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Abstract. Continuous-time games involving complex uncertainty are a well-known challenge
because they can rarely be formulated as well-posed extensive forms. Yet, it is the extensive form
that fully specifies the rules of a dynamic game, making it essential for describing information flow
and dynamic equilibria ([5]). This fundamental issue concerns large classes of decision problems,
including stochastic differential, timing, or Bayesian “games” in continuous time.

The stochastic process form, introduced in this article, provides an abstract game-theoretic
model of the extensive form characteristics of such games, formulated in the language of stochastic
processes. It is based on outcome processes and information structures on the space of config-
urations. A strategy is a process on that space describing a complete contingent plan of action
compatible with information, and outcomes are induced by strategy profiles. A natural notion of
information sets and subgames as well as of dynamic equilibrium obtains.

The problem of instantaneous reaction and information about it is tackled by introducing
vertically extended continuous time. The article shows that there is a suitable stochastic analysis
on this time axis, generalising the classical one. Via the notion of tilting convergence, action along
the vertical half-axis is a limit of accumulating action processes on smaller and smaller grids in
classical continuous time. This provides a notion for viewing outcomes in stochastic process form
as limits of outcomes in well-posed stochastic extensive forms as introduced in [56].

The theory is finally shown to apply to stochastic differential and timing games. For the
latter, we provide a specific model in stochastic process form, construct the symmetric preemption
equilibrium described by [58, 29] in a stacked strategic form setting, and explain the equilibrium
outcome as a tilting limit of classical continuous-time decision making.
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Introduction

Alice and Bob can try to grab a one-dollar bill once the referee has whistled. The first who grabs
gets it. However, in case of simultaneous first grabbing both are fined in the amount of one dollar
instead. What can game theory tell about this? If we find it plausible, helpful, or reasonable to
model time as a continuum — and there are good points favouring any of these attitudes —, no
symmetric “subgame-perfect” equilibrium obtains. This issue has been identified in [29, 58] (see
also the references therein), and a solution proposed, yielding a symmetric “equilibrium”. However,
that construction is based on discrete-time approximations on the level of payoffs and relies heavily
on the specific structure of a two-player timing game. Thus, it is relevant to understand

1. whether this solution can be explained by an intrinsic continuous-time model (based on in-
trinsic continuous-time outcomes and decision points, as well as strategies that are complete
contingent plans of action), and

2. whether such a model does arise from abstract decision-theoretic principles, in a way com-
patible with control-theoretic language used in applied probability theory.

Game-theoretic models in continuous-time formulation are an important object of applied prob-
ability theory indeed. One important example for continuous-time models employing game-theoretic
terminology is given by (stochastic) differential games. These are usually formulated in terms of a
(stochastic) differential equation of the form

(0.1) dχt = V (ξt, χt) dηt, t ∈ R+,

where ξt is the tuple of all agents’ actions at time t, valued in, say, Rn, η is a suitable integrator
(for instance, a function of bounded variation, or a continuous L2-martingale with respect to some
probability measure P), valued in, say, Rm, V : Rn+d → Rd×m is a sufficiently regular map so
that this equation admits a unique solution in a reasonable sense, and χ describes the Rd-valued
solution, called “state process”, which is the payoff-relevant quantity and which agents can partially
condition future decisions on. In this context, information available to the agents is modelled via
the state process’s path χ, filtrations, and the requirement that the processes, particularly ξ and
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the strategy inducing ξ, are adapted to them. One typical definition of equilibrium would be, given
a bounded continuous function u from a suitable path space to R:

Exu(χs) ≥ Exu(χ(s̃i,s−i)), ∀x ∈ Rd,

for all players i = 1, . . . , n and all unilateral deviations s̃i. In this example, s = ξ is the strategy
profile, directly determining the action process, n is the number of players, and si = ξi is its i-th
component. χs describes the solution to Equation 0.1 given ξ = s, with initial condition x under
the measure Px, whose expectation is denoted by Ex. This is a stacked strategic form perspective:
For any initial value of the state process, an own strategic form is defined.1

As another natural example, timing games can be seen as the simplest non-trivial class of dynamic
games. In these, at each point in time, agents can choose a number in {0, 1}, the choice of 0 being
irreversible. These games are often formulated in terms of the first times the number 0 is chosen by
the agents (“optional” or “stopping” times). An alternative description is based on decreasing {0, 1}-
valued2 stochastic processes adapted to some information flow modelled by a filtration.3 Due to their
relative simplicity, timing games allow to study conceptual problems in game theory and solutions
to these like under a magnifying glass. For example, one classical conundrum in continuous-time
preemption games is the difficulty of constructing a symmetric preemption equilibrium, which is
readily possible in discrete time.4 The problem is that complicated chains of randomised action and
reaction on smaller and smaller discrete-time grids collapse in the continuous-time limit — or seen
from a different perspective, in continuous time, waiting for a tiny, but positive amount of time
with positive probability still gives the opportunity to an opponent to preempt you.

However, from a decision-theoretic point of view, a game is specified by a complete set of rules.
The concepts of “strategy”, “equilibrium”, “subgames” (or “information sets”) are derived notions,
implicitly determined by the primitives. In turn, the primitives of a dynamic game are given in
terms of what we may call its extensive form characteristics, that is, “the flow of information
about past choices and exogenous events, along with a set of adapted choices locally available to
decision makers”.5 As argued in [55, Introduction], the “paradigmatic model of these extensive
form characteristics is provided by classical extensive form theory, as established by von Neumann
and Morgenstern in [68] and furthered by Kuhn in [46, 47]”. Its two main formulations — using
either refined partitions or (decision) trees, illustrated in Figure 1 — can be given a very abstract,
general setting. This has first been done in [3, 4, 2, 5], and generalised to a stochastic setting
in [57, Chapters 1, 2]. A well-posed extensive form theory obtains under specific order-theoretic
conditions on the underlying tree or forest (cf. [4, 2]), which generalises to the stochastic setting in
[57]. For (stochastic) extensive forms based on time-indexed paths of action, well-posed is found to
be equivalent to the well-orderedness of the time half-axis, by [57, Theorem 2.3.14]. This creates

1See [39, 26] for the initial accounts due to Isaacs and Friedman. For a more recent overview on differential games
in general, see [22]. Regarding stochastic differential games, see [16, 17] for a recent textbook focusing on stochastic
differential games where the “vector field” V depends also on the distribution of (ξ, χ), called “mean field games”,
introduced independently in [38, 50].

2Or [0, 1]-valued, which is equivalent, up to taking some conditional expectation of the {0, 1}-valued process in
question, see [14, 67].

3See, e.g., [23, 24] for the start of the literature on “Dynkin games”, [67, 48, 33] and the references therein for
more recent works on this topic. For another, more abstract “game-theoretic” stream of the literature on timing
games, see, for instance, [29, 49, 58, 65] and the references therein. For a review of the vast literature on economic
applications via real options theory, see [9].

4This is the example from the very beginning of this article.
5Cf. [57].
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Figure 1. Refined partitions on a set of outcomes, and a tree representing out-
comes by maximal chains (copies of Figures 5, 9 in [68])

a foundational issue for the huge class of game-theoretic models that are essentially based on
continuous time, like those mentioned above.6

As a consequence, the interplay of continuous time and complex uncertainty represents both a
litmus test and a fundamental challenge for game theory. When time is modelled as a continuum
and information is subject to intricate structures of uncertainty, even the most basic notions —
such as strategy and outcome, simultaneity and reaction, randomisation and beliefs, subgames
and information sets — become elusive. Ultimately, canonical meta-concepts of equilibrium and
optimality become difficult to implement rigorously and in a natural way, raising the questions of
their general decision-theoretic meaning and of their interpretation in concrete applications.

The reasons for continuous-time modelling are manifold. One is pragmatic. Working in continu-
ous time unlocks the powerful toolbox of (real, stochastic, functional, ...) analysis and considerably
helps pushing the frontiers of mathematical tractability. Relatedly, the numerics — calculating op-
timisers, values, equilibria — may become much more tractable and the convergence of numerical
schemes easier to analyse. Another reason is decision-theoretic. Working in discrete time assumes
that there is some entity or natural constraint that can enforce agents to act only at the times of
the predefined grid — though in many situations it is well conceivable that a real agent could try
to act in between two grid points. This is a severe restriction for non-cooperative game theory,
where, once the rules have been fixed, agents are otherwise anarchic. A fourth traditional argument
is rather “philosophical”, based on the statement that time really “is” continuous. If one accepts
this point of view, any realistic model must employ continuous time.7

For examples, we refer to the discussion of stochastic differential and continuous-time timing
games from the beginning. On this occasion we emphasise that in stochastic differential games,
the action process ξ and the state process χ do typically not have locally right-constant paths, and
hence there is little hope of being able to formulate the problem directly within a well-posed action

6We have to mention here the action-reaction framework from [1] which is based on paths of action in continuous
time, but still does yield a well-posed extensive form. However, in this model, players cannot de facto act continuously
because they must determine inertia (or waiting) times after any definitive action, committing to inaction during
the corresponding period of time. This structure restores well-orderedness of all plays alias decision paths; see [57,
Section 2.3.2].

7We express no philosophical opinion regarding the validity of this argument; we just mention its existence. It
has a prominent tradition in the debate about the interpretation of physics. Another example for its use may be
volatility modelling in finance. At least when assuming the concept of volatility to represent reality in one way or
the other as opposed to a mainly instrumental view on it, the claim that “volatility is rough” (cf. [32], see also [31]
and there references therein, not least their titles) would make little sense without the implicit claim that “time is
continuous”.



STOCHASTIC PROCESS FORMS IN VERTICALLY EXTENDED CONTINUOUS TIME 5

path stochastic extensive form, by the results of [57, Chapter 2].8 We also note that in timing
games instantaneous reaction to new exogenous information, i.e. a Brownian motion hitting some
boundary, may be a relevant optimiser or best response candidate which is also incompatible with
the well-posed action path stochastic extensive form models constructed in [57, Chapter 2].

The sheer size, breadth, and relevance of the literature on continuous-time games and con-
trol, which involve uncertainty (stochastic noise, randomisation, “incomplete information”, ...) to
varying, but often high degrees, makes it necessary to develop an abstract decision-theoretic under-
standing. Existing standard approaches typically fall into two extremes: either a stacked strategic
form, as is common in stochastic differential games and control (see [26, 58, 19]), without any ca-
nonical way of implementing extensive form notions like subgame-perfect equilibrium (cf. [60]), or a
fully developed well-posed extensive form (cf. [68, 47, 5]), based on action paths indexed over time
(cf. [3, 4] for the basic deterministic example, and [57, Chapters 1 and 2] for a general stochastic
theory). One must further mention the product form (cf. [69, 70, 37]) which leaves the extensive
form terrain in a decent way in order to center on measurability, also with respect to information on
past choices. Yet, to best of the author’s knowledge, measurability along time (or more generally,
instances of decision making, e.g. subgames) is not focal in this formal model, while it is critical for
continuous-time theory and the application of (stochastic) analysis.

All these perspectives aim to capture the essence of dynamic strategic interaction, and all seek
to be analysable through dynamic refinements of the Nash equilibrium concept. This text argues
that these approaches, despite their differences, share underlying extensive form characteristics and
can be unified through an abstract and general formal model. We show that this can be done
in a way incorporating the necessary structure to implement dynamic equilibrium (like perfect
Bayesian or subgame-perfect) and to be compatible with complex forms of probabilistic uncertainty
in continuous time and, in particular, the general theory of stochastic processes (cf. [21, 25, 43, 54]).

In a temporal setup involving probabilistic uncertainty, focusing on extensive form characteris-
tics leads to the basic insight that the fundamental object describing outcomes of possible choices
are not decision trees or forests (as in extensive form theory), nor mere collections of random
variables over decision points or “agents” (as in the product form), but rather stochastic processes
satisfying particular measurability properties with respect to a given filtration. Yet, strategies
must be understandable as complete contingent plans of action, alias local choices, given these infor-
mational alias measurability constraints; it must be explained which outcome processes they induce;
it must be explained what are the “decision points”, “subgames”, “information sets” (including
counterfactuals) conditional on that outcome processes are induced and, ultimately, preferences are
formulated. As in extensive form theory, the stacked strategic form ultimately used in equilibrium
analysis must derive from these data.

Thus, we develop a framework that speaks the language of stochastic processes while syste-
matically preserving the structural hallmarks of the underlying extensive form characteristics. This
abstract model is deliberately general: it subsumes a broad class of games and control problems
formulated in terms of stochastic processes and offers a conceptual bridge to extensive form-based
reasoning. It enables rigorous comparisons with stochastic extensive forms (in the sense of [57,
Chapter 2], a generalisation of [5, 47, 68]) and captures key strategic properties without relying on
case-by-case ad-hoc adaptations of extensive form theory.

The relevance of such a model lies not only in its capacity to represent strategic dynamics
with greater clarity, but also in its ability to enable a general theory of a) reformulating classical

8In [3], game trees based on action paths are actually linked to “differential games”. This neglects the fact that
usually differential games are not formulated via trees, but via differential equations and filtrations. Be it as it may,
the corresponding decision tree, or decision forest in the stochastic framework we propose in this text, is not such
as to give rise to extensive forms or, even if so, to ensure their well-posedness, as we conclude in [57, Chapter 2],
thereby generalising findings from [4, 2].
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continuous-time models like stochastic differential games and then approximating them using rigo-
rous action path extensive form models, and of b) conversely describing decision-theoretic limits
of action path extensive form models as reaction lags shrink to zero. Indeed, as mentioned above,
a very general class of action path stochastic extensive forms — that is stochastic extensive forms
wherein outcomes are given by pairs (ω, f) of an exogenous scenario and a time-indexed path f
of action — can be constructed, as demonstrated in the thesis [57, Chapter 2]. It is shown in
[57, Theorem 2.3.14] of that thesis that, if restricting to a well-ordered time grid in R+, these
stochastic extensive forms are well-posed, i.e. strategy profiles induced unique outcomes. Under
this hypothesis, action paths can be seen as locally right-constant paths in continuous time whose
jump times lie in a fixed, well-ordered grid.

With this approximation intuition in mind, we make a fundamental observation concerning the
limit behaviour of outcomes: as intervals of interaction shrink to zero, information about potential
reactions vanishes. Precisely, if on the grid Gn, n ∈ Z, given by Gn(k) = k2−n for all k = 0, 1, . . . ,
Alice acts according to the process ξn = 1[0, 2−n)R+ and Bob according to ξn−1, then Alice switches
to zero strictly before Bob, and there is no difficulty in modelling Bob observing this until time
21−n. Letting go n → ∞, both ξn and ξn−1 converge pointwise to the action process 1{0}. The
order of action and also Bob’s observation of Alice’s action is lost in the limit. Moreover, there is
no instant of time at that the stopping really occurs: at time zero, the value is still 1, while at any
time ε > 0, the stopping must have already happened before — a paradox.

This problem essentially underlies the challenge described and analysed in [29, 58] in the context
of continuous-time preemption games. Yet, the analysis of these articles does not formally describe
the “limit” outcome processes, which yet are a crucial part of the extensive form characteristics of
the problem. If we wish to do so in the language of stochastic processes, the described phenomenon
suggests allowing for well-ordered chains of “reaction nodes” at a single real point in time. Inter-
preting these as instances of instantaneous reaction, it becomes natural to glue well-orders above
every real time point — leading to a vertically extended continuous-time structure. That is, we
consider the vertically extended set of continuous time T̃ = R+ × α for some well-order α, whose
smallest three elements we call 0, 1, 2, and we equip T̃ with lexicographic order. Then, the intuitive
limit as n → ∞ of Alice’s behaviour ξn is 1{(0, 0)}, whereas that of Bob’s ξn−1 is 1{(0, 0), (0, 1)}.
Then, there is no loss of information in the limit. The set T̃ and the notion of “tilting” convergence
just described are illustrated in Figure 2.

This extension raises several foundational questions: What size and structure should such well-
orders have in order to be consistent with the above-mentioned limit procedure? How are stochastic
processes to be defined on such an extended time scale? What are the appropriate notions of or-
der, topology, and measurability on the vertically extended time half-axis? How can we formalise
“points” that agents can consider their options and revise their plans at, and what are counter-
factuals? What concept to use in order to describe the corresponding instances of time, optional
times, and, based on that, optional processes generated by these times and corresponding actions,
adapted to the information flow? Finally, how can we formally describe the “tilting” limit procedure
motivated above, and establish a link between grid-dependent decision making in continuous time
and decision making in vertically extended time? These questions, rooted in game, decision, and
control theory, lead to an extended theory of continuous time and stochastic analysis on that time
half-axis, which is the subject of the first two sections of this article. In the third section, a rigor-
ous abstract game-theoretic model of stochastic extensive form characteristics based on stochastic
processes in vertically extended time is introduced, which we call stochastic process form, and we
argue that it responds to the above challenges. Within this model, we derive notions of strategy
and outcomes, information sets and subgames, randomisation and beliefs, and of equilibrium. We
examine the contrasts with classical extensive, product, and strategic form approaches and explore
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Figure 2. An illustration of vertically extended continuous time and tilting con-
vergence: above any real time t ∈ R+ we attach a sufficiently large well-order. The
action process consisting of three actions at times (t, 0), (t, 3), and (t, 2w + 4) can
be obtained by a limit of sequences of classical continuous-time decision making on
refining, convergent grids in R+, on which these actions occur at the grid points
with indices 0, 3, and 2w + 4, respectively. The limit procedure is illustrated by
the dashed arrow pushing the classical continuous-time decision making to the left.
They eventually accumulate at the real time t; but, via the special notion of con-
vergence proposed here, they are tilted by 90◦ counterclockwise and end up on the
vertical axis above t. — Notation: Roughly speaking, up to unique isomorphism,
w is the “smallest infinite well-order”, and 2w + 4 is the twofold concatenation of
this well-order concatenated with the four-element well-order. w1 can be seen as
the set containing, up to unique isomorphisms, all well-orders embeddable into R+.
For rigorous definitions and more details, see Section 1.

the consequences of our framework for dynamic equilibrium analysis. To demonstrate both the
breadth and specificity of the theory, we apply it to stochastic differential games in general and
provide a detailed treatment of a prototypical class: timing games.
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One the one hand, we discuss on a rather abstract level how and why stochastic differential games
fall within the framework of stochastic process forms, which provides a stronger decision-theoretic
footing than the traditional stacked strategic form framework. A detailed analysis is performed
in the case of timing games. Concerning the latter, we recall that [29, 58, 65] give a solution to
the continuous-time preemption problem in terms of a stacked strategic form approach, based on
extended mixed strategies. There, payoffs are defined as direct functions of strategy profiles, using
a “discrete time with an infinitesimally fine grid” limit consideration. This approach does not
formally describe outcomes, nor does it describe how payoffs arise from outcomes. One side effect
of this is that payoffs are rather hard to formulate, and it probably would be even harder for more
than two players. Moreover, in the cited approach strategies are actually “stacked strategies” alias
large families of stochastic processes, one for each subgame. Thus, strategies formally depend on
subgames — though this dependency is ex post weakened by a dynamic consistency requirement.
However, this consistency condition is not further justified and appears as a solution to a difficulty
arising from the formalism rather than from the formalised problem itself. After all, a strategy is
a complete contingent plan of action alias local choices. Further, a “subgame” is a “point” where
agents can revise these local choices. Both notions are no primitives in any strong sense, but arise
from the description of information flow and local choices, i.e., the extensive form characteristics.
Provided well-posedness of the game-theoretic model, a strategy profile induces a unique outcome
in any “subgame”. In the stacked strategic form model from the cited literature, these decision-
theoretically important steps are skipped. This raises the question whether the “stacked strategies”
can be integrated into one strategy process, defining a complete contingent plan of action. Similarly,
we ask how “subgames”, “decision points”, “information sets” arise from information flow and local
choices. This would clearly strengthen the interpretation of subgame-perfect equilibrium, because
an equilibrium must be a strategy profile in its own right, understandable in terms of the basic
extensive form characteristics.

Responding to this, we propose a well-posed stochastic process form model for timing games.
Aside from being more general (general finite number of players, asymmetric information, full
closed-loop setting, including a larger class of subgames), it gives a systematic explanation of out-
comes and strategies, information, subgames, and equilibrium, deriving from the basic principles of
the stochastic process form model. We show that the expected symmetric preemption equilibrium
obtains via one global strategy profile which induces the expected outcome of randomisation on the
vertical half-axis above the preemption boundary. As a corollary of the theory of “tilting conver-
gence”, transforming reaction on smaller and smaller time lags into chains of infinitesimal reaction,
we obtain a representation of this outcome in terms of a limit of discrete-time approximations. This
extends a similar result on the deterministic two-player timing game from [64].

Organisation of the text. The paper is organised as follows. In Section 1, vertically extended
continuous time T is introduced as the smallest complete total order containing all countable accu-
mulations of well-orders embedded into R+. Topology and measurable structures on T are studied.
In Section 2, stochastic processes and random times are investigated, and suitable notions of pro-
gressive measurability, optional and predictable times and processes are introduced and their basic
properties analysed. The notion of tilting convergence is introduced and so the fundamental link to
outcomes of well-posed action path stochastic extensive forms is establishes. In Section 3, stochastic
process forms are introduced in full generality and their information sets analysed. The section is
concluded with a case study of continuous-time stochastic timing games and a short discussion of
stochastic differential games.

All proofs can be found in the appendix. A pedagogic, self-contained treatment of the Dedekind-
MacNeille completion of partially ordered sets, which we use in Section 1, is found in the appendix
as well.
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Related texts. This text is essentially equal to parts of the doctoral thesis [57] of E.R. The main
body and the appendices are more or less exactly taken from [57, Chapter 3 and Appendix]. The
introduction is a combination of parts of [57, Introduction]; the conclusion is a combination of parts
of [57, Conclusion]; — in both cases, some changes have been made.

Further declarations. In selected places and to a very limited extent, the software ChatGPT-
4 in its current version was used to check spelling and improve the English formulation of the
authors’ thoughts. Any suggestion has been critically reviewed by the authors and the authors
take full responsibility for resulting modifications of the text. LATEX has been used to generate this
manuscript technically. Figure 2 has been generated by E.R. using the graphics software draw.io,
version v27.0.9.

Notations. We give a list of some notations or conventions used throughout the text some of which
are not completely standard.

– N = Z+ = the positive integers including zero, N∗ = N \ {0}, Q = the rational numbers, R
= the real numbers, R+ = {x ∈ R | x ≥ 0}, all of them understood to be equipped with
the standard order and algebraic structure;

–
⋃
M = the union of a set M = the set of all x that are the element of some S ∈ M , also

written
⋃

i∈I Si in case M is the image of some function I ∋ i 7→ Si, for some set I;
– f × g = the function D1 × D2 → V1 × V2, (x, y) 7→ (f(x), g(y)) for functions f : D1 → V1,
g : D2 → V2;

– w = the smallest infinite ordinal, w1 = the smallest uncountable ordinal;
– |M | = the cardinality of a set M ;
– x < y means “x ≤ y and x ̸= y”, given a partial order ≤ an a set M and x, y ∈ M ; similarly,
> denotes the strict partial order associated to a partial order ≥;

– [x, y)T = {z ∈ T | x ≤ z < y} for any poset (partially ordered set) T and all x, y ∈ T ;
intervals [x, y]T , (x, y]T , (x, y)T are defined similarly according to usual conventions;

– BT = the Borel σ-algebra of a given topological space T ;
– E |D = {E ∩D | E ∈ E }, for any measurable space (Ω,E ) and any subset D ⊆ Ω;
– [[σ, τ)) = {(t, ω) ∈ T × Ω | σ(ω) ≤ t < τ(ω)} for the poset T introduced in Section 1, any

set Ω, and all maps σ, τ : Ω → T, known under the name stochastic interval in probability
theory; the intervals [[σ, τ ]], ((σ, τ ]], and ((τ, σ)) are defined similarly according to usual
conventions; moreover, [[τ ]] = [[τ, τ ]];

– f∗µ is the push-forward of a measure µ on a given measurable space (Ω,E ) by a map
f : Ω → Y into some set Y , defined on the σ-algebra f∗E = {B ⊆ Y | f−1(B) ∈ E } and
given by f∗µ(B) = µ(f−1(B)), B ∈ f∗E ;

– f∗Y = {f−1(B) | B ∈ Y } is the pull-back of Y by f , for any map f : Ω → Y and any
σ-algebra Y on Y ;

– PE is the set of probability measures on a measurable space (Ω,E );
– E u denotes the universal completion of a σ-algebra E , that is, the intersection of the com-

pletions of E with respect to all elements of PE .

1. Vertically extended continuous time

In [57, Chapter 2], we have shown the well-posedness of action path stochastic extensive forms
on well-ordered time grids. We have also seen that, essentially, one cannot go beyond this within
a rigorous action path stochastic extensive form setting. Thus, as described in the introduction
to this text, we use the outcomes of these action path stochastic extensive forms defined on well-
ordered time grids and let the grids become finer and finer to obtain asymptotic action processes,
as illustrated in Figure 2 printed in the introduction. The corresponding notion of convergence is



10 CHRISTOPH KNOCHENHAUER AND E. EMANUEL RAPSCH

discussed later in Section 2. First, we need to vertically extend the continuous-time half-axis in
order to faithfully represent relevant patterns of reaction on these smaller and smaller time grids
in the limit.

The aim of this subsection is to introduce this vertically extended continuous time, that is, the
smallest complete total order containing R+ and any tilted well-order embeddable into R+. We
equip it with a suitable topology and with suitable σ-algebras. The order topology being too large,
the interesting σ-algebra is not given by the Borel sets. Hence, we are led to studying the problems
of the measurability of continuous functions and of measurable projection and section.

1.1. Preliminaries on order theory. We start with recalling some basic, well-known facts from
order theory and thereby fix notation and conventions.

Completions. Basic notions from order theory are recalled in the appendix, see Section B. Here, we
only recall the following special notions which are introduced in that appendix. Let P be a poset
and φ : P ↪→ L be a completion. Then,

1. we call φ dense iff imφ is both join- and meet-dense in L;
2. we call φ small iff for any completion ψ : P ↪→ M , there is an embedding f : L → M with
ψ = f ◦ φ.

It can be shown that a completion is dense iff it is small, for any poset P there is a small completion
(φ,L), for any small completion (ψ,M) there is a unique isomorphism f : L → M such that
ψ = f ◦φ, and the small completion of P can be represented by the Dedekind-MacNeille completion.
For details, see Section B.

Topology on total orders. Without further mention, we equip any total order T with the order
topology OT . Namely, this is the topology generated by all sets of the form ↑ t\{t} = {u ∈ T | t < u}
and ↓ t \ {t} = {u ∈ T | u < t}, t ∈ T . In the following definitions, let T be a total order.

Recall that in a topological space Y , a neighbourhood of a point y ∈ Y is a set V ⊆ Y containing
an open set V ′ with y ∈ V ′ ⊆ V . A point t ∈ T is a left-limit point iff for every neighbourhood U
of t we have U ∩ (↓ t \ {t}) ̸= ∅. A point t ∈ T is a right-limit point iff for every neighbourhood
U of t we have U ∩ (↑ t \ {t}) ̸= ∅. Denote the sets of left-limit (right-limit) points by T↗ (T↙),
respectively.

If f : T → S is a function on T into some set S and t ∈ T is a left-limit (right-limit) point, then
we call f left-constant at t (right-constant at t) iff there is a neighbourhood U of t such that f |U∩↓t

(f |U∩↑t) is constant, respectively.9
If f : T → Y is a function on T into some topological space Y and t ∈ T is a left-limit (right-limit)

point, then y ∈ Y is said left-limit (right-limit) of f at t iff for every neighbourhood V ⊆ Y of y,
there is a neighbourhood U ⊆ T of t such that U ∩ (↓ t \ {t}) ⊆ f−1(V ) (U ∩ (↑ t \ {t}) ⊆ f−1(V ),
respectively). Provided Y is Hausdorff, if existent such y is unique, and denoted by y = limu↗t f(u)
(y = limu↘t f(u), respectively). We call f left-continuous at t (right-continuous at t iff, provided t
is a left-limit (right-limit) point, f(t) is a left-limit (right-limit) of f at t, respectively. With these
definitions, f is continuous at t iff it is both left- and right-continuous at t; and f is left-continuous
(right-continuous) at t if it is right-constant (left-constant) at t, respectively. If Y is a total order
as well, and t ∈ T is a right-limit point, f is said lower semicontinuous from the right at t iff for
any y ∈ Y with y < f(t), there is v ∈ T with t < v such that for all u ∈ (t, v)T , we have y < f(u).

A function f : T → S into some set S is said locally right-constant (locally left-constant) iff it
is right-constant (left-constant) at any left-limit (right-limit) point t ∈ T , respectively. In direct
generalisation of the standard framework, we call a function f : T → Y into a topological space Y

9We choose this convention; a weaker alternative would have been to ask for f |U∩(↓t\{t}) (f |U∩(↑t\{t}), respect-
ively) to be constant.
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làg (làd) iff it has left-limits (right-limits) at all left-limit (right-limit) points, respectively. We call
a function f : T → Y into a topological space Y left-continuous, or càg (right-continuous, or càd)
iff it is left-continuous (right-continuous) at any t ∈ T , respectively. Agglutinations, like càdlàg,
stand for the conjunction, like “càd and làg”. So, for example, f is continuous iff it is càdcàg.10 A
function f : T → Y from a totally ordered set T into a further totally ordered set Y is said lower
semicontinuous from the right iff it lowersemicontinuous from the right at all right-limit points in
T .

Well-orders and ordinals. We recall basic notions from the theory of well-orders within ZFC, see
[71, Chapter 2]. A well-order is a poset S such that any non-empty subset M ⊆ S has a minimum.
An ordinal (number) is a set α such that all y ∈ α satisfy y ⊆ α and the element relation ∈ defines
a strict partial order on α. The class of ordinals is denoted by On. Then (see [71, Section 9]),

1. any set of ordinals is strictly totally ordered by the element relation ∈,
2. any non-empty set of ordinals has a minimum with respect to that partial order,
3. for every α ∈ On, α = {β ∈ On | β < α}, and
4. On is not a set.

Ordinals are important to us because any well-order is isomorphic to a unique ordinal via a unique
isomorphism (cf. [71, Section 9]).

The empty set is an ordinal, i.e. ∅ ∈ On, which is called zero and denoted by 0 = ∅, any α ∈ On
has a unique successor, given by α+ 1 = α ∪ {α}, and any downward closed set of ordinals is itself
an ordinal. The successor of zero is one, denoted by 1 = 0 + 1 — and so on. A successor ordinal is
an ordinal β such that there is α ∈ On with β = α+ 1. A limit ordinal is a non-zero, non-successor
ordinal. For any set S ⊆ On of ordinals, there is a smallest ordinal β such that all α ∈ S satisfy
α ≤ β, given by

⋃
S. Hence, if S ⊆ α + 1 for some α ∈ On, then supS =

⋃
S in the poset

α + 1. Based on the zero ordinal, the successor operation +1, and the supremum operation sup,
one can recursively define ordinal arithmetic in terms of an associative addition, a left-distributive
multiplication, and a multiplicative exponentiation on ordinals. Care must be taken, however, since
the algebraic structure of these operations is relatively limited in general, see [71, p. 80] for details.

As a direct consequence of the infinity axiom, there exists a smallest infinite ordinal, denoted by
w. Equipped with ordinal addition and multiplication, and the respective neutral elements 0 and 1,
w is identical to the algebraic structure N = Z+ of natural numbers. One can show the existence of
a smallest (alias first) uncountable ordinal, denoted by w1.11 Its successor is w1 + 1 = w1 ∪ {w1}.
By the results cited above, w1 is the set of all countable ordinal numbers. An ordinal can be
embedded into R+ iff it is countable. For any countable set S ⊆ w1 of countable ordinals,

⋃
S

is countable, hence it admits a supremum in w1. Recall that, without further mention, we equip
any totally ordered set with the order topology. w1 is sequentially compact, but not compact.
As a consequence, any uncountable ordinal is not metrisable. Hence, an ordinal is Polish iff it is
countable.

1.2. The complete total order T. In view of the theory developed in [57, Chapters 1 and 2],
and by [57, Theorem 2.3.14] in particular, one can construct a broad class well-posed stochastic
extensive forms based on paths of action indexed over well-ordered subsets of R+. The theory
of this text is based on the intuition of eventually accumulating these time well-orders from the
“right”. Here, we graphically represent continuous, or “real”, time R+ as a horizontal half-axis

10In principle, to all these definitions concerning the entire function f one must add the qualifier “locally”. As
continuity is a local property, this makes no difference however. By contrast, “constant” is not a local property: for
example, the identity on {0, 1} is locally right- and left-constant, but not constant.

11w is typically denoted by ω, and w1 by ω1, but in view of the dominant role of probability in this text, and the
typical notation “ω” for scenarios, we choose this unusual notation.
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oriented towards the right. As discussed later on in Subsections 2.5, in the limit, such well-orders
can collapse form a purely horizontal point of view. As we wish to keep track of this order structure
of decisions in the limit, we extend real time on a well-ordered vertical half-axis.

Recalling that well-orders embedded in R+ are always countable, the time half-axis we require
is
(1.1) T = R+ × w1.

We equip T with lexicographic order, that is, (t, β), (u, γ) ∈ T satisfy
(1.2) (t, β) ≤ (u, γ) ⇐⇒ t < u, or [t = u and β ≤ γ].
A stochastic analysis based on this time half-axis requires understanding two things: first, the small
completion of T (for taking infima and suprema); second, suitable topologies and σ-algebras on that
completion (for convergence, probability, and integration).

In this subsection, we deal with the first question, but also prepare our later treatment of the
second one. For that, the approach will consist in exhausting T by sufficiently “small” extensions.
Namely, fix some α ∈ w1 + 1, and let
(1.3) Tα = R+ × α = {t ∈ T | π(t) < α}.
Clearly, we have Tα = T if α = w1. More importantly, T =

⋃
α∈w1

Tα.
Let us note that, via set inclusion, Tα is embedded into R+ ×(w1 +1) endowed with lexicographic

order, i.e. all (t, β), (u, γ) ∈ R+ × (w1 + 1) satisfy Statement 1.2. Here, R+ is the small completion
of the poset R+, given by R+ = R+ ∪ {∞}, with ∞ = supR+. To obtain a (candidate for a) small
completion of Tα, let

(1.4) Tα =
{
Tα+1 ∪ {∞}, if α is a limit ordinal,
Tα ∪ {∞}, else,

equipped with induced order. If α = w1, we simply write T = Tα, that is, we let
(1.5) T = [R+ × (w1 + 1)] ∪ {∞}.

Note that T0 = {∞} and, if α > 0,
(1.6) Tα = Tα ∪ {(t, supα) | t ∈ R+} ∪ {∞},
where supα is the supremum of the set α in w1 + 1. This union is disjoint iff α is a limit ordinal.

There are embeddings R+ → T → R+ × (w1 + 1) mapping t 7→ (t, 0) and (t, α) 7→ (t, α), by
means of which we treat R+ as a subset of T, and T as a subset of R+ × (w1 + 1). Moreover, let
p : R+ × (w1 + 1) → R+ and π : R+ × (w1 + 1) → (w1 + 1) be the canonical projections of the
set-theoretic product. Clearly, p is monotone and π is not.

We now answer the first question above.
Proposition 1.1. Via set inclusion, Tα is a small completion of Tα. In particular, T is a small
completion of T.

The proof is based on the following lemma which is of independent interest.
Lemma 1.2. Let α ∈ w1 + 1 and S ⊆ Tα be a subset. Furthermore, let

a = inf Pp(S), b = sup Pp(S), in R+.

Then, S has both an infimum and a supremum in Tα, given by

inf S =


(a, γ), if a ∈ Pp(S) and γ = inf Pπ(S ∩ [{a} × (supα+ 1)]) in supα+ 1,
(a, supα), if a ∈ R+ \ Pp(S),
∞, else,
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and

supS =
{

(b, γ), if b ∈ Pp(S) and γ = sup Pπ(S ∩ [{b} × (supα+ 1)]) in supα+ 1,
b, if b /∈ Pp(S).

Definition 1.3. The complete and totally ordered lattice T is said vertically extended continuous,
or real, time, or shorter vertically extended time, or even shorter, if the context permits, time.

As detailed above, the elements of T have a direct interpretation in terms of “accumulated”
well-orders embedded into R+; this point is further detailed by the notion of tilting convergence,
introduced in Subsection 2.5. The other elements of T arise by taking suprema and infima of
elements of T, as described in Proposition 1.1 and, more explicitly, in Lemma 1.2. In most decision-
theoretic contexts, the element ∞ can be interpreted as “never” or as a terminal time. A natural
interpretation of (t,w1), for t ∈ R+, is “never at real time t” – a contradiction, of course. Yet,
this contradiction is later resolved by the fact that the relevant objects describing dynamic decision
making, introduced in Section 2, — optional times and optional processes — overlook these vertical
endpoints.

1.3. Topology and σ-algebras on T. In the remainder of this and the following section, we study
suitable σ-algebras on the vertically extended continuous time half-axis T, the small completion of
T. First, we note that T is equipped with the order topology OT. For any subset S ⊆ T, let GT(S)
be the set of all down- and up-sets of the form [0, t)T and (t,∞]T, t ∈ S. Then, by definition, GT(T)
is a subbase of the topology OT. This is slightly strengthened by the following simple result.

Lemma 1.4. The set

(1.7) UT(T) = {[0, u)T | u ∈ T} ∪ {(t,∞]T | t ∈ T} ∪ {(t, u)T | t, u ∈ T}

is a base and GT(T) is a subbase of the topology OT on T.

Let BT = σ(OT) be the Borel σ-algebra on (T,OT). By definition, basically, BT

1. is the smallest σ-algebra B′ on T such that for all topological spaces Y , all continuous maps
T → Y on are B′-BY -measurable,

2. and is the largest σ-algebra B′ on T such that for all topological spaces X, all continuous
maps X → T are BX -B′-measurable.

Deleting sets from BT removes some continuous maps T → Y – in probabilistic terms, a fortiori,
also some stochastic processes with continuous paths – from our reach. Adding sets to BT removes
some continuous maps X → T – in probabilistic terms, some random times – from our reach. In
that sense, BT is quite natural. However, despite being Hausdorff the topology OT on T is non-
metrisable, because w1 is not metrisable. This makes standard methods from stochastic analysis
hard to apply. Moreover, it is shown further below that BT is neither generated by the (compact)
class of (closed) intervals, respectively, nor by that of products of compacts in R+ × α, α ∈ w1,
and basic results from stochastic analysis, such as measurable projection, do not generalise to that
σ-algebra.

Therefore, we consider the σ-algebras generated by intervals on the one hand, and by the products
of compacts R+ × α, α ∈ w1 on the other. This defines the following programme which we are
concerned with in most of Sections 1 and 2:

1. Introduce these σ-algebras formally, precisely describe their relevant generators, and estab-
lish their relationship;

2. Determine a relevant class of topological spaces Y such that continuous maps T → Y are
measurable;
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3. Study whether the theorem of measurable projection and section holds true for these σ-
algebras;

4. Study stochastic processes and random times with time T regarding relevant measurability
properties.

We start with Step 1. Let IT(T) = σ(GT(T)) be the σ-algebra generated by GT(T), the
complements of principal up- and down-sets of elements of T in T. Next, for any α ∈ w1,
equip R+, α + 1, and their product R+ × (α + 1) with their Polish topologies OR+

, Oα+1, and
OR+×(α+1) = OR+

⊗ Oα+1, respectively, let

(1.8) ρα : T → R+ × (α+ 1), t 7→
(
p(t), sup[(π(t) + 1) ∩ (α+ 1)]

)
,

and let Pα
T be the σ-algebra on T generated by ρα and BR+×(α+1) = σ(OR+×(α+1)), called the

projection σ-algebra of rank α. Let PT be the σ-algebra on T generated by the set of pairs ρα,
BR+×(α+1) = σ(OR+×(α+1)), ranging over α ∈ w1, called the projection σ-algebra.12 In formulae,

(1.9) Pα
T =

{
(ρα)−1(B) | B ∈ BR+×(α+1)

}
, α ∈ w1,

and PT =
∨

α∈w1
Pα

T .
We now describe several generators of IT(T), making precise the statement that “IT(T) is the

σ-algebra generated by the intervals”. For this, let
KT(T) = {[t, u]T | t, u ∈ T}.

Proposition 1.5. For any t, u ∈ T, [t, u]T is compact. KT(T) is an intersection-stable compact
class satisfying

IT(T) = σ(GT(T)) = σ(KT(T)).

Corollary 1.6. The following sets of intervals are intersection-stable and generate the σ-algebra
IT(T):

{[0, u]T | u ∈ T}, {[0, u)T | u ∈ T}, {[t,∞]T | t ∈ T}, {(t,∞]T | t ∈ T}.

Hence, we call IT(T) the T-interval σ-algebra on T, and abbreviate it by IT. We continue with
discussing the projection σ-algebras. Generators of Pα

T , for α ∈ w1, and PT are spelled out in the
following lemma.

Lemma 1.7. For any Y ∈ {R+} ∪ w1, let GY be an intersection-stable generator of the σ-algebra
BY such that Y is the countable union of elements of GY . For α ∈ w1, let

G α
T,× =

{
(ρα)−1(B × C) | B ∈ GR+

, C ∈ Gα+1
}
,

and let
(1.10) GT,× =

⋃
α∈w1

G α
T,×.

Then,
1. for all α ∈ w1, G α

T,×
is an intersection-stable generator of the σ-algebra Pα

T on T;
2. GT,× is a generator of the σ-algebra PT on T; moreover, if, for all α, β ∈ w1 with α < β

and all C ∈ Gα+1, we have either α ∈ C and C ∪ (α, β]w1 ∈ Gβ+1, or α /∈ C and C ∈ Gβ+1,
then the union in Equation 1.10 is increasing in α ∈ w1 and GT,× is intersection-stable;

3. if GY consists of compact sets in Y for all Y ∈ {R+} ∪ w1 and the only element B of GR+

with ∞ ∈ B is B = {∞}, then the preceding generators are compact classes, respectively.
12One may interpret the notation “P” also by the words “product”, “Polish”, “preimage”.
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Example 1.8. A typical example for the generators Gα+1, α ∈ w1, is given by Gα+1 = α + 2 =
{β ∈ w1 | β ⊆ α + 1}. This provides an intersection-stable generator of α + 1, α ∈ w1. Moreover,
the hypothesis in the second sentence of Part 2 is satisfied, i.e. for all α, β ∈ w1 with α < β and all
C ∈ Gα+1, we have either α ∈ C and C ∪ (α, β]w1 ∈ Gβ+1, or α /∈ C and C ∈ Gβ+1. In order to
obtain compact classes as in Part 3, we could restrict to those β that are not limit ordinals, leading
to {0} ∪ {γ + 1 | γ ∈ α} ⊆ α+ 1.

The σ-algebras Pα
T , for α ∈ w1, are defined by projecting down on the vertical levels α and

below. As the following lemma indicates, they are insensitive to “new information” above these
levels, and — a result which is important in the context of stochastic processes — this result is
compatible with taking the product with a measurable space.

Lemma 1.9. Let α ∈ w1 be a countable ordinal and (Ω,E ) be a measurable space. Then, for any
M ∈ Pα

T ⊗ E , any t ∈ R+, and any ω ∈ Ω, we have

(u, ω) ∈ M

for all or no u ∈ p−1(t) ∩ (T \ Tα).

Next, we ask the following: Is there an easy representation of the “vertical limit” σ-algebra PT =∨
α∈w1

Pα
T ? And, if so, is it compatible with taking the product with a measurable space? The

next result gives a simple answer to these questions. It illustrates the interplay of the uncountable
vertical half-axis and the countable additivity of σ-algebras.

Proposition 1.10. Let (Ω,E ) be a measurable space. Then,

(1.11) PT ⊗ E =
⋃

α∈w1

Pα
T ⊗ E =

{
(ρα × idΩ)−1(S) | α ∈ w1, S ∈ BR+×(α+1) ⊗ E

}
.

The union is increasing in α ∈ w1.

In particular, taking singleton Ω, and recalling Equation 1.9, we get the representation

(1.12) PT =
{

(ρα)−1(B) | α ∈ w1, B ∈ BR+×(α+1)
}
.

Furthermore, we obtain the following corollary.

Corollary 1.11. We have PT ⊆ BT ∨ σ(B × {0} | B ∈ BR+
) and PT ̸= BT.

We continue with a result linking IT and PT.

Lemma 1.12. We have IT ⊆ PT.

We close this subsections with confirming that the relevant structural maps are measurable with
respect to the σ-algebras under scrutiny. Let us denote, for any α ∈ w1, the set-theoretic inclusion
map Tα+1 → T by ια. Note that, as follows from Equation 1.4, we have Tα+1 ∈ BR+×(α+1).

Lemma 1.13. Let α ∈ w1. Then, ια is BR+×(α+1)|Tα+1
-PT-measurable and p is both IT-BR+

-
and Pα

T -BR+
-measurable.

Note that, by Lemma 1.12, ια is also BR+×(α+1)|Tα+1
-IT-measurable, and p is also PT-BR+

-
measurable.
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1.4. Continuous functions on T. We continue with Step 2. Actually, a more granular answer is
of interest, because it is natural in stochastic analysis to consider processes whose paths satisfy the
weaker requirement of having left- and right-limits. For this, recall the definitions of limit points
and continuity in Subsection 1.1, which require some additional care when dealing with T instead
of R+. To start, we determine the left- and right-limit points in T.

Lemma 1.14. The set T↗ of left-limit points in T is given by all t ∈ T \ {0} such that π(t) is not
a successor ordinal. The set T↙ of right-limit points in T is given by all (t,w1), t ∈ R+.

We now answer the main question of this subsection. In a first step, we note the special role of
the points t ∈ T with π(t) = w1.

Lemma 1.15. Let Y be a metrisable topological space and f : T → Y be PT-BY -measurable. Then,
for all t ∈ R+, f is left-constant and, in particular, left-continuous at (t,w1).

This left-continuity requirement at the “never at t”-instants is thus necessary for PT-BY -
measurability (and, in particular, for IT-BY -measurability), but it is not a restriction as it may
seem at first sight. First, for all topological spaces Y , any function g : R+ → Y induces a function
f : T → Y that is left-continuous at (t,w1), for all t ∈ R+, namely f = g ◦ p. f inherits relevant
properties from g, like làg, continuity, measurability.13 Moreover, note that a làg function T → R
that is left-continuous at (t,w1), for all t ∈ R+, is essentially a làg function T ∪ {∞} → R that
can be continuously extended from below, or the left, to the point at infinity of any vertical half-
axis. That is, asymptotic behaviour of the function along the vertical half-axis can be explained
by countably many values along each vertical half-axis. Speaking game-theoretically, the formally
uncountable chains of vertical, infinitesimal (randomised or not) reaction are actually described by
countably many ones.

Provided this unproblematic regularity assumption in t ∈ T with π(t) = w1, measurability can
be assured under mild regularity conditions, as the following proposition clarifies.

Proposition 1.16. Let Y be a metrisable topological space. Any làg function T → Y that is left-
continuous at (t,w1), for all t ∈ R+, is IT-BY -measurable. In particular, it is PT-BY -measurable.

We emphasise some of the special cases covered by the preceding proposition.

Corollary 1.17. Let Y be a metrisable topological space. The following functions T → Y are
IT-BY -measurable, and, in particular, PT-BY -measurable:

1. provided Y = R, any monotone function that is left-continuous at (t,w1), for all t ∈ R+,
2. any làdlàg function that is left-continuous at (t,w1), for all t ∈ R+,
3. any càdlàg function that is left-continuous at (t,w1), for all t ∈ R+,
4. any continuous function. □

1.5. Measurable projection and section. Next, we discuss Step 3. The basic idea of the proof is
already expressed in Proposition 1.10 and Lemma 1.9. As a consequence, the following proposition
obtains.

Proposition 1.18. Let (Ω,E ) be a measurable space, prjΩ : T × Ω → Ω denote the canonical
projection onto Ω, and M ∈ PT ⊗ E . Then, there is α ∈ w1 such that

Mα = M ∩ (Tα+1 × Ω) ∈ BR+×(α+1) ⊗ E , and PprjΩ(M) = PprjΩ(Mα).

We now state the theorem of measurable projection and section for vertically extended real time.
For the setup, let us introduce some notation. For a measurable space (Ω,E ), let E u be the universal

13The latter in view of Lemma 1.13.
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completion of E , that is, the intersection of the completions of E with respect to all probability
measures on (Ω,E ). Moreover, given a measurable space (Ω,E ), for any map τ : Ω → T, we let
(1.13) [[τ ]] = {(τ(ω), ω) | ω ∈ Ω}
be its converse graph. Then, we have the following result.

Theorem 1.19 (Measurable Projection and Section). Let (Ω,E ) be a measurable space, M ∈
PT ⊗ E and prjΩ : T × Ω → Ω be the projection onto Ω. Then,

PprjΩ(M) = {ω ∈ Ω | ∃t ∈ T : (t, ω) ∈ M} ∈ E u.

Moreover, there is an E u|PprjΩ(M)-PT-measurable map σ : PprjΩ(M) → T such that [[σ]] ⊆ M .

2. Stochastic processes in vertically extended continuous time

In this section, we tackle Step 4. For this, and for the entire Section 2, we fix a measurable
space (Ω,E ) and a filtration F = (Ft)t∈T on it with time index set T, and a measurable space
(Y,Y ). Moreover, we will introduce a model of instants of vertically extended continuous time
that options can be evaluated or decisions be made at, called optional times. Based on this, we
are led to a theory of optional and predictable processes, yielding a natural model for decision
making in vertically extended continuous time. We will see that these notions non-trivially extend
the classical notions from stochastic calculus on R+. Finally, we show that these optional processes
arise naturally by accumulating discrete-time decision making in classical continuous time R+, using
the new concept of tilting convergence.

2.1. Augmentation and right-limits of information flow. As the theory of stochastic pro-
cesses and stopping times involves both approximations from the right and projections, we have to
discuss right-continuity and completeness assumption on F .

Regarding right-continuity, approximation from the right in the Polish spaces R+ × (α + 1),
α ∈ w1, may require the strong right-continuous extension F✚ = (Ft✚)t∈T which we define as
follows:

F∞✚ = F∞, F(t,β)✚ =
⋂

u∈(t,∞)R+

F(u,β), t ∈ R+, β ∈ w1 + 1.

As F is a filtration, this implies that for all t ∈ T, we have Ft✚ = Fp(t)✚ — a strong property.
Namely, this is equivalent to saying that there is a filtration G = (Gt)t∈R+

with time index set
R+ such that F✚ = G ◦ p. We note that (F✚)✚ = F✚ and we call F , idem (Ω,E ,F ), strongly
right-continuous iff F = F✚.

Note that the right-continuous extension defined above is much larger than the one with respect to
the order topology on T. With respect to the order topology, the right-continuous extension is F+ =
(Ft+)t∈T, given by Ft+ =

⋂
u∈(t,∞]T

Fu = Ft✚ if t ∈ T↙ = π−1({w1}),14 and Ft+ = Ft else.
F , idem (Ω,E ,F ), is said right-continuous iff F = F+. In the strong right-continuous extension
information about events collapses along the vertical axes — for any x ∈ R+, all information about
the realised scenario included in Fx suffices to describe randomisation along the vertical half-axis
p = x.

The second issue is completion. As beliefs are treated as part of agents’ preferences, we do not
fix probability measures at this stage. Hence, we make use of universal completions. We fix our
conventions for this and recall basic properties.15

14See Lemma 1.14.
15For the essence of these notions and their properties, the methods of proof from the classical case can be directly

adapted to the present setting. For the classical case, see, for instance, [62, Chapter 1].
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Let PE denote the set of probability measures on (Ω,E ) and, for any P ∈ PE , NP = {M ⊆ Ω |
∃N ∈ E : M ⊆ N, P(N) = 0}. Then, for any sub-σ-algebra A ⊆ E , call universal augmentation of
A in E the σ-algebra

(2.1) A =
⋂

P∈PE

(A ∨ NP).

Moreover, we have
A u ⊆ A ⊆ E = E u, A = A ,

and the inequalities can be strict. A is said universally augmented in E iff A = A . We recall that,
with this convention, E is universally complete iff it is universally augmented in itself.

The universal augmentation of F in E is the filtration F = (Ft)t∈T. The filtration F is said
universally augmented in E iff F = F . We call the filtered measurable space (Ω,E ,F ) universally
complete iff E = E and F = F . We finally note that universal augmentation and right-continuous
extension commute, i.e.16

(2.2) F✚ = F ✚.

As a direct consequence, the same equation holds true with “✚” replaced by “+”.

2.2. Progressively measurable processes. We continue with recalling some basic notions and
thereby fixing notation. A stochastic process, with time T and valued in (Y,Y ), is a map ξ : T×Ω →
Y such that the maps ξt = ξ(t, .), t ∈ T, are E -Y -measurable. This is equivalent to the map
Ω → Y T, ω 7→ (t 7→ ξ(t, ω)), also denoted by ξ, being E -Y ⊗T-measurable. A stochastic process
ξ : T × Ω → Y is said (strictly) F -adapted iff, for all t ∈ T, ξt is even Ft-Y -measurable. We
emphasise the following generalisation, which is less evident, because it depends on the choice of
the σ-algebra on T.
Definition 2.1. Let TT be a σ-algebra on T containing the T-intervals, i.e. with IT(T) ⊆ TT.

1. A subset M ⊆ T× Ω is said F -progressively measurable with respect to TT iff, for all t ∈ T,
(2.3) M ∩ ([0, t]T × Ω) ∈ TT ⊗ Ft.

The set of F -progressively measurable subsets of T × Ω with respect to TT is denoted by
Prg(TT,F ).

2. A stochastic process ξ : T × Ω → Y is said F -progressively measurable with respect to TT
iff ξ−1(B) is F -progressively measurable with respect to TT for any B ∈ Y .

3. If the qualifier “with respect to TT” is omitted, then TT = PT. Moreover, let Prg(F ) =
Prg(PT,F ).

Remark 2.2. The following facts are easily shown. Let the objects and notation be given as in
the definition. Then:

1. Standard real time notions of adapted and progressively measurable processes are essentially
retrieved by considering stochastic processes ξ : T × Ω → Y and filtrations F such that
ξt = ξp(t) and Ft = Fp(t) for all t ∈ T.

2. Prg(TT,F ) defines a σ-algebra, and a stochastic process ξ : T × Ω → Y is F -progressively
measurable with respect to TT iff it is Prg(TT,F )-Y -measurable.

3. If TT,T
′
T are two σ-algebras on T containing the T-intervals and such that TT ⊆ T ′

T , then
Prg(TT,G ) ⊆ Prg(T ′

T ,G ), i.e. G -progressively measurability with respect to TT implies
that with respect to T ′

T .

16This follows from the analogous classical result. For the reader’s convenience, the appendix contains a proof
nevertheless.
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4. We have TT ⊗ F0 ⊆ Prg(TT,F ) ⊆ TT ⊗ F∞. Hence, with respect to TT, any set of the
form T × E, with T ∈ TT, A ∈ F0, is F -progressively measurable, and any progressively
measurable set is TT ⊗ F∞-measurable.

5. If TT ⊆ PT and Y is a metrisable topological space, then for any, with respect to TT,
F -progressively measurable ξ : T× Ω → Y , all ω ∈ Ω and all t ∈ R+, ξ(., ω) is left-constant
at (t,w1). This follows from the fact that T → T× Ω, t 7→ (t, ω) is PT-TT ⊗ E -measurable,
and Lemma 1.15.17

6. Any, with respect to TT, F -progressively measurable stochastic process ξ : T × Ω → Y as
in Definition 2.1 is adapted in a relaxed sense. Namely, ξt is Ft-Y -measurable (at least)
for any t ∈ T with π(t) < w1, alias t ∈ T∪{∞}. In view of the discussion in Subsection 1.2,
these can be interpreted as (deterministic) optional times. The result follows from the
previous item with T = {t} and E = Ω.

The simplest non-trivial progressively measurable processes are those generated by certain ran-
dom times – making the emphasised qualifier precise, is our concern for the remainder of this and the
following subsection. A random time with respect to a σ-algebra TT on T containing the intervals
is an E -TT-measurable map τ : Ω → T. These are in one-to-one correspondence to certain subsets
of T × Ω, by considering its converse graph [[τ ]] as defined in Equation 1.13, its converse epi- or its
converse hypograph. These sets can be defined in terms of stochastic intervals as well, which in
turn are defined in complete analogy to the real-time case.18 By assigning to any t ∈ T the constant
map Ω → T with value t, we obtain an injection of T into the set of random times, and we identify
T with its image under this injection. Note that, hence, any set M ⊆ T × Ω is F -progressively
measurable with respect to TT as in the definition iff, for any t ∈ T, M ∩ [[0, t]] ∈ TT ⊗ Ft.

As in the classical theory, the notion of adaptedness for stochastic processes alias compatibility
with the filtration F motivates defining the following subclass of random times (with respect to
IT(T)). An F -stopping time is a map τ : Ω → T with {τ ≤ t} ∈ Ft for all t ∈ T. In other words,
τ : Ω → T is an F -stopping time iff the process 1[[0, τ)) is F -adapted. That is, by Corollary 1.6,
τ is a random time with respect to IT(T) such that at any (order-completed) time t ∈ T, the
given information flow F can tell whether τ lies not in the future. It describes information about
whether a fixed event in E has already happened — including the present —, or not. To any
T-valued stopping time τ , we can associate the set
(2.4) Fτ = {E ∈ E | ∀t ∈ T : E ∩ {τ ≤ t} ∈ Ft}.

Remark 2.3. Standard arguments, combined with Corollary 1.6, show that, for any sequence
(τn)n∈N of F -stopping times and τ = τ0 we have:

1. Scenariowise supremum supn∈N τn is an F -stopping time;
2. Scenariowise infimum σ = infn∈N τn is an F+-stopping time, and even an F -stopping time

in case
⋃

n∈N{σ = τn} = Ω;
3. For all t ∈ T with π(t) < w1, we have {τ < t}, {τ = t} ∈ Ft;
4. Fτ is a sub-σ-algebra of E and moreover, if (Ω,E ,F ) is universally complete, then it is

universally augmented in E ;
5. If τ = t holds true, for some t ∈ T, then Fτ = Ft;
6. If τ0 ≤ τ1 holds true, then Fτ0 ⊆ Fτ1 ;

17As w1 is uncountable, this does not have clear implications on the random variable ξ(t,w1) in general.
18For instance, given two maps σ, τ : Ω → T, we have

[[σ, τ)) = {(t, ω) ∈ T × Ω | σ(ω) ≤ t < τ(ω)}.

That way, the converse graph of τ is given by [[τ ]] = [[τ, τ ]], the converse weak and strict epigraphs of τ are given by
[[τ, ∞]] and ((τ, ∞]], and the converse weak and strict hypographs of τ are given by [[0, τ ]] and [[0, τ)).
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7. τ is Fτ -IT(T)-measurable.

The following counterexample shows that other classical results about stopping times do not
generalise. Detailed verifications can be found in the appendix.

Example 2.4. Suppose that Ω = R+, equipped with Lebesgue σ-algebra E and the exponential
distribution P with parameter 1, i.e. the identity σ on R+ satisfies P(σ > t) = e−t, t ∈ R+. We can
see σ as the set-theoretic inclusion map R+ → T. Let F = (Ft)t∈T be the P-augmented filtration
generated by σ, i.e. the collections Ft of sets {σ ≤ s}, s ≤ t, ranging over t ∈ T. Let V ⊆ R+.
Define τ : Ω → T by letting τ(ω) = σ(ω) if ω ∈ V , and τ(ω) = (σ(ω), 1) else. Then the following
statements hold true:

1. τ is an F -stopping time;
2. Pτ = Pσ on IT(T);
3. σ ≤ τ and {σ = τ} = V ;
4. If V /∈ E , then:

(a) τ is not Fτ -PT-measurable;
(b) [[τ ]], [[0, τ)), and ((τ,∞]] are not F -progressively measurable (i.e. not even with respect

to PT).
Note that Part 4 is not void, since E ⊊ PR+ (Vitali).

We conclude that there are F -adapted processes with càg paths that are not F -progressively
measurable (i.e. not even with respect to PT), for instance, 1((τ,∞]] from Example 2.4, Part 4.
Moreover, the example demonstrates that two stopping times can have the same distribution, be
ordered and still be different in any scenario (case V = ∅). We can also infer from Item 4(a),
combined with Remark 2.3, Item 7, that the inclusion in Lemma 1.12 is strict:

Corollary 2.5. We have IT(T) ⊊ PT. □

2.3. Optional times. The preceding discussion raises the question whether there is a natural
subclass of stopping times exhibiting stronger measurability properties. This can mean different
things: the measurability of the stopping time itself and the progressive measurability of its converse
graph, epi- and hypograph. Making the σ-algebra on T larger works against the first, but in favour
of the second requirement. Thus, we may rephrase the questions as whether there is a σ-algebra
that solves this trade-off. Indeed, there is one, namely the projection σ-algebra, as the following
theorem affirms.

Theorem 2.6. For a map τ : Ω → T consider the following seven statements.
1. The converse graph [[τ ]] is F -progressively measurable.
2. The converse strict hypograph [[0, τ)) is F -progressively measurable.
3. The converse weak epigraph [[τ,∞]] is F -progressively measurable.
4. The converse strict epigraph ((τ,∞]] is F -progressively measurable and π ◦ τ < w1.
5. The converse weak hypograph [[0, τ ]] is F -progressively measurable and π ◦ τ < w1.
6. There is α ∈ w1 such that π ◦ τ ≤ α and, for all β ∈ α+ 1 and t ∈ T:

{π ◦ τ = β, τ ≤ t} ∈ Ft.

7. τ is an F -stopping time, there is α ∈ w1 such that π ◦ τ ≤ α, and τ is Fτ -PT-measurable.
The following holds true:

– Statements 2 and 3 are equivalent, and statements 4 and 5 are equivalent.
– Statements 6 and 7 are equivalent, and they imply all the others.
– If (Ω,E ,F ) is universally complete, then all statements are equivalent.
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Definition 2.7. An F -optional time is an F -stopping time satisfying π ◦ τ ≤ α for some α ∈ w1
and being Fτ -PT-measurable.

Remark 2.8. A map τ : Ω → R+ is an (Ft)t∈R+ -optional time, or equivalently, an (Ft)t∈R+ -
stopping time, both in the classical sense (see e.g. Dellacherie–Meyer [21], Kallenberg [44]), iff it is
an F -stopping time in the extended sense, iff it is an F -optional time. In the extended setting,
the notion of optional times is stronger than that of stopping times.

Example 2.4 together with Theorem 2.6 already illustrates the difference. On a more abstract
level, a stopping time is a random time such that one can tell whether it is already over or not; this
time can indeed be thought of as the time some given process on (Ω,E ) stops.

In addition, an optional time lies in T, unless it takes the value ∞, meaning “never”; more
precisely, even on Tα+1 for some countable α ∈ w1. Recalling that the vertical axis stands for
accumulating embedding of well-orders into R+ and that any well-order embedded into R+ must be
countable, we see that a fixed optional time must be thinkable in terms of one such an embedding
(or at most countably many) — the discussion in Subsection 2.5 and, in particular, Proposition 2.33
will make this precise. Moreover, the time itself must be measurable at the time of its realisation,
with respect to the σ-algebra PT, which takes into account information about the vertical time
coordinate as well. In total, optional times describe times where one can revise options and make
decisions in a way compatible with the given information flow. This is applied and further elaborated
on in Section 3 to formulate a general notion of “information sets” and “subgames” in a stochastic
process-based game-theoretic model.

Corollary 2.9. If (Ω,E ,F ) is universally complete, ξ : T× Ω → Y is F -progressively measurable,
and τ is an F -optional time, then

ξτ : Ω → Y, ω 7→ ξτ(ω)(ω)
is Fτ -Y -measurable.

the following propositions underline the importance of optional times, illustrate the utility of the
previous theorem, and moreover prove useful in some of the upcoming proofs.

Proposition 2.10. Let (τn)n∈N be a sequence of F -optional times and τ : Ω → T be a map. The
following statements hold true:

1. If τ is an F -stopping time and ε ≥ 0 is real, then p ◦ τ + ε is an F✚-optional time, and
provided ε > 0, it is even an F -optional time.

2. If α ∈ w1 is such that, for all n ∈ N, π ◦ τn ≤ α, and

τ(ω) =
{

limn→∞ τn(ω), if this limit exists,
∞, else,

ω ∈ Ω,

the limit being taken in the Polish space R+ × (α+ 1), then τ is an F✚-optional time.
3. We have {τ0 ≤ τ1} ∈ Fτ0 ∩ Fτ1 .
4. τ0 ∧ τ1 and τ0 ∨ τ1 are F -optional times.

In general, the proofs are a bit tedious. In the universally complete setting, they can be sub-
stantially simplified. This is discussed in the appendix, together with the proofs.

As an illustration, we present the following result about approximating optional times with
respect to the augmented filtration by optional times with respect to the right-limit of the original
one — the case of R+-valued τ is well-known (see, e.g., [62]).

Proposition 2.11. Suppose that E is universally complete and let F = (Ft)t∈T. Then, for any
P ∈ PE and any F -optional time τ there is an F✚-optional time τ with P(τ = τ) = 1.
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A large class of stopping and optional times can be constructed as follows. For a set M ⊆ T× Ω,
let

DM : Ω → T, ω 7→ inf{t ∈ T | (t, ω) ∈ M}
be its début alias entry time. For example, M = {ξ ∈ B} for a Y -valued stochastic process ξ and a
measurable set B ∈ Y . Recall that ξ is F -progressively measurable iff M is for any B ∈ Y .

Theorem 2.12 (Début). Suppose that E is universally complete. Let M ⊆ T×Ω be F -progressively
measurable. Then, DM is an F +-stopping time. Moreover, the following conditions are equivalent:

1. DM is an F -optional time.
2. π ◦DM < w1.
3. [[DM ]] ∩ [[0,∞)) ⊆ M .

Remark 2.13. Note that, by Theorem 2.6, conversely, any optional time τ is of the form DM

with progressively measurable M , namely, with M = [[τ,∞]]. This sheds further light on the
interpretation of optional times. Namely, DM being an F -optional time means that the option-
revising or decision-making agent really does so at time τ , and not only in the infinitesimal future
after τ . In classical continuous time R+, an analogous statement is not true for optional times.
For instance, the début of Brownian motion ξ into an open set U is the smallest time τ such that
infinitesimally after this the Brownian motion enters U — but, typically,19 ξτ /∈ U ! Hence, the
notion of the first entry time is problematic: it actually does not exist in this situation, there is
only a greatest lower bound on all times t with ξt ∈ U .

Not so for optional times in vertically extended continuous time! Here, Property 3 in The-
orem 2.12 essentially expresses the fact that if in scenario ω ∈ Ω the set M is reached at some
(finite or infinite) time, then it is reached at the infimal time DM , i.e. (DM (ω), ω) ∈ M .

2.4. Optional processes. So far we have focused on the basic case of stopping times and cor-
responding processes. We continue with discussing a classes of progressively measurable processes
describing decision making at optional times. By Theorem 2.6, the σ-algebras on T × Ω

Prd(F ) =
{

{0} × E | E ∈ F0
}

∨ σ
(

[[0, τ ]] | τ F -optional time
)
,

Opt(F ) =
{

{∞} × E | E ∈ F∞
}

∨ σ
(

[[0, τ)) | τ F -optional time
)
,

are contained in Prg(F ). In analogy with the classical case, call a subset M ⊆ T×Ω F -predictable
(F -optional) iff M ∈ Prd(F ) (M ∈ Opt(F ), respectively); and idem for a stochastic process
ξ : T × Ω → Y iff this holds true for any M of the form M = ξ−1(B), B ∈ Y . As in the classical
case, predictability implies optionality:

Lemma 2.14. We have Prd(F ) ⊆ Opt(F ) ⊆ Prg(F ).

An important and illustrative example of optional processes is the following. Let us call real-
valued simple F -optional process any map ξ : T × Ω → R of the form

(2.5) ξ = ξα ◦ prjΩ 1[[τα]] +
∑
β∈α

ξβ ◦ prjΩ 1[[τβ , τβ+1)) ,

for a countable ordinal α ∈ w1, a family (τβ)β∈α+1 of F -optional times with τ0 = 0, τα = ∞,
τβ ≤ τγ for all β, γ ∈ α + 1 with β ≤ γ, and τγ = supβ∈γ τβ for all limit ordinals γ ∈ α + 1, and a
family (ξβ)β∈α+1 of real-valued Fτβ

-measurable ξβ . Given a Polish space Y , a simple F -optional
process is a map ξ : T× Ω → Y such that for any measurable map φ : Y → R, φ ◦ ξ is a real-valued
simple F -optional process.

19That is, if ξ does not already start in U , i.e. ξ0 /∈ U , ...
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Let us briefly note that, as a special case, real-valued simple F -optional processes contain what,
in view of the classical stochastic analysis literature (see, e.g., [21, 44]), we might call real-valued
simple F -predictable processes. That is the case where τ1 = (0, 1), α = γ + 1 for some γ ∈ w1,
ξγ = ξα, and for all β ∈ α \ {0}, there is an F -optional time σβ with p ◦ τβ = p ◦ σβ and
π ◦ τβ = π ◦ σβ + 1, implying [[τ0, τ1)) = [[0]], [[τβ , τβ+1)) = ((σβ , σβ+1]] for β ∈ (0, γ)w1 , and
ξα ◦ prjΩ 1[[τα]] + ξγ ◦ prjΩ 1[[τγ , τγ+1)) = ξγ ◦ prjΩ 1((σγ ,∞]].

Lemma 2.15. Opt(F ) is the smallest σ-algebra M on T × Ω such that all real-valued simple
F -optional processes are M -measurable.

Lemma 2.16. The set of real-valued F -optional processes is the smallest set of maps T × Ω → R
a) containing 1[[0, τ)) for all F -optional times and 1({∞} × E) for all E ∈ F∞, b) closed under
pointwise addition and real scalar multiplication, and c) closed under pointwise convergence.

Similar results may be obtained for predictable processes. By definition, optional (and predict-
able) processes can be seen as a limit object of locally right-constant sequential decision making,
progressively measurable with respect to the information flow. Note that we further elaborate on
this in the following Subsection 2.5. Here, for predictable processes, the approximators are such
that any action can be predicted (see the discussion above about simple predictable processes).
Generalising these concepts to vertically extended real time allows to fully and consistently model
an agent’s capacity of sequential instantaneous re- or proaction with respect to information flow,
including information progressively revealed only during this “instantaneous” process (of course, it
is only instantaneous in the R+-coordinate).

Remark 2.17. 1. In view of the preceding discussion and Lemma 2.14, one can further de-
velop the subtleness of re- or proaction with respect to information flow in the framework
of vertically extended time, by considering generalised Meyer σ-algebras, i.e. σ-algebras M
on T × Ω satisfying

Prd(F ) ⊆ M ⊆ Opt(F ).

These objects have been introduced in classical continuous times by [51], further developed
in both theory and applications in [10, 11, 13, 12]. A detailed mathematical development of
the related stochastic analysis in vertically extended continuous time is beyond the scope
of the present work. It seems worth further inquiry, because it naturally arises in control-
and game-theoretic models in order to mix predictable and optional decision making with
respect to different sources of information (see Subsection 3.1).

2. The notions of predictability and optionality correspond to the classical notions when sup-
posing F and ξ such that Ft = Fp(t) and ξt = ξp(t) for all t ∈ T.

The following proposition provides a hierarchical description of optional processes in the spirit
of descriptive set theory (see [45]). This allows to better understand the measurability of optional
processes at all t ∈ T with π(t) = w1. For this, let us introduce the following notation. Let V0
denote the real vector space, with pointwise addition and scalar multiplication, generated by all
maps of the form

(2.6) 1[[0, τ)), 1{∞} × E, τ F -optional time, E ∈ F∞.

For any ordinal α ∈ w1, let Vα+1 be the set of pointwise limits of Vα-valued sequences. For any
limit ordinal α ∈ w1, let Vα =

⋃
β∈α Vβ .

By transfinite induction, one shows that for all α, β ∈ w1 + 1 with α ≤ β, we have Vα ⊆ Vβ .
Moreover, for all α ∈ w1, Vα is an R-vector space — for if not, there would be a smallest α ∈
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w1 + 1 without that property, which is impossible.20 We can now state and prove the announced
proposition.
Proposition 2.18. The set of real-valued F -optional processes equals Vw1 .
Corollary 2.19. For any F -optional process ξ valued in a Polish space Y , there is α ∈ w1 such
that for all t ∈ T with π(t) ≥ α and all ω ∈ Ω, ξ(t, ω) = ξ((p(t), α), ω) holds true.

Note that, in view of Remark 2.2, Part 5, we already knew that for any progressively measurable
process ξ valued in a metrisable topological space, any u ∈ R+ and any ω ∈ Ω, there is α ∈ w1

such that all β ∈ w1 + 1 with α ≤ β satisfy ξ((u, β), ω) = ξ((u, α), ω). By the preceding corollary,
this can be considerably strengthened for optional processes: α can be chosen independent of both
u and ω.
Definition 2.20. For any F -optional process ξ valued in a Polish space Y , its vertical level is the
smallest α ∈ w1 such that for all t ∈ T with π(t) ≥ α and all ω ∈ Ω, ξ(t, ω) = ξ((p(t), α), ω) holds
true. The upper vertical level of ξ is the smallest β ∈ w1 satisfying the following property: For all
x ∈ R+ and all ω ∈ Ω, there is α ∈ β such that for all t ∈ T with p(t) = x and π(t) ≥ α, we have
ξ(t, ω) = ξ((x, α), ω).
Remark 2.21. Note that the vertical level is inferior to the upper vertical level. Let α ∈ w1. If
α is the vertical level of ξ, then its upper vertical level is either α or α + 1. If α + 1 is the upper
vertical level of ξ, then α is the vertical level of ξ. So, the upper vertical level is a more general and
flexible concept than that of the vertical level, while the latter is a bit more accessible.
2.5. Tilting convergence. In this subsection, we show that optional processes in vertically ex-
tended time arise by closing the set of classical, very simple optional processes with respect to
binary continuous operations and natural limit procedures. Given a Polish space Y , a very simple
F -optional process is a map ξ : T × Ω → Y such that for any measurable map φ : Y → R, φ ◦ ξ
is a real-valued simple F -optional process admitting a representation according to Equation 2.5
with deterministic τβ , for all β ∈ α+ 1. We recall that a process ξ : T × Ω → Y is said classical iff
ξ = ξ ◦ (p× idΩ). A classical, very simple F -optional process can be represented as just mentioned
with deterministic, R+-valued τβ .

The subtle point is to clarify what “natural” limit procedure means in our context and to for-
mulate a suitable notion of convergence. Pointwise convergence has already been considered in the
preceding section — by Lemma 2.16, optional processes are essentially generated by simple pro-
cesses via pointwise limits. Stability under pointwise convergence is a requirement that emanates
from basic measure and integration theory: Any σ-additive measure on the sample space T×Ω that
can integrate (bounded measurable) functions of all simple F -optional processes, can also integrate
(bounded measurable) functions of general F -optional processes.

In order to obtain general simple optional processes out of classical very simple ones — and
therefore give an interpretation of (simple, then general) optional processes in vertically extended
time —, one needs an additional notion of convergence, namely one capturing infinitesimally ac-
cumulating information. With the game-theoretic background of this text, mostly developed in
Section 3, this is in particular information on decisions which, under pointwise convergence, may
collapse in the limit. To give a visual description of the process, imagine an infinitely long sentence
written in one horizontal half-axis (think of R+). A schematic representation of this is given in
Figure 2, printed in the introduction. Words are indicated by points, and the position of the words
at the beginning of the convergence procedure are indicated by light gray.

Now, there is a person sitting at +∞, requesting an executive summary. The person therefore
pushes the sentence with infinite strength in the direction of the start of the sentence (that is, zero)

20The arguments are similar to those used in the context of the Borel hierarchy, see, e.g. [45].
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— this is the dashed arrow pointing to the left in Figure 2, moving the words (indicated by points)
towards the left. The movement is indicated by the points being printed in darker gray. Now, at
any point t ∈ R+ on the half-axis, there are parts of the sentence that accumulate in its right-hand
neighbourhood. Things turn out such that these parts are tilted by 90 degrees counterclockwise
as to build a vertical strip just above t, to be read starting from below. In Figure 2, the tilting is
indicated by the curved dashed arrows. The accumulation process is most easily imagined at zero;
but, given a sufficient kind of periodicity of the sentence, the asymptotics work out at any t ∈ R+
as well.

Note that the sentence, although written on a continuous paper roll, is well-ordered and so are
the vertical strips. On the paper roll, severely reshaped by the person, a continuous structure may
yet arise. This should remind us of various pointwise approximation procedure in analysis, e.g.
the approximation of measurable functions valued in R+ by simple ones, or even by step functions
in certain cases. What we see in addition here, is the preservation of information on order about
“words” (or more generally objects) that collapse at a single position t on the paper roll within the
limit. The game-theoretic importance of this construction seems rather obvious then: the order of
actions, whose execution times collapse to one identical “real” time t ∈ R+ in the limit, should be
preserved.

Before getting to a formal description of this concept, let us note by means of an example that:
a) pointwise convergence is far too restrictive, and b) convergence of the sequence (ξn)n∈N alone
does not lead to a satisfactory notion, i.e. the “convergence” depends on the sequence of grids.

Example 2.22. For this, consider the real-valued processes indexed over n ∈ Z given by ξn =
1[[0, 2−n)). Imagine that the process describes the actions of some agent called Alice on the dyadic
grid Gn given by k2−n, k ∈ N. What is a limit of (ξn)n∈N? The pointwise limit, as n → +∞,
is 1[[0, (0,w1)]] — but this gives no interesting information about the (vertically extended) time at
that the agent switches to value zero (in short: stops). On the other hand, for any optional time τ
with p ◦ τ = 0 and π ◦ τ > 0, ξ = 1[[0, τ)) is a limit horizontally, i.e. ξn(t) → ξ(t) at any t ∈ R+. As
only Alice is involved, the exact choice of τ does not seem to reflect much essential information.

Now, add another agent called Bob acting according to ξn−1 in grid Gn. Horizontally, the
same limit obtains, and for Bob alone the choice of the vertical stopping time seems irrelevant.
However, in any grid Gn, Alice switches to zero strictly before Bob: Alice uses the second, Bob
the third opportunity to stop. In that context, the adequate limit outcome for Alice would be
ξA = 1[[0, τA)) with τA = (0, 1) and, similarly, for Bob ξB = 1[[0, τB)) with τB = (0, 2).21 Hence,
the game-theoretically plausible limit depends on the chosen grid sequence and not only on the
sequence (ξn)n∈N. It also depends on the fact that both agents use the same grid sequence. Next,
suppose that, in any grid Gn, n ∈ N, a third agent called Carol acts according to ξn−2 if n is even
and according to ξn if n is odd. Then, comparing with Bob, in any grid both agents do not stop
simultaneously, but any susceptible limits ξB for Bob and ξC for Carol, in any scenario ω ∈ Ω,
must either let them stop — also vertically — instantaneously or gives one of them the priority
— which both would remain unexplained by the approximating sequences. A similar comparison
with Alice is equally inconclusive. Thus, on the vertical half-axis, there may be no plausible limit
at all. This holds true despite the facts that a) all sequences do converge in the strongest possible
sense (pointwise on the full domain T × Ω, and they are uniformly bounded) and b) the horizontal
limit is plausible. Hence, for understanding “limit behaviour along the vertical half-axis”, looking
at convergence of the sequence (ξn)n∈N alone is insufficient.

Based on the theoretical motivation outlined in the beginning, underlined by the preceding
example, we give the following definitions.

21Note that, in the von Neumann hierarchy, the second ordinal is 1, and the third ordinal is 2.
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Definition 2.23. An F -adapted grid is a map G : (α+ 1) × Ω → T for some α ∈ w1 such that:
1. for each β ∈ α, τG

β : Ω → T, ω 7→ G(β, ω) is an F -optional time;
2. τG

0 = 0, τG
α = ∞;

3. for all β, γ ∈ α with β < γ, we have τG
β (ω) < τG

γ (ω) for all ω ∈ {τG
β < ∞};

4. for all limit ordinals γ ∈ α+ 1 and all ω ∈ Ω, we have G(γ, ω) = supβ∈γ G(β, ω).
An F -adapted grid is said classical iff it is R+-valued. A (deterministic) grid is an F -random grid
as above such that, for all β ∈ α, τG

β is deterministic (i.e. constant).
Given two F -adapted grids G : (α+ 1) × Ω → T, G′ : (α′ + 1) × Ω → T, G′ is said to refine or to

be a refinement of G iff there is an order-embedding j : α+1 ↪→ α′ +1 such that G = G′ ◦ (j× idΩ).
For any F -adapted grid G : (α+ 1) × Ω → T, let the grid size at ω ∈ Ω be given by

∆(G,ω) =

∞, if supβ∈α G(β, ω) < ∞,

sup β∈α :
τG

β (ω)<∞

(
p ◦G(β + 1, ω) − p ◦G(β, ω)

)
, else.

Let (Gn)n∈N be a sequence of F -adapted grids. It is said refining iff for all n ∈ N, Gn+1 refines
Gn. It is said (pointwise uniformly) convergent if, for every ω ∈ Ω, ∆(Gn, ω) → 0 as n → ∞.

Remark 2.24. Any F -adapted grid G : (α + 1) × Ω → T can be seen as a map w1 × Ω → T, by
letting G(β, ω) = ∞ for all arguments (β, ω) ∈ [w1 \ (α + 1)] × Ω. We use this convention in the
following.

Simple / very simple (classical) F -optional processes are defined via F -adapted / deterministic
(classical) grids, respectively. Let us fix a name for that.

Definition 2.25. Let Y be a Polish space and ξ′ be a simple F -optional process valued in Y . An
F -adapted grid G : (α + 1) × Ω → T is said compatible with ξ′ iff there are a real-valued simple
F -optional process ξ, given by Equation 2.5, with τβ = G(β, .) for all β ∈ α + 1, and measurable
φ : R → Y such that ξ′ = φ ◦ ξ.

In other words: Compatibility essentially means that all jump times of ξ are part of grid. By
definition, for any simple (very simple) F -optional process, there is a compatible F -adapted (de-
terministic) grid. For simple F -optional processes, there is even a smallest such grid, provided
measure-theoretic completeness:

Lemma 2.26. Suppose that (Ω,E ,F ) is universally complete. Let Y be a Polish space and ξ be
a simple F -optional process valued in Y . Then, there is an F -adapted grid G : (α + 1) × Ω → T
satisfying, for all β ∈ α and ω ∈ Ω:
(2.7) G(β + 1, ω) = inf{t ∈ [G(β, ω),∞]T | ξt(ω) ̸= ξG(β,ω)(ω)}.

Moreover, ξ can be represented as in Equation 2.5 with τβ = G(β, .) and ξβ = ξβ for all β ∈ α+ 1.
If ξ is classical, then so is G.

It is easily shown using transfinite induction that if there is an order embedding α ↪→ α′ of one
ordinal α into another α′, then α ≤ α′. As an immediate consequence of this, if G,G′ are as in the
definition such that G′ refines G, then α ≤ α′. As another consequence, we obtain the following
lemma.

Lemma 2.27. Let (Gn)n∈N be a refining, convergent sequence of F -adapted grids Gn : (αn + 1) ×
Ω → T and let (t, ω) ∈ R+ × Ω. Then,

1. for any n ∈ N, there is a unique ordinal δn(t, ω) admitting an order isomorphism
ψn(t, ω) : δn(t, ω) + 1 → {β ∈ αn + 1 | Gn(β, ω) ≥ t},
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and, moreover, this order isomorphism is unique and given by

β′ 7→ inf{β ∈ αn + 1 | Gn(β, ω) ≥ t} + β′;

2. for all n ∈ N, δn(t, ω) ≤ δn+1(t, ω), and δ(t, ω) = supn∈N(δn(t, ω) + 1) is non-zero and
countable.

Hence, to any refining, convergent sequence of F -adapted grids Gn : (αn + 1) × Ω → T, n ∈ N,
we can assign maps with domain R+ × Ω denoted by ψn, δn, δ, and γ and given as in the lemma
and by the following formula22

(2.8) γ(t, ω) = inf{β ∈ δ(t, ω) | lim sup
n→∞

p ◦Gn(ψn(t, ω)(β), ω) > t}, (t, ω) ∈ R+ × Ω.

As (Gn)n∈N is convergent, γ(t, ω) is a limit ordinal for all (t, ω) ∈ R+ × Ω.

Definition 2.28. Let Y be a Polish space, ξ and ξn, n ∈ N, be stochastic processes T × Ω → Y ,
and (Gn)n∈N be a refining, convergent sequence of F -adapted grids Gn : (αn + 1) × Ω → T.

(ξn | Gn)n∈N converges tiltingly to ξ, or (ξn)n∈N converges tiltingly along (Gn)n∈N or (ξn |
Gn) T→ ξ as n → ∞, iff, for all (t, β, ω) ∈ T × Ω, we have the following convergence in Y :

(2.9) ξ(t, β, ω) =
{

limn→∞ ξn
(
Gn(ψn(t, ω)(β), ω), ω

)
, if β ∈ γ(t, ω),

limβ′↗γ(t,ω) ξ(t, β′, ω), else.

Note that, for a fixed refining, convergent sequence of F -adapted grids Gn, n ∈ N, the tilting
convergence (ξn | Gn) T→ ξ as n → ∞ determines ξ uniquely at all arguments of the form (t, β, ω) ∈
T × Ω with β ∈ γ(t, ω), by the first case in Equation 2.9. This includes R+, but not all of T. The
values on the (uncountable) remainder the vertical half-axis above t are determined by extending
ξ(., ω) left-continuously at (t, γ(t, ω)) and then constantly until (t,w1). Indeed, using the metaphor
from the subsections’ beginning, these arguments are not attained by the “infinitely strong push”
initiated by the person at +∞. In other words, they do not contain relevant information about
the asymptotics of (ξn)n∈N along (Gn)n∈N. Note that, for this to work, an asymptotic limit must
exist at the right-hand end of the information that accumulates near t – formally, left-continuity of
ξ(., ω) at (t, γ(t, ω)) is necessary.

Remark 2.29. Let Y be Polish spaces, ξ and ξn, n ∈ N, be stochastic processes T × Ω → Y , and
(Gn)n∈N be a refining, convergent sequence of F -adapted grids Gn : (αn + 1) × Ω → T such that
(ξn | Gn) T→ ξ.

1. If ξ̂ : T × Ω → Y is another stochastic process such that (ξn | Gn) T→ ξ̂, then ξ̂ = ξ.
2. Let Z be another Polish space and f : Y → Z continuous. Then, (f ◦ ξn | Gn) T→ f ◦ ξ.
3. Let Y ′ be another Polish space, and ξ′ and ξ′n, n ∈ N, be further stochastic processes

T × Ω → Y ′ such that (ξ′n | Gn) T→ ξ′. Then, ((ξn, ξ′n) | Gn) T→ (ξ, ξ′), with respect to the
topological product Y × Y ′.

4. As a consequence, if Y ′, ξ′, (ξ′n)n∈N are given as in the preceding item, and if Y = Y ′ is
also a topological vector space on R and (an)n∈N a sequence of scalars converging to a ∈ R,
then (ξn + anξ

′n | Gn) T→ ξ + aξ′ as n → ∞.
Note that we refrain from embedding tilting convergence into the language of general topology;
though an interesting question, this is clearly beyond the scope of this text.

22The following infimum is computed in the complete lattice δ(t, ω) + 1.
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To the best of the author’s knowledge, the notion of “tilting convergence” is a new contribu-
tion to both the literature on stochastic analysis and control and that on limits in continuous-time
games. Stochastic analysis in vertically extended time needs a notion of convergence that is adapted
to both information flow given by the filtration F and to the vertical extension of time. Direct
extensions of classical notions (such as pointwise / almost sure, measure-, or Lp-convergence) seem
inappropriate for this. Regarding game theory, in [28], Fudenberg and Levine study approxima-
tions of outcomes in continuous-time games in terms of outcomes generated by embedded refining,
convergent sequences of grids, but they do not consider instantaneous reaction. The “discrete time
with an infinitesimally fine grid” approximation by Simon and Stinchcombe (cf. [63]) does so, but it
restricts to a deterministic setting, to approximators ξn with a finite number of jumps and with sta-
tionary actions,23 and with piecewise constant ξ. Having said that, formally, tilting convergence can
be seen a (though broad) generalisation of the convergence implied by the metric in [63, Section 4,
p. 1185].

Example 2.30. Reconsider Example 2.22. Let ξn = 1[[0, 2−n)), and let Gn : (w + 1) × Ω →
T, (k, ω) 7→ k2−n, for any n ∈ Z, with the understanding w2−n = ∞. Then, Alice’s and Bob’s beha-
viour on (Gn)n∈N converge tiltingly: (ξn | Gn) T→ 1[[0]] = 1[[0, (0, 1))) and (ξn−1 | Gn) T→ 1[[0, (0, 1)]] =
1[[0, (0, 2))). Carol’s, however, does not. Indeed, let, for n ∈ Z,

ξ̃n =
{
ξn−2, if 2 | n,
ξn, else.

For all n ∈ N and ω ∈ Ω, ψn(0, ω) = idw+1; whence

ξ̃n
(
Gn(ψn(t, ω)(1), ω), ω

)
= ξ̃n(2−n, ω) =

{
1, if 2 | n,
0 else,

which does not converge in R as n → +∞.

Example 2.31. We again consider Example 2.22 in order to illustrate the grid-dependence. Let
ξn = 1[[0, 2−n)), and let Gn : (w2 + 1) × Ω → T, (kw +m,ω) 7→ (k + 1 − 2−m)2−n, for any n ∈ Z,
with the understanding w2−n = ∞ (case kw + m = w2 alias (k,m) = (w, 0)). Then, Alice’s and
Bob’s behaviour on (Gn)n∈N converge tiltingly, but to other limits: (ξn | Gn) T→ 1[[0]] = 1[[0, (0,w)))
and (ξn−1 | Gn) T→ 1[[0, (0, 2w))). Alice only switches at the wth moment, Bob only at the 2wth
moment. Carol’s behaviour does not converge on (Gn)n∈N for similar reason as those from the
previous example.

To some extent, it is possible to represent tilting convergence in terms of pointwise convergence:

Lemma 2.32. Let ξn, n ∈ N, be real-valued stochastic processes T × Ω → R, and (Gn)n∈N be a
refining, convergent sequence of F -adapted grids Gn : (αn + 1) × Ω → T. Let L(On) denote the
class of limit ordinals. Then, for all (t, β, ω) ∈ T × Ω with β ∈ δn(t, ω) + 1, we have:

(2.10)

ξn
(
Gn(ψn(t, ω)(β), ω), ω

)
= ξn

τGn
β

(ω) 1[[0]](t, 0, ω)

+
∑

β0∈αn+1
ξn

τGn
β0+1+β

(ω) 1((τGn

β0
, τGn

β0+1]](t, 0, ω)

+
∑

β0∈(αn+1)∩L(On)

ξn
τGn

β0+β

(ω) 1[[τGn

β0
]](t, 0, ω).

23That is, for large n, the action at the βth point of grid Gn does not depend on n, for a fixed grid index β ∈ αn.
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With this representation, we see directly that tilting convergence “accumulates information from
the future”. In particular, it is – in general – not correct that any sequence of F -optional processes
converging tiltingly along a sequence of refining, convergent F -adapted grids has an F -optional
(tilting) limit. Provided the grid converges sufficiently strongly, it appears natural to hope for an
F✚-optional tilting limit. Making this precise is beyond the scope of the present work.

Here, the more relevant question for us is the following: What processes can be generated out of
classical, very simple F -optional processes via tilting and pointwise convergence?

Proposition 2.33. Let τ be an F -optional time. Then, there are a sequence (ξn)n∈N of clas-
sical, very simple F -optional processes and a refining, convergent sequence (Gn)n∈N of classical,
deterministic grids Gn compatible with ξn, for all n ∈ N, such that (ξn | Gn) T→ 1[[0, τ)) as n → ∞.

For the following result, let us adopt the following conventions. A set S of maps T × Ω → Y
is said optionally closed under tilting convergence iff, for all S-valued sequences (ξn)n∈N of F -
optional processes, all maps ξ : T × Ω → Y , and all refining, convergent sequences of F -adapted
grids (Gn)n∈N such that a) (ξn | Gn) T→ ξ as n → ∞ and b) ξ is F -optional, it necessarily holds true
that ξ ∈ S. Further, a set S of maps T×Ω → Y is said closed under continuous binary operations iff
for all ξ, ξ′ ∈ S and all continuous f : Y ×Y → Y , the map ξ′′ : T× Ω → Y, (t, ω) 7→ f(ξt(ω), ξ′

t(ω))
satisfies ξ′′ ∈ S.

Theorem 2.34. Let Y be a Polish space. The set of Y -valued F -optional processes equals the
smallest set of maps T × Ω → Y a) containing all Y -valued classical, very simple F -optional
processes, b) closed under continuous binary operation, c) closed under pointwise convergence, and
d) optionally closed under tilting convergence.

We conclude that — in the sense made precise in this subsection — F -optional processes are
the processes generated by all classical simple F -optional processes defined on deterministic grids
(= very simple), by means of “continuous completion” (continuous binary operations), “measurable
completion” (pointwise convergence), and “decision-theoretic completion” (tilting convergence).

3. Stochastic process forms

In this section, we introduce the abstract game- and decision-theoretic model of stochastic process
forms. These implement extensive form characteristics using the language of stochastic processes,
giving rise to a model that encompasses much of the continuous-time stochastic control literature,
including stochastic differential games and timing games, but comes as close as arguably possible to
an extensive form. The stochastic process form comes with a subtle model of information flow and
information sets, or “subgames”, using techniques from stochastic analysis. In stochastic process
forms, strategies are complete contingent plans of action given by one stochastic process. A minimal
requirement is well-posedness, i.e. any strategy profile induces a unique outcome compatible with
it. This gives rise to a canonical way of implementing abstract concepts of dynamic equilibrium,
including perfect Bayesian and subgame-perfect equilibrium. These point are illustrated concretely
by a case study of the stochastic timing game and further discussed in the context of stochastic
differential games.

3.1. Introduction of stochastic process forms. This text studies game-, decision-, control-
theoretic models in that action is described by stochastic processes evolving in (possibly) continuous
time. As shown in [57, Chapters 1 and 2] — and in particular in [57, Theorem 2.3.14] — a large
class of well-posed stochastic extensive forms based on paths of action indexed over well-ordered
subsets of R+ can be constructed. The construction of action path stochastic extensive forms in
[57, Chapters 1 and 2] moreover reveals that the induced outcomes generate adapted processes
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with respect to the exogenous information flow. These adapted processes on a well-ordered grid in
R+ can be equivalently seen as locally right-constant adapted processes with time index set R+.24

Thus, we see that there is an extensive form footing to stochastic games with locally right-constant
continuous-time paths of action, given a fixed grid of admissible action times.

By the classical results due to [63, 66] and [4, 2], going beyond such a locally right-constant
setting while remaining strictly within extensive form theory is doomed to failure. However, when
starting out of well-posed stochastic extensive forms with adapted (and thus optional) locally right-
constant action process with time index set R+, continuous, measurable and decision-theoretic
completion yields exactly the class of general optional processes in vertically extended continuous
time, by Theorem 2.34. This implies two things. First, in that limit sense, defining a game-
theoretic form on the basis of action processes with these properties has a footing on well-posed
action path stochastic extensive forms. Second, decision-theoretic generality requires to work in
vertically extended continuous time, based on the stochastic analysis developed so far in this text.

Therefore, for abstract game-theoretic reasons, the question arises what game-theoretic struc-
tures obtain when we describe action by stochastic (and in particular optional) processes in vertically
extended time. This is moreover motivated by the existence of a huge literature on games, decision
and control problems in continuous time using stochastic processes, including timing games and
differential games, in various formulations.25 A third reason, linked to the two previously mentioned
ones, is that explaining these games in terms of their extensive form characteristics also suggests a
limit theory using action path stochastic extensive forms as approximators. In a first step, however,
a susceptible limit must be identified, if we are interested in more than mere existence of it. Indeed,
we wish to provide an abstract and general model a priori of the extensive form characteristics of
games based on stochastic processes. As this formulation is not an extensive form and the basic
structure of it are not decision trees, but stochastic processes, it receives the name stochastic process
form.

We motivate main parts of the following definition of the stochastic process form beforehand, and
continue the detailed discussion afterwards. How do we model the “extensive form characteristics”
in a stochastic process form, defined as “the flow of information about past choices and exogenous
events, along with a set of adapted choices locally available to decision makers” in the introduction?
The flow of an agent i’s information about past choices and exogenous events is given by a stochastic
process χ on the one hand and on the other a pair consisting of a filtration H i and a σ-algebra M i,
respectively. This stochastic process is called state process, valued in some state space B, as in the
control-theoretic literature. The filtration is defined on the configuration space W = Ω ×BT, which
is the product of the set of exogenous scenarios Ω and the path space for the state process BT, as
in the Witsenhausen product form (cf. [69, 70, 37]). Departing from a product form setting, M i

is a σ-algebra T × W with Prd(H i) ⊆ M i ⊆ Opt(H i), describing in flexible way what pieces of
information revealed at time τ i the agent i can condition her action on (roughly speaking). These
measurability conditions are also a clear departure from the extensive form setting because they
use properties of entire processes and not of their evaluations at fixed deterministic times.

The condition defining M i reveals it as what it well-known in stochastic analysis as Meyer σ-
algebra (a.k.a. σ-field) with respect to H i, introduced and developed in [51, 25, 10] in the classical
setting; for recent work on applications to stochastic control, see, e.g. [12, 13, 11]. Following this
literature, M i allows to express the amount of information revealed “at time τ i” agent i can use for

24More precisely, in the language and notation of [57], given a well-ordered subset T̃ ⊆ R+ with 0 ∈ T̃, the
collection of induced outcomes (ω, f ′) ∈ W ⊆ Ω × AT̃ of a strategy profile s, given a random move x = xt(f) with
domain Dx = Dt,f , (t, f) ∈ T̃ × AT, and given scenario ω ∈ Ω, can be seen as map R+ × Dx → A with locally
right-constant paths jumping only at times T̃.

25For a recent textbook with many examples focusing on “mean field games”, see [16].
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action at time τ i, as opposed to action at times succeeding τ i. The presented framework of Meyer
σ-algebras in vertically extended time permits to use the power of classical Meyer σ-algebras in
describing action with respect to information at a given time in settings where longer well-ordered
chains of instantaneous pro- and reaction are relevant, including games.

The set of choices locally available to decision makers is described by stochastic processes si : T×
W → Ai, valued in some personal action space Ai, and called strategies. These are thus formal
primitives, but they are required to be H i-progressively measurable and “locally” M i-measurable
processes. The meaning of “locally” is subtle: what are these loci alias decision points? When
equipped with the σ-algebra M i, agent i can check her options at any H i-optional time τ i such
that [[0, τ i)) ∈ M i; for exactly in that case, she can really follow the abstract strategy 1[[0, τ i)) of
opting for value zero at time τ i. At time τ i, agent i can observe the state process χ̃ up to time
τ i, that is everything she can see of M i-measurable functions (thus, possible strategies) of it up
to time τ i. However, already optional times equipped with pointwise order do clearly not define a
tree or forest; this is a clear departure from the extensive form. Still, we obtain a notion modelling
instances (τ i, χ̃) at that choices alias options are available to agents, and strategies can be seen as
complete contingent plans of action at all these instances, compatible with the information structure
M i. We nevertheless insist on the difference to extensive forms where strategies are all complete
contingent plans of locally available choices, without any condition on measurability along the time
axis, or more precisely, over option-revision instances (τ i, χ̃). In the stochastic process form setting,
it is the H i-progressive measurability and “local” M i-measurability that imply such a condition.

Based on this, one can also develop a notion of outcome, or actually, state processes induced
by strategy profiles, given a starting point (τ i, χ̃) as above. Then, a minimal requirement for a
stochastic process form in order to give rise to a proper game-theoretic model is well-posedness:
that any strategy profile induces a unique state process, given any starting point.

With these preparations, we introduce the formal definition. In what follows, T denotes vertically
extended time as introduced in Subsection 1.2. In addition, we fix a measurable space (Ω,E ) with
Ω ̸= ∅. The elements of Ω represent exogenous scenarios, those of E events.26 Moreover, fix a
σ-ideal N on E , that is a non-empty and strict subset of E , stable under both intersection with
elements of E and countable union. The relevant example for this is N = E ∩

⋂
P∈P NP for a

non-empty set P ⊆ PE of prior beliefs alias probability measures on E . This also includes the
case N = {∅}. Given this σ-ideal N , we say that a property holds for N -almost all ω ∈ Ω or
N -almost surely iff there is N ∈ N such that the property holds for all ω ∈ N∁. For any set
S ⊆ T×Ω, two maps χ, χ′ : S → Y are said N -indistinguishable, denoted by χ ∼=N χ′ if N -almost
all ω ∈ Ω satisfy the following property: for all t ∈ T with (t, ω) ∈ S we have χt(ω) = χ′

t(ω). If
N = E ∩ NP for some P ∈ PE , then “N ” is replaced by “P” in these phrases, as usual.

Definition 3.1. (Part A): For fixed (Ω,E ,N ), consider the data

F = (I,A,B,W,W,H ,M ,S),

where:
– I is a non-empty, finite set — its elements are called agents;
– A =

∏
i∈I Ai is the topological product of Polish spaces Ai, i ∈ I — the elements of Ai are

called i’s actions and the elements of A action profiles;
– B is a Polish space — it is called state space, its elements are called states;
– W ⊆ Ω × BT is a subset — its elements are called configurations;
– W is a set of pairs ζ = (ξ, χ) of maps ξ : T × Ω → A and χ : T × Ω → B such that, for all
ω ∈ Ω, (ω, χ(ω)) ∈ W — an action process is a ξ such that there is χ with (ξ, χ) ∈ W, a

26In the language of [57], (Ω, E ) is an exogenous scenario space.
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state process is a χ such that there is ξ with (ξ, χ) ∈ W, an outcome process is an element
of W, seen as a map T × Ω → A × B;

– H = (H i)i∈I is a family of filtrations H i = (H i
t )t∈T on the sample space W , i ∈ I — for

any i ∈ I, H i is called basic information structure for i;
– M = (M i)i∈I is a family of σ-algebras M i on T × W satisfying Prd(H i) ⊆ M i ⊆

Opt(H i), i ∈ I — for any i ∈ I, M i is called Meyer information structure for i;
– S = ×i∈I Si is the set-theoretic product of sets Si of H i-progressively measurable maps
si : T ×W → Ai — for any i ∈ I, a strategy process for i is an element of Si.

(Part B): Let i ∈ I. An optional time for i is an H i-optional time such that [[0, τ i)) ∈ M i.27

A history for i is a pair (τ i, χ) consisting of an optional time τ i for i and a state process χ. Let χ, χ′

be state processes and τ i be an optional time for i. Then, we say that χ′ cannot be distinguished
from χ until τ i by i, or that (τ i, χ′) cannot be distinguished from (τ i, χ), in symbols χ′ ≈i,τ i χ, iff
we have, for N -almost all ω ∈ Ω and all t ∈ [0, τ i(ω, χ(ω))]T, and for all real-valued M i-measurable
maps f : T ×W → R:
(3.1) f(t, ω, χ(ω)) = f(t, ω, χ′(ω)).
An (endogenous) information set for i is a pair p = (τ i, x) for an optional time τ i for i and an
equivalence class x with respect to ≈i,τ i on the set of state processes.28 τ i is said the time of the
information set. The set of information sets for i is denoted by Pi, and its subset of information
sets with time τ i is denoted by Pi(τ i), for any optional time τ i for i.

Let, for any stochastic process s : T × W → A and any stochastic process χ : T × Ω → B, the
stochastic process s⌞υ be given by

s⌞χ : T × Ω → A, (t, ω) 7→ (si(t, ω, χ(ω)))i∈I .

We call s admissible iff for all i ∈ I, all optional times τ i for i, all state processes χ̃, there is an, up
to N -indistinguishability, unique state process χ extending χ̃, i.e. satisfying χ|[[0,τ i◦(idΩ ⋆χ))) ∼=N

χ̃|[[0,τ i◦(idΩ ⋆χ))), and indistinguishable from it until τ i, i.e. satisfying χ ≈i,τ i χ̃,29 that admits an
action process ξ with (ξ, χ) ∈ W satisfying
(3.2) (s⌞χ)|[[τ i◦(idΩ ⋆χ),∞]] ∼=N ξ|[[τ i◦(idΩ ⋆χ),∞]].

We call the — up to N -indistinguishability uniquely determined — processs χ the state process
induced by s given (τ i, χ̃), respectively, and use the notation χ = Out⋆(s | τ i, χ̃).

(Part C): A stochastic process form is given by data F as above such that
1. for all i ∈ I, H i is non-anticipative, that is, there is a family of σ-algebras H̃ i

t on Ω×B[0,t]T ,
ranging over t ∈ T, such that, with proj[0,t]T

: BT → B[0,t]T , f 7→ f |[0,t]T
, we have

H i
t = {(idΩ × proj[0,t]T

)−1(H) ∩W | H ∈ H̃ i
t };

2. for all ζ = (ξ, χ) ∈ W, all i ∈ I, the map
idΩ ⋆χ : Ω → W, ω 7→ (ω, χ(ω))

is E -H i
∞-measurable;

27By Theorem 2.6, [[0, τ i)) ∈ Opt(H i) for any H i-optional time τ i. If H i is augmented, the converse is true
as well, by the same theorem. Note that this is a generalisation of stopping times with respect to Meyer-σ-algebras,
going back to [51, 25], see also [10, Subsection 2.1].

28It follows from the definition that ≈i,τi is an equivalence relation. For the proof, take f = 1[[0, τ i)). Inserting
t = τ i(ω, χ(ω)) yields τ i(ω, χ′(ω)) ≤ τ i(ω, χ(ω)). Hence, we can insert, in a second step, t = τ i(ω, χ′(ω)) which
yields τ i(ω, χ(ω)) ≤ τ i(ω, χ′(ω)). See Proposition 3.4 for further discussion.

29Both properties are not necessarily equivalent. See Proposition 3.4 for a discussion of this.
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3. for all outcome processes ζ = (ξ, χ), ζ ′ = (ξ′, χ′) ∈ W, for all i ∈ I, all optional times τ i for
i, such that, with τ̂ i = τ i ◦ (idΩ ⋆χ), ξ|[[0,τ̂ i]] ∼=N ξ′|[[0,τ̂ i]] holds true, we have χ|[[0,τ̂ i]] ∼=N

χ′|[[0,τ̂ i]];
4. for any i ∈ I, any optional time τ i for i, any β ∈ w1, any si ∈ Si, there is an M i-measurable

process s̃i : T ×W → Ai such that s̃i ∈ Si and si
τ i = s̃i

τ i on {π ◦ τ i = β}.30

(Part D): An spf F is said well-posed iff all s ∈ S are admissible.

We make some additional remarks. Let us first note that, since everything is encoded as processes
in time, information is non-anticipative (Axiom 1) and the state is a non-anticipative function of
action (Axiom 3), we obtain a basic structure for “causality” from the beginning. In that sense, the
stochastic process form is more similar to the stochastic extensive form than to the product form.
The stochastic process form therefore merges different concepts of information in order to provide
a general and tractable setting for problems with uncountably many decision situations (“agents”
in the language of Witsenhausen; information sets in the setting of this text), as discussed in the
sequel.

Furthermore, outcome processes are pairs of action and state processes, where the former de-
termine the latter in a non-anticipative way compatible with optional times (Axiom 3). However,
this mapping need not be scenariowise; it can be purely “statistical”. This is a further departure
from the strict stochastic extensive form setting, but is common in many contexts. For instance,
the state may arise through stochastic integration of a function of the action process with respect to
a semimartingale. “Endogenous” information (that is, information about agents’ behaviour) is only
transmitted via the state process, and we may assume that only the state process is payoff-relevant
— both without loss of generality, because the state could include a copy of action.

Moreover, let us insist on the fact that the term “information set” does, of course, not have
the same formal meaning as in extensive forms. An information set p = (τ i, x) describes the time
τ i at that an agent i ∈ I currently considers her options and which set x of state processes is
still possible to be realised. This explains in particular the information the agent has about the
behaviour of all agents up to time τ i (whence the qualifier “endogenous”). Agent i’s information
about W , including realisations of exogenous scenario ω ∈ Ω and state processes χ(ω), and including
information “at” time τ i, can then be derived from M i. τ i itself is compatible with this information
because [[0, τ i)) ∈ M i. In a considerable generalisation of [60], another name for information sets
would be subgame because information sets are the instances that agents consider options or revise
decisions at. We refrain from this usage in general because the present setting goes beyond the
situation of perfect information.

Finally, let us close the bracket opened in the beginning of this subsection by noting that in a
well-posed stochastic extensive form, the action process ξ with ξ = s⌞χ, for the state process χ
induced by s given some history, is progressively measurable with respect to the filtration induced
by all H i, i ∈ I, and the map idΩ ⋆χ. This follows from Axiom 2 and the optionality of si, for
any i ∈ I. The proof is elementary; it is given in the special case of timing games later in the text.
Moreover, by Axiom 4, at any joint optional time τ for all i ∈ I (for example, elements of T), for
any β ∈ w1, there is s̃ ∈ S with s̃τ = sτ on {π ◦ τ = β} whose i-th component is M i-measurable
and therefore H i-optional, for all i ∈ I. Then, the action process ξ̃ with ξ̃ = s̃⌞χ̃, for the state
process χ̃ induced by s̃ given some history, is even optional with respect to the filtration induced by
all H i, i ∈ I, and the map idΩ ⋆χ̃. We conclude that “induced” action processes are progressively
measurable and “locally” optional, and if strategies for i ∈ I are M i-measurable, even optional.

30Following the setting of [51, 25], this means nothing else than the measurability of si
τi with respect to the

filtration associated with M i evaluated at τ i, where all this is considered on the measurable space given by {π◦τ i = β}
with induced σ-algebra.
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3.2. Information sets, counterfactuals, and equilibrium. In this subsection, we further dis-
cuss the “problem of information” [47] in stochastic process forms. We treat the role of H and M ,
and we analyse information sets. We first give some examples for classical choices of H .
Example 3.2. Fix a stochastic process form F and an agent i ∈ I. We consider the separable,
symmetric case where H i

t equals F i
t ⊗ B′i

t |W , i ∈ I, t ∈ T, for some filtration F i on (Ω,E )
and some sub-σ-algebra B′i

t of (BB)⊗T. One can take (Ω,E ,F i) to be universally complete. The
following cases, classical in control theory,31 obtain:

1. The case of state-independent exogenous information obtains iff every state process χ is
F i-progressively measurable.

2. The case of dynamic learning of exogenous information is the opposite. It can be formulated
by fixing some filtration G i with F i

t ⊆ G i
t for all t ∈ T and considering state processes χ that

are G i-adapted but not necessarily F i-adapted. Given two outcome processes ζ = (ξ, χ)
and ζ ′ = (ξ′, χ′), the filtrations on Ω describing i’s information flow for either outcome,
which are those induced by H i and idΩ ⋆χ and idΩ ⋆χ

′, respectively, may therefore be
strictly larger than F i and differ.

3. Open-loop strategies (or controls) obtain iff B′i
t = {∅,BT}.

4. Closed-loop strategies (or controls) obtain iff, for all t ∈ T, (BB)⊗[0,t)T ⊗ {∅,B⊗[t,∞]T} ⊆
B′i

t ⊆ (BB)⊗[0,t]T ⊗ {∅,B⊗(t,∞]T} (for t = 0, this reads: B′i
0 ⊆ (BB)⊗{0} ⊗ {∅,B⊗(0,∞]T}).32

These are stylised special cases, of course, and mixed regimes obtain quite easily. For instance, in
a game, some dynamic learning of exogenous information may already come in by other players’
using private randomisation devices.

Out of the separable case one can construct more complicated information structures, intertwin-
ing information on exogenous and endogenous events. For example, H i

t (i ∈ I, t ∈ T) could also be
given by (F i

t ⊗B′i
t )∨(G i

t ⊗B′′i
t )|W for some filtration G i on (Ω,E ) and some suitable sub-σ-algebra

B′′i
t of (BB)⊗T. We also note that B could be a product of Polish spaces, and the information struc-

tures could depend in different ways on the different factors of that product. For example, one factor
could describe a partially observable signal the agent cannot condition on (open-loop) and a second
factor could describe an observation process the agent can condition on (closed-loop) and whose
underlying exogenous randomness the agent try to learn. Moreover, information can be asymmetric
in that not all agents can observe all factors in the same way. For example, any agent could have
its own observation process, described by a corresponding component of χ.

Next, we discuss an example for the choice of M and elaborate on the combination of Meyer
σ-algebras and vertically extended time.
Example 3.3. Meyer σ-algebra have been used in the financial literature recently in order to
model information about imminent trade signals (see, for instance, [13]). So far the focus has
been set mainly on the single-agent setting however.33 Reinterpreting this modelling approach in
the language of the present setting, and adding vertically extended time in particular, yields a
stochastic process form where M is given by

M i = Prd(H i) ∨ σ(Zi), i ∈ I,

for a fixed H i-optional process Zi, for any i ∈ I, describing the signal observed by agent i. In [13],
only a single agent is considered and this agent can essentially act twice per instance of time.

31See, e.g., the textbooks [19, 16].
32We could, without loss of generality, ask for B′i

t = (BB)⊗[0,t]T ⊗ {∅,B⊗(t,∞]T} if t > 0 since this does not
necessarily imply that strategies can condition at time t on the state at time t. Indeed, in that case, we could still
have M i = Opt(Ĥ i), for Ĥ i

t = F i
t ⊗ (BB)⊗[0,t)T ⊗ {∅,B⊗[t,∞]T}, t > 0, B′i

0 = {∅,B⊗[0,∞]T}, and Ĥ i
0 = H i

0 .
33Yet, see [12] for a multi-agent model.
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In the interactive setting or settings involving non-trivial consecutive, infinitesimal randomisa-
tion, e.g. in the framework of preemption as in [58], one might wish to extend this. This requires
adding additional virtual instants of time along the vertical half-axis, in order to keep track of
the chain of reactions. Moreover, the signals Zi would no more be sufficient for describing the
information agent i has at the different vertical versions of the given real instant τ i of time: if Zi

contains sufficient information about agents’ behaviour at τ i, there may be more than one (“I do
what you do”) or no (“I do not do what I do”) outcome process ζ = (ξ, χ) compatible with a given
strategy profile (in the sense of satisfying Equation 3.2), therefore destroying well-posedness. In
the well-posed setting, Zi will mainly be useful for describing exogenous signal observations and
pro- and reaction with respect to these, while vertically extended time accounts for endogenous
signal observations and pro- and reaction with respect to the latter. The formulation in terms of
stochastic analysis in vertically extended time assures that both sorts of observation and action are
consistent.

In stochastic dynamic games, it is important to analyse strategy profiles given counterfactual
“histories” in a way compatible with the agents’ information. By construction, the extensive form
offers natural concepts for this, based on moves and, more generally, information sets. These
concepts extend naturally to stochastic extensive forms, as introduced and studied in [57, Chapter 2].
In stochastic process forms these concepts are no more available in a strict sense; we have mimicked
them in the definition above.

In a stochastic process form, an information set for an agent i ∈ I is given by an optional time
τ i with respect to i’s information structure and an equivalence class of state processes χ, where χ
is identified with all other state processes χ′ that i cannot distinguish from it given the information
M i and time τ i. Here, χ and χ′ cannot be distinguished given M i and time τ i iff any strategy
based on information M i (= M i-measurable) yields the same result up to time τ i inclusively. It
is clear that if the amount of information is too large — implying too much future knowledge, and
in particular times τ i that depend on agents’ action at τ i, i.e. arbitrary H i-optional times — too
many state processes can be distinguished which may prevent well-posedness. At the same time it
may seem natural to permit “subgames” starting at the first jump of an exogenous Poisson process,
for example. Hence, restricting to predictable H i-optional times is not a convincing solution either.
Here, Meyer information structures provide a subtle device for managing this trade-off. This point
is illustrated by the following proposition.

Before stating it, we note that the mathematical tractability of this analysis is ensured by the
fact that in stochastic process forms information is modelled on a “universal” configuration space
W ⊆ Ω×BT, not only on Ω. This namely allows for a description of information that is independent
of the choice of a concrete state process, and from which the state-dependent exogenous information
— that is, given a state process χ, the filtration on (Ω,E ) generated by H i and idΩ ⋆χ — can be
derived. However, our approach is not primarily chosen for mathematical convenience, but because
we esteem it natural in a stochastic process-based game-theoretic setting.34

Proposition 3.4. Let F be a stochastic process form on (Ω,E ,N ) and i ∈ I. Consider the
following additional assumptions:

(A) We have H i
0 ⊆ E ⊗ {∅,BT};

(B) For all t ∈ T \ {0}, {∅,Ω} ⊗ B[0,t]T ⊗ {∅,B(t,∞]T} ⊆ H i
t .

(C) We have M i ⊆ Opt(E ⊗ {∅,BT}) ∨ Prd(H i), where E ⊗ {∅,BT} denotes the filtration equal
to that σ-algebra at any time t ∈ T.

Suppose that Assumptions (A) and (C) are satisfied. Then, we have:

34Compare the paper [42] which treats a general adaptive stochastic control framework in a classical continuous-
time setting.
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1. For any M i-measurable f : T × W → R and all t ∈ T, ω ∈ Ω, and h, h′ ∈ BT with
h|[0,t)T

= h′|[0,t)T
:

f(t, ω, h) = f(t, ω, h′).
2. For any optional time τ i for i and all state processes χ, χ′ with

χ|[[0,τ i◦(idΩ ⋆χ))) ∼=N χ′|[[0,τ i◦(idΩ ⋆χ))),

we have χ ≈i,τ i χ′.
3. If in addition Assumption (B) is satisfied, then, for any optional time τ i for i and all state

processes χ, χ′ that are left-continuous35 at all u ∈ T with π(u) = w1 and satisfy χ ≈i,τ i χ′,
we have χ|[[0,τ i◦(idΩ ⋆χ))) ∼=N χ′|[[0,τ i◦(idΩ ⋆χ))).

In particular, if all three assumptions above are satisfied, then, for all optional times τ i for i and all
state processes χ, χ′ that are left-continuous at all u ∈ T with π(u) = w1, we have the equivalence:

χ ≈i,τ i χ′ ⇐⇒ χ|[[0,τ i◦(idΩ ⋆χ))) ∼=N χ′|[[0,τ i◦(idΩ ⋆χ))).

Remark 3.5 (“Nodes”). As a consequence of this proposition, if Assumptions (A) and (C) are
satisfied, then, for any i ∈ I, one could call nodes for i all sets of the form

xτ i(χ̃) = {χ state processes | χ|[[0,τ i◦(idΩ ⋆χ))) ∼=N χ′|[[0,τ i◦(idΩ ⋆χ)))},

ranging over all optional times τ i for i ∈ I and all state processes χ̃. This is analogous to the
definition of nodes in action path stochastic decision forests in [57, Section 1.2] (similarly, in a
deterministic and very special setting, under the name “differential games”, in [3]). However, it is
clear that the set of all these xτ i(χ̃) does not at all define a tree or forest. This yields no extensive
form in any strict sense.

In this spf language for describing extensive form characteristics based on stochastic processes,
including a model of information sets alias “subgames” alias instances of decision revision, we
can conclude this subsection with a definition of equilibrium. It is a refinement of the classical
Nash equilibrium concept in two ways: 1) the best-response condition must also be satisfied given
counterfactual histories (“off the equilibrium path”), in the spirit of subgame-perfect equilibria
(cf. [60, 61]); 2) the beliefs agents form about exogenous information and, in the case of imperfect
information, the current “move” must be consistent, in the spirit of perfect Bayesian equilibria. As
the stochastic process form is still very similar to stochastic extensive forms, it is unsurprising that
the following definition is an adaptation of Definitions 2.3.16, 2.3.17, and 2.3.18 to the setting of
stochastic process forms.

Yet, there is an important difference here since in spf time provides a “uniformising structure”
among information sets (making possible a refined meaning of conditional probability). Moreover,
calculating expectations with respect to the posterior at a given endogenous information set requires
to determine an adequate σ-algebra to condition on. The natural concepts for this, once again,
derive from the general theory of Meyer-σ-algebras because at an information set p = (τ i, x) for
agent i, the agent can condition on all M i-measurable maps evaluated at τ i, at the realised scenario
ω, and at the belief χi,p ∈ x about the actual endogenous “history”. We propose a relaxed version
of dynamic rationality and equilibrium — allowing for a selection of information sets (and thus
counterfactuals) to be checked36 — because this a restriction typically made in the literature, for
reasons that will become clearer in the case study of the timing game. For instance, one may focus

35Note that the pathwise left-continuity at times u ∈ T with π(u) = w1 is not at all a strong requirement; it
suffices for χ to be progressively measurable with respect to some filtration (see Remark 2.2, Part 5).

36In the static Nash equilibrium case, one would only check the best response condition given the information set
at time zero, provided it is unique. In a rigorous dynamic setting, on the contrary, one would wish to check given all
information sets, of course.
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on information sets p = (τ i, x) such that x contains a deterministic (if not even constant) state
process.

Definition 3.6. Let F be a well-posed spf on (Ω,E ,N ).
1. A belief system on F is a family Π = (Pi,τ i

, κi,τ i

, pi,p,Pi,p)p=(τ i,x)∈Pi, i∈I such that, for
any i ∈ I and any optional time τ i for i, Pi,τ i is a σ-algebra on Pi(τ i), κi,τ i is a Markov
kernel from (Pi(τ i),Pi,τ i) to (Ω,E ) with N ⊆ Nκi,τi (.,p) for all p ∈ Pi(τ i), and, moreover,
for any information set p = (τ i, x) ∈ Pi(τ i) for i with time τ i, Pi,p is a σ-algebra on x,37

and pi,p : Ω → x is an E -Pi,p-measurable map.
2. A taste system on F is a family U = (ui,p)p∈Pi, i∈I of maps ui,p : W → R.
3. An expected utility (eu) preference structure on F is a tuple Pr = (Π, U,W ) where

– Π is a belief system on F,
– U is a taste system on F, and
– W is a σ-algebra on W ,

such that, we have, for all i ∈ I, all optional times τ i for i and information sets p = (τ i, x) ∈
Pi(τ i):
(a) ui,p is bounded and W -Borel-measurable;
(b) Outs

i,p : Ω → W, ω 7→ (ω,Out⋆(s | τ i, pi,p(ω))(ω)) is E -W -measurable for all s ∈ S;
(c) for any s ∈ S and any optional time σi for i with τ i ≤ σi, the map

φs
i,p,σi : x → Pi(σi),

assigning to any χ ∈ x the unique p′ = (σi, x′) ∈ Pi(σi) with Out⋆(s | τ i, χ) ∈ x′, is
Pi,p-Pi,σi-measurable;

(d) the map
χi,p : Ω → BT, ω 7→ pi,p(ω)(ω)

is a state process.
4. Let Pr = (Π, U,W ) be an eu preference structure on F and s ∈ S a strategy profile. (Pr, s)

is said dynamically consistent iff:
(a) for all i ∈ I, there is ui with ui,p = ui for all p ∈ Pi;
(b) for all i ∈ I, all optional times τ i, σi for i with τ i ≤ σi, all p ∈ Pi(τ i), all ω ∈ Ω

satisfy38

pi,φs

i,p,σi
(pi,p(ω))(ω) = Out⋆(s | τ i, pi,p(ω));

(c) for all i ∈ I, all optional times τ i, σi for i with τ i ≤ σi, all p ∈ Pi(τ i) and the measure
Pi,p = κi,τ i(., p), and all E ∈ E , we have, Pi,p-almost surely:39

(3.3) κi,σi

(E,φs
i,p,σi ◦ pi,p) = Pi,p

(
E | φs

i,p,σi ◦ pi,p

)
.

37According to a classical choice of Pi,p, any χ, χ′ ∈ x, that coincide N -almost surely on [[0, τ i]], would have to
be inseparable by Pi,p, that is, for all P ∈ Pi,p, χ ∈ P iff χ′ ∈ P .

38Note that for τ i = σi this implies the equality pi,p(ω) = Out⋆(s | pi,p(ω)). This reflects the fact that in spf,
formally, information sets actually partition all possible state processes, rather than “moves”. In sef already, moves
contained in an information sets form a partition of attainable outcomes, and information sets partition moves, see
[57, Section 2.1]. However, note that there is no rigorous meaning to “moves” in spf.

39We recall that Equation 3.3 is, by definition of conditional expectation (and “probability”), equivalent to the
following statement: for all bounded, Pi,σi -Borel-measurable maps f : Pi(σi) → R, we have

EPi,p

(
f(φs

i,p,σi ◦ pi,p) · 1E

)
= EPi,p

(
f(φs

i,p,σi ◦ pi,p) · κi,τi
(E, φs

i,p,σi ◦ pi,p)
)

.
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5. Let Pr = (Π, U,W ) be an eu preference structure on F. For any i ∈ I, any optional time
τ i for i, and any information set p ∈ Pi(τ i), let Pi,p = κi,τ i(., p) and

Fi,p =
{

{ω ∈ Ω | fτ i(ω,χi,p(ω))(ω, χi,p(ω)) ∈ B} | f : T ×W → R M i-measurable, B ∈ BR

}
.40

Further, for any strategy profile s ∈ S, let πi,p(s) denote the conditional expectation of
ui,p ◦ Outs

i,p with respect to Pi,p given Fi,p, that is,41

πi,p(s) = EPi,p

(
ui,p ◦ Outs

i,p | Fi,p

)
.

For any i ∈ I, fix a set of information sets P̃i ⊆ Pi, and let P̃ = (P̃i)i∈I . A strategy
profile s ∈ S is said dynamically rational on P̃ given Pr iff for all i ∈ I, all p ∈ P̃i, and all
s̃ ∈ S with s̃−i = s−i, we have, Pi,p-almost surely,

πi,p(s) ≥ πi,p(s̃).

Let s ∈ S be a strategy profile. Then, (s,Pr) is said in equilibrium on P̃ iff it is dynamically
rational on P̃ given Pr and (Pr, s) is dynamically consistent. The qualifier “on P̃” can be
dropped iff P̃i = Pi for all i ∈ I.

Remark 3.7. Consider a stochastic process form F satisfying Assumption (A) in Proposition 3.4
(i.e. at time zero, agents have no information about the state process), and an eu preference
structure Pr as in the definition. Then, it follows directly from the definition that, for any i ∈ I,
there is a unique (endogenous!) information set at time zero. Denote this information set by
p0 = (0, x0). It clearly does not depend on the agent i.

Then, for any s ∈ S such that (Pr, s) is dynamically consistent, pi,p0 is constant with value
χ = Out⋆(s | 0, χ̃) (where χ̃ can be any state process). More generally, for any information set
p = (τ i, x) for i with χ ∈ x, pi,p is constant with value χ, and, in particular, Pi,p = Pi,p0 . Off the
equilibrium path (or without Assumption (A)), this need not hold true.

Moreover, in Bayesian language, for any i ∈ I, Pi,p0 is the prior of agent i. The common prior
assumption, alias Harsanyi doctrine, says that Pi,p0 = Pj,p0 for all i, j ∈ I.42 The posterior for i at
information set p ∈ Pi is the “conditional probability” Pi,p(. | Fi,p), though this need not admit a
representation via a Markov kernel in the spirit of regular conditional probabilities.

Example 3.8. Consider, for example, the special case of “quasi”-perfect information as expressed
by the Assumptions (A), (C), and (B). Then, with κi,τ i being constant in the second component
and independent of i and τ i, the equilibrium definition above implements a generalised stochastic
version of the concept of subgame-perfect equilibrium (cf. [60]). More generally, the definition above
implements the concept of perfect Bayesian equilibrium (cf. [36, 30]) in stochastic process forms. In
Subsections 3.3 and 3.4, we discuss this definition in the context of stochastic timing and differential
games, with a concrete detailed example for the former.

3.3. Timing games. We apply the developed theory to the simplest non-trivial dynamic game-
theoretic model. That is, we introduce the general continuous-time stochastic timing game in
stochastic process form, and illustrate it by proving the existence of the symmetric preemption
equilibrium in the grab-the-dollar game. While natural in discrete time, it is hard to justify in

40This is nothing else than the σ-algebra of the τ i-past associated with the Meyer-σ-algebra M i, pulled back onto
Ω by idΩ ⋆χi,p; introduced in [51], see also [25], and [10, Subsection 2.1]. Using the notation from the latter survey,
and of the pullback of σ-algebras, we thus have: Fi,p = (idΩ ⋆χi,p)∗FMi

τi = {(idΩ ⋆χi,p)−1(M) | M ∈ FMi

τi }.
41Note that the following expression is well-defined in view of Equation 3.3, because Outs

i,p : Ω → W is uniquely
defined up to N -indistinguishability, and N ⊆ NPi,p

by assumption.
42See [34, 35, 36, 8, 6].
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continuous time. Yet, preemption is both an interesting theoretical example of subgame-perfection
and a crucial phenomenon in many economic applications. In seminal papers, [29] and, in a general
stochastic setting, [58, 65] provide a theory explaining the symmetric preemption equilibrium in
continuous time using a stacked strategic form.

However, in such a formulation, strategies necessarily depend on subgames. Although consistency
across subgames may be assumed ex post, the question remains on what grounds this happens.
Moreover, the cited literature formally explains neither outcomes, that is, track records of the
players’ action, nor how payoffs derive from outcomes. Instead, payoffs are a direct function of
strategy profiles, without factorising over (induced) outcomes. Hence, these models do not explain
what happens, but what abstract strategies are chosen in each strategic form and what the payoffs
are. This is reflected by the fact that payoffs are derived via a discrete-time approximation, see [64].
As discussed in the introduction of [58], and shown in the already-mentioned literature [66, 4, 2], a
well-posed extensive form formulation based solely on paths with time index set R+ requires locally
right-constant paths, so that reaction can only occur with a positive time lag of delay — such
a model is not very conclusive regarding preemption. The action-reaction model in [1] provides
a well-posed extensive form model making instantaneous reaction, and even w many of them,
possible;43 however, as this model leaves the question of randomised strategies open, this theory
is not sufficiently applicable to the preemption problem as well. This explains why the stacked
strategic form approach has been chosen in [29] and idem in [58].

One problem about passing from discrete-time preemption to continuous-time preemption lies in
the collapse of complicated patterns action and reaction near the preemption boundary to action
at the preemption boundary with probability one. In classical continuous time, this implies a
dramatic loss of information on the action process containing information about the action-reaction
behaviour. However, this is a result of looking at action process convergence in terms of pointwise
convergence. By contrast, tilting convergence preserves the detailed information by writing it on the
vertical axis above the preemption boundary. Hence, stochastic process forms in vertically extended
continuous time can bridge the gap between a) the need of a faithful model of the extensive form
characteristics, based on an explicit description of outcomes, choices and information flow and
including randomisation, and b) the desire to formally describe action and reaction behaviour, e.g.
in preemption games, arising in continuous time via game-theoretic equilibrium analysis.

The mentioned kind of preemption is a very interesting example from the literature on timing
games, but only one among many. Many other of these timing game models also use stacked
strategic forms and ad-hoc variants of Nash equilibrium, which makes it difficult to understand
the dynamic aspect of strategy and equilibrium. This includes the rich economic literature on real
option games as well as the mathematical theory of Dynkin games — we refer to the introduction
of [58] for an overview on the literature. Another example would be timing games of asymmetric
information, e.g. about price signals. Here, one agent can trade proactively thereby making profit
and another one can only react (instantaneously in real time, one level higher on the vertical half-
axis). But this other person’s reaction may impact the price, and other players may pro- or react
with respect to this.44 The stochastic process form and the included abstract, dynamic equilibrium
concept allows formulating a very general stochastic timing game model, which can shed light on
this problem in general and is therefore of general interest.

Let us start with introducing our formal model of timing problems. For convenience, we focus
on the case of “full” endogenous information alias closed-loop controls (more precisely: at any
time, all players know what the other players have done up to, exclusively, that time). This is the

43The model in [1] is formulated with one reaction node per action node (i.e. roughly per instant of real time);
the extension to w many reaction nodes is immediate.

44For related models, see, e.g. [12, 13].



40 CHRISTOPH KNOCHENHAUER AND E. EMANUEL RAPSCH

comparatively complicated case, weaker informational settings can be analysed similarly without
essential additional effort. For this subsection’s purpose, let (Ω,E ) be a universally complete
measurable space. Suppose that (Ω,E ) is large enough to support a probability measure P and
a, with respect to P, [0, 1]-uniformly distributed random variable. Let N = {∅}.

Let us fix an important technical convention. To any decreasing map h : T → {0, 1} we assign
the map h− = h(.−) : T → {0, 1}, defined in any t ∈ T as follows. We let h−(0) = h(0−) = 1 if
t = 0; h(t−) = limu↗t h(u) if t is a left-limit point; and, else, that is, if t = (p(t), β + 1) for some
β ∈ w1, h(t−) = h(p(t), β). We extend this convention to componentwise decreasing maps valued
in {0, 1}I in a componentwise manner, and to stochastic processes with decreasing paths valued in
{0, 1}I .

Let the data F = (I,A,B,W,W,H ,M ,S) and (α, υ,G ,F ,F ∨, (τb, τ−
b )b∈B, z) be given as fol-

lows:
– I is a non-empty, finite set;
– Ai = {0, 1} for any i ∈ I, A =

∏
i∈I Ai, equipped with discrete topology and the product

order;
– B = A, thus also equipped with discrete topology and the product order, let 1 = (1, . . . , 1) ∈
B and 0 = (0, . . . , 0) ∈ B denote the constant functions I → {0, 1} with value 1 and 0,
respectively;

– α ∈ w1 \ {0} is a countable non-zero ordinal;
– W is the set of pairs (ω, h) ∈ Ω × BT such that h is right-continuous, decreasing, and has

upper vertical level smaller than or equal to α, and satisfies h(∞) = 0;
– G = (G i)i∈I is a family of universally augmented filtrations on (Ω,E ) with time index set
T;

– υ ∼= (υi)i∈I : Ω → [0, 1]I is E -Borel-measurable, such that there is probability measure P on
(Ω,E ) making υ uniformly distributed and independent from G ;

– F = (F i)i∈I , and for any i ∈ I, F i = (F i
t )t∈T is the filtration given by F i

t = G i
t ∨ σ(υi),

the universal augmentation being taken in E ;
– F ∨ = (F ∨

t )t∈T is the in E universally augmented filtration generated by this family, i.e.
F ∨

t =
∨

i∈I F i
t ;

– W is the set of pairs ζ = (ξ, χ) where ξ : T × Ω → A is an F ∨-optional, right-continuous,
componentwise decreasing process with upper vertical level smaller than or equal to α
satisfying ξ∞ = 0, and χ = ξ;45

– let

(3.4) z : T ×W → B, (t, ω, h) 7→

{
1, if t = 0,
h(t), if t > 0,

and, for any b ∈ B,
τb = inf{u ∈ T | zu ≤ b}, τ−

b = inf{u ∈ T | zu− ≤ b};

– for any i ∈ I and t ∈ T, let H i,0
t be the smallest σ-algebra on W containing F i

t ⊗ B
[0,t]T
B ⊗

{∅,B(t,∞]T}|W and such that, for all u ∈ [0, t]T and β ∈ w1,

{τb ≤ u, π ◦ τb = β} ∈ H i,0
t ,

let H i,1
t be the universal augmentation of H i,0

t in [H i,0
∞ ]u; then, let, if t > 0,

H i
t = {H ∈ H i,1

t | ∃H̃ ⊆ Ω × B[0,t]T : H = proj−1
[0,t]T

(H̃) ∩W},

45The condition χ = ξ, for instance, could be relaxed; χ could be the solution to some (stochastic) differential
equation depending non-anticipatively on ξ.
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and, else,
H i

0 = {(E × BT) ∩W | E ∈ F i
0};

– for any i ∈ I, M i = Opt(F i⊗{∅,BT})∨Prd(H i), where F i⊗{∅,BT} denotes the filtration
given by F i

t ⊗ {∅,BT}, t ∈ T;
– for any i ∈ I, let Si

0 be the set of H i-progressively measurable, Ai-valued processes si : T×
W → Ai, lower semicontinuous from the right, with upper vertical level smaller than or
equal to α, and satisfying both si

t(ω, h) ≤ hi(t−), for all (t, ω, h) ∈ T × W , and si
∞ = 0;

then, let Si be the set of si ∈ Si
0 such that any optional time τ i for i admits M i-measurable

s̃i : T ×W → Ai with s̃i ∈ Si
0 and si

τ i = s̃i
τ i .

The basis of this model are the outcomes, like in extensive form models, and in contrast to
the stacked strategic form model. Outcomes are exactly the outcomes of a timing game which,
by definition, is a game with two actions, one of them being irreversible: that is, collections of
decreasing {0, 1}-valued paths for any player. There are no grounds for considering additional
stopping intensities as in [29, 58], nor for acting on the whole unit interval (as in almost all of the
timing game literature with randomisation). The assumption of optionality of action processes is not
even strictly required, since in the proof of well-posedness it can be seen that only optional action
processes can be generated by strategic decision making according to S. We have a countable
uniform bound on activity; in the perspective of approximation of action processes via tilting
convergence this corresponds to an upper bound on the well-order type of approximating grids.
The assumption that the state process induced by a given action process equals the action process
can be relaxed; it is made for simplicity here. Regarding the information structure H i and M i of
player i ∈ I, we are in the setting of Proposition 3.4. Here, H i has been sufficiently enlarged to make
the stochastic analysis of relevant débuts on W possible, without violating the non-anticipativity
axiom, Axiom 1, in the definition of spf.

Let us discuss strategies in a bit more detail. In the spf setting, strategies are complete contingent
plans of action – contrasting stacked strategic form frameworks. They are globally defined objects,
assembling local decisions based on available information (though this also requires measurability
along “nodes”, see Remark 3.5). They must be globally progressively measurable, and, moreover,
at any optional time for i, representable by an M i-measurable strategy. Lower semicontinuity from
the right implies that the choice to remain at 1 at the upper end of the vertical half-axis above some
real time t ∈ R+ implies the agent to choose 1 as well on some positive interval ((t,w1), t + ε)T,
for some ε > 0, depending on (ω, h). On a scenariowise level, this reflects the “identifiability”
axiom in [66] and the inertia time lags in [1]; yet, it is only a weak restriction because the player
has the whole of {u ∈ T | p(u) = t, π(u) < α} to react infinitesimally. However, as a difference
to (the natural stochastic generalisation of) [1], the inertia time lag can depend on information
revealed only at time t+ ε. The inequality “si

t(ω, h) ≤ hi(t−)” simply expresses that at time t and
conditional on a history h according to that i has already chosen 0, there is no other choice than 0
left. Note, however, that it is absolutely possible that si

t(ω, h) = 1 while si
u(ω, h) = 0 for t, u ∈ T

with u < t: si(ω, h) need not be decreasing! For instance, consider the strategy choosing 0 whenever
some real-valued Markov process η stays in a closed set C ⊆ R, and 1 otherwise. Starting in a
subgame (τ i, χ̃) with ητ i◦(idΩ ⋆χ̃) /∈ C, the agent will stay at 1 for a positive amount of classical real
time. Yet, η may have hit C strictly before τ i ◦ (idΩ ⋆χ̃). Dropping this monotonicity assumption
is crucial in the endeavour of formulating strategies as complete contingent plans of action, and
independently of subgames. At the same time, it requires a consistent and careful application of
stochastic analysis.

Our first aim is to show well-posedness of F. For this, we start with the stochastic analysis
of the data introduced before. The first step is about the processes z and z− and its débuts τb
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and τ−
b . They are crucial in constructing the induced outcome map; hence, we must verify their

measurability properties beforehand.

Lemma 3.9. For any b ∈ B, τb and τ−
b are H i-optional times satisfying τ1 = τ−

1 = 0, and, if
b ̸= 1, π ◦ τb < α, π ◦ τ−

b = π ◦ τb + 1, and [[0, τ−
b )) = [[0, τb]]. z is H i-optional and has the upper

vertical level α. z− is H i-predictable and has the vertical level α, and even upper vertical level α
if α is a limit ordinal.

In what follows, let H ∨ denote the augmented filtration generated by the family of H j , j ∈ I.
That is, with H ∨,0

t =
∨

j∈I H j
t for all t ∈ T, H ∨

t = H ∨,0
t is the augmentation of H ∨,0

t in [H ∨,0
∞ ]u.

The next two lemmata are concerned with the questions whether optionality and progressive
measurability are preserved under natural operations on the path space of the state process.

Lemma 3.10. Let f : T × W → B be H ∨-optional with right-continuous, decreasing paths, and
upper vertical level smaller than or equal to α satisfying f∞ = 0. Then, with f seen as a map
W → BT, there is a map
(3.5) f# : T ×W → T ×W, (t, ω, h) 7→ (t, ω, f(ω, h))
which is both Opt(H ∨)-Opt(H ∨)- and Prg(H ∨)-Prg(H ∨)-measurable.

Lemma 3.11. Let η : T×W → B be H ∨-optional and χ be a state process. Then, η◦[idT ×(idΩ ⋆χ)]
is F ∨-optional.

Now, we can state the well-posedness theorem.

Theorem 3.12. F is a well-posed stochastic process form on (Ω,E , {∅}).

We call F the timing spf of upper vertical level α. Combined with the equilibrium concept in
Definition 3.6, it provides a general continuous-time timing game model for finitely many players i ∈
I with possibly asymmetric exogenous information G i, and augmented with private randomisation
devices υi. Players can react instantaneously to new information α times vertically above any
real time t ∈ R+. By the choice of M i, at any optional time τ i for i, a decision can be based
on information H i in a predictable way in general, but in addition on exogenous information
F i in a fully optional way. Loosely speaking, the player i ∈ I can base a decision at time τ i

on exogenous information F i until τ i inclusively, but only on endogenous information that can
be explained by endogenous information accumulated over previous instants of time.46 Note that
“indistinguishability up to an optional time τ i for i” and information sets can be easily characterised
in this setting, see Proposition 3.4.

Theorem 3.12 is remarkable because already in the relatively simple case of timing games,
counterexamples to well-posedness are well-known (see, in particular, [63, 66]). The analysis of
a similar, but deterministic setting in [66] concludes that well-posedness can only hold true for a
specific subset of strategies, including a) a restriction of the number of simultaneous action, and
b) an “identifiability” requirement regarding accumulating action from the right.47 An analogue to
a) is given by the assumption of a uniform upper bound on the upper vertical level of outcomes
processes and strategies. Note, however, that — in contrast to the assumptions and conclusions in
[66] — infinitely many jumps at a given real time are possible without risking well-posedness, as
long as there is a uniform upper bound α.48 On the other hand, b) is addressed by the regularity

46A formally precise description of this can be given in terms of the σ-algebras FMi

τi , in the sense of [10,
Subsection 2.1], following [51, 25].

47As already noted, the inertia nodes in [1] play a similar role. However, this latter model is a rigorous extensive
form model, in contrast to Stinchcombe’s ex post strategy set restriction.

48A similar, but finite structural requirement is contained in [63, Assumption F.1], also in a deterministic setting.
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requirement — namely lower semicontinuity from the right — of strategies.49 By the inclusion of
vertically extended real time, this requirement does not preclude instantaneous reaction.
Remark 3.13. Theorem 3.12 also obtains if we do not ask for a uniform upper bound on upper
vertical levels. Formally, such an spf obtains by formally taking α = w1 in the definition of the
spf’s data. One can indeed show that the corresponding spf is well-posed, but we omit this result
and the proof here because in many relevant applications, it appears, there is a uniform upper
bound on the vertical level.

We next illustrate F by constructing an equilibrium in a specific toy example. This particular
example is motivated by the literature on — deterministic and stochastic — games of preemption in
continuous time, see [65, 64, 58, 29]. As already said before, the existence and nature of symmetric
equilibria crucially depends on the way instantaneous pro- and reaction is modelled and combined
with randomisation. While the just-cited works take a “discrete time with an infinitesimally fine
grid” perspective (see, e.g. [58, 63]), we propose a formulation using abstract stochastic process
forms. This is for the following reasons. First, this theory directly addresses the extensive form
characteristics of the problem and provides canonical concepts of equilibrium in a general dynamic
and Bayesian setting, including the here-relevant version of subgame-perfect equilibrium. Second,
we insist on the fact that exogenous randomness, a Bayesian uncertainty domain, or randomisa-
tion can all be taken care of using the generalised stochastic calculus for vertically extended time
proposed in Section 2. Third, the concrete definition of the game, including payoffs, in stochastic
process form given below is “intrinsic” and does — even not implicitly — rely on approximation
arguments, though approximation is an important interpretation device. As a consequence, the
definition of the game in general, and of the payoffs in particular, can seem a little simpler while
being more general than that in [29, Subsection 4.B] or [58, Definition 2.9] — provided the ab-
stract theory of stochastic process forms in vertically extended continuous time has been accepted.
Fourth, by reformulating the stochastic timing game in the language of stochastic process forms we
indicate how much more general games in continuous time, which critically involve instantaneous
pro- and reaction, can be analysed in an abstract and tractable framework.

We consider a very stylised example illustrating key structures of the theory, and appearing quite
similarly in the cited literature. It is a stochastic version of the “grab-the-dollar game” as described
in the deterministic setting in [29]. Let us recall the basic facts about this example, following,
e.g., [58] and the references therein. The story behind is about two players sitting in front of a
one dollar bill. At any time, they can decide to (try to) grab it. The player grabbing first gets
the dollar. If both grab at the same time, however, they both have to pay a fine. Clearly, this
is a toy model for the modelling of preemption. The discrete-time version of the game admits a
symmetric equilibrium, given by the behaviour strategy of grabbing with probability 1/2 at any
feasible time. In a standard continuous-time version such an equilibrium does not exist, as is well-
known. Indeed, simultaneous grabbing at time zero with probability one is not in equilibrium.
Hence, in any symmetric equilibrium in classical continuous time, both players have not stopped
with probability one at some time ε > 0. Given this behaviour of one player, the other player can
do strictly better by stopping before ε with probability one, in a way that reduces simultaneous
grabbing.50 Therefore, there is no evident symmetric continuous-time equilibrium.

As a solution, Fudenberg and Tirole [29], as well as Riedel and Steg [58], argue within a “discrete
time with an infinitesimally fine grid”-approach, and introduce “extended mixed strategies” (cf. [58,
Definition 2.7]) consisting not only of (mixed) stopping decisions along the time axis, but also of

49A similar, but finite structural requirement is contained in [63, Assumption F.3]. An analogue to [63, Assump-
tion F.2] (piecewise continuity) is automatically satisfied for the timing game.

50The latter can be achieved by a distribution of stopping that is absolutely continuous with respect to Lebesgue
measure on (0, ε]R+ .
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processes describing the “conditional stopping probabilities” of reaction on the infinitesimally fine
grid (cf. [58]). At least in the deterministic case, these have a precise interpretation as limits of
grabbing probabilities in behaviour strategies on refining, convergent sequences of discrete-time
grids (cf. [64]). They are motivated as a device to effectively control the order of stopping of the
two agents if they happen to stop simultaneously, and this becomes clear in the definition of the
payoffs in [58, Definitions 2.9 and 2.11]. Hence, that approach contains an idea of different instances
of time attached to one real point in time — however, in the cited texts, this notion is not formally
spelled out. As a consequence, the definition of payoffs is relatively hard to state, and the definition
of subgame-perfect equilibria (cf. [58, Definition 2.14]) is not tightly linked to the abstract game-
theoretic concept of subgame-perfect equilibrium, which is based on extensive forms — or, at least,
extensive form characteristics. This is, of course, linked to the mentioned general difficulties of
formulating continuous-time and stochastic games and to the decision of these articles’ authors to
work with a stacked family of strategic forms rather than with an “approximate” extensive form.
The latter did simply not exist and so it could not be applied.

In the present text, we have developed such a theory out of abstract principles underlying
extensive forms and decision making under probabilistic uncertainty. The notion of “approximate
extensive form” we suggest is the stochastic process form. We note that it combines extensive form
and stochastic aspects — without being an extensive form, but based on outcomes that derive from
extensive forms. Below, we see that the use of stochastic calculus in vertically extended time can
give a meaning to a) non-simultaneous and ordered action at the same time that is b) measurable
with respect to information given by σ-algebras. Moreover, c) it provides further fundamental
insights regarding the definition of “subgames” in the stochastic setting, supporting and extending
one key innovation of [58].

We now discuss the model formally. As in the cited literature, we focus on the two-player case,
I = {1, 2}, with symmetric exogenous information, G 1 = G 2. Fix the level α = w + 1 and a
probability measure P on (Ω,E ) making υ uniformly distributed and independent from G i, i ∈ I.
Slightly developing [58, Example 2.4], the stochastic component of the “grab-the-dollar game”
now consists in two things. First, player 2 is not American, and at time t ∈ R+, one dollar is
worth ηt in 2’s local currency, where η = (ηt)t∈R+ is G 1-adapted, takes values in (0,∞)R, and has
continuous paths. Second, the dollar is only released at some exogenously given classical optional
(alias stopping) time, for example, the time a neutral referee whistles. If a player acts before that
time, both players are fined. All fines are payed in local currency. Let τ be an R+-valued G -stopping
time modelling the “whistle”. For i, j ∈ I with i ̸= j, we consider the tastes ui, uj : W → R, given
as follows. Let (ω, h) ∈ W , and, for all k ∈ I, define σk(h) = inf{t ∈ T | hk(t) = 0}. Further, let η1

denote the constant process with value 1, and η2 = η. Let ai(h) = 1{π ◦ σi(h) < w} and

(3.6)

ui(ω, h) = uj(ω, h) = −1, if σi(h) < τ(ω);
ui(ω, h) = ηi

p(σi(h))ai(h), uj(ω, h) = 0, if τ(ω) ≤ σi(h) < σj(h);
ui(ω, h) = uj(ω, h) = −ai(h), if τ(ω) ≤ σi(h) = σj(h) < ∞;
ui(ω, h) = uj(ω, h) = 0, if σi(h) = σj(h) = ∞.

Now, we define the strategy profile s = (si)i∈I . Let ϕ ∼= (ϕn)n∈w : [0, 1] → [0, 1]w be measurable
such that, for each i ∈ I, ϕ(υi) = (ϕn(υi))n∈w = (υi,n)n∈w is an i.i.d. sequence of [0, 1]-uniformly
distributed random variables, according to P. Let i ∈ I, j = 3 − i, and (t, ω, h) ∈ T × W . If
hi(t−) = 0, or if t = ∞, let si

t(ω, h) = 0. Else, let

si
t(ω, h) =


1, if t < τ(ω),

or
(
τ(ω) ≤ t, π(t) < w, υi,π(t)(ω) ≥

ηj

p(t)

1+ηj

p(t)
(ω),

0, else.
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That is, an agent i pursuing strategy si, starting at an optional time τ i of her’s does the following,
provided χ = Out⋆(s | τ i, χ̃) denotes the state process induced by s given the process χ̃ constant to
1 (all players are still active exclusively until τ i). If τ is not yet reached, i.e. on {τ i ◦ (idΩ ⋆χ) < τ},
player i waits until τ , and then “stops” (i.e. switches to zero) with probability ηj

τ

1+ηj
τ

(ω) at any t ∈ T
with τ = p(t) and π(t) < w, independently along the vertical axis below level w, until player i
manages to actually stop. This implies that i reaches state zero with probability one before time
(p ◦ τ,w).

If τ has already been reached, two cases arise. Let τ̂ i = τ i ◦ (idΩ ⋆χ). On {τ̂ i ≥ τ, π ◦ τ̂ i < w},
analogously at any instance of time on the vertical w-axis above τ̂ i the player stops with probability

ηj

τ̂i

1+ηj

τ̂i

(ω), until stopping occurs, reaching state zero almost surely before level w. In the remaining

event, on {τ̂ i ≥ τ, π ◦ τ̂ i ≥ w}, i stops immediately (and so does the opponent); given the payoffs,
they are indifferent about different options at this time, and if i wishes to stop “in the near future”,
then by lower semicontinuity from the right and the fixed bound α = w + 1 on the upper vertical
level, then she even has to stop immediately. Anyway, this latter case is reached with probability
zero from the “classical” part of time, the real time axis R+.

The outcome induced by s can be obtained directly by tilting convergence, as states the following
theorem. For simplicity, we restrict the statement to the unique information set at time 0.51 The
theorem can be seen as a stochastic variant of a similar result in [64], and as a representation of it
on the level of outcomes. Conversely, this shows that tilting convergence allows for a substantial
generalisation of the “discrete time with an infinitesimally fine grid” approach (see Subsection 2.5
for further discussion). The theorem follows directly from Proposition 2.33. By the very definition
of tilting convergence, the approximating sequence ξn locally equals the outcome of the classical
discrete-time symmetric equilibrium, written onto the grid Gn, for any n ∈ N.

Theorem 3.14. Let χ be the state process induced by s given the unique information set at time
0, and ξ = χ be the corresponding action process. Then, there is a sequence (ξn)n∈N of clas-
sical, very simple F ∨-optional processes and a refining, convergent sequence (Gn)n∈N of classical,
deterministic grids Gn compatible with ξn, for all n ∈ N, such that (ξn | Gn) T→ ξ as n → ∞.

It is shown in the following that s defines an equilibrium on some relatively large P̃ and with
respect to the payoffs ui, i ∈ I, and the eu preference structure arising from P in the most consistent
way possible. Precisely, we let P̃ = (P̃i)i∈I , where for each i ∈ I, P̃i is the set of information sets p =
(τ i, x) such that x contains an F i-progressively measurable state process. That is, counterfactual
histories must be independent of the opponent’s randomisation device. This restriction appears
necessary to the author because the agents cannot use “new” independent randomisation devices
at each real time t — it is well known from stochastic analysis that this is incompatible with
measurability in the time variable, and in particular, it obstructs progressive measurability and
M i-measurability.52 If we wish to obtain i.i.d. randomisation over all instants of real time such
as to obtain a random distribution in the Schwartz sense, we obtain “white noise” which, in that
sense, cannot be represented as a function, or process, valued in the original state space. Hence, in
order to go beyond P̃ as above, one would have to model strategies by random distributions rather
than processes on action spaces. This is deliberately left for future research.

Nevertheless, the setting with P̃ as above is already more general than the setting in [29] and
that, more general one, in [58]. In the latter, dependence on endogenous histories is encoded by
the dependence of each strategic form on modes describing which players have already stopped and

51See Remark 3.7.
52We also refer to the proof of the theorem which would not work for general information sets because, in general,

the history of the state process could correlate with the future randomisation of the opponent.
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plans are only revised at real instants of time. In our setting, this would correspond to information
sets p = (τ i, x) such that x contains a deterministic path and τ i is real-valued; and to strategies
that can only condition on the left-limit of this path at the current instant of time.

By contrast, in the model of the present text, si is a best response to sj , for both i, j ∈ I,
i ̸= j, with respect to a larger class of (generalised) “subgames”, given by a general class of
optional times σ = σi possibly taking values on higher levels of the vertical half-axis, by our
definition of equilibrium and information sets. Note that the model of subgame-perfection in [58, 29]
does not contain that feature: Once the “atomic” randomisation procedure for “extended mixed
strategies” has been started, players can no more revise their plan. By contrast, the stochastic
process form in vertically extended time model allows for this. Agents can revise plans at all those
cross-sections — given by information sets — through “two-dimensional” time measurable with
respect to information and below level α = w + 1. Agents can even perform different actions, with
different probabilities, on different levels within the same vertical strip.

Furthermore, we do not restrict to strategies that are Markovian in the “mode”, and find that the
strategy profile s (which is “horizontally Markovian”) is an equilibrium even within the larger and
more natural strategy space defined here. We also note that most timing game formulations, includ-
ing the just-cited ones, integrate out the randomisation of both players, including the opponent,
by considering the action space [0, 1] rather than {0, 1}. In such an approach, the above-mentioned
problem becomes invisible by construction yet remains unsolved.

Due to the specific information structure, especially the closed-loop information on all players’
states and the symmetric exogenous information, we may interpret the equilibrium property as a
stochastic version of subgame-perfect equilibrium (see Remark 3.8). This is indeed the term used
for this equilibrium in the stochastic stacked strategic form setting by Riedel and Steg in [58], and
by Fudenberg and Tirole in [29].

Theorem 3.15. There is an eu preference structure Pr = (Π, U,W ) such that:

– (s,Pr) is in equilibrium on P̃,
– U is given by (ui)i∈I defined above,
– W = H ∨

∞.

In this equilibrium, no stopping occurs strictly before τ . At all R+-valued G -stopping times σ
not earlier than τ , both players stop with P-probability one on the vertical half-axis above σ. More
precisely, they do so on the initial leg {π ∈ w, p = σ}. Simultaneous stopping, sole stopping by
player i, sole stopping by player j (these terms referring to the extended time half-axis T) — all
these three events have the probabilities known from [58]. If η = 1 is constant equal to one, then
all these probabilities are 1/3 under P. This confirms the findings from [58, 29].

3.4. Stochastic differential games and control. We conclude our study with discussing how
stochastic differential games and control problems based on differential equations can be formulated
using the language of stochastic process forms. The basic idea is as follows. On a complete
probability space (Ω,E ,P), with N = NP, we consider the system of abstract stochastic differential
equations

(3.7) dχβ
t = V(t,β)(χ[0,(t,β))T

, ξ[0,(t,β))T
) · dηt, β ∈ w1 + 1,
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on the stochastic intervals consisting of (t, ω) ∈ R+ × Ω with τ̂(ω) ≤ (t, β) ≤ ∞,53 with initial
condition χ|[[0,τ̂ ]] = χ̂, where:

– I is a non-empty, finite set of agents, or players;
– ξ : T × Ω → A is a stochastic processes describing the agents’ action, A =

∏
i∈I Ai and

Ai = Rai for ai ∈ N∗ and i ∈ I;
– χ : T × Ω → Rd is a stochastic process describing a state or signal, not fully observable by

the agents, for d ∈ N∗, for any (t, β) ∈ T, χβ
t = χ(t,β), and χ̂ : [[0, τ̂ ]] → Rd is (the restriction

of) a stochastic process describing a given initial state;
– τ̂ : Ω → T is a random time with respect to PT such that π ◦ τ̂ ≤ α for some α ∈ w1,

describing the initial time;
– η : R+×Ω → Rm describes an exogenous “random” perturbation of the state, where m ∈ N∗;
– the maps Vt : (Rd)[0,t)T × (Ra)[0,t)T → Rd×m, where t ∈ T, describes the infinitesimal linear

effect of these perturbations on the state process χ at time t, wherem ∈ N∗ and a =
∑

i∈I ai.
Stochastic analysis treats the meaning and further properties of such equations, understood as
integral equations with respect to the measure P.54 The dependence on the measure may be
crucial, of course. For example, η could be a continuous Rm-valued L2-semimartingale with respect
to P and the integral be understood in the sense of L2(P)-convergence, following Ito. We only
formulate one abstract non-anticipativity assumption on System 3.7, which is satisfied by the usual
integration concepts:

– Assumption SDG. Suppose that, with the notation just introduced, χ solves System 3.7
for ξ and initial condition χ|[[0,τ̂ ]] = χ̂ and initial time τ̂ . Further, let ξ′ : T × Ω → A and
χ′ : T×Ω → Rd constitute another pair of stochastic processes satisfying ξ′|[[0,τ̂ ]] = ξ|[[0,τ̂ ]] and
χ′|[[0,τ̂ ]] = χ̂ and such that χ′ solves System 3.7 for ξ′ and the initial condition χ′|[[0]] = χ̂|[[0]]
and initial time 0. Then, χ solves System 3.7 for ξ and the initial condition χ|[[0]] = χ̂|[[0]]
and initial time 0.

Imitating the stochastic differential games and control literature, System 3.7 can be used to
construct the set of outcomes W. For this, we select a subset W ⊆ Ω × BT and fix the relevant
information structures. Let, for any i ∈ I, H i be a filtration on W satisfying Axiom 1 in Defin-
ition 3.1 above, and M i be a σ-algebra on T × W satisfying Prd(H i) ⊆ M i ⊆ Opt(H i). Let
H = (H i)i∈I , M = (M i)i∈I . Then, let W be a non-empty set of pairs ζ = (ξ, χ) satisfying the
following properties:

1. for all ζ = (ξ, χ), ζ ′ = (ξ′, χ′) ∈ W, χ0 = χ′
0;

2. for all ζ = (ξ, χ) and all ω ∈ Ω, (ω, χ(ω)) ∈ W ;
3. for all ζ = (ξ, χ) ∈ W, χ is the, up to N -indistinguishability, unique stochastic process χ

satisfying System 3.7 for ξ and initial data (0, χ|[[0]]);
4. for all i ∈ I, all H i-optional times τ i with [[0, τ i)) ∈ M i, all ζ̃ = (ξ̃, χ̃), ζ ′ = (ξ′, χ′) ∈

W, for ξ = ξ̃ and the initial data (τ̂ , χ̂) = (τ i ◦ (idΩ ⋆χ
′), χ′|[[0,τ̂ ]]), there is an, up to P-

indistinguishability, unique stochastic process χ satisfying System 3.7, and (for at least one
representative thereof with respect to P-indistinguishability) we have (ξ, χ) ∈ W.

Let χ̂0 = χ|[[0]] for some (and all) (ξ, χ) ∈ W. Moreover, let I denote the set of pairs (τ̂ , χ̂) =
(τ i ◦ (idΩ ⋆χ), χ|[[0,τ̂ ]]), where i ∈ I, τ i is an H i-optional time with [[0, τ i)) ∈ M i, χ is such that

53In an alternative “localised” setting, we would only consider the stochastic interval consisting of (t, ω) ∈ R+ ×Ω
with τ̂(ω) ≤ (t, β) and fix a value of χ at infinity, thereby restricting our attention to T \ {∞}. The difference
between both settings is smaller than one might suppose at first sight, because of the stopping property of stochastic
integrals and because [[0, 1]] ⊆ [[0, ∞)) ⊆ [[0, ∞]], and [[0, 1]] → [[0, ∞]], (t, ω) 7→ (− log(1 − t), ω) is a map preserving
many relevant structures.

54Going back to [40, 41], see, for example, the textbooks [21, 43, 54, 27].
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there is ξ with (ξ, χ) ∈ W. For any i ∈ I, fix a set Si of M i-measurable maps si : T × W → Ai,
such that all elements of the product S =×i∈I Si are admissible.

Proposition 3.16. The data F = (I,A,B,W,W,H ,M ,S) defines a well-posed stochastic process
form.

Remark 3.17. Note that, by well-posedness, for every s ∈ S, the ansatz ξ = s⌞χ plugged into
System 3.7 yields the system of abstract stochastic differential equations

(3.8) dχβ
t = V(t,β)(χ[0,(t,β))T

, (s⌞χ)[0,(t,β))T
) · dηt, β ∈ w1 + 1,

on the stochastic intervals55 consisting of (t, ω) ∈ R+ × Ω satisfying (t, β) ≤ ∞ and with initial
condition χ|[[0]] = χ̂0. If χ = Out⋆(s | 0, χ̃) and ξ = s⌞χ, where χ̃ is a state process with χ̃|[[0]] = χ̂0,
then χ solves System 3.8. If this system is, up to P-indistinguishability, uniquely solvable, then
the induced outcome processes of all strategy profiles, given the information set at time 0, can
be characterised by it. Counterfactual induced outcome processes are less handily characterised
because they involve conditioning on counterfactual information sets.

Remark 3.18. We note that we have covered stochastic differential games and control problems
in the so-called “strong formulation” here. What about the so-called “weak formulation”? As a
side remark, we note that often there is a way to translate a weakly formulated problem into the
language of the strong formulation, e.g. by change-of-measure techniques (then, the agents’ action
consists in determining a density process).56 Relatedly, by the Yamada-Watanabe theorem, under
certain conditions, weak existence of solutions for stochastic differential equations already implies
strong existence.57 So, in these cases, there is not much to worry about. However, what about an
untranslated, and possibly untranslatable, weakly formulated problem?

It can be seen as a relaxation of the above-discussed formalism. Indeed, this is by accepting
that the probability space (Ω,E ,P) and the information structure H need no more be fixed, but
may vary depending on the outcome and strategy process. Moreover, the random perturbation and
the initial states are only fixed in distribution, not (almost surely) pathwise. This situation can be
interpreted in the sense of an outcome-dependent extension of the exogenous scenario space, adding
sufficient randomisation devices in order make sense of the state dynamics in distribution.

The fundamental decision-theoretic problem with this model lies in that the mere existence of
certain scenarios then depends on agents’ strategies (creating “unknown unknowns”). This can be
compensated for by directly working on the path space for outcome and strategy processes, thereby
fixing (Ω,E ) and a canonical outcome and strategy process on it, an approach often adopted in the
stochastic analysis and control literature, already for reasons of mathematical convenience. Then,
the decision making of any agent no more consists in choosing a strategy, but in selecting a “non-
anticipative” probability measure on this path space (Ω,E ). In our approach,58 that is, essentially,
a belief on the realised own strategy — a true paradox which highlights that this weak approach
does really relax the basic modelling principles of the present text.

Remark 3.19. We note that, without loss of generality, we have restricted our attention to a partic-
ular type of stochastic differential equations in this subsection. Instead of controlling the “velocity”

55Idem.
56See, for instance, the [19, Chapter 21] for a textbook account on that.
57See, for instance, the [44, Theorem 32.14] for a textbook account on that.
58Note that, in the present text, a “mixed strategy” in the von Neumann, Morgenstern and Nash sense is

modelled simply by a strategy (perhaps only conditionally) independent from the exogenous information of other
agents and inducing the same distributions under all agent’s beliefs (“secret” and “objective” in the sense of [7]).
The randomising nature of a strategy is entirely based on its dependence on (Ω, E ). This is discussed in more detail
in [57, Subsections 2.1.4 and 2.3.5].
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(like drift rate or volatility) with respect to some exogenous random driver as in Equation 3.7, one
might also control the driver itself, as, for instance, done in stochastic singular control or optimal
stopping (or timing), and related multiple-agent (games) models. One could also make the field V
dependent on the distribution of χ, leading to so-called McKean-Vlasov dynamics with applications
in non-atomic stochastic or mean-field games (introduced in [50, 38], see, e.g. [16, 17, 15]). The
discussion of this subsection can be adapted to these cases as well.

Remark 3.20. We briefly comment — on a very informal level, without going into technical
details — on the equilibrium concept for stochastic process forms in the context of this subsection.
Stochastic differential games and control problems are often formulated in stacked strategic form.
For instance, the optimality criterion in a strongly Markovian setting with a single agent i may be
of the form

(∗) Maximise J(x; s) = Ex[ui(χs
∞)] over s = si, ∀x ∈ Rd,

supposing χs to be a strong Markov process, given by χs = Out⋆(s | 0, χ̃) for some fixed state process
χ̃ corresponding to an initial condition, with continuous ui : Rm → [−4, 2]. Very roughly speaking,
one may (try to) apply the strong Markov property in order to rewrite this as a maximisation
problem of conditional expectations given a suitable filtration evaluated at relevant optional times.
This in turn lies within the framework of the equilibrium (in the single-agent case, say, optimiser)
concept for stochastic process forms in Definition 3.6. If all this works out, then the stacked strategic
forms thus turn out as a special case of a stochastic process form, also from the perspective of
equilibria and optimisers.

This perspective on dynamic optimisers (and equilibria) is also compatible with and explains
standard methods from control theory. The representation in (∗) is used because it gives rise to a
function in x, the value function V (x) = sups J(x; s). The dynamic programming (alias Bellman)
principle exploits the optimality of s at different “information sets” or “subgames”, given sufficient
regularity of V . It can be used to study local properties of V . This can be a powerful method to
characterise, verify, or compute optimisers or equilibria using partial differential equations (called
Hamilton-Jacobi-Bellman equations), thereby further justifying the approach using stochastic pro-
cess forms in (possibly vertically extended) continuous time.59

Conclusion

An abstract and general language of continuous-time games based on stochastic processes has
been introduced. Taking limits of the outcomes from well-posed action path stochastic extensive
forms, in a way that preserves accumulating reaction behaviour, leads to the notions of tilting
convergence and of vertically extended continuous time. On this extended time half-axis, a suitable
stochastic analysis — with consistent notions of progressive measurability, optional and decision
times and processes, a Début Theorem etc. — can be defined. The resulting game-theoretic model
based on the stochastic process form, which avoids a) well-posedness problems by reducing the set
of strategies and b) measurability problems by supposing strategies to be progressively measurable
(a strengthening, or, depending on the perspective, weakening, of the product form approach [69,
70, 37]), can be justified on the grounds of tilting approximation of outcomes, but, at the same
time, encompasses a vast class of applications: stochastic differential games, continuous-time timing
games, continuous-time Bayesian games (e.g. principal-agent problems). In a case study of the
timing game, we see that the symmetric, randomised preemption equilibrium predicted by [29, 58]
obtains also in this setting, conditional on a vast class of subgames.

The language proposed here is developed out of first principles of game and probability theory,
which thus encompass different disciplines. Despite their strong conceptual and historical links

59For the purely control-theoretic aspects, we refer, for instance, to the textbooks [19, 53].
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these disciplines sometimes speak quite different languages, which blurs the view on those prin-
ciples. [57, Chapters 1 and 2] and the present text have pointed to some of the key difficulties,
which makes it understandable that one often recurs to specific ad-hoc formulations. Yet, those
works also demonstrate that it is possible to make the link in a certain sense, given sufficient
mathematical effort, and that this effort may improve the conceptual understanding. For example,
the symmetric preemption equilibrium arises rather naturally from the general theory; no specific
theory of “stopping intensities” alias conditional stopping probabilities as in [29, 58], which heavily
uses the two-player and timing games structure, is needed. Using mathematics, a convincing but
seemingly ad-hoc solution in “economic” game theory can be represented by a canonical “economic”
game-theoretic solution concept.

The present text focuses on abstract and general theory, illustrated via simple examples, and
on the general link to stochastic process-based game and control theory. Moreover, we have seen
that this theory yields a well-posed model of timing games, compatible with and providing further
footing to the existing theory on preemption games. Other things remain to be addressed. For
example, we argue that stochastic differential games are an important class of problems covered
by stochastic process forms. It is beyond the scope of this text to provide another detailed case
study of a differential game in stochastic process form within the necessary detail. We think that
future research on stochastic differential games with preemption features, or asymmetric or partial
information, with applications in economics and finance (as in [13, 12]), for example, could benefit
from and draw upon the game-theoretic formalism introduced in [57] and this text.

Furthermore, using tilting convergence we have provided a general approximation mechanism
on the level of outcomes. A game-theoretically very relevant question would be how this can be
lifted to equilibria (see, e.g., [63, 28, 64] for related literature). However, an approximation on the
level of equilibria is more dependent on specific assumptions on the concrete problems at hand,
e.g. regularity assumptions on tastes alias payoffs function. This is beyond the scope of this text,
but could be analysed in more specific situations, under specific regularity assumptions, using the
language from the present text.

This text also provides a contribution to stochastic analysis, which is formally independent from
the decision-theoretic motivation underlying the present text. It might be useful at all places where
accumulation creates discontinuities that become invisible in the usual pointwise limit. In that
sense, this relates to the literature on stochastic integration and stochastic differential equations,
which is a theory about limits of simple integrals as the time grids become arbitrarily fine. The
question of finding an adequate notion for this in situations involving jumps arises in applications
(see, e.g., [13] and the references therein) and has motivated abstract theory (see, e.g., [18, 52]
and the references therein). Stochastic analysis in vertically extended continuous time provides
an alternative candidate for this. A next step would necessarily involve attempts to formulate
stochastic integration intrinsically in this setting, based on the notions of optional and predictable
times and processes etc. introduced and studied in the present text.60
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Appendix A. Proofs

A.1. Section 1.

The complete total order T.

Proof of Lemma 1.2. Let α ∈ w1 + 1 and S ⊆ Tα be some subset, a = inf Pp(S), b = sup Pp(S) in
R+.

If a ∈ Pp(S), then Pπ(S∩ [{a}×(supα+1)]) ̸= ∅. Hence, this set has a minimum γ in supα+1.
Then, (a, γ) defines a minimum of S. If a ∈ R+ \ Pp(S), then (a, supα) is an infimum of S in Tα.
Else, a = ∞ and S = ∅. Then, ∞ is an infimum of S in T.

If b ∈ Pp(S), then Pπ(S∩ [{b}× (supα+1)]) ̸= ∅. Thus, this set has a supremum γ in supα+1.
Then, (b, γ) defines a supremum of S. If b /∈ Pp(S), then (b, 0) is a supremum of S. □

Proof of Proposition 1.1. Tα is a complete lattice by Lemma 1.2. It then suffices to show that, via
set inclusion, Tα defines a dense completion of Tα (see Corollary B.6).

For this, note that, in case α > 0, for any t ∈ R+, we have supAt = (t, supα) = inf Bt, where

At = p−1([0, t]R+) ∩ Tα, Bt = p−1((t,∞)R+) ∩ Tα,

by Lemma 1.2. Moreover, the same lemma implies inf ∅ = ∞ = supT. In view of Equation 1.6, Tα

is a dense completion of Tα. □

Topology and σ-algebras on T.

Proof of Lemma 1.4. (Ad “GT(T) is a subbase of OT”): It suffices to show that elements of GT(T)
are unions of subsets of GT(T). Let t ∈ T. Then, there are At, Bt ⊆ T with supAt = t = inf Bt.
We infer that

[0, t)T =
⋃

u∈At

[0, u)T, (t,∞]T =
⋃

u∈Bt

(u,∞]T.

(Ad “UT is a base of OT”): We have just seen that GT(T) is a subbase of OT. It is evident that
UT ∪ {T} is the set of intersections of finite subsets of GT(T),61 and, by basic topology, a base of
OT. Moreover, T = [0, 1)T ∪ (0,∞]T. Hence, UT is a base, too. □

Proof of Proposition 1.5. (Ad compactness of [t, u]T): It is well-known that complete totally
ordered lattices are compact. We nevertheless give a proof for the reader’s convenience.

Let t, u ∈ T and C be an open covering of [t, u]T in T, i.e. C ⊆ OT and [t, u]T ⊆
⋃

C . We have
to show that C admits a finite subcovering. By Lemma 1.4 and basic topology (Alexander subbase
theorem), it suffices to consider the case where C ⊆ GT. Let, in the complete lattice T,

a = inf{t′ ∈ T | (t′,∞]T ∈ C }, b = sup{u′ ∈ T | [0, u′)T ∈ C }.

If a < t, then there is t′ ∈ T with t′ < t such that (t′,∞]T ∈ C , whence the finite subcovering
[t, u]T ⊆ (t′,∞]T. Similarly, if u < b, we get the a finite subcovering [t, u]T ⊆ [0, u′)T ∈ C for some
u′ ∈ T.

It remains to consider the case t ≤ a and b ≤ u. We claim that a < b. As b ≤ u and C covers
[t, u]T, there is t′ ∈ T such that u ∈ (t′,∞]T ∈ C , whence a < u. Thus a ∈ [t, u]T, whence we
infer – using the definition of a and the covering property of C – the existence of u′ ∈ T such that
a ∈ [0, u′)T ∈ C . Hence, a < b. As a consequence, there are t′, u′ ∈ T with a ≤ t′ < u′ ≤ b such
that [0, u′)T, (t

′,∞]T ∈ C . We then have [t, u]T ⊆ T = [0, u′)T ∪ (t′,∞]T.

61... the empty intersection being equal to T.
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(Ad “KT(T) is an intersection-stable compact class”): As a total order, T is a lattice. Hence,
KT(T) is intersection-stable. It is a compact class, by basic topology, because its elements are
compact with respect to the fixed topology OT.

(Ad IT(T) = σ(GT(T)) = σ(KT(T))): The first equality is the definition. For the second one,
let u, t ∈ T. Then, π(t) is countable. Thus,

(u,∞]T = T \ [0, u]T, [0, t)T =
⋃

γ∈π(t)

[
0, (p(t), γ)

]
T,

are elements of σ(KT(T)). Conversely,

[t, u]T = T \
(
[0, t)T ∪ (u,∞]T

)
,

which is an element of σ(GT(T)). We conclude that σ(GT(T)) = σ(KT(T)). □

Proof of Corollary 1.6. We denote the four sets in the claim, ordered from left to right, by Mi,
i = 1, . . . , 4. Clearly, all these four sets are intersection-stable and, by the preceding Proposition 1.5
and complement-stability, contained in IT(T). It is also clear that GT(T) = M2 ∪M4 and KT(T) ⊆
σ(M1 ∪ M3). We conclude that

IT(T) = σ(M1 ∪ M3) = σ(M2 ∪ M4).
It remains to show that σ(Mi) = σ(Mi+2), for both i = 1, 2. As σ(M1) = σ(M4) and

σ(M2) = σ(M3), this is equivalent to proving σ(M1) = σ(M2).
Let u ∈ T. Note that

[0, u]T =
[
0, (p(u), π(u) + 1)

)
T.

This is an element of M2 since π(u) + 1 < w1. Hence, M1 ⊆ M2, and thus σ(M1) ⊆ σ(M2).
Regarding the converse inclusion, if u = 0, then [0, u)T = ∅. If u ∈ R+ \ {0}, then there is a

sequence (un)n∈N valued in [0, u)R+ converging to u, and we have

[0, u)T =
⋃

n∈N
[0, un]T.

Else, u ∈ T \ R+. Then, π(u) > 0 and

[0, u)T =
⋃

γ∈π(u)

[
0, (p(u), γ)

]
T,

a countable union. In all three cases, [0, u)T ∈ σ(M1). We conclude that σ(M1) = σ(M2),
completing the proof. □

Proof of Lemma 1.7. (Ad Part 1): This property is the subject of a classical exercise on product
σ-algebras; its proof is sketched for the reader’s convenience. Let α ∈ w1 and A α denote the
σ-algebra on T generated by G α

T,×
.

First, for fixed C ∈ Gα+1, consider the set Dα
R+

of D ∈ BR+
such that (ρα)−1(D×C) ∈ A α. By

construction, DR+
contains the intersection-stable generator GR+

of BR+
. Moreover, it is a Dynkin

system on R+. Indeed, there is a countable subset CR+
⊆ GR+

with
⋃

CR+
= R+, whence

(ρα)−1(
R+ × C

)
=

⋃
B∈CR+

(ρα)−1(
B × C

)
∈ A α.

Stability under complements and countable (disjoint) unions is easily verified. Hence, by Dynkin’s
π-λ-theorem, Dα

R+
= BR+

.
Second, for fixed B ∈ BR+

consider the set Dα+1 of D ∈ Bα+1 such that (ρα)−1(B ×D) ∈ A α.
By the first step, Dα+1 contains the intersection-stable generator Gα+1 of Bα+1. Moreover, it is a
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Dynkin system on α + 1. Indeed, there is a countable subset Cα+1 ⊆ Gα+1 with
⋃

Cα+1 = α + 1,
whence

(ρα)−1(
B × (α+ 1)

)
=

⋃
C∈Cα+1

(ρα)−1(
B × C

)
∈ A α.

Stability under complements and countable (disjoint) unions is also easily verified. Hence, by
Dynkin’s π-λ-theorem, Dα+1 = Bα+1.

As the set of products B × C ranging over B ∈ BR+
and C ∈ Bα+1 generates BR+×(α+1), we

infer that ρα is A α-BR+×(α+1)-measurable. By definition of Pα
T , we infer that Pα

T ⊆ A α. On the
other hand, we have G α

T,×
⊆ Pα

T , whence A α ⊆ Pα
T . As G α

T,×
inherits intersection-stability from

GR+
and Gα+1, Claim 1 obtains.

(Ad Part 2): Let A denote the σ-algebra on T generated by GT,×. By construction and Part 1,
we have Pα

T ⊆ A for all α ∈ w1. Hence, by Part 1, for any α ∈ w1, ρα is A -BR+×(α+1)-measurable.
By definition of PT, therefore, PT ⊆ A . On the other hand, GT,× ⊆ PT, whence the converse
inclusion A ⊆ PT.

Regarding the second sentence, suppose that for all α, β ∈ w1 with α < β and all C ∈ Gα+1, we
have either α ∈ C and C ∪ (α, β]w1 ∈ Gβ+1, or α /∈ C and C ∈ Gβ+1. Then, we claim that for all
α, β ∈ w1 with α < β, G α

T,×
⊆ G β

T,×
which then implies the claim, because G β

T,×
is intersection-stable

by Part 1. For proving the claim just made, let α, β ∈ w1 be such that α < β and let B ∈ GR+
and

C ∈ Gα+1. If α /∈ C, then C ∈ Gβ+1 and, thus (ρα)−1(B × C) = (ρβ)−1(B × C) ∈ G β

T,×
. If α ∈ C,

then C ∪ (α, β]w1 ∈ Gβ+1, and, thus, (ρα)−1(B × C) = (ρβ)−1(B × (C ∪ (α, β]w1)) ∈ G β

T,×
. This

proves the claim.
(Ad Part 3): Suppose that GY consists of compact sets in Y for all Y ∈ {R+} ∪w1 and the only

element B of GR+
with ∞ ∈ B is B = {∞}. To start, we recall that the product of two compact

topological spaces is compact.62 Hence, if B ⊆ R+ and C ⊆ α + 1 are compact, for some α ∈ w1,
then B × C, equipped with product topology, is compact as well.

Let B ∈ GR+
, α ∈ w1, and C ∈ Gα+1. If ∞ /∈ B, then

(ρα)−1(B × C) =
{
B × C, if α /∈ C,

B × (C ∪ [α+ 1,w1]w1+1), else,

which is compact with respect to the product topology. If ∞ ∈ B, then B = {∞}, whence

(ρα)−1(B × C) =
{
B × {0}, if 0 ∈ C,

∅, else,

which is equally compact. Hence, under the hypotheses made, all elements of GT,× can be seen as
compact subsets of R+ × (w1 + 1) equipped with product topology. Therefore, GT,×, and also its
subsets G α

T,×
, α ∈ w1, all yield compact classes. □

Proof of Lemma 1.9. Let

Mα =
{
M ∈ PT ⊗ E | ∀x, y ∈ T \ Tα∀ω ∈ Ω:

[
(x, ω) ∈ M and p(x) = p(y) ⇒ (y, ω) ∈ M

]}
.

We have to show that Pα
T ⊗ E ⊆ Mα. In view of the definition of Pα

T and basic measure theory,
it suffices to show that:

1. for all B ∈ BR+×(α+1) and E ∈ E , (ρα)−1(B) × E ∈ Mα,

62See, e.g., [59, Appendix A1].
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2. Mα is a σ-algebra on T × Ω.
(Ad Statement 1): Let B ∈ BR+×(α+1) and E ∈ E . Let x, y ∈ T \ Tα and ω ∈ Ω such that

(x, ω) ∈ (ρα)−1(B) × E and p(x) = p(y). As π(x), π(y) ≥ α,
ρα(x) = (p(x), α) = (p(y), α) = ρα(y).

Hence (y, ω) ∈ (ρα)−1(B) × E.
(Ad Statement 2): Clearly, ∅ ∈ Mα. Next, let M ∈ Mα. Then, M∁ ∈ PT ⊗ E . For the

proof, let x, y ∈ T \ Tα and ω ∈ Ω such that (y, ω) /∈ M∁. Thus, (y, ω) ∈ M . If p(x) = p(y),
then (x, ω) ∈ M , whence (x, ω) /∈ M∁. By contraposition, M∁ ∈ Mα. Finally, let (Mn)n∈N be
an Mα-valued sequence and M =

⋃
n∈NMn. Let x, y ∈ T \ Tα and ω ∈ Ω such that (x, ω) ∈ M

and p(x) = p(y). Then, there is n ∈ N such that (x, ω) ∈ Mn. Hence, (y, ω) ∈ Mn. Therefore,
(y, ω) ∈ M . The proof is complete. □

Proof of Proposition 1.10. The second equality a direct consequence of the definition of Pα
T , α ∈

w1, and the product σ-algebra. We therefore focus on the proof of the first equality.
(Ad “⊇” and monotonicity of the union): Let α, β ∈ w1 be such that α ≤ β. Then, by Lemma 1.7

and Example 1.8, we find generators G γ

T
of Pγ

T
, γ ∈ w1, such that G α

T ⊆ G β

T
. Hence, Pα

T ⊆ Pβ

T
.

By construction, Pβ

T
⊆ PT. Then, it follows directly from the definition of the product σ-algebra

– i.e. the smallest one making the set-theoretic projections measurable – that

PT ⊗ E ⊇ Pβ

T
⊗ E ⊇ Pα

T ⊗ E .

(Ad “⊆”): Let A =
⋃

α∈w1
Pα

T ⊗ E . In view of Equation 1.9, and by basic measure theory, A
contains a generator of PT ⊗ E , namely

{(ρα)−1(B) × E | α ∈ w1, B ∈ BR+×(α+1), E ∈ E }.

It therefore suffices to show that A is a σ-algebra on T × Ω. As P0
T ⊗ E is a σ-algebra on T × Ω,

∅ ∈ A . If A ∈ A , then there is α ∈ w1 such that A ∈ Pα
T ⊗ E . Hence, A∁ ∈ Pα

T ⊗ E ⊆ A .
Finally, let (An)n∈N be an A -valued sequence. For any n ∈ N, there is minimal αn ∈ w1 such that
An ∈ Pαn

T
⊗ E . Let α = supn∈N αn. As the supremum of a countable set of countable ordinals, α

is a countable ordinal as well, i.e. α ∈ w1. Using monotonicity of the union, proven in the first step
above, we infer that, for all n ∈ N, An ∈ Pα

T ⊗ E . Hence,
⋃

n∈NAn ∈ Pα
T ⊗ E ⊆ A . We conclude

that A is a σ-algebra, thereby completing the proof. □

Proof of Corollary 1.11. (Ad inclusion): Let α ∈ w1. Let, in addition, B = [0, t)R+
and C = β\{0}

for t ∈ R+ and β ∈ α+ 1. Then

(ρα)−1(B × C) = B × C =
⋃

x∈B

((x, 0), (x, β))T ∈ OT ⊆ BT.

Furthermore, for open real intervals B as above, we have

(ρα)−1(B × (α+ 1)) = B × (w1 + 1) =
⋂

n∈N
[0, t+ 2−n)T ∈ BT.

Moreover,

(ρα)−1(B × {0}) =
{

(ρα)−1(B × (α+ 1)), if α = 0,
B × {0}, else.

Hence, for B as above and any β ∈ α+ 2, we get
(ρα)−1(B × β) ∈ BT ∨ σ(B′ × {0} | B′ ∈ BR+

).
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Moreover, for B = {∞} and C ∈ α+ 2, we have

(ρα)−1(B × C) =
{

∅, if C ∩ {0} = ∅,
{∞}, else,

∈ BT.

Let GR+
be the set consisting of a) all intervals [0, t)R+

running over t ∈ R+ and b) the set
{∞}, and Gα+1 = α + 2, for any α ∈ w1. With the notations from Lemma 1.7, we have GT,× ⊆
BT ∨ σ(B′ × {0} | B′ ∈ BR+

). Hence, by Lemma 1.7, the claimed inclusion obtains.

(Ad inequality): Let V ⊆ R+ a non-Lebesgue-measurable set, and U = V × {1} ⊆ T. Then,

U =
⋃
t∈V

(t, (t, 2))T ∈ OT ⊆ BT.

If we had U ∈ PT, then there would be α ∈ w1 with U ∈ Pα
T , by Equation 1.12 following

Proposition 1.10. More precisely, U = (ρα)−1(B) for some B ∈ BR+×(α+1). Then, α ≥ 2, and
B = U = V ×{1}. As α+1 is Polish, measurable projection onto R+ would imply that V ∈ (BR+

)u

— which is false. We conclude that U /∈ PT. □

Proof of Lemma 1.12. It suffices to show that GT(T) ⊆ PT. Let t ∈ T and α = π(t). Then,

[0, t)T = (ρ0)−1([0, p(t))R+
× 1) ∪ (ρα)−1({p(t)} × α),

which is an element of Pα
T ⊆ PT. Similarly,

(t,∞]T = (ρ0)−1((p(t),∞]R+
× 1) ∪ (ρα+1)−1({p(t)} × {α+ 1}),

which is an element of Pα+1
T

⊆ PT. □

Proof of Lemma 1.13. (Ad ια): Let α, β ∈ w1 and B ∈ BR+
, C ⊆ β + 1. Then,

ι−1
α ((ρβ)−1(B × C)) = (ρβ ◦ ια)−1(B × C) =


B × (C ∩ (α+ 1)), if α ≤ β,

B × C, if α > β, β /∈ C,

B × (C ∪ (β, α]w1), if α > β, β ∈ C.

In view of the definition of PT, we infer that ια is BR+×(α+1)|Tα+1
-PT-measurable.

(Ad p): Let c ∈ R+ with c > 0. Then, for all α ∈ w1,

p−1([0, c)R+
) =

⋃
n∈N

[0, c(1 − 2−n)]T = (ρα)−1([0, c)R+
× (α+ 1)),

which is thus an element of both IT(T) and Pα
T . Hence, p is measurable with respect to both

σ-algebras. □

Continuous functions on T.

Proof of Lemma 1.14. If t ∈ T is such that π(t) = β + 1 for some β ∈ On, then for u = (p(t), β),
we have (u,∞]T ∩ [0, t)T = ∅. Thus, t is not a left-limit point. Moreover, T ∩ [0, 0)T = ∅, hence 0 is
not a left-limit point either.

Let t ∈ T \ {0}. Then, every neighbourhood U of t contains an open interval (t0, u0)T, with
t0 < t < u0, t0, u0 ∈ T, by Lemma 1.4. If π(t) = 0, then p(t0) < p(t). Hence, there is x ∈ R+ with
p(t0) < x < p(t), whence x ∈ U ∩ [0, t)T. Thus, t is a left-limit point. If π(t) is a limit ordinal, then
u = (p(t0), π(t0) + 1) ∈ T satisfies t0 < u < t. Thus, t is a left-limit point.

∞ is clearly not a right-limit point, because T ∩ (∞,∞]T = ∅. Let t ∈ T \ {∞}. If π(t) < w1,
then u = (p(t), π(t) + 1) ∈ T. Thus, [0, u)T ∩ (t,∞]T = ∅, and t is therefore not a right-limit point.
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If π(t) = w1, then, again, every neighbourhood U of t contains an open interval (t0, u0)T, with
t0 < t < u0, t0, u0 ∈ T, by Lemma 1.4. Hence, p(t) < p(u0). Therefore, there is x ∈ R with
p(t) < x < p(u0). Hence, x ∈ U ∩ (t,∞]T. Therefore, t is a right-limit point. □

Proof of Lemma 1.15. Let t ∈ R+ and y = f(t,w1). As Y is metrisable, {y} ∈ BY and f−1({y}) ∈
PT, by hypothesis. By Proposition 1.10 applied to singleton Ω, there is α ∈ w1 with f−1({y}) ∈
Pα

T . By Lemma 1.9 applied to singleton Ω, f(t, β) ∈ {y} for all β ∈ [α,w1]w1+1, and, in particular,
f(u) = y for all u ∈ ((t, α), (t,w1)]T. Thus, f is left-constant at (t,w1).

In particular, f is left-continuous at (t,w1). □

Our proof of Proposition 1.16 is based on several lemmata. As explained in the proof below, it
suffices to perform the main analysis under the assumption that Y = R. The first lemma is about
the cardinality of the set of left-jumps of làg functions, which generalises its well-known counterpart
in classical theory. For this, let us note that for any làg function f : T → R, there is a function
∆↗f : T → R uniquely defined by ∆↗f(0) = 0 and for t ∈ T \ {0}:

∆↗f(t) =
{
f(t) − f(p(t), β), if π(t) = β + 1 for some β ∈ w1,

f(t) − limu↗t f(u), else.

Lemma A.1. Let f : T → R be làg. Then, the set

(A.1) N = {t ∈ T | ∆↗f(t) ̸= 0}

is countable. Moreover, for all t, u ∈ T with t ≤ u and (t, u]T ⊆ T \N , we have

p(t) = p(u) =⇒ f(t) = f(u).

Proof of Lemma A.1. (Ad “N is countable”): Let ε > 0 and

Nε = {t ∈ T | |∆↗f(t)| ≥ 2ε}.

If Nε were infinite, the axiom of choice would yield a strictly increasing sequence (tn)n∈N valued in
Nε and such that (tn, tn+1)T ̸= ∅ for all n ∈ N. Then, the axiom of choice would yield a sequence
(un)n∈N∗ with tn < un+1 < tn+1 for all n ∈ N such that |f(tn) − f(un)| ≥ ε for all n ∈ N∗, because
(tn)n∈N would be Nε-valued.

As both sequences would be increasing and T is a complete lattice, they would converge in T,
and, by choice of (un)n∈N, their limits coincide. Let t = limn→∞ tn = limn→∞ un. π(t) could not
be a successor ordinal of the form β + 1, β ∈ On, since then, for all but finitely many n ∈ N, we
would have tn ∈ ((p(t), β),∞]T, that is, t ≤ tn, which contradicts the strict monotonicity of (tn)n∈N.
Moreover, by strict monotonicity of the considered sequences, t > 0.

Hence, by Lemma 1.14, t would be a left-limit point. By hypothesis, f would then have left-limits
in t. In particular, for all but finitely many n ∈ N, |f(tn) − f(un)| < ε – in contradiction to the
choice of (un)n∈N. Thus, Nε must be finite.

We conclude that
N =

⋃
n∈N

N2−n

is countable.
(Ad second claim): Let t, u ∈ T satisfy t ≤ u and p(t) = p(u). We show that if f(t) ̸= f(u),

then (t, u]T ∩N ̸= ∅.
If f(t) ̸= f(u), then the set

S = {α ∈ (π(t), π(u)]w1+1 | f(t) ̸= f(p(t), α)}
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contains π(u). Therefore, it has a minimum, which we denote by α. Clearly, π(t) < α, and, for all
β ∈ [π(t), α)w1+1, we have f(p(t), β) = f(t). We infer that ∆↗f(p(t), α) = f(p(t), α) − f(t) ̸= 0.
Therefore, (t, u]T ∩N ̸= ∅. □

For the next lemma, let us note that for any function f : T → R, N as in the preceding
Lemma A.1, and M = Pp(N), there is a map γ : M × (w1 + 1) → (w1 + 1) satisfying, for any
t ∈ M :

– γ(t, 0) = 0,
– for any ordinal α ∈ w1, γ(t, α+ 1) = inf N(t, α) is the infimum of

N(t, α) = {β ∈ (γ(t, α),w1]w1+1 | (t, β) ∈ N}
in w1 + 1,

– for any limit ordinal α ∈ w1:
γ(t, α) = sup

β∈α
γ(t, β).

For t ∈ M , let Dt = {α ∈ w1 + 1 | γ(t, α) < w1}. The aim of γ is to count the jumps of f .

Lemma A.2. Let f : T → R be làg, and left-continuous at (t,w1), for any t ∈ R+. Let N , M , γ,
and (Dt)t∈M be defined as just before. Then, for all t ∈ M :

1. for all α, β ∈ w1 + 1 with α < β we have γ(t, α) ≤ γ(t, β) with strict inequality iff α ∈ Dt,
2. Dt is countable,
3. there is δt ∈ w1 with Dt = δt + 1.

Proof. Let t ∈ M .
(Ad Part 1): For the proof of monotonicity, we use transfinite induction. Let S = {β ∈ w1 + 1 |

∀α ∈ β : γ(t, α) ≤ γ(t, β)}. Clearly, 0 ∈ S. If β ∈ S, then β+1 ∈ S, because γ(t, β) ≤ γ(t, β+1) by
definition. If β ∈ w1 + 1 is a limit ordinal such that β ⊆ S, and α ∈ β, then γ(t, α) ≤ γ(t, α+ 1) ≤
γ(t, β), because α+ 1 < β and by definition of γ. Hence, S = w1 + 1.63

For the claim about strict inequality, let α, β ∈ w1 + 1 with α < β. If γ(t, α) < w1, then, by
definition of γ, γ(t, α) < γ(t, α + 1) ≤ γ(t, β). If γ(t, α) = w1, then, by monotonicity, γ(t, α) =
w1 = γ(t, β).

(Ad Part 2): Let γ∗
t = sup Pπ(N ∩ p−1(t)), which is countable. Let α ∈ Dt. If α is not a limit

ordinal, then clearly γ(t, α) ∈ γ∗
t + 1. If α is a limit ordinal, then γ(t, α) = sup{γ(t, β + 1) | β ∈ α}

– because, by definition of a limit ordinal, β ∈ α implies β + 1 ∈ α and γ(t, .) is monotone. Hence,
γ(t, α) ≤ γ∗

t , i.e. γ(t, α) ∈ γ∗
t + 1. Therefore, and by Part 1, γ(t, .)|Dt

defines an injection of Dt into
the countable set γ∗

t + 1. We conclude that Dt is countable.
(Ad Part 3): Note that, by monotonicity of γ(t, .), Dt is a downward closed subset of the ordinal

w1, hence an ordinal itself. As Dt is countable, therefore, Dt ∈ w1. If Dt were a limit ordinal, then
γ(t,Dt) = supβ∈Dt

γ(t, β) would be countable as the supremum of a countable set of countable
ordinals, whence the contradiction Dt ∈ Dt.64 Therefore, as 0 ∈ Dt, Dt is a successor ordinal.
Because Dt is countable, its predecessor δt is countable as well. □

Given a function f : T → R, N , M , γ, (Dt)t∈M , and (δt)t∈M as defined before Lemma A.2, let
D =

⋃
t∈M {t} ×Dt, let g : D → T be given by g(t, α) = (t, γ(t, α)), and define the set

(A.2) N =
{

[g(t, α), g(t, α+ 1))T | t ∈ M, α ∈ δt

}
∪

{
[g(t, δt), (t,w1)]T | t ∈ M

}
.

63Indeed, the principle of transfinite induction could be reformulated here by saying that: if this were not the
case, then (w1 + 1) \ S would have a minimum, a contradiction to the afore-said.

64Recall that Dt ∈ Dt is equivalent to Dt < Dt, and that in ZFC, a set cannot contain itself as an element.
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So, g simply represents the jump counter γ in terms of the time half-axis T (or more precisely, its
subset T).

Lemma A.3. Let f : T → R be làg, and left-continuous at (t,w1), for any t ∈ R+. Let N , M , and
N be defined as just before. Then, the following statements hold true:

1. N ⊆ IT(T),
2. N is countable,
3.

⋃
N ∈ IT(T),

4. N is a partition of
⋃

t∈M p−1(t), i.e. ∅ /∈ N , N is disjoint and
⋃

N =
⋃

t∈M p−1(t),
5. for all t ∈ T \

⋃
N , f(t) = f(p(t)),

6. for any S ∈ N and all t, u ∈ S, f(t) = f(u).

Proof. For the proof, let f : T → R be làg, and left-continuous at (t,w1), for any t ∈ R+, and let
N , M , γ, (Dt)t∈M , D, g, and N be defined as described above Lemmata A.2 and A.3. We use
Lemma A.2 throughout the whole proof.

(Ad Part 1): It suffices to note that, by definition, g maps to T and that for any t ∈ T and
u ∈ T with π(u) = w1, we have

[t, u]T =
⋂

n∈N
[t, p(u) + 2−n)T ∈ IT.

(Ad Part 2): N and Dt, for all t ∈ M , are countable. Thus, M = Pp(N) is countable as well,
and so is D. In particular, N is countable.

(Ad Part 3): This statement follows from the preceding Parts 1 and 2.
(Ad Part 4): For any t ∈ M , g(t, .) is strictly increasing and maps into T. Hence, ∅ /∈ N . It

is moreover clear that
⋃

N ⊆
⋃

t∈M p−1(t). On the other hand, let t ∈ M and u ∈ p−1(t). Let
α = {β ∈ Dt | 0 ≤ γ(t, β) ≤ π(u)}. By monotonicity of γ(t, .), α is a downward closed subset of
the ordinal Dt and thus an ordinal itself. We have 0 ∈ α alias α > 0. α cannot be a limit ordinal,
because if it were, then γ(t, α) = supβ∈α γ(t, β) ≤ π(u), whence the contradiction α ∈ α. Hence, α
is a successor ordinal. In particular, α has a maximum β and γ(t, β) ≤ π(u) < γ(t, β + 1). Thus,
u ∈ [g(t, β), g(t, β + 1))T if β < δt, and u ∈ [g(t, δt), (t,w1)]T if β = δt. N is disjoint because
g(t, .) = (t, γ(t, .)) is strictly monotone on Dt, and the fibres of p are disjoint.

(Ad Parts 5 and 6): These parts follow from the previous one by a direct application of
Lemma A.1. Regarding Part 5, let t ∈ T \

⋃
N . For all u ∈ (p(t), t]T, we have p(u) = p(t) /∈ M , by

Part 4, and, in particular, u /∈ N . Thus, (p(t), t]T ∩N = ∅, whence f(u) = f(t) for all u ∈ (p(t), t]T,
by the mentioned lemma. Regarding Part 6, let S ∈ N and t, u ∈ S with t ≤ u, without loss of
generality. By construction of S (based on the definition of g and γ), we have p(t) = p(u) and
there is no x ∈ N with t < x ≤ u, that is, (t, u]T ∩ N = ∅. Hence, by the mentioned lemma,
f(t) = f(u). □

Proof of Proposition 1.16. The main case Y = R: We first assume that Y = R. Let f : T → R be
làg, and left-continuous at (t,w1) for any t ∈ R+. Furthermore, let N , M , γ, (Dt)t∈M , D, g, and
N be defined as described above Lemmata A.2 and A.3.

(First argument): Let h : R+ → R be defined by h(0) = f(0) and, for all t ∈ R+ \ {0}, h(t) =
limu↗t f(u). Then, by adapting classical methods, it follows that h is left-continuous. Indeed, let
ε > 0. Then, for any t ∈ R+ \ {0}, there is at ∈ T with at < t such that, for all x ∈ (at, t)T, we have
|f(x) − h(t)| < ε/2. As t ∈ R+, p(at) < p(t), and hence we can, upon making at larger, assume
at ∈ R+. Let us fix some t ∈ R+\{0} and take arbitrary x ∈ (at, t)R+

. If x /∈ N , we have h(x) = f(x)
and thus |h(x)−h(t)| < ε/2 < ε. If x ∈ N , then there is y ∈ [(ax, x)R+

∩ (at, t)R+
]\N , because N is
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countable and ax, at ∈ R+. Therefore, |h(x) − h(t)| ≤ |f(y) − h(x)| + |f(y) − h(t)| < ε/2 + ε/2 = ε.
We conclude that h is left-continuous.

(Second argument): As a left-continuous function R+ → R, h is BR+
-BR-measurable. Hence,

by Lemma 1.13, h ◦ p is IT(T)-BR-measurable. By Lemma A.3, Parts 3, 4, and 5, h ◦ p(t) =
f ◦ p(t) = f(t) for all t ∈ T \

⋃
N , and T \

⋃
N ∈ IT(T). Hence,

f 1T\
⋃

N = h ◦ p 1T\
⋃

N

is IT(T)-BR-measurable.
(Third argument): f is constant on any S ∈ N , by Lemma A.3, Part 6. Hence, by Part 1 of

the same lemma, f1S is IT(T)-BR-measurable for any S ∈ N . Hence, using that N is a countable
partition (Parts 2 and 4 of the aforementioned lemma), we infer that

f 1⋃
N =

∑
S∈N

f 1S

is IT(T)-BR-measurable.
Combining the results of the second and third arguments, we infer that

f = f 1T\
⋃

N + f 1⋃
N

is IT(T)-BR-measurable.

The case of general metrisable Y : Let Y be a metrisable topological space and f : T → Y be làg,
and left-continuous at (t,w1) for any t ∈ R+. Let dY be a metric generating the topology on Y , let
ε > 0 and y ∈ Y . It suffices to show that f−1(Bε(y)) ∈ IT(T). For this, define

f̃ : T → R, t 7→ dY (f(t), y).

By the triangular inequality, any t ∈ T and z ∈ Y satisfy

dY (f(t), y) ≤ dY (f(t), z) + dY (z, y),

whence |f̃(t) − dY (y, z)| ≤ dY (f(t), z). We infer that f̃ is làg, and left-continuous at (t,w1) for any
t ∈ R+. Thus, by the main case studied just above, f̃ is IT(T)-BR-measurable. Therefore,

f−1(Bε(y)) = f̃−1(Bε(0)) ∈ IT(T).

This completes the proof. □

Measurable projection and section.

Proof of Proposition 1.18. Let M ∈ PT ⊗ E . By Proposition 1.10, there is α ∈ w1 and Mα ∈
BR+×(α+1) ⊗ E with M = (ρα × idΩ)−1(Mα). As Tα+1 = Tα+1 ∪ {∞} ∈ BR+×(α+1) and im ρα ⊆
Tα+1, we can assume without loss of generality that Mα ⊆ Tα+1 ×Ω. As ρα(t) = t for all t ∈ Tα+1,
we obtain Mα = M ∩ (Tα+1 × Ω).

As Mα ⊆ M , it is clear that PprjΩ(Mα) ⊆ PprjΩ(M). For the converse inclusion, let ω ∈
PprjΩ(M). Then, there is t ∈ T such that (t, ω) ∈ M . If π(t) ≤ α, then (t, ω) ∈ Mα, whence
ω ∈ PprjΩ(Mα). Else π(t) > α. Then t ∈ T \ Tα and p(t) < ∞. By Lemma 1.9, we infer that
u = (p(t), α) satisfies (u, ω) ∈ M . As p(u) < ∞ and π(u) ≤ α, we get (u, ω) ∈ Mα. Hence,
ω ∈ PprjΩ(Mα). We conclude that PprjΩ(M) = PprjΩ(Mα). □

Proof of Theorem 1.19. Let M ∈ PT ⊗ E . By Proposition 1.18, there is α ∈ w1 with

(∗) Mα = M ∩ (Tα+1 × Ω) ∈ BR+×(α+1) ⊗ E , and PprjΩ(M) = PprjΩ(Mα).
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As R+ × (α + 1) is a Polish space, the classical theorems on measurable projection and section
apply to Mα and the canonical projection (R+ × (α + 1)) × Ω → Ω, which is the restriction of
prjΩ : T × Ω → Ω. Thus, PprjΩ(M) = PprjΩ(Mα) ∈ E u, and there is E u|PprjΩ(Mα)-BR+×(α+1)-
measurable σα : PprjΩ(Mα) → R+ ×(α+1) such that [[σα]] ⊆ Mα. In particular, σα is Tα+1-valued.

Let σ = ια ◦ σα. Then, by Lemma 1.13, and another application of (∗), σ is E u|PprjΩ(M)-PT-
measurable and [[σ]] ⊆ M . This completes the proof. □

A.2. Section 2.

Augmentation and right-limits of exogenous information flow.

Proof of Equation 2.2. This is a classical argument in stochastic analysis, added here for the reader’s
convenience only. By definition, F∞✚ = F∞ = F ∞ = F ∞✚. It remains to show that, for all
t ∈ T \ {∞}, we have ⋂

P∈PE

[( ⋂
R∋u>t

Fu

)
∨ NP

]
=

⋂
R∋u>t

⋂
P∈PE

(
Fu ∨ NP

)
.

To start, note that (
⋂

R∋u>t Fu) ∨ NP ⊆ Fv ∨ NP for all real v > t and all P ∈ PE . Whence the
inclusion “⊆”. For the other inclusion’s proof, let E ∈

⋂
R∋u>t

⋂
P∈PE

(Fu ∨ NP) and P ∈ PE . For
n ∈ N, let un = p(t) + 2−n. Then, for any n ∈ N, there is EP

n ∈ Fun such that P(E∆EP
n) = 0. Let

EP = lim supn→∞ EP
un

. Then, EP ∈
⋂

R∋u>t Fu. As⋂
n∈N

EP
un

⊆ EP ⊆
⋃

n∈N
EP

un
,

σ-subadditivity yields
P(E∆EP) ≤

∑
n∈N

P(E∆EP
un

) = 0.

Hence, E ∈ (
⋂

R∋u>t Fu) ∨ NP. As this holds true for any P ∈ PE , we infer that

E ∈
⋂

P∈PE

[( ⋂
R∋u>t

Fu

)
∨ NP

]
.

□

Progressively measurable processes.

Sketch of a proof of Remark 2.3. Most claims can be proven by just copying the standard argu-
ments from the classical theory of stochastic processes (as exposed, for example, in [44]). So we
limit ourselves to explaining those points that require some additional thought.

Regarding Properties 1 and 2, the standard argument can directly by applied. Concerning
Property 3, note that for any t ∈ T with π(t) < w1, π(t) is countable. Hence, with Qt = [0, t)T ∩Q,
we have

{τ < t} =
⋃

q∈Qt

{τ ≤ q} ∪
⋃

β∈π(t)

{τ ≤ (p(t), β)} ∈ Ft.

As a consequence, {τ = t} = {τ ≤ t} \ {τ < t} ∈ Ft.
Next, consider Claim 4. The fact that Fτ is a sub-σ-algebra of E follows exactly as in the

classical case. The claim on augmentedness has also nothing special in the vertically extended case,
but it seems less standard; hence, we give the proof for the reader’s convenience. It suffices to show
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that Fτ ⊆ Fτ . Indeed, we have — using universal completeness of E and universal augmentedness
of F in E —

Fτ =
⋂

P∈PE

{
F ∈ E | ∀t ∈ T : F ∩ {τ ≤ t} ∈ Ft

}
∨ NP

=
⋂

P∈PE

{
E ∈ E ∨ NP | ∃F ∈ E :

[
P(F∆E) = 0, ∀t ∈ T : F ∩ {τ ≤ t} ∈ Ft

]}
=

{
E ∈ E u︸︷︷︸

=E

| ∀P ∈ PE ∃F ∈ E :
[
P(F∆E) = 0, ∀t ∈ T : F ∩ {τ ≤ t} ∈ Ft

]}
⊆

{
E ∈ E | ∀P ∈ PE ∀t ∈ T : E ∩ {τ ≤ t} ∈ Ft ∨ NP

}
=

{
E ∈ E | ∀t ∈ T : E ∩ {τ ≤ t} ∈

⋂
P∈PE

(Ft ∨ NP)︸ ︷︷ ︸
=Ft

}

= Fτ .

Properties 5 and 6 are shown as in the classical case. Property 7 follows as in the classical
case, using the fact that IT(T) is generated by all sets of the form [0, t]T, t ∈ T, according to
Corollary 1.6. □

Proof of Example 2.4. (Ad Part 1): Let t ∈ R+. Then,

{τ ≤ t} = {σ < t} ∪ ({σ = t} ∩ V ) ∈ Ft,

because {σ = t} ∩ V ⊆ {σ = t} and F and E are P-complete. Moreover, for any α ∈ w1 \ {0}:

{τ ≤ (t, α)} = {σ ≤ t} ∈ Ft = F(t,α).

Hence, τ is a F -stopping time in T.
(Ad Part 2): From the preceding equations, we infer that P(τ ≤ t) = P(σ ≤ t) for all t ∈ T.

Hence, Pτ = Pσ, by Corollary 1.6.
(Ad Part 3): This third claim is evident from the definition of τ .
(Ad Part 4): Suppose that V /∈ E . Then

{π ◦ τ = 0} = V /∈ E ,

and, in particular, {π ◦ τ = 0} /∈ Fτ . As R+ × 1 ∈ PT, τ is not Fτ -PT-measurable. This proves
Claim 4(a).

Regarding Claim 4(b), note that

V = prjΩ([[τ ]] ∩ (ρ1)−1(R+ × {0})).

As V /∈ E and E is P-complete, by the Measurable Projection Theorem 1.19, we obtain [[τ ]] ∩
(ρ1)−1(R+ × {0}) /∈ PT ⊗ E . Hence, [[τ ]] /∈ PT ⊗ E , and, in particular, [[τ ]] is not F -progressively
measurable.

Moreover, by classical theory, it follows that [[σ]] is F -progressively measurable. Indeed, for every
x ∈ R+ and every α ∈ w1,
(∗) {(σ(ω), α, ω) | ω ∈ Ω: σ(ω) ≤ x}

= ([0, x]R+
× {α} × Ω) \

( ⋃
Q∋q<x

[
([0, q)R+

× {α} × {q < σ}) ∪ ((q, x]R+
× {α} × {σ ≤ q})

])
∈ BR+×(α+2) × Fx.
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Taking the preimage of this under ρ2 × idΩ, for every t ∈ T, with x = p(t) and α = 0, yields:

[[σ]] ∩ [[0, t]] = (ρ2 × idΩ)−1
(

{(σ(ω), 0, ω) | ω ∈ Ω: σ(ω) ≤ x}
)

∈ PT × Fx ⊆ PT ⊗ Ft.

Furthermore,
V ∁ = prjΩ([[0, τ)) ∩ [[σ]]).

As V ∁ /∈ E and E is P-complete, by the Measurable Projection Theorem 1.19, we infer [[0, τ))∩ [[σ]] /∈
PT ⊗ E . Hence, [[0, τ)) /∈ PT ⊗ E , and, in particular, [[0, τ)) is not F -progressively measurable.

Regarding ((τ,∞]] a similar argument can be used. Let σ′ : Ω → T, ω 7→ (σ(ω), 1). Taking the
preimage of expression (∗) under ρ2 × idΩ for any t ∈ T, x = p(t), and α = 1, we get, if π(t) > 0:

[[σ′]] ∩ [[0, t]] = (ρ3 × idΩ)−1
(

{(σ(ω), 1, ω) | ω ∈ Ω: σ(ω) ≤ x}
)

∈ PT × Fx ⊆ PT ⊗ Ft.

If π(t) = 0, then
[[σ′]] ∩ [[0, t]] =

⋃
Q∋q<t

[[σ′]] ∩ [[0, (q, 1)]] ∈ PT ⊗ Ft.

Then, note that
V = prjΩ(((τ,∞]] ∩ [[σ′]]).

We conclude as above, using the Measurable Projection Theorem 1.19, that ((τ,∞]] is not F -
progressively measurable. □

Optional times. We prepare the proof of Theorem 2.6 with a basic lemma. It is based on the
classical argument showing progressive measurability of the converse graph of stopping times in
standard real time. Let us introduce the following notation. If τ : Ω → T is a map and α ∈ w1 + 1,
then let τα be the map Ω → T satisfying p ◦ τ = p ◦ τα and π(τα(ω)) = α for all ω ∈ {τ < ∞}.

Lemma A.4. Let τ : Ω → T be a map satisfying {τ < t} ∈ Ft for any t ∈ R+.65 The sets [[0, τw1 ]]
and ((τw1 ,∞]] are F -progressively measurable with respect to the interval σ-algebra IT(T).

Proof. Let t ∈ T, and Qt = [0, p(t))R+
∩ Q. Then, using the fact that Qt is countable, and by

Lemma 1.6:
((τw1 ,∞]] ∩ ([0, t]T × Ω) =

⋃
q∈Qt

(q, t]T × {τ < q} ∈ IT(T) ⊗ Ft.

Hence, ((τw1 ,∞]] ∈ Prg(IT(T),F ). As a consequence, by Remark 2.2, Item 2,

[[0, τw1 ]] = (T × Ω) \ ((τw1 ,∞]] ∈ Prg(IT(T),F )
as well. □

Proof of Theorem 2.6. For a plan of the proof, see Figure 3. The completeness assumption is only
made in the proof of implications “k ⇒ 6” for k ∈ {1, 2, 4}.

(Ad “2 ⇔ 3” and “4 ⇔ 5”): This follows directly from the fact that Prg(PT,F ) is stable under
complements (see Remark 2.2, Item 2).

(Ad 1 ⇒ 6): Suppose that (Ω,E ,F ) is universally complete and that [[τ ]] is F -progressively
measurable. Then, as F∞ ⊆ E , applying Relation 2.3 with t = ∞, basic measure theory yields
[[τ ]] ∈ PT ⊗ E . Hence, by Proposition 1.10, [[τ ]] ∈ Pα

T ⊗ E for some α ∈ w1. Then, π ◦ τ ≤ α.
Indeed, if there existed ω ∈ Ω with π ◦ τ(ω) > α, Lemma 1.9 would imply that (u, ω) ∈ [[τ ]] for
all u ∈ T \ Tα with p(u) = p(τ(ω)). (T \ Tα) ∩ p−1(p(τ(ω)) is infinite, but, as τ is a set-theoretic
function, [[τ ]] ∩ (T × {ω}) is a singleton – whence a contradiction.

65By Remark 2.3, Item 3, any F -stopping time satisfies this condition.
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1
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Figure 3. Plan of the proof of Theorem 2.6

For the remaining part of the claim, let β ∈ α+ 1 and t ∈ T. Let Mt = [[τ ]] ∩ ([0, t]T × Ω). Then,
by progressive measurability, Mt ∈ PT ⊗ Ft. As a consequence,

Mβ
t = Mt ∩ [(ρβ+1)−1(R+ × {β}) × Ω] ∈ PT ⊗ Ft.

By Theorem 1.19, and universal completeness of Ft,

{π ◦ τ = β, τ ≤ t} = PprjΩ(Mβ
t ) ∈ Ft.

(Ad 2 ⇒ 6): Suppose that (Ω,E ,F ) is universally complete and that [[0, τ)) is F -progressively
measurable. As in the proof of the implication (1 ⇒ 6) we get that [[0, τ)) ∈ Pα

T ⊗ E for some
α ∈ w1. We infer that π ◦ τ ≤ α. Indeed, if there existed ω ∈ Ω with π ◦ τ(ω) > α, then,
with t = (p(τ(ω)), α), we would have (t, ω) ∈ [[0, τ)). Hence, Lemma 1.9 would imply that, for
u = (p(τ(ω)),w1), (u, ω) ∈ [[0, τ)), which is absurd.

Note that as a direct consequence of the hypothesis, [[τ,∞]] is also F -progressively measurable.
By Theorem 1.19, we infer that, for any t ∈ T:

{τ ≤ t} = PprjΩ
(
[[τ,∞]] ∩ ([0, t]T × Ω)

)
∈ Ft.

Thus, τ is an F -stopping time, and satisfies the hypothesis of Lemma A.4, by Remark 2.3, Item 3.
For the remaining part of the claim, let β ∈ α + 1 and t ∈ T. Let Mt = [[τ, τw1 ]] ∩ ([0, t]T × Ω).

By hypothesis, and Lemma A.4, Mt ∈ PT ⊗ Ft. In particular,

Mβ
t = Mt ∩ [(ρβ+1)−1(R+ × {β}) × Ω] ∈ PT ⊗ Ft.

Hence, by Theorem 1.19, and universal completeness of Ft,

{π ◦ τ ≤ β, τβ ≤ t} = PprjΩ(Mβ
t ) ∈ Ft.

If β ≤ π(t), then
{π ◦ τ ≤ β, τ ≤ t} = {π ◦ τ ≤ β, τβ ≤ t} ∈ Ft.

Else, π(t) < β, so that π(t) + 1 is countable. Let Qt = [0, p(t))R+
∩ Q, a countable set as well. As

β ≤ w1, Remark 2.3, Item 3, and the previous case yield:

{π ◦ τ ≤ β, τ ≤ t} =
⋃

γ∈π(t)+1

{τ = (p(t), γ)} ∪
⋃

q∈Qt

{π ◦ τ ≤ β, τ ≤ (q,w1)} ∈ Ft.
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We conclude that
{π ◦ τ = β, τ ≤ t} = {π ◦ τ ≤ β, τ ≤ t} \

⋃
γ∈β

{π ◦ τ ≤ γ, τ ≤ t} ∈ Ft,

because β is countable.
(Ad 4 ⇒ 6): Suppose that (Ω,E ,F ) is universally complete and that ((τ,∞]], or equivalently

[[0, τ ]], is F -progressively measurable and π ◦ τ < w1. As in the proof of the implication (1 ⇒ 6) we
infer that [[0, τ ]] ∈ Pα

T ⊗E for some α ∈ w1. We infer that π ◦ τ ≤ α. Indeed, if there existed ω ∈ Ω
with π ◦ τ(ω) > α, then, with t = (p(τ(ω)), α), we would have (t, ω) ∈ [[0, τ ]]. Hence, Lemma 1.9
would imply that, for u = (p(τ(ω)),w1), (u, ω) ∈ [[0, τ ]], whence π ◦ τ(ω) = w1 – in contradiction to
the second part of the hypothesis.

By Theorem 1.19, we infer from the hypothesis that, for any t ∈ R+:
{τ < t} = PprjΩ

(
((τ,∞]] ∩ ([0, t]T × Ω)

)
∈ Ft.

Thus, τ satisfies the hypothesis of Lemma A.4.
For the remaining part of the claim, let β ∈ w1, t ∈ T, and Mt = ((τ, τw1 ]] ∩ ([0, t]T × Ω). By

hypothesis, and Lemma A.4, Mt ∈ PT ⊗ Ft. In particular,

Mβ
t = Mt ∩ [(ρβ+1)−1(R+ × {β}) × Ω] ∈ PT ⊗ Ft.

Hence, by Theorem 1.19, and universal completeness of Ft,

{π ◦ τ < β, τβ ≤ t} = PprjΩ(Mβ
t ) ∈ Ft.

If β ≤ π(t), then
{π ◦ τ < β, τ ≤ t} = {π ◦ τ < β, τβ ≤ t} ∈ Ft.

Else, π(t) < β, so that π(t) + 1 is countable. Let Qt = [0, p(t))R+
∩ Q, a countable set as well. As

β ≤ w1, Remark 2.3, Item 3, and the previous case yield:

{π ◦ τ < β, τ ≤ t} =
⋃

γ∈π(t)+1

{τ = (p(t), γ)} ∪
⋃

q∈Qt

{π ◦ τ < β, τ ≤ (q,w1)} ∈ Ft.

We conclude that
{π ◦ τ = β, τ ≤ t} = {π ◦ τ < β + 1, τ ≤ t} \

⋃
γ∈β+1

{π ◦ τ < γ, τ ≤ t} ∈ Ft,

because β + 1 ∈ w1. In particular, this relation holds true if β ∈ α+ 1.
(Ad 7 ⇒ 6): Suppose Condition 7 to hold true. Let α ∈ w1 such that π ◦ τ ≤ α. Hence, for all

β ∈ α+ 1 and t ∈ T, we have, by definition of Fτ and PT,

{π ◦ τ = β, τ ≤ t} =
{
ρα+1 ◦ τ ∈ R+ × {β}

}
∩ {τ ≤ t} ∈ Ft.

(Ad 6 ⇒ 7): Suppose Condition 6 to hold true. Let α ∈ w1 such that π ◦ τ ≤ α. Then, α+ 1 is
countable, hence, for any t ∈ T, we have:

{τ ≤ t} =
⋃

β∈α+1
{π ◦ τ = β, τ ≤ t} ∈ Ft.

Hence, τ is an F -stopping time. Note that, for all γ ∈ w1, all β ∈ γ + 1, and all s ∈ R+, we have

(A.3)

{
ργ ◦ τ ∈ [0, s]R+

× {β}
}

=
{

{π ◦ τ = β, p ◦ τ ≤ s}, if β < γ,

{β ≤ π ◦ τ ≤ α, p ◦ τ ≤ s}, else

=
{

{π ◦ τ = β, τ ≤ (s,w1)}, if β < γ,

{β ≤ π ◦ τ ≤ α, τ ≤ (s,w1)}, else.
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Hence, for all t ∈ T, using that α is countable, we obtain:{
ργ ◦ τ ∈ [0, s]T × {β}

}
∩ {τ ≤ t} =

{
{π ◦ τ = β, τ ≤ (s,w1) ∧ t}, if β < γ,

{β ≤ π ◦ τ ≤ α, τ ≤ (s,w1) ∧ t}, else
∈ Ft.

By Lemma 1.7, and the hypothesis, it follows easily that τ is Fτ -PT-measurable.
(Ad 6 ⇒ [1, 3, and 4]): Suppose that Property 6 is satisfied. By what has already been proven,

Statement 7 then also holds. Let α ∈ w1 be such that π ◦ τ ≤ α. Then, in particular, π ◦ τ < w1.
In a first step, we show the following intermediate result.

Lemma A.5. Let β ∈ α+ 1, Ωβ = {π ◦ τ = β}, F β = (F β
t )t∈R+

be given by F β
t = F(t,β)|Ωβ for

t ∈ R+ and F β
∞ = F∞|Ωβ , and τβ = p◦τ |Ωβ . Then, Ωβ ∈ E , F β defines a filtration on (Ωβ ,E |Ωβ )

with classical real time half-axis R+, and τβ is an F β-stopping time in the classical sense, that is,
for all t ∈ R+, we have:

{ω ∈ Ωβ | τβ(ω) ≤ t} ∈ F β
t .

Proof of Lemma A.5. First, note that, by Property 6:
Ωβ = {π ◦ τ = β, τ ≤ ∞} ∈ F∞ ⊆ E .

As F β clearly inherits the monotonicity from F , we infer that F β defines a filtration on (Ωβ ,E |Ωβ )
with classical real time half-axis R+. Concerning the proof of the stopping time property, let t ∈ R+.
Then,

{ω ∈ Ωβ | τβ(ω) ≤ t} = {π ◦ τ = β, τ ≤ (t, β)} ∈ F(t,β)|Ωβ = F β
t ,

by Property 6. □

For the second step of Part “6 ⇒ [1, 3, and 4]” in the proof of Theorem 2.6, let β ∈ α + 1, and
t ∈ T. Let x = p(t), Qx = [0, x)R+

∩ Q, and extend F so that F(x,β) = F∞ in case x = ∞. Let us
define the following sets, describing the graph, epigraph, strict epigraph of τβ below x:

Gβ
x = {(u, ω) ∈ R+ × Ωβ | u = τβ(ω)} ∩ ([0, x]R+

× Ωβ),

Eβ
x = {(u, ω) ∈ R+ × Ωβ | τβ(ω) ≤ u} ∩ ([0, x]R+

× Ωβ),

sEβ
x = {(u, ω) ∈ R+ × Ωβ | τβ(ω) < u} ∩ ([0, x]R+

× Ωβ).

In this step, we wish to analyse measurability properties of τβ and of these sets in particular. By
Lemma A.5, τβ is an F β-stopping time in the classical sense. In particular,

(A.4) {ω ∈ Ωβ | τβ(ω) < x} =
⋃

q∈Qx

{ω ∈ Ωβ | τβ(ω) ≤ q} ∈
∨

q∈Qx

F β
q ⊆ F β

x .

Moreover, classical theory (or Lemma A.4) implies that
Gβ

x , E
β
x , sEβ

x ∈ BR+
⊗ F β

x .

By basic measure theory, we have:
BR+

⊗ F β
x = BR+

⊗ F(x,β)|Ωβ ⊆
(
BR+

⊗ F(x,β)
)
|R+×Ωβ .

Hence, there are G̃β
x , Ẽ

β
x , s̃E

β

x ∈ BR+
⊗ F(x,β) with

Gβ
x = G̃β

x ∩ (R+ × Ωβ), Eβ
x = Ẽβ

x ∩ (R+ × Ωβ), sEβ
x = s̃E

β

x ∩ (R+ × Ωβ).
Then, by hypothesis,

Gβ
x = Gβ

x ∩ [R+ × {τ ≤ (x, β)}] = G̃β
x ∩ [R+ × {π ◦ τ = β, τ ≤ (x, β)}] ∈ BR+

⊗ F(x,β),
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and similarly,

Eβ
x = Eβ

x ∩ [R+ × {τ ≤ (x, β)}] = Ẽβ
x ∩ [R+ × {π ◦ τ = β, τ ≤ (x, β)}] ∈ BR+

⊗ F(x,β),

sEβ
x = sEβ

x ∩ [R+ × {τ ≤ (x, β)}] = s̃E
β

x ∩ [R+ × {π ◦ τ = β, τ ≤ (x, β)}] ∈ BR+
⊗ F(x,β).

In particular, for any γ ∈ w1 and any S ∈ Bγ+1, we get that

S ×Gβ
x , S × Eβ

x , S × sEβ
x ∈ Bγ+1 ⊗ BR+

⊗ F(x,β).

For any γ ∈ w1, the map fγ : T × Ω → (γ + 1) × R+ × Ω, (u, ω) 7→ (π ◦ ργ(u), p ◦ ργ(u), ω) is a
composition of suitably measurable transformations, and is therefore PT ⊗ F(x,β)-Bγ+1 ⊗ BR+

⊗
F(x,β)-measurable. Hence, for any γ ∈ w1 and any S ∈ Bγ+1,

(A.5) f−1
γ (S ×Gβ

x), f−1
γ (S × Eβ

x ), f−1
γ (S × sEβ

x ) ∈ PT ⊗ F(x,β).

In a third step, we show that, for all t ∈ T, x = p(t), and Qx = [0, x)R+
∩Q, we have the following

two decompositions:

(A.6) [[τ ]] ∩ ([0, t]T × Ω) =
⋃

β∈α+1:
β>π(t)

⋃
q∈Qx

f−1
α+1({β} ×Gβ

q ) ∪
⋃

β∈α+1:
β≤π(t)

f−1
α+1({β} ×Gβ

x),

and

(A.7)

[[τ,∞]] ∩ ([0, t]T × Ω)

=
⋃

β∈α+1:
β>π(t)

[ ⋃
q∈Qx

[
f−1

α ([(α+ 1) \ β] × Eβ
q ) ∪ f−1

α (β × sEβ
q )

]

∪
[
[x, t]T × {ω ∈ Ωβ | τβ(ω) < x}

]]

∪
⋃

β∈α+1:
β≤π(t)

[[
f−1

α ([(α+ 1) \ β] × Eβ
x ) ∩ ([0, t]T × Ω)

]
∪ f−1

α (β × sEβ
x )

]

For the proof of these two decompositions, let t ∈ T and (u, ω) ∈ T× Ω. We first prove Decompos-
ition A.6. By definition, (u, ω) ∈ [[τ ]] ∩ ([0, t]T × Ω) iff u = τ(ω) ≤ t. This latter statement splits
into two disjunct cases, generated by the alternative “π(τ(ω)) > π(t)” or “π(τ(ω)) ≤ π(t)”.

1. On the one hand, u = τ(ω) ≤ t and π(τ(ω)) > π(t) both hold true iff there is q ∈ Q with
u = τ(ω) ≤ q < p(t) and π(u) > π(t). This is equivalent to the relation π(t) < π(u) ≤ α

and the existence of q ∈ Qx with ω ∈ Ωπ(u) and p(u) = τπ(u)(ω) ≤ q, i.e. (p(u), ω) ∈ G
π(u)
q .

This in turn is equivalent to the existence of q ∈ Qx and β ∈ α+ 1 with β > π(t) such that
(u, ω) ∈ f−1

α+1({β} ×Gβ
q ).

2. On the other hand, u = τ(ω) ≤ t and π(τ(ω)) ≤ π(t) both hold true iff p(u) = p ◦ τ(ω) ≤
p(t) and π(u) = π ◦ τ(ω) ≤ π(t). This is equivalent to the conjunction of the relation
π(u) ≤ α ∧ π(t) and the statement that ω ∈ Ωπ(u) and p(u) = τπ(u)(ω) ≤ x hold true, i.e.
(p(u), ω) ∈ G

π(u)
x . This in turn is equivalent to the existence of β ∈ α + 1 with β ≤ π(t)

such that (u, ω) ∈ f−1
α+1({β} ×Gβ

x).
The first decomposition, Equation A.6, is proven.

We continue with proving the second decomposition, Equation A.7. By definition, (u, ω) ∈
[[τ,∞]]∩([0, t]T ×Ω) iff τ(ω) ≤ u ≤ t. This latter statement splits into four disjunct cases, generated
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by the following two alternatives: “π(τ(ω)) > π(t)” or “π(τ(ω)) ≤ π(t)”; “π(τ(ω)) ≤ π(u)” or
“π(τ(ω)) > π(u)”.

1. First, τ(ω) ≤ u ≤ t, π(τ(ω)) > π(t), and π(τ(ω)) ≤ π(u) all hold true iff p ◦ τ(ω) ≤
p(u) < p(t) and π(u) ≥ π(τ(ω)) > π(t); a condition which is satisfied iff there is q ∈ Q with
p ◦ τ(ω) ≤ p(u) ≤ q < x and π(u) ≥ π ◦ τ(ω) > π(t). This is equivalent to the existence of
q ∈ Qx and β ∈ α + 1 with β > π(t) such that (p(u), ω) ∈ Eβ

q and π(u) ≥ β, i.e. the fact
that (u, ω) ∈ f−1

α ([(α+ 1) \ β] × Eβ
q ).

2. Second, τ(ω) ≤ u ≤ t, π(τ(ω)) > π(t), and π(τ(ω)) > π(u) all hold true iff a) p ◦ τ(ω) <
p(u) < p(t) and π(u) ∨ π(t) < π(τ(ω)), or b) p ◦ τ(ω) < p(u) = p(t) and π(u) ≤ π(t) <
π(τ(ω)). Condition a) is equivalent to the existence of q ∈ Qx and β ∈ α+ 1 with β > π(t)
such that (p(u), ω) ∈ sEβ

q and π(u) < β, i.e. fα(u, ω) ∈ β × sEβ
q , while condition b) is

equivalent to x ≤ u ≤ t and the existence of β ∈ α+ 1 with β > π(t) such that ω ∈ Ωβ and
τβ(ω) < x.

3. Third, τ(ω) ≤ u ≤ t, π(τ(ω)) ≤ π(t), and π(τ(ω)) ≤ π(u) all hold true iff a) p ◦ τ(ω) ≤
p(u) < p(t) and π◦τ(ω) ≤ π(t)∧π(u), or b) p◦τ(ω) ≤ p(u) = p(t) and π◦τ(ω) ≤ π(u) ≤ π(t).
a) is equivalent to the existence of q ∈ Qx and β ∈ α+1 with β ≤ π(t) such that (p(u), ω) ∈
Eβ

q and π(u) ≥ β, while b) is equivalent to the existence of β ∈ α + 1 with β ≤ π(t) such
that (p(u), ω) ∈ Eβ

x , π(u) ≥ β, and u ∈ [x, t]T. Hence, the conjunction of a) and b) is
equivalent to the existence of β ∈ α+1 with β ≤ π(t) such that fα(u, ω) ∈ [(α+1)\β]×Eβ

x

and u ≤ t.
4. Fourth, τ(ω) ≤ u ≤ t, π(τ(ω)) ≤ π(t), and π(τ(ω)) > π(u) all hold true iff p ◦ τ(ω) <
p(u) ≤ p(t), π(u) < π ◦ τ(ω) ≤ π(t). This is equivalent to the existence of β ∈ α + 1 with
β ≤ π(t) such that (p(u), ω) ∈ sEβ

x and π(u) < β, i.e. fα(u, ω) ∈ β × sEβ
x .

In a fourth step, we combine the second and third steps, namely the Statements A.6, A.7, A.5,
and A.4, recall that, with the notation from the third step,

{ω ∈ Ωβ | τβ(ω) < x} = {π ◦ τ = β, τ < x} =
⋃

Q∋q<x

{π ◦ τ = β, τ ≤ q} ∈ Fx,

and infer that [[τ ]] and [[τ,∞]] are F -progressively measurable. By complement-stability of
Prg(PT,F ), then also

((τ,∞]] = [[τ,∞]] \ [[τ ]]
is F -progressively measurable. The proof is complete. □

Proof of Corollary 2.9. Under the completeness hypothesis, the map f : Ω → T× Ω, ω 7→ (τ(ω), ω)
is Fτ -Prg(F )-measurable. Indeed, for any t ∈ T and M ∈ Prg(F ), we then have [[τ ]] ∩M ∩ [[0, t]] ∈
PT ⊗ Ft, by Theorem 2.6, and, by Theorem 1.19 — now using completeness —

f−1(M) ∩ {τ ≤ t} = prjΩ([[τ ]] ∩M ∩ [[0, t]]) ∈ Ft.

Hence, ξτ = ξ ◦ f is Fτ -Y -measurable. □

Proof of Proposition 2.10. (Ad 1): Let σ = p ◦ τ + ε. Then, π ◦ σ = 0. Moreover, we have
{π ◦ σ = 0, σ ≤ ∞} = Ω ∈ F∞ = F∞+,

and, for all t ∈ T \ {∞}:
{π ◦ σ = 0, σ ≤ t} = {p ◦ τ + ε ≤ t}

= {p ◦ τ + ε ≤ p(t)}
= {p ◦ τ ≤ p(t) − ε}
= {τ ≤ (p(t) − ε,w1)} ∈ F(p(t)−ε,w1).
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Note that F(p(t),w1) ⊆ Fu for all real u > t. Hence, if ε = 0, {π ◦ σ = 0, σ ≤ t} ∈ Ft✚. If ε > 0,
then F(p(t)−ε,w1) ⊆ Ft.

(Ad 2): Let C be the set of ω ∈ Ω such that (τn(ω))n∈N converges in R+ ×(α+1). As π|R+×(α+1)
is continuous as a map R+ × (α + 1) → (α + 1), we have π ◦ τ(ω) = limn→∞ π ◦ τn(ω) ≤ α for all
ω ∈ C. For all ω ∈ C∁, we have π ◦ τ(ω) = π(∞) = 0 ≤ α.

In view of Theorem 2.6, it remains to consider arbitrary β ∈ α + 1 and t ∈ T and check the
Ft✚-measurability of {π ◦τ = β, τ ≤ t}. In doing so, we use the following facts: a) convergence of a
sequence in R+×(α+1) is equivalent to the convergence of the component sequences; b) convergence
of a sequence (xn)n∈N in R+ is equivalent to (xn)n∈N being Cauchy or the set {n ∈ N | xn ≤ ℓ}
being finite for all ℓ ∈ N; c) for all n ∈ N, p ◦ τn is an F✚-optional time (by Part 1 just proven
before), and thus, by classical theory, {p ◦ τn ≤ p ◦ τm + κ} ∈ (F✚)p◦τn , for all m,n ∈ N, κ ∈ R+.

i) We first focus on the case β ≤ π(t) and t < ∞. In this case, using Properties a), b), and c),
we infer that all m ∈ N satisfy:

{π ◦ τ = β, τ ≤ t} = {π ◦ τ = β, p ◦ τ ≤ p(t)}

=



⋂
γ∈β

⋂∞
ℓ=m

⋃
k∈N

⋂∞
n,m=k

(
{π ◦ τn ∈ (γ, β], τn ≤ p(t) + 2−ℓ}

∩{p ◦ τn ≤ p ◦ τm + 2−ℓ, p ◦ τn ≤ p(t) + 2−ℓ}
∩{p ◦ τm ≤ p ◦ τn + 2−ℓ, p ◦ τm ≤ p(t) + 2−ℓ}

)
,

if β is a limit ordinal,⋂∞
ℓ=m

⋃
k∈N

⋂∞
n,m=k

(
{π ◦ τn = β, τn ≤ p(t) + 2−ℓ}

∩{p ◦ τn ≤ p ◦ τm + 2−ℓ, p ◦ τn ≤ p(t) + 2−ℓ}
∩{p ◦ τm ≤ p ◦ τn + 2−ℓ, p ◦ τm ≤ p(t) + 2−ℓ}

)
,

else
∈ F(p(t)+2−m)✚.

As this holds true for all m ∈ N, we obtain {π ◦ τ = β, τ ≤ t} ∈ Ft✚.
ii) Second, we consider the case π(t) < β and t < ∞. Then, by case i) just studied, we get

{π ◦ τ = β, τ ≤ t} = {π ◦ τ = β, τ < p(t)}

=
⋃

q∈Q :
q<p(t)

{π ◦ τ = β, τ ≤ (q, β)} ∈
∨

q∈Q :
q<p(t)

F(q,β)✚ ⊆ Fp(t) ⊆ Ft✚.

iii) Finally, we consider the case t = ∞. Then, if β > 0, using results i) and ii) yield

{π ◦ τ = β, τ ≤ t} ∩ C = {π ◦ τ = β, τ < ∞} ∩ C =
⋃

n∈N
{π ◦ τ = β, τ ≤ n} ∈ F∞;

and
{π ◦ τ = β, τ ≤ t} \ C = {π ◦ τ = β, τ = ∞} \ C = ∅ ∈ F∞,

whence {π ◦ τ = β, τ ≤ t} ∈ F∞ = F∞✚. If β = 0, then, again by i),

{π ◦ τ = β, τ ≤ t} ∩ C

=
⋃

n∈N
{π ◦ τ = 0, τ ≤ n} ∪

(
lim inf
n→∞

{π ◦ τn = 0} ∩
⋂
k∈N

lim inf
n→∞

{τn > k}
)

∈ F∞;
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and
{π ◦ τ = β, τ ≤ t} \ C

= C∁

=
[ ⋂

γ∈(α+1)\{0}

⋂
δ∈γ

(
lim inf
n→∞

{δ < π ◦ τn ≤ γ}
)∁ ∩

(
lim inf
n→∞

{π ◦ τn = 0}
)∁]

∪

[( ⋃
ℓ∈N

⋂
k∈N

∞⋃
n,m=k

{p ◦ τn ≤ p ◦ τm + 2−ℓ}∁ ∪ {p ◦ τm ≤ p ◦ τn + 2−ℓ}∁
)

∩
( ⋃

ℓ∈N
lim sup

n→∞
{τn ≤ ℓ}

)]
∈ F∞✚,

whence again {π ◦ τ = β, τ ≤ t} ∈ F∞✚.
(Ad 3): Let t ∈ T and Qt = [0, t)T ∩ Q. Note that

{p ◦ τ0 < p ◦ τ1, τ1 ≤ t} =
⋃

q∈Qt

{τ0 < q < τ1 ≤ t} ∈ Ft,

and that

{p ◦ τ0 = p ◦ τ1, τ0 ≤ t, τ1 ≤ t} =
[ ⋂

q∈Qt

{τ0 < q < τ1}∁ ∩ {τ1 < q < τ0}∁
]

∩ {τ0 ≤ t, τ1 ≤ t} ∈ Ft.

As both τ0 and τ1 are optional times, there is α ∈ w1 such that π ◦ τk ≤ α for both k ∈ {0, 1}.
Hence,

{τ0 ≤ τ1} ∩ {τ1 ≤ t}

= {p ◦ τ0 < p ◦ τ1, τ1 ≤ t} ∪
(

{p ◦ τ0 = p ◦ τ1, τ0 ≤ t, τ1 ≤ t} ∩ {π ◦ τ0 ≤ π ◦ τ1, τ0 ≤ t, τ1 ≤ t}
)

= {p ◦ τ0 < p ◦ τ1, τ1 ≤ t} ∪
(

{p ◦ τ0 = p ◦ τ1, τ0 ≤ t, τ1 ≤ t}

∩
⋃

β∈α+1

⋃
γ∈β+1

{π ◦ τ0 = γ, τ0 ≤ t} ∩ {π ◦ τ1 = β, τ1 ≤ t}
)

∈ Ft.

Thus, {τ0 ≤ τ1} ∈ Fτ1 . Similarly, we get

{τ0 < τ1} ∩ {τ1 ≤ t}

= {p ◦ τ0 < p ◦ τ1, τ1 ≤ t} ∪
(

{p ◦ τ0 = p ◦ τ1, τ0 ≤ t, τ1 ≤ t} ∩ {π ◦ τ0 < π ◦ τ1, τ0 ≤ t, τ1 ≤ t}
)

= {p ◦ τ0 < p ◦ τ1, τ1 ≤ t} ∪
(

{p ◦ τ0 = p ◦ τ1, τ0 ≤ t, τ1 ≤ t}

∩
⋃

β∈α+1

⋃
γ∈β

{π ◦ τ0 = γ, τ0 ≤ t} ∩ {π ◦ τ1 = β, τ1 ≤ t}
)

∈ Ft.

Hence, {τ0 < τ1} ∈ Fτ1 . By complement-stability, {τ1 ≤ τ0} ∈ Fτ1 . Upon switching the roles of
τ0 and τ1, we infer {τ0 ≤ τ1} ∈ Fτ0 .

(Ad 4): For k ∈ {0, 1}, let αk ∈ w1 be such that π ◦ τk ≤ αk. Let α = α0 ∨ α1. Hence,
π ◦ (τ0 ∧ τ1) ≤ α and π ◦ (τ0 ∨ τ1) ≤ α.

Furthermore, let β ∈ α+ 1 and t ∈ T. Then, using Part 3,

{π ◦ (τ0 ∧ τ1) = β, τ0 ∧ τ1 ≤ t}
=

(
{τ0 ≤ τ1, τ0 ≤ t} ∩ {π ◦ τ0 = β, τ0 ≤ t}

)
∪

(
{τ1 ≤ τ0, τ1 ≤ t} ∩ {π ◦ τ1 = β, τ1 ≤ t}

)
∈ Ft.
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Similarly, using Part 3 again, we show that
{π ◦ (τ0 ∨ τ1) = β, τ0 ∨ τ1 ≤ t}

=
(
{τ0 ≤ τ1, τ1 ≤ t} ∩ {π ◦ τ1 = β, τ1 ≤ t}

)
∪

(
{τ1 ≤ τ0, τ0 ≤ t} ∩ {π ◦ τ0 = β, τ0 ≤ t}

)
∈ Ft.

□

Remark A.6. If (Ω,E ,F ) is universally complete, some of the proofs above can be simplified, by
using Theorem 2.6. For example, Property 3 can be proven as follows.

Proof of Property 3 under universal completeness. Note that, for any t ∈ T:
{τ0 ≤ τ1} ∩ {τ1 ≤ t} = prjΩ([[τ1]] ∩ [[τ0, t]]),
{τ1 < τ0} ∩ {τ0 ≤ t} = prjΩ([[τ0]] ∩ ((τ1, t]]).

As τ0 and τ1 are F -optional times, [[τ1]]∩[[τ0,∞]] and [[τ0]]∩((τ1, t]] are F -progressively measurable, by
Theorem 2.6. Hence, their respective intersections with [[0, t]] are elements of PT⊗Ft. Applying the
Measurable Projection Theorem 1.19 and using the universal completeness assumption, we obtain
that the left-hand side of the two equations above are elements of Ft.

As this holds true for any t ∈ T, we infer {τ0 ≤ τ1} ∈ Fτ1 and {τ0 ≤ τ1} = {τ1 < τ0}∁ ∈ Fτ0 . □

In addition, the following claims can be easily shown using universal completeness.

Proposition A.7. Suppose that (Ω,E ,F ) is a universally complete and let (τn)n∈N be a sequence
of F -optional times. Then, the following statements holds true:

5. The scenariowise supremum supn∈N τn is an F -optional time.
6. The scenariowise infimum σ = infn∈N τn is an F -optional time iff

⋃
n∈N{σ = τn} = Ω.

Proof. (Ad 5): We assume that τ = supn∈N τn. By Theorem 2.6, [[0, τn)) is F -progressively
measurable for any n ∈ N. As

[[0, τ)) =
⋃

n∈N
[[0, τn)),

[[0, τ)) is so, too. Using the completeness assumption and applying Theorem 2.6 again, we infer that
τ is an F -optional time.

(Ad 6): By Theorem 2.6, ((τn,∞]] is F -progressively measurable for any n ∈ N. As

((σ,∞]] =
⋃

n∈N
((τn,∞]],

((σ,∞]] is so, too. If π◦σ < w1, then, using the completeness assumption and applying Theorem 2.6
again, we infer that σ is an F -optional time. Conversely, if σ is an optional time, then π ◦ σ < w1,
by the same theorem.

It remains to prove that ⋃
n∈N

{σ = τn} = {π ◦ σ < w1}.

As π ◦ τn < w1 for any n ∈ N, the inclusion “⊆” obtains. For the proof of the inclusion “⊇”,
let ω ∈ Ω satisfy π ◦ σ < w1. Then, {p ◦ τn(ω) | n ∈ N} has a minimum x in R+. Hence,
{π ◦ τn(ω) | n ∈ N : p ◦ τn(ω) = x} has a minimum because w1 is well-ordered. If n denotes an
element of N that this minimum is attained at, then σ(ω) = τn(ω). □

Proof of Proposition 2.11. Let P ∈ PE and τ be an F -optional time. Then, there is α ∈ w1 such
that π ◦ τ ≤ α. For n ∈ N, define

τn =
(

inf{k ∈ N | τ ≤ k2−n} · 2−n, π ◦ τ
)
.
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Then, π ◦ τn ≤ α. Moreover, for any β ∈ α+ 1 and t ∈ T, we have

{π ◦ τn = β, τn ≤ t} =
⋃

k∈N :
(k2−n,β)≤t

{π ◦ τ = β, τ ≤ k2−n} ∈ F t.

Hence, (τn)n∈N is a sequence of F -optional times.
For k, n ∈ N and β ∈ α+ 1, let

E
n

k,β = {τn = (k2−n, β)}.

E
n

k,β ∈ F (k2−n,β), because τn is an F -optional time. Hence, there is a family (En
k,β)k,n∈N, β∈α+1 of

events such that, for all k, n ∈ N and β ∈ α+ 1:
En

k,β ∈ F(k2−n,β), P(En
k,β∆En

k,β) = 0.
For each n ∈ N, define

Mn =
⋃
k∈N

⋃
β∈α+1

{(k2−n, β)} × En
k,β , τn = DMn .

We clearly have π ◦ τn ≤ α. Moreover, for any k ∈ N and β ∈ α+ 1, we have

{τn = (k2−n, β)} = En
k,β \

( ⋃
ℓ∈N, γ∈α+1:

(ℓ2−n,γ)<(k2−n,β)

En
ℓ,γ

)
,

which is an element of F(k2−n,β). As a consequence,

{τn = ∞} =
⋂

k∈N, β∈α+1
{τn = (k2−n, β)}∁ ∈ F∞.

Hence, for any β ∈ α+ 1 and all t ∈ T, we have — with the understanding that N = N ∪ {∞} and
∞ · 2−n = ∞ —

{π ◦ τn = β, τn ≤ t} =
⋃

k∈N :
(k2−n,β)≤t

{τn = (k2−n, β)} ∈ Ft.

Hence, by Theorem 2.6 (the claims without completeness assumption), τn is an F -optional time.
Moreover,

P(τn ̸= τn, τn < ∞) ≤
∑
k∈N

∑
β∈α+1

P({τn = (k2−n, β)} \ En

k,β)

≤
∑
k∈N

∑
β∈α+1

P(En
k,β \ En

k,β).

Noting that
{τn < ∞} =

⋃
k∈N, β∈α+1

En
k,β , {τn < ∞} =

⋃
k∈N, β∈α+1

E
n

k,β ,

we obtain
P(τn ̸= τn, τn = ∞) = P(τn < ∞, τn = ∞)

≤
∑
k∈N

∑
β∈α+1

P(En

k,β ∩ {τn = ∞})

≤
∑
k∈N

∑
β∈α+1

P(En

k,β \ En
k,β).

Hence,
P(τn ̸= τn) ≤

∑
k∈N

∑
β∈α+1

P(En

k,β∆En
k,β) = 0.
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Thus, P(τn = τn) = 1. Let τ be the map satisfying τ(ω) = limn→∞ τn(ω) for all ω ∈ Ω that this
limit exists for, and τ(ω) = ∞ otherwise. By Proposition 2.10, τ is an F✚-optional time. Since
τn → τ as n → ∞ pointwise in R+ × (α+ 1), we have:

{τ ̸= τ} ⊆
⋃

n∈N
{τn ̸= τn}.

This leads to
P(τ ̸= τ) ≤

∑
n∈N

P(τn ̸= τn) = 0,

whence P(τ = τ) = 1. □

Proof of Theorem 2.12. (Ad first statement): Let t ∈ T. Then, by progressive measurability,
M∩[[0, t]] ∈ PT⊗Ft. Hence, if t is not a right-limit point, or equivalently, π(t) < w1 (Lemma 1.14),
measurable projection (Theorem 1.19) yields

(A.8) {DM ≤ t} = PprjΩ
(
M ∩ [[0, t]]

)
∈ (Ft)u ⊆ F t = F t+,

because the π-fibres of T are well-ordered and Ft is universally complete. As a consequence, if t is
a right-limit point, or equivalently, π(t) = w1, i.e. t = (p(t),w1), then

{DM ≤ t} =
⋂
k∈N

∞⋂
ℓ=k

{DM ≤ p(t) + 2−ℓ} ∈
⋂
k∈N

F p(t)+2−k = F t+,

because p(t) + 2−ℓ ∈ R+ for all ℓ ∈ N, which is therefore not a right-limit point (Lemma 1.14), so
that Equation A.8 applies.

(Ad second statement): As M is F -progressively measurable, there is α ∈ w1 such that M ∈
Pα

T ⊗ E . Therefore, for all t ∈ T with π(t) > α we have:

(∗) (t, ω) ∈ M =⇒ (p(t), α, ω) ∈ M,

by Lemma 1.9.
Regarding the implication “1 ⇒ 2” we simply note that, if DM is an optional time, then π◦DM <

w1 (see Theorem 2.6).
For the implication “2 ⇒ 3”, suppose that π ◦DM < w1 and let ω ∈ Ω such that DM (ω) < ∞.

Let x = p ◦DM (ω) and S = {γ ∈ w1 + 1 | (x, γ, ω) ∈ M}. If S were empty, then DM (ω) = (x,w1)
which is excluded by hypothesis. Hence, S has a minimum γ∗ and, in particular, DM (ω) = (x, γ∗).
Therefore, (DM (ω), ω) ∈ M .

For the proof of the remaining implication “3 ⇒ 1”, suppose that [[DM ]] ∩ [[0,∞)) ⊆ M . First,
we get that π ◦ DM ≤ α. Indeed, if we had π ◦ DM (ω) > α, then t = DM (ω) and u = (p(t), α)
would satisfy (t, ω) ∈ M and u < t. By (∗), we would obtain (u, ω) ∈ M . Hence, DM (ω) = t ≤ u
— a contradiction. So we infer that π ◦DM ≤ α.

For the remainder of the proof, define, for any β ∈ α+ 1,
Mβ = M ∩ (ρα+1 × idΩ)−1(R+ × {β} × Ω).

This set is F -progressively measurable. Hence, by the first statement proven above, DMβ is an
F +-stopping time for any β ∈ α+ 1. Thus, for any t ∈ R+, we have, with Qt = [0, t)T ∩ Q,

{DMβ < t} =
⋃

q∈Qt

{DMβ ≤ q} ∈
∨

q∈Qt

F q+ ⊆ F t.

By Lemma A.4, then, for any β ∈ α+ 1, the set
Nβ = [[0, (DMβ )w1 ]]



76 CHRISTOPH KNOCHENHAUER AND E. EMANUEL RAPSCH

is F -progressively measurable.66

First intermediate claim: Then, we claim that for any β ∈ α+ 1 and t ∈ T, we have

(A.9)
prjΩ(Nβ ∩Mβ ∩ [[0, t]]) = {ω ∈ Ω | (DMβ (ω), ω) ∈ Mβ ∩ [[0, t]]}

= {π ◦DMβ = β, DMβ ≤ t}.

For the proof, let β ∈ α + 1 and t ∈ T. Regarding the first equality, the inclusion “⊇” is evident.
Concerning the proof of inclusion “⊆”, let (u, ω) ∈ Nβ ∩Mβ ∩ [[0, t]]. First, we infer directly that,
by the definition of the début, we have DMβ (ω) ≤ u ≤ t. Second, as Nβ ∩Mβ is F -progressively
measurable, there is γ ∈ w1 such that Nβ ∩Mβ ∈ Pγ

T
⊗ E u. If π(u) ≥ γ, then, by Lemma 1.9, all

v ∈ T with p(v) = p(u) and π(v) ≥ γ satisfy (v, ω) ∈ Nβ ∩Mβ as well. Hence, DMβ (ω) ≤ (p(u), γ).
Moreover, as (u, ω) ∈ Nβ , we have p(u) ≤ p◦DMβ (ω). These both relations imply π ◦DMβ (ω) ≤ γ.
As w1 is well-ordered, we infer that (DMβ (ω), ω) ∈ Mβ . Indeed, otherwise the definition of the
début would imply the impossible statement DMβ (ω) ≥ (p ◦DMβ (ω), π ◦DMβ (ω) + 1) > DMβ (ω).

Regarding the second equality, the inclusion “⊆” is clear that time. Inclusion “⊇” follows again
from the well-ordering on w1. Indeed, let ω ∈ {π ◦ DMβ = β}. If we had (DMβ (ω), ω) /∈ Mβ ,
then, by definition of the début, we would again obtain the impossible statement DMβ (ω) ≥ (p ◦
DMβ (ω), β + 1) > DMβ (ω). This completes the proof of the first intermediate claim.

Second intermediate claim: For any β ∈ α+ 1 and t ∈ T, we have
(A.10) {π ◦DMβ = β, DMβ ≤ t} ∈ F t.

For the proof, note that the set under scrutiny equals prjΩ(Nβ ∩Mβ ∩[[0, t]]), by the first intermediate
claim, see Equation A.9. The ∈-relation follows from the fact that Nβ ∩ Mβ is F -progressively
measurable, the fact that

(F t)u ⊆ F t = Ft = F t

(when augmenting in E ), and the Measurable Projection Theorem 1.19.
Third intermediate claim: For any β ∈ α+ 1, the map

(A.11) σβ : Ω → T, ω 7→

{
DMβ (ω), if π ◦DMβ (ω) = β,

∞, else,

is an F -optional time.
For the proof, let β ∈ α + 1. We clearly have π ◦ σβ ≤ β. Next, we study the measurability of

{π ◦ σβ , σβ ≤ t} for all γ ∈ β + 1 and t ∈ T. If γ = β > 0, we obtain

{π ◦ σβ = β, σβ ≤ t} = {π ◦DMβ = β, DMβ ≤ t} ∈ F t,

by the second intermediate claim, see Equation A.10. If β > 0 = γ, then we obtain

{π ◦ σβ = 0, σβ ≤ t} =
{

∅, if t < ∞,

{π ◦DMβ }∁, else,
∈ F t,

again, by the second intermediate claim applied to t = ∞, see Equation A.10. If γ ∈ (β+1)\{0, β},
then

{π ◦ σβ = 0, σβ ≤ t} = ∅ ∈ F t.

Finally, if β = γ = 0, then, by looking separately at the cases t < ∞ and t = ∞ we infer that
{π ◦ σβ = 0, σβ ≤ t} = {DM0 ≤ p(t)} ∈ F p(t)+ = F p(t) ⊆ F t,

since DM0 is an F +-stopping time. This completes the proof of the third intermediate claim.

66We recall that (DMβ )w1 is the map Ω → T with p ◦ (DMβ )w1 = p ◦ DMβ and, for all ω ∈ {DMβ < ∞},
π ◦ (DMβ )w1 = w1.
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Fourth intermediate claim: We have

(A.12) DM = inf
β∈α+1

σβ , Ω =
⋃

β∈α+1
{DM = σβ}.

For the proof, note that, for any β ∈ α+ 1, the definitions of Mβ and σβ directly imply that

(†) DM ≤ DMβ ≤ σβ ,

whence DM ≤ infβ∈α+1 σβ . For the remainder of the proof of this intermediate claim, let ω ∈ Ω.
Then, DM (ω) = ∞ or DM (ω) < ∞. In the first case, by (†), DM (ω) = σβ(Ω) for all β ∈ α + 1.
In the second case, we have (DM (ω), ω) ∈ M by assumption (Property 3). As π ◦ DM (ω) ≤ α,
there is β ∈ α + 1 such that (DM (ω), ω) ∈ Mβ . Hence, π ◦ DMβ (ω) = β and DMβ (ω) ≤ DM (ω).
In view of the definition of σβ , we infer that equality holds true in (†). In total, we conclude that
DM (ω) = infβ∈α+1 σβ(ω) and Ω =

⋃
β∈α+1{DM = σβ}.

Conclusion: By the third intermediate claim (cf. Equation A.11), σβ is an F -optional time for
any β ∈ α + 1. Hence, by the fourth intermediate claim (cf. Equation A.12) and Proposition A.7,
Part 6, DM is an F -optional time — because α + 1 is countable and (Ω,E u,F ) is universally
complete. This completes the proof of the theorem. □

Optional processes.

Proof of Lemma 2.14. The second inclusion follows directly from Definition 2.1, Remark 2.2, and
Theorem 2.6. Regarding the first inclusion, let E ∈ F0. Then, M = ({0} × E) ∪ ({(0, 1)} × E∁)
is clearly F -progressively measurable since F0 ⊆ F(0,1). Moreover, one easily sees (or otherwise
applies Theorem 2.12 to see) that DM is an F -optional time. Hence,

{0} × E = [[0, DM )) ∈ Opt(F ).

Furthermore, let τ be an F -optional time. Then, the E = {τ = ∞} satisfies E ∈ F∞, by
Remark 2.3, Part Remark 3. Moreover, the map σ : Ω → T such that, first, p ◦ σ = p ◦ τ and,
second, for all ω ∈ E∁, π ◦ σ(ω) = π ◦ τ(ω) + 1, is an F -optional time.

Indeed, there is α ∈ w1 with π ◦ τ ≤ α. Thus, π ◦ σ ≤ π ◦ τ + 1 ≤ α+ 1. On E∁, π ◦ σ is valued
in the set of successor ordinals in w1, and equal to zero on E. Moreover, for all β ∈ w1 and t ∈ T,
we have

{π ◦ σ = β + 1, σ ≤ t} =
⋃

Q∋q<t

{π ◦ τ = β, τ ≤ q} ∪
⋃

γ∈π(t)∩(α+1)

{π ◦ τ = β, τ ≤ (p(t), γ)} ∈ Ft,

and

{π ◦ σ = 0, σ ≤ t} =
{

∅, if t < ∞,

E, else,
∈ F∞.

This shows that σ is an F -optional time.
Hence,

[[0, τ ]] = [[0, σ)) ∪ ({∞} × E) ∈ Opt(F ).
□

Proof of Lemma 2.15. Let M be a σ-algebra as in the lemma. Then, M must contain [[0, τ)) for
any F -optional time τ , since we can take α = 2, ξ0 = 1, ξ1 = ξ2 = 0, τ1 = τ in Equation 2.5.
Moreover, let E ∈ F∞. Then, taking α = 1, ξ0 = 0 and ξ1 = 1E in Equation 2.5, we infer that
{∞} × E ∈ M . Hence, Opt(F ) ⊆ M .
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On the other hand, all processes as in Equation 2.5 are Opt(F )-measurable. Indeed, let α ∈ w1,
(τβ)β∈α+1 and (ξβ)β∈α+1 be given as in the statement of the lemma. Then, [[τα]] = {∞} × Ω ∈
Opt(F ) and, for β ∈ α,

[[τβ , τβ+1)) = [[0, τβ+1)) \ [[0, τβ)) ∈ Opt(F ).
In a first step, suppose that, for all β ∈ α+ 1,

(∗) ξβ = 1(Eβ)
for some Eβ ∈ Fτβ

. We have

(T × Eα) ∩ [[τα]] = {∞} × Eα ∈ Opt(F ).
In addition, for any β ∈ α, we see, using Theorem 2.6, Property 6, that (with the usual measure-
theoretic convention ∞ · 0 = 0)

σβ = τβ 1Eβ
+ ∞ 1E∁

β

is an F -optional time. Hence,
(T × Eβ) ∩ [[τβ , τβ+1)) = [[σβ , τβ+1)) = [[0, τβ+1)) \ [[0, σβ)) ∈ Opt(F ).

As α is countable, this implies that under Assumption (∗), the process in Equation 2.5 is Opt(F )-
measurable. In a second step, we directly infer that the same result obtains under the weaker
hypothesis that for all β ∈ α+ 1,

ξβ =
Nβ∑
ℓ=1

xℓ,β1Eℓ,β
,

for some integer Nβ , some reals x1,β , . . . , xNβ ,β ∈ R, and some E1,β , . . . , ENβ ,β ∈ Fτβ
, i.e. ξβ is

a simple function with respect to Fτβ
. In the third and final step, we consider the general case.

Then, for any β ∈ α + 1, there is a sequence (ξβ,m)m∈N of simple functions with respect to Fτβ

converging pointwise to ξβ . As measurability is stable under pointwise convergence of real-valued
functions, we infer that

ξα ◦ prjΩ 1[[τα]] +
∑
β∈α

ξβ ◦ prjΩ 1[[τβ , τβ+1)) = lim
m→∞

(
ξα,m ◦ prjΩ 1[[τα]] +

∑
β∈α

ξβ,m ◦ prjΩ 1[[τβ , τβ+1))
)

is Opt(F )-measurable. □

Proof of Lemma 2.16. Let S be a set of maps T × Ω → R satisfying conditions a), b), and c). In a
first step, let D be the set of M ∈ Opt(F ) such that 1M ∈ S.

We first show that D is a Dynkin system, and then infer that D = Opt(F ). Taking τ = ∞ and
E = Ω in a), we get that 1Ω ∈ S, whence Ω ∈ D . Moreover, for all M ∈ D , 1M∁ = 1Ω − 1M ∈ S
by b), whence M∁ ∈ D . Moreover, if (Dn)n∈N is a pairwise disjoint D-valued sequence, then
D =

⋃
n∈NDn satisfies

1D =
∞∑

k=0
1Dk

= lim
n→∞

n∑
k=0

1Dk
,

whence 1D ∈ S by b) and c), thus D ∈ D .
Next, we note that D contains an intersection-stable generator of Opt(F ). Namely, a) implies

that, for any F -optional time, [[0, τ)) ∈ D , and, for any E ∈ F∞, {∞} × E ∈ D . Hence,

(A.13) G =
{

{∞} × E | E ∈ F∞

}
∪

{
[[0, τ)) | τ F -optional time

}
satisfies G ⊆ D . By definition, G generates the σ-algebra Opt(F ). Proposition 2.10, Part 4, implies
that the pointwise minimum σ ∧ τ of two F -optional times σ, τ is again an F -optional time. As
[[0, σ)) ∩ [[0, τ)) = [[0, σ ∧ τ)), we readily infer that G intersection-stable.
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Hence, by Dynkin’s π-λ-theorem, D = Opt(F ). In a second step, we show that all F -optional
processes are elements of S. Let ξ be an F -optional process. Then, there is a sequence (ξn)n∈N
of simple functions with respect to Opt(F ) that converges pointwise to ξ. By the first step and
Property b), ξn ∈ S for any n ∈ N. Therefore, by Property c), ξ = limn→∞ ξn ∈ S as well.

It remains to show that the set of F -optional processes satisfies properties a), b), and c). Prop-
erty a) is satisfied by construction. Properties b) and c) follow from the fact that the real-valued
F -optional processes are exactly the Opt(F )-BR-measurable functions, combined with basic meas-
ure theory. □

Proof of Proposition 2.18. Denote the set of real-valued F -optional processes by L0(Opt(F );R).
We have to show that

L0(Opt(F );R) = Vw1 .

(Step 1): We first show that for all α ∈ w1 + 1, we have Vα ⊆ L0(Opt(F );R). For α = w1, this
yields the inclusion “⊇”.

If the claim did not hold true, then it would fail for at least one α ∈ w1 + 1. Hence, by the well-
order property of ordinals, there would be a smallest one that fails. Let us call it α∗. By definition
of V0 and since R-linear combinations of real-valued measurable functions are measurable, we have
α∗ > 0. If α∗ were a limit ordinal, we would get

Vα∗ =
⋃

β∈α∗

Vβ ⊆
⋃

β∈α∗

L0(Opt(F );R) = L0(Opt(F );R),

which contradicts the definition of α∗. If α∗ were a successor ordinal, there would be γ ∈ w1 with
α∗ = γ + 1. Hence, if ξ ∈ Vα∗ , then there is a Vγ-valued sequence (ξn)n∈N with ξ = limn→∞ ξn

pointwise as n → ∞. By definition of α∗ and γ, ξn ∈ L0(Opt(F );R) for all n ∈ N. As pointwise
limits of real-valued measurable functions are measurable, ξ would be measurable again. This would
prove that Vα∗ ⊆ L0(Opt(F );R), contradicting the definition of α∗. As non-zero ordinals are either
successors or limits, we conclude that the claim must be correct.

(Step 2): Let
D = {M ∈ Opt(F ) | 1M ∈ Vw1}.

Using Dynkin’s π-λ-theorem, we show that D = Opt(F ).
First, we show that D is a Dynkin system. Note that

1(T × Ω) = 1[[0,∞)) + 1({∞} × Ω) ∈ V0 ⊆ Vw1 ,

whence T× Ω ∈ D . Moreover, if M0,M1 ∈ D with M0 ⊆ M1, then there are α0, α1 ∈ w1 such that
1(Mk) ∈ Vαk

for k = 0, 1. Without loss of generality, α0 ≤ α1. Hence, M0,M1 ∈ Vα1 . As Vα1 is an
R-vector space, we infer

1(M1 \M0) = 1(M1) − 1(M0) ∈ Vα1 ⊆ Vw1 ,

whence M1\M0 ∈ D . Next, let (Mn)n∈N be an increasing sequence valued in D and M =
⋃

n∈NMn.
Then, there is a sequence (αn)n∈N valued in w1 such that 1(Mn) ∈ Vαn

, for all n ∈ N. Let
α = supn∈N αn, an element of w1 again. Then, 1(Mn) ∈ Vα for all n ∈ N. Hence,

1(M) = lim
n→∞

1(Mn) ∈ Vα+1 ⊆ Vw1 ,

whence M ∈ D . We have proven that D is a Dynkin system.
Second, we show that D contains an intersection-stable generator of Opt(F ). By definition,

V0 contains 1M , for any M ∈ G , where G is the intersection-stable generator of Opt(F ) from
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Equation A.13.67 We infer that G ⊆ D . Thus, D contains an intersection-stable generator of
Opt(F ).

Third, combining these two intermediate results implies that D = Opt(F ), by Dynkin’s π-λ-
theorem.

(Step 3): We now show the inclusion “⊆”. Let ξ ∈ L0(Opt(F );R). Then, by basic
measure theory, there is a Opt(F )-valued family (Mn,k)n∈N, k∈{0,...,n} and a real-valued family
(xn,k)n∈N, k∈{0,...,n} such that with

ξn =
n∑

k=0
xn,k 1(Mn,k), n ∈ N,

we have ξn → ξ pointwise as n → ∞. For each pair (n, k) ∈ N2 with k ≤ n, there is αn,k ∈ w1 such
that 1(Mn,k) ∈ Vαn,k

, by Step 2. Let α = sup(n,k)∈N2 : k≤n αn,k, which is an element of w1. Hence,
for all n ∈ N, ξn ∈ Vα. Therefore, ξ ∈ Vα+1 ⊆ Vw1 . □

Proof of Corollary 2.19. Without loss of generality, we may assume that Y = R. We say that a
map ξ : T × Ω → R has Property P iff there is α ∈ w1 such that for all t ∈ T with π(t) ≥ α and all
ω ∈ Ω, ξ(t, ω) = ξ((p(t), α), ω) holds true. Now, for any γ ∈ w1 + 1, we make the following claim
C(γ): any ξ ∈ Vγ has Property P . Using Proposition 2.18, the corollary is just the special case of
C(w1).

If C(γ) were not correct for all γ ∈ w1 + 1, then there would be a minimal γ ∈ w1 + 1 such that
C(γ) is incorrect. Denote this hypothetical minimum by γ∗.

(Step 1): We claim that if ξ1, ξ2 : T × Ω → R are maps having Property P , respectively, then
for any x1, x2 ∈ R, the linear combination ξ = x1ξ

1 + x2ξ
2 does so, too. Indeed, let α1, α2 ∈ w1

be such that for both k = 0, 1, all t ∈ T with π(t) ≥ αk and all ω ∈ Ω, ξk(t, ω) = ξk((p(t), αk), ω).
Then, let α = α1 ∨ α2, which is an element of w1. Then, for all t ∈ T with π(t) ≥ α and all ω ∈ Ω,
we have

ξ(t, ω) = x1ξ
1(t, ω) + x2ξ

2(t, ω) = x1ξ
1((p(t), α), ω) + x2ξ

2((p(t), α), ω) = ξ((p(t), αk), ω).
Hence, ξ has Property P .

(Step 2): We claim that if (ξn)n∈N is a family of maps T × Ω → R having Property P and
converging pointwise to a map ξ, then ξ has Property P as well. Indeed, let (αn)n∈N be a w1-valued
sequence such that for all n ∈ N, all t ∈ T with π(t) ≥ αn and all ω ∈ Ω, ξn(t, ω) = ξn((p(t), αn), ω)
holds true. Let α = supn∈N αn, which is an element of w1 again. Then, for all t ∈ T with π(t) ≥ α
and all ω ∈ Ω, we get:

ξ(t, ω) = lim
n→∞

ξn(t, ω) = lim
n→∞

ξn((p(t), α), ω) = ξ((p(t), α), ω).

Thus, ξ has Property P .
(Step 3): C(0) is correct, so that γ∗ > 0. Indeed, if ξ = 1[[0, τ)) for an F -optional time τ , then

π ◦ τ ≤ α for some α ∈ w1. Now, for (t, ω) ∈ T × Ω we have

t < τ(ω) ⇐⇒
[
p(t) < p ◦ τ(ω) or

(
p(t) = p ◦ τ(ω) and π(t) < π ◦ τ(ω)

)]
.

If π(t) ≥ α, then the right-hand side is equivalent to p(t) < p ◦ τ(ω). Hence, if π(t) ≥ α, t < τ(ω)
iff (p(t), α) < τ(ω); in other words:

ξ(t, ω) = ξ((p(t), α), ω).

67Recall that the only non-trivial assertion to verify in order to prove intersection-stability of G is that the
pointwise minimum of two F -optional times σ, τ is an F -optional time again, because [[0, σ)) ∩ [[0, τ)) = [[0, σ ∧ τ)).
But this follows from Proposition 2.10, Part 4.
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If ξ = 1({∞} × E) for E ∈ F∞, then ξ(t, ω) = ξ(p(t), ω) for all t ∈ T; here, α = 0 does the job
already. Moreover, by Step 1, the set S of maps T × Ω → R having Property P is an R-vector
space. As S contains all maps of the form given in Equation 2.6, S contains the R-vector space
generated by them, namely V0. Hence, C(0) is correct and γ∗ > 0.

(Step 4): If γ∗ were a limit ordinal, then for any ξ ∈ Vγ∗ , there would be β ∈ γ∗ with ξ ∈ Vβ .
As C(β) is assumed to hold true, ξ would have Property P . Thus, any element of Vγ∗ would have
Property P , i.e. C(γ∗) would be correct — a contradiction to the definition of γ∗. If γ∗ were a
successor ordinal, there would be β ∈ γ∗ with γ∗ = β + 1. Then, for any ξ ∈ Vγ∗ , there would be a
Vβ-valued sequence (ξn)n∈N converging pointwise to ξ, by construction of the hierarchy. As β < γ∗,
all members of that sequence would have Property P . Hence, by Step 2, ξ would also have Property
P . Thus, all elements of Vγ∗ would have Property P , i.e. C(γ∗) would be correct — contradicting
again the definition of γ∗. As a non-zero ordinal is either a limit or a successor, we conclude that
Claim C(γ) is correct for all γ ∈ w1 + 1. □

Tilting convergence.

Proof of Lemma 2.26. (Ad grid property, last sentence): Represent ξ as in Equation 2.5, for suit-
able α ∈ w1, τβ and ξβ , β ∈ α+ 1. Define G : (α+ 1) × Ω → T by G(0, .) = 0, Equation 2.7 for all
β ∈ α and ω ∈ Ω, and G(γ, ω) = supβ∈γ G(β, ω) for all limit ordinals γ ∈ α+ 1 and ω ∈ Ω.

Then, by transfinite induction, we infer using completeness, the Début Theorem 2.12, and Pro-
position 2.10 (Part 5), that G(β, .) is an F -optional time, for any β ∈ α + 1. By construction,
G(β, ω) < G(γ, ω) holds true for all β, γ ∈ α+ 1 and ω ∈ Ω with G(β, ω) < ∞ because ξ has locally
right-constant paths. Moreover, using transfinite induction, again, we see that, for all β ∈ α + 1,
we have τβ ≤ G(β, .). In particular, ∞ = τα ≤ G(α, .). Thus, τG

α = G(α, .) = ∞. Hence, G is
an F -adapted grid. It follows directly from the definition, using transfinite induction, that G is
classical if ξ is so.

(Ad representation): Let

ξ′ = ξτG
α

◦ prjΩ 1[[τG
α ]] +

∑
β∈α

ξτG
β

◦ prjΩ 1[[τG
β , τ

G
β+1)),

and let M = {ξ ̸= ξ′}, an F -optional set, by Corollary 2.9 and completeness. As both ξ and ξ′

have locally right-constant paths, the Début Theorem 2.12 implies, together with completeness,
that DM is an F -optional time. We show that DM = ∞. We do so by showing the claim (C1)
DM ≥ τG

β for all β ∈ α + 1, using transfinite induction. Inserting β = α into (C1) then yields
DM ≥ ∞, whence DM = ∞. (C1) holds true for β = 0 because τG

0 = 0.
Suppose that (C1) holds true for β ∈ α, and let ω ∈ Ω. If we had DM (ω) < τG

β+1(ω), then,
using local right-constancy of paths, the induction hypothesis, and the definition of ξ′, ξDM

(ω) ̸=
ξ′

DM
(ω) = ξτG

β
(ω). Thus, τG

β (ω) < DM (ω) < τG
β+1(ω). As ξ′(ω) is constant on [τG

β (ω), τG
β+1(ω))T,

this would imply that ξDM
(ω) ̸= ξ′

DM
(ω) = ξ′

τG
β

(ω) = ξτG
β

(ω), whence the contradiction τG
β+1(ω) =

G(β + 1, ω) ≤ DM (ω) < τβ+1(ω). Therefore, DM (ω) ≥ τG
β+1(ω).

For all limit ordinals γ ∈ α+ 1 such that (C1) holds true for all β ∈ γ, we have DM ≥ τG
β for all

β ∈ γ, and thus DM ≥ supβ∈γ τ
G
β = τG

γ , because G is an F -adapted grid. The proof of claim (C1)
for all β ∈ α+ 1 is complete, and we infer DM = ∞.

By definition of ξ′, we have ξ′
∞ = ξτG

α
= ξ∞. Thus, DM = ∞ implies that M = ∅ which is

equivalent to ξ = ξ′. □

Proof of Lemma 2.27. (Ad Part 1): As a subset of a well-order, {β ∈ αn | Gn(β, ω) ≥ t} is itself
well-ordered, and therefore, by basic well-order theory (see, e.g., [71, Lemma 10.1]), there is a
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unique ordinal δn(t, ω) admitting an order isomorphism
ψ̃n(t, ω) : δn(t, ω) → {β ∈ αn | Gn(β, ω) ≥ t}

and ψ̃n(t, ω) is uniquely determined by the requirement that, for all β′ ∈ δn(t, ω):

ψ̃n(t, ω)(β′) = min{β ∈ αn | Gn(β, ω) ≥ t} \ [Pψ̃n(t, ω)](β′)
)

;

that is, ψ̃n(t, ω)(0) = min{β ∈ αn | Gn(β, ω) ≥ t}, ψ̃n(t, ω)(β′ + 1) = ψ̃n(t, ω)(β′) + 1 for all
β′ ∈ δn(t, ω) with β′ ∈ δn(t, ω), and ψ̃n(t, ω)(γ′) = supβ′∈γ′ ψ̃n(t, ω)(β′) for all limit ordinals
γ′ ∈ δn(t, ω). ψ̃n(t, ω) can be extended to δn(t, ω) + 1 by letting ψn(t, ω)(δn(t, ω)) = αn. As
Gn(αn, ω) = ∞ ≥ t, this yields an order isomorphism ψn(t, ω) as claimed. From the recursion
above, we infer that ψn(t, ω)(β′) = ψn(t, ω)(0) + β′ for all β′ ∈ δn(t, ω) + 1.

Uniqueness of the isomorphism follows directly from what has been shown before, by basic well-
order theory. We give an argument here for the reader’s convenience only. For this, consider an
arbitrary order isomorphism f : δn(t, ω) + 1 → {β ∈ αn + 1 | Gn(β, ω) ≥ t}, and let S = {β′ ∈
δn(t, ω) + 1 | f(β′) ̸= ψn(t, ω)(0) + β′}. If S were non-empty, it would have a minimum β0. There
would be β1, β2 ∈ δn(t, ω) + 1 with f(β0) = ψn(t, ω)(0) + β1 and ψn(t, ω)(0) + β0 = f(β2). In
particular, β1, β2 > β0, and

f(β0) = ψn(t, ω)(0) + β1 > ψn(t, ω)(0) + β0 = f(β2),
implying the contradiction β0 > β2.

(Ad Part 2): Let n ∈ N. There is an order-embedding j : αn + 1 ↪→ αn+1 + 1 such that Gn =
Gn+1 ◦ (j× idΩ). Hence, if (β, ω) ∈ (αn + 1) × Ω is such that Gn(β, ω) ≥ t, then Gn+1(j(β), ω) ≥ t.
Therefore, for any ω ∈ Ω, {β ∈ αn + 1 | Gn(β, ω) ≥ t} can be order-embedded into {β ∈ αn+1 + 1 |
Gn+1(β, ω) ≥ t}. Via the order isomorphism from Part 1, δn(t, ω) + 1 can be embedded in to
δn+1(t, ω) + 1, whence δn(t, ω) + 1 ≤ δn+1(t, ω) + 1 which implies δn(t, ω) ≤ δn+1(t, ω).

Regarding the second claim, as a supremum of countably many countable, non-zero ordinals,
δ(t, ω) is countable and non-zero. □

Proof of Lemma 2.32. Let n ∈ N, (t, β, ω) ∈ T × Ω with β ∈ δn(t, ω) + 1. For all β0 ∈ αn + 1 we
infer, using that Gn is an F -adapted grid:

ψn(t, ω)(0) = β0

⇔
(
τGn

β0
(ω) ≥ t, ∀β′ ∈ β0 : τGn

β′ (ω) < t
)

⇔


t = 0, if β0 = 0,
τGn

β0
(ω) ≥ t > τGn

β′
0

(ω), if β0 = β′
0 + 1 for some β′

0 ∈ w1,

τGn

β0
(ω) = t, if β0 ∈ L(On).

Hence, in view of Lemma 2.27, we get:

ξn
(
Gn(ψn(t, ω)(β), ω), ω

)
= ξn

(
Gn(ψn(t, ω)(0) + β, ω), ω

)
=

∑
β0∈αn+1

ξn
τGn

β0+β

(ω) 1{ψn(t, ω)(0) = β0}

= ξn
τGn

β

(ω) 1[[0]](t, 0, ω)

+
∑

β0∈αn+1
ξn

τGn
β0+1+β

(ω) 1((τGn

β0
, τGn

β0+1]](t, 0, ω)
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+
∑

β0∈(αn+1)∩L(On)

ξn
τGn

β0+β

(ω) 1[[τGn

β0
]](t, 0, ω).

□

Proof of Proposition 2.33. Let τ be an F -optional time. By definition, there is α ∈ w1 with
π ◦τ < α. We choose α to be a limit ordinal. This is possible because, if necessary, we could replace
α with the ordinal α′ = sup{α+β | β ∈ w}. Clearly, the updated bound then satisfies α′ ∈ w1 and
π ◦ τ < α′.

(Construction of (Gn)n∈N): For any a, b ∈ R+ with a < b, fix a continuous order embedding
ha,b : α ↪→ [a, b)R+

such that:
– ha,b(0) = a;
– supβ∈α ha,b(β) = b;
– supβ∈α

(
ha,b(β + 1) − ha,b(β)

)
≤ b−a

2 ∧ 1.
For any n ∈ N, define αn ∈ w1 and an order embedding gn : (αn +1) → R+ recursively as follows.

Let α0 = α, and g0 be given by g0(β) = h0,∞(β) for β ∈ α and g0(α) = ∞. Further, let n ∈ N and
suppose that αn ∈ w1 and gn : (αn + 1) → R+ is an order embedding. Define gn+1 as follows. Let
g̃n+1 : αn × α → R+ be given by

g̃n+1(β0, β) = hgn(β0),gn(β0+1)(β).

Equip αn×α with lexicographic order. Then, g̃n+1 defines a continuous order embedding and αn×α
defines a well-order. Therefore, the latter is order-isomorphic to a unique ordinal αn+1, and it is
countable, thus αn+1 ∈ w1. As a consequence, g̃n+1 induces a continuous order embedding αn+1 →
R+ which we extend to an order embedding gn+1 : (αn+1 + 1) → R+ by letting gn+1(αn+1) = ∞.
It is clear from this construction that the sequence (Gn)n∈N given by

Gn : (αn + 1) × Ω → T, (β, ω) 7→ gn(β), n ∈ N,

defines a refining sequence of classical, deterministic grids. Moreover, it is convergent, since — by
choice of the family (ha,b)a,b — we have ∆(Gn, .) ≤ 2−n for all n ∈ N∗.

(Construction of (ξn)n∈N): Let n ∈ N and, for any ω ∈ Ω,

σn(ω) = inf{β ∈ αn + 1 | p ◦ τ(ω) ≤ gn(β)} + π ◦ τ(ω).

Upon extending gn to w1 by gn(β) = ∞ for β ∈ (αn,w1)w1 , let τn = gn ◦ σn, and ξn = 1[[0, τn)).
We show that τn is an F -optional time. As π ◦ τn = 0, im τn ⊆ im gn, and gn has countable

image, it suffices to show that {τn = t} ∈ Ft for all t ∈ im gn \ {∞}. This follows once we show
that {σn = β⋆} ∈ Fgn(β⋆) for all β⋆ ∈ αn.

Let β1, β2 ∈ w1. Then, we have the following equivalences:

inf{β ∈ αn + 1 | p ◦ τ(ω) ≤ gn(β)} = β1, π ◦ τ(ω) = β2

⇔ ∀β ∈ β1 :
(

(gn(β), β2) < τ(ω) ≤ (gn(β1), β2)
)
, π ◦ τ(ω) = β2.

Hence, for β⋆ ∈ αn,

{σn = β⋆}

=
⋃

β1,β2∈w1 :
β1+β2=β⋆

⋂
β∈β1

{(gn(β), β2) < τ(ω) ≤ (gn(β1), β2)} ∩ {π ◦ τ = β2} ∈ Fgn(β⋆),

because (gn(β1), β2) ≤ gn(β1 + β2) in T for all β1, β2 ∈ w1, and τ is an F -optional time. Thus, τn

is an F -optional time.
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As τn is an F -optional time, ξn is F -optional. As τn is R+-valued, ξn is classical and very simple,
and, by construction, the grid Gn is compatible with ξn. It remains to show that (ξn | Gn) T→ 1[[0, τ))
as n → ∞.

(Ad Convergence): Let (t, β, ω) ∈ T × Ω with β ∈ γ(t, ω), and let n ∈ N be large enough such
that β ∈ δn(t, ω) + 1. Then, ξn

(
Gn(ψn(t, ω)(β), ω), ω

)
= 1 iff Gn(ψn(t, ω)(β), ω) < τn(ω). By

definition of Gn and τn, the latter is equivalent to gn(ψn(t, ω)(β)) < gn(σn(ω)). By definition of gn,
and because ψn(t, ω) maps into αn + 1, this is equivalent to ψn(t, ω)(β) < σn(ω). By Lemma 2.27,
and by definition of σn, this is equivalent to
(A.14) inf{β′ ∈ αn + 1 | gn(β′) ≥ t} + β < inf{β′ ∈ αn + 1 | gn(β′) ≥ p ◦ τ(ω)} + π ◦ τ(ω).
If (t, β) ≥ τ(ω), then, by construction of (Gk)k∈N and the fact that π ◦ τ < α, there is N ∈ N such
that for all integers n ≥ N Inequality A.14 is not satisfied. Thus, in that case,

ξn
(
Gn(ψn(t, ω)(β), ω), ω

)
→ 0 = 1[[0, τ))(t, β, ω), as n → ∞.

If, conversely, (t, β) < τ(ω), then, again by construction of (Gk)k∈N and the inequality π ◦ τ < α,
there is N ∈ N such that for all integers n ≥ N Inequality A.14 is satisfied. Thus, in that case,

ξn
(
Gn(ψn(t, ω)(β), ω), ω

)
→ 1 = 1[[0, τ))(t, β, ω), as n → ∞.

Furthermore, note that γ(t, ω) ≥ α for all (t, ω) ∈ R+ × Ω, by construction of (Gk)k∈N, and
γ(∞, ω) > 0 for all ω ∈ Ω by the general construction of γ. Hence, for (t, β, ω) ∈ T × Ω with
β /∈ γ(t, ω), we have β ≥ α. As a consequence, 1[[0, τ))(t, β, ω) = limβ′↗γ(t,ω) 1[[0, τ))(t, β′, ω), since
γ(t, ω) is a limit ordinal and γ(t, ω) ≥ α > π ◦ τ(ω).

We conclude that (ξn | Gn) T→ 1[[0, τ)) as n → ∞. □

Proof of Theorem 2.34. As any Polish space Y can be measure-theoretically embedded into R,68

we can suppose without loss of generality that Y = R. For any two F -optional processes ξ, ξ′

valued in R, the process ξ̃ : T × Ω → R2, (t, ω) 7→ (ξt(ω), ξ′
t(ω)) is again F -optional because for all

B,B′ ∈ BR, we have
ξ̃−1(B ×B′) = ξ−1(B) ∩ ξ′−1(B′) ∈ Opt(F ).

Thus, for any continuous — and a fortiori Borel-measurable — f : R2 → R, ξ′′ = f ◦ξ̃ is F -optional.
Furthermore, pointwise addition and scalar multiplication with λ ∈ R can be described by the

continuous map R2 → R, (x, y) 7→ λx + y. With this, the theorem is a direct consequence of
Lemma 2.16 and Proposition 2.33, together with the fact that, for any F∞-measurable, real-valued
random variable ξ∞, the process ξ∞ ◦ prjΩ 1[[∞]] is a classical, very simple F -optional process. □

A.3. Section 3.

Information sets, counterfactuals, and equilibrium.

Proof of Proposition 3.4. (Ad Part 1): Let V be the set of (PT⊗E ⊗{∅,BT})∨Prd(H i)-measurable
f : T × W → R such that for t ∈ T, ω ∈ Ω, and h, h′ ∈ BT with h|[0,t)T

= h′|[0,t)T
, we have

f(t, ω, h) = f(t, ω, h′). Let Vb ⊆ V be the subset of bounded f ∈ V .
Vb is clearly stable under pointwise addition, multiplication, and real scalar multiplication and

contains all constant functions. It remains to show the Claim (CL1) that Vb contains the functions
1M for all M ∈ Gk, k = 1, 2, for an intersection-stable generator G1 of PT ⊗ E ⊗ {∅,BT} and
an intersection-stable generator G2 of Prd(H i). Indeed, if such Gk, k = 1, 2, exist, then we may
assume that they contain T × Ω × BT. Under this assumption, G = {M ∩ N | M ∈ G1, N ∈ G2}

68That is, there is a measurable injection φ : Y ↪→ R with measurable image, and a measurable inverse im φ → Y .
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defines an intersection-stable generator of (PT⊗E ⊗{∅,BT})∨Prd(H i). Then, as Vb is stable under
multiplication, 1G ∈ Vb for all G ∈ G, and products of such indicators are again in Vb. Moreover, it is
clear that V is closed under pointwise convergence and the limit of a Vb-valued pointwise converging
sequence (fn)n∈N such that 0 ≤ fn ≤ C for some real constant C > 0 is again bounded. Hence,
using the functional monotone class theorem and Claim (CL1), we infer that V equals the set of all
(PT⊗E ⊗{∅,BT})∨Prd(H i)-measurable f : T×W → R. As Opt(E ⊗{∅,BT}) ⊆ PT⊗E ⊗{∅,BT},
and as we make Assumption (C), the claim of the proposition’s first part follows.

We prove Claim (CL1). For this, let t ∈ T, ω ∈ Ω, and h, h′ ∈ BT. First, let T ∈ PT, E ∈ E , and
f = 1(T ×E × BT). Then, for all t, ω, h, h′ as above, we have f(t, ω, h) = f(t, ω, h′). Thus, f ∈ Vb.
Next, let H ∈ H i

0 and f = 1({0} ×H). By Assumption (A), there is E ∈ E such that H = E×BT.
Then, again, for all t, ω, h, h′ as above, we have f(t, ω, h) = f(t, ω, h′). Hence, f ∈ Vb. Next, take
an H i-optional time σ and let f = 1[[0, σ]]. If t = 0, then f(t, ω, h) = 1 = f(t, ω, h′). Suppose that
t > 0. We have {ft = 0} = {σ < t}. As π ◦ σ is bounded above by some fixed countable ordinal,
there is a countable subset Q ⊆ [0, t)T such that

{ft = 0} = {σ < t} =
⋃

u∈Q

{σ ≤ u}.

Let u ∈ Q. Then, we have {σ ≤ u} ∈ H i
u . Hence, by spf Axiom 1, using the notation from

Definition 3.1, there is Hu ∈ H̃ i
u with

1{σ ≤ u}(ω, h) = 1(Hu)(ω,proj[0,u]T
(h)) = 1(Hu)(ω,proj[0,u]T

(h′)) = 1{σ ≤ u}(ω, h′),

because u < t. Thus, ft(ω, h) = 1−supu∈Q 1{σ ≤ u}(ω, h) = 1−supu∈Q 1{σ ≤ u}(ω, h′) = ft(ω, h′).
Thus, f ∈ Vb. Furthermore, if τ is another H i-optional time, the minimum τ ∧ σ is as well by
Proposition 2.10, and as Vb is stable under differences, we also get that f = 1((σ, τ ]] ∈ Vb. This
proves Claim (CL1).

(Ad Part 2): Let τ i be an optional time for i and let χ, χ′ be state processes such that there is
N ∈ N satisfying, for all ω ∈ Ω \N ,

χ|[0,τ i(ω,χ(ω))T
= χ′|[0,τ i(ω,χ(ω))T

.

Hence, by Part 1, any ω ∈ Ω \N , any M i-measurable f : T ×W → R and any t ∈ [0, τ i(ω, χ(ω))]T
satisfy

(∗) f(t, ω, χ(ω)) = f(t, ω, χ′(ω)).
Whence, χ ≈i,τ i χ′.

(Ad Part 3): Let τ i be an optional time for i and let χ, χ′ be state processes that are left-
continuous at all u ∈ T with π(u) = w1 such that χ ≈i,τ i χ′. We make Assumption (B). There is
N ∈ N such that for all ω ∈ Ω\N , all t ∈ [0, τ i(ω, χ(ω))]T, and all M i-measurable f : T×W → R,
Equation (∗) is satisfied.

As Prd(H i) ⊆ M i, it suffices to select some embedding of measurable spaces φ : B ↪→ [0, 1],69

and to show the intermediate claim that for all u ∈ T with π(u) < w1, the map

fu : T ×W → R, (t, ω, h) 7→

{
φ ◦ h(u), if u < t,

−1, else,

is H i-predictable. Indeed, then we infer that, for all ω ∈ Ω \ N and u ∈ [0, τ i(ω, χ(ω)))T with
π(u) < w1, it holds true that χ(u, ω) = χ′(u, ω). By the left-continuity assumption, this extends to
all u ∈ [0, τ i(ω, χ(ω)))T.

69That is, φ is Borel measurable, injective, has Borel-measurable image, and Borel measurable inverse im φ → B.
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For the proof of the intermediate claim above, fix u ∈ T with π(u) < w1. Then, {fu = −1} =
[[0, u]] ∈ Prd(H i). Moreover, for any Borel set B ∈ BR with −1 /∈ B,

σu : W → T, (ω, h) 7→

{
u, if φ ◦ h(u) ∈ B,

∞, else,

is clearly an H i-optional time, in view of Assumption (B). As

{fu ∈ B} = ((σu,∞]] ∈ Prd(H i),

fu is H i-predictable, and the proof of this part of the proposition is complete.
The final statement of the proposition follows directly from the last two parts. □

Timing games.

Proof of Lemma 3.9. (Ad τb): Let b ∈ B. As z has locally right-constant paths, we have, for all
(t, ω, h) ∈ [[0, τb)), h(τb(ω, h)) = zτb

(ω, h) ≤ b and h(t) = zt(ω, h) > b. Hence, by definition of W
and the upper vertical level, π ◦ τb(ω, h) < α. Moreover, for all t, u ∈ T with u ≤ t, and β ∈ w1, we
have

{τb ≤ u, π ◦ τb = β}

=
(

Ω × {h ∈ BT | ∃v ∈ [0, u]T : (h(v) ≤ b,∀v′ ∈ [0, v)T : h(v′) > b, π(v) = β)}
)

∩W

= (idΩ × proj[0,t]T
)−1(H̃) ∩W,

for some subset H̃ ⊆ Ω × B[0,t]T . Hence, by definition of H i, τb is an H i-optional time.
(Ad τ−

b ): We clearly have τ1 = τ−
1 . In the following, we suppose that b ̸= 1. Let w ∈ W .

Then, zτb
(w) ≤ b < zτ−

b
(w), because z has locally right-constant paths. Hence, if τb(w) = (t, β)

for some t ∈ R+ and β ∈ w1, then τ−
b (w) = (t, β + 1). As π ◦ τb(w) < α, we infer that τ−

b (w) =
(p ◦ τb(w), π ◦ τb(w) + 1). Hence, [[0, τ−

b )) = [[0, τb]], and π ◦ τ−
b = π ◦ τb + 1 ≤ α. Let t ∈ T and

β ∈ w1. We have {τ−
b ≤ t, π ◦ τ−

b = β} = ∅, if β is not a successor ordinal or if t = 0. Else, there
is γ ∈ w1 with β = γ + 1 and t > 0. If π(t) is a successor ordinal as well, there is δ ∈ w1 with
π(t) = δ + 1, whence

{τ−
b ≤ t, π ◦ τ−

b = β} = {τb ≤ (p(t), δ), π ◦ τb = γ} ∈ H i
(p(t),δ) ⊆ H i

t .

If π(t) is not a successor ordinal and t > 0, then there is a strictly increasing sequence (un)n∈N ∈ TN

with un ↗ t. Hence,

{τ−
b ≤ t, π ◦ τ−

b = β} =
⋃

n∈N
{τb ≤ un, π ◦ τb = γ} ∈

∨
n∈N

H i
un

⊆ H i
t .

Thus, τ−
b is an H i-optional time with the claimed properties.

(Intermediate result): Let b ∈ B and

τ<b = inf{t ∈ T | zu < b}.

As z is decreasing, we have, with ↓ b = {b′ ∈ B | b′ ≤ b},

τ<b = inf
b′∈↓b\{b}

τb′ .

As an infimum of a finite number of H i-optional times, this is again an H i-optional time by an
application of Proposition 2.10, Part 2.10.
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(Ad z): Then, as z has locally right-constant and componentwise decreasing paths, for any
b ∈ B, we obtain the representations

(∗) {z = b} =
{

[[τb,∞]], if b = 0,

[[τb, τ<b)), else,
{z− = b} =

{
[[0, τ<b]], if b = 1,

((τb, τ<b]], else.

Hence, z is H i-optional and has upper vertical level smaller than or equal to α, and z− is H i-
predictable and has (upper) vertical level smaller than or equal to α (if α is a limit ordinal, re-
spectively). Let β ∈ α and h : T → B be given by h(t) = 1 for t ∈ [0, (0, β))T, and h(t) = 0 for
t ∈ [(0, β),∞]T. Then, for any ω ∈ Ω, we have (ω, h) ∈ W . Plugging in (ω, h) into z and z− for
all β ∈ α shows that z has upper vertical level α and that z− has (upper) vertical level α (if α is a
limit ordinal). □

Proof of Lemma 3.10. The map f# is well-defined because for any (ω, h) ∈ W , (ω, f(ω, h)) ∈ W .
Using Theorem 2.6, Corollary 2.9, Theorem 2.12, and the completeness assumption on the data
H ∨, we infer that f is a simple H ∨-optional process of the form

ft(w) =
{
fτk

(w), if (t, w) ∈ [[τk, τk+1)) for k = 0, . . . , |I|,
0, if t = ∞,

for H ∨-optional times τ0, . . . , τ|I| with 0 = τ0 ≤ · · · ≤ τ|I|+1 = ∞.
(First step): Let idΩ ⋆f denote the map W → W, (ω, h) 7→ (ω, f(ω, h)). We show that, for any

t ∈ T, idΩ ⋆f is H ∨
t -H ∨

t -measurable. By basic measure theory, using universal completeness of
(W,H ∨

∞ ,H ∨), it suffices to show that it is H ∨
t -H i,0

t -measurable for all i ∈ I, with the notation
from the definition of the data F.

Let i ∈ I, E ∈ F i
0. Then, (idΩ ⋆f)−1(E×BT) = E×BT ∈ H ∨

0 . Next, let t ∈ T \ {0}, i ∈ I, E ∈
F i

t , n ∈ N∗, for ℓ = 1, . . . , n, (uℓ, bℓ) ∈ [0, t]T × B, and B = {h ∈ BT | ∀ℓ = 1, . . . , n : h(uℓ) = bℓ}.
Then, for Ht = E ×B,

(idΩ ⋆f)−1(Ht) = (E × BT) ∩
n⋂

ℓ=1

( |I|⋃
k=0

{w ∈ W | τk(w) ≤ uℓ < τk+1(w), fτk
(w) = bℓ}

∪ {w ∈ W | uℓ = ∞, bℓ = 0}
)

is an element of H ∨
t . Finally, let again t ∈ T \ {0}, β ∈ w1, and b ∈ B. Let

f̃ : T ×W → B, (t, w) 7→

{
1, if t = 0,
ft(w), else,

and σb = inf{u ∈ T | f̃u ≤ b}. Then, Theorem 2.12, local right-constancy and optionality of
f̃ as well as the completeness assumption on H ∨ imply that σb is an H ∨-optional time. For
Ht = {τb ≤ t, π ◦ τb = β}, we infer that

(idΩ ⋆f)−1(Ht) = {σb ≤ t, π ◦ σb = β} ∈ H ∨
t .

We conclude that idΩ ⋆f is H ∨
t -H ∨

t -measurable.
(Opt(H ∨)-Opt(H ∨)-measurability): Now let τ be an H ∨-optional time and let τf = τ ◦

(idΩ ⋆f). There is α ∈ w1 with π ◦ τ ≤ α, whence π ◦ τf ≤ α. Moreover, for any t ∈ T and β ∈ w1,
we have, using the first step’s result,

{τf ≤ t, π ◦ τf = β} = (idΩ ⋆f)−1({τ ≤ t, π ◦ τ = β}) ∈ H ∨
t .

Hence,
(f#)−1([[0, τ))) = [[0, τf )) ∈ Opt(H ∨).
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Moreover, for any E ∈ H ∨
∞ , we have (idΩ ⋆)−1(E) ∈ H ∨

∞ by the first step, whence
(f#)−1({∞} × E) = {∞} × (idΩ ⋆f)−1(E) ∈ Opt(H ∨).

This completes the proof of Opt(H ∨)-Opt(H ∨)-measurability.
(Prg(H ∨)-Prg(H ∨)-measurability): Let M ∈ Prg(H ∨) and t ∈ T. Then, M ∩ [[0, t]] ∈

PT ⊗ H ∨
t , whence

(f#)−1(M) ∩ [[0, t]] = [idT ×(idΩ ⋆f)]−1(M) ∩ [[0, t]]
= [idT ×(idΩ ⋆f)]−1(M ∩ [[0, t]]) ∈ PT ⊗ H ∨

t ,

because idT ×(idΩ ⋆f) is PT⊗H ∨
t -PT⊗H ∨

t -measurable by the first step and basic measure theory.
This proves Prg(H ∨)-Prg(H ∨)-measurability. □

Proof of Lemma 3.11. (First step): As χ is F ∨-optional, it is F ∨-adapted (this follows from Corol-
lary 2.19). Using this and the fact that F ∨ is universally augmented in E , applying methods similar
to those employed in the proof of Lemma 3.10, one proves that idΩ ⋆χ is F ∨

t -H i,0
t -measurable for

any i ∈ I and t ∈ T. Hence, it is F ∨
t -H ∨

t -measurable for any t ∈ T, by basic measure theory and
the universal completeness of (Ω,E ,F ∨).

(Second step): Let τ be an H ∨-optional time, and τχ = τ ◦ (idΩ ⋆χ). Then, it follows from the
first step, in a way completely analogous to the proof of Lemma 3.10, second step, that τχ is an
F ∨-optional time. Hence,

[idT ×(idΩ ⋆χ)]−1([[0, τ))) = [[0, τχ)) ∈ Opt(F ∨).
Moreover, for any E ∈ H ∨

∞ , we have (idΩ ⋆χ)−1(E) ∈ F ∨
∞, by the first step, whence

[idT ×(idΩ ⋆χ)]−1({∞} × E) = {∞} × (idΩ ⋆χ)−1(E) ∈ Opt(F ∨).
Thus, [idT ×(idΩ ⋆χ)] is Opt(F ∨)-Opt(H ∨)-measurable. As a consequence, the composition η ◦
[idT ×(idΩ ⋆χ)] is Opt(F ∨)-BB-measurable, i.e. F ∨-optional. □

Proof of Theorem 3.12. (Ad “F is spf”: basic properties of the data): Any (ξ, χ) ∈ W satisfies
(ω, χ(ω)) ∈ W for all ω ∈ Ω. Moreover, for all i ∈ I and t, u ∈ T with t ≤ u, it follows readily from
the definition that H i

t is a σ-algebra on W and that we have H i
t ⊆ H i

u , which proves that H i is
a filtration. Moreover, F i

t ⊗ {∅,BT} ⊆ H i
t , for all t ∈ T; hence, Prd(H i) ⊆ M i ⊆ Opt(H i). It

remains to show the Axioms in Definition 3.1.
(Ad Axiom 1): This axiom is satisfied by construction.
(Ad Axiom 2): Let χ be such that there is ξ with (ξ, χ) ∈ W and i ∈ I. χ is F ∨-optional, hence

-adapted. Thus, for any i ∈ I, all

Ht ∈ F i
∞ ⊗ B

[0,t]T
B ⊗ {∅,B(t,∞]T}|W

satisfy (idΩ ⋆χ)−1(Ht) ∈ F ∨
∞ ⊆ E .

Let i ∈ I, t ∈ T, β ∈ w1. For any state process χ, let

χ̃ : T × Ω → B, (t, ω) 7→

{
1, if t = 0,
χt(ω), else,

and Mb
χ = {(u, ω) ∈ T× Ω | χ̃(u) ≤ b} and DMb

χ
be the début of the set Mb

χ. By construction, χ̃ is
left-constant at all u ∈ T with π(u) = w1. Moreover, χ̃ is also right-constant at all those u. Thus,
as F ∨ is universally augmented in the universally complete σ-algebra E , DMb

χ
is an F ∨-optional

time, by Theorem 2.12. Hence,
(idΩ ⋆χ)−1({τb ≤ t, π ◦ τb = β}) = {DMb

χ
≤ t, π ◦DMb

χ
= β} ∈ F ∨

t ⊆ E .



STOCHASTIC PROCESS FORMS IN VERTICALLY EXTENDED CONTINUOUS TIME 89

We conclude that for i ∈ I, idΩ ⋆χ is E -H i,0
∞ -measurable, with H i,0

∞ as in the definition of the
data F. As E is universally complete, basic measure theory implies that idΩ ⋆χ is also E -H i,1

∞ -
measurable, because H i,1

∞ = [H i,0
∞ ]u, as in the definition of the data F. As H i

∞ ⊆ H i,1
∞ , we infer

that, in particular, idΩ ⋆χ is E -H i
∞-measurable.

(Ad Axiom 3): This is evident because ξ = χ for all (ξ, χ) ∈ W. We conclude that F is an spf.
(Ad Axiom 4): This axiom is satisfied by construction.
(Ad well-posedness): Let s ∈ S, i ∈ I, τ i be an optional time for i, and χ̃ be a state process.
We now define two sequences (σn)n∈N of H ∨-optional times σn : W → T with π ◦ σn < α for

all n ∈ N and (ηn)n∈N of right-continuous, decreasing H ∨-optional processes ηn : T × W → B
with upper vertical level smaller than or equal to α and ηn

∞ = 0, satisfying the following “extra
properties”, for all n ∈ N:

1. If n > 0, then σn−1 ≤ σn and, for all w ∈ {σn−1 < ∞}, we have σn−1(w) < σn(w).
2. If n > 0, then sσn(ω,h)(ω, ηn(ω, h)) < ηn

σn(ω,h)(ω, h) for all (ω, h) ∈ W with σn(ω, h) < ∞.
3. If n > 0, then for all t, u ∈ T and w ∈ W with (t, w), (u,w) ∈ [[σn−1, σn)), we have
ηn

t (w) = ηn
u(w) and |ηn

t (w)|1 ≤ |I| − n+ 1.70

4. If n > 0, then we have ηn−1|[[0,σn−1)) = ηn|[[0,σn−1)).
5. ηn|[[0,σ0)) = η0|[[0,σ0)).
6. For all (t, ω, h) ∈ [[σ0, σn)) we have

ηn
t (ω, h) = st(ω, ηn(ω, h)).

Let σ0 = τ i and η0 = z. By construction, σ0 is an H ∨-optional time, and η0 is right-continuous,
decreasing and H ∨-optional. Moreover, η0

∞ = 0 by assumption. The extra properties above are
clearly satisfied for n = 0.

Now let k ∈ N and σn and ηn with the claimed properties be given for all n = 0, . . . , k. Let, for
any t ∈ T and (ω, h) ∈ W :

ηk+1
t (ω, h) =


ηk

t (ω, h), if (t, ω, h) ∈ [[0, σk)),
sσk(ω,h)(ω, ηk(ω, h)), if (t, ω, h) ∈ [[σk,∞)),
0, else,

σk+1(ω, h) = inf{t ≥ σk(ω, h) | st(ω, ηk+1(ω, h)) ̸= ηk+1
t (ω, h)}.

With the notation from Lemma 3.10, T×W → B, (t, ω, h) 7→ st(ω, ηk(ω, h)) equals the composition
s ◦ (ηk)#, and, by that lemma and the induction hypothesis, it is H ∨-progressively measurable.
Therefore, using again the induction hypothesis, completeness, and Corollary 2.9, we obtain that
[s◦(ηk)#]σk

is H ∨
σk

-measurable and ηk+1 is a (simple) H ∨-optional process. Moreover, ηk+1 clearly
has right-continuous and decreasing paths, because st(ω, h) ≤ h(t−) for all (t, ω, h) ∈ T × W .
Moreover, ηk+1

∞ = 0 by definition. As π ◦ σk < α and as s has upper vertical level smaller than or
equal to α, ηk+1 has upper vertical level smaller than or equal to α.

Now we show that σk+1 is an H ∨-optional time with π ◦ σk+1 < α. As ηk+1 is H ∨-optional,
s ◦ (ηk+1)# is H ∨-progressively measurable, by Lemma 3.10. In particular, both s ◦ (ηk+1)# and
ηk+1 are H ∨-progressively measurable. ηk+1 is left- and right-constant and s is left-constant at all
u ∈ T with π(u) = w1. If we had π◦σk+1(ω, h) = w1 for some (ω, h) ∈ W , then σk+1(ω, h) < ∞ and
(s◦(ηk+1)#)σk+1(ω, h) = ηk+1

σk+1
(ω, h). Using local right-constanty of ηk+1 and the fact that the paths

of s are lower semicontinuous from the right, we see that there would be i ∈ I such that, for any t ∈ T
with σk+1(ω, h) < t and infinitely many u ∈ (σk+1(ω, h), t)T, we have (si ◦ (ηk+1)#)σk+1(ω, h) = 0

70Here, |.|1 denotes the L1-norm. That is, for b = (bi)i∈I ∈ B, we have |b|1 =
∑

i∈I
|bi| =

∑
i∈I

bi which is the
number of components with value one, or game-theoretically speaking, the number of active agents.
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and (si ◦ (ηk+1)#)u(ω, h) = 1. Then, choosing t sufficiently small so that ηk+1 is constant on
[σk+1(ω, h), t)T, there would be such u with

1 = (si ◦ (ηk+1)#)u(ω, h) ≤ ηk+1
u− (ω, h) = ηk+1

σk+1
(ω, h) = (si ◦ (ηk+1)#)σk+1(ω, h) = 0

— a contradiction. Hence, π ◦ σk+1 < w1. Thus, by augmentedness of H ∨ and Theorem 2.12,
σk+1 is an H ∨-optional time. Moreover, as s and ηk+1 have upper vertical level inferior or equal
to α, the preceding inequality even implies π ◦ σk+1 < α.

It remains to show the extra properties for n = k + 1. Property 1 follows directly from the
definitions of ηk+1 and σk+1; the fact that π ◦ σk < w1 (σk is an optional time by induction
hypothesis); and the equality

(†) sσk(ω,h)(ω, ηk(ω, h)) = sσk(ω,h)(ω, ηk+1(ω, h)), (ω, h) ∈ W.

We briefly prove (†). For this, fix (ω, h) ∈ W and let t = σk(ω, h), a deterministic optional time.
By Axiom 4 applied to t and β = π(t), for all i ∈ I, there is M i-measurable s̃i with s̃i

t = si
t. By

definition, we have ηk(ω, h)|[0,t)T
= ηk+1(ω, h)|[0,t)T

. Hence, by Proposition 3.4, Part 1, all i ∈ I

satisfy
si

σk(ω,h)(ω, ηk(ω, h)) = s̃i
t(ω, ηk(ω, h)) = s̃i

t(ω, ηk+1(ω, h)) = si
σk(ω,h)(ω, ηk+1(ω, h)),

which proves (†).
Regarding Property 2, let (ω, h) ∈ W such that σk+1(ω, h) < ∞. By construction, ηk+1(ω, h) is

constant on [σk(ω, h),∞)T. By Property 1, just shown above, [σk(ω, h), σk+1(ω, h))T is non-empty.
Hence,

sσk+1(ω,h)(ω, ηk+1(ω, h)) ≤ ηk+1
σk+1(ω,h)−(ω, h) = ηk+1

σk+1(ω,h)(ω, h).
Note that

(∗) sσk+1(ω,h)(ω, ηk+1(ω, h)) ̸= ηk+1
σk+1(ω,h)(ω, h),

because π ◦σk+1 < w1 as shown above. Thus, we get sσk+1(ω,h)(ω, ηk+1(ω, h)) < ηk+1
σk+1(ω,h)(ω, h) as

claimed.
Regarding Property 3, by construction ηk+1 is scenariowise constant on [[σk, σk+1)). Let (t, w) ∈

[[σk, σk+1)). If k = 0, then |ηk+1
t (w)| ≤ |I| = |I| − (k + 1) + 1. If k > 0, then, by the induction

hypothesis on Property 2 (by the choice of (t, w), σk(w) < ∞), and by monotonicity of ηk, we have

|ηk+1
t (w)|1 = |sσk(ω,h)(ω, ηk(ω, h))|1 < |ηk

σk(ω,h)(ω, h)|1 ≤ |ηk
σk−1(ω,h)(ω, h)|1 ≤ |I| − k + 1.

Hence, |ηk+1
t (w)|1 ≤ |I| − k + 1 − 1 = |I| − (k + 1) + 1.

Property 4 holds true for n = k + 1 by definition. By Property 4 and the induction hypothesis
for Properties 1 and 5, we infer Property 5 for n = k + 1.

Regarding Property 6, first let (t, ω, h) ∈ [[σ0, σk)). Then, if π(t) < w1, using the induction
hypothesis, Proposition 3.4 (Part 1) combined with Axiom 4 applied to the optional time t and
β = π(t), and Property 4 for n = k + 1 which we have proven above, we get

ηk+1
t (ω, h) = ηk

t (ω, h) = st(ω, ηk(ω, h)) = st(ω, ηk+1(ω, h)).
If π(t) = w1, both ηk+1(ω, h) and s(ω, ηk+1(ω, h)) are left-constant at t by progressive measurability
of ηk+1 and s (Remark 2.2, Part 5). Whence, using the fact that π ◦ σ0 < w1 and what has been
shown just before, we infer ηk+1

t (ω, h) = st(ω, ηk+1(ω, h)). Second, let (t, ω, h) ∈ [[σk, σk+1)). Then,
by definition of σk+1, we obtain

ηk+1
t (ω, h) = st(ω, ηk+1(ω, h)).

The construction is complete.
Next, let n∗ = |I| + 1 and η = ηn∗ . We claim that:
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7. σn∗ = ∞.
8. η|[[0,τ i)) = z|[[0,τ i)), and st(ω, η(ω, h)) = ηt(ω, h) for all (t, ω, h) with τ i(ω, h) ≤ t.

Suppose that there is (ω, h) ∈ W with σn∗(ω, h) < ∞. Then, by Properties 1 and 3, ηn∗
σn∗ − = 0.

Property 2 then yields the contradiction sσn∗ (ω,h)(ω, σn∗(ω, h)) < 0. Hence, σn∗ = ∞. The second
claim now follows from the initial values of σ0 and η0, Properties 5 and 6, as well as the convention
that s∞ = 0 = η∞.

Let χ = η ◦ (idΩ ⋆χ̃). By Lemma 3.11, χ is F ∨-optional. It is decreasing and right-continuous,
and satisfies χ∞ = 0. η = ηn∗ has upper vertical level inferior or equal to α, and hence the same is
true of χ. Hence, (χ, χ) ∈ W. By construction of η, for all ω ∈ Ω, we have:

χ|[0,τ i(ω,χ̃(ω)))T
= χ̃|[0,τ i(ω,χ̃(ω)))T

,

s⌞χ|[τ i(ω,χ̃(ω))∞]T
= χ|[τ i(ω,χ̃(ω))∞]T

,

where we used Property 8. We infer using Proposition 3.4 that χ ≈i,τ i χ̃.
Let χ′ be another state process such that χ′ ≈i,τ i χ̃ satisfying s⌞χ′(t, ω) = χ′(t, ω) for all

(t, ω) ∈ [[τ i ◦ (idΩ ⋆χ(ω),∞]]. As both χ′ and χ are F ∨-optional with locally right-constant paths,

σ = inf{t ∈ T | χ′
t ̸= χt}

defines an F ∨-optional time with χ′
σ ̸= χσ on {σ < ∞}. Hence, for all ω ∈ {σ < ∞}, we have

χ′
σ = (s⌞χ′)σ = (s⌞χ)σ = χσ,

again by a scenario- and componentwise application of spf Axiom 4 combined with Proposition 3.4,
Part 1.71 Thus, {σ < ∞} = ∅. As χ′

∞ = 0 = χ∞, we infer that χ′ = χ. The proof of well-posedness
is complete. □

Proof of Theorem 3.14. Note that, being an action process in F, every component of ξ is an F ∨-
optional decreasing process valued in {0, 1} taking the value zero in time ∞. Hence, any component
is of the form 1[[0, σ)) for some F ∨-decision time σ, by Theorem 2.12 and universal completeness
of (Ω,E ,F ∨). Then, the theorem follows directly from Proposition 2.33 in combination with
Remark 2.29. □

Proof of Theorem 3.15. (s is a strategy profile): Let i ∈ I. We start with proving all properties not
concerning measurability. Regarding lower semicontinuity from the right, let t ∈ T be a right-limit
point, i.e. π(t) = w1, and let (ω, h) ∈ W such that si

t(ω, h) = 1. Then, t < τ(ω). Hence, there
is u ∈ R+ such that t < u < τ(ω), so that si(ω, h) is constant with value 1 on [t, u)T. Thus,
si is lower semicontinuous from the right. Moreover, si

t(ω, h) = 0 for all (t, ω, h) ∈ T × W with
π(t) ≥ w. Hence, si has upper vertical level inferior or equal to α = w + 1. By construction, we
have si

t(ω, h) ≤ hi(t−) for all (t, ω, h) ∈ T ×W and si
∞ = 0.

It remains to verify H i-progressive measurability and “local” M i-measurability. We first show
that the map

f i : T ×W → R, (t, ω, h) 7→

{
υi,π(t)(ω), if π(t) < w,

−1, else,

is H i-progressively measurable. As f i is valued in {−1} ∪ [0, 1]R+ , it suffices to show that, for all
b ∈ R with b > −1 and u ∈ T, we have {f i > b} ∈ M i. Let such b and u be given. Then, we have

{f i > b}

71Namely, for fixed ω ∈ Ω, σ(ω) is a deterministic optional time. For any i ∈ I, there is M i-measurable s̃i with
si

σ(ω) = s̃i
σ(ω). Now, plug in both (ω, χ(ω)) and (ω, χ′(ω)) and apply Proposition 3.4, Part 1.
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=
⋃

β∈w

(ρw)−1(R+ × {β}) × {υi,β > b} × BT ∈ PT ⊗ F i
0 ⊗ {∅,BT}.

Now, we have
PT ⊗ F i

0 ⊗ {∅,BT} ⊆ Prg(F i ⊗ {∅,BT}) ⊆ Prg(H i)

by Remark 2.2, Part 4.
The map τ̃ : W → T, (ω, h) 7→ τ(ω), defines an F i ⊗ {∅,BT}-optional time because τ is an

F i-optional time. In particular, [[0, τ̃)) ∈ M i.
Moreover, with Bi,0 = {b = (bi)i∈I ∈ B | bi = 0}, we have

τi,0 = inf{t ∈ T | zi
t− = 0} = inf

b∈Bi,0
τ−
b .

For any b ∈ Bi,0, τ−
b is an H i-optional time with [[0, τ−

b )) ∈ Prd(H i) ⊆ M i, in view of Lemma 3.9.
By Proposition 2.10, Part 4, infima of finitely many optional times are optional times. Thus, τi,0 is
an H i-optional time. Moreover,

[[0, τi,0)) =
⋂

b∈Bi,0

[[0, τ−
b )) ∈ M i.

Let us extend ηj to a process

η̃j : T ×W → (0,∞)R+ , (t, ω, h) 7→

{
ηj

p(t)(ω), if t < ∞,

1, else.

As ηj , seen as a classical process with time axis R+, is G i-progressively measurable in the classical
sense, η̃j is F i ⊗ {∅,BT}-optional and thus M i-measurable in the sense of the present text. With
this, we get the representation

si = 1[[0, τi,0)) ·
(

1[[0, τ̃)) + 1[[τ̃ ,∞)) · 1
{
f i ≥ η̃j

1 + η̃j

})
,

from which we infer that si is H i-progressively measurable.
It remains to show that si is “locally” M i-measurable, for any i ∈ I. For this let i ∈ I, β ∈ w1,

and τ i be an optional time for i. Let

s̃i = 1[[0, τi,0)) ·
(

1[[0, τ̃)) + 1[[τ̃ ,∞)) · 1
{
υi,β ≥

η̃j
τ i

1 + η̃j
τ i

, β ∈ w
})
.

As υi,β , seen as a process constant in time, is F i ⊗ {∅,BT}-optional and thus M i-measurable,
combining with the measurability properties of the other relevant processes in the definition of s̃i,
we infer that s̃i is M i-measurable. Moreover, we have si

τ i = s̃i
τ i on {π ◦ τ i = β}, as wanted.

(Construction of Pr): Let Π = (Pi,τ i

, κi,τ i

, pi,p,Pi,p)p=(τ i,x)∈Pi, i∈I be given as follows:

– for any i ∈ I and any optional time τ i for i, Pi,τ i is the coarsest (i.e. two-element) σ-algebra
on Pi(τ i);

– for any i ∈ I, any optional time τ i for i, any p ∈ Pi(τ i) and E ∈ E , let κi,τ i(E, p) = P(E);
– for any i ∈ I, any optional time τ i for i, any p = (τ i, x) ∈ Pi(τ i), let Pi,p be the coarsest

(i.e. two-element) σ-algebra on x;
– for any i ∈ I, any optional time τ i for i, any p = (τ i, x) ∈ Pi(τ i), and any ω ∈ Ω, let
pi,p(ω) = Out⋆(s | τ i, χ̃) for χ̃ ∈ x.
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Π clearly defines a belief system and U = (ui,p)i∈I, p∈Pi with ui,p = ui obviously defines a taste
system in the sense of Definition 3.6. W is a σ-algebra on W .

We show that Pr is an eu preference structure. For this, let i ∈ I, τ i be an optional time for
i and p = (τ i, x) ∈ Pi(τ i) be a corresponding information set. Regarding Property 3(a), the map
ui is bounded and W -BR-measurable, because, first, the maps W ∋ (ω, h) 7→ σi(h) are measurable
functions of the family (τb)b∈B. And, second, for any (ω, h) ∈ W ,

ai(h) = 1{prjw+1 ◦ ρw ◦ σi(h) < w},

where prjw+1 : R+ × (w + 1) → (w + 1) is the canonical projection. Hence, W ∋ (ω, h) 7→ ai(h) is
measurable as well. Furthermore, for the proof of Property 3(b), let s′ ∈ S and denote the state
processes induced by s′ and s given the information set p — or more precisely, given arbitrary χ̃ ∈ x
and time τ i — by χ′ and χ, respectively. This makes sense because information sets are small here
and characterised by “equality on [[0, τ i))”, see Proposition 3.4. Then, pi,p is constant with value
χ, by construction. Moreover, as χ ∈ x, we get, for all ω ∈ Ω,

Outs′

i,p(ω) = (ω, χ′(ω)) = (idΩ ⋆χ
′)(ω).

By Axiom 2, (idΩ ⋆χ
′) is E -H j

∞-measurable for all j ∈ I. By universal completeness and basic
measure theory, then, it is also E -H ∨

∞-measurable. Property 3(c) is trivially satisfied because pi,p

is constant. The constancy of pi,p also implies that Property 3(d) holds true. Hence, Pr is an
expected utility preference structure.

(Dynamic consistency of (Pr, s)): Property 4(a) in the definition of dynamic consistency is
satisfied by construction. For the proof of Property 4(b), let i ∈ I, τ i, σi be optional times for i with
τ i ≤ σi, p = (τ i, x) ∈ Pi(τ i) an information set for i with time τ i and ω ∈ Ω. Using Proposition 3.4,
let χ denote the state process induced by s given p.72 Then, by construction, pi,p(ω) = χ and
Out⋆(s | τ i, pi,p(ω)) = χ. Moreover, φs

i,p,σi(χ) equals the information set p′ = (σi, x′) at time σi

with χ ∈ x′. Hence, by definition of pi,p′ , pi,φs

i,p,σi
(pi,p(ω))(ω) equals the state process induced by s

given p′ alias χ at time σi. It follows, then, directly from the definition of “state process induced
by s” that pi,φs

i,p,σi
(pi,p(ω))(ω) = χ. Hence, Property 4(b) is satisfied as well. For the proof of

Property 4(c), let i ∈ I, τ i, σi be optional times for i with τ i ≤ σi, p = (τ i, x) ∈ Pi(τ i) and E ∈ E .
Note that pi,p is constant, whence κi,σi(E,φs

i,p,σi ◦ pi,p) = P(E) = P(E | φs
i,p,σi ◦ pi,p). We conclude

that (Pr, s) is dynamically consistent.
(Ad dynamic rationality): Let i, j ∈ I with i ̸= j, p = (τ i, x) ∈ Pi such that there is F i-

progressively measurable χ ∈ x, and s̃ ∈ S such that s̃j = sj . Without loss of generality, we
can assume that χ has no jumps on [[τ i ◦ (idΩ ⋆χ)]], that is, for any ω ∈ Ω, χ is constant on
[τ i(ω, χ(ω)),∞]T and, if τ i(ω, χ(ω)) > 0, there is u ∈ [0, τ i(ω, χ(ω)))T such that χ is even constant
on [u,∞]T.

Let χ̃ denote the state process induced by s̃ given (τ i, χi,p). Recall that χi,p, by construction, is
the state process induced by s given (τ i, χi,p), that is χi,p = Outs

i,p. By Proposition 3.4, χ, χi,p,
and χ̃ cannot be distinguished from another until τ i. In particular, we have, for all ω ∈ Ω,

τ i(ω, χ(ω)) = τ i(ω, χi,p(ω)) = τ i(ω, χ̃(ω)).
Let τ̂ i = τ i(ω, χ(ω)), an F i-optional time. Indeed, this can be shown as in Lemma 3.11, using the
additional assumption that χ is F i-progressively measurable and thus even F i-optional, because it
is componentwise decreasing, locally right-constant, and (Ω,E ,F i) is universally complete so that
Theorem 2.12 can be applied. Furthermore, let σ̃k = σk ◦ χ̃ and σ̂k = σk ◦ χi,p for both k = 1, 2,
which are F ∨-optional times.

72More precisely, by the proposition, the induced state process does not depend on the choice of χ̃ ∈ x.
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First note that, as χi,p and χ̃ coincide on [[0, τ̂ i)),
E[ui ◦ Outs̃

i,p 1{σ̃i < τ̂ i} | F ∗
i,p] = E[ui ◦ Outs

i,p 1{σ̂i < τ̂ i} | F ∗
i,p].

Similarly, we get
E[ui ◦ Outs̃

i,p 1{σ̃j < τ̂ i} | F ∗
i,p] = E[ui ◦ Outs

i,p 1{σ̂j < τ̂ i} | F ∗
i,p]

Furthermore, we have
E[ui ◦ Outs̃

i,p 1{τ̂ i ≤ σ̃i ∧ σ̃j < τ} | F ∗
i,p] ≤ 0,

with equality if s̃ = s, because s avoids stopping before τ .
It remains to consider the most central event E = {τ̂ i ∨ τ ≤ σ̃i ∧ σ̃j}. Note that E can be

decomposed into the three cases: a) τ̂ i ∨ τ ≤ σ̃i < σ̃j , b) τ̂ i ∨ τ ≤ σ̃i = σ̃j , c) τ̂ i ∨ τ ≤ σ̃j < σ̃i. By
definition of sj , we have p◦ τ̂ i = p◦ σ̃j and π ◦ σ̃j < w P-almost surely on E∩{π ◦ τ̂ i < w}. Now, for
any optional time σ and α ∈ w, let σ⊕α denote the optional time given by p ◦ (σ⊕α) = p ◦σ and,
on {σ < ∞}, π ◦ (σ⊕α) = π ◦ σ+α.73 Also, let use recall that we extend ηk to a map T× Ω → R,
via the requirement ηk = ηk ◦ (p× idΩ), an IT(T) ⊗ F i

0-measurable map.
Then, we get — with conditional probability denoting conditional expectation of the correspond-

ing indicator —:
E

[
ui ◦ Outs

i,p 1E | F ∗
i,p

]
= E

[
ηi

σ̃i
1{τ̂ i ∨ τ ≤ σ̃i < σ̃j , π ◦ τ̂ i < w} − 1{τ̂ i ∨ τ ≤ σ̃i = σ̃j , π ◦ τ̂ i < w} | F ∗

i,p

]
=

∑
β,γ∈w : β<γ

ηi
τ̂ i P

(
σ̃i = τ̂ i ⊕ β, σ̃j = τ̂ i ⊕ γ, τ ≤ τ̂ i ⊕ β, π ◦ τ̂ i < w | F ∗

i,p

)
−

∑
β∈w

P
(
σ̃i = τ̂ i ⊕ β = σ̃j ≥ τ, π ◦ τ̂ i < w | F ∗

i,p

)
.

We have used that η̃i is M i-measurable, whence the F ∗
i,p-measurability of ηi

τ̂ i .
Now, we have, for β, γ ∈ w with β < γ:{

σ̃i = τ̂ i ⊕ β, σ̃j = τ̂ i ⊕ γ, τ ≤ τ̂ i ⊕ β, π ◦ τ̂ i < w
}

=
{

∀δ ∈ [0, β)w : s̃i
τ̂ i⊕δ ◦ (idΩ ⋆χ) = 1, s̃i

τ̂ i⊕β ◦ (idΩ ⋆χ) = 0,

τ ≤ τ̂ i ⊕ β, π ◦ τ̂ i < w,

∀δ ∈ [0, γ)w : f j
τ̂ i+δ ≥

ηi
τ̂ i

1 + ηi
τ̂ i

, f j
τ̂ i+γ <

ηi
τ̂ i

1 + ηi
τ̂ i

}
.

We have crucially used that σ̃i = τ̂ i ⊕β and σ̃j = τ̂ i ⊕γ imply that χ and χ̃ coincide on [[0, τ̂ i ⊕β)).
Now, as χ is F i-optional, s̃i is H i-progressively measurable, τ is an F i-optional time, the first two
lines of the set on the right-hand side of the equation are F i

∞-measurable conditions. The third
line on the right-hand side, however, can be written as{

ω ∈ Ω | h
(
τ̂ i,

ηi
τ̂ i

1 + ηi
τ̂ i

, υj
)

= 0
}
,

for some PT ⊗BR ⊗ (BR|[0,1]R)-measurable map h. As F ∗
i,p ⊆ F i

∞, and as the family (υj,ℓ)ℓ∈N is P-
independent and P-independent from F i, an application of the power rule and the basic behaviour
of conditional expectation on functions with independent arguments, we get that

P
(
σ̃i = τ̂ i ⊕ β, σ̃j = τ̂ i ⊕ γ, τ ≤ τ̂ i ⊕ β, π ◦ τ̂ i < w | F ∗

i,p

)
73We have already used this construction several times in case α = 1, for instance, in the proof of Lemma 2.14.

The general construction obtains by iterating this process finitely many times.
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= λ∗
i,p ·

η̃i
τ i

(1 + η̃i
τ i)γ+1 .

where
λ∗

i,p = P
(
∀δ ∈ [0, β)w : s̃i

τ̂ i⊕δ ◦ (idΩ ⋆χ) = 1, s̃i
τ̂ i⊕β ◦ (idΩ ⋆χ) = 0, τ ≤ τ̂ i ⊕ β, π ◦ τ̂ i < w | F ∗

i,p

)
.

Using a completely analogous argument, we also obtain
P

(
σ̃i = τ̂ i ⊕ β = σ̃j ≥ τ, π ◦ τ̂ i < w | F ∗

i,p

)
= λ∗

i,p ·
η̃i

τ i

(1 + η̃i
τ i)β+1

Hence, we conclude that:74

E
[
ui ◦ Outs

i,p 1E | F ∗
i,p

]
=

∑
β∈w

λ∗
i,p

(
ηi

τ i

∞∑
γ=β+1

η̃i
τ i

(1 + η̃i
τ i)γ+1 −

η̃i
τ i

(1 + η̃i
τ i)β+1

)
=

∑
β∈w

λ∗
i,p (1 − 1)

ηi
τ i

(1 + ηi
τ i)β+1

= 0.
Putting all pieces together, we infer that

πi,p(s̃) ≤ πi,p(s),

with equality if s̃ = s. This completes the proof of dynamic rationality on P̃. We conclude that
(s,Pr) is in equilibrium on P̃. □

Stochastic differential games and control.

Proof of Proposition 3.16. Axioms 1 and 4 are satisfied by assumption. Axiom 2 is satisfied auto-
matically, because χ is a stochastic process by assumption and H i

∞ ⊆ [E ⊗ (BB)⊗T|W ]u for all
i ∈ I. Axiom 3 is also satisfied, as proved next.

Let (ξ, χ) and (ξ′, χ′) be elements of W, i ∈ I, τ i be an H i-optional time such that [[0, τ i)) ∈ M i

and τ̂ i = τ i ◦ (id ⋆χ) be the induced optional time on Ω. Suppose that ξ|[[0,τ̂ i]] ∼=P ξ
′|[[0,τ̂ i]]. χ (resp.

χ′) is the up to P-indistinguishability, unique solution to System 3.7 associated to ξ (resp. ξ′) and
the initial data (0, χ̂0), by the third axiom defining W. Then, by the fourth axiom, there is an, up to
P-indistinguishability unique, solution χ̃ to System 3.7 for ξ with initial data (τ̂ i, χ′

[[0,τ̂ i]]) satisfying
(ξ, χ̃) ∈ W. As χ′

0 = χ̂0 by definition, and ξ|[[0,τ̂ i]] ∼=P ξ
′|[[0,τ̂ i]] by hypothesis, Assumption SDG,

applied to (ξ, χ̃) and (ξ′, χ′), implies that χ̃ then also solves System 3.7 for ξ with initial data (0, χ̂0).
Thus, by the third axiom, χ and χ̃ are P-indistinguishable. Whence, χ|[[0,τ̂ i]] ∼=P χ̃|[[0,τ̂ i]] ∼=P χ

′|[[0,τ̂ i]].
The claim on well-posedness follows directly from the construction of S. □

Appendix B. The smallest completion of posets

In this note, we characterise the Dedekind-MacNeille completion as the smallest completion of a
poset using elementary methods. Although the results shown in the following are slightly stronger
than those the author could find in the literature (e.g. in [20]), it is to be assumed that the results,
tools, and proofs that follow in this subsection are indeed classical and well-known, and not new.

74These computations generalise and are related to the well-known verifications for the classical discrete-time
grab-the-dollar game as well as the stochastic variant in [58].
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In any case, the aim of the present development is to provide a focused and self-contained overview
on the mentioned characterisation as simply and clearly as possible.

B.1. Basic definitions and notation. A partially ordered set, in short poset, is a pair (P,≤)
consisting of a set P and a partial order ≤ on P , that is, a binary relation that is reflexive,
antisymmetric, and transitive. For pragmatic reasons, we write P instead of (P,≤) and do not
indicate the dependence of ≤ on P , unless strictly necessary. For any poset P with partial order
≤, there is a dual poset on P whose partial order is given by x ≥ y iff x ≤ y, for all x, y ∈ P .
Moreover, a binary relation < is induced by letting x < y iff x ≤ y and x ̸= y, for all x, y ∈ P .
The corresponding dual relation is denoted by >. A totally ordered set, or chain, is a poset T such
that for all x, y ∈ T , x ≤ y or y ≤ x. Given two posets P and Q, a set-theoretic map f : P → Q
is said monotone iff for all x, y ∈ P with x ≤ y, we have f(x) ≤ f(y). An embedding between two
posets P and Q, or of P into Q, is a set-theoretic map f : P → Q such that for all x, y ∈ P , x ≤ y
iff f(x) ≤ f(y).

Posets define the objects and monotone set-theoretic maps between posets the morphisms of a
category, denoted by Pos. It is easily checked that Pos-isomorphisms are exactly the surjective
embeddings. For a fixed poset P , there is a further category, denoted by P -Pos: its objects are
given by the Pos-morphisms with domain P and the morphisms between two objects φ : P → Q
and ψ : P → R are given by all Pos-morphisms f : Q → R such that ψ = f ◦ φ. By definition,
a P -Pos-embedding is a P -Pos-morphism that is an embedding. It is easily checked that P -Pos-
isomorphisms are exactly the P -Pos-morphisms that are Pos-isomorphisms, or equivalently, the
surjective P -Pos-embeddings.

For any poset P and any subset A ⊆ P , the sets of lower and upper bounds are defined by
Aℓ = {x ∈ P | ∀a ∈ A : x ≤ a}, Au = {x ∈ P | ∀a ∈ A : x ≥ a}.

In case A = {a} is a singleton, then we write ↓ a = Aℓ, the principal down-set of a, and ↑ a = Au,
the principal up-set of a. A is downward closed iff for all x ∈ A, ↓ x ⊆ A. A is upward closed
iff for all x ∈ A, ↑ x ⊆ A. For n ∈ N and symbols i1, . . . , in = ℓ, u, we write Ainin−1...i2i1 =
((. . . ((Ain)in−1) . . . )i2)i1 . An infimum of A is an element of Aℓ ∩Aℓu. If it exists, it is unique and
denoted by inf A. Conversely, a supremum of A is an element of Au ∩Auℓ. If it exists, it is unique
and denoted by supA. For Pos-isomorphisms f , f or Pf , respectively, commutes with both .u and
.ℓ, and in particular with the existence and, if applicable, the values of suprema and infima. Note
also that when passing from the partial order to its dual ≥, lower bounds, principal down-sets,
downward closed sets, and infima become upper bounds, principal up-sets, upward closed sets, and
suprema, and vice versa.

We collect some basic observations whose proofs are direct and therefore omitted (see [20, Section
7.37 and Lemma 7.39] for a discussion of the first four points from that the others follow). If P is
a poset and A,B ⊆ P are subsets, then:

1. A ⊆ Auℓ and B ⊆ Bℓu;
2. if A ⊆ B, then Au ⊇ Bu and Aℓ ⊇ Bℓ;
3. Au = Auℓu and Bℓ = Bℓuℓ;
4. for all x ∈ P , (↓ x)u =↑ x and (↑ x)ℓ =↓ x;
5. A admits a supremum iff Au admits an infimum, and in that case supA = inf Au;
6. B admits an infimum iff Bℓ admits a supremum, and in that case inf B = supBℓ;
7. if A,B admit suprema and A ⊆ B, then supA ≤ supB;
8. if A,B admit infima and A ⊆ B, then inf A ≥ inf B.

A lattice is a poset L such that for all x, y ∈ L, {x, y} admits both an infimum and a supremum.
This terminology is reasonable because such L defines an algebraic lattice, whose meet and join
operations ∧ and ∨ are given by inf and sup, and conversely, any algebraic lattice (L,∧,∨) naturally
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defines a poset by letting x ≤ y iff x ∧ y = x, for all x, y ∈ L, and both operations are essentially
inverse to each other. A lattice L is complete iff any subset of L admits both an infimum and
a supremum. A subset D of L is said meet-dense iff any x ∈ L admits a subset S ⊆ D with
x = supS. A subset D of L is said join-dense iff any x ∈ L admits a subset S ⊆ D with x = inf S,
or equivalently, iff D is meet-dense with respect to the dual order.

B.2. Dense completions. A completion of a poset P is a pair (φ,L), given by a complete lattice
L and an embedding φ : P ↪→ L of P into L. However, by slight abuse, we may refer to φ or L as
the completion if the other datum is clear from the context. Note that any completion of a poset P
is an object of P -Pos. Many possible completions exist and are of interest in the literature. Here,
we are interested in the following notions, for which we introduce names.
Definition B.1. Let P be a poset and φ : P ↪→ L be a completion. We call φ dense iff imφ is
both join- and meet-dense in L. We call φ small iff for any completion ψ : P ↪→ M , there is a
P -Pos-embedding (φ,L) ↪→ (ψ,M).

These notions are invariant under isomorphisms in P -Pos.
Lemma B.2. Let P be a poset and φ : P ↪→ L, ψ : P ↪→ M be two P -Pos-isomorphic completions.
Then, (φ,L) is dense (small) iff (ψ,M) is dense (small, respectively).
Proof. Let f : (φ,L) → (ψ,M) be a P -Pos-isomorphism and g its inverse. For symmetry reasons,
it suffices to show that if (ψ,M) has the relevant property, then (φ,L) does so, too.

(Ad “dense”): Let (ψ,M) be dense and x ∈ L. Then, there are A,B ⊆ P such that
sup Pψ(A) = f(x) = inf Pψ(B).

As g is a Pos-isomorphism with φ = g ◦ ψ and P a functor, we infer that
sup Pφ(A) = sup P(g ◦ ψ)(A) = g(sup Pψ(A))

= x = g(inf Pψ(B)) = inf P(g ◦ ψ)(B) = inf Pφ(B).
Hence, (φ,L) is dense.

(Ad “small”): Let (ψ,M) be small and ρ : P ↪→ N be a completion of P . Then, there is a P -Pos-
embedding h : (ψ,M) ↪→ (ρ,N). Then, h ◦ f is a P -Pos-embedding (φ,L) ↪→ (ρ,N). Hence, (φ,L)
is small. □

In [20, Theorem 7.4.1], it is shown that for any poset P there is an up to P -Pos-isomorphism
unique dense completion, and a representative of it is constructed explicitly, namely the Dedekind-
MacNeille completion. In this note, we show the following stronger result: a completion is dense iff
it is small, for any poset P there is an up to unique P -Pos-isomorphism unique small completion,
and it can be represented by the Dedekind-MacNeille completion. Moreover, our method of proof
is more elementary.

The building block of the proof will be the following lemma. Given a (dense) completion φ : P ↪→
L of a poset P , we try to find a representative system for the expression of elements x ∈ L as suprema
and infima over sets in imφ.
Lemma B.3. Let P be a poset, φ : P ↪→ L be a completion of P , x ∈ L, and A,B ⊆ P such that

sup Pφ(A) = x = inf Pφ(B).
Then,
(B.1) Auℓ = {y ∈ P | φ(y) ≤ x}, Bℓu = {y ∈ P | φ(y) ≥ x},
and
(B.2) sup Pφ(Auℓ) = x = inf Pφ(Bℓu).
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Proof. In view of duality, it suffices to show the left-hand equalities in Equations B.1 and B.2. We
start with a preliminary observation, namely that

(∗) Pφ(Bℓ) ⊆ [Pφ(B)]ℓ, Pφ(Au) ⊆ [Pφ(A)]u.
Indeed, if c ∈ P satisfies with c ≤ b for all b ∈ B, then φ(c) ≤ φ(b) for all b ∈ B, which shows the
left-hand statement. The right-hand one follows from the left-hand one by duality.

(Ad Equation B.2): Let a ∈ A and b ∈ B. Then, φ(a) ≤ x ≤ φ(b), whence a ≤ b. Thus,
B ⊆ Au, and, by Observation 2,

(†) Auℓ ⊆ Bℓ.

Hence, using (∗) and Observation 1, we get
Pφ(A) ⊆ Pφ(Auℓ) ⊆ Pφ(Bℓ) ⊆ [Pφ(B)]ℓ.

By Observations 6 and 7, this implies
x = sup Pφ(A) ≤ sup Pφ(Auℓ) ≤ sup[Pφ(B)]ℓ = inf Pφ(B) = x,

whence x = sup P(Auℓ).
(Ad Equation B.1): Regarding “⊇”, let y ∈ P be such that φ(y) ≤ x. Let z ∈ Au. Then, by

Observations (∗), 5, and 8
x = sup Pφ(A) = inf[Pφ(A)]u ≤ inf Pφ(Au) ≤ φ(z).

Hence, φ(y) ≤ φ(z). As φ is an embedding, y ≤ z. We have shown that y ∈ Auℓ.
Regarding “⊆”, let y ∈ Auℓ. By (†), y ∈ Bℓ. In view of (∗), thus, φ(y) ∈ [Pφ(B)]ℓ, and, by

Observation 6,
φ(y) ≤ sup[Pφ(B)]ℓ = inf Pφ(B) = x.

□

As a consequence, if φ is a dense completion, then for any x ∈ L there are A,B ⊆ P with
A = Auℓ and B = Bℓu – namely the sets on the right-hand sides of the equations in Equation B.1
– such that Equation B.2 holds true. Together with Observation 4, this motivates the following,
classical construction. For any poset P , let

DM(P ) = {A ⊆ P | Auℓ = A}, φDM : P → DM(P ), x 7→↓ x,
and equip DM(P ) with the partial order “⊆”. This is well-defined by Observation 4.

Theorem B.4. Let P be a poset. Then, φDM : P → DM(P ) is a dense completion of P .

This classical theorem can be found, for instance, in [20, Theorems 7.40, 7.41]. φDM is called
the Dedekind-MacNeille completion of P . It generalises the construction of the extended real line
out of the rationals by Dedekind cuts.

Proof. It is clear that DM(P ) is a poset and that φDM is an embedding. To show that DM(P )
is a complete lattice, let S ⊆ DM(P ). In P , define the sets A = [

⋃
S]uℓ and B =

⋂
S. By

Observation 3, A ∈ DM(P ). Moreover, for any C ∈ S, B ⊆ C. Applying Observation 2 twice, we
get Bul ⊆ C. Hence, Bul ⊆

⋂
S = B. Using Observation 1, we infer B ∈ DM(P ). We claim that

supS = A, inf S = B.

Regarding the first equality, we have to show that A ∈ Su ∩ Suℓ. For this, note first that, for all
C ∈ DM(P ), we have C ∈ Su iff

⋃
S ⊆ C. By Observation 1,

⋃
S ⊆ [

⋃
S]uℓ = A, whence A ∈ Su.

Further, let C ∈ Su. Then
⋃
S ⊆ C. Applying Observation 2 twice yields A = [

⋃
S]uℓ ⊆ C. Thus,

A ∈ Suℓ.
Regarding the second equality, we have to show that B ∈ Sℓ ∩ Sℓu. For this, note first that, for

all C ∈ DM(P ), we have C ∈ Sℓ iff C ⊆
⋂
S. For C = B the latter condition is evidently satisfied,
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whence B ∈ Sℓ. Further, let C ∈ Sℓ. Then, C ⊆
⋂
S = B. Hence, B ∈ Sℓu. We have shown that

DM(P ) is a complete lattice.
It remains to show that φDM is dense. For this, let A ∈ DM(P ). Let B = Au. Then, we claim

that
sup PφDM(A) = A = inf PφDM(B).

Regarding the first equality, let x ∈ A. Then, clearly φDM(x) =↓ x ⊆ A, because A = Auℓ is
downward closed. Thus, A ∈ [PφDM(A)]u. Let C ∈ [PφDM(A)]u. Then,

C ⊇
⋃

[PφDM(A)] = {x ∈ P | ∃a ∈ A : x ≤ a} ⊇ A.

Hence, A ∈ [PφDM(A)]uℓ. We conclude that sup PφDM(A) = A.
Regarding the second equality, let x ∈ A and y ∈ B = Au. Then, x ≤ y, whence x ∈↓ y =

φDM(y). Thus, A ⊆ φDM(y). We infer that A ∈ [PφDM(B)]ℓ. Next, let C ∈ [PφDM(B)]ℓ. That
is,

C ⊆
⋂

[PφDM(B)] = {x ∈ P | ∀b ∈ B : x ≤ b} = Bℓ = Auℓ = A.

Thus, A ∈ [PφDM(B)]ℓu. We conclude that inf PφDM(B) = A. □

B.3. Small completions. We begin with analysing the extension of morphisms into complete
lattices onto a dense completion of the domain, thereby establishing that any dense completion is
small.

Proposition B.5. Let P be a poset, φ : P ↪→ L be a dense completion and f : P → M be an object
in P -Pos for some complete lattice M . Then, the set-theoretic map fL : L → M given by

fL(x) = sup{f(y) | y ∈ P : φ(y) ≤ x}, x ∈ L,

is a P -Pos-morphism (φ,L) → (f,M). If f is an embedding, then fL is so as well.

Combining the two statements from this proposition, we directly obtain:

Corollary B.6. Any dense completion φ : P ↪→ L of a poset P is small. □

Corollary B.6 and Theorem B.4 directly imply the following.

Corollary B.7. For any poset P , there is a small completion, namely DM(P ). □

Proof of the proposition. Regarding the first claim, let x, x′ ∈ L be such that x ≤ x′. Then, all
y ∈ P with φ(y) ≤ x satisfy φ(y) ≤ x′. Hence, by Observation 7, fL(x) ≤ fL(x′).

Further, let z ∈ P . Then, for all y ∈ P with φ(y) ≤ φ(z), we have y ≤ z, because φ is an
embedding, whence f(y) ≤ f(z). Furthermore, if w ∈ M is such that f(y) ≤ w for all y ∈ P with
φ(y) ≤ φ(z), then, in particular, f(z) ≤ w. Thus

f(z) = sup{f(y) | y ∈ P : φ(y) ≤ φ(z)} = fL(φ(z)).

Regarding the second claim, suppose that f is an embedding. Let x, x′ ∈ L with fL(x) ≤ fL(x′).
We show the auxiliary Claim 1 that for all y ∈ P with φ(y) ≤ x we also have φ(y) ≤ x′. For this,
let y ∈ P with φ(y) ≤ x. By assumption on x and x′, we have f(y) ≤ fL(x) ≤ fL(x′), whence by
transitivity

(∗) f(y) ∈ [Pf({y′ ∈ P | φ(y′) ≤ x′})]uℓ.

We infer that

(†) f(y) ∈ Pf({y′ ∈ P | φ(y′) ≤ x′}uℓ) = Pf({y′ ∈ P | φ(y′) ≤ x′}).
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For the proof, note that the equality follows from Lemma B.3. Indeed, there is A ⊆ P with
sup Pφ(A) = x′ because φ is dense. Then, by the lemma, sup Pφ(Auℓ) = x′ and Auℓ = {y′ ∈ P |
φ(y′) ≤ x′}. Hence, by Observation 3,

{y′ ∈ P | φ(y′) ≤ x′}uℓ = Auℓuℓ = Auℓ = {y′ ∈ P | φ(y′) ≤ x′},
which implies the equality. For the proof of the ∈-relation, let z ∈ {y′ ∈ P | φ(y′) ≤ x′}u. As f is
monotone, we infer that f(z) ∈ [Pf({y′ ∈ P | φ(y′) ≤ x′})]u. Hence, by (∗), f(y) ≤ f(z). As f is an
embedding, y ≤ z. Hence, y ∈ {y′ ∈ P | φ(y′) ≤ x′}uℓ, whence f(y) ∈ Pf({y′ ∈ P | φ(y′) ≤ x′}uℓ),
as claimed.

As an embedding, f is injective. By (†), then, φ(y) ≤ x′. This shows our auxiliary Claim 1.
Hence, by Observation 7 and Lemma B.3, using density of φ, we infer

x = sup Pφ({y ∈ P | φ(y) ≤ x}) ≤ sup Pφ({y′ ∈ P | φ(y′) ≤ x′}) = x′.

This shows that fL is an embedding. □

Next, we analyse the uniqueness of dense completions. From this, all remaining open claims
follow easily, as shown afterwards.

Proposition B.8. Let P be a poset and φ : P ↪→ L, ψ : P ↪→ M be dense completions. Then, there
is a unique P -Pos-morphism f : (φ,L) → (ψ,M), and f is a P -Pos-isomorphism.

Proof. By Proposition B.5, there are P -Pos-embeddings ψL : (φ,L) ↪→ (ψ,M) and φM : (ψ,M) ↪→
(φ,L). For symmetry reasons, it remains to show that any P -Pos-morphism f : (φ,L) ↪→ (ψ,M)
is equal to ψL and that φM is surjective.

To show this, let f : (φ,L) ↪→ (ψ,M) be a P -Pos-morphism and x ∈ L. By density, there are
A,B ⊆ P such that

sup Pφ(A) = x = inf Pφ(B).
As f is a P -Pos-morphism and P is a functor, we infer

sup Pψ(A) = sup P(f ◦ φ)(A) ≤ f(x) ≤ inf P(f ◦ φ)(B) = inf Pψ(B).
As a consequence, the fact that φM is a P -Pos-morphism and P a functor, implies

x = sup Pφ(A) = sup P(φM ◦ ψ)(A) ≤ φM ◦ f(x) ≤ inf P(φM ◦ ψ)(B) = inf Pφ(B) = x.

Hence, φM ◦ f(x) = x. Thus, φM is surjective. As ψL is a P -Pos-morphism (φ,L) ↪→ (ψ,M),
this result can be applied to ψL (that is, we can plug in ψL for f). Then, we get φM (f(x)) = x =
φM (ψL(x)), whence f(x) = ψL(x) because φM is an embedding. □

Corollary B.9. For any poset P , a completion of P is dense iff it is small.

Proof. Let (φ,L) be a completion of a poset P . If it is dense, then it is small, by Corollary B.6.
For the converse implication, suppose it to be small. Then, DM(P ) is a small completion of P
as well, by Corollary B.7. Hence, there are P -Pos-embeddings f : (φ,L) ↪→ (φDM,DM(P )) and
g : (φDM,DM(P )) ↪→ (φ,L). Thus, f ◦ g defines a P -Pos-embedding of DM(P ) into itself. As
DM(P ) is dense, by Theorem B.4, Proposition B.8 implies that f ◦ g = idDM(P ). Hence, f is
surjective and, thus, a P -Pos-isomorphism with inverse g. By Lemma B.2, (φ,L) is dense. □

Theorem B.10. For any poset P , there is an up to unique P -Pos-isomorphism unique small
completion (φ,L), given by the Dedekind-MacNeille completion DM(P ).

Proof. Let P be a poset. By Corollary B.7, DM(P ) is a small completion of P . By Proposition B.8
and Corollary B.9, between any to small completions there is a unique P -Pos-isomorphism. □

In that sense, the Dedekind-MacNeille completion DM(P ) is the smallest completion of a poset
P , the use of the definite article being completely specified.
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B.4. Further results. We have discussed small and dense completions through general embed-
dings, and the Dedekind-MacNeille completion is given by a specific embedding. If some complete
lattice L is fixed as a reference, and all posets under consideration are embedded into L, then we
may wish to construct the small completion as a subset of L. This is discussed next.

Proposition B.11. Let L be a complete lattice and (Pi)i∈I be a family of subsets of L. Then,
there is a family (Li)i∈I of subsets of L such that for each i ∈ I, set-theoretic inclusion Pi ↪→ Li

is a small completion of Pi. This statement also holds true if the property “small” is replaced with
“dense” or with “Pi-Pos-isomorphic to DM(Pi)”. The completions satisfy
(B.3) {x ∈ L | ∃A,B ⊆ Pi : supA = x = inf B} ⊆ Li, i ∈ I.

Proof. For any i ∈ I, set-theoretic inclusion ιi : Pi ↪→ L defines a completion. Denote the Dedekind-
MacNeille completion of Pi by φi

DM : Pi ↪→ DM(Pi). Then, by Theorem B.10, there is a Pi-Pos-
embedding fi : (φi

DM,DM(Pi)) ↪→ (ιi, L). Let Li = im fi. Then, (ιi, Li) is Pi-Pos-isomorphic to
the Dedekind-MacNeille completion (φi

DM,DM(Pi)) of Pi – in particular, it is a small and dense
completion of Pi, by Lemma B.2, Theorem B.4, and Corollary B.6.

For the proof of “⊆” in Equation B.3, let x ∈ L be such that there are A,B ⊆ Pi with supA =
x = inf B. Then, A,B ⊆ Li, and, as Li is a complete lattice, A has a supremum and B an infimum
in Li, denoted by supLi A and infLi B, respectively. As Li ⊆ L, infLi B ≤ x ≤ supLi A. But for all
a ∈ A and b ∈ B, we have a ≤ x ≤ b. Whence a ≤ infLi B for all a ∈ A and thus supLi A ≤ infLi B.
Hence, infLi B = x = supLi A and x ∈ Li. □

Remark B.12. The embedded completions Li, i ∈ I, need not be unique and the inclusion in
Equation B.3 can be strict. To see this, consider the real interval L = [0, 3]R, a complete lattice,
and Pi = [0, 1)R ∪ (2, 3]R. Then, there exists an uncountable set of small completions embedded
into L, namely Lx

i = Pi ∪ {x}, for any x ∈ [1, 2]R. Obviously, in any of the cases, the inclusion in
Equation B.3 is strict.

The small completion restricts to the subcategory of chains, as the following result implies.

Proposition B.13. For any chain T , its Dedekind-MacNeille completion DM(T ) is a chain as
well.

Proof. We have to show that for all A,B ∈ DM(T ) with B ⊈ A, we have A ⊆ B.
Let A,B ∈ DM(T ) such that there is b ∈ B \ A, and let a ∈ A. As A = Auℓ und B = Buℓ,

A and B are downward closed. Hence, b ≰ a, and thus, by the assumption on T , a ≤ b. Thus,
a ∈ B. □
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