Empirical Methods in Development

<table>
<thead>
<tr>
<th>Course title - Intitulé du cours</th>
<th>Empirical Methods in Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level / Semester - Niveau /semestre</td>
<td>M2 / S1</td>
</tr>
<tr>
<td>School - Composante</td>
<td>Ecole d'Economie de Toulouse</td>
</tr>
<tr>
<td>Teacher - Enseignant responsable</td>
<td>BOBBA MATTEO</td>
</tr>
<tr>
<td>Other teacher(s) - Autre(s) enseignant(s)</td>
<td></td>
</tr>
<tr>
<td>Lecture Hours - Volume Horaire CM</td>
<td>30</td>
</tr>
<tr>
<td>TA Hours - Volume horaire TD</td>
<td></td>
</tr>
<tr>
<td>TP Hours - Volume horaire TP</td>
<td>0</td>
</tr>
<tr>
<td>Course Language - Langue du cours</td>
<td>Anglais</td>
</tr>
<tr>
<td>TA and/or TP Language - Langue des TD et/ou TP</td>
<td></td>
</tr>
</tbody>
</table>

Teaching staff contacts - Coordonnées de l’équipe pédagogique :

matteo.bobba@tse-fr.eu

MF 118

Office hours: Monday 12h30-14h (send me an email before)

Preferred means of interaction with students: before/after class or during office hours

Course’s Objectives - Objectifs du cours:

This course features a broad overview of randomized experiments as a key tool in empirical research. The first part of the course discusses the rationale behind the experimental approach through the lens of prominent empirical methods. The second part covers randomization techniques, the different design options as well as a variety of implementation issues that arise when running RCTs in practice. The third part is aimed at illustrating the diverse use of randomized experiments in the most recent research practice through the exposition and discussion of leading examples.

Prerequisites - Pré requis :

The course is meant to be self-containing. However, basic knowledge of statistics and econometrics at the level of M1 courses will be assumed during the exposition. Two (somehow complementary) introductory econometrics textbooks that you may want to consult to either refresh or enhance your knowledge and empirical skills are:

I will also make use of basic programming tools and commands within the environment of the econometric software STATA. Beyond the official software manuals and the several existing online resources, a good introduction on how to do microeconometric research using STATA is:

Practical information about the sessions - Modalités pratiques de gestion du cours :

Laptops and tablets are generally accepted, and they are required during some of the sessions that I will specify in due course. Active student participation during class is not only encouraged but also rewarded in the final grade (see next section). Classes will start sharply at 11am, and hence I strongly encourage students to arrive on time in order not to interrupt and/or disturb the exposition.

Grading system - Modalités d’évaluation :

The learning objective of the course is twofold. First, students should be able to critically assess existing empirical research that employs the experimental approach. Second, students should be able to originally think about an experimental design of a research question of their choice. Students will be asked to form small groups in order to work on the assignments. Groups are voluntary but each student is required to work with different classmates under different assignments. Group size is approximately 2-3 but will ultimately depend on the total number of students enrolled in the course.

The requirements of the course [relative weight] are:

1. Detailed pre-analysis plan of a mock RCT [50%]

A pre-analysis plan outlines the hypotheses to be tested and specifications to be used in the analysis of a randomized experiment before collecting the data generated by the random treatment assignment. In your case, you should use an existing dataset of your choice (survey or administrative data) as the baseline of your hypothetical experiment. You should write it in the form of a draft of a paper of maximum 20 pages (including bibliography, tables, etc). Final drafts are due at the end of the Fall semester - the exact due date will be communicated later during the course. Some examples of pre-analysis plans are made available in the course’s Moodle.

2. Oral presentation of one of the papers listed in sections 3 to 5 of the reading list [40%] During the first week of October, I will circulate a doodle in which each group of students is required to select one paper (and the associated pre-specified date) on a first-come first-serve basis. Students are required to critically assess the motivation, findings and contribution of the paper, with special emphasis on how the experimental design is used and the relative pros and cons of the empirical approach. Oral presentations should last about 25 minutes and should be accompanied by slides. Some examples of presentation slides are made available in the course’s Moodle.

3. Active participation during others’ paper presentation [10%]

All students are expected to read before each class the papers to be presented by their classmates in order to actively participate in the discussion at the end of each paper presentation.

Bibliography/references - Bibliographie/références :
All papers listed below are mandatory reading and they will be made available to the students through the course’s Moodle page. The following list may be subject to minor changes before the start of the course. Please check the Moodle regularly for any update.

1. Why Randomize?

2. Designing and implementing RCTs

3. Application I: Policy evaluation

4. Application II: Field experiments

5. Application III: Structural models

Session planning - Planification des séances:

1. Why randomize? (week 1 to week 3)
 - Endogeneity and causality in economics
 - The causal inference approach
 - The structural approach

2. Designing and implementing RCTs (week 4 to week 6)
 - Design features and randomization methods
 - Sample size and the power of experiments
 - Practical design and implementation issues

3. RCTs applications (week 7 to week 10)
 - Policy evaluation
 - Field experiments
 - Structural models