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Abstract

We offer a parsimonious model to investigate how strategic wind producers sell

energy under stochastic production constraints, where the extent of heterogeneity of

wind energy availability varies according to wind farm locations. The main insight of

our analysis is that increasing heterogeneity in resource availability improves social

welfare, as a function of its effects both on improving diversification and on reducing

withholding by firms. We show that this insight is quite robust for any concave and

downward-sloping inverse demand function. The model is also used to analyze

the effect of heterogeneity on firm profits and opportunities for collusion. Finally,

we analyze the impacts of improving public information and weather forecasting;

enhanced public forecasting increases welfare, but it is not always in the best interests

of strategic producers.

Keywords: Energy finance, Commodity market, Market power, Pricing wind, Diver-

sification, Investment, Public forecasting, Collusion.

JEL Classification: D6, D62.

∗Kakhbod: Department of Economics, Massachusetts Institute of Technology (MIT), Cambridge, MA
02139, USA. Email: akakhbod@mit.edu. Ozdaglar: Electrical Engineering and Computer Science (EECS),
Laboratory for Information and Decision Systems (LIDS), Institute for Data, Systems, and Society (IDSS),
Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Email: asuman@mit.edu.
Schneider: Institute for Data, Systems, and Society (IDSS), Massachusetts Institute of Technology (MIT),
Cambridge, MA 02139, USA. Email: ischneid@mit.edu. We are grateful to Daron Acemoglu for valuable
comments and suggestions. We also thank Matt Butner for sharing his data on wind availability in MISO
and participants at various seminars and conferences for useful feedback and suggestions.

akakhbod@mit.edu
asuman@mit.edu
ischneid@mit.edu 


1 Introduction

The market share and total production of renewable electricity is growing rapidly. In

March 2017, wind energy was responsible for 8.6% of U.S. electricity generation, dou-

bling its market share and total production from five years prior. Renewable electricity

is a critical component of global efforts to reduce carbon dioxide emissions, and its cost

is rapidly declining.

Prominent sources of renewable electricity - wind and solar energy - have stochastic

resource availability: it is not possible to perfectly predict when there will be wind

or sunshine available for energy production. The spatial and temporal variability of

renewable energy resources has a significant impact on their value to society (Joskow,

2006; Hirth, 2013; Hirth et al., 2016). Furthermore, since wind production reduces local

prices due to the merit order effect, highly correlated local wind energy availability

reduces the average value of wind energy produced (Woo et al., 2011; Ketterer, 2014).

Existing literature focuses on strategic behavior in electricity markets without sub-

stantial amounts of renewable energy. Research on market power in the electricity sec-

tor (Joskow et al., 1988) provided important insight for electricity system deregulation.

Electricity system market power research does not traditionally focus on stochasticity

because fossil-fuel generators do not have significant resource uncertainty. Instead, it

focuses on other key features of the electricity sector that impact market power, like

transmission constraints (Cardell et al., 1997), financial transmission rights (Joskow and

Tirole, 2000), and market price caps (Joskow and Tirole, 2007). Acemoglu et al. (2017) es-

tablish that diverse ownership portfolios of renewable and thermal generation by strate-

gic firms may be welfare reducing, because they can reduce (or even neutralize) the merit

order effect. Butner (2018) provides empirical evidence of these effects.

We are interested in how a particular characteristic of renewable energy resources–

the stochastic dependence of resource availability across firms–impacts strategic behav-

ior, market power, and welfare. The link between stochastic heterogeneity1 of resource

availability and welfare is an important area for research because various policies impact

the investment strategies of wind producers and therefore the stochastic characteristics

of the wind energy portfolio in a given region (Kök et al., 2016; Schneider and Roozbe-

hani, 2017). Common subsidy forms for renewable energy, like the production tax credit

1Stochastic heterogeneity refers to the level of stochastic dependence. Throughout the main body of
the paper, we use a term “dispersion” to succinctly refer to the extent of stochastic dependence. In the
linear case, high (low) stochastic dependence is equivalent to highly correlated (uncorrelated) stochastic
resource availability across different producers.
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(PTC) and state-level renewable portfolio standards (RPS), impact renewable energy in-

vestments (Fischer, 2010). Figure 1 shows probability distributions for two different

wind farms in the MISO region, conditional on the output of a third wind farm i in

the MISO region. The nature of stochastic dependence is very different for each pair of

wind farms. Wind farm i’s output is highly correlated to the output of the wind farm

displayed on the right, and essentially uncorrelated with the output of the wind farm

displayed on the left.2

Clearly, policy changes can impact investment strategies for renewable energy and

the characteristics of system-wide resource uncertainty. This begs the questions: Is it

important to encourage policies that increase the heterogeneity of stochastic resources? Will in-

vestment in wind energy naturally lead to the level of resource heterogeneity that maximizes social

welfare? Just as policy makers seek to limit market concentration in certain industries,

they might support policies to increase stochastic heterogeneity of renewable resources

in the electric power industry. These efforts have growing import because existing strate-

gies for market power monitoring in electricity markets will be challenged by an influx

of renewable generation, since regulators have imperfect information regarding resource

availability and risk preferences for firms that own stochastic generation.3

We study strategic firms with private information regarding their realized energy

availability, or “state.” This energy availability is equivalent to a production constraint,

because it limits the extent of production by the firm in any given period. Since the

resource availability of wind energy is uncertain, from an individual firm’s perspective

its competitors’ production constraints are stochastic. However, the resource availability

of wind energy has a high degree of stochastic dependence; firms can gain important

information about their competitors’ production constraints from the realization of their

own resource availability. As such, the extent of stochastic dependence regarding firms’

resource availability becomes an important factor that impacts strategic behavior, mar-

ket power, and welfare. For clarity, we focus on wind energy, but the insights can be

extended directly to solar energy or any other resource with stochastic availability and

negligible marginal costs.

2For the purposes of this graph, we use measured production as a proxy for resource availability. Here
and throughout the paper we stylize resource availability as discrete, i.e. the resource availability at i
wi = L or wi = H. Since real world availability is continuous, for this figure, we say that wi = L when the
wind availability is less than 3% of its maximum availability (bottom 27% of periods) and wi = H when
the wind availability is greater than 67% of its maximum availability (top 20% of periods).

3Additionally, Munoz et al. (2018) discuss challenges associated with auditing the opportunity costs
of traditional generators in markets with physical inflexibilities and non-convex costs. These issues have
growing import in systems with high levels of renewable energy.
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Figure 1: Prior and conditional empirical distributions for resource availability from two
wind farms in MISO, based on hourly energy production from 2014 through 2016. The
conditional distributions are conditioned on the resource availability at a third wind farm
i in MISO. The right plot shows an example of highly correlated resource availability
from one pair of wind farms, and the left plot shows an example of uncorrelated resource
availability from another pair of wind farms.

We model producer competition as an incomplete information Cournot game with

correlated types, where the type refers to the stochastic resource availability (production

constraint) that is private information for each individual producer. The base model

uses a Cournot duopoly market. We utilize a parameter d to represent the level of het-

erogeneity amongst wind producers; throughout, we refer to d as the level of dispersion.

This notion is similar to geographic distance; research has shown that correlation in

wind availability across pairs of wind producers is generally decreasing in geographic

distance (Sinden, 2007).

The results provide clear insight to explain how stochastic resource heterogeneity

can impact welfare in imperfect electricity markets. Increasing heterogeneity in wind

resource availability is beneficial for two distinct reasons: it increases the diversification

of resources, but it also reduces strategic withholding because it changes the information

that a producer’s own energy availability provides about the likely energy availability of

the other firms in the market. The results of our model imply that imperfect competition

in energy markets can affect investment in renewable energy, resulting in a system with

sub-optimal levels of resource heterogeneity.4

4Other features of electricity markets might also reduce heterogeneity of wind resources or distance
between wind producers, including the presence of existing transmission, variance in state-level renewable
policies, and quantity-based subsidies. However, we focus specifically on market failures due to imperfect
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We extend the benchmark model to an arbitrary number of producers and examine

the social welfare of the resulting Cournot-Nash equilibria. We define general probability

distributions on the players’ types (their stochastic production constraints). We establish

sufficient conditions for a pair of probability distributions such that one distribution will

dominate another in terms of the social welfare of their associated Cournot-Nash equi-

libria, for any inverse demand function that is decreasing and concave. This defines a

partial ordering of joint distributions in terms of the social welfare of their resulting equi-

libria. The model is also extended to examine the impacts of traditional generation. In

an imperfect market with traditional generation, welfare is again increasing in resource

heterogeneity.

Next, the model is utilized to examine the effects of heterogeneity on collusion and

on policies to prevent collusion. If they do not face potential penalties for collusion,

firms with stochastic availability will always choose to collude because they benefit from

sharing information and from sharing monopolistic profits. Increasing heterogeneity of

wind production has a range of impacts on collusion, impacting its value to producers,

the costs of collusion on social welfare, and the level of enforcement required to prevent

collusion.

Finally, we investigate the effects of public sharing of high-quality weather fore-

casts, using the limiting case whereby the true realized energy availability of firms is

monitored and shared. The results suggest an important contradiction: information

sharing through improved forecasting is socially beneficial, but it does not always im-

prove producer profits. As such, it will not necessarily be undertaken by producers

acting in their own best interest. Since firms have stochastic availability, high quality

weather forecasting can be undertaken publicly in order to maximize social welfare.

These results provide a framework for evaluating policies that impact investment

and information-provision in imperfectly competitive markets, like electricity markets.

The results can help us understand how policies that impact the dispersion of renewable

energy resources, and thus the characteristics of stochastic energy availability, ultimately

impact welfare in imperfectly competitive electricity markets.

1.1 Literature Review

The focus of literature has been on the impacts of wind diversification or total wind

variance on average electricity prices or on the cost of wind integration. Increased het-

competition.
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erogeneity of wind resources has at least three impacts on social welfare and the cost of

electricity:

1. Balancing costs for managing wind production. This impact is well-studied in the

literature and not covered in the model in this paper.

2. The average benefit of wind production. This is discussed in some existing literature,

but we provide a new formal model that provides insights on its impact on welfare.

3. Strategic curtailment by wind and traditional power producers. This impact has not

been proposed in previous literature. This paper formalizes the concept and explains its

impact on welfare.

First, increased wind heterogeneity decreases balancing costs because it reduces

hour-to-hour fluctuations in total wind energy production and because it reduces net

uncertainty of availability in a given hour. This impact is well-studied in existing litera-

ture. Fertig et al. (2012) show that increasing diversification reduces the average hourly

fluctuation in total power output and increases the equivalent firm power production.

These short-term time-dependent impacts are not covered specifically in our model,

which ignores the complexities associated with sequential market clearings5. However,

the benefits of increased heterogeneity likely have a net positive impact on welfare due

to a reduction of balancing costs, so they do not change the general direction of the main

welfare results.

Second, increasing heterogeneity increases the average benefit of wind production.

Increasing levels of wind generation have been shown to reduce prices in Germany

and in West Texas (Ketterer, 2014; Woo et al., 2011). In general, wind has declining

marginal benefits because of the convexity of the electricity supply curve from traditional

generators, which serve as strategic substitutes for wind energy. We model this effect

by assuming that utility obtained from consuming wind energy is concave. Our model

mirrors the basic empirical result; when more wind is produced, in a single period or

on average, lower prices result. While existing research focuses on the price impacts of

additional wind penetration, the stylized model described herein allows us to extend the

results by focusing specifically on the impacts of heterogeneity on social welfare.

Finally, the third impact of higher wind heterogeneity is its effect on the ability of

wind generators to strategically curtail their energy production, when these generators

5Prices in sequential markets are also impacted by market power, which helps explain why prices in
sequential markets sometimes diverge (Ito and Reguant, 2016).
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have market power but some uncertainty regarding their competitors’ production con-

straints. To our knowledge, this paper represents the first time that this effect of resource

heterogeneity has been proposed and analyzed.

This paper uses a Cournot model to analyze the affects of dispersion on bidding

behavior and welfare in a market with stochastic energy availability and private infor-

mation. The Cournot assumption provides a simple model of imperfect competition,

which is an important feature of markets with renewable generation: as firms operate

more wind and solar generation, it will become increasingly difficult to prevent the ex-

ercise of market power, due to the uncertainty in underlying resource availability. The

Cournot model is a useful simplification. In practice, firms submit a supply function

that specifies how much energy they are willing to offer at any given price. 6

Our model for strategic firms is a Cournot-Nash game with incomplete informa-

tion. There is a substantial economics literature on this subject. Einy et al. (2010) sur-

vey the literature and explain the conditions for equilibria existence and uniqueness in

Cournot-Nash games with incomplete information and correlated types. Nearly all of

this literature treat firms’ objective functions as stochastic; we focus on the case where

production constraints are stochastic. Richter (2013) also study the topic of Cournot

games with stochastic production constraints and incomplete information, but they fo-

cus on firms that are stochastically independent. Stochastic dependence of the firms’

production constraints has major impacts on the results, including the value of infor-

mation sharing. Our research does not focus on conditions for existence; reasonable

assumptions for the electricity sector generally lead to the existence of equilibria. In-

stead, we focus on developing new results to link the extent of stochastic dependence to

strategic behavior and welfare in the equilibria.

The main idea of this research is to formalize game-theoretic equilibria where pro-

ducers have stochastic and dependent production constraints, in order to examine the

effects of correlation in resource availability on the resulting equilibria. We consider the

case of multiple wind producers offering their energy into markets, when their max-

imum availability is stochastic and correlated amongst producers. Existing research

studies energy market equilibria in other ways. For instance, Hobbs and Pang (2007)

6The Cournot setup is considered a good approximation to real-world electricity markets (Hogan, 1997;
Oren, 1997; Borenstein et al., 1999; Willems et al., 2009). There are other ways to model producer offers
in electricity markets, including supply function offers (Anderson and Philpott, 2002; Holmberg, 2007).
Wolfram (1998) and Hortacsu and Puller (2008) offer empirical analyses of strategic bidding in multi-unit
electricity auctions. Willems et al. (2009) and Ventosa et al. (2005) discuss the comparative benefits of
Cournot models versus the full supply function model.

7



examine the effects of joint constraints and non-smooth demand functions. Downward

et al. (2010) and Yao et al. (2008) study Cournot equilibria in markets with transmission

constraints. de Arce et al. (2016) study the effects of Cournot competition on the efficacy

and impacts of various renewable energy incentive methods. Gilotte and Finon (2006)

and Pineau et al. (2011) study investment in energy markets with Cournot competition.

Compared to the aforementioned literature, we abstract many important notions of real-

world electricity systems in order to clearly focus on our question of interest, which is

not addressed in the existing literature: how does heterogeneity in stochastic renewable energy

availability impact market power and social welfare?

Section 2 introduces the benchmark duopoly model, and Section 3 describes the

features of the Cournot equilibrium. Section 4 describes the impacts of wind hetero-

geneity on the diversification of wind energy and on strategic curtailment by wind pro-

ducers. These impacts drive many of the main results presented herein. Sections 5 and 6

describe the effects of heterogeneity on social welfare, price, and profits in the duopoly

model. Sections 7 and 8 extend the results to the case of an oligopoly market with multi-

ple wind generators and with both wind and traditional generators, respectively. Section

9 examines the effect of heterogeneity on collusion and on the cost of efforts to prevent

collusion. Section 10 describes how the level of heterogeneity impacts the likelihood

that firms will choose to publicly share information, and shows that public information

sharing is always socially beneficial. Section 11 concludes.

2 Benchmark Model

Consider two wind energy producers in a market with imperfect competition, operating

two locally separate wind farms to generate energy. For each producer i, the maximum

available wind energy, wi, is stochastic and might be either H (high) or L (low), with

H > L and with probability Pr{wi = H} = β = 1 − Pr{wi = L} > 0, i ∈ {1, 2}.
When wi = H (wi = L), we say that producer i is in the high (low) state. Let d ∈ [0, 1]

be the dispersion between the two wind producers, where the maximum dispersion is

normalized to 1. The parameter d captures the extent of heterogeneity in terms of wind

energy availability for these wind producers. When d is small, the availability of wind

energy is highly correlated amongst wind producers. When one wind producer in the

high state, the other wind producer is likely to be in the high state as well (similarly for

the low state). However, when d is high these locations become highly heterogeneous in

8



terms of wind availability, so that extent of wind energy available to one producer does

not reveal much information about the other wind producer’s availability. In the case of

high heterogeneity, the extent of wind energy availability is nearly or (in the limit) fully

independent across wind producers.

This section models the joint probability distribution of the available wind energy

in a simple parameterized form. Precisely, for i, j ∈ {1, 2}, the conditional probability of

high wind availability is given by (1).

Pr{wi = H|wj = H} = β

β + d(1− β)

Pr{wi = H|wj = L} = dβ

β + d(1− β)

(1)

When the wind producers are “far” from each other, d = 1, we are in the limiting

case of independent production; Pr{wi = H|wj = H} = Pr{wi = H} = β and Pr{wi =

H|wj = L} = β. On the other hand, when they are locally “close”, d = 0, we are in the

full information case and Pr{wi = H|wj = H} = 1. Section 7 extends the results in this

section for arbitrary joint probability distributions for wind availability from multiple

producers.7
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Figure 2: The conditional probability distributions from (1) for d ∈ (0, 1), for different
values of the prior β. For each graph, the solid line represents Pr{H|H} and the dashed
line represents Pr{H|L}.

Note that the extent of the difference between the high and low states corresponds

to the extent of the variance in wind availability for each individual producer. For

instance, if we fix the value of H (e.g. as the capacity value of the wind producer), then

variance of wind energy availability Var(wi) is monotonically decreasing in L.

7In this context, we can think of β as a forecast of the energy availability for each firm, using public
information or information with negligible cost. When a firm realizes its own (private) energy availability,
this new information changes its forecast of the energy available to its competitors, as shown in (1).
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Let qi denote the amount of wind energy generated by producer i ∈ {1, 2}. We as-

sume the inverse demand P : R→ R as a function of total supply Q = q1 + q2 is concave

and downward, i.e., P′(Q) < 0, P′′(Q) ≤ 0 for all Q. The marginal cost of production via

wind energy is negligible. Our model simplifies the electricity market model by focusing

on a single real-time market with inverse demand P(Q). We ignore the impacts of short-

and long-term forward markets, e.g. day-ahead markets and capacity markets. While

these markets are undoubtedly important, we focus on the real-time spot market because

planned real-time bidding behavior ultimately informs strategy in forward markets.8

The producers compete in Cournot fashion. According to its private information

about its maximum available wind, wi ∈ {H, L}, producer i chooses qi(wi) maximizing

the expected value of its profit πi, conditional on its realization of wi:

Ewj [πi|wi] = E
[
qi P(qi(wi) + qj(wj)) |wi

]
,

s.t. qi(wi) ∈ [0, wi]

3 Equilibrium

To ensure that wind producers produce at full capacity in the low state (i.e. no cur-

tailment when wi = L), and to avoid equilibria where wind producers produce at full

capacity in both states we adopt the following assumption:

Assumption 1. Let P(·) be the inverse demand. Then P(2L) + LP′(2L) > 0 and P(H) +

HP′(H) < 0.

This assumption allows us to focus on equilibria where producers exercise strategic

withholding in one state but not in the other. This represents the case of interest where

the stochastic nature of the wind resource has important impacts on the equilibrium

strategy. Under the above assumption the equilibrium is characterized as follows.

Proposition 1. Let P′ < 0, P′′ ≤ 0. Then, there exists a unique symmetric Bayesian Nash

Equilibrium (BNE) such that

qi(wi) = q(wi) = min{wi, φ} wi ∈ {L, H}, i = 1, 2

8While we refer to wi as the wind energy availability for firm i, readers can also think of wi as the
realized error, the difference between energy availability in real-time and the day-ahead offer or prior
forecast.

10



where φ > L is the unique root of the following equation

Pr{L|H}
[
P(L + φ) + φP′(φ + L)

]
+ Pr{H|H}

[
P(2φ) + φP′(2φ)

]
= 0.

The proposition establishes the symmetric Bayesian Nash Equilibrium (BNE) for

the benchmark model. In this equilibrium, firms produce L in the low state and φ <

H when they are in the high state. The proof for this proposition is provided in the

Appendix; throughout the paper, all omitted proofs are in the Appendix. The intuition

is that in the symmetric equilibria producers curtail based on the expected value of the

first order condition, given the uncertain state of their competitor and their competitor’s

equivalent curtailment strategy.

Example (Linear inverse demand): To clarify understanding regarding Assumption 1,

consider the case of linear inverse demand, i.e. P(Q) = s− q1− q2, where Q denotes the

sum of the firms’ production Q = q1 + q2. Suppose there is no capacity constraint; then

there exists a unique symmetric equilibrium qC (the Cournot level) in which the optimal

production is given by

q1 = q2 = qC ≡
s
3
< qM ≡

s
2

,

where qM is the corresponding Monopoly level.9 Thus, with linear inverse demand,

Assumption 1 simply says that L is lower than the Cournot level and H is higher than

the monopoly level, i.e.

L < qC < qM < H.

If the first part of the assumption is violated, wind producers always produce at the

Cournot level qC; the stochastic nature of the wind resource has no impact on the equi-

librium strategy. If the second part of the assumption is violated, then wind producers

would curtail in any situation, even absent a competitor. Moreover, with linear inverse

demand, the equilibrium can be explicitly characterized as follows.

Corollary 1. Let the inverse demand be linear, i.e. P(q1 + q2) = s− q1− q2. Then, there exists

a unique symmetric pure-strategy Bayes Nash equilibrium such that

qi(wi) = q(wi) = min {wi, φ} , wi ∈ {L, H}, i = 1, 2,

where φ ≡ sβ+(s−L)(1−β)d
3β+2(1−β)d .

9Note that qC is the optimal strategy when πi = qi(s − q1 − q2) and qM is the optimal monopoly
quantity maximizing π = q(s− q).
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The subsequent sections introduce key effects that drive the impacts of d on the equilib-

rium and its resulting impacts on welfare, price, and profits.

4 Strategic Curtailment and Diversification

This section explains useful Lemmas to help illustrate the two major impacts of disper-

sion d in the strategic setting. Recall that φ = q(H) is the production when a firm is in

the high state. When a firm is in the low state it produces L. Unless otherwise specified,

all the following results hold for concave and downward inverse demand functions (i.e.

P′ < 0, P′′ ≤ 0) satisfying Assumption 1.

Lemma 1. As d increases production in the high state increases, i.e. ∂φ
∂d > 0.

The intuition derives from the fact that the outputs of the wind producers are

strategic substitutes because P′ < 0, P′′ ≤ 0. Therefore, the best reply for firm i is

decreasing in firm j’s production, and firm i’s best response is a decreasing function of

E[qj|wi = H]. When d increases, the possibility that the wind producers are in different

state increases. Thus, the probability that firm j is in the low state increases, given that

firm i is in the the high state, and E[qj|wi = H] decreases, increasing φ which is firm i’s

optimal production when it is in the high state.

Lemma 2. Each firm’s production in the high state (i.e. φ) and the expected value of total

production Ew1,w2(Q) both change in the same direction as a result of changes in dispersion.

That is, sign( ∂
∂d Ew1,w2(Q)) = sign( ∂φ

∂d ).

The a priori expected value of firm i’s production is Ew1,w2(q1) = βφ+(1− β)L, and

the expected value of total production is just the sum of each firm’s expected production:

Ew1,w2(Q) = Ew1,w2(q1) + Ew1,w2(q2) = 2βφ + 2(1− β)L. Only φ on the right-hand side

is a function of d; the parameter d has no effect on the prior probability of being in the

high state β. Then ( ∂
∂φEw1,w2(Q)) = 2β

∂φ
∂d , with β > 0, which concludes the proof.

Introducing Strategic Curtailment (SC) and Wind Diversification (WD). These two

features describe the effects of d on, respectively, high state output φ and on the joint

probability distribution of the resource availability amongst all producers. The main

effects of d, for instance on welfare, are driven by its impacts on strategic curtailment

and wind diversification.
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• Strategic Curtailment (SC): When d increases it impacts the information available

to the wind producers as strategic decision makers. As a result, as d grows, the

production of firm i when they are in the high state increases (Lemma 1). Equiv-

alently, this increases the expected value of production (Lemma 2), and decreases

the level of strategic curtailment, the difference between the expected value of

availability and the expected value of production, i.e. E[wi − qi],. Thus when d

grows the level of strategic curtailment decreases because increasing d reduces the

information quality available to producers in the high state and therefore reduces

their strategic withholding of available production.

• Wind Diversification (WD): When d grows the probability of being in different

states increases. Consequently, with increasing d firms produce different quantities

with a higher probability, improving diversification of the total portfolio of wind

producer assets and reducing the variance of the total availability of wind energy

Var(w1 + w2). In cases where utility is strictly concave, diversification of wind

assets increases welfare.

The impact of wind diversification on a function is measured as follows. Let f : R2 → R.

The impact of diversification on f (denoted by WD f ) is given by the following expres-

sion. Let y > x > 0 then

WD f ≡ f (x, y) + f (y, x)− f (x, x)− f (y, y).

If f is linear, i.e. ∃ a, b, c ∈ R such that f (x, y) = ax + by + c, then WD f = 0. Thus,

the effects of wind diversification are inactive for linear functions. Furthermore, if f is

a concave function of the sum of its arguments, i.e. if f (x, y) = f (y, x) = g(x + y) for

some g : R→ R where g′′ < 0 then WD f = 2g(x + y)− g(2x)− g(2y) > 0.

Many of the results presented here are due to the interplay between the effects of d

on strategic curtailment and diversification as introduced above. In general, increasing

d improves social welfare through its effects on both diversification and strategic curtail-

ment. However, because increasing d decreases strategic curtailment, it can sometimes

reduce profits for wind producers. This suggests that the level of heterogeneity sought

by profit-maximizing investors can be lower than the welfare-maximizing level.
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5 Social welfare vs. Dispersion

Since the marginal cost of energy production from wind is negligible, welfare (i.e. firms’

surplus plus consumers’ surplus) is equivalent to the consumers’ net utility of consump-

tion. Let U(Q) be the consumer utility, where U(0) = 0 and ∀Q, U′(Q) > 0, U′′(Q) ≤ 0.

Note that U′(Q) defines the inverse demand P(Q). The consumer surplus is given by

CS = U(Q)−Qp, and welfare is W = π1 + π2 + CS = U(Q).

Proposition 2. The expected value of welfare increases in dispersion d.

The expected value of welfare is given by Ew1,w2 [W] = Ew1,w2 [U(q1 + q2)]. By the

product rule of differentiation, the total impact of d on welfare is exactly the sum of its

impacts on E[W] through strategic curtailment and wind diversification. Increasing d

increases the expected value of welfare because it decreases strategic curtailment and

increases diversification, which both increase U.

Increasing d reduces strategic curtailment: it increases φ, as shown in Lemma 1.

This increases qi whenever wi = H, which also increases U(Q) because U′ > 0. Increas-

ing d also increases wind diversification: it increases the probability that wind producers

are in different states. This increases the probability that Q takes on its middle value,

and decreases the probability that it takes on an extreme value. Since U is concave, the

impact of diversification on U is weakly positive, i.e. WDU ≥ 0, as shown above. Figure

1 illustrates these effects. This intuition becomes clear with the following proof.

Proof. Since W = U(q1 + q2), the expected value of social welfare is given by:

Ew1,w2 [W] = Pr{L, H}U(L + φ) + Pr{L, L}U(2L) + Pr{H, H}U(2φ) + Pr{L, H}U(L + φ).

In addition, as shown in the appendix (see (21)), − ∂ Pr{L,L}
∂d = − ∂ Pr{H,H}

∂d = ∂ Pr{L,H}
∂d ≡

ζ > 0. That is, when d increases chances for being in different states increases. So,

∂

∂d
Ew1,w2 [W] = ζ︸︷︷︸

>0

(2U(L + φ)−U(2L)−U(2φ))︸ ︷︷ ︸
=WDU≥0, by concavity of U︸ ︷︷ ︸

wind diversification

+ 2
∂φ

∂d︸︷︷︸
>0, reduction of

strategic curtailment

Pr{L, H}P(L + φ) + Pr{H, H}P(2φ)︸ ︷︷ ︸
>0

 .
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2L L+ φ 2φ
Q

U

U
00
< 0, wind diversification is active

strategic curtailment pushes φ to the right

φ− L

Figure 3: Wind diversification increases U and information effects decrease strategic
curtailment which also increases U.

As shown in (21), ζ > 0 because the chance of producers being in different states in-

creases in d. Furthermore, concavity of U implies that WDU = 2U(L + φ) −U(2L) −
U(2φ) > 0. Thus, wind diversification has a positive impact on welfare.

In addition, by increasing d, the production in the high state increases; ∂φ
∂d > 0 by

Lemma 1. Therefore, the reduction of strategic curtailment (due to increasing d), has a

positive impact on welfare. Overall, increasing dispersion increases the expected value

of social welfare. Figure 5 shows these effects.

6 Price and Profit vs. Dispersion

How does extent of heterogeneity/dispersion affect average price and profit? We show

the effect in general is ambiguous because the impacts of diversification and of changing

levels of strategic curtailment on average price and profit are not aligned. To understand

this, we first analyze how average price responds to changes in dispersion. Figure 6

shows these effects.

Proposition 3. The general impact of dispersion d on the expected value of price is ambiguous.

In the case of linear inverse demand, increasing d decreases the expected value of the price.

Proof. Let P′′ < 0. Since

Ew1,w2 [P(q1(w1) + q2(w2))] = 2 Pr{L, H}P(L + φ) + Pr{L, L}P(2L) + Pr{H, H},
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2L L+ φ 2φ
Q

P

P
00
< 0, wind diversification is active

strategic curtailment pushes φ to the right

φ− L

P
00 = 0, wind diversification is inactive

Figure 4: Interplay between the effects of wind diversification and strategic curtailment
on average price. Wind diversification increases the average price when P′′ < 0 and
is inactive when P′′ = 0. The impacts of increasing d on strategic curtailment always
decrease the average price.

thus

∂

∂d
Ew1,w2 [P] = ζ︸︷︷︸

>0

(2P(L + φ)− P(2L)− P(2φ))︸ ︷︷ ︸
WDP>0, by strict concavity of P︸ ︷︷ ︸

wind diversification

+ 2
∂φ

∂d︸︷︷︸
>0, reduction of

strategic curtailment

Pr{L, H}P′(L + φ) + Pr{H, H}P′(2φ)︸ ︷︷ ︸
<0, P is downward

 .

Higher dispersion reduces strategic curtailment, which decreases the average price

because inverse demand is downward, i.e. P′ < 0. However, diversification increases the

average price because of concavity in inverse demand, i.e. WDP = 2P(L + φ)− P(2L)−
P(2φ) > 0. The net effect is ambiguous.

Note that when inverse demand is linear, i.e. P′′ = 0, then WDP = 2P(L + φ)−
P(2L)− P(2φ) = 0. Thus, the effect of diversification is completely inactive. As a result,

because of the impacts of d on strategic curtailment, the expected value of the market

price decreases in d in the case of a linear inverse demand.

Like the average price, the impact of increasing dispersion on profit is in general
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ambiguous. When d increases, it decreases φ. This increases profit when w1 = w2 = H

because φ is greater than the full-information Cournot output. However, it decreases

the average profit when w1 6= w2 because L + φ is less than the sum of full-information

Cournot outputs. Increasing d also increases the probability that the two producers have

different resource availability, Pr{w1 6= w2}, which increases the expected value of profit

because diversification has a positive effect on profit. We can again characterize the effect

of d on profit completely through its effects on strategic curtailment and diversification.

The overall impact of dispersion on profit is ambiguous, as shown in the following

Example.

Example 1. Let P′ < 0, P′′ < 0. As d increases, the expected value of producer profit increases

due to diversification and decreases due to reduced strategic curtailment. Thus, in general, the

impact of heterogeneity on profit is ambiguous.

0.0 0.2 0.4 0.6 0.8 1.0

-0.010

-0.005

0.000

0.005

0.010

d
1, 2 πi]
d L<L1>0

1, 2[πi
d L>L2<0

Figure 5: Wind diversification (heterogeneity) increases profit if L is sufficiently small,
and it decreases profit if L is sufficiently large. Plot parameters: s = 3, β = 1

2 , for dashed
line L = 0.6 and for the solid line L = 0.8.

In general, increasing dispersion d can increase or decrease the expected value of

profit. However, in the case of linear inverse demand, we can obtain sharp insights based

on the absolute value of the low state energy availability L. This is because the extent of

L affects the strength of diversification and changing strategic curtailment levels on profit

in opposite directions. As such, for sufficiently high L, increasing heterogeneity d reduces

profits. See Figure 6. The following Proposition summarizes:

Proposition 4. Let P(q1 + q2) = s− q1 − q2, then there exists two thresholds L1 and L2, with

L1 = 2s
9 < L2 = 2s

8 , such that
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(i) When L < L1 the impact of diversification dominates the strategic curtailment effects, thus
∂

∂d Ew1,w2 [πi] > 0. Consequently, it is beneficial for firms to place their wind farms far

from each other, i.e.

arg max
d∈[0,1]

Ew1,w2 [πi] = 1.

(ii) When L > L2, strategic curtailment dominates diversification, thus ∂
∂dEw1,w2 [πi] < 0.

Consequently, it is beneficial for firms to place their plants close to each other, i.e.

arg max
d∈[0,1]

Ew1,w2 [πi] = 0.

When L is sufficiently high, Proposition 4 shows that the expected value of profit

for each producer is decreasing in d. In this case, producers prefer lower d even though

higher d improves overall welfare, as shown in Proposition 2. This suggests that profit

and welfare motives may sometimes be misaligned, since dispersion uniformly improves

social welfare but may not improve profit. For example, a regulator may propose policies

to increase d by encouraging investment far from existing sites, but firms might oppose

such policies because they reduce the expected value of profits.

7 Multiple Wind Generators with a Generic Joint Distri-

bution of Wind Availability

This section shows that the main results of the paper extend to markets with multiple

wind generators. We demonstrate a parsimonious way to extend the notion of dispersion

d to markets with an arbitrary number of wind producers, and we show that high state

output and welfare are still increasing in d due to its effects on strategic curtailment and

diversification.

Consider a market with N + 1 wind generators, each with probability β of produc-

ing in the high state and separated by dispersion d. Here, d gives a proxy for the level of

correlation among the states of different producers, where as before high d implies that

the stochastic resource availabilities of different producers are more independent. We

define the state of producer i as si = 1{wi=H}; this represents the state of producer i as a

0 or a 1 (with H corresponding to 1). Let S−i = ∑j 6=i sj, the number of producers besides
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producer i that are in the high state. Let S = ∑i si, the total number of producers in the

high state.

Then, consider the random vector sd for d ∈ (0, 1] and assume β > 0. The proba-

bility distribution of sd is the joint probability distribution Pr{s1, s2, ..., sN+1; d}. Each of

si are random variables, as are the sums, and therefore both

Pr{S = j; d} j ∈ {0, ..., N + 1}

Pr{S−i = k|wi = H; d} k ∈ {0, ..., N} i ∈ {1, ...., N + 1} (2)

are well defined. Moving forward, we use Sd and Sd
−i as the random variables of the sum

of states generated by distributions parameterized by dispersion d. Again, we assume

that distributions are symmetric; the probability law for Sd
−i is equal to the probability

distribution for Sd
−j for all i, j ∈ {1, ...N + 1}.

As before, we assume that L is sufficiently small such that producers never curtail

in the low state, i.e. P((N + 1)L) + LP′((N + 1)L) > 0. This is equivalent to the first part

of Assumption 1 in the duopoly case. The first order optimality condition for φ is given

by

ES−i [P(φ + S−iφ + (N − S−i)L) + φP′(φ + S−iφ + (N − S−i)L)|wi = H] = 0, (3)

where the expectation is evaluated using the conditional probability distribution in (2).

Furthermore, we assume that there exists some value v < H that solves (3) when φ = v.

This corresponds to the second part of Assumption 1 for the oligopoly case, but it is

a weaker requirement. It simply ensures that the equilibrium is of interest; otherwise,

qi(wi) = wi and players always produce their full energy availability.

Under these assumptions, there is a unique root φ that solves (3), with L < φ <

H, and the unique symmetric BNE is given by qi(wi) = min{wi, φ}. We adopt these

assumptions for the remainder of this section, and let φ refer to the unique root of (3).

Next we characterize two sufficient conditions on the effect of the parameter d on

the joint and conditional distributions.10 These conditions allow for the extension of our

results on strategic curtailment and welfare to any arbitrary inverse demand curve with

P′ < 0, P′′ ≤ 0 in a market with N + 1 producers.

Assumption 2. For all d′ > d, for each i, conditional on wi = H, Sd
−i �FOSD Sd′

−i That is, ∀i,

10These conditions are based on first- and second-order stochastic dominance, see Shaked and Shan-
thikumar (2007).
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∀j ∈ {0, ..., N}
Pr{S−i > j|wi = H; d} ≥ Pr{S−i > j|wi = H; d′}.

Assumption 3. For all d′ > d, Sd′ �SOSD Sd That is, ∀m,

m

∑
j=0

(
Pr{S > j; d′} − Pr{S > j; d}

)
≥ 0.

From the perspective of a single producer i in the high state, Assumption 2 requires

that more competitors are likely to be in the high states when dispersion d is lower. The

idea is that when dispersion d is small, producer i being in the high state provides a

stronger signal that competitors are also more likely to be in the high state.

Assumption 3 says that when d is higher, the sum of wind availability has at least as

high a mean and less weight in the tails of its distribution. When d is high, the resource

availabilities of different producers are nearly independent. When d is low, there is

high correlation between producers, so there is a greater chance that a large number of

producers (� N/2) are either in the high state or the low state. Both Assumptions 2 and

3 are satisfied by the duopoly model in Section 2.11

Proposition 5. For general N ≥ 1, given Assumption 2, the output of producers in the high

state φ is (weakly) increasing in d. Therefore, as in the duopoly case, increasing d (weakly)

decreases strategic curtailment.

The left hand side of the first order condition (3) is in general decreasing in the

output of other producers. The intuition is that the expected value of the output of other

producers, with φ fixed, is decreasing in d, from the perspective of a producer whose

output is high. Therefore, higher d increases the left hand side of (3). Lower φ also

increases the left hand side. Thus, as d increases, a lower φ cannot possibly solve the

first order condition because both higher d and lower φ increase the left hand side of (3).

Proposition 6. For general N ≥ 1, given Assumptions 2, 3, and P(φ1(N + 1)) ≥ 0,12 the

expected value of welfare Esd [W] is increasing in d.
11Consider the duopoly model in Section 2, but with general probability distributions Pr{wi = H|wj =

H} ≡ f (d, β) and Pr{wi = H|wj = L} ≡ g(d, β). In Section 2, specific functional forms are provided in
(1) for f (d, β) and g(d, β) in order to motivate the exposition. For generic conditional probabilities in the
duopoly model, Assumption 2 establishes that f (d, β) is weakly decreasing in d. Assumptions 2 and 3
together establish that g(d, β) is weakly increasing in d.

12The variable φ1 represents the high state production when d = 1. This assumption implies that
equilibrium prices will not become negative. In practice, we see negative prices arise in markets with high
penetrations of wind resources, but this is due to the presence of subsidies, and non-convexities associated
with traditional generation, not a result of producer strategy in the face of uncertainty.
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Consider d′ > d. We aim to show that Esd′ [W] > Esd [W]. Let φd refer to the

equilibrium curtailment level as described by (3), for the random availability vector sd

indexed by d. Consider a given realization of the resource availability for each producer,

and let S = s̃, for some s̃ with 0 ≤ s̃ ≤ N + 1. We can describe welfare as a function

W(s̃, φ). The full proof in the Appendix explains that under the first-order conditions

of the equilibrium described by (3), W is concave and increasing in s̃. Welfare W is also

increasing in φ.

The distributions of S satisfy Assumption 3, so the distribution with higher d has

total wind availability S that second-order stochastically dominates the original dis-

tribution. The definition of second-order stochastic dominance implies that the dom-

inating random variable leads to higher expected value for increasing concave func-

tions. Therefore, holding φ constant, higher d increases the expected value of welfare:

Esd′ [W(·, φd′)] > Esd [W(·, φd′)]. Furthermore, using Assumption 2, Proposition 5 shows

that φ is increasing in d. Since W is increasing in φ, Esd [W(·, φd′)] > Esd [W(·, φd)];

together, the two inequalities establish that W is increasing in d.

8 Competition with Traditional Generation

This section considers Cournot competition between two wind producers and a tradi-

tional generator. The wind producers with dispersion d and availability β have identical

characteristics to those described in Section 2. The traditional producer can output any

quantity x ∈ R+ with constant marginal cost c ≥ 0; it has no information regarding the

availability of the wind generators. As before, the inverse demand function P(q1, q2, q3)

is a function of the sum of its arguments; with slight abuse of notation, we also write

this as P(q1 + q2 + q3).

This section extends the existing results on the impact of d on welfare. As before,

welfare is increasing in d. The models used in this section and Section 7 could be used

to analyze markets with multiple wind producers and multiple traditional generators,

but the analysis in this section is sufficient to highlight the main insights.

Towards our equilibrium assumptions, let
¯
x ≥ 0 be the solution to E[P(w1, w2,

¯
x) +

¯
xP′(w1, w2,

¯
x)] = c. This value represents the lower bound for the total energy produc-

tion by the traditional generator in an equilibrium.

Assumption 4. Let P(·) be inverse demand and c be the marginal cost of using traditional

generation. Assume c < P(2H), which guarantees that the traditional generator produces a
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positive quantity of energy. Assume P(3L) + LP′(3L) > 0 and P(H + L +
¯
x) + HP′(H + L +

¯
x) < 0.

The assumptions extend Assumption 1 to the case of three players with a traditional

generator. They guarantee that we have a solution of interest, so we avoid explaining the

cases whereby L is sufficiently high that wind producers might always curtail, where H

is too low so that wind producers might never curtail, or where c is sufficiently high that

the traditional producer will never produce.13

Proposition 7. The Cournot equilibrium for generic inverse demand P(·), with P′ < 0, P′′ <

0 satisfies the following first order conditions, where (4) is the first order condition for wind

producers and (5) is the first order condition for the traditional producer.

Pr{L|H}(P(L+ φ+ x) + φP′(L+ φ+ x)) +Pr{H|H}(P(2φ+ x) + φP′(2φ+ x)) = 0 (4)

Pr{L, L}(P(2L + x) + xP′(2L + x)) + 2 Pr{L, H}(P(L + φ + x) + xP′(L + φ + x))

+ Pr{H, H}(P(2φ + x) + xP′(2φ + x))− c′(x) = 0 (5)

The result follows exactly from Proposition 1 with the addition of the traditional

generator whose output satisfies the first order condition described in (5). Equation

(4) describes the equilibrium high state output φ for wind producers to maximize their

profit, contingent on the equilibrium behavior of the other wind producer and the tra-

ditional generator. Equation (5) describes the equilibrium output x of the traditional

generator, with c′(x) = c in our example.

Example 2. Consider a market with linear inverse demand, P(q1, q2, q3) = s− q1 − q2 − q3.

Then the unique high state output of the wind generators φ and the production output of the

traditional generator x are given by:

φ =
1
2(s + c)(β + d(1− β)) + Lβ(1− β)(1− d)

3β + 2d(1− β)− β2 − βd(1− β)
(6)

x =
1
2
(s− c)− φβ− L(1− β). (7)

The Example is explained in the Appendix. It is obtained by solving the equations (4)

and (5) in terms of φ and x in the case of linear inverse demand.
13The assumption establishes an upper limit on c. When c is lower, the output of the traditional gener-

ator increases because they have lower marginal costs of production.
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Next we consider the impact of heterogeneity on strategic curtailment by wind

producers ∂φ
∂d and quantity withholding by the traditional producer ∂x

∂d in the case of

linear inverse demand.

Corollary 2. Consider a market with two wind producers indexed by i = {1, 2} and one tradi-

tional producer. Let inverse demand P be linear with P(q1, q2, q3) = s− q1 − q2 − q3. Then φ

and E[qi] are increasing in d for and the output x of the traditional generator is decreasing in d.

Proof. We can take the derivative of φ with respect to d, using the form of the equation

in (6).
∂φ

∂d
=

(s + c− 4L)β(1− β)

2(3β + 2d(1− β)− β2 − βd(1− β))2 (8)

Under our assumptions, this is always positive. Equation (8) is always positive when

s + c− 4L > 0, which is always satisfied by Assumption 4. Therefore, the output of the

wind generators is increasing in d, ∂φ
∂d > 0, as in the original market.

Then, taking the derivative of x using the first order condition in (7), ∂x
∂d = −β

∂φ
∂d <

0. Therefore, the output of the traditional generator is decreasing in d, so the traditional

generator withholds more when the wind generators have less information about the

other wind producer’s state.
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Figure 6: This chart shows that the traditional firm’s output x decreases in the diversifi-
cation d, but the average output (and the high state production φ) of the wind generators
is increasing in d. Plot parameters: s = 3, β = 1

2 , L = 0.1 and c = 1.

8.1 Welfare vs. Dispersion in a Market with Fossil-Fuel Generation

Next, we consider the effects of heterogeneity on welfare. Increasing dispersion d im-

proves welfare in the market that includes a traditional generator.
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Proposition 8. In the three player market with two wind producers and a traditional producer,

and a linear inverse demand P(q1, q2, q3) = s − q1 − q2 − q3, the expected value of welfare is

increasing in dispersion d.

In this model, as before, increasing d still reduces the strategic curtailment of wind

producers ∂φ
∂d > 0, and improves wind diversification. However, when a fossil fuel

generator has market power, the fossil fuel generator responds by withholding more of

their own output due to strategic substitutability with E[q1 + q2], which increases; thus
∂x
∂d < 0. With a linear inverse demand, the FOCs (4) and (5) imply that the sum of the

welfare impacts, due to the changes in the equilibrium values of φ and x, is 0. Thus,

increasing d only impacts the expected value of welfare through the change in wind

diversification, which positively impacts welfare.

8.2 Price vs. Dispersion in a Market with Fossil-Fuel Generation

Finally, we show that in a market with traditional generation and linear inverse demand,

d decreases the expected value of price. This result extends earlier results to the case of

a market with traditional generators and highlights the potential benefits of increased

heterogeneity for reducing market prices.

Proposition 9. The expected value of the market price, given by Ew1,w2 [P(q1(w1) + q2(w2) +

x)], satisfies
∂Ew1,w2 [P]

∂d = −β
∂φ
∂d < 0.

The expected value of total energy production is increasing in d. Its derivative with

respect to d is given by 2 Pr{H} ∂φ
∂d + ∂x

∂d = (2β− β) ∂φ
∂d > 0, where the equality is because

∂x
∂d = β

∂φ
∂d , as explained in the proof of Corollary 2. Under linear inverse demand, the

expected value of the market price is decreasing in d.

Since the production by the traditional generator is uniformly decreasing in d, in-

creased dispersion reduces profits for the traditional generator. On the other hand, the

effects of d on wind producer profits are ambiguous, as was the case in the original

model.

9 Collusion, Prevention, and Dispersion

This section investigates potential collusion between wind producers and studies the

effect of increased heterogeneity on the presence of collusion. It focuses on linear inverse
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demand for simplicity, and shows that collusion is always possible (incentive compatible)

among wind producers when there are no penalties for collusion. The section also

examines the case where firms may face random penalties for engaging in collusion, so

the threat of sanctions poses a random cost on the decision to collude.

Consider two wind producers that are willing to collude in order to increase prof-

its. They set up a contract to produce at the monopoly level when possible and share

profits depending on their stated availability. The true availability of wind is private

information, so a wind producer in the high state can lie about their state and produce

the amount of wind appropriate for a producer in the low state.14

Let πM be the combined monopoly profits and πL be the profits when both pro-

ducers are in the low state. In the case of linear inverse demand, where P(q1, q2) =

s− q1 − q2, the optimal output for a monopoly producer is qM = s
2 .15 Then

πM = P(qM)qM =
s2

4
πL = P(L, L)L = (s− 2L)L

There is an exogenous cost to collusion γ ≥ 0, to explain a situation where the

government tries to identify and penalize collusion. We can think of γ as being the gov-

ernment’s penalty for a firm engaged in collusion, times the probability of detection. We

can imagine that the government might undertake various efforts to identify collusion,

for instance by reviewing price trends, measuring the difference between wind forecasts

and outputs, or monitoring information exchange between competing firms.

Producers who collude jointly produce at the monopoly level and share the monopoly

profits πM when they are both in the high state; in this case, they each receive πM
2 . They

each produce L and receive πL when they are both in the low state. Additionally, the

producers set up a transfer scheme whereby producers that are in the high state pay tπM

to producers that are in the low state. The transfer fraction t represents the fraction of

monopoly profits given to the low state producer; since arbitrary t ∈ R, and πM > 0,

any real number is a feasible transfer; the total transfer is written as a product of t and

πM (as opposed to a single parameter) because it simplifies the exposition.

14We assume the the contract is enforceable with regards to production quantities, which are publicly
verifiable. Therefore, if the producer announces that they are in the H (or L) state, then in any equilibrium
they will produce the agreed upon amount for a producer in that state, regardless of their true state. How-
ever, it is not possible for a firm to verify the true state of their competitor (which is private information);
out of equilibrium, a producer could choose to lie about its production constraint.

15The implication is that colluding producers will produce such that their combined output is at the
monopoly level when possible, i.e. q1 + q2 = qM, and they will devise a mechanism to share the monopoly
profits.
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Collusion is possible whenever there exists a monetary transfer tπM satisfying the

incentive compatibility constraint (IC), which implies that high state producers will not

lie and pretend they are in the low state, and which satisfies the individual rationality

(IR) constraints, which implies that producers will know ex-ante that they would like to

participate regardless of their unknown state. The incentive compatibility constraint (IC)

is given by (9).

Pr{H|H}πM

2
+ Pr{L|H}(πM − tπM) ≥ Pr{H|H}tπM + Pr{L|H}πL (9)

The IC constraint says that the expected value of the profit for a colluding producer i in

the high state is greater than the expected value of the profit they would receive if they

lied and declared that they were in the low state, where the expected value of the profit

is given using the conditional probabilities for their competitor j, given that i is in the

high state. The individual rationality constraints (IR) for high and low state producers

are given by (10) and (11), respectively.

Pr{H|H}πM

2
+ Pr{L|H}(πM − tπM)− γ ≥ Pr{H|H}φ(s− 2φ) + Pr{L|H}φ(s− L− φ)

(10)

Pr{H|L}tπM + Pr{L|L}πL − γ ≥ Pr{H|L}L(s− φ− L) + Pr{L|L}πL (11)

The variable γ is the expected cost from collusion, due, for instance to attempted pros-

ecution by the government. As before, the conditional probability Pr{H|L} refers to

Pr{wj = H|wi = L}, the probability that the competitor j is in the high state given that

a wind producer i’s own availability is the low state; this is the same for other combi-

nations of the states H and L. Equation (10) explains that a producer in the high state

would prefer to collude than to participate in the strategic equilibrium from Section 3.

Equation (11) explains that a producer in the low state would prefer to collude than to

participate in the strategic equilibrium from Section 3. Both of these constraints must

hold; otherwise, a firm would not participate ex-ante because they would recognize that

they would terminate the collusion agreement if they were in one state, revealing their

availability to their competitor and reducing their profit.

Proposition 10. If there is no cost to collusion, i.e. γ = 0, then there is always an available

transfer satisfying the IC and IR constraints. That is, when γ = 0, ∃t ∈ R that satisfies (9),

(10), and (11). Therefore, when γ = 0, producers can always increase profits by colluding.

The intuition is that a transfer is always possible when γ = 0 because the sum of
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profits from the generators strictly improves when they collude and when one producer

is in the high state, so the benefit to producers in the high state is larger than the cost to

producers in the low state, and thus there is a feasible transfer that allows collusion to

be beneficial for producers ex-ante. Next, we examine the effect of d on various features

of collusion.

How does dispersion d impact collusion?

In general, we find that dispersion d does not have generalizable impacts on collu-

sion in our model. Dispersion does not have monotonic impacts on the value of collusion

to producers. It also does not monotonically impact the change in welfare due to collu-

sion by producers. Figure 7 summarizes these two effects.
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Figure 7: The impact of dispersion on various features of collusion. (a) shows the impact
of dispersion on the value of collusion to producers. (b) shows the impact of dispersion
on the costs of collusion in terms of a reduction of social welfare.

We can also estimate the impact of d on policies intended to prevent collusion. Let

γ̂ represent the minimum γ such that (9), (10), and (11) imply a contradiction. We can say

that γ̂ represents the minimum expected value of a collusion penalty such that enforce-

ment is sufficient to prevent collusion; if γ̂ is very high, this implies that collusion must

have a high probability of being punished and/or that the punishment must be very

severe in order to prevent collusion. We find that dispersion does not have monotonic

impacts on γ̂. Figure 8 displays this effect.
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Figure 8: The impact of dispersion on the level of enforcement required to prevent
collusion.

10 Public Forecasting: Who Benefits?

This section focuses on the benefits of public sharing of information under the assump-

tion that wind producers do not collude. It investigates the benefits of publicly pro-

viding high-quality short-term weather forecasts or real-time wind speeds for all wind-

generating locations. It suggests that public forecasting always improves welfare, but it

does not always benefit producers. This suggests that producers will not provide public

forecasting, but that policy makers should fund forecasting efforts to improve the quality

of public information.

The results in this section show that information sharing always improves social

welfare. However, we also show that when L is sufficiently large (as a function of

dispersion d), wind producers do not choose to share information. The limit on L is

increasing as a function of dispersion d. The results suggest that policies to implement

public weather forecasting can improve welfare, because profit-maximizing producers

will not always share weather information even though doing so always improves social

welfare.

In order to understand the effects of information sharing on social welfare and

producer profit, we compare the baseline model (see Section 2), where wind availability
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(i.e. state) is private information, to the case where wind energy producers ex-ante

commit16 to share their private information about their available energy, given that the

extent of wind producer heterogeneity is d ∈ (0, 1]. We assume inverse demand is

linear, i.e. P(q1 + q2) = 1− q1 − q2. Under this assumption, the net welfare obtained by

consuming Q units of energy U(Q) =
∫ Q

0 P(q)dq =
∫ Q

0 (1− q)dq = Q− 1
2 Q2.

Is sharing information between wind producers socially beneficial? Information shar-

ing has both positive and negative effects on welfare. It helps prevent producers in the

high state from inefficiently withholding their output when the other producer is in the

low state, but it also introduces additional costs to welfare due to the reduction in welfare

when producers producer at the Cournot output when they are both in the high state.

In general, however, these impacts are in favor of the benefits of sharing information, as

the following proposition summarizes.

Proposition 11. Sharing information between wind producers is socially ex-ante beneficial.

Throughout this section, we let K denote the equilibrium outcomes when wind

producer share private information (or that information is made public), and we let Kc

denote equilibrium outcomes when producers compete without sharing information, as

in Section 3.

To understand this result, consider the following. Let W = π1 + π2 + CS = U(Q)

denote welfare. Then, consider the expected value of the welfare benefits of information

sharing, as follows

Ew1,w2 [W(K, Kc)] = Pr{L, H}WL,H(K, Kc) + Pr{H, L}WH,L(K, Kc)

+ Pr{L, L}WL,L(K, Kc) + Pr{H, H}WH,H(K, Kc)

where the benefit to social welfare of sharing information between wind producers at

state {w1, w2} ∈ {H, L}2 is

Ww1,w2(K, Kc) ≡WK
w1,w2

−WKc

w1,w2
= QK

w1,w2
− 1

2

(
QK

w1,w2

)2
−
(

QKc

w1,w2
− 1

2

(
QKc

w1,w2

)2
)

,

(12)

16We assume wind producers are committed and there is no room for adverse selection. For instance,
there could be automatic equipment for weather monitoring that shares information publicly.
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where QK
w1,w2

− 1
2

(
QK

w1,w2

)2 is the social welfare at state {w1, w2} when wind produc-

ers share their private information. Similarly, QKc
w1,w2

− 1
2

(
QKc

w1,w2

)2
denotes the social

welfare when wind producers compete without sharing information.

Equation (12) highlights the fact that information sharing has mixed effects on

social welfare in different states. In particular, it increases total output quantity (and

welfare) when only one producer is in the high state, but it decreases output quantity and

social welfare when both producers are in the high state. However, since total production

is relatively lower (and therefore U′(Q)) is relatively higher, when the producers are in

opposite states, the net expected effect of information sharing is in favor of the benefits

gained when producers are in opposite states.

As d increases, the benefits in the {H, L} and {L, H} states weakens and the costs

incurred in the {H, H} state increase, but the probability of being in the same state also

decreases, so the proportional impact of the costs in state {H, H} declines. Overall,

information sharing improves social welfare for any β, d ∈ (0, 1) where Assumption 1 is

satisfied.

Next, we consider the benefits of information sharing for producers’ profits and

show that in general they are not always aligned with the benefits for social welfare.

Is sharing information beneficial for wind producers? While sharing information al-

ways improves social welfare, it is not always beneficial for wind producers. We show

the answer depends on the extent of wind energy at the low state, which directly affects

the variance in the aggregate output. When wind in the low state is sufficiently small,

sharing information is extremely beneficial for a generator that is in its high state. As a

result, ex-ante wind producers prefer to share information when L is sufficiently small.

Proposition 12. There exists a threshold L∗(d, β) that is increasing in d (the dispersion between

wind producers) and decreasing in the prior β so that sharing information is ex-ante beneficial

for wind energy producers if only if L < L∗(d, β).

Let D(K, Kc) represent the change in profits due to information sharing. The result

aims to characterize the sign of (13), which represents the expected value of the benefits

of information sharing for producer profits.

Ew1,w2 [D(K, Kc)] = Pr{L, H}DL,H(K, Kc) + Pr{H, L}DH,L(K, Kc)

+ Pr{L, L}DL,L(K, Kc) + Pr{H, H}DH,H(K, Kc) (13)
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Figure 9: This chart shows sharing information is ex-ante beneficial for wind energy
producers if only if L < L∗(d, β). Moreover, the threshold L∗(d, β) is increasing in the
dispersion d and decreasing in the prior β. The gray area is for L < L∗(d, β).

The benefit of sharing information at state {w1, w2} ∈ {H, L}2 is

Dw1,w2(K, Kc) = πK
1w1,w2

+ πK
2w1,w2

− πKc

1w1,w2
− πKc

2w1,w2
,

where πK
iw1,w2

denotes i’s profit, i ∈ {1, 2}, at state {w1, w2} when firms share their private

information. Similarly, πKc

iw1,w2
denotes i’s profit when firms compete with no information

sharing.

To understand the effects, first consider the benefits of information sharing in the

{H, H} and {L, L} states. In the {H, H} state sharing information is always beneficial

because of improved coordination. In the {L, L} state the benefit of sharing information

is always zero because both firms produce at the low level and thus there is no benefit

for having better information.

Now, suppose wind producer (WP) 1 is in the low state and WP 2 is in the high

state. With information sharing, WP 2 achieves a best response to w1 = L and produces

more energy compared to the case in which they do not share information. This benefits

WP 2, because they achieve a best response based on improved information, but it hurts

WP 1 because the price is reduced since WP 2 increases its output quantity. These

effects favor information sharing when L is relatively lower. Low L improves the value

of information sharing to WP 2 (because its overall adjustment is larger). Furthermore,
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low L decreases the cost of information sharing to WP 1, because the price effect impacts

a lower quantity of production since L is small. The average benefit of information

sharing, when producers are in different states {H, L} or {L, H}, is decreasing in L.

Overall, considering all the cases together implies that the expected benefit of shar-

ing information is controlled by a threshold on the amount of wind energy in the low

state. Therefore, sharing information is ex-ante beneficial for producers when wind en-

ergy at the low state is sufficiently small. This suggests that when the variance of wind

availability for individual generators is high, they tend to benefit individually from in-

formation sharing; when the variance of their energy availability is low, information

sharing reduces profits even though it improves social welfare. Furthermore, by in-

creasing heterogeneity (i.e. the dispersion between the wind producers) this threshold

increases, which incentivizes more wind energy producers to share their information.

11 Conclusion

This research links the heterogeneity in wind producer availability to social welfare in

electricity markets with strategic behavior. It introduces the idea that the level of het-

erogeneity impacts the information signal quality that each wind producer’s own avail-

ability provides; it shows that increasing heterogeneity decreases the strategic incentive

of individual wind producers and increases their average output. This impact could be-

come increasingly important as renewable energy penetration grows, especially because

of the difficulties associated with monitoring market power when resource availability

is not deterministic.

The results show that increasing heterogeneity is generally beneficial because of its

positive impacts on increasing diversification and on decreasing strategic curtailment.

Some existing policies and subsidy models for wind energy, like state-level renewable

portfolio standards, have been shown to impact the optimal investment locations for

new projects; these effects should be further reviewed in light of these results. The

research also highlights the benefits of publicly sharing high-quality real-time weather

information, even when it is not in the best interest of producers. As such, policy makers

should consider the potential benefits of improved public forecasting and publicly shar-

ing real-time energy output data, understanding that welfare-improving policies may be

opposed by electricity generators.
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A Proofs omitted from main text

Proof of Proposition 1. Since P′ < 0, P′′ ≤ 0, firm i’s profit πi(qi, qj) = qiP(qi, qj) is

concave in qi regardless of the production qj by its competitor. Let firm i be in the high

state, i.e. wi = H. By Assumption 1, P(H) + HP′(H) < 0. Furthermore, P(x) + xP′(x) is

decreasing in x. Therefore, the resource availability in the high state, i.e. qi(H) = φ ≤ H,

does not bind. The optimal output qi(H) = φ belongs to arg maxqi∈R Ewj [πi|wi = H].

Due to concavity of πi(qi, qj) in qi, the first order optimality condition (the necessary and

sufficient condition for optimality) implies that φ should satisfy the following

Pr{L|H}
[
P(L + φ) + φP′(φ + L)

]
+ Pr{H|H}

[
P(2φ) + φP′(2φ)

]
= 0, (14)

given firm j strategy is qj(wj) = min{wj, φ}.
Next, with the following Claims we show φ indeed satisfies (14) and verify that

q(L) = L. Subsequently, we prove the symmetric equilibrium is unique.

Claim 1 There exists a unique φ satisfying (14). Moreover, L < φ < H.

Proof Let us define f (x) ≡ Pr{L|H}
[
P(L + x) + xP′(L + x)

]
+ Pr{H|H}

[
P(2x) +

xP′(2x)
]
. Taking a derivative of f (x) with respect to x implies

Pr{L|H}
[
2P′(L + x) + xP′′(x + L)

]
+ Pr{H|H}

[
3P′(2x) + 2xP′′(2x)

]
< 0

where the inequality follows by P′ < 0, P′′ ≤ 0, x ≥ 0. Thus, f (x) is monotonically

decreasing in x. Moreover, f (L) = (P(2L) + LP′(2L))[Pr{H|H}+ Pr{L|H}] > 0, which

follows from Assumption 1. Furthermore, f (H) < 0 is bounded above by 0:

f (H) = Pr{L|H}
[
P(L + H) + HP′(H + L)

]
+ Pr{H|H}

[
P(2H) + HP′(2H)

]
< (P(H) + HP′(H))[Pr{H|H}+ Pr{L|H}]

< 0

where the first inequality follows since P(x + y) + xP′(x + y) is decreasing in y, and the

second inequality follows by Assumption 1. Since f (L) > 0, f (H) < 0, and f ′(x) < 0

thus there exists a unique φ for which f (φ) = 0, with L < φ < H.

Claim 2 When wi = L then qi(L) = L, given that firm j’s strategy is qj(wj) =

min{wj, φ}.
Proof Let g(x) ≡ Pr{H|L}xP(φ + x) + Pr{L|L}xP(L + x). We aim to show that x = L
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maximizes g(x) when x ∈ [0, L]. The proof follows by contradiction. Suppose, by

contrary, that the maximizer is ql < L. Thus, first order optimality condition implies that

ql satisfies the following

Pr{H|L}
[
P(φ + ql) + qlP′(φ + ql)

]
+ Pr{L|L}

[
P(L + ql) + qlP′(L + ql)

]
= 0. (15)

Since P′ < 0, P′′ ≤ 0 thus h(x) ≡ P(x + y) + xP′(x + y) is decreasing in x ≥ 0, for any y.

Thus, ql < L implies that

h(ql)|y=L = P(L + ql) + qlP′(L + ql)

> P(2L) + LP′(2L)

> 0 (16)

where the last inequality follows by Assumption 1. Furthermore,

h(ql)|y=φ = P(φ + ql) + qlP′(φ + ql) > max{P(L + φ) + LP′(φ + L), P(2φ) + φP′(2φ)}

> max{P(L + φ) + φP′(φ + L), P(2φ) + φP′(2φ)}

≥ 0 (17)

where the first inequality follows by ql < L < φ, the second follows since φ > L and

P′ < 0, and the last inequality follows because (14) implies that it is impossible to have

0 > max{P(L+ φ) + φP′(φ+ L), P(2φ) + φP′(2φ)} (In fact, P(L+ φ) + φP′(φ+ L) > 0 >

P(2φ) + φP′(2φ)).

Therefore, according to (16) and (17), it is not possible for ql to satisfy (15) when

ql < L. Thus, qi(L) ≥ L. But the constraint on production implies that qi(L) ≤ L, so

qi(L) = L.

Claim 3 The equilibrium described in Proposition 1 is the unique symmetric equilibria.

The poof follows by contradiction. Suppose, by contrary, firm j produces qj(L) = L̃,

where L̃ < L. We show firm i has incentive to deviate by producing more than L̃ in the

low state. Suppose qj(H) = qi(H) = φ̃; thus, φ̃ (according to first order optimality

condition) solves the following:

Pr{L|H}
[
P(L̃ + φ̃) + φ̃P′(φ̃ + L̃)

]
+ Pr{H|H}

[
P(2φ̃) + φ̃P′(2φ̃)

]
= 0. (18)

By following the arguments from Claim 1, there is indeed a unique φ̃, where L̃ < φ̃ < H,
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satisfying (18).

Now, let wi = L. Then, evaluating firm i’s marginal expected profit when wi = L

and qi(L) = L̃, given firm j’s strategy, implies

∂

∂qi
Ewj [πi(qi, qj)|wi = L]|qi=L̃ = Pr{H|L}

[
P(φ̃ + L̃) + L̃P′(φ̃ + L̃)

]
+ Pr{L|L}

[
P(2L̃) + L̃P′(2L̃)

]
> 0, (19)

where the last inequality follows because of the following. By Assumption 1, P(2L) +

LP′(2L) > 0. Also L̃ < L (by the above assumption) and P(2x) + xP′(2x) is decreasing

in x ≥ 0. Thus P(2L̃) + L̃P′(2L̃) > P(2L) + LP′(2L) > 0. In addition, since P′ <

0, and φ̃ > L̃, thus P(φ̃ + L̃) + L̃P′(φ̃ + L̃) > P(φ̃ + L̃) + φ̃P′(φ̃ + L̃) > 0, where the

last inequality holds because otherwise it is impossible for (18) to hold. Notice that

P(L̃ + φ̃) + φ̃P′(φ̃ + L̃) > P(2φ̃) + φ̃P′(2φ̃).

Finally, (19) establishes a contradiction, because firm i has incentive to deviate, and

produce more than L̃ when wi = L. This completes the proof.

Proof of Corollary 1. Let qi(wi) = min{wi, φ}. Consider i = 1. The objective is to find

φ. Thus, writing the first order optimality condition implies that φ satisfies the following

equality

φ =
s−Ew2 [q2|w1 = H]

2

=
s− [L Pr{L|H}+ φ Pr{H|H}]

2

=
s− [L(1− β

β+d(1−β)
) + φ( β

β+d(1−β)
)]

2

where Pr{L|H} = Pr{w2 = L|w1 = H} = (1−β)d
β+d(1−β)

and Pr{H|H} = Pr{w2 = H|w1 =

H} = β
β+d(1−β)

. The above equality gives φ ≡ sβ+(s−L)(1−β)d
3β+2(1−β)d , completing the proof.

Proof of Lemma 1. As shown in Proposition 1, production in the high state, i.e. φ, solves

Pr{L|H}
[
P(L + φ) + φP′(φ + L)

]
+ Pr{H|H}

[
P(2φ) + φP′(2φ)

]
= 0. (20)
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Furthermore, according to (1), since Pr{L|H} = d(1−β)
β+d(1−β)

and Pr{H|H} = β
β+d(1−β)

thus

∂

∂d
Pr{L|H} = β(1− β)

(β + d(1− β))2 > 0

∂

∂d
Pr{H|H} = −β(1− β)

(β + d(1− β))2 < 0.

Now, taking a derivative from (20) with respect to d and taking into account that ∂
∂d Pr{H|H} =

− ∂
∂d Pr{L|H} < 0 gives

0 =
∂ Pr{L|H}

∂d
[P(L + φ) + φP′(φ + L)] + Pr{L|H}

[
2

∂φ

∂d
P′(L + φ) + φ

∂φ

∂d
P′′(φ + L)

]
+ Pr{H|H}

[
3

∂φ

∂d
P′(2φ) + 2φ

∂φ

∂d
P′′(2φ)

]
+

∂ Pr{H|H}
∂d

[P(2φ) + φP′(2φ)]

=
∂φ

∂d
{

Pr{L|H}
[
2P′(L + φ) + φP′′(φ + L)

]
+ Pr{H|H}

[
3P′(2φ) + 2φP′′(2φ)

]}
+

∂ Pr{L|H}
∂d

[P(L + φ) + φP′(L + φ)− P(2φ)− φP′(2φ)].

Therefore,

∂φ

∂d
= −

∂ Pr{L|H}
∂d [P(L + φ) + φP′(L + φ)− P(2φ)− φP′(2φ)]

Pr{L|H}
[
2P′(L + φ) + φP′′(φ + L)

]
+ Pr{H|H}

[
3P′(2φ) + 2φP′′(2φ)

]
> 0,

where the inequality follows because: (i) ∂ Pr{L|H}
∂d > 0, (ii) P′ < 0, P′′ ≤ 0, implying

the denominator is negative, (iii) P′ < 0, P′′ ≤ 0 and L < φ, implying that P(L + φ) >

P(2φ), P′(L + φ) ≥ P′(2φ).

Proof of Example 1. From (1), with prior probability Pr{H} = β, we have

−∂ Pr{L, L}
∂d

= −∂ Pr{H, H}
∂d

=
∂ Pr{L, H}

∂d
≡ ζ =

β2(1− β)

(β + d(1− β))2 > 0. (21)

The derivatives of the respective outcome probabilities are labeled as ζ and −ζ ac-

cording to (21). By definition πi = qiP(q1 + q2). Therefore Ew1,w2 [πi] = Pr{L, H}[LP(L+

φ) + φP(L + φ)] + Pr{H, H}φP(2φ) + Pr{L, L}LP(2L). Taking the derivative of average
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profit with respect to d implies

∂

∂d
Ew1,w2 [πi] = ζ︸︷︷︸

>0

[
LP(L + φ) + φP(L + φ)− LP(2L)− φP(2φ)

]︸ ︷︷ ︸
≡WDπ , wind diversification

+
∂φ

∂d︸︷︷︸
>0

{
Pr{L, H}[LP′(φ + L) + P′(φ + L)φ] + Pr{H, H}[2P′(2φ)φ]︸ ︷︷ ︸
≡T2, effects of d on price through its impact on strategic curtailment

}

+
∂φ

∂d︸︷︷︸
>0

{
Pr{L, H}[P(φ + L)] + Pr{H, H}[P(2φ)]︸ ︷︷ ︸

≡T3 the value of additional production due to reduced strategic curtailment

}
.

WDπ represents the effects of wind diversification, which is positive because

WDπ = L[P(L + φ)− P(2L)] + φ[P(L + φ)− P(2φ)]

> L
[
2P(L + φ)− P(2L)− P(2φ)

]
≥ 0

where the first inequality follows because φ > L and P(L + φ) − P(2φ) > 0 and the

second inequality follows because of concavity in P, i.e. P′′ ≤ 0. Thus, profit increases

due to increased diversification. Note that unlike the effect of diversification on average

price, which is inactive when P′′ = 0, diversification improves profit even when the

inverse demand curve is linear.

Furthermore, the impacts of d on strategic curtailment has two effects on profit,

because reducing strategic curtailment lowers the average price but also increases the

aggregate quantity; these impacts are labeled as T2 and T3, respectively. Since inverse

demand is downward, i.e. P′ < 0, the impact of increasing d on markup through its

effects on strategic curtailment is negative, i.e. T2 < 0. The impact of reducing strategic

curtailment on quantity is, expectedly, positive, i.e. ∂φ
∂d > 0 and T3 > 0, because higher

d results in lower information and less extensive strategic curtailment. However, the

overall impact of d, through its impacts on strategic curtailment, is to reduce price. This

is because its effect on average price is greater than its effect on average quantity; i.e.
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T2 + T3 < 0 because

T2 + T3 = Pr{H, L}
[
P(φ + L) + (L + φ)P′(φ + L)

]
+ Pr{H, H}

[
P(2φ) + 2φP′(2φ)

]
= Pr{H, L}

[
P(φ + L) + φP′(φ + L)

]
+ Pr{H, H}

[
P(2φ) + φP′(2φ)

]
+ Pr{H, L}LP′(φ + L) + Pr{H, H}φP′(2φ)

= Pr{H, L}LP′(φ + L) + Pr{H, H}φP′(2φ) (22)

< 0 (23)

where (22) follows from the first order condition (14), and (23) follows because inverse

demand is downward, i.e. P′ < 0. Therefore, the effects od d on diversification increase

profits, and the effects of d on strategic curtailment decrease profits. The overall impact

of heterogeneity is ambiguous. Figure 6 provides examples showing that profit can be

increasing or decreasing in d.

Proof of Proposition 4. By definition πi(w1, w2) = qi(wi)(s − q1(w1) − q2(w2)) where

qi(wi) is explicitly given by Corollary 1, for wi ∈ {L, H} and i ∈ {1, 2}. The expected

value of profit for producer i is given (24).

Ew1,w2 [πi] = Pr{L, H}[πi(L, H) + πi(H, L)] + Pr{H, H}πi(H, H) + Pr{L, L}πi(L, L)

(24)

As before, from (1), Pr{L, L} = (1− dβ
β+d(1−β)

)(1− β), Pr{L, H} = (1− β) dβ
β+d(1−β)

, and

Pr{H, H} = β
β

β+d(1−β)
. In addition,

πi(L, H) = L(s− L− φ) (25)

πi(H, L) = φ(s− L− φ) (26)

πi(L, L) = L(s− 2L) (27)

πi(H, H) = φ(s− 2φ) (28)

where, as shown in Corollary 1, φ = sβ+(s−L)(1−β)d
3β+2(1−β)d . By plugging (25)-(28) into (24), the

total (ex-ante) wind producers’ surplus becomes

Ew1,w2 [πi] =
β

4
+ L(1− 2β) + L2(

15
4

β− 2)− β2(s− 3L)(s− 4L)
2(3β + 2d(1− β))

+
β3(s− 3L)2

4(3β + 2d(1− β))2 .

(29)
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Next, we characterize how d (extend of heterogeneity) affects profits. Taking a derivative

with respect to d from (29) implies

∂

∂d
Ew1,w2 [πi] =

−β3(s− 3L)2(1− β)

(3β + 2d(1− β))3 +
β2(1− β)(s− 3L)(s− 4L)

(3β + 2d(1− β))2

=
β2(1− β)(s− 3L)
(3β + 2d(1− β))2

[
−β(s− 3L)

3β + 2d(1− β)
+ s− 4L

]
=

β2(1− β)(s− 3L)
(3β + 2d(1− β))3︸ ︷︷ ︸

>0

[β(2s− 9L) + d(1− β)(2s− 8L)] . (30)

From the last equality we obtain: If L < 2s
9 ≡ L1, then 2s − 9L > 0 and 2s − 8L >

0; thus, ∂
∂d Ew1,w2 [πi] > 0 and, consequently, arg maxd∈[0,1] Ew1,w2 [πi] = 1. If L >

2s
8 ≡ L2 then 2s − 8L < 0 and 2s − 9L < 0; thus ∂

∂dEw1,w2 [πi] < 0 and, consequently,

arg maxd∈[0,1] Ew1,w2 [πi] = 0.

In sum, (30) implies that if L < L1 then ∂
∂dEw1,w2 [πi] > 0 and thus maxd∈[0,1] Ew1,w2 [πi]

happens at d = 1. Similarly, if L > L2 then ∂
∂d Ew1,w2 [πi] < 0 and thus maxd∈[0,1] Ew1,w2 [πi]

occurs at d = 0. For the sake of completeness, we further note that arg maxd∈[0,1] Ew1,w2 [πi] ∈
{0, 1} for any L < s

3 .17

Proof of Proposition 5. Let φd be the equilibrium high state production that for each

i ∈ {1, ..., N + 1} satisfies

ESd
−i
[P(φd + Sd

−iφ
d + (N − Sd

−i)L) + φdP′(φd + Sd
−iφ

d + (N − Sd
−i)L)|wi = H] = 0. (31)

The left hand side of (31) is decreasing in φd. Its derivative with respect to φd is

ESd
−i
[(2+Sd

−i)P′(φd +Sd
−iφ

d +(N−Sd
−i)L)+φdP′′(φd +Sd

−iφ
d +(N−Sd

−i)L)|wi = H] < 0

(32)

which follows because 2 + Sd
−i > 0, φd > 0, P′ < 0, and P′′ ≤ 0.

Now, consider d′ > d and assume towards a contradiction that φd′ < φd, where φd

and φd′ satisfy the first order condition in (31), with the expectations taken according to

17This is because any interior d̃ ∈ (0, 1) such that ∂
∂d Ew1,w2 [πi] = 0 implies that ∂

∂d Ew1,w2 [πi]
∣∣
d>d̃ > 0.

Thus any d ∈ {0, 1} for any d that maximizes profits.
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their respective random variables Sd
−i and Sd′

−i:

0 = ESd
−i
[P(φd + Sd

−iφ
d + (N − Sd

−i)L) + φdP′(φd + Sd
−iφ

d + (N − Sd
−i)L)|wi = H]

< ESd
−i
[P(φd′ + Sd

−iφ
d′ + (N − Sd

−i)L) + φd′P′(φd′ + Sd
−iφ

d′ + (N − Sd
−i)L)|wi = H]

≤ ESd′
−i
[P(φd′ + Sd′

−iφ
d′ + (N − Sd′

−i)L) + φd′P′(φd′ + Sd′
−iφ

d′ + (N − Sd′
−i)L)|wi = H].

The first inequality is due to (32), with φd′ < φd. The second inequality is due to

Assumption 2 with F(x) = P(φd′ + xφd′ + (N − x)L) + φd′P′(φd′ + xφd′ + (N − x)L)

decreasing in x. But the result implies that φd′ does not satisfy the first order condition

of the equilibrium, so we have a contradiction. Therefore, φd is (weakly) increasing in

d.

Proof of Proposition 6. By definition, W = U(Q) where Q = ∑N+1
i=1 qi. Note that U′(Q) =

P(Q) ≥ 0 for any equilibrium Q, and P′ < 0, φ > 0. Furthermore, note that we can write

Q as a function of d given any realization of availability, Q(d) = ∑i si(φ
d − L) + (N +

1)L = (φd − L)S + (N + 1)L, which is increasing and linear in S. This implies that the

expectation E[W], which is taken over the random states of all of the producers, is fully

defined by the probability distribution of S. Let s be the random vector of states of each

of the producers, i.e. s = [s1, s2, ...sN+1]. Then for all i, si, with S = ∑i si, we have that

Es[W(Q(d))] = ES[W(Q(d))]. Then for d′ > d:

Esd′ [W]−Esd [W] = ESd′ [W(Q(d′))]−ESd [W(Q(d))]

=
N+1

∑
k=1

U(Q(d′))Pr{Sd′ = k} −
N+1

∑
k=1

U(Q(d))Pr{Sd = k}

≥
N+1

∑
k=1

U(Q(d))(Pr{Sd′ = k} − Pr{Sd = k})

= Esd′ [U(Q(d))]−Esd [U(Q(d))] ≥ 0.

The first line is because S provides equivalent information for the expectation as ex-

plained above. The second line is an expansion of the expectations for the discrete

random variables, and the third line is because of Proposition 5 with Q(d) increasing

in d and U(Q) increasing in Q. The fourth line rewrites the third as a difference of

expectations, which is non-negative by the definition of second-order stochastic dom-

inance with U increasing and concave in S since U is increasing and concave and

Q(S) = (φ− L)S + (N + 1)L is linear and increasing in S.

43



Proof of Example 2. For the linear inverse demand, conditions (4) and (5) are repre-

sented by (33) and (34).

Pr{L|H}(s− L− 2φ− x) + Pr{H|H}(s− 3φ− x) = 0 (33)

Pr{L, L}(s− 2L− 2x) + 2 Pr{L, H}(s− L− φ− 2x) + Pr{H, H}(s− 2φ− 2x)− c = 0

(34)

Under linear inverse demand, (33) is the first order condition for the wind generators,

and (34) is the first order condition for the traditional generator with constant marginal

cost c. Equation (33) allows us to write the expression for φ in equilibrium, analogous to

the result from Corollary 1 but including the effect of x.

φ =
(s− x)β + (s− x− L)d(1− β)

3β + 2d(1− β)
=

sβ + (s− L)d(1− β)− x(β + d(1− β))

3β + 2d(1− β)
(35)

We can rearrange the generator’s first order condition (34) to obtain equation (7). By the

assumption, with φ < H, the traditional generator chooses to participate in the market,

i.e. (7) is solved by some x ≥ 0. Combining equations (35) and (7), we have the result in

(6). The uniqueness of the symmetric18 equilibrium is clear from the fact that the result

for φ in (6) does not depend on x.

Proof of Proposition 8. Average output is given by

E[q1(w1) + q2(w2) + x] = 2 Pr{L, H}(L + φ + x) + Pr{L, L}(2L + x) + Pr{H, H}(2φ + x)

= x + 2βφ + 2(1− β)L.

Taking the derivative with respect to d, we have that

∂E[q1(w1) + q2(w2) + x]
∂d

= β
∂φ

∂d
> 0,

due to the linearity of expectation and because ∂E[qi(wi)]
∂d = β

∂φ
∂d , for i ∈ {1, 2}, and

∂x
∂d = −β

∂φ
∂d . Now, average welfare is given by

Ew1,w2 [W] = 2 Pr{L, H}U(L + φ + x) + Pr{L, L}U(2L + x) + Pr{H, H}U(2φ + x)− c(x).

18The equilibrium is symmetric in the sense that the wind producers have identical strategies; the
traditional producer has a different objective and a different strategy from the wind producers.

44



Taking the derivative with respect to d,

∂Ew1,w2 [W]

∂d
= ζ(2U(L + φ + x)−U(2L + x)−U(2φ + x)) +

∂x
∂d

Pr{L, L}P(2L + x)

+ 2(
∂φ

∂d
+

∂x
∂d

)Pr{L, H}P(L + φ + x) + (2
∂φ

∂d
+

∂x
∂d

)Pr{H, H}P(2φ + x)− c
∂x
∂d

= Γ + 2
∂φ

∂d
Pr{L, H}P(L + φ + x) + 2

∂φ

∂d
Pr{H, H}P(2φ + x) +

∂x
∂d

x

= Γ + β
∂φ

∂d
(2φ− x) ≥ Γ ≥ 0.

The second and third lines replace the first term with Γ = ζ(2U(L + φ + x) −
U(2L + x) −U(2φ + x)) to concatenate the expression; Γ is the impact of wind diver-

sification on welfare, and it is weakly positive due to the concavity of U, as explained

in Proposition 2. The second equality uses the first order condition from (34). The

third equality uses the conditional probabilities Pr{L, H} = Pr{L|H}β and Pr{H, H} =
Pr{H|H}β, along with the first order condition from (33). The expression 2φ− x is min-

imized when c = 0 and when d = 0. Therefore, by using (6) and (7), with c, d = 0, we

confirm that 2φ− x ≥ 0. This fact and Γ ≥ 0 establish the inequalities in the final line

and complete the proof.

Proof of Proposition 9. Average price can be expressed as

Ew1,w2 [P] = 2 Pr{L, H}P(L + φ + x) + Pr{L, L}P(2L + x) + Pr{H, H}P(2φ + x).

Taking the derivative with respect to d gives:

∂Ew1,w2 [P]
∂d

= ζ(2P(L + φ + x)− P(2L + x)− P(2φ + x))− 2
∂φ

∂d
(Pr{L, H}+ Pr{H, H})− ∂x

∂d

= ζ0− 2β
∂φ

∂d
+ β

∂φ

∂d
= −β

∂φ

∂d
.

This is due to the fact that P(x) represents linear inverse demand, so the first term sums

to 0 and so ∀x P′(x) = −1, and also due to the fact that Pr{L, H}+ Pr{H, H} = β. This

completes the proof. As in the two-producer case, for a linear inverse demand curve,

average price is monotonically decreasing in d.

Proof of Proposition 10. We seek to prove that there always exists a suitable t that sat-

isfies (9), (10), and (11) when γ = 0. Let γ = 0 by assumption. Rearranging the IC
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condition gives

t ≤ 1
2

Pr{H|H}+ Pr{L|H}(1− πL

πM
). (36)

Rearranging the IR-H condition provides another upper bound on t:

t ≤ 1 +
β

2d(1− β)
− β

d(1− β)

φ(s− 2φ)

πM
− φ(s− φ− L)

πM
− γ

Pr{L|H}πM
. (37)

Rearranging the IR-L condition provides a lower bound for t:

t ≥ L(s− φ− L)
πM

+
γ

Pr{H|L}πM
. (38)

The proof follows by showing that the lower bound for t, the right-hand side (RHS) of

(38) is always less than or equal to the upper bounds for t from the RHS of (36) and

(37) when γ = 0. Thus, there is always a nonempty feasible subset of R from which a

transfer t can be selected that satisfies the criteria for collusion.

First, with γ = 0, the RHS of (38) is always less than the RHS of (36). The RHS of

(38),
L(s− φ− L)

πM
<

L(s− 2L)
πM

≤ 1/2,

where the first inequality is due to φ > L and the second is because L(s− 2L) is max-

imized at s2

8 when L = s/4, and because πM = s2

4 . Furthermore, from the RHS of

(36),

1
2

Pr{H|H}+ Pr{L|H}(1− πL

πM
) ≥ 1

2
Pr{H|H}+ Pr{L|H}(1− 4

8
) = 1/2

where the inequality is because πL ≤ s2

8 and the equality is because the expression is a

weighted probabilistic sum of two values equal to 1/2. Therefore, the lower bound on t,

(38) is at most 1
2 , and one upper bound on t, (36), is at least 1

2 .

Now, it remains to be shown that the RHS of (37) (the other upper bound on t) is at

least as great as the RHS of (38). Equivalently, their difference T is greater than or equal

to zero:

T = 1 +
β

2d(1− β)
− β

d(1− β)

φ(s− 2φ)

πM
− φ(s− φ− L)

πM
− L(s− φ− L)

πM

=
β

d(1− β)
(

1
2
− φ(s− 2φ)

πM
) +

πM − (φ + L)(s− φ− L)
πM

≥ 0.
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The second line is a rearrangement of the first. The first term in the second line is

positive because πM = maxφ 2φ(s− 2φ) by the definition of monopoly profits; therefore,
φ(s−2φ)

πM
≤ 1

2 . The second term is positive since πM = maxφ,L(φ + L)(s− φ− L), again by

the definition of Monopoly profits. Therefore, none of the aforementioned constraints

contradict, and there always exists some t that allows the producers to collude.

Proof of Proposition 11. Let BRi(ζ) =
1−ζ

2 denote i’s best reply when qj = ζ. We aim

to characterize the expected value of information sharing, which is given by

Ew1,w2 [W(K, Kc)] = Pr{L, H}WL,H(K, Kc) + Pr{H, L}WH,L(K, Kc)

+ Pr{L, L}WL,L(K, Kc) + Pr{H, H}WH,H(K, Kc), (39)

where (according to (1)), Pr{L, L} = (1 − β)(1 − dβ
β+d(1−β)

), Pr{H, L} = Pr{L, H} =

(1− β) dβ
β+d(1−β)

, and Pr{H, H} = β
β

β+d(1−β)
.

The benefit of cooperation/sharing information at state {w1, w2} ∈ {H, L}2, de-

noted by Ww1,w2(K, Kc), is given by (12), and QK
w1,w2

denotes total output at state (w1, w2)

when firms cooperate and share their private information. Similarly, QKc
w1,w2

denotes to-

tal output when firms compete with no shared information. We consider four separate

cases as follows:

Case 1: {L, H}. In this case WP 1 is in the low state and WP 2 is in the high state. In-

formation sharing increases total output because WP 2 can produce more energy, know-

ing for certain that WP 1 can only produce L units rather than Ew1 [q1|w2 = H] =

L Pr{L|H}+ φ Pr{H|H} > L. Therefore,

QK
L,H = L + BR2(L) = L +

1− L
2

=
1 + L

2

whereas QKc

L,H = L + φ.

Case 2: {H, L} This case by symmetry is identical to Case 1.

Case 3: {H, H} In this case, information sharing reduces total output because the

producers learn that the opposing producers have the ability to produce at the Cournot

level, since information sharing eliminates the possibility that the other producer is in

the low state (which causes them to overproduce, given that the other producer is in

the high state). Under information sharing, both producer produce at the Cournot level.

Therefore, QK
L,H = 2qC = 2

3 . In the absence of information sharing QKc

L,H = 2φ.
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Case 3: {L, L} In this case WP 1 and WP 2 are both in the low state. Thus there is

no difference between cooperation and competition since both produce at the L level,

meaning that WL,L(K, Kc) = 0.

Plugging these results into (39) and (12), we have that

Ew1,w2 [W(K, Kc)] =
dβ(1− β)

β + d(1− β)

(
2

1 + L
2
−
(

1 + L
2

)2

− 2 (L + φ) + (L + φ)2
)

+
β2

β + d(1− β)

(
2
3
− 1

2

(
2
3

)2

− 2φ +
1
2
(2φ)2

)
.

By rearranging the above equation, we have that

Ew1,w2 [W(K, Kc)] = Γ(β, d, L)
(

39β + 28d(1− β)− 60Ld(1− β)− 81βL
)

. (40)

The common factor

Γ(β, d, L) =
β2d(1− 3L)(1− β)

36 (β + d(1− β)) (3β + 2d(1− β))2

is positive because L < 1/3 (equivalently, L < s/3 for general s) by Assumption 1,

(1− β) ∈ (0, 1). Similarly, since L < 1/3, the additive terms of (40)

39β + 28d(1− β)− 60Ld(1− β)− 81βL > 39β + 28d(1− β)− 20d(1− β)− 27β

= 12β + 8d(1− β) > 0.

The social welfare benefit of information sharing Ew1,w2 [W(K, Kc)] is the product of two

positive terms, and therefore Ew1,w2 [W(K, Kc)] > 0.

Proof of Proposition 12. Let BRi(ζ) =
1−ζ

2 denote i’s best reply when qj = ζ. We aim

to characterize the following

Ew1,w2 [D(K, Kc)] = Pr{L, H}DL,H(K, Kc) + Pr{H, L}DH,L(K, Kc)

+ Pr{L, L}DL,L(K, Kc) + Pr{H, H}DH,H(K, Kc)

where the benefit of cooperation/sharing information at state {w1, w2} ∈ {H, L}2 is

Dw1,w2(K, Kc) = πK
1w1,w2

+ πK
2w1,w2

− πKc

1w1,w2
− πKc

2w1,w2
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and πK
iw1,w2

denotes i’s profit at state (w1, w2) when firms cooperate and share their pri-

vate information. Similarly, πKc

iw1,w2
denotes i’s profit when firms compete with no infor-

mation sharing (no cooperation). We consider four possible cases separately as follows.

Case 1: {L, H}. In this case WP 1 is in the low state and WP 2 is in the high state.

Thus, information sharing is highly beneficial for WP 2 (and detrimental for WP 1). This

is due to the fact that producer 2 will strategically overproduce and thus price goes

down, hurting producer 1.

This overproduction is beneficial for producer 2, even though it results in a decrease

in the equilibrium price. In this case, cooperation is beneficial for WP 2 and detrimental

for WP 1, compared to competition with no information sharing. It is intuitive and

important to note that the extra benefit to WP 2 from information sharing is particularly

high when L is small. More precisely,

πK
1L,H

= L[1− (L + BR2(L))]

πK
2L,H

= BR2(L)[1− (L + BR2(L))],

where BR2(L) = 1−L
2 . With no cooperation, each WP supplies according to the original

equilibrium. Thus,

πKc

1L,H
= L[1− (L + φ)]

πKc

2L,H
= φ[1− (L + φ)]

with φ = β+(1−L)(1−β)d
3β+2(1−β)d by Corollary 1. With algebra we can show

DH,L(K, Kc) = πK
1H,L

+ πK
2H,L
− πKc

1H,L
− πKc

2H,L

=

(
β(1− 3L)

2(2d(1− β)− 3β)

)2

− L
(

β(1− 3L)
2(2d(1− β)− 3β)

)
.

Case 2: {H, L} This case by symmetry is similar to Case 1. Thus,

DH,L(K, Kc) = πK
1H,L

+ πK
2H,L
− πKc

1H,L
− πKc

2H,L

=

(
β(1− 3L)

2(2d(1− β)− 3β)

)2

− L
(

β(1− 3L)
2(2d(1− β)− 3β)

)
.

Case 3: {H, H} In this case WP 1 and WP 2 are both in the high state. Thus, coop-
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eration is highly beneficial for both of them because by reducing uncertainty they both

optimally coordinate and produce at the corresponding Cournot level, i.e. qC = 1
3 . Thus

the profit with information sharing is characterized as follows:

πK
1H,H

= πK
2H,H

= qC[1− 2qC]

With no cooperation each WP best replies to her belief; thus,

πKc

1H,H
= πKc

1H,H
= φ[1− 2φ]

where (as specified above) φ = β+(1−L)(1−β)d
3β+2(1−β)d . Using algebra, we can show

DH,H(K, Kc) = πK
1H,H

+ πK
2H,H
− πKc

1H,H
− πKc

2H,L

= 2qC[1− 2qC]− 2φ[1− 2φ]

=
2
9
+

(
2(β+d(1−L)(1−β))

3β+2d(1−β)
− 1
)
(β + d(1− L)(1− β))

3β + 2d(1− β)

≥ 0

where the last inequality follows because φ > qC = 1
3 (because of the overproduction of

each WP producing φ in this state due to uncertainty and mis-coordination).19

Case 4: {L, L} In this case WP 1 and WP 2 are both in the Low state. Thus there is

no difference between cooperation and competition since both produce at the L level,

meaning that DL,L(K, Kc) = 0.

Plugging the results of the above cases into (13) implies that

Ew1,w2 [D(K, Kc)] =
β2d(1− 3L)(1− β)

(3β + 2d(1− β))2(β + d(1− β))

[
21β + 16d(1− β)− L(81β + 60d(1− β))

]
.

As a result there exists a unique L∗(d, β) such that Ew1,w2 [D(K, Kc)] > 0 if and only if

L < L∗(d, β) =
21β + 16d(1− β)

81β + 60d(1− β)
.

In the above expression, note that L∗(d, β) < 1
3 .

19Note that f (x) = x(1− 2x) is concave in x and is maximized at x = 1
4 , thus f (qC) > f (φ), because

φ > qC = 1
3 > 1

4 .
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