.000 100.000
0.134% 0 96.876 101.672 117.400 100.000 100.000
0.381% 0 89.525 101.971 171.736 100.000 100.000
0.600% 0 86.038 94.965 264.693 99.930 98.663

0 2.7% 126.708 80.149 78.910 98.274 92.744
0 4% 192.313 54.995 51.901 91.685 81.191
0 5.5% 419.749 29.059 23.694 82.696 70.416
0 6.8% 1123.900 16.408 8.774 75.457 64.323
0 8.2% 1942.900 14.261 4.999 73.555 62.962

Notes. The table details the aggregate consequences of the different policies. First different levels of land subsidies, and then different levels of lump sum payments to organic

farms, each one computed to be budget equivalent to a land subsidy. Land subsidies are expressed in % of the price of land, and the lump sum as a percent of the marginal farm’s

profit under no-intervention. I express all the statistics wrt. to their no-intervention value, 100% implying no change.
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Table A12: Budget Equivalent Policies: Crop-Level Outcomes

Panel A Wheat Market

Land Subsidy Lump-Sum Price Supply Cost Land Chemicals Chemicals/Unit Chemicals/Land Cost/Unit
0.005% 0 99.893 100.031 87.514 100.438 99.652 99.625 99.217 100.078
0.039% 0 99.199 100.236 87.926 103.535 97.313 97.080 93.990 100.671
0.134% 0 97.135 100.888 89.338 113.491 90.607 89.821 79.836 102.658
0.381% 0 90.870 102.883 95.590 152.582 71.865 69.879 47.100 111.509
0.600% 0 83.698 105.360 108.900 224.191 53.224 50.521 23.741 130.044

0 2.7% 99.911 100.056 99.967 99.979 99.795 99.750 99.816 99.911
0 4% 99.662 100.099 99.761 99.787 99.367 99.291 99.579 99.662
0 5.5% 98.950 100.310 99.257 99.361 97.658 97.372 98.286 98.950
0 6.8% 97.918 100.650 98.555 98.581 98.147 97.539 99.559 97.918
0 8.2% 95.764 101.278 96.988 97.049 96.060 94.869 98.981 95.764

Panel B Aggregated Crop Market

0.005% 0 99.980 100.030 99.269 100.642 99.854 99.824 99.217 100.055
0.039% 0 99.788 100.022 99.551 104.892 98.588 98.567 93.990 100.379
0.134% 0 99.250 100.132 100.629 119.021 95.022 94.897 79.836 101.460
0.381% 0 97.686 100.529 104.893 179.257 84.429 83.986 47.100 105.786
0.600% 0 96.040 101.059 112.302 305.340 72.492 71.735 23.741 113.575

0 2.7% 99.989 99.973 99.962 100.119 99.947 99.974 99.816 99.990
0 4% 99.986 100.067 100.053 100.389 100.019 99.955 99.579 99.986
0 5.5% 100.121 99.959 100.079 101.472 99.941 99.981 98.286 100.121
0 6.8% 99.563 100.100 99.662 99.367 99.691 99.595 99.559 99.563
0 8,2% 98.838 100.275 99.110 98.812 99.140 98.871 98.981 98.839

Notes. The table details the crop-level consequences of the different policies. First different levels of land subsidies, and then different levels of lump sum payments to organic

farms, each one computed to be budget equivalent to a land subsidy. Land subsidies are expressed in % of the price of land, and the lump sum as a percent of the marginal farm’s

profit under no-intervention. I express all the crop-level statistics, from the output price to the average cost per unit in percent terms of the no-intervention levels, 100% implying

no change.
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B Appendix

B.1 Data Description

B.1.1 Intervention Prices

For the purpose of this paper, and to the best of our knowledge, I created the first database
of agricultural commodities’ EU intervention prices covering the end of the 1960s to the early
2000s when intervention was completely removed. Intervention prices denominated in ECUs,
euros or francs were gathered from the yearly and sometimes commodity-specific directives
published by the European Union over that period of time. When prices were denominated
in ECUs, I used the CAP-specific exchange rate which was then used to translate ECUs
to each member state’s currency. I similarly gathered data on commodity-specific land
subsidies, which I later combine with farm-specific land subsidies as recorded in the FADN.

B.1.2 Input Prices: Indices and Price Surveys

Input prices are drawn from the IPAMPA agricultural input price indices, and from the En-
quête sur l’observation des Prix des Consommations Intermédiaires nécessaires aux Agricul-
teurs (EPCIA), the price survey used to develop the IPAMPA. I use the IPAMPA indices
for pesticides and fertilizers interpolated by INSEE back to 1980.

The EPCIA has been run since 1996, and provides price data for pesticides and fer-
tilizers. Its sample is based on a 1995 survey, which helped identify a sample of products
representing 50% of the total sales within their product category. The sampling of estab-
lishments selling these products was done based on the establishments’ respective market
share within that product category. Finally, within a product and establishment, the series
chosen corresponded to the product’s most frequent sales conditions. As such, series are
good, company and mode of sale specific. When series disappear, they are replaced with
their closest equivalent. The EPCIA is made of 4165 series, sold by 250 companies. The
EPCIA is aggregated into national and regional price indices using 1990 plutocratic weights,
and the following index of category-specific month-to-month price evolution:

it = it−1

( n∏
i

Pi,t

Pi,t−1

) 1
n

(10)

I also recover agricultural hourly wages from the continuous labor survey "Enquête
Emploi", which is a survey fielded for a sampled set of households, each household being
drawn once and then followed for the next six trimesters. I consider the hourly wage data
provided by workers whose occupation is classified as that of an agricultural worker or farmer.

Finally, I use land prices taken from the Land Market Value survey (Valeur Venale des
Terres), a yearly and department-level survey, which is fielded every year by the statistical
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services of the French departmental administration for agriculture and forestry. These are
based on data provided by the public company in charge of land management (SAFER),
which authorizes agricultural land purchases and consolidations when transactions surpass
a given threshold. This data is then complemented by data provided by local notaries, and
several local administrations. I use this data for 1994-2015. The data was digitized from
scanned data catalogues for the first years of the series.

B.1.3 Weather Data: Realizations and Forecasts

Our realized climate data comes from the European Centre for Medium-Range Weather
Forecasts (ECMWF)’s ERA5 reanalysis product. ERA5 gives hourly estimates of climate
data, out of which I use precipitation and temperature (temperature 2m above the surface
of the Earth). ERA5 combines observational weather data with model-based data into a
0.25*0.25 gridded dataset.

I extract that data at the French department level, cropping the grid with depart-
ment shapes, and averaging the data using simple area weights. Using the time separability
assumption common in the literature, I aggregate the hourly data into growing-season ob-
servations 45: growing degree days (GDD) and heat degree days (HDD) for temperature46,
and total precipitation for rainfall. In order to match the forecast dataset, I only use 4 daily
measurements of temperature to compute the GDDs and HDDs, specifically at midnight,
6h, 12h and 18h.

The forecast data is taken from ECMWF’s SEAS5 seasonal forecasting system. Fore-
cast are produced on the first of each month for the following 5,160 hours 47. For temperature,
they are produced at a 6h interval, and give an instantaneous prediction of temperature, while
for rainfall, they give the accumulation of rainfall every 24h. As such, the rainfall forecasts
for the second day of the month will be the following: a 24h ahead forecast, a 30 to 32
days ahead forecast produced on the first day of the previous month, and so on until the
lead value exceeds 5,160 hours. Temperature forecasts work in a similar way, but are just
produced with more granular time steps.

The main issue for our purpose is that given that forecasts are produced every first of
the month, different days within a month will not be provided a forecast with the same lead.
I would ideally like to build the forecast-equivalents of our growing-season aggregates for
realized weather, for different lead times. For example, the rainfall forecast for the growing
season, with a constant one-month lead throughout the season (or the equivalent of the
farmer’s knowledge about rainfall one month in advance throughout the growing season).
I approximate this by bundling together forecasts produced one calendar month ago (our
one month lead for the rest of the paper), produced two calendar months ago, up to five

45I use an extensive definition of the agricultural growing season for France, running from October of the previous year, to
July of the current one.

46Growing degree days are computed over the [4°, 30°] degree interval, and heat degree days sum the realized temperature
above 30°C.

47ECMWF provides an ensemble of 25 forecasts, which I average.
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months ago. As such, the forecasts that I aggregate into growing season observations are
not homogeneous in terms of lead value, but are the closest equivalent of it that I can get.

Similarly to the weather realization data, I extract the gridded data into department-
level observations, using area weights.

B.1.4 Landsat 5 Remote Sensing Data

Both our remote sensing indices are based on Landsat 5 imagery. Landsat 5 was a low orbit
satellite jointly managed by the US Geological Survey and NASA, and ran between 1984
and 2013. Its unusual longevity making it a good source of data to build long time series. It
had a repeat cycle of about 16 days, and was equipped among else with a Thematic Mapper
(TM) and a Multi-Spectral Scanner.

Our algal bloom index follows the methodology of Taylor and Heal (2023). For every
year between 1985 and 2001, I filter Landsat data for images taken between June and August,
which I crop for surface water and treat for clouds and cloud shadows. I then run the following
function on each pixel:

Bloom = NIR− 1.03 ∗ SWIR (11)

NIR corresponds to the near infrared band of Landsat 5 (.77 to .90µm), and SWIR to the
shortwave infrared band (1.55 to 1.75µm). In both cases, these come from atmospherically
corrected surface reflectance data produced by the Landsat TM series. The index is then
averaged across the selected months of the year, and averaged at the county level.48

Our measure of edge density follows recent remote sensing work developed for agricul-
tural field delineation, and specifically the general procedure outlined in Watkins and van
Niekerk (2019). I use the following workflow. I first create three composite images per year,
respectively for the periods January-April, May-August and September-December. Clouds
and cloud shadows are masked, and images are averaged within each period. I then use first
a Gaussian filter, and then a Canny edge detection filter using four bands: red, blue, green
and near infrared. I then aggregate the resulting edge image across bands, and across seasons
within the year. Filtering per season prior to running the filter allows to account for varying
landscape patterns within the year, and for example to better differentiate fields that might
have different seasonal patterns but might be similarly green during some time of the year.
I finally filter the images to remove human settlements, and compute the resulting average
edge density per county. Very roughly, this procedure should give us an index of landscape
fragmentation, and should correlate with the homogenisation of landscapes driven by in-
creasing field size and an increased encroaching of agriculture on previously non-agricultural
land.

48There are 2,054 counties in France, making them much smaller geographic entities than US counties, and the smallest
geographic entity above villages (communes).
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B.2 Rationale for our Chosen Environmental Focus

The environmental impacts of agricultural production are many and well documented – from
the consequences of pesticide use on human health (Carson (1962),Dias et al. (2023),Tay-
lor (2022),Missirian (2020),Frank (2021)), those of fertilizer use (Rossi et al. (2023) for a
review), on groundwater depletion (Burlig et al. (2024),Ryan and Sudarshan (2021),Car-
leton et al. (2023)), as well as the likely consequences of agricultural intensification and local
crop homogenization (Crossley et al. (2021)). There are also many ways in which changes
in the allocation of production across heterogeneous farms towards the more efficient ones
could impact the prevalence of environmental externalities on the overall agricultural mar-
ket. When productivity differences are input-neutral, more efficient farms will have a higher
input-efficiency for all inputs. If one thinks for example of water needs, a farm with a higher
TFP will produce more from a set level of water use than others, reducing the water foot-
print of its products. Following models of multi-product firms such as Mayer et al. (2014),
more efficient firms will also be more diverse, and have a higher number of crops per hectare
than smaller ones – potentially benefiting local ecosystems. These relations change, however,
when the source of productivity differences across farms stops being input-neutral. Study-
ing intensive agriculture, one might actually think that some farms are more productive
than others because of their higher reliance on irrigation, or because of their specialization
in certain crops which could interact with scale effects, or facilitate the accumulation of
crop-specific capital.

I focus here on a specific environmental externality – the chemical intensity of agri-
cultural pollution. This choice is motivated by several reasons. The chemical intensity of
production is readily observable in the production data, relevant to the French agricultural
market, and has well documented consequences both for the local and global environment,
and for public health. While irrigation is also easily observable, it is not relevant for France
– at least in the 1990s – where the vast majority of row crop farms relied on rainfall for irri-
gation. Other externalities, such as the impact of field size, hedge density, or the clustering
of fields within space cannot be measured in our data, and likely require additional research
when it comes to their environmental impact. Finally, there is a natural way to model the
heterogeneity in chemical intensity across farms which fits the general agro-science research
focused on French agriculture in the 1990s. I discuss it below.

The 1992 reform found French agriculture in a state of high productivity growth, and
amid a strong trend of intensification (Carpentier and Rainelli (1997),Meynard et al. (2003)).
The late 1980s saw France as the second world consumer of pesticides, with an unusually high
use of fungicides justified in part by the role of wine production, in part by its large culture
model for the production of cereals and oil crops. Intensification then corresponded to the
implementation of a series of practices among which: earlier sowing dates (specifically for
wheat), higher sowing density, shorter crop rotations allowing for a more frequent cropping
of wheat, the use of higher productivity cultivars, and a more intensive use of fertilizers and
irrigation. This technological nexus was characterized by the joint use of different practices,
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and of a more intensive reliance on both pesticides and fertilizers. This complementarity
between productivity gains and higher chemical intensity can readily be modeled as non-
Hicksian productivity growth. Along with these changes, the late 1980s and the 1990 saw
a rise of no-till agriculture with reduced or no ploughing. All of these techniques increased
yields (or decreased costs for the case of no-till), but relied on a heavier use of pesticides,
and more specifically fungicides, as they all increased the exposure of crops to diseases and
pests. In addition, raising potential yields also increased the risks posed by damaging pest
shocks, and so further justified a strict protection of fields (Meynard et al. (2003)). While the
1990s also saw the development of sustainability concerns for agriculture, the 1992 cutting
of intervention prices is widely seen as having further pressured farmers to reduce their
marginal costs of production (Pierre (2004)). In this specific context and for cereals and oil
crops, this mainly entailed a further intensification of production, and a heavier reliance on
pesticides and fertilizers. The pivot towards a conception of agriculture as multi-functional49,
which started in the 1990s, hence coincided with the most significant pro-competitive reform
of European agricultural policy, which at the time presented little to no features to orient
agriculture towards more sustainable means of production.

I discuss next some suggestive evidence surrounding the role of agriculture in driving
chemical-led pollution in France, heterogeneity across farms in pollution, and some evidence
backing the use of non-Hicksian shocks to model this heterogeneity.

B.2.1 Correlates of Agricultural Intensification

I start by providing suggestive evidence for the role of agricultural expansion between 1988-
200 and algal blooms. Over the past years, the specific role of the CAP in the increase in
eutrophication and algal blooms in Europe has been heavily discussed.50

I rely on a remote-sensing based index for algal blooms on French waterways and inland
water bodies. The index is computed at the county-year level, using Landsat 5 imagery.51

See subsection B.1 for a description of how this index is constructed. Algal blooms are
generally driven by an over-fertilization of soil – and through leaching – of waterways. They
are disruptive for local ecosystems and can produce toxins toxic to animals or even humans.52

They can also deplete oxygen levels in water-bodies, and lead to so-called dead zones where
no other organism can survive. Current work is also studying their potential impact in terms
of increased N2O emissions (Rossi et al. (2023)).

I look at the 1988-2000 evolution of county-level total agricultural area, and how it
correlates with yearly percentage changes in our remote sensing index.53 I do so controlling

49By this I mean the understanding of agriculture both as an industry aimed at producing quality food at low prices, but
also as a central institution for the management of land-use, for the protection of ecosystems, and for the development of rural
spaces.

50See https://www.nytimes.com/interactive/2019/12/25/world/europe/farms-environment.html
51France has over 2,000 counties, making them relatively small geographic entities, and the smallest ones above the village

(commune) one. French counties are much smaller than their average US counter-part.
52Nitrate pollution can be harmful to humans, notably through the blue baby syndrome. In France, animals and three persons

are also believed to have died over the last decades due to direct exposure to decomposing algae, and hydrogen sulphide, produced
by algal blooms.

53I show in the annex Figure A7 a map for the evolution at the village level of total agricultural area. There are clear
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for region-by-year fixed effects to further isolate the effect of agricultural growth. I see that
there is a strong positive relation locally between the expansion of agriculture and increases
in algal blooms. This pattern matches the one observed in the US by Rossi et al. (2023)
between agricultural land expansion and fertilizer pollution.
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Figure A17: Correlates of Agricultural Area Expansion

Notes: The two figures show the correlation between the annual growth in remote sensing based indices and the 1988-200 growth of

total agricultural land use (in ha) at the county level and as seen in the French agricultural Census, after controlling for

region-by-year fixed effects. The blue line corresponds to a GAM model, with the associated standard error in grey. The dots

represent mean values for each bin of the joint distribution of the variables.

I take this result as indicative of the potential disruptive impact of local agricultural
growth, and hence for the potential impact that large reallocations in agricultural production
can have on ecosystems.

B.2.2 Heterogeneity in Pollution: Larger Farms are More Chemical-Intensive

Knowing that agricultural activity comes with soil and water pollution brings the important
question of whether establishments show some heterogeneity in their propensity to pollute.
Whether large farms pollute more or less than smaller farms is theoretically ambiguous –
and crucially depends on the structure of production.

Below I show binscatters obtained using FADN data, for resp. the fertilizer-to-land
and pesticides-to-land ratios of production across the distribution of farm size measured as
total sales value. I observe a clear positive and linear relation between farm size and these
two ratios. I focus on the chemical-to-land ratio here, and not the chemical-to-output ratio,
as the second one will respond both to potential heterogeneity in non-hicksian productivity,
geographic patterns of local increases or decreases in total agricultural area – the center of France and the lower part of
Brittany and Vendée losing agricultural area.
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but also scale choices, capital accumulation and heterogeneity in TFP. Under fairly general
choices of modelization for production, the chemical-to-land ratio will be orthogonal to these
three additional factors and respond only to non-hicksian productivity differences.
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Binscatters of farm−level outcomes (FADN).

Figure A18: Chemical-to-Land Ratios in relation with Farm Size

Notes: I show in these two figures the relation between resp. the fertilizer-to-land and pesticide-to-land ratios and farm size,

measured by farm-level sales in 2020 euros. Both fertilizers and pesticides are measured as deflated input bills using the INSEE

input-specific price indices, while land is measured as total land used for agriculture (here in ares for easier-to-read ratios). The

data is taken from the FADN. The binscatters show a clear linear positive relation between the chemical intensity of farming and

farm size.

The chemical-intensity to size relation is of course a complex one – and this correla-
tion could be driven by different mechanisms. I next argue for the presence of non-Hicksian
productivity growth in the French row crop market. This productivity – under substitutabil-
ity between land and chemicals – can explain that establishments which are more efficient
at using chemicals have both higher chemical-to-land ratios than others, and end up being
larger.

B.3 Robustness and Additional Results for the Reduced Form Analysis

I start this robustness section by showing the Rotemberg weights for our shift-share instru-
ment, following the formula provided by Goldsmith-Pinkham et al. (2020), and additionally
show the correlation between shock size, the Rotemberg weights, and the variance of the
shares across farms. I compare them to the weights obtained when including all our controls
– and specifically how the inclusion of the farms’ 1991 relative share of land allocated to oil
crops changes the variation used for identification. I then provide a more in-depth analysis of
our conditional parallel-trends assumption driving our difference-in-difference design. I show
trends in the same set of variables as shown in Figure A11, but for farms with a higher or
lower crop shares – and this for the main crops that drive the variation in our shift-share in-
strument – as given by the value of the Rotemberg weights. Finally, I show the event studies
for the farms’ value added – compare it to the effects on prices and on total profit, provide
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the complete set of results in a difference-in-difference format, and give the shock-by-shock
regression for value added and profits.

B.3.1 Rotemberg Weights

I give the Rotemberg weights below – with and without the inclusion of the controls used in
our farm-level regressions. This has the advantage of both showing what cross-crop variation
is used for identification, and how this variation is influenced by the controls.

Table A13: Rotemberg Weights: With Controls

Panel A Rotemberg Weights

Crop Weight Shock Share Variance
Sunflower 0.5571 533.7 0.1171

Corn 0.2271 150.2 0.0307
Wheat 0.1641 163.7 0.0829

Barley - Spring 0.0526 127.2 0.0150
Oats 0.0134 120.3 0.0236

Durum 0.0098 165.4 0.0057
Sorghum 0.0025 158.7 0.0104

Colza -0.0058 357.3 0.0000
Barley - Winter -0.0063 131.4 0.0336

Rye -0.0147 114.3 0.0105

Panel B Correlation Matrix

Weights 1 0.7338 0.8765
Shocks 0.7338 1 0.5841

Variance Shares 0.8765 0.5841 1

Notes. The weights are computed after residualizing the in-
strument on the fixed effects used in our farm-level regressions.
These Rotemberg weights are obtained when using only land
shares to measure farm exposure. The shock column indicates
the value of the crop-specific shock, and the share variance cor-
responds to the variance observed in the Fadn sample of the
crop-specific share. The correlation matrix gives the correlation
between the value of the shocks, the weights implicitly used in
the shift-share summation, and the variance in crop share across
farms. Higher correlations means the instrument better captures
the variation of the reform, and the cross-sectional variation in
exposure across farms.

As I can see, the weights vary in a quite striking way as I include the 1991 relative
oil share. Most importantly I move from an instrument which is essentially a difference-in-
difference with a continuous treatment for the share of land allocated to sunflower in 1991, to
one comparing farms growing relatively more sunflower, durum, wheat and corn. Wheat and
corn being the most planted crops in France, this seems like a source of variation yielding
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more representative results. I note however that some negative weights also appear in the
process, specifically for colza, which could raise issues in the case of heterogeneous treatment
effects. I will investigate this later with a crop-by-crop iv strategy.

Table A14: Rotemberg Weights: Without Controls

Panel A Rotemberg Weights

Crop Weight Shock Share Variance
Sunflower 0.6277 533.7 1.171e-01

Corn 0.1355 150.2 3.073e-02
Wheat 0.0946 163.7 8.299e-02
Colza 0.0616 357.3 1.508e-02

Durum 0.0405 165.4 2.367e-02
Rye 0.0152 114.3 5.732e-03

Barley - Winter 0.0102 131.4 1.049e-02
Barley - Spring 0.0096 127.2 9.583e-05

Oats 0.0019 120.3 3.365e-02
Sorghum 0.0028 158.7 1.050e-02

Panel B Correlation Matrix

Weights 1 0.8669 0.8446
Shocks 0.8669 1 0.6713

Variance Shares 0.8446 0.6713 1

Notes. The weights are computed after residualizing the in-
strument on the fixed effects used in our farm-level regressions.
These Rotemberg weights are obtained when using only land
shares to measure farm exposure. The shock column indicates
the value of the crop-specific shock, and the share variance cor-
responds to the variance observed in the Fadn sample of the
crop-specific share. The correlation matrix gives the correlation
between the value of the shocks, the weights implicitly used in
the shift-share summation, and the variance in crop share across
farms. Higher correlations means the instrument better captures
the variation of the reform, and the cross-sectional variation in
exposure across farms.

B.3.2 Balance Tests: Across Crop Shares

Next, I show our balance tests across farms with an above and below median share of wheat,
corn, winter barley, rye, sunflower and colza. when looking at these comparison, one should
keep two things in mind. The first thing is that everything else equal, I expect larger farms
to have lower crop shares than smaller ones, as they tend to be more diverse – and this to
be especially the case for the most common crops like wheat or corn. The second, is that
this heterogeneity in crop shares should otherwise correlate with local production structures
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– Pierre (2004) describes the difficulties of starting to grow a given crops when the local
distribution system is not already in place – and it should also correlate with local climatic
and soil conditions. The graphs are then useful in order to understand the extent to which
these factors can change the levels and dynamics across farms. I note that because I look
at impacts on outcome growth rates, rather than outcome levels – differences in levels are
not worrisome in our context. The main threat to identification lies with the presence of
unobservables that are linked with heterogeneity in exposure, and which affect farm-level
growth. The following elements stand out: across all crops, capital is the one variable that
differs the most in trends across groups prior to the reform – making it a necessary control in
our design. Profit, sales and labor show relatively comparable trends prior. Trends in land
use also show some notable differences in the cases of rye and colza. While the differences
for rye are quite significant, I also know from the previous Rotemberg weights that rye plays
an almost absent role in the variation of the shift-share instrument, and hence should not
drive results too much. Differences in colza are potentially more important, again justifying
the control for land use pre-reform at the farm-level.
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(a) Balance Tests - Wheat

(b) Balance Tests - Sunflower

(c) Balance Tests - Corn

Figure A19: Trends per Category

Notes: I show the trends of relevant farm characteristics for the bottom and top third of farms in terms of their share of land

allocated to the relevant crop in 1991. I use FADN data for this exercise.

84



(a) Balance Tests - Barley

(b) Balance Tests - Colza

(c) Balance Tests - Rye

Figure A20: Trends per Category (continued)

Notes: I show the trends of relevant farm characteristics for the bottom and top third of farms in terms of their share of land

allocated to the relevant crop in 1991. I use FADN data for this exercise.
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B.3.3 Additional Farm-Level Results

Figure A21: Farm-Level Event Study: Full Set of results

Notes:I plot the result of the event studies for the following outcomes – all measured as differences in logs with respect to the

farm’s baseline 1991 level: a farm-level output price index (average price across row crops, using relative areas as weights), total

subsidies received, profit measured as value added plus subsidies, the farms’ deflated chemical bill, the deflated bills for fertilizers

and for pesticides. All coefficients correspond to the year-specific coefficient associated to farm exposure, and give the effect of

exposure in that given year relative to the effect in 1991. I control for observed characteristics of the farms pre-reform, and allow

for a time-varying intercept for each of these controls. I add department-year fixed effects, and cluster the standard errors

one-way at the department-year level.

86



It is useful to recast our design in a pure difference-in-difference design, in order to get
a unique coefficient summarizing the effect of the reform. I can do so using a modified
estimating regression of the following form:

∆1991Yjt = Expjβ
0 + ExpjPosttβ

1 +XjΓ
0 +XjPosttΓ

1 + ηr(j)t + εjt (12)

The implied difference is that Expj now follows a binary form of heterogeneity, a unique
effect pre-reform until 1991, and a unique effect post 1992. I also run this with an alternative
construction of our exposure instrument, where price intervention shocks are averaged across
crops using output-based weights, and land subsidy ones using land weights. I obtain the
following results which match the ones obtained using our event study design. Results across
the two forms of instruments are also comparable.

Table A15: Difference-in-Difference Results

Dependent Variables: ∆Price (log) ∆Sales (log) ∆Profit (log) ∆Chemicals (log) ∆Fertilizers (log) ∆Pesticides (log)
Model: (1) (2) (3) (4) (5) (6)

Variables
Exposurej -0.0512 0.0273 0.0789 0.0142 0.0136 -0.0108

(0.0783) (0.0295) (0.0627) (0.0520) (0.0548) (0.0942)
Exposurej × Postt -0.3971∗∗∗ -0.2477∗∗∗ -0.3818∗∗∗ -0.1927∗∗∗ -0.1552∗∗ -0.1129

(0.0926) (0.0575) (0.0872) (0.0713) (0.0779) (0.1138)
Mean Level 223.7 11.29 49,982.3 17,031.6 12,876.1 4,148.5

Fixed-effects
Department-Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,626 2,685 2,577 2,685 2,685 2,685
R2 0.91390 0.67309 0.69452 0.61699 0.60736 0.63383

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the difference-in-difference results on farm-level: prices, sales, profit, chemicals, fertilizers and pesticides. The output price index is
computed as a weighted average of the farm’s output prices, using the crops’ relative output as weights. These coefficients correspond to the year-
specific coefficient associated to farm exposure. All variables are differenced with respect to their 1991 values, in log term, and hence represent a
relative growth rate. I control for the farm’s 1991 stock of capital, total labor, total land, total fertilizer and total pesticide use, their fertilizer-to-
land and pesticides-to-land ratio, the number of crops they grow, as well as the share of oil crops in their output. I also control for their 1983-1984
adoption trends in chemicals measured as the evolution of their total chemical use. I allow for a time-varying intercept for each of these controls.
I add department-year fixed effects, and cluster the standard errors at the department-year level.
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Table A16: Difference-in-Difference Results (Alternative Instrument)

Dependent Variables: ∆Price (log) ∆Sales (log) ∆Profit (log) ∆Chemicals (log) ∆Fertilizers (log) ∆Pesticides (log)
Model: (1) (2) (3) (4) (5) (6)

Variables
Exposurej (alt.) -0.0435 0.0324 0.0886 0.0199 0.0237 0.0018

(0.0590) (0.0299) (0.0618) (0.0496) (0.0529) (0.0914)
Exposurej (alt.) × Postt -0.2921∗∗∗ -0.2488∗∗∗ -0.3825∗∗∗ -0.1832∗∗∗ -0.1538∗∗ -0.1245

(0.0698) (0.0571) (0.0867) (0.0691) (0.0761) (0.1116)

Fixed-effects
Department-Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,626 2,685 2,577 2,685 2,685 2,685
R2 0.91411 0.67266 0.69418 0.61583 0.60690 0.63380

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the difference-in-difference results on farm-level: prices, sales, profit, chemicals, fertilizers and pesticides. The output price index is
computed as a weighted average of the farm’s output prices, using the crops’ relative output as weights. These coefficients correspond to the year-
specific coefficient associated to farm exposure. All variables are differenced with respect to their 1991 values, in log term, and hence represent a
relative growth rate. I control for the farm’s 1991 stock of capital, total labor, total land, total fertilizer and total pesticide use, their fertilizer-to-land
and pesticides-to-land ratio, the number of crops they grow, as well as the share of oil crops in their output. I also control for their 1983-1984 adop-
tion trends in chemicals measured as the evolution of their total chemical use. I allow for a time-varying intercept for each of these controls. I add
department-year fixed effects, and cluster the standard errors at the department-year level.

B.3.4 Independent Instruments

Finally, I decompose the shift share instrument into crop-specific instruments. Each crop-
specific instrument corresponds to the crop-specific change in subsidization between 1991
and 1995, interacted by the land share allocated to that crop by the farm in 1991. The
regression is otherwise similar to the difference-in-difference regressions presented previously.
I only show the coefficients for the instruments interacted with the post-1991 dummy. These
indicate the effect of crop-specific exposure to the reform after the reform happened. I see
that all crop-specific instruments but sorghum have negative effect on sales, and almost all
of these are statistically significant. Sorghum is similarly the one coefficient with a positive
effect for profit, and for chemical use. This means that the shift-share instrument hides some
degree of heterogeneity in terms of the effects of exposure. I note however, that sorghum
production in France corresponds to about 1.5% of the production of wheat, and hence does
not correspond to a very significant share of the market.
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Table A17: Heterogeneity in Crop-Specific Effects

Dependent Variables: ∆Sales (log) ∆Profit (log) ∆Chemicals (log)
Model: (1) (2) (3)

Variables
Wheatj × Postt -0.0026∗∗∗ -0.0032∗∗∗ -0.0021∗∗

(0.0008) (0.0010) (0.0008)
BarleyWinterj × Postt -0.0003 -0.0013 -0.0021

(0.0012) (0.0020) (0.0013)
Cornj × Postt -0.0030∗∗∗ -0.0045∗∗∗ -0.0026∗∗∗

(0.0008) (0.0013) (0.0010)
Ryejst × Postt -0.0050∗∗∗ 0.0003 -0.0022

(0.0015) (0.0022) (0.0021)
Sunflowerj × Postt -0.0033∗∗∗ -0.0041∗∗∗ -0.0004

(0.0010) (0.0015) (0.0011)
Colzaj × Postt -0.0046∗∗∗ -0.0048∗∗ -0.0038∗∗∗

(0.0012) (0.0021) (0.0013)
Durumj × Postt -0.0117∗∗∗ -0.0300∗∗∗ -0.0130∗∗∗

(0.0031) (0.0102) (0.0029)
Sorghumj × Postt 0.0486∗∗∗ 0.0675∗∗∗ -0.0051

(0.0100) (0.0216) (0.0106)
BarleySpringj × Postt -0.0008 -0.0032∗∗ -0.0018

(0.0008) (0.0013) (0.0014)
Oatsj × Postt -0.0019∗ -0.0049∗∗ 0.0020

(0.0011) (0.0023) (0.0014)

Fixed-effects
Department-Year Yes Yes Yes

Fit statistics
Observations 2,685 2,577 2,685
R2 0.70244 0.71366 0.62818

Clustered (Department-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. I show the heterogeneity of our difference-in-difference results across crop-
specific shocks. The instrument is decomposed in multiple crop-specific instruments.
I include the crop shares in levels, but do not show the coefficients in the table. I
control for the farm’s 1991 stock of capital, total labor, total land, total fertilizer and
total pesticide use, as well as their relative share of land allocated to oil crops. I also
control for their 1983-1984 adoption trends in chemicals measured as their evolution
of chemical-to-land and chemical-to-output ratio growth. I allow for a time-varying
intercept for each of these controls. I add department-year fixed effects, and cluster
one-way the standard errors at the region-year level.
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B.3.5 Municipality-Level Results

In this section, I first present balance tests comparing municipality with relatively more and
relatively less exposure to the reform, and then the distribution of the measure of exposure
used for our municipality-level design. I end by showing our shift-share results using different
aggregate measures to go form farm to municipality.

Starting with balance tests, I show below the trends (averages for each wave of the
census) for four municipality characteristics, splitting them nationally between municipalities
with a median exposure above or below the French median in 1988. Trends are overall similar,
apart from the evenness variable. In our design, I control for both evenness and crop count
measured at the municipality, and their average value across the farms in the municipality
in 1988.

Figure A22: Municipality-Level Trends

Notes: This figure gives the evolution of municipality level outcomes over time, for the group of municipalities for which median

exposure is above or below the median exposure in France as a whole.

Next, I show the distribution of median municipality exposure. As mentioned previ-
ously, all our measures of municipality-level are computed after winsorizing the farm-level
measure of exposure in the Census for the bottom and top 1ppt values. Exposure is mostly
distributed between 50 and 100e per output unit, with a large right tail which likely cor-
responds to municipalities which have some of their land allocated either to colza, durum
and sunflower, which are the crops with a shock value higher than 100 e per unit. These
are mostly located in two areas of France, as shown in Figure A24, along the Mediterranean
coast, as well as the main grain region of France around the Beauce region below Paris.
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Figure A23: Distribution of Median Exposure

Notes: This figure gives the distribution of the municipality-level exposure to the MacSharry reform.

Figure A24: Geographic distribution of Median Exposure

Notes: This figure gives the distribution of the municipality-level exposure to the MacSharry reform.

Finally, I show our shift-share results using different aggregations of the farm-level
exposure, resp. the median, 33rd centile, 66th centile, and the average value. I note that
apart from the average, and as should be expected, the centile values are not sensitive to
winsorizing the farm-level exposures. The different centiles show similar responses for the
evolution of the minimum farm size, while farm exit really only responds to the median and
33rd centile. Because all our measures of exposure are standardized, this implies that a one
standard deviation increase in exposure of the 66th centile does not have the same impact
as a one standard deviation increase in the median or 33rd centiles. I further note that farm

91



exit is a discrete decision which likely responds to a threshold value of exposure (given a
farm’s type). If these standard deviation increases do not map into similar shifts in exposure
that lead to one farm within the municipality to cross its exit threshold, they will not have
the same effect in our regression, which is likely what is happening here.

Finally, I note that average exposure has no effect on farm count, being flat around zero
for all our periods, while the results on minimum farm size are of the same size but a much
smaller magnitude. Standard deviations in average values are likely larger than standard
deviations in centile values for centiles not located in the extremes of the tails, which could
explain these differences in the levels of the coefficients.

Figure A25: Municipality-Level Outcomes

Notes: This figure gives the results for our municipality-level event study. Outcomes are first-differenced. Farm count corresponds to

the number of farms operating in the row crop market within the municipality, and min. size gives the evolution of the minimum farm

size within the municipality. The regression includes a series of controls set to their level in 1988 within the municipality, and

interacted with a time-varying coefficients, as well as department-by-year fixed effects. Standard errors are clustered at the

department-by-year level. The table associated to these results is ??.
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B.3.6 County-Level Results

Figure A26: County-Level Algal Blooms

Notes: This figure gives the results for our county-level event study. The outcome is differenced-out (in log terms) with respect to the

1991 value, and is a Landsat-5 based index of algal bloom intensity on the within-county water bodies. The regression includes a

series of controls set to their level in 1988 within the county (last year of the Census prior to the reform), and interacted with a

time-varying coefficients, as well as department-by-year fixed effects. Standard errors are clustered at the department-by-year level.

The table associated to these results are Table A8.

B.4 Model Details

I start with the Bellman decisions describing the farms’ decisions – both incumbent and
entrant farms – which correspond to the general outline of the model from section 4.1.2.

The incumbent’s decision can be characterized by:

V (Υjt; Ωjt) = max
{Xjct}Cjt ,ξ

x
jt,Kjt+1,So

jt+1,Cjt+1

Πjt︸︷︷︸
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And I can further write static profit as:

Πjt = SO
jtP

S
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+
∑
c∈Cjt

[
PjctQjct − PL

jtLjct − (1− τ cs )P
S
jtSjct − P F

jtFjct − P P
jtPestjct

]
︸ ︷︷ ︸

Crop Specific Profit: πjct
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The entrant’s problem takes the form:

Ve(Ωjt, f
e
t ) = max

{ξejt,ξxjt,Kjt+1,So
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− f e
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]

After I make our simplifying assumptions regarding the homogeneity of σj, the own-
ership of land and on input and output prices, I can further write the the transition operators
which describe the evolution of entrant and incumbents farms as: ϕt(ω

′, ωch′
, K ′,C′|ω, ωch, K,C)

and ϕe,t(ω
′, ωch′

, K ′,C′|ω, ωch). They require the additional introduction of the transition op-
erator Jh(.|.) and J ch(.|.) for both shocks, and of the policy functions κk for incumbent cap-
ital investment, κC for crop choice, and κk

e for entrant capital investment. These transition
operators now write as:

ϕt(ω
′, ωch′

, K ′,C′|ω, ωch, K,C) =Jh(ω′|ω)J ch(ωch′ |ωch)1{K ′ = κk(ω, ωch, K|Ωt)}∗
1{C′ = κC(ω, ωch, K|Ωt)}1{ξx(ω, ωch, K|Ωt) = 0}

I note that crop choice is a dynamic decision simply because of our timing assumption –
which allows us to address the selection bias induced by focusing on single crop farms for
estimation – but crop choice has no impact on a farm’s transition. By this I mean that the
current state of a farm’s crop mix in a given period has no bearing on the dynamic decisions
made by the farm concerning the next period, including its crop mix decision. The analogue
transition operator for entrants writes ϕe,t(ω

′, ωch′
, K ′|ω, ωch):

ϕe,t(ω
′, ωch′

, K ′,C′|ω, ωch) =J(ω′|ω)J ch(ωch′ |ωch)1{K ′ = κk
e(ω, ω

ch, 0|Ωt)}∗
1{C′ = κC(ω, ωch, 0|Ωt)}1{ξx(ω, ωch, 0|Ωt) = 0}

Once I have defined these transition operations, I can then define the law of motion
for the measure µt. G1(.) and G2(.) are the distributions from which entrants draw resp.
their original TFP and chemical productivity. With N e

t the mass of entrants, the allocation
of farms over the market space is then fully described by the measure µt, whose transition
operation T (.) can be written as:

µt+1(ω
′, ωch′

, K ′,C′) =

∫
ϕt(ω

′, ωch′
, K ′,C′|ω, ωch, K,C)dµt(ω, ω

ch, K,C)+

N e
t

∫ ∫
ϕe,t(ω

′, ωch′
, K ′,C′|ω, ωch)dG1(ω)dG2(ω

ch)

With all these elements, I can finally define the stationary equilibria on which I will
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focus as follows. I look at stationary competitive equilibria composed of the tuple of Ω⋆ =

{µ⋆, N e,⋆, f e,⋆, {P ⋆
c }C, {P x}x, PK , Policy} such that – for a given policy state and given input

prices:

• V e(Ω⋆) ≤ 0, and V e(Ω⋆) = 0 if N e,⋆ > 0. (Zero Ex-Ante Profit)

• µ⋆ = T (Ω⋆). (Stationary Market)

• P ⋆ s.t. QS
c (Ω

⋆) = QD
c (P

⋆
c ) ∀c ∈ C. (Output Market Clearing)

• f e,⋆ s.t. f e,⋆ = Qe,⋆(M(µ⋆))−1. (Entry Goods Market Clearing)

B.5 Role of Chemical-Biased Productivity Shocks

When I combine the first order conditions related to optimal pesticide and land use in the
maximization of each crop’s flexible profit, I obtain the following relation – where small
letters denote log terms. This relation highlights the role of the production structure in
informing the prevalence of chemicals in production, and the drivers of this prevalence:

ρωch
jt =log

(P p
jt

P s
jt

)
+ log

( δcs
δcp[1− δcs]

)
+ (1− ρ2)pestjct − (1− ρ)sjct

+ (1− ρ

ρ2
)log

[
δcpPestρ2jct + (1− δcp)Fertρ2jct

]
It is useful to then consider the case where chemicals form a single input Chemicalsjct

in order to gain some intuition. In that case, this first equation can be re-written as:

log
(Chemicalsjct

Sjct

)
=

1

1− ρ

(P s
jt

P x
jt

)
+

1

1− ρ
log

(1− δcs
δcs

)
+

ρ

1− ρ
ωch
jt

This equation makes the drivers of the chemical-to-land ratio very clear: a decreasing rel-
ative price of chemicals, the production of a more chemical-intensive crop, and – if land
and chemicals are substitutes – a higher productivity at using chemicals: ωch

jt . While the
sign of the first two relations is independent from the value of ρ, the influence of chemical
productivity crucially depends on whether ρ ∈]0, 1[, or ρ < 0, ie. whether chemicals and
land are substitutes or complements in the production process.54 The MacSharry reform is
likely to play a role along these three dimensions.

The relation between the chemical-to-output ratio (at the production optimum) and
the chemical-biased productivity shock ωch

jt is also signed by the value of ρ. These simulations
illustrate how the chemical-to-output ratio increases if ρ ∈]0, 1[.

54For a CES function to be appropriately defined, I indeed need ρ<1. This implies that 1
1−ρ

is always positive.
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Figure A27: Relation Between Land-Chemicals Elasticity and non-Hicksian Productivity

Notes: This figure shows the effect of non-Hicksian productivity shocks on firms’ chemical-to-output ratios at their optimal

production level. I use simulations to shows the effect of changing the parameter of substitution between land and chemicals from

land and chemicals being substitutes, to them being complements.

I finally get the following relation between farms’ profitability and pollution intensity.
In our competitive model, profitability is also a direct measure of efficiency, and hence I have
a positive relation between farm efficiency and pollution intensity. To facilitate the aggregate
at the farm-level, I show pollution intensity as the ratio of the amount of chemicals used
over the value of production.
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Figure A28: Relation Between Pollution Intensity and Profitability

Notes: This figure shows the relation between farm profitability and pollution intensity (measured as total chemicals used over the

value of production) implied by our model parameters. I express both values in percents of their maximum values.

B.6 Joint Production Estimation Framework

Here I describe an alternative joint production framework, for which I also provide estimates.
This approach combines the work of Dhyne et al. (2022) and of Doraszelski and Jomandreu
(2018). From the first, I use the idea that inputs can be shared across product lines, and
that the parametrization of a firm-level transformation function will define the degree of

96



penalization that accompanies this sharing of inputs. I then draw from Doraszelski and
Jomandreu (2018) to model and estimate non-hicksian shocks, within that multi-product
production framework. Because the recovery of non-hicksian shocks relies heavily on the
first-order conditions taken from the firm-level optimization problem, I move away slightly
from the exact specification used by Dhyne et al. (2022).

In effect, consider a firm j which produces the set of crops Cjt within a production
period t. The firm is endowed with product-specific input-neutral shocks ω̃jct. I write the
transformation function as:

fjct = exp(ω̃jct)g
γcc
jct

∏
c′∈Cjt,c′ ̸=c

g
γcc′
jc′t

Here fjct is the quantity of crop c produced. That quantity depends on a specific
TFP shock, and on product-specific functions gjct which are evaluated at the level of inputs
used for each crop grown in the season. The parameters γcc parametrize the rivalry or
complementarity in production from jointly producing c and c′, and potentially sharing
some inputs across these two product lines. I keep the functions gjct fairly general for the
moment, and parametrize them further later. One additional set of assumptions I make is
that:

gjct = gc(Kjt, Ljt, Fertjt, P estjt, Sjct, ω
p
jt, ω

f
jt)

This means that each function gjct depends on the firm-level chosen amounts of capital Kjt,
labor Ljt, fertilizer Fertjt, pesticides Pestjt, on a crop-specific chosen amount of land Sjct,
and on firm-level pesticide and fertilizer productivity shocks that I denote ωp

jt and ωf
jt. This

implies that all inputs but land are selected at the firm-level, and shared across product-
lines according to the γ matrix. I also consider that the gc function only varies across
crops, but not periods or farms, and that these two non-hicksian shocks fully account for the
heterogeneity in these functions across farms. This assumption of land being a crop-specific
input, while others are shared with the same penalty γ allows us to derive an estimating
equation to recover the non-hicksian shocks.

With this specification, our firm-level profit is as follows:

Πjt =

( ∑
c∈Cjt

Pjct(fjct, Djct)fjct − P S
jtSjct

)
− PL

jtLjt − P F
jtFertjt − P p

jtPestjt

Taking {Ljt, Fertjt, P estjt, Sjct} as flexible inputs, their setting will only impact within
period profit. I write Pjct(fjct, Djct) for the inverse demand function, known to the farmers,
which depends on the volume produced and sold fjct, and a demand shock Djct. Writing Xjt

for any of the public inputs {Ljt, Fertjt, P estjt}, I get the following expression:
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∂Πjt

∂Xjt

= 0 ⇔ PX
jt =

∑
c∈Cjt

∂gjct
∂Xjt

g−1
jct

∑
c′∈Cjt

γcc′fjc′tPjc′t

[
1− 1

ηjct

]
I denote by ηjct the absolute value of the elasticity of demand. I then look at land, the only
private input in this set-up:

∂Πjt

∂Sjct

= 0 ⇔ P S
jt =

∑
c′∈Cjt

Pjc′t

[
1− 1

ηjct

]
γcc′

∂gjct
∂Sjct

gjctfjc′t

Combining these two equations, I get:

PX
jt

P S
jt

=
∑
c∈Cjt

∂gjct
∂Xjt

∂gjct
∂Sjct

This relation is quite intuitive, the relative allocation of inputs has to be such that the ratio
of their marginal impacts on production across production lines equals the ratio of their
prices.

To go further, I assume a specific shape for the gjct function55. I take:

gjct = Kαk
jt L

αL
jt

{
δcsS

ρ
jct + δcp

[
eω

p
jtPestjt

]ρ
+ δcf

[
eω

f
jtFertjt

]ρ}αs
ρ

Without relying on a translog specification, this is the simplest specification which allows
us to model non-hicksian productivity shocks. I note that the heterogeneity in the gjct
across crops only relies on the {δcs, δcf , δcp}c parameters. Because I are mostly worried about
variations in crop-composition impacting the chemicals-to-land ratios at the farm-level, this
is the main form of heterogeneity I are interested. A more expansive heterogeneity could
specify crop-specific elasticities ρc, which I assume away here.

With this parametrization, I obtain the following estimating equation, where small cap
letters represent logs, with x ∈ {pest, fert} :

pxjt − psjt = ρωx
jt + (ρ− 1)xjt + log

( ∑
c∈Cjt

δcx
δcs
S1−ρ
jct

)
This equation mirrors the first stage estimating equation from Doraszelski and Joman-

dreu (2018), adapted to our parametrized multi-product setting. Here, the input ratio can
either be affected by variations in the input price ratio, by changes in the establishment’s
production mix, or by changes in the etablishment’s profficiency in using input x in the pro-
duction process. Similarly to them, when our inputs of interest are substitutes, and holding
everything else constant, an increase in ωx

jt will increase the ratio of xjt to land.
55Note that this framework can also accomodate a full CES specification. Given the difficulty of estimating the parameters

within a CES nest, I keep the CES structure to a minimum - our land nest being itself estimated within an equation which is
linear in part of the parameters.
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I propose to recover the {δcs, δcf , δcp}c, and ρ in a first estimation step, and to recover the
remaining parameters in a second step. To simplify the estimation process, I assume that
γcc = 1, and γcc′ = γ, and verify post-estimation that γcc′ ∈] − 1

dim(C) , 0[ to guarantee that
the second order conditions from the optimization problem are met.

First Step: I specify a structure for the two input-biased productivity shocks. For each
of them, I assume an AR(1) structure such that, with ζxjt+1 an exogenous i.i.d. innovation
shock:

ωx
jt+1 = E[ωx

jt+1|ωx
jt] + ζxjt+1 = gx(ωx

jt) + ζxjt+1

I take gx(.) to be a third-order polynomial. I use the following moments, with A1
jt our matrix

of instruments:
E[(ζpjt + ζfjt)A

1
jt] = 0

Our instruments match the production function literature, and correspond to lagged
firm-level observables presumably uncorrelated to the productivity innovations, as well as
the current values of farm-level land prices and hourly agricultural wages.

Second Step: For our second step, I take the log of our production function, and
re-order the elements to get:

ω̃jct = log(fjct)−
( ∑

c′∈Cjt

γcc′

)[
αKkjt + αLljt

]
−

∑
c′∈Cjt

γcc′ s̃jc′t

Where s̃jc′t is the log of the land-fertilizer-pesticide nest, which I can compute using the
estimates from the first step. Now, I use crop-specific policy cushions, as well as land prices
and agricultural wages as instruments denoted A2

jt in a GMM estimation, with moments:

E
[
ω̃jctA

2
jt

]
= 0

I obtain the following results:
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Table A18: Joint Production - Parameters

Coefficient se
αk 0.241595 0.000602
αl 0.481252 0.001580
αs 0.093129 0.000022
γ -0.090429 0.000126
ρ 0.388665 0.000730

δf - Cereals 0.242870 0.002716
δf - Oil/Protein 0.291691 0.003467
δf - Industrial 0.028215 0.000214

δp - Cereals 0.178954 0.002593
δp - Oil/Protein 0.292520 0.004082
δp - Industrial 0.102460 0.002069

Standard errors from the second step are corrected for the two-step procedure, follow-
ing Doraszelski and Jomandreu (2018), and the coefficients associated to the input-biased
productivity processes are concentrated out, and not estimated. I note a negative value for
γ indicating that the more you share the public inputs across production lines, the less a
given crop will benefit from that input (either because of an increase in scope, or an increase
in the scale of the other product’s production levels). I also note that ρ ∈]0, 1[, indicating
that land, pesticides and fertilizers are substitutes in production, which was expected.

I show below the time series obtained for the pesticide and fertilizer specific productivity
shocks. I note that the trends are not significantly different from the ones obtained in the
disjoint production framework.
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Smoothed GAM models at the farm level.

Figure A29: Input-Biased Productivities - Joint Production Framework

Notes: I show GAM models that interpolate the farm-level trends of resp. fertilizer and pesticide specific productivity shocks in

France over time.

B.7 Recovering Input Allocations

As discussed in subsection 4.2, I estimate our production parameters on single crop-group
firms, following De Loecker et al. (2016). Because I observe farm-crop level land allocations,
knowing the parameters of our production specification, I can then recover both input al-
locations and hicksian and non-hicksian productivity shocks for multi-product firms. Our
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production function has the following shape:

Qjct = eω̃
h
jctK

αc
K

jt L
αc
L

jct

{
δcsS

ρ
jct + (1− δcs)

(
eω

ch
jt

[
(1− δcp)Fertρ2jct + δcpPestρ2jct

] 1
ρ2

)ρ}αc
S
ρ

With: ω̃h
jct = ωh

jct + εjct

Drawing from the first-order conditions, I can write the following relation between
pesticides and fertilizers:

Fert1−ρ2
jct =

P P
jt

P F
jt

(1− δcp)

δcp
Pest1−ρ2

jct (13)

I can use the relation to recover a relation between land and pesticide allocations:

P s
jtS

1−ρ
jct

δcS
=

P P
jt

δcp(1− δcs)

(
e−ωch

jt

)ρ

Pest1−ρ
jct

[(
1− δcp

)(P P
jt (1− δcp)

P F
jt δ

c
p

) ρ2
1−ρ2 + δcp

]1− ρ
ρ2

For farms producing the two crop groups, I can then take the ratio of this expression
for their two crop categories c and c′:

Pest1−ρ
jct

Pest1−ρ
jc′t

=
S1−ρ
jct

S1−ρ
jc′t

δcp(1− δcs)δ
c′
s

δc′p (1− δc′s )δ
c
s

[(
1− δcp

)(PP
jt (1−δcp)

PF
jtδ

c
p

) ρ2
1−ρ2 + δcp

] ρ
ρ2

−1

[(
1− δc′p

)(PP
jt (1−δc′p )

PF
jtδ

c′
p

) ρ2
1−ρ2 + δc′p

] ρ
ρ2

−1

Once I have estimated the parameters of our production function, the right hand side
of this expression is fully known. As I know total farm pesticide use, I can then recover the
volumes of pesticide used for each of the crops that they grow. I can then use Equation 13
to recover the fertilizer allocations as well. With these, I can construct the crop-specific land
nest values, and use the outer Cobb-Douglas shape of our production function to recover
crop-specific labor allocations, from these crop-specific land nests.

B.8 Selection Correction for the Production Function Estimation

I need to account for selection while building moments for the second step of our estimation
procedure. Using Ξjct = 1 a dummy for the fact that j only produces crop c in period t, I
want to build moments based on the following corrected process:

ωh
jct+1 = E[ωh

jct+1|ωh
jct,Ξjct+1 = 1] + ξhjct+1 (14)

With Ijt the farm’s information set at the end of period t, I want to base our moments
on the following derivation – with ωh

jcc′t+1 the threshold used at the end of period t to decide
on the inclusion of crop c′ on top of c. Here c is the ex-ante most profitable crop to grow in
period t, and c′ the second (out of two crops). I use a competence ladder, which means that
there will be a strict relation between the farm’s TFP between c and c′. I also note that
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because demand and input prices play a role in crop choice – the core competence of a farm
might not always match the identity of the unique crop it grows.

ξhjct+1 + εjct+1 = qjct+1 − αc
kkjt+1 − αc

l ljct+1 − αc
ss̃jct+1 − E[ωh

jct+1|Ijt,Ξjct+1 = 1]

= qjct+1 − αc
kkjt+1 − αc

l ljct+1 − αc
ss̃jct+1 − E[ωh

jct+1|ωh
jct, ω

h
jcc′t+1]

= qjct+1 − αc
kkjt+1 − αc

l ljct+1 − αc
ss̃jct+1 − gh(ω

h
jct, ω

h
jcc′t+1)

Where moving from line 1 to 2 relies on the first-order Markov process assumption, and
the definition of the threshold ωh

jcc′t+1.56 I can then specify gh(.) as a polynomial of its two
terms. While Equation 7 provides an expression for ωh

jct, I also need one for the threshold
ωh
jcc′t+1. For this I derive an expression for the conditional probability of producing only crop

c as a function of farm productivity and its state, focusing on the crop-addition threshold.57

Our competence ladder structure means that the threshold for the production of the second
crop c′ can be expressed using the farm’s observed TFP shock for crop c combined with
its competence ladder σj – specifically by its rank on the farm’s ladder σ−1

j (c), as well as
additional variables that influence the value of the threshold – input and output prices,
capital stock and chemical productivity:

P
(
Ξjct+1 = 1

)
= P

(
ωh
jct ≤ ωh

jcc′t+1(ω
ch
jct, Kjt+1, S

o
jt+1, σ

−1
j (c),Ωjt)|ωh

jcc′t+1(.), ω
h
jct

)
= h(ωh

jcc′t+1(.), ω
h
jct)

= h(ωh
jct, ω

ch
jct, Kjt+1, S

o
jt+1, σ

−1
j (c),Ωjt)

= h({Xjct}, ωch
jct, Kjt+1, S

o
jt+1, σ

−1
j (c),Ωjt)

= SPjt

Equation 7 is used to move from the third to the fourth line. While I do not observe
σ−1
j (c), I approximate it by the interaction between the farm’s location and a dummy for the

crop it produces – assuming competence ladders are determined by local soil and climatic
factors. As in Olley and Pakes (1996) and De Loecker et al. (2016), under some regularity
conditions on the density of ωh

jct, I can invert SPjt, which is first recovered non-parametrically,
to obtain a proxy for the threshold that I use in our polynomial approximation of gh(.).

B.9 Monopolistic Competition

An alternative to perfect competition is to adopt a monopolistic competition framework –
which preserves the single agent setting – but allows for price dispersion and some horizontal
differentiation across goods. While agricultural products are commodities usually thought
of as homogeneous, exogenous local conditions can lead to similar crops having different

56Because of our assumed competence ladder structure, firms face a unique TFP process that propagates across their crops.
The process gh is similar across crops as a direct consequence of this.

57The threshold for not including crop c as well corresponds to the usual selection issue outlined by Olley and Pakes (1996)
when no production is equated with exit, and is addressed in the usual way by keeping an unbalanced panel of farms.
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moisture or nutrient content, making them more or less suitable for different uses. In that
sense, a model with differentiated products might be preferable. Monopolistic competition
can also allow for mark-ups that vary across producers, and along with changes in market
structure.

I adopt for this section the quadratic demand of Melitz and Ottaviano (2008). The
demand structure goes as follows: in a closed economy, a representative consumer has the
following utility at period t:

Ut = q0,t + α

∫
i∈Ω

qci,tdi−
1

2
γ

∫
i∈Ω

(qci,t)
2di− 1

2
η
( ∫

i∈Ω
qci,tdi

)2 (15)

q0,t corresponds to the quantity of outside good consumed. Agricultural varieties i ∈ Ω

are differentiated. α and η control the substitution between differentiated varieties and the
outside good, while γ accounts for the degree of differentiation across varieties. Here, I note
that two varieties can be two types of corn grown by two different farms, or wheat and
corn grown by the same farm. I discuss next a clustering of the agricultural market, where
each market correspond to a crop type, and firm produce different varieties within each crop
market.

I take the outside good to be the numeraire. This preference structure implies the
following demand for variety i - with pt the average price of agricultural varieties on the
market, and Mt the mass of consumed varieties:

qi,t =
α

ηMt + γ
− 1

γ
pi,t +

ηMt

ηMt + γ

1

γ
pt

I see that Mt and pt – market-level statistics on which atomistic farms have no individ-
ual impact – determine the characteristics of the demand curve faced by farms. From this
relation, I can also derive a choke price pmax

t above which farms will not face any positive
demand.

Estimating Demand: I use the following expression to recover the parameters of
demand. From now on I denote by m the crop grown, to match the competence ladder
structure that I introduce next. Because crops are differentiated in the model, each of a
farm’s variety is uniquely produced by that farm.

qmt =
1

γ
α− 1

γ
pmt −

η

γ
Qt

I take for Qt total agricultural production sold in France, approximated using the
weighted sum of sold output in the FADN, for the set of crops that I consider. qjmt and pjmt

are respectively the quantity sold, and associated price, for each variety produced by a farm
in a given period. I estimate the following regression using a two-stage least squares strategy,
with exogenous shocks to firm supply as instruments. Specifically, I use local realized and
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forecasted weather shocks as supply shocks.

qjmt = β0 + β1pjmt + β2Qt + εjmt

I recover the following parameters. I only use data post-2003 for the estimation, in
order to obtain demand parameters that are not impacted by intervention pricing.

Table A19: Demand - Parameters

Coefficient Parameter Estimate Std. Error
Substitution with Numeraire η 1.32e-07 6.92e-08
Substitution within Varieties γ 3.19e-02 1.01e-02
Substitution with Numeraire α 203.5 71.42

Notes: I recover the parameters from a 2SLS regression, using FADN data fro 2003-2020, and using realized and forecasted

weather data constructed at the department-year level as supply shocks. The realized weather data is constructed from the

ECMWF ERA-5 hourly weather data series, and the forecasts come from ECMWF SEAS-5. Both are aggregated into growing

season observations.

The standard errors for the transformed parameters are computed using the delta
method. This gives us a decreasing choke price over time, which drops significantly around
the time of the reform.

Extension to Differentiated Crop Markets: It is useful to extend the model to
account for different agro-ecological zones, for which different crops are more or less suitable.
Doing so can allow us to draw some conclusions on the impact of different policy designs on
respectively the localisation of agriculture, and on the evolution of local crop diversity and
pollution.

The first step in developing a model with differentiated locations is to extend our
demand system allow for differentiated crop markets. In the previous version of the model,
all the varieties produced within and across farms were considered as different agricultural
varieties. Translated to the data, this meant that two crops growing wheat would grow
different agricultural varieties, to the same extent that one farm growing corn and wheat
would also grow two differentiated varieties. All the agricultural commodities were then
facing the same choke price, and the same aggregate demand. I now differentiate the crop
markets. Specifically, agricultural varieties c can now be located in different crop markets
k. There are K crop markets, and their set is represented by K, with k ∈ K. Demand takes
the following form:

Ut = qc0,t −
1

2
γ

∫
i∈Ω

(qci,t)
2di− 1

2
η
( ∫

i∈Ω
qci,tdi

)2
+
∑
k

αk

∫
i∈Ωk

qci,tdi (16)

This corresponds to the simplest way in which I can introduce some heterogeneity
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in demand across crop types. Extending our notation to Mk, the mass of produced and
consumed varieties in market k, and pk their average price, each crop market will have the
following choke price:

pkmax = αk − η

∑
k Mk(αk − pk)(
η
∑

k Mk

)
− 1

Quite simply, the choke prices will vary across crop markets in an additive way accord-
ing to the variation in the {αk}k.

Firms will now relate to these differentiated markets according to what I call their crop
schedule, or a permutation of K. Farm j will be endowed by a time-constant schedule σj,
which relates the rank of their varieties grown to a specific crop market – and hence to a
specific residual demand curve. The first crop grown by a farm is now σj(0), and two farms
with different schedules will then have differentiated core competences. There are K! such
possible schedules, and a farm draws its schedule at random upon entry, from a uniform
distribution over the set of possible schedules. Entrants then do not decide which market
to enter, but are endowed with a schedule randomly. While the firm dynamics literature
allows for a wider range of assumptions regarding the market-directedness of entry, such
as Nocke (2006) where entrepreneurs enter a unique targeted market to produce a unique
product, or Klette and Kortum (2004) where innovation happens randomly in a new market
across a continuum, our assumption allows for a very smooth integration of differentiated
markets within the Mayer et al. (2014) multi-product setting. Here, firms keep producing
an integer amount of products, specifically they produce at a maximum K goods, and given
the continuum of producers, I preserve the atomicity of each of them, and the single agent
framework.

Our model then follows the same structure as the one previously outlined, although the
zero profit condition now sets a set {pkmax}k of choke prices. Given the additive structure of
the choke prices, a unique zero profit condition at entry is sufficient to define the K different
choke prices.

The Bellman equation characterizing an incumbent’s problem can now be written as
follows:

V (δjt, Kjt, σj; {pktmax}k) = max
Cjt,{Sjct,Xjct,Ljct}c∈Cjt ,ζjt,Kjt+1

∑
c∈Cjt

Πjct

− C(Kjt, Kjt+1) + ζjtP
K(1− δk)Kjt

+ (1− ζjt)
1

R

{∫ ∫
V (δjt+1, Kjt+1, σj; {pkt+1

max }k)dJ
(
δjt+1|δjt)dF

(
{pkt+1

max }k|{pktmax}k
)
− fc

}
Where I note Cjt = {σj(0), ..., σj(Mjt−1)}, for Mjt the farm’s scope in the given period.

F is now extended to account for the evolution of the complete choke price vector, rather
than the unique one. However, given the additive structure of the choke price heterogeneity,
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F retains the same dimension as previously, and only models the evolution of a slightly
different object.

The entrant’s problem now has to account for the drawing of one’s crop schedule as
well. I write the entrant’s Bellman as follows:

V e({pktmax}k) =

max
ζejt

ζejt

{
max
Kjt+1

1

R

∫ ∫ ∫ ∫
V
(
δjt+1, Kjt+1, σj; {pkt+1

max }k
)
dJ

(
δjt+1|δjt)dF

(
{pkt+1

max }k|{pktmax}k
)
dG(δjt)dU(σj)

− PKKjt+1 − fe

}
Here, I denote by U(.) the uniform distribution over the different crop schedules, which

corresponds to the set of K-cycles, without repetition.
Again, I can follow the notation of Hopenhayn and Rogerson (1993) to write the law of

motion which describes the evolution of the market. I denote this measure by µ, a measure
defined over the three dimensions that characterize the state of a farm – meaning produc-
tivity, capital and crop schedules. I denote by ϕσ(δ

′, K ′|δ,K) the probability of transition
from state (δ,K) to (δ′, K ′), for a farm with crop schedule σ. With κ(δ,K, σ; {pktmax}k) the
investment policy function, and ζ(δ,K, σ; {pktmax}k) the incumbency policy function, I have:

ϕσ(δ
′, K ′|δ,K) = J(δ′|δ)1{K ′ = κ(δ,K, σ; {pktmax}k)}1{ζ(δ,K, σ; {pktmax}k) = 0}

And for an entrant, it is also useful to denote the transition probability:

ϕ0
σ(δ

′, K ′|δ) = J(δ′|δ)1{K ′ = κ(δ,K = 0, σ; {pktmax}k)}1{ζ(δ,K = 0, σ; {pktmax}k) = 0}

The stationary measure then solves, with Ne the mass of entrants, ∀ (δ′, K ′, σ):

µ(δ′, K ′, σ) =

∫ ∫ ∫
ϕσ(δ

′, K ′|δ,K)dµ(δ,K, σ) +Ne

∫ ∫
ϕ0
σ(δ

′, K ′|δ)dG(δ)dU(σ)

This relation defines an operator T for the evolution of the state measure µ.

I can then write the mass of produced varieties in each crop market, and their respective
average price:

Mk =

∫ ∫ ∫
1{ck ∈ C(δ,K, σ)} dµ(δ,K, σ)

pk =
1

Mk

∫ ∫ ∫
1{ck ∈ C(δ,K, σ)}pk(δ,K, σ) dµ(δ,K, σ)

With C(δ,K, σ) the crop mix of a farm with this given type, derived from that farm’s scope
M(δ,K, σ) combined with its crop schedule σ. I also denote by pk(δ,K, σ) the optimal price
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for crop k, set by a farm of type (δ,K, σ) actually producing this crop k.

The stationary equilibrium of this differentiated demands model is then a tuple
formed by choke prices {pkmax,⋆}k, a stationary measure µ⋆, and an equilibrium mass of
entrants N⋆

e such that:

• V e({pk,⋆max}k) ≤ 0, and V e({pk,⋆max}k) = 0 if N⋆
e > 0.

• T

(
µ⋆, N⋆

e , p
k,⋆
max}k

)
= µ⋆.

• pk,⋆max = αk − η
∑

j Mj(αj−pj)(∑
j ηMj

)
−1

.

B.10 Decomposition

I propose a slight modification of the dynamic decomposition of Olley and Pakes (1996) and
De Loecker and Collard-Wexler (2015) to highlight the role of different channels in driving
the evolution of total chemical use on the market. I write evolution of market-level total
chemical use between t and t+ 1:

∆Chemicals =
∑
j

Qjt

(
sjc1t∆

C

Q jc1

+ sjc2t∆
C

Q jc2

)
+Qjt

(
∆sjc1

C

Q jc1t

+∆sjc1∆
C

Q jc1

+∆sjc2
C

Q jc2t

+∆sjc2∆
C

Q jc2

)
+

(
∆Qj

C

Q jt

+∆Qj∆
C

Q jt

)
I write C

Qjtc2
for the chemical-to-output ratio of farm j in period t for crop c2, sjtc1 denotes

the output share of crop c1 in farm j at t, and Qjt is for total output. The first line of the
decomposition is for within-farm within-crop changes in chemical intensity associated with
changes in input price ratios. The second line is for changes in chemical-use intensity coming
from reallocations of production within the farm. The last line is for cross-farm reallocations.

B.11 Sensitivity Analysis for the Production Function Estimation

I rely on the work of Andrews et al. (2017) to discuss the role of our identifying assump-
tions regarding instrument exogeneity in driving the estimation of our production function
parameters. I first summarize the purpose and implementation of their method, and then de-
scribe our estimates and their implications for the sensitivity of our estimates to instrument
exogeneity.

The purpose of the method developed by Andrews et al. (2017) is to recover the sensitiv-
ity of model parameters to the moments used in structural estimation, and in this extending
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the omitted variable bias formula to structural cases. They propose to recover a matrix they
call the "sensitivity" matrix, which maps the relation between the parameters of the model,
and the moments used for their estimation. When combined with alternative assumptions
about instrument validity – recasted as the impact of alternative assumptions on moment
values – this sensitivity matrix allows to predict the impact of alternative assumptions on
the estimated parameters. In other words, this analysis aims at shedding light on the role
of identifying assumptions in driving estimation.

I denote by θ̂ the parameter vector minimizing the criterion function:

ĝ(θ)′Ŵ ĝ(θ)

In our case, θ̂ can the our estimate for the first stage and second stage of our production
function estimation. For any a in the set A of alternative assumptions, they define a local
perturbation of the model in the direction of a such that the estimate θ̂ has first-order
asymptotic bias – where Λ is the sensitivity matrix:

E[θ̃(a)] = ΛE[ĝ(a)]

An alternative assumption a should be interpreted as an alternative assumption regarding
the relation between our chosen instruments and the structural errors for resp. our first and
second step of estimation. The sensitivity matrix can be written as:

Λ = −
(
G′WG

)−1

G′W

Where W is the probability limit of Ŵ , the weight matrix used in our GMM criterion, and
G is the Jacobian of the probability limit of ĝ(θ) evaluated at the true parameter vector θ0.
Λ serves as a local approximation to the mapping from moments to estimated parameters.

I provide an estimate of ΛK for each of our estimation step for the production function,
where K is a weighting matrix, which weights the sensitivity matrix by the inverse of the
standard deviation of the relevant instruments. The values for the constant are standardized
by the standard deviation of the structural error, in order to have a similar interpretation.
As Andrews et al. (2017) discuss, their units of Λ are contingent on the units of the different
moments – which for us means it will vary across moments depending on the values of the
instruments I interact with the GMM structural errors. As such, this weighting ensures
that Λ elements can be read as the effect of a one standard deviation violation of the given
moment condition on the asymptotic bias in θ̂. I present and discuss below our estimates of
ΛK for each estimation step.

I see from the first table that our first stage estimates are particularly sensitive to
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assumptions regarding farmer expectations on the structural error (related to the constant),
to the exogeneity of department-level agricultural wages in the current period, and to the
exogeneity of the lag value of the chemical (fertilizer-to-pesticides) ratio. The production
function literature has highlighted that input prices make for powerful instruments if their
exogeneity to firm decisions is believable. Given the atomistic nature of farms, I expect these
department wages to be exogenous to farm-level innovation in non-Hicksian productivity.
As should be expected, the ratio of fertilizers to land is particularly useful to identify the
parameter of substitution between fertilizers and pesticides ρ2. The lag values of this ratio
should be correlated to current production choices through auto-correlation in the relative
prices of fertilizers and pesticides faced by farms – which I can also assume to be exogenous.
Because I focus on single-product farms, the composition of the farms’ crop mix should not
play a role in driving this ratio.

The second table shows second-stage parameters are less sensitive to any specific iden-
tifying assumptions. The moments which play a largest role in the estimation are the current
input prices - resp. the hourly wage, the current price of chemicals, and the lag of the output
price.

109



Table A20: Sensitivity for First Step

Constant log(Chem.Ratiot−1) Capitalt Waget LandPricet Landt−1 FarmExposuret
log(1− ρ) 3.02 -0.2420 0.0000 -2.0303 -0.0000 0.0007 -0.0003

ρ2 -68.86 9.6731 -0.0000 44.0966 0.0000 -0.0276 0.0046
δs (group 1) -4.60 0.3820 -0.0000 3.0439 0.0000 -0.0009 0.0004
δs (group 2) 1.17 -0.1288 0.0000 -0.7720 -0.0000 0.0002 -0.0001
δp (group 1) -7.00 0.8927 0.0000 5.0727 0.0000 -0.0017 -0.0002
δp (group 2) 23.88 -3.1918 0.0000 -15.6575 -0.0000 0.0072 -0.0017

Table A21: Sensitivity for Second Step

Constant log(Capitalt) log(Labort−1) log(Waget) log(LandPricet) log(Capitalt−1) log(Chem.Pricest) log(Pricet−1) LandSubsidyt log(Landt−1) log(FarmExposuret)

αl (group 1) 0.0000 0.0000 -0.0025 -0.0203 0.0009 -0.0000 0.0281 0.0039 0.0000 -0.0004 -0.0010
αs (group 1) 0.0000 -0.0000 0.0010 0.0078 -0.0002 0.0000 -0.0097 -0.0015 -0.0000 0.0002 0.0004
αl (group 2) 0.0000 -0.0002 0.0012 0.0067 -0.0004 0.0000 -0.0118 -0.0015 -0.0000 0.0001 0.0004
αs (group 2) 0.0000 0.0000 -0.0003 -0.0017 0.0001 -0.0000 0.0026 0.0004 0.0000 -0.0000 -0.0001
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