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Abstract
Over the last decade, a wave of research has characterized the exact asymptotic risk of many high-
dimensional models in the proportional regime. Two foundational results have driven this progress:
Gaussian universality, which shows that the asymptotic risk of estimators trained on non-Gaussian
and Gaussian data is equivalent, and the convex Gaussian min-max theorem (CGMT), which char-
acterizes the risk under Gaussian settings. However, these results rely on the assumption that
the data consists of independent random vectors—an assumption that significantly limit its appli-
cability to many practical setups. In this paper, we address this limitation by generalizing both
results to the dependent setting. More precisely, we prove that Gaussian universality still holds for
high-dimensional logistic regression under block dependence, m-dependence and special cases of
β-mixing, and establish a novel CGMT framework that accommodates for correlation across both
the covariates and observations. Using these results, we establish the impact of data augmentation,
a widespread practice in deep learning, on the asymptotic risk.
Keywords: universality, logistic regression, high dimensions, CGMT, binary classification, block
dependence, m-dependence, mixing, proportional asymptotics

1. Introduction

Over the past decade, landmark results such as Gaussian universality and the convex Gaussian min-
max theorem (CGMT) have been extended and applied to analyze the asymptotic risk of various
high-dimensional feature models. They have led to a deeper understanding of matters such as the
impact of regularization and hyperparameters on the risk (Salehi et al., 2019; Deng et al., 2022) and
the double descent phenomenon (Mei and Montanari, 2022; Hastie et al., 2022; Belkin et al., 2019).

Broadly speaking, Gaussian universality is the observation that the risk of many high dimen-
sional estimators depends on the data distribution only through its first two moments (Montanari
and Saeed, 2022; Montanari et al., 2023; Dandi et al., 2024; Gerace et al., 2024; Korada and Mon-
tanari, 2011; Han and Shen, 2023; Hu and Lu, 2022). Consequently, for these estimators, their risks
can be studied by analyzing the risk for Gaussian data with matching mean and variance. This un-
locks the many useful tools developed for the Gaussian case, including Approximate Message Pass-
ing (Donoho et al., 2009), the Cavity Method (Opper et al., 2001) and the CGMT (Gordon, 1985;
Thrampoulidis et al., 2014). Among them, the CGMT is a framework that converts a complex op-
timization problem on Gaussian data to a much more analytically tractable auxiliary problem. The
auxiliary optimization is often further simplified into a deterministic equation involving only a few
scalars, and under the CGMT, its solution completely characterizes that of the original problem.

A general pipeline of analysis built on universality and the CGMT entails the following:
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(i) Consider a high-dimensional model, such as generalized linear regression or random feature
models, with data following some pre-specified distribution;

(ii) Equate our estimation problem to that of the same model on Gaussian data via universality;
(iii) Simplify the Gaussian optimization problem via the CGMT into a format that can be more

readily solved, either analytically or computationally.

One substantial limitation of existing Gaussian universality and CGMT analyses is that the data
must consist of independent—and often also identically distributed—vectors, which is not realistic
for many applications. Several forms of dependence are commonly observed in practice:

• Block dependence. An important example of dependence in machine learning is found in data
augmentation1, a technique that synthetically expands a training dataset by applying random
transformations to existing data and incorporating the transformed data back into the dataset
(Taqi et al., 2018; Shorten et al., 2021; Volkova, 2024). In machine learning practice, data
augmentation has become one of the most widely adopted methods, especially in the presence
of invariance (e.g. symmetries) or an underlying structure (e.g sparsity) (Lyle et al., 2019).
Theoretically, however, the dependence arising from multiple transformed copies of the same
observation makes the effect of data augmentation challenging to analyze.

• m-dependence. Another common form of dependence manifests through a finite dependency
neighborhood: Under spatial moving average models (Cressie, 1993), the observation at a
given point is dependent on a local neighborhood of observations but no further. Similar exam-
ples are ubiquitous in time series, graph and spatial analysis (Cryer, 1986; Brock et al., 1992;
Schweinberger and Handcock, 2015; Wackernagel, 2003);

• β-mixing. Data can also depend on infinitely many variables, with strong short-range depen-
dence and decaying long-range dependence. This is typically described by mixing conditions
(Billingsley, 1995; Bradley, 2005), and is also found in many common time series and spatial
models (Deo, 1973; Tuan and Lanh, 1985; Tsay, 2005; Gelfand et al., 2010).

This paper, for the first time, extends the Gaussian universality principle beyond the independence
assumption to encompass dependent vectors (Xi) in the context of high-dimensional logistic re-
gression. Universality results are provided for block dependence, m-dependence, as well as specific
β-mixing processes. Moreover, we develop a novel CGMT framework, accommodating dependence
both between covariates and observations under a certain “low-rank” assumption. Leveraging these
two new tools, we precisely characterize the impact of data augmentation on the risk. We notably
investigate the effectiveness of data augmentation when the invariance or structure of the problem
is only partially known, as is often the case in practice (Benton et al., 2020; Yang et al., 2023).

1.1. Model Overview

We observe high-dimensional data (Xi, yi)n
i=1 with covariates Xi ∈ R

p and labels yi ≡ yi(Xi) ∈ {0, 1}.
We consider the proportional regime, where the signal dimension p grows linearly with the sample
size n. In our main universality result (Section 3), which is used for analyzing data augmentation,
the data X B (Xi)i≤n — not assumed to be identically distributed — are block dependent:

(Xi, yi) y (X j, y j) if j < Bi :=
{
k⌊ i−1

k ⌋ + 1, . . . , k⌊ i−1
k ⌋ + k

}
. (1)

1. The definition of data augmentation in machine learning differs from its use in statistics. In the latter, data augmen-
tation often refers to the introduction of latent variables to the model, e.g. in the EM algorithm.
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Figure 1: Universality of risks of a logistic regressor, trained with different number and amount of
random permutations. See Section 6 and Section C for the detailed setup.

We also consider data that satisfy m-dependence and β-mixing; see Section 4 for the precise defini-
tions. To relate the labels to their covariates, we assume there is a true signal β∗ ∈ Rp such that

P (yi = 1 | X) = σ
(
X⊺i β

∗), σ(t) := (1 + e−t)−1. (2)

The signal is estimated via a penalized and weighted logistic regression:

β̂(X) B arg minβ∈Rp
1
n

∑n
i=1 ωi

(
log

(
1 + eX⊺i β

)
− yiX

⊺
i β

)
+

λ

2n
∥β∥2, (3)

where (ωi) ∈ [0, 1]N are deterministic weights. If the weights are all set as 1, (3) recovers the
traditional penalized logistic regression. More generally, ωi’s can be chosen to be different to ac-
commodate potential heterogeneity such as heteroskedasticity (e.g., Shalizi (2019)), or unique cases
like data augmentation (Section 6). Examples of setups that can be handled by this model include:

• Dependent (Xi) and conditionally independent (yi): Dependent covariates commonly arise
in various applications. For instance, in biological experiments on mice, the littermate effect
introduces dependence between the behaviors of mice from the same litter (Haseman and Kup-
per, 1979). Similarly, local dependence is prevalent in genomic data (Yu and Bien, 2017). In
those settings, while the covariates are dependent, each response variable yi has direct depen-
dence only on Xi and not on the other covariates.

• Block Dependent (Xi) and (yi). In many other practical settings, the response variable yi

can depend on a set of multiple covariates {X j : j ∈ Bi}. In ICU settings, for example,
predicting 24-hour mortality is improved by incorporating past data on the same patient (Plate
et al., 2019). To model these setups, we can assume that there exists a matrix A ∈ Rn×n that
models the dependencies between observations, so that yi depends on the linear combination
Zi B

∑
j∈Bi ai, jX j of predictors in the same block (Wu and Ware, 1979). In this case, (Zi, yi) is

still a block dependent process that satisfies all the assumptions of our setup.

• Data Augmentation. If the original dataset (Zi) are independent, then the augmented data will
exhibit block dependence within each set of augmented copies of Xi, whereas the response yi

typically depends only on the original variable Zi; more details in Section 6.

Remark 1 In (3), the logistic regression is performed on the same variables that yi depends on.
We have chosen this presentation for simplicity. Section B.3 includes a more general model, which
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allows for the label to depend on the entire block {X j : j ∈ Bi} while Xi is regressed only on
a subset of those observations. This hence allows for the regression to be misspecified. Data
augmentation, for example, implicitly assumes that the label of the transformed data depends only
on the untransformed data, which makes this generalization necessary.

Detailed assumptions on our data-generating process and model are presented in Sections 2 and 3.

1.2. Summary of Results

The main contributions of our paper are as follows:
(i) Universality. Under mild conditions, we prove a set of dependent Gaussian universality results

for the training and test risks, which address block dependence (Theorem 2 in Section 3),
m-dependence, and specific β-mixing processes (Theorem 3 in Section 4). To the best of
our knowledge, this constitutes the first results demonstrating that universality holds in the
proportional regime for estimators trained with dependent observations. A key consequence
is that if the data is uncorrelated, even if dependent, the asymptotic risk is the same as in the
independent setting. Hence previously derived results for logistic regression still hold (see
Section 7). To tackle the case where the data is correlated, we propose a novel CGMT result.

(ii) CGMT. We introduce a novel extension of the CGMT for Gaussian matrices with a “low-
rank” dependence structure (Theorem 5) in Section 5. In particular, this result accommodates
dependence across both columns and rows. This significantly broadens the applicability of the
CGMT approach, which, until now, required either the rows or the columns to be independent.

(iii) Data Augmentation. Using our universality result and the dependent CGMT, we exactly char-
acterize the asymptotic risks of logistic regression under different forms of data augmentation,
such as random permutations when the covariates are partially exchangeable and sign flipping
when β∗ is sparse. We observe that when the structure of the problem is fully known, data
augmentation significantly decreases the test risk. However, when it is only partially known,
the effect of data augmentation can be negligible. See Section 6.

The remainder of the paper consists of a literature overview in Section 7, an overview of proof
techniques in Section 8, and a discussion of future directions in Section 9.

2. Definitions

In this section, we define various quantities that will be used throughout the paper. We first define
the empirical risk of an estimator as

R̂n(β; X) B
1
n

∑n
i=1 ωi

(
log

(
1 + eX⊺i β

)
− yiX

⊺
i β

)
+
λ

2n
∥β∥2.

The performance of our estimator is then evaluated on a new observation Xnew, which we do not
assume to have the same observation as any of the training points. The test risk is hence defined as

Rtest(β̂(X)) B E
[
ℓtest

(
X⊺newβ̂(X), X⊺newβ

∗) ∣∣∣ β̂(X)
]
,

where the expectation is taken over the mean-zero random vector Xnew that is independent of the
trained estimator β̂ = β̂(X), and where ℓtest is a generic locally Lipschitz function. For our simula-
tions, ℓtest will be the 0-1 loss, for which we also verify our results (see Section G). To compare the
distribution of training risk on Gaussian and non-Gaussian data, we use the metric given by
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dH (X, Y) B suph∈H E [h(X) − h(Y)] ,

whereH is the set of differentiable functions h with Lipschitz derivative satisfying ∥h∥∞, ∥h′∥∞ ≤ 1;
see Montanari and Saeed (2022) for why this distance metrizes convergence in distribution.

We shall establish universality with respect to the Gaussian surrogates Gi ∼ N (0,Var(Xi)),
where each block (G j) j∈Bi is jointly normal. The corresponding dataset (Gi, yi(Gi))n

i=1 satisfies the
same assumptions as (Xi, yi(Xi))n

i=1 in Section 3. We also write the Gaussian counterpart of the
test risk Rtest as RG

test(β̂(G)) B E
[
ℓtest

(
G⊺newβ̂(G),G⊺newβ

∗
)
| β̂(G)

]
, where Gnew ∼ N (0,Σnew) for

Σnew B Var(Xnew) is a substitute for Xnew.
In our proofs, we will restrict our minimization problem to a particular set of the form

Sp :=
{
β ∈ Rp : ∥β∥2 ≤ L

√
p, ∥β∥∞ ≤ Lp

1−r
2
}

(4)

for fixed constants L > 0 and r ∈ (0, 1
8 ). This can be viewed as the set of parameter vectors β which

cannot align too strongly with a particular direction to ensure pointwise normality, and is widely
used in proving universality results (e.g., Lahiry and Sur (2024); Han and Shen (2023); Montanari
and Saeed (2022)). This restriction becomes equivalent to the unconstrained minimization when
one proves that β̂ ∈ Sp with high probability, which can be done on a case-by-case basis. See
Appendix D.1 for a more detailed discussion on the set Sp.

3. Universality of the Risks Under Block Dependence

We first state the various assumptions we place on our data generating process and the model. We
postpone the discussion of those assumptions to Section 3.1 after the result is stated.

Assumption 1 (Block-dependence) There exists k ≥ 1 such that (Xi, yi) is independent of (X j, y j)
whenever j < Bi =

{
k⌊ i−1

k ⌋ + 1, . . . , k⌊ i−1
k ⌋ + k

}
.

Assumption 2 (Logistic Model) The labels are generated as yi(Xi) = I
(
X⊺i β

∗ − εi > 0
)
, where

each εi ∼ Logistic(0, 1).

Assumption 3 (Scaling & Sub-Gaussianity) E[Xi] = 0 and E[XiX
⊺
i ] = Σi. Moreover, each Xi is

sub-Gaussian, and there exists KX > 0 such that sup1≤i≤n ∥Xi∥ψ2 ≤ KX/
√

n, where ∥ • ∥ψ2 denotes the
sub-Gaussian norm.

Assumption 4 (Signal Size) β∗ ∈ Sp as in (4), and there exists κ ∈ (0,∞) such that p
n =

p(n)
n → κ.

Assumption 5 (Gaussian Approximation) For the hypersphere Sk−1 := {x ∈ Rk : ∥x∥2 = 1},

sup
f∈F

sup
β1,...,βk∈Sp

sup
θ∈Sk−1 , i≤n−k

∣∣∣∣E[ f
(∑k

r=1 θrX⊺i+rβr
)
− f

(∑k
r=1 θrG

⊺
i+rβr

)]∣∣∣∣ → 0 ,

where F B { f : R→ R | f ∈ C1, ∥ f ∥∞ < ∞, ∥∂ f ∥∞ ≤ 1}.

Assumptions 1-5 are used to establish universality of the training risk. For universality of the
test risk, we require two additional assumptions: one on the distribution of Xnew, and one on the
geometry of the training risk. Below, we denote F̃ B { f : R2 → R | f ∈ C1, ∥ f ∥∞ < ∞, ∥∂ f ∥∞ ≤ 1}.

5
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Assumption 6 (Gaussian Approximation of Xnew) We have

sup f∈F̃ supβ∈Sp

∣∣∣E[ f
(
XT

newβ, X
T
newβ

∗) − f
(
GT

newβ,G
T
newβ

∗)]∣∣∣ → 0 .

Assumption 7 There exist constants χ̄, χ∗ > 0 such that for every fixed ϵ > 0,

P
(

min
β∈Sp , |(β⊺Σnewβ)1/2 − χ̄|>ϵ

R̂n(β; G) > min
β∈Sp

R̂n(β; G)
)
→ 1 and β∗⊺Σnewβ

∗ → χ2
∗ .

Under these assumptions, the following theorem holds:

Theorem 2 (Block Dependent Universality) Let (Xi, yi(Xi))n
i=1 and (Gi, yi(Gi))n

i=1 be generated
under Assumptions 1-5, where each Gi ∼ N (0,Var(Xi)). Then

dH
(

minβ R̂n(β; X),minβ R̂n(β; G)
)
→ 0. (5)

Moreover, if Assumptions 6 and 7 also hold, then

|Rtest(β̂(X)) − RG
test(β̂(G)) |

P
−→ 0 . (6)

The proof of Theorem 2 is deferred to Section D and G, with a proof sketch given in Section 8.
This result allows us to better understand the properties of the risk—notably, we observe that it only
depends on the distribution of the data through its first two moments. Consequently, the dependence
among the observations influences the risk only via the covariance, rather than through a more intri-
cate relationship. In other words, even if the data exhibits dependence, as long as it is uncorrelated,
the asymptotic behavior of the risk is the same as the independent case, and allows it to be analyzed
using the existing extensive literature. In scenarios where the data is not uncorrelated, the risk of
β̂(X) still simplifies to the risk of β̂(G), and such cases can be studied using our novel dependent
CGMT approach (see Section 5), as long as a “low rank” dependence assumption holds.

3.1. Discussion of Assumptions

Assumptions 2–4 are standard in high-dimensional settings. Assumptions 5–7 are mirror conditions
required to establish universality of the risk in the independent case (e.g. Montanari and Saeed
(2022); Han and Shen (2023)). In particular, our Assumption 5 is closely related to Assumption 5 of
Montanari and Saeed (2022). However, ours is slightly stronger, as it requires the joint convergence
of (XT

i1
β1, . . . , XT

ik
βk) to a Gaussian limit for all β1, . . . , βk ∈ Sp. This is a direct consequence of

Assumption 1, which relaxes the independence assumption to block dependence. It can hence be
seen as a multivariate version of the pointwise normality assumption in Montanari and Saeed (2022).

To establish the Gaussian universality of the testing risk, in addition to the training risk, it
is necessary to introduce further assumptions, specifically Assumptions 6 and 7. Assumption 6
closely resembles Assumption 5, but applies to Xnew rather than our original data. Note that we
did not require Xnew to share the same distribution as any of the (Xi). Assumption 7 is a stronger
condition: informally, it states that in the Gaussian case, the optimizer should be concentrated on a
small subset of Sp. However, since this assumption pertains to the Gaussian data rather than X, it
can be proven via our dependent CGMT framework, provided that Assumption 10 is satisfied. In
the independent setting this is notably established in Salehi et al. (2019, Eq. 92), Dhifallah and Lu
(2021, Eq. 74) and Thrampoulidis (2016, Eq. B.11). Montanari and Saeed (2022) does not impose
such a condition, but instead studied a modified notion of the test risk. More formally Montanari
and Saeed (2022) proved the universality of minβ∈S̃(X) Rtest(β) where S̃(X) ⊂ Sp is a subset defined
using the empirical risk (see Theorem 2 of Montanari and Saeed (2022)).

6



UNIVERSALITY OF HIGH-DIMENSIONAL LOGISTIC REGRESSION & CGMT UNDER DEPENDENCE

4. Extension to m-dependent and Specific β-Mixing Processes

In this section, we show that the universality result of Theorem 2 also extends to data with m-
dependence and specific β-mixing processes. In the definition of mixing, we shall temporarily
make the dimension dependence explicit in the data (Xi, yi) ≡ (X(p)

i , y(p)
i ) and X ≡ X(p). Following

Bradley (2005), for every p ∈ N, we define the β-mixing coefficient of (X(p)
i , y(p)

i )i∈N as

βmix(N) B sup
p∈N

sup
t∈N

sup
A∈P

(p)
≤t ,B∈P

(p)
≥t+N

1
2

∑
A∈A

∑
B∈B

∣∣∣P(A ∩ B) − P(A)P(B)
∣∣∣ ,

where P(p)
≤t is the set of all finite partitions of σ((X(p)

i , y(p)
i ) | i ≤ t) and P(p)

≥t+N is the set of all finite
partitions of σ((X(p)

i , y(p)
i ) | i ≥ t + N). We use this definition to state our β-mixing requirement for

the triangular array (X(p)
i , y(p)

i )i,p∈N below in Assumption 8 (ii).

Assumption 8 (m-dependence or specific β-mixing processes) One of the following holds:

(i) (Xi, yi) is independent of (X j, y j) whenever |i − j| > m;

(ii) There exists some r ∈ (0, 1) such that
∑∞

l=1 βmix(l)r < ∞. Moreover, there exists a process
(Z(p)

i )i,p∈N of centered independent random vectors with bounded sub-Gaussian norms such
that, for every i, p ∈ N, we can express

X(p)
i =

∑
j∈N c(p)

i, j Z(p)
j

for some constants (c(p)
i, j ). We also assume that there exists an universal constant c > 0 such

that
√

pλmin(Var(Z(p)
j )) ≥ c for all j, p ∈ N.

Assumption 8 substitutes the block-dependence Assumption 1. Assumption 8(ii) is restrictive,
but already covers important β-mixing processes of practical interests: For example, any autore-
gressive model (Tsay, 2005; Gelfand et al., 2010) can be expressed in the form of Assumption 8(ii).

Assumption 9 (Strong Gaussian Approximation) For all d ∈ N, we have

sup
f∈F

sup
β1,...,βd∈Sp

sup
θ∈Sd−1 , i≤n−d

∣∣∣∣E[ f
(∑d

r=1 θrX⊺i+rβr
)
− f

(∑d
r=1 θrG

⊺
i+rβr

)]∣∣∣∣ → 0 ,

where F B { f : R→ R | f ∈ C1, ∥ f ∥∞ < ∞, ∥∂ f ∥∞ ≤ 1}.

Assumption 9 is a stronger form of Assumption 5: Instead of requiring the Gaussian approx-
imation to hold for k-many vectors, where k is the dependency block size, we now require this to
hold for every fixed d ∈ N. Note however that we do not require d to grow with n; it suffices that for
every fixed d, the convergence holds as n→ ∞. By replacing Assumptions 1 & 5 by Assumptions 8
& 9, we may state our extended universality result for m-dependence and specific mixing processes.

Theorem 3 (Universality under m-dependence or mixing) Let (Xi, yi(Xi))n
i=1 and (Gi, yi(Gi))n

i=1
be generated under Assumptions 2-4, where each Gi ∼ N (0,Var(Xi)). Assume in addition that
Assumptions 8 and 9 hold. Then

dH
(

minβ R̂n(β; X),minβ R̂n(β; G)
)
→ 0. (7)

7
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Moreover, if Assumptions 6 and 7 also hold, then

|Rtest(β̂(X)) − RG
test(β̂(G))|

P
−→ 0 . (8)

The proof of Theorem 3 is an adaptation of the block-dependent case of Theorem 2, and is in-
cluded in Sections E and F. To give an overview, the first step of the proof is to apply the classical
technique of representing the data as an alternating sequence of big blocks and small blocks of ran-
dom vectors, where the small blocks are then ignored (Bernstein, 1927; Ibragimov, 1975; Davidson,
1992). In the m-dependent case, the big blocks become independent provided that each small block
is of size at least m, and the block-dependent result of Theorem 2 applies directly. In the mixing
case, the big blocks are only approximately independent and, hence, Theorem 2 does not directly
apply. To be able to use the results we derived in the independent case, we use the embedding result
of Yu (1994). This result allows one to compare the expectation of functions of β-mixing block
with that of exactly independent random variables. However, a difficulty is that in our setting, the
sizes of the blocks are not allowed to depend on n, and the number of blocks that can be approxi-
mated by independent ones cannot depend on n. Hence, we cannot apply the embedding result of
Yu (1994) directly to the risk. We instead use Yu (1994) to bound how much the risk changes along
the path of interpolation between G and X. Finally, note that a key ingredient of the proof is being
able to control the largest eigenvalue of XT X. The proof relies on being able to prove a Bernstein
inequality for

∑n
i=1(XT

i β)2 for all β ∈ Sp. Under the mixing setting, Assumption 8(ii) allows us to
do so by rewriting

∑n
i=1(XT

i β)2 as a quadratic form over the independent process (Z j). In general,
this assumption — that (Xi) can be rewritten as an infinite sum of independent processes — can be
weakened to processes for which one can control the moments of λmax(XT X).

5. Dependent CGMT

Under general conditions, Theorems 2 and 3 allows us to study the risk of β̂(X) via that of β̂(G).
When Xi’s are isotropic and uncorrelated, G = (Gi)i≤n can be viewed as an Rp×n matrix with
i.i.d. standard Gaussian entries. In this case, the risk of β̂(G) can be studied via the CGMT method.
Broadly speaking, the classical CGMT method first relates minβ R̂n(β; G) to the optimization

ΨSw,Su B minw∈Sw maxu∈Su LΨ(w, u) with LΨ(w, u) B w⊺Hu + f (w, u) , (9)

where Sw ⊂ R
p and Su ⊂ R

n are compact and convex, f : Sw × Su → R is a convex-concave func-
tion, and H is typically a suitably projected version of G. The main result of CGMT is that ΨSw,Su

is equivalent to a simpler optimization involving only two Gaussian vectors (see Section B.2).
In the dependent setting, however, H can exhibit both correlated columns and rows, and the

standard CGMT framework is generally not applicable. To address this, we develop a more general
CGMT framework that accommodates a “low-rank assumption” on the dependence structure of H.

Assumption 10 (Low-rank Dependence) Let H be an Rp×n Gaussian matrix. There exist M ∈ N
and symmetric positive semi-definite matrices (Σ(l), Σ̃(l))l≤M, with Σ(l) ∈ Rp×p and Σ̃(l) ∈ Rn×n, s.t.

Cov[H ji,H j′i′] =
∑M

l=1 Σ
(l)
j j′ Σ̃

(l)
ii′ for all i, i′ ≤ n and j, j′ ≤ p .

Remark 4 For M = 1, Assumption 10 is equivalent to the assumption that H = Σ(1)H′Σ̃(1) for some
Gaussian matrix H′ with i.i.d. standard normal entries. For M > 1, this says that the dependence is

8
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captured by some sum of covariance matrices that “factorise”. In Section B.4, we discuss how this
is a natural assumption for the dependence structure that arises in data augmentation.

Denote ∥v∥Σ′ =
√

v⊺Σ′v. Under Assumption 10, we shall compare ΨSw,Su to the risk

ψSw,Su B min
w∈Sw

max
u∈Su

Lψ(w, u) ,

where Lψ(w, u) B
∑M

l=1

{
∥w∥Σ(l)h⊺l

(
Σ̃(l))1/2u + w⊺

(
Σ(l))1/2gl∥u∥Σ̃(l)

}
+ f (w, u) . (10)

(hl, gl)l≤M are independent standard Gaussians respectively in Rn and Rp. Our next result formalizes
the equivalence of ΨSw,Su and ψSw,Su , and additionally controls ŵΨ ∈ Sp, the minimizer of ΨSw,Su .

Theorem 5 (Dependent CGMT) Suppose Sw and Su are compact and convex, and f is continu-
ous and convex-concave on Sw × Su. Under Assumption 10, the following statements hold:

(i) For all c ∈ R,

P(ΨSw,Su ≤ c) ≤ 2M P(ψSw,Su ≤ c) and P(ΨSw,Su ≥ c) ≤ 2M P(ψSw,Su ≥ c) ;

(ii) Let Ap be an arbitrary open subset of Sw and Ac
p B Sw \ Ap. If there exist constants ϕ̄Sw ,

ϕ̄Ac
p and η, ϵ > 0 such that ψ̄Ac

p ≥ ψ̄Sw + 3η, P(ψSw,Su ≤ ψ̄Sw + η) ≥ 1 − ϵ and P(ψAc
p,Su ≥

ψ̄Ac
p − η) ≥ 1 − ϵ, then

P(ŵΨ ∈ Ap) ≥ 1 − 4ϵ .

Remark 6 Convexity is not required for the first bound of (i); see Theorem 13 for the full theorem.

Notably, Theorem 5 implies an asymptotic concentration result for the minimizer ŵΨ inAp:

Corollary 7 (Asymptotic CGMT) LetAp be an arbitrary open subset of Sw andAc
p B Sw \Ap.

If there exists constants ψ̄ < ψ̄c such that ψSw,Su

P
−→ ψ̄ and ψAc

p,Su

P
−→ ψ̄c, then

P(ŵΨ ∈ Ap) → 1 .

Theorem 5 and Corollary 7 have several important implications:

Simplifying the analysis of R̂n(β; G). Theorem 5 reduces the analysis of R̂n(β; G), which involves a
high-dimensional and correlated Gaussian matrix, to a loss involving only Gaussian vectors. This
substantially simplifies the analysis of the asymptotic risk, as one can avoid invoking random matrix
theory. Indeed in the isotropic case, the conversion of ψSw,Su into a deterministic, low-dimensional
problem has been performed in many models through algebraic calculations and the min-max the-
orem (Thrampoulidis, 2016; Salehi et al., 2019; Dhifallah and Lu, 2021). In our case, the terms in
ψSw,Su depend on the 2M covariance matrices, and the complexity of these calculations grows with
M. We present the calculations for special cases of data augmentation in Section 6 and Section B.

Pipeline of analysis for dependent data. Together with our dependent universality result (Theo-
rems 2 and 3), Theorem 5 extends the pipeline of analysis discussed in Section 1 to dependent data
in logistic regression. Since Theorem 5 is model-independent, we also expect it to be valuable to
other setups, provided that an analogous dependent universality result is established.

9
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Universality of test risk. Our CGMT also helps with verifying Assumption 7, required for the
universality of test risk in Theorems 2 and 3. To see this, let us identifyAp in Theorem 5(ii) as the
set { β ∈ Sp | |(β⊺Σnewβ)1/2 − χ̄| ≤ ϵn}. Under this notation, Assumption 7 is a comparison between
the training risks of two optimizations on Sw \ Ap and Sw respectively. Theorem 5 allows us to
perform this comparison on the simpler auxiliary optimizations instead, which additionally allows
for computing the value of χ̄; see Section B.1.

Remark 8 (Comparison to existing CGMT results) For comparison, Theorem 5 recovers the stan-
dard CGMT with Σ(1) = Ip, Σ̃(1) = In and M = 1. It also recovers the multivariate CGMT of
Dhifallah and Lu (2021) by setting Σ(l) and Σ̃(l) as block diagonal matrices with M equal-sized sub-
blocks, such that the l-th subblock is identity and the other blocks are zero. Akhtiamov et al. (2024a)
generalizes the block diagonal setup to allow non-identity subblocks, which is a special case of our
Assumption 10, but they also allow for transforming w and u, which we do not address here.

6. Applications to Data Augmentation (DA)

As an example application of Theorems 2 and 5, we analyze the effect of data augmentation, which
introduces a simple yet ubiquitous form of block dependence in machine learning. To see how
the dependence arises, let (Zi)i≤m be i.i.d. mean-zero random vectors, which correspond to our
original data, and let ϕ1, . . . , ϕmk be n = mk i.i.d. Rp → Rp transformations, which are the aug-
mentations. Note that the coordinates of Zi may be locally dependent. DA synthesizes an artificial
dataset (Xi, yi)i≤n by setting Xi B ϕi(Z⌈i/k⌉), i.e. each observation is augmented k times, and setting
yi = yi(Z⌈i/k⌉) to retain the label of the original observation. The estimator β̂ is then fitted on the
augmented dataset through the minimization

minβ∈Sp

1
n

∑n
i=1

(
log

(
1 + eX⊺i β

)
− yi(Z⌈i/k⌉) × X⊺i β

)
+

λ

2n
∥β∥22 . (11)

See Remark 1 for how this relates to the model (3). For simplicity, we assume that the test data
Xnew is identically distributed as the unaugmented Z1. The practical heuristic behind DA is that, if
ϕi’s are chosen to reflect certain structures of the problem well, DA may improve the test risk of β̂
despite the dependence introduced. While the benefits of DA are empirically observed across a large
body of ML literature, limited theoretical attempts have provided an exact theoretical quantification,
especially in the case of a classification task; see Section 7. Here, we analyze several DA schemes:
Random permutations under a group structure. Suppose Z1 can be broken down into N groups
of coordinates, each of size pt, with p1 + . . . + pN = p. Namely, Z1 = ((Z(1)

1 )⊺ , . . . , (Z(N)
1 )⊺)⊺

such that {Z(t)
1 }t≤N are independent vectors and each Z(t)

i is Rpt -valued with i.i.d. coordinates. The
i.i.d. structure within each group motivates one to augment the data by permuting coordinates within
each group. As the full permutation group is exponentially large in p, a practical question is how
much permutation should one perform. This concerns both the number of random permutations
k as well as the proportion of coordinates to permute. For simplicity, we fix rperm ∈ [0, 1], a
proportionality parameter that may be chosen by practitioners, so that within each t-th group, we
only consider permuting the top ⌈rperm pt⌉ coordinates. Each augmentation ϕi is a uniformly random
permutation that permutes the top ⌈rperm pt⌉ coordinates within each t-th group.
Random sign flipping under a sparsity structure. Consider a sparsity structure in β∗: A pro-
portion ρ∗ ∈ [0, 1] of the p entries of β∗ are non-zero, whereas the remaining (1 − ρ∗)p entries are

10
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Figure 2: Test risks under random cropping and sign flipping. Left. Same setup as Section 6. Right.
Signal ratio ρ∗ = 0.2 and the bottom ⌈s0(1 − ρ∗)p⌉ coordinates are known to be zero.

zero. The positions of the non-zero coordinates are unknown in general, and ρ∗ may be known or
unknown. This motivates the use of random sign flipping to shrink the estimate β̂ at locations where
the entries of β∗ may be zero. We fix some ⌈rflip p⌉ entries of p, where rflip ∈ [0, 1] is a parameter
chosen by users. Each ϕi is a random diagonal matrix, generated by drawing the fixed ⌈rflip p⌉ entries
of its diagonal as i.i.d. Rademacher variables, and setting the remaining entries of the diagonal to 1.

Random cropping under a sparsity structure. Suppose β∗ has the same sparsity structure as
above. Another way to encode our guess of the zero entries is by randomly removing coordinates in
the data. Here, each ϕi is a random diagonal matrix generated by randomly setting ⌈rcrop p⌉ entries
of its diagonal to zero and leaving the remaining entries as 1.

As yi’s depend on the unaugmented data instead of the augmented, we apply a generalization
of Theorem 2 (Section D.2) to show that universality holds under the same assumptions. The key
condition to verify is Assumption 5. In Section J, we verify this for sign flipping, cropping and noise
injection. For permutations, we verify this under general conditions on the group sizes pt’s for both
a fixed and small number of groups N and a growing number of groups N = N(n)→ ∞. Meanwhile,
our CGMT result (Theorem 5) applies to sign flipping and cropping above with Var[Z1] = 1

p Ip, as
well as permutations (Section M.2). Under simplifying conditions that hold for permutations and
sign flipping, we also derive a set of 10 deterministic and scalar equations (EQs) in Section B.1,
which explicitly characterize the test risk of logistic regressors. More general augmentations can
be accommodated but at the expense of a more complicated system of equations. While (EQs) is
complicated to state, we verify that in the isotropic case with no augmentation, it recovers exactly
the characterizing equation by Salehi et al. (2019).

These results enable us to understand the effects of DA through two possible approaches: To
simulate a logistic regression on Gaussians, i.e. a high-dimensional convex optimization with simple
distributions, or to solve the nonlinear equations (EQs), i.e. a low-dimensional but highly non-
convex optimization. We use the former approach with m = 200 synthetic data and present results
in Fig. 1 (p = 500) and 2 (k = 30); see Section C for full simulation details†. A few observations:

†. Code is available at github.com/KevHH/Dependent Universality.
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Full permutations alleviate overfitting under a group structure. Fig. 1 considers a high dimen-
sional regime (p/m = 2.5), where logistic regression with no augmentations is expected to overfit.
This typically manifests through a low training risk but a high test risk. Fig. 1 shows that a full per-
mutation (rperm = 1.0) of the i.i.d. coordinates guards against this overfitting: The test risk improves
substantially and as more and more augmentations are used.

Full knowledge of the problem structure can be crucial. A surprising observation from Fig. 1 is
that using only a slightly smaller subgroup of permutations (rperm = 0.8) results in test risks that are
within error margins from that of no augmentations. This suggests that, at least within our model,
exploiting the full set of permutation invariance is critical for obtaining noticeable improvements.
On the other hand, the sparsity setup for cropping and sign flipping does not allow the knowledge
of the full structure by design, as it would otherwise imply that we know exactly which coordinates
of β to exclude from the regression. In the left plot of Fig. 2, perhaps surprisingly, we see that
sign flipping and cropping both yield indistinguishable test risks from that under no augmentation.
For comparison, we perform Gaussian simulation in an artificial setup in the right plot of Fig. 2,
where some portion of the null entries of β∗ are known and on which cropping and sign flipping are
always performed. The remaining amount of cropping and sign flipping are applied to the rest of the
coordinates. There, cropping ensures that the known null coordinates never enter the regression and
outperforms no augmentation and sign flipping. In summary, these observations send a cautionary
message: the benefits of data augmentation may be concretely visible only when the full problem
structure is known, which is too stringent for many practical setups.

7. Related Literature

Universality. Universality has been extensively studied in the probability, statistics, and ML lit-
erature. In statistics, the risk of a wide range of penalized linear models and the behavior of the
approximate message passing (AMP) algorithm have been demonstrated to be universal (Korada
and Montanari, 2011; Montanari and Nguyen, 2017; Abbasi et al., 2019; Oymak and Tropp, 2018;
Han and Shen, 2023; Dudeja et al., 2023; Wang et al., 2024; Chen and Lam, 2021). Beyond linear
regression, it has been proven that generalized linear models, perceptron models, max-margin clas-
sifiers, random feature models, and others obtained via empirical risk minimization exhibit universal
behavior (Montanari and Saeed, 2022; Montanari et al., 2023; Dandi et al., 2024; Gerace et al., 2024;
Korada and Montanari, 2011; Han and Shen, 2023; Hu and Lu, 2022). Those works either assume
that the covariates are independent or that the observations projected on a wide range of directions
are asymptotically normal (e.g., Montanari and Saeed (2022)). Lahiry and Sur (2024) further proved
it for regularized linear regression if the covariates within each vector are block-dependent. How-
ever, they still assumed the rows of the design matrix were independent. Huang et al. (2022) moved
beyond this condition and showed that under certain stability conditions, machine learning estima-
tors trained with data augmentation satisfy Gaussian universality. Those conditions are, however,
hard to verify and this paper does not cover overparameterized logistic regression.

CGMT & Exact Asymptotics. The exact asymptotic risk of many high-dimensional models
has been extensively studied using a variety of techniques. These include AMP (Donoho et al.,
2009), the cavity method (Opper et al., 2001), the Gaussian Min-Max Theorem (Gordon, 1985),
and the CGMT (Thrampoulidis et al., 2014). Since its introduction, the CGMT has been suc-
cessfully applied to analyze the risk of numerous high-dimensional models (e.g. Stojnic (2013a,b);
Thrampoulidis et al. (2015, 2018); Akhtiamov et al. (2024b); Aolaritei et al. (2022); Javanmard and
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Soltanolkotabi (2022); Mignacco et al. (2020)). Further developments have extended the method to
settings with independent but non-identically distributed rows (Akhtiamov et al., 2024a; Dhifallah
and Lu, 2021). We, for the first time, extend CGMT to dependent rows and columns.

Data Augmentation. Data augmentation is a widely utilized practice in machine learning, par-
ticularly in deep learning (e.g. Taqi et al. (2018); Shorten and Khoshgoftaar (2019); Shorten et al.
(2021); Volkova (2024)). Given its critical role, a number of studies have investigated its theoretical
properties (e.g. Hanin and Sun (2020); Huang et al. (2022); Chen et al. (2020); Lin et al. (2024)).
The first work that applies CGMT to the study of data augmentation is Dhifallah and Lu (2021),
which examines the impact of noise injection on logistic regression, demonstrating that it serves
as an implicit regularization. However, their results and analysis are limited to noise injection, a
data augmentation strategy that preserves the independence of the covariates, which simplifies their
study. In this paper, we develop a novel universality and CGMT result that allows us to significantly
broaden the scope of data augmentations we can study.

Logistic Regression. Recently, substantial progress has been made in understanding the exact
asymptotics of high-dimensional logistic regression in the proportional regime (Sur and Candès,
2019; Deng et al., 2022; Kini et al., 2021). Salehi et al. (2019) successfully adapted the CGMT
framework to the logistic regression setting, enabling the analysis of regularized logistic regression.
The issue of dependence in logistic regression, motivated by applications to biology and sociology,
has also been well-studied (Bonney, 1987; Prentice, 1988; Reboussin et al., 2008; Zorn, 2001).
The dependence was notably modeled through mixed effects or latent variable models. In high
dimensions, recent work has taken inspiration from the Ising model to propose a model in which
yi depends not only on Xi but also other labels (y j) j,i, exhibiting network dependence (Mukherjee
et al., 2021). Beyond the locally dependent setting, a recent wave of papers has studied properties
of estimators trained on dependent data (Nagaraj et al., 2020; Zou et al., 2009). Beyond logistic
regression, a number of papers have studied the asymptotics of Lasso estimators trained on time
series data and in VAR models (e.g Wong et al. (2020); Basu and Michailidis (2015); Wong et al.
(2016); Nicholson et al. (2020); Guo et al. (2016)).

8. Proof Overview

Universality. The proof for the training risk builds upon a variant of the Lindeberg method (see
e.g. Chatterjee (2005)) introduced by Montanari and Saeed (2022). One crucial difference, however,
is that we need to account for the dependence between the observations. In Montanari and Saeed
(2022), the independence of the data allows one to reduce the proof to showing that the mean
of a particular function of X⊺i β approaches zero for all β ∈ Sp. This is done by exploiting the
asymptotic normality of X⊺i β. However, in the presence of dependence, this reduction is no longer
valid. Instead, we must control the mean of a function of (X⊺i1β1, . . . , X

⊺
ik
βk) for all β1, . . . , βk ∈ Sp.

This requires establishing its joint asymptotic normality and a more careful analysis.
The proof for the test risk builds on the observation that under Assumption 6, the test risk

depends asymptotically only on β̂(X)TΣnewβ̂(X). We further exploit universality of the training risk
and Assumption 7 to obtain that β̂(X)TΣnewβ̂(X) converges in probability to a deterministic constant
χ̄2, which is the same limit as in the Gaussian case. The desired result then directly follows.

CGMT for Data Augmentation (DA). In DA, the covariance of a set of augmented data {ϕ1(Z1),
. . . , ϕk(Z1)} is completely described by the variance of the individual data points Var[ϕ1(Z1)] and the
covariance between two differently transformed data Cov[ϕ1(Z1), ϕ2(Z1)]. As a result, this satisfies
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the low-rank dependence assumption of our CGMT (Assumption 10) with M = 2. However, the
actual application of the CGMT is more subtle since the logistic regression (3) is not a priori in the
form of the primary optimization (9). Similar to Thrampoulidis (2016); Salehi et al. (2019); Dhifal-
lah and Lu (2021), we first move the data Xi outside the logarithm in (3) via Lagrange multipliers.
This yields a formulation similar to (9) involving a high-dimensional Rp×n matrix X = (X1, . . . , Xn).
Due to the presence of the labels yi and their nonlinear dependence on the data, CGMT can only be
applied to a suitably projected version of X, say PX, that is uncorrelated with both the labels yi and
the remainder (Ip − P)X. In the isotropic and independent case, PXi and (Ip − P)X j are uncorrelated
for any projection matrix P, whereas yi depends on Xi only through X⊺i β

∗, so one may choose P to
project onto the subspace orthogonal to β∗. In the dependent case, PXi and (Ip − P)X j may still be
correlated, as Cov[Xi, X j] does not necessarily commute with P. In DA, this is further complicated
by the fact that yi depends on the unaugmented data Zi instead of Xi. Choosing a suitable projection
P is thus highly non-trivial, and we develop such a P for DA in Section M.

9. Conclusion and Future Work

We have shown that, for high-dimensional logistic regression, the pipeline of analysis of Gaussian
universality and CGMT extends readily to dependent data, and the asymptotic risks are again com-
pletely characterized by the mean and the variance of the data. This has many useful implications,
from allowing us to perform Gaussian simulations in lieu of the actual data, to obtaining low-
dimensional scalar equations that capture the behavior of the estimator, as we have demonstrated
in simple examples of data augmentation. In fact, the majority of our analysis is not exclusive to
logistic regression and can be directly extended to any classification algorithm such as SVM that
relies on (Xi) solely through its one-dimensional projections (XT

i β) (see Section 8). Moreover, our
dependent CGMT is not tied to the logistic model and relies only on a low-rank dependence assump-
tion. An interesting future line of work would be to extend our analysis to high-dimensional models
such as random feature models and to extend our dependency assumptions to a more general mixing
condition (Bradley, 2005). As demonstrated in our plots, there is also no reason that universality
should be a uniquely sub-Gaussian phenomenon, as opposed to a proof artifact. Extending this to
other distributions would constitute a valuable extension of our work.

In our simulations, we also observed non-universality of the training trajectories. In Fig. 1 and
2, most estimates β̂ are obtained via gradient descent with a learning rate 0.1 until either convergence
or 106 steps are completed. Two exceptions are the t-distribution and the uniform distribution in
Fig. 1: Numerically, we find that different learning rates are required to converge to the global
minimum within 106 steps. Indeed, our results establish the universality of the global minima, but
do not answer whether the training trajectories to reach these minima are universal, since the latter
question is specific to the optimization methods employed. In Fig. 4 in the appendix, we observe
that with the same learning rate, the training loss curves differ for uniform and t distributions, but
agree for the remaining distributions. An interesting follow-up question to investigate is whether
universality holds for training trajectories under different optimization methods.
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The appendix is organized as follows:
• Section A presents additional definitions and notation used throughout the appendix.
• Section B state additional results. This includes the characterizing (EQs) for selected data aug-

mentation in Section B.1, a comparison of our full dependent CGMT to the classical CGMT in
Section B.2, a generalized logistic model in Section B.3, and a brief discussion on Assumption 10
in Section B.4.

• Section C includes simulation details.
• Section D proves training risk universality in Theorem 2 for the more general model in Sec-

tion B.3 under block dependence. The generalized result is stated in Section D.2. Note that in
Sections D and H, we temporarily convert the 0/1 labels to ±1 as it simplifies the proofs; the
equivalence between the two label schemes is performed in Section D.3.

• Section E proves training risk universality in Theorem 3 under Assumption 8(i) for m-dependent
processes.

• Section F proves training risk universality in Theorem 3 under Assumption 8(ii) for mixing pro-
cesses.

• Section G proves test risk universality in Theorems 2 and 3.
• Section H collects important lemmas used for the proofs in Sections D and G.
• Section I contains a result that establishes the equivalence of training losses under deletion of

small blocks, which is utilised in the big-block-small-block technique applied in Sections E and F.
• Section J verifies Assumption 5 for different augmentation schemes.
• Section K collects auxiliary lemmas used for the proofs in Sections G and J.
• Section L proves the dependent CGMT.
• Section M present all intermediate optimizations used for applying CGMT to analyze data aug-

mentation. We also include results that verify the CGMT conditions for different augmentations.
• Section N proves all results in Section M.

Appendix A. Additional Definitions and Notations

Our results hold under the assumption that the random vectors (Xi) are sub-Gaussian. We present
here a formal definition of sub-Gaussianity.

Definition 9 We say that a random vector Y ∈ Rp is sub-Gaussian with constant K if, for all vectors
v ∈ Rp, we have

E
[
exp (λ⟨v, Y − E(Y)⟩)

]
≤ exp

(
Cλ2∥v∥22K2

)
for all λ > 0,

for some absolute constant C > 0.

If Y is sub-Gaussian, then the norm of its covariance matrix is well controlled (see Lemma 44 for
more details). Furthermore, a number of results assume that the data is locally dependent, as defined
in Ross (2011).

Definition 10 Let (Xi)i≤p ∈ R
p be a random vector. We say that it is locally dependent if for all

i ≤ p there exists a subset Ni ⊂ [p] such that Xi is independent from (Xk)k<Ni . We call Ni the
dependency neighborhood of Xi.

A similar definition can be made for random arrays:

21



ESMAILI MALLORY HUANG AUSTERN

Definition 11 Let (Xi, j)i≤p1, j≤p2 be a random array. We say that it is locally dependent if for all
i ≤ p1 and j ≤ p2 there exists a subset Ni, j ⊂ [p1] × [p2] such that Xi, j is independent from
(Xk,l)(k,l)<Ni, j .

Throughout the appendix we use the following notation:
• For a sequence (Wi) and a set B ⊂ N, we let WB designate (Wi)i∈B.
• Recall the definition of the blocks Bi in (1). In our block dependent proofs, we may assume
Bi = {i, i + 1, . . . , i + k − 1} for notational simplicity, without any loss of generality.

• For a matrix A ∈ Rn×n, aBi denotes (ai j) j∈Bi ∈ R
k.

• For a set S and δ > 0, we let Sδ designate a minimal δ
√

p-net of S.
• We use x ∨ y := max{x, y} and x ∧ y := min{x, y}.
• The function 1±(x) will be used to denote the sign function sgn(x) = I(x ≥ 0) − I(x < 0).
• Any constant in sans serif font such as C1, C2, and so on, depends on at most the constants L,

KX , and κ given in our assumptions. If it further depends on δ for example, then it will be written
as Cδ or C(δ).

• We write β̂(X) as simply β̂ when it is clear from context.
• For a matrix Y ∈ Rn×p and a given set S ⊆ Rp, the “scaled” operator norm on S is defined via

∥Y∥S := sup
β∈S

∥Yβ∥. (12)

Appendix B. Additional Results

B.1. Characterizing equations for selected data augmentations

As discussed in Section 5, the dependent CGMT allows us to derive explicitly a set of deterministic,
low-dimensional equations that capture the asymptotic behavior of a logistic regression under data
augmentations. As an example, we compute this explicitly under a further simplifying assumption
on the covariance structure of the augmented data. To state the assumption, let Σo B Var[Z1] ∈
Rp×p, Σ B Var[X1] = Var[ϕ1(Z1)] ∈ Rp×p, and Σ†o,Σ† be their respective pseudo-inverses.

Assumption 11 Write Σ∗ B (Σ†)1/2 Cov[ϕ1(Z1) , ϕ2(Z1)] (Σ†)1/2. Assume that

(i) Σ∗ = (Σ†)1/2 Cov[ϕ1(Z1) , Z1](Σ†o)1/2 and (ii) Σ2
∗ = Σ∗ .

Since ϕ1 and ϕ2 are i.i.d. transformations, Assumption 11(i) holds for example under an invariance
assumption, Z1

d
= ϕ1(Z1). Assumption 11(ii) requires that the eigenvalues of Σ∗ consist of only

zeros and ones. Note that Σ∗ is symmetric and idempotent, and therefore a projection matrix; this
property is exploited throughout the CGMT formula computation in Section L.

We verify Assumption 11 for the cases of no augmentation, random permutation and random
sign flipping in Section M.2. Note that Assumption 11 is more restrictive than necessary: While it
does not cover random cropping, the CGMT theorem does apply to random cropping and the only
difference is that one cannot use Assumption 11 to simplify certain algebraic calculations, resulting
in a more complicated set of equations than (EQs). We clarify this in Section M.2.

To apply the CGMT to obtain a deterministic set of equations, one needs to establish the equiv-
alence of multiple optimization problems. We state them in Section M, which includes the original
optimization (OO) (i.e. (11) in Section 6), the primary optimization (PO) (i.e.ΨSw,Su in Theorem 5),
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the auxiliary optimization (AO) (i.e. ψSw,Su in Theorem 5), a low-dimensional scalar optimization
(SO) and a low-dimensional deterministic optimization (DO), whose solutions are characterized by
(EQs). We state the main result here.

Theorem 12 (Effect of data augmentation on the test risk) Let β̂(X,XΦ) be the estimator fitted
via (OO) with S = Sp. Assume that Assumptions 1 – 6 hold, that the minimizer-maximizers of (DO)
are within the interior of the domain of optimization and Assumption 11 holds. Then

|Rtest(β̂(X,XΦ)) − RG
test(β̂(G,GΦ))|

P
→ 0 and |Rtest(β̂(X,XΦ)) − R̄test(χ̄

r,θ,σ,τ
2 )|

P
→ 0 ,

where (r, θ, σ, τ) solves the system of equations (EQs), χ̄r,θ,σ,τ
2 is defined in (DO), and

R̄test(χ̄) B Eη∼N(0,1)
[
ℓtest

( √
χ̄ η , ∥Σ1/2

newβ
∗∥η

)]
.

Theorem 12 shows that the test risk is completely characterized by a 1d quantity χ̄r,θ,σ,τ
2 . This

quantity is completely determined by the parameters (α, σ1, σ2, τ1, τ2, ν1, ν2, r1, r2, θ), defined as
solutions to the system of 10 non-linear equations

0 = θκ̄2
∗ −

ακ̄2
∗

σ2τ2
−

r2ν2κ̄∗
k E

[
Z̄11⊺k uZ̄,ε1,η

]
+ r2ν2ακ̄

2
∗ ,

0 = − 1
2τ1
− ∂σ1 χ̄

r,θ,σ,τ
1 +

r1ν1
k E

[
η⊺

(
Ik −

1
k 1k×k

)
uZ̄,ε1,η

]
+

r1ν1σ1(k−1)
k +

r2ν2
k E

[
η⊺ 1

k 1k×kuZ̄,ε1,η

]
+

r2ν2σ1
k ,

0 = − 1
2τ2
+

α2κ̄2
∗

2σ2
2τ2
− ∂σ2 χ̄

r,θ,σ,τ
1 +

r2ν2
k E

[
Z̄21⊺k uZ̄,ε1,η

]
+ r2ν2σ2 ,

0 = σ1
2τ2

1
− ∂τ1 χ̄

r,θ,σ,τ
1 ,

0 = σ2
2τ2

2
+

α2κ̄2
∗

2σ2τ
2
2
− ∂τ2 χ̄

r,θ,σ,τ
1 ,

0 = − r1
2ν2

1
+

r1
2k E

[∥∥∥(Ik −
1
k 1k×k

)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

0 = − r2
2ν2

2
+ 1

4r2ν
2
2
+

r2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2

Ȳ1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k
)∥∥∥∥2]

+
1
ν2k
E
[
Ȳ
(
1⊺k uZ̄,ε1,η −

k
r2ν2

Ȳ − kακ̄∗Z̄1
)]
,

0 = 1
2ν1
− ∂r1 χ̄

r,θ,σ,τ
1 +

ν1
2k E

[∥∥∥(Ik −
1
k 1k×k

)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

0 = 1
2ν2
+ 1

4r2
2ν2
− ∂r2 χ̄

r,θ,σ,τ
1 +

ν2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2

Ȳ1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k
)∥∥∥∥2]

+
1

r2k
E
[
Ȳ
(
1⊺k uZ̄,ε1,η −

k
r2ν2

Ȳ − kακ̄∗Z̄1
)]
,

0 = ακ̄2
∗ − ∂θχ̄

r,θ,σ,τ
1 .

(EQs)

Here, Z̄ = (Z̄0, Z̄1, Z̄2) and η = (η1, . . . , ηk) are both independent low-dimensional standard Gaus-
sians, ε1 is an independent Logistic-(0, 1) variable, Ȳ B I≥0{κ̄oZ̄0+ κ̄∗Z̄1−ε1} = I{κ̄oZ̄0+ κ̄∗Z̄1−ε1 ≥

0}, and κ̄∗, κ̄0 and χ̄r,θ,σ,τ
1 are limits defined in (DO) that are related to β∗ and the covariances of

the original data as well as the augmented data. uZ̄,ε1,η can be viewed as a generalization of the
proximal operator used in Salehi et al. (2019), in the sense that its is defined as an minimizer of the
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low-dimensional, random optimization problem

min
ũ∈Rk

1
k

1⊺k ρ(ũ) +
r1ν1

2k

∥∥∥(Ik −
1
k

1k×k
)
(ũ + σ1η)

∥∥∥2

+
r2ν2

2k

∥∥∥∥1
k

1k×k
(
ũ −

1
r2ν2

Ȳ1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k
)∥∥∥∥2

. (13)

While the system of equations is rather complicated, we show in Lemma 52 that it recovers exactly
the system of 6 non-linear equations in the case of isotropic data with no augmentation, derived in
Salehi et al. (2019). As part of our proof, we also observe that σ1, τ1, ν1 and r1 are the additional
parameters that arise due to augmentation.

Proof of Theorem 12 By Theorem 15, the conclusion of Theorem 2 (5) holds for the logistic model
(12). This in particular includes the data augmentation model (11) by considering an m(k+1) dataset
(Zi′ , ϕi′(k−1)+1(Zi′), . . . , ϕi′k(Zi′))i′≤m, setting the weights ωi of the loss to be 1 for all augmented data
and 0 for the unaugmented data, and setting the weights ai j in the labels such that the labels of
ϕi′(k−1)+1(Zi′), . . . , ϕi′k(Zi′) all depend only on Zi′ . Meanwhile, notice that the proof of Theorem 2
(6) in Section G does not depend on the choice of the logistic model as long as training risk uni-
versality is estbalished. Therefore the test risk universality in Theorem 2 (6) would hold for data
augmentation and the stated assumptions, if Assumption 7 is verified.

To verify Assumption 7, we set χ̄ = χ̄r,θ,σ,τ
2 in Assumption 7, and combine Lemma 47, Lemma 49

and Lemma 50 to relate (GO) to (DO). By assumption, the minimizer-maximizers of (DO) are
within the interior of the domain of optimization, so the converged risk of (DO) changes by Θ(ϵ2)
depending on whether the optimization domain of β requires |(β⊺Σnewβ)1/2 − (χ̄r,θ,σ,τ

2 )1/2| > ϵ. This
verifies Assumption 7 and proves the universality of the test risk. The deterministic approximation
then follows by substituting χ̄ = (χ̄r,θ,σ,τ

2 )1/2 and applying Lemma 51 to obtain (EQs).

B.2. Dependent and classical CGMT results

The next result states the full version of our dependent CGMT, for which Theorem 5 is a direct
corollary. ΨSw,Su and ψSw,Su are the risks under the primary optimization (9) and the auxiliary
optimization (10) respectively, both defined in Section 5; ŵΨ ∈ Sw is the minimizer of ΨSw,Su .

Theorem 13 (Dependent CGMT) Suppose Sw and Su are compact and f is continuous on Sw ×

Su. Then the following statements hold:

(i) For all c ∈ R,

P(ΨSw,Su ≤ c) ≤ 2MP(ψSw,Su ≤ c) .

(ii) If additionally Sw and Su are convex and f is convex-concave on Sw ×Su, then for all c ∈ R,

P(ΨSw,Su ≥ c) ≤ 2MP(ψSw,Su ≥ c) ,

and in particular, for all µ ∈ R and t > 0,

P(|ΨSw,Su − µ| ≥ t) ≤ 2M P(|ψSw,Su − µ| ≥ t) .
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(iii) Assume the conditions of (ii). Let Ap be an arbitrary open subset of Sw and Ac
p B Sw \ Ap.

If there exists constants ψ̄Sw , ψ̄Ac
p and η, ϵ > 0 such that

ψ̄Ac
p ≥ ψ̄Sw + 3η , P(ψSw,Su ≤ ψ̄Sw + η) ≥ 1 − ϵ , P(ψAc

p,Su ≥ ψ̄Ac
p − η) ≥ 1 − ϵ ,

then P(ŵΨ ∈ Ap) ≥ 1 − 4ϵ.

As a comparison, we remark that the standard CGMT in the isotropic, independent case is
exactly the same as above with M = 1, and stated for the loss

ΨSw,Su B min
w∈Sw

max
u∈Su

w⊺Hu + f (w, u)

ψ̃Sw,Su B min
w∈Sw

max
u∈Su

∥w∥2h⊺u + w⊺g∥u∥ + f (w, u) .

In this case, H is an Rp×n matrix with i.i.d. standard Gaussian entries, and h and g are again in-
dependent standard Gaussian vectors in Rn and Rp respectively. We refer interested readers to
Thrampoulidis (2016) for a detailed overview of CGMT and their Theorem 3.3.1 for the standard
CGMT result.

B.3. Generalizing the Model

Recall that the model stated in Section 1.1 assumes that yi is only a function of its own covariates:

P(yi = 1 | Xi) = σ
(
X⊺i β

∗
)
.

However, this formulation is quite limiting with regards to the types of dependence it can handle.
Recall that a key property of data augmentation, for example, is that any transformation we apply
to the covariates should not alter the associated label (meaning y1 = y2 = · · · = yk). This suggests
that our model must be able to account for both the classical setup of logistic regression, and that
of data augmentation, repeated measurements, and more. Thus, for the rest of our block-dependent
results and proofs given in the appendix, we alter Assumption 2 in the following way:

Assumption 12 (Generalized Model) There exists a block diagonal matrix A = (ai j) ∈ [0, 1]n×n

satisfying ai j = 0 if j < Bi and
∑

j∈Bi ai j = 1 for all 1 ≤ i ≤ n, such that

P (yi = 1) = σ
(∑

j∈Bi ai jX
⊺
j β
∗
)
.

Recalling that our training risk is given by

R̂n(β,X) =
1
n

n∑
i=1

ωi
(
log

(
1 + eX⊺i β

)
− yiX

⊺
i β

)
+
λ

2n
∥β∥2,

we can specify certain values of our matrix A and the weights ω := (ω1, . . . , ωn) to obtain relevant
setups:

(i) When A = In and ω = (1, . . . , 1), we recover the classic logistic regression framework.

(ii) When ai j = I( j = minBi) andωi = I(i , minBi), we obtain the data augmentation framework
as utilized in Hu and Lu (2022). Note that this implies that the first element of each block is
the original data point which defines the labels, but is not considered in the regression.

(iii) If (ai j) j∈Bi = ( 1
k , . . . ,

1
k ), the label is defined by an equally weighted sum of the block, which

can be utilized for situations such as repeated measurements and peer effects.
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B.4. Discussion on Assumption 10

The low-rank covariance structure in Assumption 10 is natural for setups with data augmentation,
as illustrated by the next lemma.

Lemma 14 Fix m such that m divides n and write k B m/n. Let X1, . . . , Xm be i.i.d. random
vectors in Rp, let ϕ1, . . . , ϕn be i.i.d. random Rd → Rd transformations, and let G be an Rp×n-
valued Gaussian matrix that matches the mean and covariance of the augmented data matrix

(ϕ1(X1), . . . , ϕk(X1), . . . , ϕ(m−1)k+1(Xm), . . . , ϕmk(Xm)) .

Also denote Σ′1 B Var[ϕ1(X1)] and Σ′2 B Cov[ϕ1(X1), ϕ2(X1)]. Then G satisfies Assumption 10 with

Cov[G ji,G j′i′] = (Σ1 − Σ2)I{i = i′} + Σ2I{i ∈ N(i′)} for all i, i′ ≤ n and j, j′ ≤ p ,

where N(i′) B {⌊(i′−1)/k⌋+1, . . . , ⌊(i′−1)/k⌋+k} is the set of indices that correspond to differently
augmented versions of the same data vector. Moreover, Σ1 − Σ2 is positive semi-definite.

Proof of Lemma 14 The proof is identical to that of Lemma 58 in Section N by replacing P⊥∗ with
identity.

We do note that, however, in the actual application of CGMT, the Gaussian matrix considered
in Assumption 10 is typically a slightly modified version of H, although most of the dependence
structure is typically inherited. In our examples, this modification comes from a projection ma-
trix analogous to those used in the i.i.d. version of CGMT. A precise formulation is included in
Section M, and the corresponding verification of Assumption 10 is presented in Lemma 58 of Sec-
tion N.

Appendix C. Simulation Details

We present some additional simulation details on top of the setups described in Section 6 here. The
regularization parameter is held at λ = 0.01, and the test loss is computed as the difference between
the 0-1 loss achieved by β̂ and that achieved by the oracle β∗. Below, we denote N , Unif, Γ2, Exp
and t3 respectively as a standard normal, a uniform distribution, a gamma distribution with shape 2,
an exponential distribution and a Student’s t distribution with 3 degrees of freedom, all shifted and
rescaled to have zero mean and 1/p variance. We also write t̃3 as t3 rescaled to have unit variance.
Details for random permutations. Fig. 1 concerns the performance of random permutations across
different proportion rperm of coordinates to permute and different number of augmentations k. Re-
sults are collected over 50 random trials for augmented data and over 200 random trials for unaug-
mented data. The dimension is fixed as p = 500, 50 groups are considered, and all group sizes
are kept the same with p1 = . . . = p50 = 10. In each trial, β∗ ∈ Rp is generated by concatenating
50 groups of 10 identical entries each, where the 50 different entries are generated i.i.d. from t̃3.
Every group of coordinates of the data are generated i.i.d. according toN , Unif, Γ2, Exp and t3, but
additionally rescaled by a random group-dependent parameter drawn from Γ(0.5, 1). The choices of
rperm = 0.8 and rperm = 1.0 correspond to random permutations performed respectively on the top 8
and 10 coordinates of each group. Plots with no augmentation are generated under Gaussian data.

Details for random cropping and sign flipping. Fig. 2 concerns the performance of random
cropping and random sign flipping across different signal ratio ρ∗ and different data dimension p.
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Figure 3: Universality of training risks under cropping and sign flipping. The left and the right plots
are the training risk analogues of the left and the right plots of Fig. 2 respectively.

Results are collected over 100 random trials for augmented data and over 200 random trials for
unaugmented data. The number of augmentations is fixed as k = 30. Plots with no augmentation
are generated under Gaussian data.

• For the setup without knowledge of zero coordinates (left plot of Fig. 2 and left plot of Fig. 3),
β∗ is generated such that a uniformly random subset of ⌈(1 − ρ∗)p⌉ coordinates are zero and the
remaining entries are drawn i.i.d. from t̃3, and random cropping and sign flipping are performed
on rflip = rcrop = 20% of the coordinates. Data are generated coordinate-wise i.i.d. according to
N , Unif, Γ2, Exp and t3.

• For the setup where the bottom ⌈s0(1 − ρ∗)p⌉ coordinates are known to be zero (right plot of
Fig. 2 and right plot of Fig. 3), the remaining coordinates of β∗ are generated such that a random
subset of ⌈(1 − ρ∗)p⌉ − ⌈(1 − ρ∗)p⌉ coordinates are zero and the rest are again drawn i.i.d. from
t̃3. Cropping and sign flipping are always performed on the bottom ⌈s0(1 − ρ∗)p⌉ coordinates, as
well as also on ⌈r⌉ − ⌈s0(1 − ρ∗)p⌉ of the remaining coordinates, where r = rflip = rcrop = 0.2.
Data are generated coordinate-wise i.i.d. according to N .

We also remark that even with knowledge of the coordinates, sign flipping does not outperform no
augmentation: Unlike cropping, sign flipping does not explicitly leave out the zero coordinates.

Universality of risks. Notice that the simulations are performed over different distributions on
the coordinates of Zi’s, shifted and scaled to have zero mean and the same variance. Notably, the
uniform distribution obeys the sub-Gaussianity in Assumption 3, the exponential and gamma distri-
butions only satisfy sub-exponential tails, and the t-distribution is chosen with 3 degrees of freedom,
i.e. with unbounded third moments. Universality behavior is observed across all distributions. In-
deed in our proof, sub-Gaussianity is only assumed for convenience, and we conjecture that this is
not a necessary assumption for Theorem 5.

Non-universality of training trajectories as observed by the requirement of different learning
rates. In both Fig. 1 and 2, gradient descent is employed to optimize the logistic regressor either
until convergence or until 106 steps are exhausted. Learning rate is chosen as LR = 0.1 across
all simulations with three exceptions: LR = 1 for t3 in Fig. 1 under rperm = 0.8, LR = 0.5 for
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Figure 4: Initial training loss curves for the random permutation setup in Fig. 1 with ρperm = 0.8,
k = 11 and learning rate LR = 0.1.

uniform distribution in Fig. 1 under rperm = 1.0 and LR = 0.8 for uniform distribution in Fig. 1
under rperm = 0.8. We find that for these three setups, LR = 0.1 does not lead to convergence within
105 steps. We conjecture that this arises due to the lack of universality of the training trajectories,
as illustrated in Figure 4 and as discussed towards the end of Section 6.

Appendix D. Proof of Theorem 2 (5): Training risk universality

D.1. Restricting to Sp

Recall that in Equation (4) we defined the set we are taking our minimum over as

Sp :=
{
β ∈ Rp : ∥β∥2 ≤ L

√
p, ∥β∥∞ ≤ Lp

1−r
2

}
.

This restriction is very commonly applied in many results on universality, such as Lahiry and Sur
(2024); Han and Shen (2023); Montanari and Saeed (2022). In our case, the Euclidean norm is
trivial, since by virtue of being a minimizer we know that

R̂n(β̂) ≤ R̂n(0) =⇒
1
n

∑n
i=1 ωi

(
log

(
1 + eX⊺i β̂

)
− yiX

⊺
i β̂

)
+
λ

2n
∥β̂∥2 ≤ log(2)

=⇒ ∥β̂∥ ≤

√
log(4)
λ

√
n.

However, establishing the infinity norm bound with high probability is much more challenging.
Such a bound is often proven through a leave-one-out approach, as in Karoui (2013); Han and Shen
(2023), in which one defines a new minimizer

β̂(s) := arg min
β∈Rp

βs=0

1
n

n∑
i=1

log
(
1 + e−yiX

⊺
i β

)
+
λ

2n
∥β∥22

for each 1 ≤ s ≤ p. For a well-behaved design, it should be the case that ∥β̂ − β̂(s)∥ is small,
which leads to a bound on ∥β̂∥∞. This idea was even generalized in Lahiry and Sur (2024) for block
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dependence within observations, where the new minimizer assumes that βBi = 0 for an entire block
Bi.

Since our dependence is also across observations, these approaches are not able to leverage
the independence between coordinates which plays a crucial role in such bounds. A more viable
approach is taken in Theorem 5 & Lemma 13 of Montanari and Saeed (2022): they prove that
under certain conditions, if a minimizer with bounded ℓ2 norm exists (with high probability), then
there also exists a minimizer with both bounded ℓ2 and ℓ∞ norms (with high probability). The only
drawback to such an approach is that it requires a lower bound on the smallest singular value of a
matrix, of the form

σmin(XX⊺) ≥
p
C
.

This can be nearly impossible in some dependent set-ups: in the worst-case scenario, where all
the rows in a neighborhood are identical, we know σmin(X) is identically zero and such a bound
is unattainable. However, certain DA schemes possess a nice enough structure to make this result
hold and thus also the ℓ∞ bound. In noise injection, for example, we can decompose the augmented
matrix into a matrix of identical rows and the independent Gaussian noise. This latter matrix is
asymptotically free from the first one, and thus we can obtain control on its smallest singular value.
To extend this into a proof covering all DA schemes will be left to future work, and for now we will
work under the mild constraint that β̂ ∈ Sp.

D.2. Generalized Theorem

In this section, we will prove (5) from Theorem 2. However, we actually prove a slightly more
general result:

Theorem 15 Let (Xi, yi(Xi))n
i=1 and (Gi, yi(Gi))n

i=1 be generated under Assumptions 1, 3-5, and 12,
where each Gi ∼ N (0,Var(Xi)). Then for any S̃ ⊆ Sp,

dH

(
min
β∈S̃

R̂n(β; X),min
β∈S̃

R̂n(β; G)
)
→ 0.

We remark that if we successfully establish Theorem 15, then the claim in (5) of Theorem 2 directly
follows by setting S̃ = Sp.

D.3. Converting the Loss

Before continuing, we will convert our labels from {0, 1} to {−1, 1}, as this combines two of the
terms in the training risk to significantly simplify calculations. To be specific, noting that yi ∈ {0, 1},
we can define ỹi := 2yi − 1 ∈ {−1, 1}, which still satisfies

P (ỹi = 1 | Xi) = P (yi = 1 | Xi) = σ(a⊺
Bi

XBiβ
∗).

Then the loss evaluated at each data point (Xi, yi) can be re-expressed as

log
(
1 + eX⊺i β

)
− yiX

⊺
i β =

(
log

(
1 + eX⊺i β

)
− X⊺i β

)
I{yi = 1} + log

(
1 + eX⊺i β

)
I{yi = 0}

= log
(1 + eX⊺i β

eX⊺i β

)
I{yi = 1} + log

(
1 + eX⊺i β

)
I{yi = 0}

= log
(
1 + e−X⊺i β

)
I{ỹi = 1} + log

(
1 + eX⊺i β

)
I{ỹi = −1}

= log
(
1 + e−ỹiX

⊺
i β

)
.
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Thus, renaming our labels as yi ∈ {−1, 1}, for the rest of this section and also Section H, we use the
training risk

R̂n(β,X) =
1
n

n∑
i=1

ωi log
(
1 + e−yiX

⊺
i β

)
+
λ

2n
∥β∥2.

D.4. Definitions

To complete the proof, we must first introduce the various terminology and techniques that are
used throughout, from smoothing the labels and minimum function to the continuous Lindeberg
interpolation.

D.4.1. SMOOTHING THE LABELS

First we will define the way in which we smooth our labels and subsequently the risk function. To
do so, let us define the mollifier ζγ : R→ R for γ ∈ (0, 1) as

ζγ(x) := C · exp
(

γ2

x2 − γ2

)
· I(|x| < γ),

where C is chosen such that
∫
R
ζγ(x) dx = 1. Then for a given function f : R→ R we define

fγ := f ∗ ζγ

as the convolution of f with ζγ, noting that this makes f smooth. We can then define a smoothed
version of the labels as

ηi := 1±γ
(
a⊺
Bi

XBiβ
∗ − εi

)
. (14)

From here we can define the new smoothed risk as

R̂γn(β; X) :=
1
n

n∑
i=1

ωi log
(
1 + e−ηiX

⊺
i β

)
+
λ

2n
∥β∥22,

where we have replaced each yi with its smoothed counterpart ηi.

D.4.2. SMOOTHING THE MINIMUM

Next we will define the function that will be used to approximate the minimum over our parameter
space. For the set S̃, define the smoothed minimum

fδ : R>0 × Rn×p → R, fδ(α,X) :=
−1
nα

log

∑
β∈S̃δ

exp
[
−nαR̂γn(β; X)

] ,
where the sum is over the minimal δ

√
p-net S̃δ. When α is fixed or understood from context, we

will refer to fδ(α,X) as simply fδ(X).
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D.4.3. INTERPOLATION TECHNIQUE

Finally, we define the interpolation that we will use for the proof of our main theorem. For t ∈ [0, π2 ],
let

Ut := sin(t)X + cos(t)G.

When t is fixed or understood from context, we will refer to Ut as simply U. Now, for each i =
1, . . . , n, define the weight functions

wγ(β) :=
e−nαR̂γn(β,U)∑

β′∈S̃δ
e−nαR̂γn(β′,U)

, wi,k
γ (β) :=

e−nαR̂γ,i,kn (β,U)∑
β′∈S̃δ

e−nαR̂γ,i,kn (β′,U)
.

Also define expectation with respect to the density induced by these weights as

⟨g(β)⟩ :=
∑
β∈S̃δ

wγ(β)g(β), ⟨g(β)⟩i,k :=
∑
β∈S̃δ

wi,k
γ (β)g(β), (15)

where

R̂γ,i,kn (β; η,U) :=
1
n

∑
j<Bi

ω j log
(
1 + e−η jU

⊺
j β
)
+
λ

2n
∥β∥22

represents the risk taken only over the points outside the block Bi containing Xi. Also for each
i = 1, . . . , n define the conditional expectation

E(i,k)[ · ] := E[ · | Uik],

where Uik is used to denote the interpolation matrix without Bi:

Uik := (U1, . . . ,Ui−1, 0, . . . , 0,Ui+k, . . . ,Un) ,

noting that this forces Uik y UBi . Lastly, we also define a “gradient” term

Di(UBi , β) :=
(
ηiωiσiβ

)
β +

∑
j∈Bi

ω jσ jβη
′
ja jiU

⊺
j β

 β∗ ∈ Rp,

where σiβ := σ(−ηiUi
⊺β) and η′i := 1±γ

′(a⊺
Bi

UBiβ
∗ − εi). When the data matrix is clear from context,

we will writeDi(UBi , β) as simplyDi(β). Lastly, we use the shorthand

ℓ(a, b) := log
(
1 + e−ab

)
, ℓi(β) := ℓ(ηi,U

⊺
i β).

With these, we are ready to begin the proof.
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D.5. Proof of the Theorem 15

In this subsection we finally prove Theorem 15 which, from our previous remarks, immediately
proves (5) of Theorem 2.

Proof of Theorem 15 For ease, let us refer to the quantity of interest as

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
= (⋆).

Let α, δ, γ, τ > 0. We may first bound

(⋆) ≤ dH

(
min
β

R̂n(β; X),min
β

R̂γn(β; X)
)
+ dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)

(16)

+ dH

(
min
β

R̂γn(β; G),min
β

R̂n(β; G)
)

(i)
≤ 2C1

√
kγ + dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)
, (17)

where (i) follows from applying Lemma 22 to the first and third summands. Then, we use Lemma 23
to bound

dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)
≤ dH ( fδ(α,X), fδ(α,G)) + C2

(
√

kδ +
1
α

log
(
1
δ

))
. (18)

From here, we will prove universality for fδ(X), and then show why this is sufficient. Recall from
above the interpolator

Ut := sin(t)X + cos(t)G, t ∈ [0, π2 ].

By the fundamental theorem of calculus, since U0 = G and Uπ/2 = X, we may bound∣∣∣E [
h ( fδ(X)) − h ( fδ(G))

]∣∣∣ ≤ ∫ π/2

0

∣∣∣∣E [
∂th

(
fδ(Ut)

)]∣∣∣∣ dt.

Using the chain rule we may expand

∂th ( fδ(U)) =
−h′ ( fδ(U))

n

n∑
i=1

⟨Ũ⊺i Di(β)⟩

where we set
Ũt := ∂tUt = cos(t)X − sin(t)G.

Using Lemma 24 we obtain that

lim
n→∞

∣∣∣E [
h ( fδ(X)) − h ( fδ(G))

]∣∣∣ (i)
≤

∫ π/2

0
lim sup

n→∞

∣∣∣∣E [
∂th

(
fδ(Ut)

)]∣∣∣∣ dt
(ii)
≤
π

2
τ, (19)

where (i) is from the Dominated Convergence Theorem with the dominating function given by the
bound on this derivative in Theorem 26, and (ii) is from Lemma 24. Combining (19) with (17) and
(18), we conclude that

lim
n→∞

(⋆) ≤ C
[ √

kγ +
√

kδ +
1
α

log
(
1
δ

)
+ τ

]
.
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Noting that the left-hand side is independent of our four parameters (α, δ, γ, τ), we can take our
limits in the proper order to conclude that

lim
n→∞

(⋆) ≤ lim
δ→0

lim
τ,γ→0
α→∞

C
[ √

kγ +
√

kδ +
1
α

log
(
1
δ

)
+ τ

]
= 0.

Appendix E. Proof of Theorem 3 (7) under Assumption 8(i): Training risk
universality under m-dependence

The next result restates Theorem 3 (7) under Assumption 8(i), i.e. the universality universality of
the training risk in the m-dependent setting:

Theorem 16 (Training risk universality under m-dependence) Let (Xi, yi(Xi))n
i=1 and (Gi, yi(Gi))n

i=1
be generated under Assumptions 2-4, 8(i), and 9, where each Gi ∼ N (0,Var(Xi)). Then

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
→ 0. (20)

Proof of Theorem 16 Let M ∈ Z+ be fixed. Define new matrices XM,GM ∈ Rn′×p as

XM := (X1, . . . , XM, XM+m+1, . . . , X2M+m, X2M+2m+1, . . .)⊺

GM := (G1, . . . ,GM,GM+m+1, . . . ,G2M+m,G2M+2m+1, . . .)⊺,

noting that

n′ ∈ [n − (r + 1)m + 1, n − rm] ⊂
[
n

M
M + m

− m, n
M

M + m
+ m

]
= [nq − m, nq + m], (21)

where r := ⌊ n
M+m⌋ and q := M

M+m . By construction, XM and GM are block dependent with block size
M. We may also define

Xm := (XM+1, . . . , XM+m, X2M+m+1, . . . , X2M+2m, . . . )

Gm := (GM+1, . . . ,GM+m,G2M+m+1, . . . ,G2M+2m, . . . )

so that every vector Xi is either in XM or Xm. For simplicity we can also write these indexing sets as

BM := {1, . . . , M, M + m + 1, . . . , 2M + m, . . . , }

Bm := [n] \ BM.

If we once again refer to our quantity of interest as

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
= (⋆),
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then we may bound

(⋆) ≤ dH

(
min
β

R̂n(β; X),min
β

R̂n′(β; XM)
)

︸                                       ︷︷                                       ︸
(a)

+ dH

(
min
β

R̂n′(β; XM),min
β

R̂n′(β; GM)
)

︸                                           ︷︷                                           ︸
(b)

+ dH

(
min
β

R̂n′(β; GM),min
β

R̂n(β; G)
)

︸                                        ︷︷                                        ︸
(c)

.

By Theorem 2, we know that (b)→ 0 as n→ ∞. Hence we have

lim sup
n→∞

(⋆) ≤ lim sup
n→∞

(a) + lim sup
n→∞

(c).

We may now apply Theorem 29 with m̃ = m to say that for some Cd > 0,

lim sup
n→∞

(⋆) ≤ 2Cd
m
M

√
M + m = O

(
M−1/2

)
. (22)

As this holds for every M ∈ Z+, we take M → ∞ to obtain the result.

Appendix F. Proof of Theorem 3 (7) under Assumption 8(ii): Training risk
universality under mixing

We first prove the universality of the train risk if the data is made of blocks of size k that are almost
independent. We will then combine this result with Theorem 29 to get the desired result.

Assumption 13 (βmix almost independent blocks of size k) For all i, j such that j ≥ i+k we have
that if we defineA := σ

(
(Xℓ, yℓ)ℓ≤i

)
and B := σ

(
(Xℓ, yℓ)ℓ> j

)
then β

(
A,B

)
≤ βmix, where β

(
A,B

)
is

the β−mixing coefficient between the sigma-algebrasA and B (see Bradley (2005) for a definition).

Under this assumption we can establish the universality of the train risk.

Lemma 17 Assume that (Xi, yi) and (Gi, yi(Gi)) satisfy Assumption 2-5. Assume that Var((Gi)) =
Var((Xi)). Moreover assume that Assumption 13 also holds. Then we have that there is a constant
C such that

lim sup
n→∞

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
≤ Cβ1/15

mix

Proof For ease, let us refer to the quantity of interest as

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
= (⋆).
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Let α, δ, γ, τ > 0. We may first bound

(⋆) ≤ dH

(
min
β

R̂n(β; X),min
β

R̂γn(β; X)
)
+ dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)

+ dH

(
min
β

R̂γn(β; G),min
β

R̂n(β; G)
)

(i)
≤ 2C1

√
γ

√
max(E∥X∥2

Sp
,E∥G∥2

Sp
)

√
n

+ dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)
, (23)

where (i) follows from applying Lemma 22 to the first and third summands. Then, we use Lemma 23
to bound

dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)

(24)

≤ dH ( fδ(α,X), fδ(α,G)) + C2


√

max(E∥X∥2
B(0,

√
p),E∥G∥

2
B(0,

√
p))

√
n

δ +
1
α

log
(
1
δ

) . (25)

Using the bound in Corollary 20 under Assumption 8(ii) we know that there exists a constant C3 > 0
such that √

max(E∥X∥2
Sp
,E∥G∥2

Sp
)

√
n

,

√
max(E∥X∥2

B(0,
√

p),E∥G∥
2
B(0,

√
p))

√
n

≤ C3S.

Hence we have

(⋆) ≤ dH ( fδ(α,X), fδ(α,G)) + C2

(
C3Sδ +

1
α

log
(
1
δ

))
+ 2C1C3

√
γS. (26)

From here, we will prove universality for fδ(X), and then show why this is sufficient. Recall from
above the interpolator

Ut := sin(t)X + cos(t)G, t ∈ [0, π2 ].

By the fundamental theorem of calculus, since U0 = G and Uπ/2 = X, we may bound

∣∣∣E [
h ( fδ(X)) − h ( fδ(G))

]∣∣∣ ≤ ∫ π/2

0

∣∣∣∣E [
∂th

(
fδ(Ut)

)]∣∣∣∣ dt.

Using the chain rule we may expand

∂th ( fδ(U)) =
−h′ ( fδ(U))

n

n∑
i=1

⟨Ũ⊺i Di(β)⟩

To further bound this, we will replace specific blocks (XBi) with independent blocks, allowing us to
use the results established in Section H.3. More precisely, we will show that for an average i ≤ n
the expectation E

[
h′ ( fδ(U)) ⟨Ũ⊺i Di(β)⟩

]
is approximately the same if the block containing the i-th

observation
(
X j, y j(X j)

)
j∈Bi

is independent from the others. We also use the notation j > Bi to
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denote the set of indices after the last index of the block Bi, and analogously use j < Bi for those
before Bi.

In this goal, for i ≤ n we write (W i
j) the process such that

(
W i

j, y j(W i
j)
)

j∈Bi
,
(
W i

j, y j(W i
j)
)

j>Bi
and(

W i
j, y j(W i

j)
)

j<Bi
are independent and have the same marginals as

(
X j, y j(X j)

)
j∈Bi

,
(
X j, y j(X j)

)
j>Bi

and
(
X j, y j(X j)

)
j<Bi

. We define similarly
(
Gi

j, y j(Gi
j)
)

j∈Bi
,
(
Gi

j, y j(Gi
j)
)

j>Bi
and

(
Gi

j, y j(Gi
j)
)

j<Bi
. The

interpolated process between W i and Gi is written as

U(i)
j := sin(t)Wi

j + cos(t)Gi
j, Ũ(i)

j := cos(t)Wi
j − sin(t)Gi

j.

Denote D(i)
j (β) the version of Di(β) for U(i) and Ũ(i). Similarly we write ⟨·⟩(i) the version of ⟨·⟩ for

U(i) (see (15) for the definition of ⟨·⟩).
Choose L > 0 to be a real. Define

Di,L(β) := Di(β) I(|ŨT
i β|, |U

T
i β| ≤ L)

and
D

(i)
i,L(β) := D(i)

i (β)I(|(̃U(i)
i )Tβ|, |(U(i)

i )Tβ| ≤ L).

We first remark that we can switch Di(β) for the truncated Di,L(β) without changing too much the
value of the expectation E

(
−h′ ( fδ(U))⟨Ũ⊺i Di(β)⟩

)
. Indeed we have

1
n

n∑
i=1

∣∣∣∣E(−h′ ( fδ(U))⟨Ũ⊺i Di,L(β)⟩
)
− E

(
−h′ ( fδ(U))⟨Ũ⊺i Di(β)⟩

)∣∣∣∣
≤

1
n

n∑
i=1

E
(
⟨|Ũ⊺i Di(β)|I(|ŨT

i β| > L)⟩
)
+

1
n

n∑
i=1

E
(
⟨|Ũ⊺i Di(β)|I(|UT

i β| > L)⟩
)

≤
1
n

n∑
i=1

E
(
⟨
{
|Ũ⊺i β| + |U

⊺
i β||Ũ

⊺
i β
∗|
}
I(|ŨT

i β| > L)⟩
)
+

1
n

n∑
i=1

E
(
⟨
{
|Ũ⊺i β| + |U

⊺
i β||Ũ

⊺
i β
∗|
}
I(|UT

i β| > L)⟩
)

(i)
≤

1
nL1/4

n∑
i=1

E
(
⟨
{
|Ũ⊺i β|

5/4 + |U⊺i β||Ũ
⊺
i β|

1/4|Ũ⊺i β
∗|
}
⟩
)

+
1

nL1/4

n∑
i=1

E
(
⟨
{
|Ũ⊺i β||U

T
i β|

1/4 + |U⊺i β|
5/4|Ũ⊺i β

∗|
}
⟩
)

(ii)
≤

1
nL1/4

n∑
i=1

E
(
⟨|Ũ⊺i β|

5/4⟩
)
+ L−1/4 max

i≤n
∥Ũ⊺i β∥6

√√
1
n

n∑
i=1

E(⟨(UT
i β)2⟩)

{1
n

n∑
i=1

E(⟨(UT
i β)3/4⟩)

}3/4

+
1

L1/4

√√
1
n

n∑
i=1

E(⟨(ŨT
i β)2⟩)

√√
1
n

n∑
i=1

E(⟨|ŨT
i β|

3/4⟩2/3) +max
i
∥ŨT

i β
∗∥3

√√
1
n

n∑
i=1

E(⟨(UT
i β)2⟩)

≤
1

L1/4

{
E
(
n−1∥Ũ∥2

Sp

)5/8
+max

i≤n
∥Ũ⊺i β∥6

√
E
(
n−1∥U∥2

Sp

)
E
(
n−1∥Ũ∥2

Sp

)9/32

+

√
E
(
n−1∥Ũ∥2

Sp

)(
E
(
n−1∥U∥2

Sp

))1/8
+max

i
∥ŨT

i β
∗∥3

√
E
(
n−1∥U∥2

Sp

)}
.
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where (i) is a consequence of the fact that I(|ŨT
i β| ≥ L) ≤ |Ũ

T
i β|

1/4

L1/4 , (ii) comes from Jensen inequality
combined with Hölder inequality. Hence using the bound in Corollary 20 under Assumption 8(ii)
and using Assumption 3 we have that there exists a constant C4 such that

1
n

n∑
i=1

∣∣∣∣E(−h′ ( fδ(U))⟨Ũ⊺i Di,L(β)⟩
)
− E

(
−h′ ( fδ(U))⟨Ũ⊺i Di(β)⟩

)∣∣∣∣ ≤ C4L−1/4. (27)

Moreover according to Lemma 38 we have that there is a constant C5 such that

1
n

n∑
i=1

∣∣∣∣E(−h′ ( fδ(U))⟨Ũ⊺i Di,L(β)⟩
)
− E

(
−h′

(
fδ(U(i))

)
⟨(Ũ(i))⊺D(i)

i,L(β)⟩(i)
)∣∣∣∣ (28)

(i)
≤ 4(3βmix)1/3 1

n

n∑
i=1

{
L(1 + ∥ŨT

i β
∗∥3/2

}
(ii)
≤ LC5(βmix)1/3

where (i) is due to the fact that |ŨiDi,L(β)| ≤ |Ũiβ| I(|Ũiβ| ≤ L) + I(|Uiβ| ≤ L)| Ũiβ
∗||UT

i β| combined
with the triangle inequality (ii) is due to assumption 3 which imply that lim supn supi ∥U

T
i β
∗∥3/2 <

∞. Hence combining Theorem 24 with Eqs. (27) and (28) we obtain that

1
n

n∑
i=1

∣∣∣∣E(−h′ ( fδ(U))
n

n∑
i=1

⟨Ũ⊺i Di(β)⟩
)∣∣∣∣ ≤ LC5β

1/3
mix + τ + C4L−1/4. (29)

This directly implies that

lim
n→∞

∣∣∣E [
h ( fδ(X)) − h ( fδ(G))

]∣∣∣ (i)
≤

∫ π/2

0
lim sup

n→∞

∣∣∣∣E [
∂th

(
fδ(Ut)

)]∣∣∣∣ dt (30)

(ii)
≤
π

2

[
LC5β

1/3
mix + τ + C4L−1/4

]
(31)

where (i) is from the Dominated Convergence Theorem with the dominating function given by the
bound on this derivative in Theorem 26, and (ii) is from Eq. (29). Combining (31) with (23) and
(26), we conclude that

lim
n→∞

(⋆) ≤ C
[ √

kγ +
√

kδ +
1
α

log
(
1
δ

)
+ τ + Lβ1/3

mix + L−1/4
]
.

Noting that the left-hand side is independent of our four parameters (α, δ, γ, τ), we can take our
limits in the proper order to conclude that

lim
n→∞

(⋆) ≤ lim
δ→0

lim
τ,γ→0
α→∞

C
[ √

kγ +
√

kδ +
1
α

log
(
1
δ

)
+ τ

]
= C

[
Lβ1/3

mix + L−1/4
]
.

Optimizing over L ≥ 0 gives us the desired result.

The next result restates Theorem 3 (7) under Assumption 8(ii), i.e. training risk universality
under mixing:
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Theorem 18 (Universality of the training risk under Assumption 8(ii)) Let (Xi, yi(Xi))n
i=1 and

(Gi, yi(Gi))n
i=1 be generated under Assumptions 2-4, 8(ii), and 9, where each Gi ∼ N (0,Var(Xi)).

Then

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
→ 0. (32)

Proof of Theorem 18 Let M, m̃ ∈ Z+ be fixed. Define new matrices XM,GM ∈ Rn′×p as

XM := (X1, . . . , XM, XM+m̃+1, . . . , X2M+m̃, X2M+2m̃+1, . . .)⊺

GM := (G1, . . . ,GM,GM+m̃+1, . . . ,G2M+m̃,G2M+2m̃+1, . . .)⊺,

noting that

n′ ∈ [n − (r + 1)m̃ + 1, n − rm̃] ⊂
[
n

M
M + m̃

− m̃, n
M

M + m̃
+ m̃

]
= [nq − m̃, nq + m̃], (33)

where r := ⌊ n
M+m̃⌋ and q := M

M+m̃ . By construction, XM and GM satisfy Assumption 13 with
βmix = β(m̃). We may also define

Xm̃ := (XM+1, . . . , XM+m̃, X2M+m̃+1, . . . , X2M+2m̃, . . . )

Gm̃ := (GM+1, . . . ,GM+m̃,G2M+m̃+1, . . . ,G2M+2m̃, . . . )

so that every vector Xi is either in XM or Xm̃. For simplicity we can also write these indexing sets as

BM := {1, . . . , M, M + m̃ + 1, . . . , 2M + m̃, . . . , }

Bm̃ := [n] \ BM.

If we once again refer to our quantity of interest as

dH

(
min
β

R̂n(β; X),min
β

R̂n(β; G)
)
= (⋆),

then we may bound

(⋆) ≤ dH

(
min
β

R̂n(β; X),min
β

R̂n′(β; XM)
)

︸                                       ︷︷                                       ︸
(a)

+ dH

(
min
β

R̂n′(β; XM),min
β

R̂n′(β; GM)
)

︸                                           ︷︷                                           ︸
(b)

+ dH

(
min
β

R̂n′(β; GM),min
β

R̂n(β; G)
)

︸                                        ︷︷                                        ︸
(c)

.

By Theorem 17, we know that there is C > 0 such that lim sup (b) ≤ Cβ(m̃)1/15 as n → ∞. Hence
we have

lim sup
n→∞

(⋆) ≤ lim sup
n→∞

(a) + lim sup
n→∞

(c) + Cβ(m̃)1/15.
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We may now apply Theorem 29 with m̃ to say that for some Cd > 0,

lim sup
n→∞

(⋆) ≤ 2Cd
m
M

√
M + m + Cβ(m̃)1/15 = O

(
M−1/2 + Cβ(m̃)1/15

)
. (34)

As this holds for every M ∈ Z++, we take M → ∞ to obtain that

lim sup
n→∞

(⋆) ≤ Cβ(m̃)1/15. (35)

Finally noting that this holds for an arbitrary m̃ gives us the desired result.

Appendix G. Proof of Theorem 2 (6) and Theorem 3 (8): Test risk universality

In this section, we prove the second equation of both Theorems 2 and 3 concerning test risk univer-
sality, as both share the same proof once training risk universality is proved. We focus on presenting
the proof for the 0-1 loss, i.e. the test risk Rtest is defined with

ℓtest(X
⊺
newβ̂ , X⊺newβ

∗) B I
{
I
{
σ(X⊺newβ̂) ≥

1
2

}
= I

{
X⊺newβ

∗ − εnew ≥ 0
} }

for both β̂ = β̂(X) and β̂ = β̂(G). As our proof strategy relies on approximating ℓtest by the 1-
Lipschitz functions in F̃ , the same proof also works if ℓtest is already Lipschitz. Therefore the result
also applies to any locally Lipschitz ℓtest, which is Lipschitz over the compact set Sp.

Proof of Theorem 2 (6) and Theorem 3 (8) Recall that σ(x) = 1
1+e−x . Our test loss can then be

re-expressed as

Rtest(β̂) = E
[
I
{
I
{
σ(X⊺newβ̂) ≥

1
2
}
= I{X⊺newβ

∗ − εnew ≥ 0}
} ∣∣∣∣ β̂]

= E
[
I
{
I
{
X⊺newβ̂ ≥ 0

}
= I{X⊺newβ

∗ − εnew ≥ 0}
} ∣∣∣∣ β̂]

= E
[
I
{
X⊺newβ̂ ≥ 0 , X⊺newβ

∗ − εnew ≥ 0
}
+ I

{
X⊺newβ̂ < 0 , X⊺newβ

∗ − εnew < 0
} ∣∣∣∣ β̂] , (36)

and by a similar argument,

RG
test(β̂) = E

[
I
{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
}
+ I

{
G⊺newβ̂ < 0 , G⊺newβ

∗ − εnew < 0
} ∣∣∣∣ β̂] .

For convenience, we denote the random R2 vectors

VX B (X⊺newβ̂ , X⊺newβ
∗ − εnew)⊺ and VG B (G⊺newβ̂ , G⊺newβ

∗ − εnew)⊺ .

We first perform a standard smoothing of the indicator function. By Lemma 34 of Huang et al.
(2023), for any τ ∈ R and δ > 0, there exists a continuously differentiable function hτ;δ such that
hτ+δ;δ(x) ≤ I{x ≥ τ} ≤ hτ;δ(x) for all x ∈ R and that ∂hτ;δ is bounded in norm by δ−1. Moreover hτ;δ
takes value in [0, 1]. We use this to construct the R2 → R function h̃τ;δ(x, y) B hτ;δ(x) hτ;δ(y), which
satisfies

h̃δ;δ(x, y) ≤ I{x ≥ 0, y ≥ 0} = I{x ≥ 0} I{y ≥ 0} ≤ h̃0;δ(x, y) .
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This implies that for every δ > 0, almost surely

E
[
I
{
X⊺newβ̂ ≥ 0 , X⊺newβ

∗ − εnew ≥ 0
}
− I

{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
} ∣∣∣∣ β̂]

≤ E
[
h̃0;δ(VX) − h̃δ;δ(VG)

∣∣∣ β̂]
≤ E

[
h̃0;δ(VX) − h̃0;δ(VG) + h̃0;δ(VG) − h̃δ;δ(VG)

∣∣∣ β̂]
≤ E

[
h̃0;δ(VX) − h̃0;δ(VG) + I{(VG)1 ≥ −δ , (VG)2 ≥ −δ} − I{(VG)1 ≥ δ , (VG)2 ≥ δ}

∣∣∣ β̂]
≤ E

[
h̃0;δ(VX) − h̃0;δ(VG)

∣∣∣ β̂] + P((VG)1 ∈ [−δ, δ)
∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)

∣∣∣ β̂) .
In the last inequality, we have noted that if (VG)1, (VG)2 ≥ −δ is true and yet (VG)1, (VG)2 ≥ δ

is false, we must have either (VG)1 ∈ [−δ, δ) or (VG)2 ∈ [−δ, δ). Now let δ ∈ (0, 1]. Notice that
δ h̃0;δ ∈ F̃ , where F̃ is defined in Assumption 6. Also note that β̂ is independent of Xnew and Gnew
in VX and VG. This implies according to Assumption 6 that∣∣∣E[h̃0;δ(VX)

∣∣∣ β̂] − E[h̃0;δ(VG)
∣∣∣ β̂] ∣∣∣

≤
1
δ

sup f∈F̃

∣∣∣∣E[ f (X⊺newβ̂, X
⊺
newβ

∗ − εnew)
∣∣∣∣ β̂] − E[ f (G⊺newβ̂,G

⊺
newβ

∗ − εnew)
∣∣∣∣ β̂]∣∣∣∣

≤
1
δ

sup f∈F̃ supβ∈Sp

∣∣∣∣E[ f (X⊺newβ̂, X
⊺
newβ

∗ − εnew)
]
− E

[
f (G⊺newβ̂,G

⊺
newβ

∗ − εnew)
]∣∣∣∣

(a)
≤

1
δ

sup f∈F̃ supβ∈Sp

∣∣∣∣E[ f (X⊺newβ̂, X
⊺
newβ

∗)
]
− E

[
f (G⊺newβ̂,G

⊺
newβ

∗)
]∣∣∣∣ C 1

δ
∆n

In (a), we have used a conditioning on εnew, moved the suprema and the norm inside the expectation
over εnew and observed that the function f ( • , • − εnew) ∈ F̃ almost surely. Substituting this into the
above yields that, almost surely

E
[
I
{
X⊺newβ̂ ≥ 0 , X⊺newβ

∗ − εnew ≥ 0
}
− I

{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
} ∣∣∣∣ β̂]

≤
1
δ
∆n + P

(
(VG)1 ∈ [−δ, δ)

∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)
∣∣∣ β̂) .

By a similar argument, we can obtain that almost surely

E
[
I
{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
}
− I

{
X⊺newβ̂ ≥ 0 , X⊺newβ

∗ − εnew ≥ 0
} ∣∣∣∣ β̂]

≤ E
[
h̃0;δ(VG) − h̃δ;δ(VX)

∣∣∣ β̂]
≤ E

[
h̃δ;δ(VG) − h̃δ;δ(VX) + h̃0;δ(VG) − h̃δ;δ(VG)

∣∣∣ β̂]
≤ E

[
h̃δ;δ(VX) − h̃δ;δ(VG)

∣∣∣ β̂] + P((VG)1 ∈ [−δ, δ)
∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)

∣∣∣ β̂)
≤

1
δ
∆n + P

(
(VG)1 ∈ [−δ, δ)

∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)
∣∣∣ β̂) .

Combining the two bounds implies that, almost surely,

(⋆) B
∣∣∣∣E[ I{X⊺newβ̂ ≥ 0 , X⊺newβ

∗ − εnew ≥ 0
}
− I

{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
} ∣∣∣∣ β̂] ∣∣∣∣

≤
2
δ
∆n + P

(
(VG)1 ∈ [−δ, δ)

∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)
∣∣∣ β̂) .

To control the probability terms, notice that conditioning on β̂, (VG)1 = G⊺newβ̂ | β̂ ∼ N(0, β̂⊺Σnewβ̂)
and (VG)2 | εnew, β̂ ∼ N(−εnew, β

∗⊺Σnewβ
∗). Therefore by a standard anti-concentration result for
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Gaussians (see e.g. Carbery and Wright (2001)), there is an absolute constant C′′ > 0 such that,
almost surely,

P
(
(VG)1 ∈ [−δ, δ)

∣∣∣ β̂) + P((VG)2 ∈ [−δ, δ)
∣∣∣ β̂ , εnew

)
≤ C′′δ

(
1

β̂⊺Σnewβ̂
+

1
β∗⊺Σnewβ∗

)
.

Meanwhile by Assumption 7, for every ϵ > 0,

P(Dϵ(G) > 0) → 1 , where Dϵ(G) B min
β∈Sp , |(β⊺Σnewβ)1/2 − χ̄|>ϵ

R̂n(β; G) − min
β∈Sp

R̂n(β; G) ,

and by the universality of the training risk (Theorem 2 (5) or Theorem 3 (7)), we also have P(Dϵ(X) >
0)→ 1. This implies that

P
( ∣∣∣(β̂(X)⊺Σnewβ̂(X))1/2 − χ̄

∣∣∣ ≤ ϵ ) = P(Dϵ(X) > 0) → 1 ,

P
( ∣∣∣(β̂(G)⊺Σnewβ̂(G))1/2 − χ̄

∣∣∣ ≤ ϵ ) = P(Dϵ(G) > 0) → 1 . (37)

In other words, for both β̂ = β̂(X) and β̂ = β̂(G), β̂⊺Σnewβ̂
P
−→ χ̄2 in probability. Moreover, χ̄ > 0 and

β∗⊺Σnewβ
∗
P
−→ χ2

∗ > 0 by Assumption 7. This allows us to consider a rare event

Eχ B
{
β̂⊺Σnewβ̂ <

χ̄2

2
, β∗⊺Σnewβ

∗ <
χ2
∗

2

}
such that P(Eχ) → 0 .

Denoting Ec
χ as the complement of Eχ, we obtain that for any ϵ′ > 0,

P(|(⋆)| > ϵ′) ≤ P
(

2
δ
∆n +C′′δ

( 1
β̂⊺Σnewβ̂

+
1

β∗⊺Σnewβ∗

)
> ϵ′

)
≤ P

(
2
δ
∆n +C′′δ

( 1
β̂⊺Σnewβ̂

+
1

β∗⊺Σnewβ∗

)
> ϵ′

∣∣∣∣ Ec
χ

)
+ P(Eχ)

≤ I
{ 2
δ
∆n +C′′δ

( 2
χ̄2 +

2
χ2
∗

)
> ϵ′

}
+ P(Eχ) .

By Assumption 6, ∆n → 0. Since the above is valid for any δ, whose choice is independent of ϵ′,
we can choose δ =

√
∆n, which implies that the above converge to zero. In other words, we have

shown that∣∣∣∣E[ I{X⊺newβ̂ ≥ 0 , X⊺newβ
∗ − εnew ≥ 0

}
− I

{
G⊺newβ̂ ≥ 0 , G⊺newβ

∗ − εnew ≥ 0
} ∣∣∣∣ β̂] ∣∣∣∣ P

−→ 0

for both β̂ = β̂(X) and β̂ = β̂(G). By an exactly analogous argument, we have∣∣∣∣E[ I{X⊺newβ̂ < 0 , X⊺newβ
∗ − εnew < 0

} ]
− E

[
I
{
G⊺newβ̂ < 0 , G⊺newβ

∗ − εnew < 0
} ∣∣∣∣ β̂] ∣∣∣∣ → 0 .

In view of (36), we can use a triangle inequality to obtain that

|Rtest(β̂(X)) − RG
test(β(X))|

P
−→ 0 and |Rtest(β̂(G)) − RG

test(β(G))|
P
−→ 0 .

Meanwhile, note that RG
test(β̂) depends on β̂ only through the mean-zero conditionally Gaussian vari-

able G⊺newβ̂, which is completely characterized by Var[G⊺newβ̂ | β̂] = β̂⊺Σnewβ̂. In view of (37), both
β̂(X)⊺Σnewβ̂(X) and β̂(G)⊺Σnewβ̂(G) converge in probaility to the same constant χ̄2. This implies

|RG
test(β̂(X)) − RG

test(β(G))|
P
−→ 0 ,

which in particular implies the desired statement that |Rtest(β̂(X)) − RG
test(β(G))|

P
−→ 0
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Appendix H. Important Lemmas

In this section, we present the statements and proofs of the various lemmas used to prove our main
theorems.

H.1. Auxiliary Lemmas

The lemma and its corollary aim to bound the expectation of the maximum possible norm of our
signal Xβ, conditional on the fact that a Bernstein-like Inequality holds.

Lemma 19 (Operator Norm Bound) Let (Yi) be a sequence of Rp-valued random vectors, and
let R > 0. Suppose that n

p → κ and that there exist constants K,C1, c2,C3 such that

1. supi≤n ∥Var(Yi)∥op ≤
1
pK .

2. For all β ∈ S := Bp(0,R
√

p) and t > 0, we have

P

1
n

∣∣∣∣ n∑
i=1

(Y⊺i β)2 − E((Y⊺i β)2)
∣∣∣∣ ≥ t

 ≤ C1 exp

−c2n

 t

C3R2 ∧
t2

C2
3R4

 . (38)

Then there exists CR > 0 depending on R and the constants above such that for n sufficiently large,

E
[
∥Y∥2

S

]
≤ CR p,

where ∥Y∥S is as defined in (12).

Proof Let β ∈ S, meaning by definition ∥β∥2 ≤ R
√

p. Note that by the first statement of the lemma,
we have that

E
[
∥Yβ∥2

]
= nβ⊺Σnβ ≤ nR2K,

where Σn := 1
n
∑n

i=1 Var(Yi). Now, we can note that for s > 0,

P
(
∥Yβ∥2 ≥ s

)
= P

1
n

n∑
i=1

Wi ≥
s − nβ⊺Σnβ

n

 ,
where Wi := (Y⊺i β)2 − β⊺Var(Yi)β. If we let MR := R2(K + C3), then by (38), we obtain that for
s > 0,

P
(
∥Yβ∥2 ≥ nMR(s + 1)

)
≤ C1 · exp

[
−c2n

(
s ∧ s2

)]
, (39)

which follows from noting that

nMR(s + 1) − nβ⊺Σnβ

nC3R2 ≥
MR(s + 1) −MR

MR
= s.

Now let ε > 0, and define Sε to be a minimal ε
√

p-net of S. Also, for t > 0, define the quantity

ηt :=
C3
√

p + t
√

n
for C3 :=

√
1
c2

log
(
1 +

3R
ε

)
.
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Then if we set s = ηt ∨ η
2
t in (39), by a union bound we obtain

P

sup
β∈Sε

∥Yβ∥2 ≥ nMR
(
(ηt ∨ η

2
t ) + 1

) (i)
≤ C1|Sε| exp

[
−c2n · η2

t

]
(ii)
≤ C1

(
3R
ε

)p

exp
[
−c2(C2

3 p + t2)
]

(iii)
≤ C1e−c2t2 ,

where (i) is via the fact that for any x ≥ 0, we have

(x ∨ x2) ∧ (x ∨ x2)2 = x2,

(ii) is via Corollary 4.2.13 of Vershynin (2018) bounding the cardinality of a minimal ε-net, and
(iii) is from the definition of ηt and C3. Now we may bound the error between the supremum on
the whole space and the supremum on the ε-net by applying a similar technique to Lemma 4.4.1 of
Vershynin (2018), which gives

sup
β∈S

∥Yβ∥2 ≤
1

1 − 2ε
sup
β∈Sε

∥Yβ∥2.

We conclude that, for A :=
√

MR/(1 − 2ε),

P
(
∥Y∥2

S
≥ nA2

(
(ηt ∨ η

2
t ) + 1

))
≤ C1e−c2t2 . (40)

Now, let us define the two events

E1 :=

∥Y∥2SnA2 − 1 ≤ ηt ∨ η
2
t

 , E2 :=
{
∥Y∥S
√

nA
≤ 1

}
,

where we note that E1 is exactly the high-probability event of (40). Then we can first see that, on
the event E1 ∩ E2, we have

E1 ∩ E2 =⇒ ∥Y∥S ≤ A
√

n, (41)

which is simply from the definition of the event E2. On the other hand, for the event E1 ∩ E
c
2, we

have (
∥Y∥S
√

nA
− 1

)2

∨

∣∣∣∣∣∣∥Y∥S√nA
− 1

∣∣∣∣∣∣ (i)
≤

∣∣∣∣∣∣∣∥Y∥
2
S

nA2 − 1

∣∣∣∣∣∣∣
(ii)
=
∥Y∥2

S

nA2 − 1

(iii)
≤ ηt ∨ η

2
t ,

where (i) is from the fact that (x − y)2 ∨ |x − y| ≤ |x2 − y2| for x, y > 0 and x + y ≥ 1, (ii) follows
from Ec

2, and (iii) from E1. Since we also know that

(x ∨ x2) ≤ (y ∨ y2) =⇒ x ≤ y for x, y ≥ 0,
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we can say that

E1 ∩ E
c
2 =⇒

∣∣∣∣∣∣∥Y∥S√nA
− 1

∣∣∣∣∣∣ ≤ ηt =⇒ ∥Y∥S ≤ A
(√

n + C3
√

p + t
)
. (42)

Combining (41) and (42), we conclude that

E1 = (E1 ∩ E2) ∪ (E1 ∩ E
c
2) =⇒ ∥Y∥Sp ≤ Ã

(√
n +
√

p + t
)
,

where Ã = A(C3 + 1). Thus we have

P
(
∥Y∥S ≥ Ã

(√
n +
√

p + t
))
≤ P

(
Ec

1

)
≤ C1e−c2t2 .

If we set the variable y = Ã
2 (√

n +
√

p + t
)2

, then we have that

P
(
∥Y∥S ≥

√
y
)
≤ C1 · exp

−c2

( √
y

Ã
−
√

n −
√

p
)2

whenever
√

y ≥ Ã
(√

n +
√

p
)
. This lets us conclude via the tail-integral formula that, after setting

ε = 1/4 for example,

E∥Y∥2
S
=

∫ ∞

0
P
(
∥Y∥2

S
≥ y

)
dy

=

∫ ∞

0
P
(
∥Y∥S ≥

√
y
)

dy

=

∫ Ã2
(
√

n+
√

p)2

0
P
(
∥Y∥S ≥

√
y
)

dy +
∫ ∞

Ã2
(
√

n+
√

p)2
P
(
∥Y∥S ≥

√
y
)

dy

≤

∫ Ã2
(
√

n+
√

p)2

0
1 dy + C1

∫ ∞

Ã2
(
√

n+
√

p)2
exp

−c2

( √
y

Ã
−
√

n −
√

p
)2 dy

≤ Ã
2
(
√

n +
√

p)2 + Ã
2
 1
c2
+

√
π(
√

n +
√

p)
√

c2


≤ CR · p,

for

CR ∝ R2 log(1 + 12R).

Now that we have given a bound on this scaled operator norm, we can use this to obtain a bound
in the specific cases of block dependence, m-dependence, and mixing.

Corollary 20 (Dependent Norm Bound) Let (Xi) be a sequence of Rp-valued random vectors
satisfying Assumptions 2-4. Then setting S in Lemma 19 as either Bp(0,

√
p) or Sp as in (4), the

following holds for n sufficiently large:
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(1) If (Xi) satisfies Assumption 1 (block-dependence), then E[∥X∥2
S

] ≤ Ckp.

(2) If (Xi) satisfies Assumption 8(i) (m-dependence), then E[∥X∥2
S

] ≤ Cmp.

(3) If (Xi) satisfies Assumption 8(ii) (β-mixing) and there exists ε > 0 such that

S :=
∞∑
ℓ=1

β(ℓ)
ε

2+ε < ∞,

then E[∥X∥2
S

] ≤ CSp. Furthermore, for (Gi) also satisfying Assumptions 2-4 with Gi ∼

N (0,Var(Xi)) and cov(G) = cov(X), we have E[∥G∥2
S

] ≤ CSp.

Proof We display the proofs for Sp, as those for the ball of radius
√

p are identical.

(1): Note that (1) follows from (2), as block-dependence with block parameter k is a special case of
m-dependence with m = k.

(2): We check that the two conditions of Lemma 19 hold. For the first one, note that by the sub-
Gaussian Assumption 3 and Lemma 44, we have

∥Var(Xi)∥op ≤
C1K2

X

n
≤

B
p

for some C1,B > 0 and n sufficiently large. For the second condition, by sub-Gaussianity and the
definition of Sp, we have that

∥(X⊺i β)2∥ψ1

(i)
= ∥X⊺i β∥

2
ψ2
≤

K2
X∥β∥

2

n
≤ C2L2 (43)

for n sufficiently large, where (i) is by Lemma 2.7.6 of Vershynin (2018). Thus we may apply
Lemma 36 with Zi := (X⊺i β

2) − E
[
(X⊺i β

2)
]

and K = C2L2. This gives us our second condition,
namely (38), with the constants (R,K,C1, c2,C3) set as (L,B, 4, cm−1,C2). For the Gaussin case, the
first condition holds for the exact same reason. For the second condition, we again use Lemma 39,
which allows us to satisfy (38) with the constants (R,K,C1, c2,C3) set as (L,B, 2, cS−1,KXc−1),
respectively.

(4): As above, the first condition of Lemma 19 holds for the same reason as (2) and (3). The second
condition holds by the second statement of Lemma 39, which allows us to satisfy (38) with the
constants (R,K,C1, c2,C3) set as (L,B, 2, cS−1, c2

(
C̃2 ∧ C̃′2

)
).

Next, recall that we have smoothed our labels y1, . . . , yn by taking a convolution of the sign
function with a mollifier ζγ as in (14). This next lemma shows that the derivative of this convolution
grows at a rate inversely proportional to the smoothing factor, γ.

Lemma 21 (Smoothed Label Derivative Bound) Define η′i := 1±γ
′(a⊺
Bi

XBiβ
∗ − εi). Then∣∣∣η′i ∣∣∣ ≤ 3γ−1.
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Proof Recall by the properties of convolution that a derivative can be “absorbed” into the convolu-
tion like so:

η′i := 1±γ
′(a⊺
Bi

XBiβ
∗ − εi) = (1± ∗ ζγ)′(a⊺

Bi
XBiβ

∗ − εi)

= (1± ∗ ζ′γ)(a⊺
Bi

XBiβ
∗ − εi)

=

∫ γ

−γ
1±(a⊺

Bi
XBiβ

∗ − εi − t)ζ′γ(t) dt.

We may thus bound ∣∣∣η′i ∣∣∣ = ∣∣∣∣∣∣
∫ γ

−γ
1±(a⊺

Bi
XBiβ

∗ − εi − t)ζ′γ(t) dt

∣∣∣∣∣∣
≤

∫ γ

−γ

∣∣∣ζ′γ(t)
∣∣∣ dt

= 2Cγ2
∫ γ

−γ

|t|
(t2 − γ2)2 exp

(
γ2

t2 − γ2

)
dt

(i)
≤ 4Cγ2

∫ γ

0

t
(t2 − γ2)2 exp

(
γ2

t2 − γ2

)
dt

=
2
e

C,

where (i) is from the fact that the integrand is even. Thus it suffices to bound C, which is the
integrating constant of our mollifier ζγ. We may lower bound the integral like so:

C−1
=

∫ γ

−γ
exp

(
γ2

t2 − γ2

)
dt

= 2
∫ γ

0
exp

(
γ2

t2 − γ2

)
dt

(i)
≥ 2

∫ γ/2

0
exp

(
γ2

t2 − γ2

)
dt

(ii)
≥ 2

∫ γ/2

0
exp

(
γ2

(γ/2)2 − γ2

)
dt

= γ · e−4/3

≥
γ

4
,

where (i) follows from the fact that the integrand is non-negative, and (ii) from the fact that it is a
decreasing function, as it has derivative

−2tγ2

(t2 − γ2)2 exp
(

γ2

t2 − γ2

)
< 0 for 0 < t < γ.

We conclude that ∣∣∣η′i ∣∣∣ ≤ 2
e
·

4
γ
≤

3
γ
.
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H.2. General lemmas

H.2.1. REPLACING THE TRUE MINIMUM WITH A SMOOTHED & DISCRETIZED MINIMUM

To prove that the two minimum risks are close in distribution to one another, we must first smooth
the labels, and then also discretize the parameter space that we are taking the minimum over. The
following two lemmas show that the error incurred by these two approximations is negligible in the
limit.

Lemma 22 (Smoothing the Risk) Suppose that X and G satisfy Assumptions 2–4. Let γ ∈ (0, 1).
Then there exists C > 0 such that for n sufficiently large,

dH

(
min
β∈S̃

R̂n(β; X),min
β∈S̃

R̂γn(β; X)
)
≤ C

√
E∥X∥2

Sp
√

n
√
γ

dH

(
min
β∈S̃

R̂n(β; G),min
β∈S̃

R̂γn(β; G)
)
≤ C

√
E∥G∥2

Sp
√

n
√
γ.

Proof We show the proof only for X, and note that the exact same technique holds for G. Since
h ∈ H is Lipschitz, we know that if β̃ and β̃γ are the minimizers of R̂n and R̂γn on S̃ respectively,
then

dH

(
min
β

R̂n(β; X),min
β

R̂γn(β; X)
)
= sup

h∈H
E

[
h
(
R̂n(β̃; X)

)
− h

(
R̂γn(β̃γ; X)

)]
≤ sup

h∈H
∥h′∥∞E

∣∣∣R̂n(β̃; X) − R̂γn(β̃γ; X)
∣∣∣

≤ E
∣∣∣R̂n(β̃; X) − R̂γn(β̃γ; X)

∣∣∣,
where the last line is by definition ofH . To control this term, we can note that∣∣∣R̂n(β̃; X) − R̂γn(β̃γ; X)

∣∣∣ ≤ max
{ ∣∣∣R̂n(β̃; X) − R̂γn(β̃; X)

∣∣∣︸                    ︷︷                    ︸
(a)

,
∣∣∣R̂n(β̃γ; X) − R̂γn(β̃γ; X)

∣∣∣︸                       ︷︷                       ︸
(b)

}
.

We bound the first term (a) like so:∣∣∣R̂n(β̃; X) − R̂γn(β̃; X)
∣∣∣ (i)
≤

1
n

n∑
i=1

∣∣∣∣log
(
1 + e−yiX

⊺
i β̃

)
− log

(
1 + e−ηiX

⊺
i β̃

)∣∣∣∣
(ii)
≤

1
n

n∑
i=1

∣∣∣X⊺i β̃∣∣∣|yi − ηi|

(iii)
≤

1
n
∥Xβ̃∥ ∥y − η∥

(iv)
≤

1
n
∥X∥Sp∥y − η∥,

where (i) uses that 0 ≤ ωi ≤ 1 for all i ≤ n, (ii) comes from treating the loss as a function of the
label and Taylor expanding, (iii) is from Cauchy-Schwarz, and (iv) is from the definition of ∥X∥Sp .
Applying Cauchy-Schwarz once more we see that

E[(a)] ≤
1
n

√
E∥X∥2

Sp
E∥y − η∥2.
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From here we note that

E∥y − η∥2 =
n∑

i=1

E[(yi − ηi)2]

(i)
=

n∑
i=1

E[(yi − ηi)21|a⊺
Bi

XBiβ
∗−εi |≤γ]

(ii)
≤

n∑
i=1

E
[
P
(
|a⊺
Bi

XBiβ
∗ − εi| ≤ γ | XBi

)]
(iii)
≤ nγ,

where the indicator in (i) is introduced as

yi − ηi , 0 ⇐⇒ |a⊺
Bi

XBiβ
∗ − εi| ≤ γ,

(ii) is because (yi − ηi)2 ≤ 1, and (iii) from

P
(
|a⊺
Bi

XBiβ
∗ − εi| ≤ γ | XBi

)
= σ(a⊺

Bi
XBiβ

∗ + γ) − σ(a⊺
Bi

XBiβ
∗ − γ)

≤ 2γ∥σ′∥∞
≤ γ.

We conclude that

E[(a)] ≤

√
E∥X∥2

Sp

n
√

nγ ≤

√
E∥X∥2

Sp
√

n
√
γ

for n sufficiently large. To finish, note that this exact string of inequalities also holds for E[(b)].

Now that we have bounded the difference between the original risk and smoothed risk in terms
of the smoothing parameter γ, we can show that universality for the smoothed risk reduces to uni-
versality for the smooth minimum fδ.

Lemma 23 (Discretization & Smooth-Min) Let α, δ > 0. Suppose that X and G satisfy Assump-
tions 2-4. Write S := B(0,

√
p). Then there exists C > 0 such that for n sufficiently large,

dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)

≤ dH ( fδ(α,X), fδ(α,G)) + C
(
δ +

δ
√

n

√
E

[
∥X∥2

S

]
∨ E

[
∥G∥2

S

]
+

1
α

log
(
1
δ

) )
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Proof By the Triangle Inequality, we know that

dH

(
min
β

R̂γn(β; X),min
β

R̂γn(β; G)
)
≤ dH

(
min
β∈S̃

R̂γn(β; X),min
β∈S̃δ

R̂γn(β; X)
)

+ dH

(
min
β∈S̃δ

R̂γn(β; X), fδ(α,X)
)

+ dH ( fδ(α,X), fδ(α,G))

+ dH

(
fδ(α,G),min

β∈S̃δ

R̂γn(β; G)
)

+ dH

(
min
β∈S̃δ

R̂γn(β; G),min
β∈S̃

R̂γn(β; G)
)

=: D1 + D2 + D3 + D4 + D5.

For D1, let β̃ be the minimizer of the risk on S̃, β̃δ the closest point to it on the δ
√

p-net S̃δ, and β̃′

the minimizer of the risk on S̃δ. Then we have that

D1 := sup
h∈H

∣∣∣∣E [
h
(
R̂γn(β̃; X)

)
− h

(
R̂γn(β̃′; X)

)]∣∣∣∣
≤ sup

h∈H
E
∣∣∣∣h (

R̂γn(β̃; X)
)
− h

(
R̂γn(β̃′; X)

)∣∣∣∣
(i)
≤ E

∣∣∣R̂γn(β̃; X) − R̂γn(β̃′; X)
∣∣∣

(ii)
≤ E

∣∣∣R̂γn(β̃; X) − R̂γn(β̃δ; X)
∣∣∣

≤ E

[
sup
ν

∣∣∣⟨∇R̂γn(ν; X), β̃ − β̃δ⟩
∣∣∣] ,

where (i) is from the definition ofH and (ii) is because

R̂γn(β̃δ) ≥ R̂γn(β̃′)

by definition. The gradient of our risk has coordinates

∂

∂ν j
R̂γn(ν; X) =

λ

n
ν j −

1
n

n∑
i=1

ωiηiXi jσiν,

and thus
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D1 ≤
λ

n
E

[
sup
ν

∣∣∣⟨ν, β̃ − β̃δ⟩∣∣∣] + 1
n
E

sup
ν

∣∣∣∣∣∣∣
〈 n∑

i=1

ηiωiXiσiν, β̃ − β̃δ

〉∣∣∣∣∣∣∣I(X ∈ En)


(i)
≤
λLδp

n
+

1
n
E

sup
ν

∣∣∣∣∣∣∣
n∑

i=1

ηiωiσiν
〈
Xi, β̃ − β̃δ

〉∣∣∣∣∣∣∣I(X ∈ En)


(ii)
≤
λLδp

n
+

1
n
E

sup
ν

√√ n∑
i=1

η2
i σ

2
iνω

2
i

√√ n∑
i=1

〈
Xi, β̃ − β̃δ

〉2


(iii)
≤

λLδp
n
+

1
√

n
E


√√ n∑

i=1

〈
Xi, β̃ − β̃δ

〉2


(iv)
≤
λLδp

n
+

δ
√

n
E [∥X∥S]

Above, (i) is from the fact that∣∣∣⟨ν, β̃ − β̃δ⟩∣∣∣ ≤ ∥ν∥ ∥β̃ − β̃δ∥ ≤ L
√

pδ
√

p = Lδp,

(ii) is a result of Cauchy-Schwarz, (iii) uses that ηi, ωi, σi,v ≤ 1 for all i ≤ n, (iv) is via the definition
of ∥X∥S and the fact that δ−1(β̃ − β̃δ) ∈ S. To bound D2, we observe that∣∣∣∣∣∣ fδ(α,X) −min

β∈S̃δ

R̂γn(β; X)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣−1
nα

log

∑
β∈S̃δ

exp
[
−nαR̂γn(β; X)

] − R̂γn(β̃; X)

∣∣∣∣∣∣∣∣
=

1
nα

∣∣∣∣∣∣∣∣log

∑
β∈S̃δ

exp
[
−nαR̂γn(β; X)

] − log
(
exp

[
−nαR̂γn(β̃; X)

])∣∣∣∣∣∣∣∣
=

1
nα

∣∣∣∣∣∣∣∣log

∑
β∈S̃δ

exp
[
−nα

(
R̂γn(β; X) − R̂γn(β̃; X)

)]
∣∣∣∣∣∣∣∣

<
1

nα
log

∣∣∣S̃δ∣∣∣, (44)

where the last line follows from the fact that R̂γn(β; X) − R̂γn(β̃; X) is always non-negative for β ∈ S̃δ
by definition, and is zero at least once, meaning when we multiply by −nα they will always be either
zero or strictly negative. This means the sum inside of the logarithm lies in

(
1,

∣∣∣S̃δ∣∣∣). By Proposition
4.2.12 of Vershynin (2018), we can say that since Sp ⊆ BRp(0, L√p), then∣∣∣S̃δ∣∣∣ ≤ (

3L
√

p
δ
√

p

)p

=

(
3L
δ

)p

,

and so combining this with (44) we have

D2 ≤
p

nα
log

(
3L
δ

)
≤ C3

1
α

log
(
1
δ

)
for n sufficiently large. We finish by noting that D4 and D5 have the exact same bounds as D2 and
D1, respectively.
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H.3. Main lemmas under independence under partial block independence.

Let i ≤ n be an index. Throughout this subsection we will assume that the block (X j, y j(X j)) j∈Bi is
independent from (X j, y j(X j)) j<Bi where Bi is the block of size k that contains i.

H.3.1. MAIN LEMMA

In the next result, we recall the notation that Ũi ≡ Ũi(t) = cos(t)Xi − sin(t)Gi for t ∈ [0, 1], where
we abbreviate the dependence on t for the simplicity of presentation in the proof.

Lemma 24 Let i ≤ n. Let (X j, y j(X j)) and (G j, y j(G j)) be generated under Assumptions 2-5 and
that Var(G) = Var(X). In addition, suppose that the block (X j, y j(X j)) j∈Bi is independent from
(X j, y j(X j)) j<Bi . For every t ∈ (0, π2 ), we have

lim sup
n→∞

∣∣∣∣E [
−h′ ( fδ(U)) ⟨Ũ⊺i Di(β)⟩

]∣∣∣∣ ≤ τ (45)

and

lim sup
n→∞

∣∣∣∣E [
−h′ ( fδ(U)) ⟨Ũ⊺i Di,L(β)⟩

]∣∣∣∣ ≤ τ (46)

where we definedDi,L(β) := Di(β)I(|ŨT
i β|, |Ũ

T
i β| ≤ L)

Proof We note that it is enough to show the desired result for Di,L as Eq. (45) directly follows by
taking L = ∞.

Firstly by adding and subtracting the quantity h′( fδ(Uik)) we obtain∣∣∣∣E [
−h′ ( fδ(U)) ⟨Ũ⊺i Di,L(β)⟩

]∣∣∣∣
≤ E

∣∣∣∣(h′( fδ(U)) − h′( fδ(Uik))
)
⟨Ũ⊺i Di,L(β)⟩

∣∣∣∣︸                                               ︷︷                                               ︸
(a)

+
∣∣∣∣E [

h′( fδ(Uik))⟨Ũ⊺i Di,L(β)⟩
]∣∣∣∣︸                              ︷︷                              ︸

(b)

.

For the term (a), we use Cauchy-Schwarz to say that

E
∣∣∣∣(h′( fδ(U)) − h′( fδ(Uik))

)
⟨Ũ⊺i Di,L(β)⟩

∣∣∣∣ ≤ √
E

[
h′( fδ(U)) − h′( fδ(Uik))

]2︸                                 ︷︷                                 ︸
(a1)

·

√
E⟨Ũ⊺i Di,L(β)⟩2︸                ︷︷                ︸

(a2)

.

To control these two terms, we first apply Lemma 25 to (a1) to obtain

(a1) ≤

√
C1k2

n
=

C2k
√

n
, (47)
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and then apply Lemma 26 to (a2) to say that

E⟨Ũ⊺i Di,L(β)⟩2
(i)
= E

〈
Ũ⊺i Di,L(β)e−α

∑
j∈Bi ℓ j(β)

⟨e−α
∑

j∈Bi ℓ j(β)
⟩i,k

〉2

i,k

(ii)
≤ E

〈 Ũ⊺i Di(β)e−α
∑

j∈Bi ℓ j(β)

⟨e−α
∑

j∈Bi ℓ j(β)
⟩i,k

2〉
i,k

= E

〈
E(i,k)


 Ũ⊺i Di(β)e−α

∑
j∈Bi ℓ j(β)

⟨e−α
∑

j∈Bi ℓ j(β)
⟩i,k

2
〉

i,k

(iii)
≤ E

sup
β∈S̃δ

E(i,k)


 Ũ⊺i Di(β)e−α

∑
j∈Bi ℓ j(β)

⟨e−α
∑

j∈Bi ℓ j(β)
⟩i,k

2


(iv)
≤ C1(k, α, γ), (48)

where (i) comes from noting that, for a general function g,

⟨g(β)⟩ =
∑
β∈S̃δ

wγ(β)g(β) =

∑
β∈S̃δ

e−nαR̂γn(β)g(β)∑
β′∈S̃δ

e−nαR̂γn(β′)
=

∑
β∈Sδ e−nαR̂γ,i,kn (β)g(β)e−α

∑
j∈Bi ω jℓ j(β)∑

β′∈S̃δ
e−nαR̂γn(β′)e−α

∑
j∈Bi ω jℓ j(β′)

=

〈
g(β)e−α

∑
j∈Bi ω jℓ j(β)

⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩i,k

〉
i,k

, (49)

(ii) follows from Jensen’s Inequality combined with the fact that |ŨT
i Di,L(β)|

a.s
≤ ŨT

i Di(β), (iii) from
the fact that

⟨g(β)⟩ ≤ supβ∈S̃δ g(β), (50)

and (iv) is exactly the statement of Lemma 26 for some C1(k, α, γ). Combining (47) and (48), we
conclude that

(a) ≤
C2kC1(k, α, γ)

√
n

=:
C2(k, α, γ)
√

n
. (51)

For the term (b), we first apply Lemma 27, which says that there exist D = D(k, α, γ, τ) and real
coefficients b0, . . . , bD such that

(b) ≤ τ +
D∑
ℓ=0

|bℓ| sup
β0,...,βℓ
∈S̃

∣∣∣∣∣∣∣∣E
Ũ⊺i Di,L(β0) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

)
∣∣∣∣∣∣∣∣, (52)

noting by definition that |bℓ| =
(
D
ℓ

)
≤ D! is bounded. Now, we define the Gaussian interpolator

V := sin(t)G̃ + cos(t)G
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with G̃ as defined in Lemma 28 being an identical copy of G. Moreover note that according to
Theorem 40 for all ϵ > 0 there exists gϵ(·) such that ∥gϵ∥∞ ≤ 1 and ∥gϵ∥Lipchitz ≤ 2ϵ−1 and such that∣∣∣gϵ(|ŨT

i β|, |U
T
i β|) − I(|Ũ

T
i β|, |U

T
i β| ≤ L)

∣∣∣ ≤ I[|ŨT
i β| ∈ [L − ϵ, L]

]
+ I

[
|UT

i β| ∈ [L − ϵ, L]
]
.

We note that

lim sup
n→∞

sup
β0,...,βℓ
∈S̃

∣∣∣∣E
Ũ⊺i Di(UBi , β0)gϵ(|ŨT

i β0|, |UT
i β0|) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

)
− E

Ũ⊺i Di,L(UBi , β0) exp
(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

) ∣∣∣∣
≤ lim sup

n→∞
sup
β0∈S̃

E
[∣∣∣∣Ũ⊺i Di(UBi , β0)

∣∣∣∣I(|UT
i β0| ∈ [L − ϵ, L])

]
+ E

[∣∣∣∣Ũ⊺i Di(UBi , β0)
∣∣∣∣I(|ŨT

i β0| ∈ [L − ϵ, L])
]

≤ lim sup
n→∞

sup
β0∈S̃

E
[∣∣∣∣Ũ⊺i Di(UBi , β0)

∣∣∣∣2]1/2 √
P
(
|UT

i β0| ∈ [L − ϵ, L]
)
+ P

(
|ŨT

i β0| ∈ [L − ϵ, L]
)

Using assumption 3 we know that

lim sup
n→∞

sup
β0∈S̃

E
[∣∣∣∣Ũ⊺i Di(UBi , β0)

]]
< ∞.

Moreover we note that

P
(
|UT

i β0| ∈ [L − ϵ, L]
)
= E

(
Φc

(L − ϵ − sin(t)XT
i β0

cos(t)

))
− E

(
Φc

(L − sin(t)XT
i β0

cos(t)

))
≤

ϵ

cos(t)
E
(
φ
(L − ϵ − sin(t)XT

i β0

cos(t)

))
≤

ϵ

cos(t)

Similarly we can obtain that

P
(
|ŨT

i β0| ∈ [L − ϵ, L]
)
≤

ϵ

sin(t)
.

Hence we obtain that there is a constant C3 > 0 such that

lim sup
n→∞

sup
β0,...,βℓ
∈S̃

∣∣∣∣E
Ũ⊺i Di(UBi , β0)gϵ(|ŨT

i β0|, |UT
i β0|) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

) (53)

− E

Ũ⊺i Di,L(UBi , β0) exp
(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

) ∣∣∣∣ (54)

≤ C3
√
ϵ. (55)
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Moreover we note that

lim sup
n→∞

sup
β0,...,βℓ
∈S̃

∣∣∣∣∣∣∣∣E
Ũ⊺i Di(UBi , β0)gϵ(|ŨT

i β0|, |UT
i β0|) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

)
∣∣∣∣∣∣∣∣

(i)
≤ lim sup

n→∞
sup
β0,...,βℓ
∈S̃

∣∣∣∣∣∣∣∣E
Ṽ⊺i Di(VBi , β0)gϵ(|ṼT

i β0|, |VT
i β0|) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,V
⊺
j βr)

)
∣∣∣∣∣∣∣∣

= lim sup
n→∞

sup
β0,...,βℓ
∈S̃

∣∣∣∣∣∣∣∣E
E(gϵ(|ṼT

i β0|, |VT
i β0|)Ṽi

∣∣∣∣(V j)
)⊺
Di(VBi , β0) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,V
⊺
j βr)

)
∣∣∣∣∣∣∣∣

(ii)
= 0. (56)

Above, (i) follows from the second statement of Lemma 28 coupled with Assumption 5, since we
know that the function

g(XBi B,GBi B) := Ũ⊺i Di(UBi , β0)gϵ(|ṼT
i β0|, |VT

i β0|) exp
(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

)
,

where B := (β0, . . . , βℓ) ∈ Rp×(ℓ+1) is locally Lipschitz as all of its components are, and is also
square integrable as

sup
B
E

[
g(XBi B,GBi B)2

]
≤ sup

B
E

[(
Ũ⊺i Di(β0)

)2
]
≤ C(k, γ) (57)

by the argument in (59) and (61) of Lemma 26. Further, (ii) follows from independence of Ṽi from
(V j), as

E[ṼiV
⊺
j ] = sin(t) cos(t)E[XiX

⊺
j ] − sin(t) cos(t)E[GiG

⊺
j ] = 0,

and we know that two zero-covariance Gaussians are necessarily independent of each other, com-
bined with the fact that x → gϵ(xTβ0,VT

i β0)x is a symmetric function. We may thus combine (51),
(52), (53) and (56) to conclude

lim sup
n→∞

∣∣∣∣E [
−h′ ( fδ(U)) ⟨Ũ⊺i Di,L(β)⟩

]∣∣∣∣ ≤ lim sup
n→∞

C2(k, α, γ)
√

n
+ τ + C3

√
ϵ = τ + C3

√
ϵ, (58)

As the dependence on ϵ is arbitrary we get the desired result.

H.3.2. UPPER BOUNDS ON EXPECTATIONS & APPROXIMATIONS

The next set of lemmas are used to bound various expectations that appear in the proofs of our main
results. Throughout this subsection i ≤ n designates an index. We assume that (X j, y j(X j)) and
(G j, y j(G j)) are generated under Assumptions 2-5 and that Var(G) = Var(X). In addition, suppose
that the block (X j, y j(X j)) j∈Bi is independent from (X j, y j(X j)) j<Bi . We begin with a Lindeberg
bound.
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Lemma 25 (Lindeberg Difference Bound) Let α, δ > 0. Then there exists C > 0 such that for
each t ∈ [0, π2 ] and n sufficiently large,

E
([

h′( fδ(U)) − h′( fδ(Uik))
]2
)
≤

Ck2

n
.

Proof By the Lipschitzness of h′, we first have

∣∣∣h′( fδ(U)) − h′( fδ(Uik))
∣∣∣ ≤ ∥h′∥Lip

∣∣∣ fδ(U) − fδ(Uik)
∣∣∣

(i)
≤

C1

nα

∣∣∣∣∣∣∣∣log


∑
β exp

[
−nαR̂γn(β; η,U)

]
∑
β exp

[
−nαR̂γn(β; η,Uik)

]
∣∣∣∣∣∣∣∣

(ii)
≤

C1

nα

kα log(2) +
〈
α

∑
j∈Bi

ω jℓ(η j,U
⊺
j β)

〉
i,k


≤

C1

n

k + 〈 ∑
j∈Bi

ω jℓ(η j,U
⊺
j β)

〉
i,k

 ,

where (i) is because h ∈ H , and (ii) is via Jensen’s inequality on the natural logarithm and the fact
that ℓ(a, 0) = log(2) for any a ∈ R. Thus, we have

E
[
h′( fδ(U)) − h′( fδ(Uik))

]2
≤

C1

n2

E〈 ∑
j∈Bi

ω jℓ(η j,U
⊺
j β)

〉2

i,k
+ kE

〈 ∑
j∈Bi

ω jℓ(η j,U
⊺
j β)

〉
i,k
+ k2

 .
From here, we can first notice that

log
(
1 + e−x) ≤ |x| + 1 for all x ∈ R,

and thus, using
∣∣∣η j

∣∣∣ = 1, ω j ≤ 1, and Cauchy-Schwarz, we can say that

∑
j∈Bi

ω jℓ(η j,U
⊺
j β) ≤

∑
j∈Bi

(∣∣∣∣η jU
⊺
j β

∣∣∣∣ + 1
)

≤ k + ∥β∥
∑
j∈Bi

∥U j∥,
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and so

E
〈 ∑

j∈Bi

ω jℓ(η j,U
⊺
j β)

〉
i,k
≤ k +

∑
j∈Bi

E
〈
∥β∥ ∥U j∥

〉
i,k

≤ k +
∑
j∈Bi

E

∥U j∥ sup
β∈S̃δ

∥β∥


≤ k + L

√
p
∑
j∈Bi

E
[
∥U j∥

]
(i)
≤ k + L

√
p
∑
j∈Bi

√√ p∑
k=1

E[U2
jk]

(ii)
≤ k + Lk

√
p sup

j

√
Tr(Σ j)

(iii)
≤ C2k

√
p,

where (i) is via Jensen’s Inequality, (ii) is because

E
[
U2

jk

]
= E

[
sin2(t)X2

jk + cos2(t)G2
jk + sin(t) cos(t)X jkG jk

]
= (Σ j)k,k

(
sin2(t) + cos2(t)

)
= (Σ j)k,k,

and (iii) is via Lemma 44 and the fact that

Tr(Σ j) =
p∑

i=1

⟨Σ jei, ei⟩ ≤

p∑
i=1

∥Σ j∥op ≤ p∥Σ j∥op = O(1),

where the last inequality comes from the scaling of U. Using an identical argument and the fact that

E
〈 ∑

j∈Bi

ω jℓ(η j,U
⊺
j β)

〉2

i,k
≤ E

〈( ∑
j∈Bi

ω jℓ(η j,U
⊺
j β)

)2〉
i,k
,

we similarly obtain

E
〈 ∑

j∈Bi

ω jℓ(η j,U
⊺
j β)

〉2

i,k
≤ C3k2 p,

and thus

E
([

h′( fδ(U)) − h′( fδ(Uik))
]2
)
≤

C1

n2

(
C3k2 p + C2k2 √p + k2

)
≤

Ck2

n

for n sufficiently large.

Lemma 26 (Second Moment Bound) There exists C(k, α, γ) > 0 such that for every t ∈
[
0, π2

]
and i = 1, . . . , n, we have

sup
β∈S̃

E(i,k)


 Ũ⊺i Di(β)e−α

∑
j∈Bi ω jℓ j(β)

⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩i,k

2 ≤ C(k, α, γ).
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Proof Fix some β ∈ S̃. We may bound

E(i,k)


 Ũ⊺i Di(β)e−α

∑
j∈Bi ω jℓ j(β)

⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩i,k

2 (i)
≤ E(i,k)

[(
Ũ⊺i Di(β)

)4
]1/2
E(i,k)

( e−α
∑

j ω jℓ j(β)

⟨e−α
∑

j ω jℓ j(β)⟩i,k

)41/2

(ii)
≤ E

[(
Ũ⊺i Di(β)

)4
]1/2 〈

E
[
e4α

∑
j ω jℓ j(β)

] 〉1/2

i,k

≤ E
[(

Ũ⊺i Di(β)
)4

]1/2

︸                 ︷︷                 ︸
(a)

sup
β
E

[
e4α

∑
j ω jℓ j(β)

]1/2

︸                         ︷︷                         ︸
(b)

,

where (i) is via Cauchy-Schwarz, and (ii) is from the fact that E(i,k)[ · ] and ⟨ · ⟩i,k commute due
to wi,k

γ (β) only being a function of (U j) j<Bi , and from applying Jensen’s Inequality to the convex
function x−4, using the fact that

α
∑
j∈Ni

ω jℓ j(β) ≥ 0 =⇒ exp

−α ∑
j∈Ni

ω jℓ j(β)

 ≤ 1.

Also in (ii), note that the conditional expectation has disappeared due to block dependence. For the
term (a), we can notice that

∣∣∣Ũ⊺i Di(β)
∣∣∣ =

∣∣∣∣∣∣∣∣ηiωiσiβŨ
⊺
i β +

∑
j∈Bi

ω jσ jβη
′
ja jiU

⊺
j βŨ⊺i β

∗

∣∣∣∣∣∣∣∣
(i)
≤

∣∣∣Ũ⊺i β∣∣∣ + 3
γ

∣∣∣Ũ⊺i β∗∣∣∣ ∑
j∈Bi

∣∣∣∣U⊺j β∣∣∣∣, (59)

where (i) is from ηi, ωi, σiβ, a ji ≤ 1 and Lemma 21 bounding
∣∣∣∣η′j∣∣∣∣. From here, we know that since

the rows of X and G are sub-Gaussian by Assumption 3, so must those of U and Ũ be as well, since

∥Ui∥ψ2 = ∥ sin(t)Xi + cos(t)Gi∥ψ2 ≤ |sin(t)|∥Xi∥ψ2 + |cos(t)|∥Gi∥ψ2 ≤

√
2KX
√

n
,

and similarly for Ũ. This further implies that for any β ∈ Sp we have

∥U⊺i β∥ψ2 ≤

√
2KX∥β∥
√

n

≤

√
2KXL

√
p

√
n

≤ C1 (60)
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for n sufficiently large, and again this holds for Ũ⊺i β as well. We conclude by a multinomial expan-
sion that

E
[(

Ũ⊺i Di(β)
)4

] (i)
≤

4∑
ℓ=0

(
4
ℓ

)
E

∣∣∣Ũ⊺i β∣∣∣4−ℓ 3ℓ

γℓ

∣∣∣Ũ⊺i β∗∣∣∣ℓ
∑

j∈Bi

∣∣∣∣U⊺j β∣∣∣∣

ℓ

(ii)
≤

486
γ4

4∑
ℓ=0

E

∣∣∣Ũ⊺i β∣∣∣4−ℓ∣∣∣Ũ⊺i β∗∣∣∣ℓ
∑

j∈Bi

∣∣∣∣U⊺j β∣∣∣∣

ℓ

(iii)
≤

162
γ4

4∑
ℓ=0

E

∣∣∣Ũ⊺i β∣∣∣12−3ℓ
+

∣∣∣Ũ⊺i β∗∣∣∣3ℓ +
∑

j∈Bi

∣∣∣∣U⊺j β∣∣∣∣


3ℓ
(iv)
≤

162
γ4

4∑
ℓ=0

l
(
C2
√

12 − 3ℓ
)12−3ℓ

+
(
C3
√

3ℓ
)3ℓ
+

(
C4k
√

3ℓ
)3ℓ

(v)
≤ C5γ

−4k12, (61)

where (i) is from (59) and binomial expansion, (ii) is because ℓ ≤ 4 and maxℓ
(
4
ℓ

)
= 6, (iii) is the

AM-GM Inequality for n = 3, (iv) is from Proposition 2.5.2 in Vershynin (2018) on equivalent
properties of sub-Gaussian random variables, and (v) is from the fact that

3ℓ ∨ (12 − 3ℓ) ≤ 12 for all 0 ≤ ℓ ≤ 4.

For the term (b), we once again use that |ωi| ≤ 1 and log
(
1 + e−x) ≤ |x| + 1 for x ∈ R to say that

E
[
e4α

∑
j ω jℓ j(β)

]
≤ E

[
e4α

∑
j |U
⊺
j β|+1

]
(i)
≤ e4kαE

[
e4α

∑
j |U
⊺
j β|

]
≤ e4kαE

∏
j∈Bi

e4α|U⊺j β|


(ii)
≤ e4kα

∏
j∈Bi

E
[
e4kα|U⊺j β|

]
1/k

(iii)
≤ e4kα(µ+1)

∏
j∈Bi

E
[
e4kα(|U⊺j β|−µ)

]
1/k

(iv)
≤ e4kα(µ+1)eC1k2K2

Xα
2

≤ eC2k2α2
, (62)

where (i) is via |Bi| = k, (ii) is via Hölder’s Inequality, (iii) is from adding and subtracting µ :=
E[|U⊺j β|] in the exponent, which satisfies

µ ≤
√
E

[
(U⊺j β)2

]
=

√
β⊺Σ jβ ≤ ∥β∥ ∥Σ j∥

1/2
op ≤

CKXL
√

p
√

n
≤ C3
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for n sufficiently large, by Jensen’s Inequality and Lemma 44, and (iv) is via sub-Gaussianity of
the centered version of U⊺j β, which is sub-Gaussian by Lemma 2.6.8 of Vershynin (2018), and thus
satisfies Condition (v) of Proposition 2.5.2 of the same text. Since this holds for all β ∈ S̃, we
conclude by combining (61) and (62) that

sup
β∈S̃

E(i,k)


 Ũ⊺i Di(β)e−α

∑
j∈Bi ω jℓ j(β)

⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩i,k

2 ≤ C5γ
−2k6 exp

(
C2k2α2

)
=: C(k, α, γ).

The following lemma employs a technique developed in Montanari and Saeed (2022), which
will allow us to convert a complicated term involving the inverse function 1/x into one involving a
polynomial that is much more straightforward to control.

Lemma 27 (Polynomial Approximation) Let α, δ, γ, τ > 0. Then there exists D = D(k, α, γ, τ)
and coefficients b0, . . . , bD ∈ R such that∣∣∣∣E [

h′( fδ(Uik))⟨Ũ⊺i Di(β)⟩
]∣∣∣∣

≤ τ +

D∑
ℓ=0

|bℓ| sup
β0,...,βℓ
∈S̃

∣∣∣∣∣∣∣∣E
Ũ⊺i Di(β0) exp

(
− α

ℓ∑
r=0

∑
j∈Bi

ω jℓ(η j,U
⊺
j βr)

)
∣∣∣∣∣∣∣∣.

Proof Since Uik was constructed to be independent of UBi and ŨBi , we first expand this quantity as∣∣∣∣E [
h′( fδ(Uik)⟨Ũ⊺i Di(β)⟩

]∣∣∣∣
(i)
=

∣∣∣∣E [
E(i,k)

[
h′( fδ(Uik)⟨Ũ⊺i Di(β)⟩

]]∣∣∣∣
(ii)
=

∣∣∣∣E [
h′( fδ(Uik)E(i,k)⟨Ũ

⊺
i Di(β)⟩

]∣∣∣∣
≤ ∥h′∥∞ · E

∣∣∣E(i,k)⟨Ũ
⊺
i Di(β)⟩

∣∣∣
(iii)
≤ E

∣∣∣∣∣∣∣∣E(i,k)

〈
Ũ⊺i Di(β)e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

⟨e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β)
⟩i,k

〉
i,k

∣∣∣∣∣∣∣∣
(iv)
= E

∣∣∣∣∣∣∣∣
〈
E(i,k)

 Ũ⊺i Di(β)e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β)

⟨e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β)
⟩i,k

〉
i,k

∣∣∣∣∣∣∣∣
(v)
≤ E

[
sup
β0∈S̃

∣∣∣∣∣∣E(i,k)

 Ũ⊺i Di(β0)e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β0)

⟨e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β)
⟩i,k


∣∣∣∣∣∣︸                                            ︷︷                                            ︸

(a)

]
, (63)

where (i) is via the law of total expectation, (ii) is by the independence mentioned above, (iii) is by
definition of h ∈ H and the ability to rewrite ⟨Ũ⊺i Di(β)⟩ as done previously in (49), (iv) is because
E(i,k)[ · ] and ⟨ · ⟩i,k commute with each other, and (v) is the same as in (50).
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Now, we will approximate the inverse function x−1 by a polynomial by defining the functions

QD(x) :=
D∑
ℓ=0

(1 − x)ℓ =
D∑
ℓ=0

bℓxℓ, RD(x) :=
1
x
− QD(x)

for some degree D and x ∈ (0, 1]. Recall from Lemma 26 that there exists C(k, α, γ) such that

sup
β∈S̃

E(i,k)


 Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)

⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩i,k

2 ≤ C(k, α, γ). (64)

Thus we may choose the degree of our polynomial to be the exact D = D
(
k, α, τ2/C(k, α, γ)

)
such

that, by Lemma 43, we have

E(i,k)

[
RD

(
⟨e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)
⟩i,k

)2]
<

τ2

C(k, α, γ)
. (65)

We conclude that

(a)
(i)
≤

∣∣∣∣E(i,k)
[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)QD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)]∣∣∣∣

+
∣∣∣∣E(i,k)

[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)RD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)]∣∣∣∣

(ii)
≤

∣∣∣∣E(i,k)
[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)QD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)]∣∣∣∣

+ E(i,k)

[(
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)

)2
]1/2
E(i,k)

[
RD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)2

]1/2

(iii)
≤

∣∣∣∣E(i,k)
[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)QD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)]∣∣∣∣ + τ, (66)

where (i) is via the Triangle Inequality, (ii) via Cauchy-Schwarz, and (iii) and (64) with (65). To
finish, we rewrite the first term in (66) like so: recall that if X1, . . . , Xℓ are ℓ i.i.d. random variables
with the same distribution as some random variable X, then

E[eX]ℓ = E[eX1] · · ·E[eXℓ] =
ℓ∏

r=1

E[eXr ] = E

 ℓ∏
r=1

eXr

 = E [
e
∑ℓ

r=1 Xr

]
,

which means that we can say∣∣∣∣E(i,k)
[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)QD

(
⟨e−α

∑
j∈Bi ω jℓ j(β)

⟩i,k
)]∣∣∣∣

=

∣∣∣∣∣∣∣E(i,k)

Ũ⊺i Di(β0)e−α
∑

j∈Bi ω jℓ j(β0)
D∑
ℓ=0

bℓ⟨e−α
∑

j∈Bi ω jℓ j(β)
⟩ℓi,k


∣∣∣∣∣∣∣

≤

D∑
ℓ=0

|bℓ|
∣∣∣∣E(i,k)

[
Ũ⊺i Di(β0)e−α

∑
j∈Bi ω jℓ j(β0)

⟨e−α
∑

j∈Bi ω jℓ(η j,U
⊺
j β)
⟩ℓi,k

]∣∣∣∣
≤

D∑
ℓ=0

|bℓ|
∣∣∣∣∣〈E(i,k)

[
Ũ⊺i Di(β0)e−α

∑ℓ
r=0

∑
j∈Bi ω jℓ j(βr)

]〉
i,k,ℓ

∣∣∣∣∣
≤

D∑
ℓ=0

|bℓ| sup
β1,...,βℓ
∈S̃

∣∣∣∣∣E [
Ũ⊺i Di(β0)e−α

∑ℓ
r=0

∑
j∈Bi ω jℓ j(βr)

]∣∣∣∣∣, (67)
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where the final expectation is unconditional due to independence, and ⟨ · ⟩i,k,ℓ represents the ℓ-
dimensional joint expectation with marginals following ⟨ · ⟩i,k. Combining (66) and (67) with the
supremum over β0 in (63), we conclude the result.

The following lemma allows us to convert the statement about Gaussian approximation from
Assumption 5, which involves k terms, to one that involves arbitrarily many, which will be important
when combined with the polynomial derived from the previous lemma.

Lemma 28 (k-to-many Betas) Let ℓ ≥ 1 and g : R2ℓk → R. Then

1. If g is bounded Lipschitz and

K B sup
f∈F

θ∈Sk−1

sup
(β1,...,βk)
∈Sk

p

∣∣∣∣∣∣∣E f

 k∑
i=1

θiX
⊺
i βi

 − E f

 k∑
i=1

θiG
⊺
i βi


∣∣∣∣∣∣∣ ≤ 1 ,

then there exists some Ck,l > 0 such that

sup
B=(β1,...,βℓ)
∈S̃ℓ

∣∣∣∣E [
g(XBi B, G̃Bi B) − g(GBi B, G̃Bi B)

]∣∣∣∣
≤ Ck,l

(
∥g∥Lip + ∥g∥∞

(
E[∥XBi B∥∞ + ∥GBi B∥∞ + 2∥G̃Bi B∥∞] + 1

))
K

1
8kl−4

where G̃ is an independent copy of G and F is as in Assumption 5.

2. If g is locally Lipschitz & square-integrable and Assumption 5 holds, then

sup
B=(β1,...,βℓ)
∈S̃ℓ

∣∣∣∣E [
g(XBi B, G̃Bi B) − g(GBi B, G̃Bi B)

]∣∣∣∣ n→∞
−−−−→ 0.

Proof To prove the first statement, let g : R2ℓk → R be a bounded Lipschitz function. For notational
simplicity, we may assume WLOG that the block Bi begins at index i, meaning

XBi :=


Xi
...

Xi+k−1

 ∈ Rk×p, B :=

 | |

β1 · · · βℓ
| |

 ∈ S̃ℓ ⊆ Rp×ℓ.

Let us define the following quantities:

M := B⊺ ⊗ I2k ∈ R
2kℓ×2kp u := vec

(
XBi

G̃Bi

)
, v := vec

(
GBi

G̃Bi

)
∈ R2kp×1,

where vec(A) is the vectorized version of a matrix A. This allows us to say that

g(XBi B, G̃Bi B) − g(GBi B, G̃Bi B) = g(Mu) − g(Mv).
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Now, let σ > 0 and define Z ∼ N(0, σ2I2kℓ) independent of all other quantities. Then by the
Triangle Inequality,∣∣∣E [

g(Mu) − g(Mv)
]∣∣∣ ≤ ∣∣∣E [

g(Mu) − g(Mu + Z)
]∣∣∣ + ∣∣∣E [

g(Mv) − g(Mv + Z)
]∣∣∣ (68)

+
∣∣∣E [

g(Mu + Z) − g(Mv + Z)
]∣∣∣. (69)

The two quantities in (68) are easily bounded, as∣∣∣E [
g(Mu) − g(Mu + Z)

]∣∣∣ ≤ E|g(Mu) − g(Mu + Z)|

≤ ∥g∥Lip · E∥Z∥2
≤ ∥g∥Lip · σ

√
2kℓ, (70)

and similarly for
∣∣∣E [

g(Mv) − g(Mv + Z)
]∣∣∣. To control the quantity in (69), for R > 0 we consider

the functions

gR(y) B (g(y) − ḡ(y)) I{∥y∥∞≤R} ,

ḡ(y) B
∑

r≤2k,r′≤l
g(y(r,r′)(R)) − g(y(r,r′)(−R))

2R
yr,r′er,r′ ,

where y(r,r′)(R) ∈ R2kl is a copy of y with the (r, r′)-th coordinate replaced by R, yr,r′ is the (r, r′)-
th coordinate of y and er,r′ ∈ R

2kl is the standard Euclidean basis vector with 1 at the position
(r, r′). The support of the function gR is contained within the hyperrectangle {y ∈ R2kl | ∥y∥∞ ≤ R}.
Moreover, gR is continuous inside the hyperrectangle and by the choice of ḡ, gR agrees on the
boundary of the hyperrectangle. This allows us to extend gR to a continuous and ∥g∥Lip-Lipschitz
function g̃R that is 2R-periodic in each coordinate. By construction∣∣∣E[g(Mu + Z)] − E[g̃R(Mu + Z)]

∣∣∣
≤

∣∣∣E[g(Mu + Z) − g(Mu + Z)I{∥Mu+Z∥∞≤R}]
∣∣∣ + ∣∣∣E[ḡ(Mu + Z) I{∥Mu+Z∥∞≤R}]

∣∣∣
+

∣∣∣E[g̃R(Mu + Z) I{∥Mu+Z∥∞>R}]
∣∣∣

≤ ∥g∥∞ P(∥Mu + Z∥∞ > R) +
2kl ∥g∥∞

R
E[∥Mu + Z∥∞] + (1 + 2kl) ∥g∥∞ P(∥Mu + Z∥∞ > R)

≤
(2 + 4kl)∥g∥∞ E[∥Mu + Z∥∞]

R
, (71)

and the same bound holds with u replaced by v. We can now approximate g̃R coordinate-wise by
a truncated Fourier series. Since g̃R is continuous and ∥g∥Lip-Lipschitz, applying a well-established
result on uniform convergence of Fourier series to each coordinate (see e.g. Jackson (1930); Alimov
et al. (1992)) says that there exists some absolute constant C′ > 0 such that, for every N ∈ N,

∥g̃R − g̃(N)
R ∥∞ ≤ C′∥g∥Lip

log N
N

,

where the truncated Fourier series is given by

g̃(N)
R (y) B

∑
w∈{−N,...,N}2kl ei πw⊺y

R
( 1

(2R)2kl

∫
[0,2R]2kl

g̃R(t)e−i πw⊺t
R dt

)
.
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This implies that

∣∣∣E[g(Mu + Z) − g(Mv + Z)
]∣∣∣

≤
∣∣∣E[g(Mu + Z) − g̃R(Mu + Z)

]∣∣∣ + ∣∣∣E[g(Mv + Z) − g̃R(Mv + Z)
]∣∣∣

+
∣∣∣E[g̃(Mu + Z) − g̃(N)

R (Mu + Z)
]∣∣∣ + ∣∣∣E[g̃(Mv + Z) − g̃(N)

R (Mv + Z)
]∣∣∣

+ (⋆)
(71)
≤

(2 + 4kl) ∥g∥∞ E[∥Mu + Z∥∞ + ∥Mv + Z∥∞]
R

+
2C′∥g∥Lip log N

N
+ (⋆) , (72)

where

(⋆) B
∣∣∣E[g̃(N)

R (Mu + Z) − g̃(N)
R (Mv + Z)

]∣∣∣
=

∣∣∣∣∣ ∑
w∈{−N,...,N}2kl

(
E[ei πw⊺(Mu+Z)

R − ei πw⊺(Mv+Z)
R ]

)( 1
(2R)2kl

∫
[0,2R]2kl

g̃R(t)e−i πw⊺t
R dt

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
w∈{−N,...,N}2kl

(
E[ei πw⊺(Mu)

R − ei πw⊺(Mv)
R ]

)
e−

π2σ2∥w∥2

2R2
( 1

(2R)2kl

∫
[0,2R]2kl

g̃R(t)e−i πw⊺t
R dt

)∣∣∣∣∣
≤ ∥g∥∞

∑
w∈{−N,...,N}2kl

∣∣∣ψMu
(πw

R
)
− ψMv

(πw
R

)∣∣∣ e− π2σ2∥w∥2

2R2

= ∥g∥∞
∑

w∈{− N
R ,...,

N
R }

2kl

∣∣∣ψMu(πw) − ψMv(πw)
∣∣∣ e− π2σ2∥w∥2

2 . (73)

To control the difference of characteristic functions, let t ∈ R2kℓ, and decompose it as t = (s, s̃) for
s, s̃ ∈ Rkℓ. Then we have that

|ψMu(t) − ψMv(t)|2
(i)
=

(
E

(
eivec(XBi B)⊺s

)
E

(
eivec(G̃Bi B)⊺ s̃

)
− E

(
eivec(GBi B)⊺s

)
E

(
eivec(G̃Bi B)⊺ s̃

))2

(ii)
≤ 2

∣∣∣∣E (
eivec(XBi B)⊺s

)
− E

(
eivec(GBi B)⊺s

)∣∣∣∣, (74)

where (i) is because the characteristic function factors due to G̃ y (X,G), and (ii) is because the
characteristic function always has modulus in [0, 1], and (x − y)2 ≤ 2|x − y| for x, y ∈ [0, 1]. From
here, let us now decompose our vector s ∈ Rkℓ into k subvectors by defining

sr := sr(ℓ−1)+1:rℓ =
(
sr(ℓ−1)+1, . . . , srℓ

)
∈ Rℓ
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for each r = 1, . . . , k. Then, we expand

vec(XBi B)⊺s =
k∑

r=1

(X⊺r+i−1β1, . . . , X
⊺
r+i−1βℓ)

⊺sr

=

k∑
r=1

X⊺r+i−1(Bsr)

=

k∑
r=1

X⊺r+i−1

ℓ∑
t=1

srtβt

=

k∑
r=1

∥sr∥1X⊺r+i−1

ℓ∑
t=1

|srt|

∥sr∥1
sgn(srt)βt

=:
k∑

r=1

∥sr∥1X⊺r+i−1νr, (75)

where each νr :=
∑ℓ

t=1
|srt |
∥sr∥1

sgn(srt)βt is in Sp, since if we define

(βmix)rt := sgn(srt)βt ∈ Sp, λrt :=
|srt|

∥sr∥1
∈ [0, 1],

then we know that since Sp is symmetric and convex and
∑

t λrt = 1, and since Sp contains the
convex closure of S̃ , it must be that

νr =

ℓ∑
t=1

|srt|

∥sr∥1
sgn(srt)βt = λr1β̃r1 + . . . + λrℓβ̃rℓ ∈ Sp.

Thus we conclude that

sup
B
|ψMu(t) − ψMv(t)|2

(i)
≤ 2 sup

B

∣∣∣∣E (
ei

∑
r ∥sr∥1X⊺r+i−1βr

)
− E

(
ei

∑
r ∥sr∥1G⊺r+i−1βr

)∣∣∣∣
≤ 2 sup

B

∣∣∣∣∣∣∣∣E
ei
√∑

r ∥sr∥
2
1
∑

r
∥sr∥1X⊺r+i−1βr
√∑

r ∥sr∥21

 − E
ei
√∑

r ∥sr∥
2
1
∑

r
∥sr∥1G⊺r+i−1βr
√∑

r ∥sr∥21


∣∣∣∣∣∣∣∣

≤ 2 sup
θ∈Sk−1

sup
B

∣∣∣∣∣E (
ei
√∑

r ∥sr∥
2
1
∑

r θrX⊺r+i−1βr

)
− E

(
ei
√∑

r ∥sr∥
2
1
∑

r θrG
⊺
r+i−1βr

)∣∣∣∣∣
(ii)
≤ 2

√∑
r

∥sr∥
2
1 sup

f∈F
θ∈Sk−1

sup
(β1,...,βk)
∈Sk

p

∣∣∣∣∣∣∣∣E f

 k∑
j=1

θ jX
⊺
j+k−1β j

 − E f

 k∑
j=1

θ jG
⊺
j+k−1β j


∣∣∣∣∣∣∣∣︸                                                                      ︷︷                                                                      ︸

=K

.

Here, (i) is via (74) and (75), and (ii) is because the map x 7→ c−1eicx is 1-Lipschitz and bounded by
c−1. Now let wr,r′ be the r(l − 1) + r′-th coordinate of w, where 1 ≤ r ≤ 2k and 1 ≤ r′ ≤ l. Plugging
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the above bound into (73), we obtain

(⋆) ≤ ∥g∥∞
√

2K
∑

w∈{− N
R ,...,

N
R }

2kl

(∑k
r=1

(∑l
r′=1 |πwr,r′ |

)2)1/4
e−

π2σ2∥w∥2
2

≤ ∥g∥∞
√

2K (kl2)1/4 πN
R

∑
w∈{− N

R ,...,
N
R }

2kl e−
π2σ2∥w∥2

2

= ∥g∥∞
√

2K (kl2)1/4 πN
R

(
1 + 2R

∑
w′∈{1, 1

R ,...,
N
R }

1
R

e−
π2σ2(w′)2

2
)2kl

≤ ∥g∥∞
√

2K (kl2)1/4 πN
R

(
1 + 2R

∫ ∞
0

e−
π2σ2(w′)2

2 dw′
)2kl

= ∥g∥∞
√

2K (kl2)1/4 πN
R

(
1 +

R
√

2
σ

)2kl
.

Combining this bound with (70) and (72) by the triangle inequality, we get∣∣∣E[g(Mu) − g(Mv)
]∣∣∣

≤ ∥g∥Lipσ
√

2kl +
(2 + 4kl) ∥g∥∞ E[∥Mu + Z∥∞ + ∥Mv + Z∥∞]

R
+

2∥g∥LipC′ log N
N

+ ∥g∥∞
√

2K (kl2)1/4 πN
R

(
1 +

R
√

2
σ

)2kl

≤ ∥g∥Lipσ
√

2kl +
(2 + 4kl) ∥g∥∞

(
E[∥Mu∥∞ + ∥Mv∥∞] + 2klσ

)
R

+
2∥g∥LipC′ log N

N

+ ∥g∥∞
√

2K (kl2)1/4 πN
R

(
1 +

R
√

2
σ

)2kl
,

where we have used the Markov inequality and a union bound. Now choose

σ = K
1

8kl−4 , N = R = ⌊K−
1

8kl ⌋ .

We get that for some absolute constant C > 0,∣∣∣E[g(Mu) − g(Mv)
]∣∣∣

≤ C
(
∥g∥Lip

(√
2kl + 1

)
+ ∥g∥∞(1 + 2kl)

(
E[∥Mu∥∞ + ∥Mv∥∞] + kl

)
+ ∥g∥∞ 32kl (kl2)1/4

)
K

1
8kl−4

≤ Ck,l
(
∥g∥Lip + ∥g∥∞

(
E[∥XBi B∥∞ + ∥GBi B∥∞ + 2∥G̃Bi B∥∞] + 1

))
K

1
8kl−4

for some Ck,l > 0. We also remark that by sub-Gaussianity, the term E[∥XBi B∥∞ + ∥GBi B∥∞ +
2∥G̃Bi B∥∞] is O(kl).

To prove the second statement of the lemma, we will sketch the outline and refer to Lemma 30
of Montanari and Saeed (2022) for the specific details of a similar approach. We fix B > 0, and
consider gB, which forces g to be bounded Lipschitz like so:

gB(x) := g (x) I (∥x∥ ≤ B) + g (Bx/∥x∥) I (∥x∥ > B) .

We may then apply the first statement of the lemma to gB, which under Assumption 5 converges to
zero. To bound the leftover differences of the form

sup
B

∣∣∣E [
g(Mu) − gB(Mu)

]∣∣∣,
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we use square-integrability of g and the fact that

g(Mu) − gB(Mu) , 0 =⇒ ∥Mu∥ > B,

which by sub-Gaussianity of all 2kℓ components of Mu occurs with probability bounded by
C1kℓ exp

(
−c2B2/kℓ

)
. Sending B→ ∞ thus concludes the result.

Appendix I. Comparing training loss with deleted blocks to the original training loss

Let M, m̃ ∈ Z+ be fixed. Define new matrices XM,GM ∈ Rn′×p as

XM := (X1, . . . , XM, XM+m̃+1, . . . , X2M+m̃, X2M+2m̃+1, . . .)⊺

GM := (G1, . . . ,GM,GM+m̃+1, . . . ,G2M+m̃,G2M+2m̃+1, . . .)⊺.

We show that the training loss minβ R̂n(β; X) and minβ R̂n′(β; XM) are close if M is large.

Theorem 29 (Equivalence of losses) Let (Xi, yi(Xi))n
i=1 and (Gi, yi(Gi))n

i=1 be generated under As-
sumptions 2-4, where each Gi ∼ N (0,Var(Xi)). Then if assumption 8(i) is respected then there
exists a constant Cd such that

dH

(
min
β

R̂n(β; X),min
β

R̂n′(β; XM)
)
≤Cd

max(m, m̃)
M

√
M + m̃ (76)

dH

(
min
β

R̂n(β; G),min
β

R̂n′(β; GM)
)
≤Cd

max(m, m̃)
M

√
M + m̃ (77)

If instead assumption 8(ii) is respected then there exists a constant C′d such that

dH

(
min
β

R̂n(β; X),min
β

R̂n′(β; XM)
)
≤C′d

max(S, m̃)
M

√
M + m̃ (78)

dH

(
min
β

R̂n(β; G),min
β

R̂n′(β; GM)
)
≤C′d

max(S, m̃)
M

√
M + m̃ (79)

Proof of Theorem 29 We present the proof in the m-dependent case but the proof is identical in
the other case. Similarly we show the proof only for X as the proof is equivalent for G. Let M ∈ Z+

be fixed. Define new matrices XM ∈ Rn′×p as

XM := (X1, . . . , XM, XM+m̃+1, . . . , X2M+m̃, X2M+2m+1, . . .)⊺

noting that

n′ ∈ [n − (r + 1)m + 1, n − rm] ⊂
[
n

M
M + m̃

− m, n
M

M + m̃
+ m

]
= [nq − m̃, nq + m̃], (80)

where r := ⌊ n
M+m̃⌋ and q := M

M+m̃ . We may also define

Xm̃ := (XM+1, . . . , XM+m̃, X2M+m̃+1, . . . , X2M+2m̃, . . . )
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so that every vector Xi is either in XM or Xm. For simplicity we can also write these indexing sets as

BM := {1, . . . , M, M + m̃ + 1, . . . , 2M + m, . . . , }

Bm := [n] \ BM.

By a triangle inequality argument we note that

dH

(
min
β

R̂n(β; X),min
β

R̂n′(β; XM)
)
= sup

h∈H

∣∣∣∣∣∣E
[
h
(
min
β

R̂n(β; X)
)
− h

(
min
β

R̂n′(β; XM)
)]∣∣∣∣∣∣

≤ sup
h∈H
E

∣∣∣∣∣∣h
(
min
β

R̂n(β; X)
)
− h

(
min
β

R̂n′(β; XM)
)∣∣∣∣∣∣

(i)
≤ E

∣∣∣∣∣min
β

R̂n(β; X) −min
β

R̂n′(β; XM)
∣∣∣∣∣

(ii)
=: E

∣∣∣R̂n(β̂; X) − R̂n′(β̃; XM)
∣∣∣, (81)

where (i) is via the Lipschitzness of h, and in (ii) we defined the minimizers β̂ := argminβR̂n(β; X)
and β̃ := argminβR̂n′(β; XM). We first control the difference inside the absolute value of (81) by
noting that, by definition of being minimizers,

R̂n(β̂; X) − R̂n′(β̃; XM) ≤
(
1 −

n
n′

)
R̂n(β̂) +

1
n′

∑
i∈Bm

ℓ
(
ηi, X

⊺
i β̃

)
≤

1
n′

∑
i∈Bm

ℓ
(
ηi, X

⊺
i β̃

)
R̂n′(β̃; XM) − R̂n(β̂; X) ≤

(
1 −

n′

n

)
R̂n′(β̃) −

1
n

∑
i∈Bm

ℓ
(
ηi, X

⊺
i β̂

)
≤

(
1 −

n′

n

)
R̂n′(β̃),

where the terms removed are because of the fact that the risk/loss is always positive and n > n′.
Now, we will use the fact that for any x ∈ R and a, b > 0, we have

x ≤ a, −x ≤ b =⇒ |x| ≤ a ∨ b ≤ a + b

to say that

∣∣∣R̂n(β̂; X) − R̂n′(β̃; XM)
∣∣∣ ≤ (

1 −
n′

n

)
R̂n′(β̃) +

1
n′

∑
i∈Bm

ℓ
(
ηi, X

⊺
i β̃

)
. (82)

For the first term on the right in (82), we note by definition of being a minimizer that

(
1 −

n′

n

)
R̂n′(β̃) ≤

(
1 −

n′

n

)
R̂n′(0) =

(
1 −

n′

n

)
log(2). (83)
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For the second term in (82), we have that

1
n′

∑
i∈Bm

ℓ
(
ηi, X

⊺
i β̃

) (i)
≤

1
n′

∑
i∈Bm

1 + |X⊺i β̃|

≤
n − n′

n′
+

1
n′

sup
β

∑
i∈Bm

|X⊺i β|

=
n − n′

n′
+

1
n′

sup
β

n∑
i=1

|X⊺i β|I(i ∈ Bm)

(ii)
≤

n − n′

n′
+

1
n′

sup
β

√√ n∑
i=1

|X⊺i β|
2

√√ n∑
i=1

I(i ∈ Bm)

=
n − n′

n′
+

√
n − n′

n′
∥X∥Sp , (84)

where (i) is because

log
(
1 + e−x) ≤ |x| + 1 for all x ∈ R,

and (ii) is via Cauchy-Schwarz. Combining (83) and (84), we obtain

E
∣∣∣R̂n(β̂; X) − R̂n′(β̃; XM)

∣∣∣ ≤ (
1 −

n′

n

)
log(2) +

n − n′

n′
+

√
n − n′

n′
E

[
∥X∥Sp

]
(85)

(i)
≤

(
1 −

n′

n

)
log(2) +

n − n′

n′
+

√
n − n′

n′
√

CLmp, (86)

where (i) is via Jensen’s Inequality with Corollary 20. From here we can use (21) to note that, for
these quantities involving both n and n′, we have

n′ ∈ nq ± m̃ =⇒
n′

n
∈ q ±

m̃
n
=⇒ lim

n→∞

n′

n
= q. (87)

Substituting this into (86) and using that q = M
M+m̃ , after some simplification we can conclude that

lim sup
n→∞

E
∣∣∣R̂n(β̂; X) − R̂n′(β̃; XM)

∣∣∣ ≤ (1 − q) log(2) +
(
1
q
− 1

)
+

√
CLmκ

q

√
1
q
− 1 (88)

≤ C2
max(m, m̃)

M

√
M + m̃. (89)

Appendix J. Verifying Assumption 5 for Different Data Augmentation Schemes

J.1. Random Cropping

The data augmentation procedure that we are considering in this subsection is the random cropping
method where a portion of the data is randomly set to 0. For a vector e := (ei) ∈ {0, 1}p and x ∈ Rp
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we write e · x := (eixi). Let (Ei) be an i.i.d sequence of random vectors in {0, 1}p and define the
random transformations ϕi(x) = Ei · x. We will prove that Assumption 5 holds for this type of data
augmentation procedure under general conditions. Let (Zi) a sequence of i.i.d vectors satisfying the
following condition

(Hcropping(κ)) E(Z1) = 0, sup
i
∥Z1,i∥4 < κ/

√
n.

Define
Xi := ϕi(Z⌈i/k⌉).

Lemma 30 Suppose that the assumption Hcropping(κ) holds and that the entries (Z1,i) are locally de-
pendent and write Ni the dependency neighborhood of Z1,i. Suppose that (E1,i) is locally dependent
and write Ñi the local dependency neighborhood of E1,i. Then if |Ni| × |Ñi| = o(nr/2) Assumption 5
holds for a sequence of random Gaussian vector (Gi) with covariance:

cov(Gi, j,Gm,l) =


pl(I( j = l) + I( j , l)p j)Var(Z1, j, Z1,l) if i = m
p j plcov(Z1, j, Z1,l) if |i − m| ≤ k, i , m
0 otherwise

where p j = P(E1, j = 1).

Proof Note that as the blocks (Xmk+1, . . . , X(m+1)k) are identically distributed it is enough to prove
Assumption 5 for m = 0. Denote Bi, j = ∪ j∈Ni Ñ j × [|1, k|]. Then we remark that the sequence (Xi) is
locally dependent and that the dependency neighborhood of Xi, j is Bi, j. The desired result follows
from Lemma 42 with q = 1.

J.2. Noise Injection

The data augmentation procedure that we are considering in this subsection is the noise injection
method where random Gaussian noise is injected to the entries. For vectors g := (gi), x := (xi) ∈ Rp

we write g · x := (gi + xi). Let (ni) be an i.i.d sequence of random vectors in Rp such that n1 ∼

N(0, σ2/nId) and define the random transformations ϕi(x) = ni · x. We will prove that Assumption 5
holds for this type of data augmentation procedure under general conditions. Let (Zi) be a sequence
of i.i.d vectors satisfying the following condition

(Hnoise(κ)) E(Z1) = 0, sup
i
∥Z1,i∥4 < κ/

√
n.

Define Xi := ϕi(Z⌈i/k⌉).

Lemma 31 Suppose that the assumption Hnoise(κ) holds for an absolute constant κ < ∞ and that
the entries (Z1,i) are locally dependent. Write Ni the dependency neighborhood of Z1,i. Suppose that
(n1,i) ∼ N(0, σ

2

n Id). Then if |Ni| = o(nr/2), Assumption 5 holds for a sequence of random Gaussian
vector (Gi) with covariance:

cov(Gi, j,Gm,l) =


cov(Z1, j, Z1,l) + δ j,lδi,mσ

2/n if i = m
cov(Z1, j, Z1,l) if |i − m| ≤ k, i , m
0 otherwise

.
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Proof Note that as the blocks (Xmk+1, . . . , X(m+1)k) are identically distributed it is enough to prove
Assumption 5 for m = 0. Denote Bi, j = Ni × [|1, k|]. Then we remark that the sequence (Xi) is
locally dependent and that the dependency neighborhood of Xi, j is Bi, j. The desired result follows
from Lemma 42 with q = 1.

J.3. Random Sign Flipping

The data augmentation procedure that we are considering in this subsection is the random sign-flip
method, where a portion of the data is has it sign randomly flipped. For a vector e := (ei) ∈ {−1, 1}p

and x ∈ Rp we write e · x := (eixi). Let (Ei) be an i.i.d sequence of random vectors in {−1, 1}p and
define the random transformations ϕi(x) = Ei · x. We will prove that Assumption 5 holds for this
type of data augmentation procedure under general conditions. Let (Zi) a sequence of i.i.d vectors
satisfying the following condition

(Hflip(κ)) E(Z1) = 0, sup
i
∥Z1,i∥4 < κ/

√
n.

Define
Xi := ϕi(Z⌈i/k⌉).

Lemma 32 Suppose that the assumption Hflip(κ) holds and that the entries (Z1,i) are locally depen-
dent and write Ni the dependency neighborhood of Z1,i. Suppose that (E1,i) is locally dependent and
write Ñi the local dependency neighborhood of E1,i. Then if |Ni| × |Ñi| = o(nr/2) Assumption 5 holds
for a sequence of random Gaussian vector (Gi) with covariance:

cov(Gi, j,Gm,l) =


p∗j,lE(Z1, j, Z1,l) − (1 − p∗j,l)E(Z1, j, Z1,l) if i = m

p j,lE(Z1, j, Z1,l) − (1 − p j,l)E(Z1, j, Z1,l) if |i − m| ≤ k i , m
0 otherwise

where p j,l = P(E1, j = 1)2+P(E1, j = −1)2 and p∗j,l = P(E1, j = 1, E1,l = 1)+P(E1, j = −1, E1,l = −1).

Proof Note that as the blocks (Xmk+1, . . . , X(m+1)k) are identically distributed it is enough to prove
Assumption 5 for m = 0. Denote Bi, j = ∪ j∈Ni Ñ j × [|1, k|]. Then we remark that the sequence (Xi) is
locally dependent and that the dependency neighborhood of Xi, j is Bi, j. The desired result follows
from Lemma 42 with q = 1.

Remark 33 Note that we do not assume that the probability of having a sign flipped at one position
is the same than at any other positions

J.4. Random Small Permutations

In this section we will show that Assumption 5 holds for a random permutation scheme. In this goal,
let (Zi) be a sequence of centered i.i.d random vectors with independent (not necessarily identically
distributed) entries. We assume that the vectors (Zi) have blocks of identically distributed entries.
More precisely we suppose that there is a partition (Bi)i≤Mn of [|p|] in Mn subsets such that the entries
(Z1,i)i∈Bu are i.i.d for all u ≤ Mn. We choose (πi) to be an i.i.d sequence of random permutations
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of [|n|] that preserve the partition, meaning that for all j, k ≤ n that do not belong to the same
permutation element then P(π1( j) = k) = 0. Define

Xi := (Z⌈i/k⌉,π−1
i (ℓ)).

We will show that this data augmentation scheme satisfies Assumption 5. In this goal we define the
following condition

(Hsmall permutation(κ)) E(Z1) = 0, sup
i
∥Z1,i∥4 < κ/

√
n.

Lemma 34 Suppose that the assumption Hsmall permutation(κ) holds. Suppose that maxi |Bi| = o(nr/2)
Assumption 5 holds for a sequence of random Gaussian vector (Gi) with covariance:

cov(Gi, j,Gm,l) =


∑

k∈BB−1( j)
p2

kvar(Z1,k) if |i −m| ≤ k

0 otherwise
.

where B−1( j) denotes the unique index such that j ∈ BB−1( j) and where pk := P(π( j) = k)

Proof Note that as the blocks (Xmk+1, . . . , X(m+1)k) are identically distributed it is enough to prove
Assumption 5 for m = 0. Denote Bi, j = Bℓ × [|1, k|] if i ∈ Pℓ. Then we remark that the sequence (Xi)
is locally dependent and that the dependency neighborhood of Xi, j is Bi, j. The desired result follows
from Lemma 42 with q = 1.

J.5. Random Large Permutations

In this section we will show that Assumption 5 holds for a random permutation scheme. In this goal,
let (Zi) be a sequence of centered i.i.d random vectors with independent (not necessarily identically
distributed) entries. We assume that the vectors (Zi) have blocks of identically distributed entries.
More precisely we suppose that there is a partition (Bi)i≤M of [|p|] in M subsets such that the entries
(Z1,i)i∈Bu are i.i.d for all u ≤ M. Contrary to the previous section we will have M << n. We choose
(πi) to be an i.i.d sequence of random permutations of [|n|] that preserve the partition, meaning that
for all j, k ≤ n that do not belong to the same permutation element then P(π1( j) = k) = 0. Moreover
we assume that for all j, k ∈ Bu in the same partition we have P(π1( j) = k) = 1/|Bu|. Define

Xi := (Z⌈i/k⌉,π−1
i (ℓ)).

Lemma 35 Suppose that there exists an absolute constant κ < ∞ such that maxi ∥Z1,i∥3 ≤ κ/
√

n
and max |Bu|/min |Bu| < ∞ Assumption 5 holds for a sequence of random Gaussian vectors that are
such that

cov(Gi, j,Gm,l) =
∑

u

σ2
uI(|i − m| ≤ k)
|Bu|

2

where σ2
u = Var(Y1,l) where l ≤ p is chosen to be in l ∈ Bu.
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Proof Note that as the blocks (Xmk+1, . . . , X(m+1)k) are identically distributed it is enough to prove
Assumption 5 for m = 0. For all (θi) ∈ Sk−1 and all (βi) ∈ Sk

p we have∑
i≤k

θiXT
i βi =

∑
i≤k

θi

∑
l

Xi,lβi,l =
∑

l

Z1,l

∑
i≤k

θiβi,πi(l).

Now we notice that conditionally on (πi) the random variables
(
Z1,l

∑
i≤k θiβi,πi(l)

)
are independent.

Moreover we observe that

E
(
Z1,l

∑
i≤k

θiβi,πi(l)
∣∣∣(πi)

)
= 0

and for all l,m ≤ p we have

cov
(
Z1,l

∑
i≤k

θiβi,πi(l), Z1,m

∑
i≤k

θiβi,πi(l)
∣∣∣π) = δl,m

(∑
i≤k

θiβi,πi(l)
)2Var(Z1,l)

E
(∣∣∣Z1,l

∑
i≤k

θiβi,πi(l)
∣∣∣3∣∣∣π) ≤ √k3 max

i
∥Z1,i∥

3
3

√∑
i≤k

β2
iπi(l)

3

≤ k4Lp3/2−3r/2 max
i
∥Z1,i∥

3
3

where for the last inequality we used Assumption 4. Define

σ̂2 :=
∑
ℓ≤p

Var(Z1,ℓ)
(∑

i≤k

θiβi,πi(ℓ)
)2
=

∑
u

σ2
u

∑
ℓ∈Bu

(∑
i≤k

θiβi,πi(ℓ)
)2.

According to Lemma 41 we have that there exists an absolute constant κ > 0 such that

sup
f ∈F

∣∣∣∣E( f
(∑

i≤k

θiXT
i βi

)∣∣∣(πi)
)
− EZ∼N(0,σ̂2

)( f (Z)|(πi)
)∣∣∣∣ ≤ κ1/3 p1/2−r/2 max

i
∥Z1,i∥3. (90)

Now using the definition of σ̂2 we observe that

E
(
σ̂2) =∑

u

σ2
u

1
|Bu|

k

∑
ℓ1,...,ℓk∈Bu

(∑
i≤k

θiβi,ℓi

)2 (91)

To show that σ̂2 converges to E(σ̂2) we will proceed by showing that for all S ≤ k we have
E(σ̂2|π1, . . . , πS ) concentrates around E(σ̂2|π1, . . . , πS−1). The desired outcome then results from
a telescopic sum argument. In this goal we first notice that

E(σ̂2|π1, . . . , πS ) − E(σ̂2|π1, . . . , πS−1)

=
∑

u

σ2
u

∑
ℓ∈Bu

∑
i,S

θiθSE
(
βi,πi(ℓ)βS ,πS (ℓ)|π1, . . . , πS

)
− E

(
βi,πi(ℓ)βS ,πS (ℓ)|π1, . . . , πS−1

)
To bound this set I ∼ unif([|n|]) and J ∼ unif(BB−1(I)) where we denote B−1(i) the index u such that
i ∈ Bu. Define π′S = πS ◦ (I, J) and π′i = πi for all i , S . Define

(σ̂′)2 :=
∑
ℓ≤p

Var(Y1,l)
(∑

i≤k

θiβi,π′i (ℓ))
2
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then we notice that (σ̂, σ̂′) forms an exchangeable pair and that

E
(
σ̂2|π1:S ) − E

(
(σ̂′)2|π1:S )

=
∑

u

σ4
u

∑
ℓ∈Bu

∑
i,S

θiθSE
(
βi,πi(ℓ)βS ,πS (ℓ)|π1, . . . , πS

)
− E

(
βi,πi(ℓ)βS ,πS (ℓ)|π1, . . . , πS−1

)
.

Moreover we observe that

σ̂2 − (σ̂′)2 ≤ σ2
B−1(I)

∑
i,S

θiθS (βi,πi(I)βS ,πS (I) − βi,πi(I)βS ,πS (J))

+ σ2
B−1(I)

∑
i,S

θiθS (βi,πi(J)βS ,πS (J) − βi,πi(J)βS ,πS (I))

Hence using Chatterjee (2005) we obtain that

Var
(
E
(
σ̂2

∣∣∣π1, . . . , πS
)∣∣∣∣π1, . . . , πS−1

)
≤ E

(
[σ̂2 − (σ̂′)2]2

)
≤ 4

maxu σ
2
u

p minu |Bu|

∑
ℓ≤p

∑
k∈BB−1(ℓ)

(∑
i≤k

θiθS β
2
i,πi(ℓ)(βS ,πS (ℓ) − βS ,πS (k))

)2

≤ 8k
maxu σ

4
u

p minu |Bu|

∑
ℓ

∑
k∈BB−1(ℓ)

θ2
S

∑
i≤k

θ2
i β

2
i,πi(ℓ)(β

2
S ,πS (ℓ) + β

2
S ,πS (k))

(a)
≤ 8k

maxu σ
4
uL

pr minu |Bu|

∑
ℓ

∑
k∈BB−1(ℓ)

(β2
S ,πS (ℓ) + β

2
S ,πS (k))

≤ 16k
maxu σ

4
uL maxu |Bu|

pr minu |Bu|

∑
ℓ

β2
S ,ℓ

≤ 16k
maxu σ

4
uS 2 maxu |Bu|p1−r

minu |Bu|

where (a) is a result of Assumption 4. Hence as every function f ∈ F is Lipschitz we obtain that

sup
f ∈F

∣∣∣∣E( f
(∑

i≤k

θiXT
i βi

))
− EZ∼N(0,σ2

)( f (Z)
)∣∣∣∣ ≤ κp1/2−r/2 max

i
∥Z1,i∥3 + 4

√
k

maxu σ
4
uL2 maxu |Bu|p1−r

minu |Bu|

Finally we note that
∑

i≤k θiGT
i βi ∼ N(0, σ2) and the required result is hence deduced.

Appendix K. Auxiliary Lemmas

K.1. m-dependent Bernstein

The first lemma aims to extend the classic Bernstein’s Inequality from the usual independent setting
to m-dependence, which of course also then includes block dependence.
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Lemma 36 (m-dependent Bernstein) Let Z1, . . . ,Zn be centered, sub-exponential, m-dependent
random variables, and K := supi ∥Zi∥ψ1 . Then there exists a universal constant c > 0 such that for
t ≥ 0,

P


∣∣∣∣∣∣∣1n

n∑
i=1

Zi

∣∣∣∣∣∣∣ ≥ t

 ≤ 4 · exp
[
−

cn
m

(
t
K
∧

t2

K2

)]
.

Proof Define r := ⌊n/m⌋, and assume without loss of generality that r is even. For each j = 1, . . . , r,
let

Y j :=
jm∑

ℓ=( j−1)m+1

Zℓ.

Also, define Yr+1 :=
∑n
ℓ=rm+1 Zℓ. By construction, the set (Y1, Y3, . . . ,Yr+1) is independent, as is the

set (Y2, Y4, . . . ,Yr). We can then see that

P


∣∣∣∣∣∣∣1n

n∑
i=1

Zi

∣∣∣∣∣∣∣ ≥ t

 = P

∣∣∣∣∣∣∣∣1n

r+1∑
j=1

Y j

∣∣∣∣∣∣∣∣ ≥ t


≤ P


∣∣∣∣∣∣∣∣1n

r/2∑
j=0

Y2 j+1

∣∣∣∣∣∣∣∣ ≥ t
2

 + P

∣∣∣∣∣∣∣∣1n

r/2∑
j=1

Y2 j

∣∣∣∣∣∣∣∣ ≥ t
2


≤ P


∣∣∣∣∣∣∣∣ 1

r
2 + 1

r/2∑
j=0

Y2 j+1

∣∣∣∣∣∣∣∣ ≥ nt
r + 2

 + P

∣∣∣∣∣∣∣∣ 1r2

r/2∑
j=1

Y2 j

∣∣∣∣∣∣∣∣ ≥ nt
r

 (92)

By the Triangle Inequality, we know that each Y j is still still sub-exponential with norm

∥Y j∥ψ1 ≤

jm∑
ℓ=( j−1)m+1

∥Zℓ∥ψ1 ≤ mK.

To bound the first term in (92), we use Corollary 2.8.3 of Vershynin (2018) to say that

P


∣∣∣∣∣∣∣∣ 1

r
2 + 1

r/2∑
j=0

Y2 j+1

∣∣∣∣∣∣∣∣ ≥ nt
r + 2

 ≤ 2 · exp
[
−c

( r
2
+ 1

) ( nt
m(r + 2)K

∧
n2t2

m2(r + 2)2K2

)]

≤ 2 · exp
[
−

cn
m

(
t

2K
∧

t2

4K2

)]
,

where above we used the fact that r + 2 ≥ n
m . We conclude by noting that this inequality also holds

for the second term in (92) by the same reasoning.

K.2. Lemmas for mixing processes

In this subsection, we present some useful lemmas to deal with β-mixing processes. The first one
allows one to relate the expectation of a bounded function of mixing data to the one of independent
blocks.
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Lemma 37 (Yu (1994) (Corollary 2.7)) Let K ≥ 1 be an integer and let r1 ≤ s1 ≤ r2 ≤ · · · ≤ sK

be a sequence of integers. Let X̃ = (X̃i) be a stochastic process taking value in Rp. Suppose that
h :

∏
ℓ≤K R

p|sℓ−rℓ | → R is measurable function. Let Q be the distribution of (X̃ j) j∈∪ℓ[rℓ,sℓ] and Qi be
the marginal distribution of (X̃ j) j∈[ri,si]. Let βmax = sup1≤i≤K−1 β (ki), where ki = ri+1 − si, and the P
the product measure P =

∏K
i=1 Qi. Then if ∥h∥∞ we have,

|EX∼Q[h(X)] − EY∼P[h(Y)]| ≤ (K − 1)Bβmax

We adapt this lemma to hold for functions with bounded moments.

Lemma 38 Let K ≥ 1 be an integer and let r1 ≤ s1 ≤ r2 ≤ · · · ≤ sK be a sequence of integers.
Let X̃ = (X̃i) be a stochastic process taking value in Rp. Suppose that h :

∏
ℓ≤K R

p|sℓ−rℓ | → R is
measurable function. Let Q be the distribution of (X̃ j) j∈∪ℓ[rℓ,sℓ] and Qi be the marginal distribution
of (X̃ j) j∈[ri,si]. Let βmax = sup1≤i≤K−1 β (ki), where ki = ri+1 − si, and the P the product measure
P =

∏K
i=1 Qi. Then, if there exists L > 1 such that |EX∼Q[h(X)L],EY∼P[h(Y)L] < ∞ we have

|EX∼Q[h(X)] − EY∼P[h(Y)]| ≤ 2((K − 1)βmax)1−1/L(EX∼Q(h(X)L)
)1/L
+

(
EY∼P(h(Y)2)

)1/L.

Proof Let C > 0 be a positive constant then define h̄C as the following function h̄C(x) = h(x)I(|h(x)| ≤
C). Now according to Lemma 37 we have that

|EX∼Q[h̄C[X]] − EY ∼ P[h̄C[Y]]| ≤ (K − 1)Cβmax

Now, moreover, note that

|EX∼Q
(
h(X)I(|h(X)| > C)

)
− EY∼P

(
h(Y)I(|h(Y)| > C)

)
| ≤

1
CL−1

{
EX∼Q(h(X)L) + EY∼P(h(Y)L)

}
Hence, by triangle inequality, we obtain that

|EX∼Q[h(X)] − EY∼P[h(Y)]| ≤ (K − 1)Cβmax +
1

CL−1

{
EX∼Q(h(X)L) + EY∼P(h(Y)L)

}
.

By choosing C :=
( (L−1)

{
EX∼Q(h(X)L)+EY∼P(h(Y)L)

}
(K−1)βmax

)1/L
we get the desired result.

The next lemma establishes concentration for some function of β−mixing random variables.

Lemma 39 Let (Xi) be a sequence of random variables with mixing coefficients (β(i)). Assume
that there exists a process (Zi) of centered independent random vectors such for every i ∈ N there
exists constants (ci, j) such that we have

Xi =
∑
j∈N

ci, jZ j.

Suppose that K := sup j
√

p∥Z j∥ψ2 < ∞ and that Var(Zj) = Σ/p is such that λmin(Σ) ≥ c > 0.
Moreover assume that there exists ϵ > 0 such that S :=

∑
ℓ<∞ β(ℓ)

ϵ
2+ϵ < ∞. Then there exists

constants C, C̃, C̃′ such that for all β ∈ Sp

P
(∣∣∣∑

i≤n

(XT
i β)2 − E((XT

i β)2)
∣∣∣ ≥ t

)
≤ 2e

−
Ctc

KS∥β∥22/p
min

(
tc

C̃Kn∥β∥2/p
, 1

C̃′

)
.
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Let (Gi) be a sequence of centered Gaussian random variables such that for all t > 0, Cov(G) =
Cov(X) then we obtain that there exists universal constants C2, C̃2, C̃′2 > ∞ such that for all β ∈ Sp

P
(∣∣∣∑

i≤n

(GT
i β)2 − E((GT

i β)2)
∣∣∣ ≥ t

)
≤ 2e

−
C2t

S ∥β∥22/p
min

(
tC̃2

n∥β∥22/p
,C̃′2

)
.

Proof Firstly we remark that we can assume without loss of generality that there exists an M ∈ N
such that Xi =

∑
j≤M ci, jZ j for all i ≤ n. We define Fm :=

∑
ℓ βℓZm,ℓ and remark that the process

(Fm) is still a sequence of independent random variables that are K∥β∥2/p subGaussian. Moreover
we remark that for all i ≤ n we have

βT Xi =
∑
m≤M

ci,mFm.

Define CM := (ci, j)i≤n, j≤M then we immediately note that∑
i≤n

(βT Xi)2 = FT
m(CT

MCM)Fm.

Hence using Theorem 1.1 of Rudelson and Vershynin (2013) we remark that there exists C > 0 such
that

P
(∣∣∣∑

i≤n

(XT
i β)2 − E((XT

i β)2)
∣∣∣ ≥ t

)
≤ 2e

− tC
K∥β∥2/p

min
(

t
K∥β∥2/p∥CT

MCM ∥
2
HS

, 1
∥CT

MCM ∥

)
.

We note that
(CT

MCM)m1,m2 =
∑
i≤n

ci,m1c j,m2 .

Hence we remark that

∥CT
MCM∥

2
HS =

∑
m1,m2≤M

(∑
i

ci,m1ci,m2

)2

=
∑
i, j≤n

(
∑

m

ci,mc j,m)2

We observe that if we define ν := (1, . . . , 1)T then we have cov(XT
i ν,X

T
j ν) =

∑
m ci,mcj,mν

TΣν. As
we assumed λmin(Σ) > c we obtain that νTΣν ≥ c. This implies that

∥CT
MCM∥

2
HS ≤ (c)−2

∑
i, j≤n

Cov(XT
i ν,X

T
j ν)

2.

To further bound this, we note that according to Lemma 26 of Austern and Orbanz (2022) we know
that

|cov(νTXi, ν
TXj)| ≤ 4β(i − j)

ϵ
2+ϵ max

i
∥νTXi∥

2
2+ϵ ,

which directly implies, coupled with the fact that XT
i ν is a KX subgaussian random variable, that

there exists a constant C̃ > 0 such that

∥CT
MCM∥

2
HS ≤ 16(c)−2

∑
i, j≤n

Cov(XT
i ν,X

T
j ν)

2β(i − j)
2ϵ

2+ϵ max
i
∥νTXi∥

4
2+ϵ

≤ C̃n(c)−2S
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Similarly we obtain that there exists a constant C̃′ such that

∥CT
mCM∥ ≤ sup

m1

∑
m2≤M

ci,m1 , ci,m2 ≤ C̃′(c)−1S.

Combining this together we obtain that

P
(∣∣∣∑

i≤n

(XT
i β)2 − E((XT

i β)2)
∣∣∣ ≥ t

)
≤ 2e

−
Ctc

KS∥β∥22/p
min

(
tc

C̃Kn∥β∥2/p
, 1

C̃′

)
.

To prove the second statement, we observe that (GT
i β) is still a Gaussian process. Hence if we let

N := (Ni)i≤n be a vector of standard normal we obtain that
∑

i≤n(GT
i β)2 d

= NTΣnN where Σn :=
Cov((GT

i β)n
i=1). Hence for every t ≥ 0 we have that

P
(∣∣∣∑

i≤n

(GT
i β)2 − E((GT

i β)2)
∣∣∣ ≥ t

)
≤ P

(∣∣∣∣NTΣnN − E(NTΣnN)
∣∣∣∣ ≥ t

)
To further bound this the first step is to bound. In this goal we remark that (Σn)i, j = Cov(GT

i β,G
T
j β) =

Cov(XT
i β,X

T
j β). Now once again using Lemma 26 of Austern and Orbanz (2022) we know that

|cov(βTXi, β
TXj)| ≤ 4β(i − j)

ϵ
2+ϵ max

i
∥βTXi∥

2
2+ϵ ≤ 4∥β∥22/pβ(i − j)

ϵ
2+ϵ max

i,∥µ∥≤
√

p
∥νXi∥

2
2+ϵ .

This directly implies that there exists another constant C̃2 such that

∥Σn∥
2
F ≤ (∥β∥22/p)2C̃2

√
nS.

We moreover similarly notice that there exists another constant C̃′2 such that

∥Σn∥ ≤ max
i

∑
j≤n

cov(XT
i β,X

T
j β) ≤ ∥β∥22/pSC̃′2.

Hence using the Hanson-Wright Inequality (Theorem 1.1 of Rudelson and Vershynin (2013)), we
obtain that there exists a constant C2 > 0 such that

P
(∣∣∣∣NTΣnN − E(NTΣnN)

∣∣∣∣ ≥ t
)
≤ 2e

−
C2t

S ∥β∥22/p
min

(
tC̃2

n∥β∥22/p
,C̃′2

)
.

K.3. Smoothing lemma

Lemma 40 For every δ > 0, there exists a family of continuous and 1
δ -Lipschitz R → R functions

(hτ;δ)τ∈R such that, for any x, y ∈ R,

(i) hτ;δ(x) ≤ I{x < τ} ≤ hτ+δ;δ(x);

(ii)
∣∣∣hτ;δ(x) − I{x < τ}

∣∣∣ ≤ I{x ∈ [τ − δ, τ)} .
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Proof of Lemma 40. We construct hτ;δ as

hτ;δ(x) B


1 if x < τ − δ ,
τ−x
δ if x ∈ [τ − δ, τ) ,

0 if x ≥ τ ,

which satisfies (i) automatically. To prove (ii), we first note that

I{x < τ − δ} ≤ hτ;δ(x) ≤ I{x < τ} ,

which implies the desired bound that

∣∣∣ hτ;δ(x) − I{x < τ}
∣∣∣ ≤ I{x ∈ [τ − δ, τ)} .

K.4. Additional Lindeberg Lemma

Lemma 41 Suppose that (Xi) are independent, centered random variables. We obtain that there is
an absolute constant κ > 0 such that

sup
f∈F

∣∣∣∣∣∣∣∣E f

∑
j≤n

X j

 − E f

∑
j≤n

Z j


∣∣∣∣∣∣∣∣ (93)

≤
(κn
ϵ2

)1/3
max

j≤n
∥X j∥3, (94)

where (Zi) is an independent sequence of independent and centered Gaussian random variables.

Proof Let f ∈ F , and let ϵ > 0. Define fϵ(u) = 1
4ϵ2

∫ u+ϵ
u−ϵ

∫ t+ϵ
t−ϵ f (y)dydt. We remark that fϵ is three

times differentiable and as f is Lipschitz we have supx | fϵ(x) − f (x)| ≤ 2ϵ.
Write

X j(t) :=
√

tX j +
√

1 − tG j

and

X j,0
m (t) :=

0 if m = j
Xm(t) otherwise.

78



UNIVERSALITY OF HIGH-DIMENSIONAL LOGISTIC REGRESSION & CGMT UNDER DEPENDENCE

Using the fundamental theorem of calculus we obtain that∣∣∣∣E( fϵ(
∑

j

X j) − E( fϵ(
∑

j

Z j))
∣∣∣∣

≤

∫ 1

0

∣∣∣∣∂tE( fϵ(
∑

j

X j(t)))
∣∣∣∣dt

(d1)
≤

∫ 1

0

∣∣∣∣E( f ′ϵ (
∑

j

X j(t))
∑

j

X j

2
√

t
−

Z j

2
√

1 − t

)∣∣∣∣dt

(d2)
≤

∫ 1

0

∑
j≤n

∣∣∣∣E( f ′ϵ (
∑

X j,0(t))
[ X j

2
√

t
−

Z j

2
√

1 − t

])∣∣∣∣dt

+

∫ 1

0

∑
j≤n

∣∣∣∣E( f ′′ϵ (
∑

X j,0(t))
[ X j

2
√

t
−

Z j

2
√

1 − t

][
X j
√

t + Z j
√

1 − t
])∣∣∣∣dt

+

∫ 1

0

∑
j≤n

∣∣∣∣E( f (3)
ϵ (

∑
j

X̃ j(t))
[ X j

2
√

t
−

Z j

2
√

1 − t

][
X j
√

t + Z j
√

1 − t
]2
)∣∣∣∣dt

≤ (a) + (b) + (c)

where
∑

X̃ j(t) ∈ [
∑

X j(t),
∑

X j,0(t)] and where d1 is a result of the product law and d2 of Taylor’s
expansion. Using the independence between X j,0(t) and X j and Z j and the fact that those latter are
centered, we obtain that (a) = 0. Similarly, we notice for all j ≤ n that

E
(

f ′′ϵ (
∑

X j,0(t))
[ X j

2
√

t
−

Z j

2
√

1 − t

][
X j
√

t + Z j
√

1 − t
])

= E
(

f ′′ϵ (
∑

X j,0(t))
)
E
([ X j

2
√

t
−

Z j

2
√

1 − t

][
X j
√

t + Z j
√

1 − t
])

≤ E
(

f ′′ϵ (
∑

X j,0(t))
)
E
([X2

j

2
−

Z2
j

2
])
= 0.

Hence (b) = 0.
Finally we can note that ∥ f (3)

ϵ ∥ ≤
4
ϵ2 . Hence, thanks to Jensen inequality we know that there

exists absolute constants C,C2 > 0 such that∣∣∣∣E( f (3)
ϵ (

∑
j

X̃ j(t))
[ X j

2
√

t
−

Z j

2
√

1 − t

][
X j
√

t + Z j
√

1 − t
]2
)∣∣∣∣

≤
4
ϵ2E

(∣∣∣∣ X j

2
√

t
−

Z j

2
√

1 − t

∣∣∣∣[X j
√

t + Z j
√

1 − t
]2
)∣∣∣∣

≤
C
ϵ2 max(∥X j∥

3
3, ∥Z j∥

3
3)
[ 1
√

t
+

1
√

1 − t

]
≤

C
ϵ2 max(∥X j∥

3
3,
√

33∥X j∥
3
2)
[ 1
√

t
+

1
√

1 − t

]
≤

C2

ϵ2 ∥X j∥
3
3

[ 1
√

t
+

1
√

1 − t

]
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where we used the fact that if Z ∼ N(0, 1) then ∥Z∥3 ≤
√

3 coupled with the fact that ∥Z j∥2 = ∥X j∥2.

Hence we obtain that there is an absolute constant κ > 0 such that

(c) ≤
κn
ϵ2 max

j≤n
∥X j∥

3
3 (95)

This gives us the desired result by choosing ϵ :=
(
κn

)1/3
max j≤n ∥X j∥3.

K.5. Asymptotic normality under local dependency assumption

Lemma 42 Suppose that (Xi) are centered random vectors such that the array (Xi,ℓ)i,ℓ is locally
dependent. Write Bi,ℓ the dependency neighborhood of the entry Xi,ℓ. For a fixed q ∈ N, let Fq be
the class of Rq → R continuously differentiable functions with ∥ f ∥∞ ≤ 1 and ∥ ∥∂ f ∥ ∥∞ ≤ 1. Then
there is a constant Cq > 0 that depends only on q such that

sup
f∈Fq

θ1,...,θq∈S
k−1

sup
(β11,...,βkq)
∈S

kq
p

∣∣∣∣∣∣∣∣∣∣Ef


∑k

i=1 θ1iX
⊺
i β1i

...∑k
i=1 θqiX

⊺
i βqi

 − Ef


∑k

i=1 θ1iG
⊺
i β1i

...∑k
i=1 θqiG

⊺
i βqi


∣∣∣∣∣∣∣∣∣∣

≤ Cq
(
k2 p3/2−r max

i,ℓ
|Bi,ℓ|

3/2 max
i,ℓ
∥Xi,ℓ∥

3
L3

)1/(2q+1)
, (96)

where Sk−1 denotes the unit sphere in Rk and (Gi) is an independent sequence of mean-zero Gaus-
sian vectors chosen such that cov(Gi,l,G j,m) = cov(Xi,l, X j,m).

Proof Fix f ∈ Fq. Let ϵ > 0 and define a smoothed version of f ,

fϵ(u) B
1

(2ϵ)2q

∫ u1+ϵ

u1−ϵ
· · ·

∫ uq+ϵ

uq−ϵ

∫ t1+ϵ

t1−ϵ
· · ·

∫ tq+ϵ

tq−ϵ
f (y) dy1 . . . dyq dt1 . . . dtq .

Note that fϵ is thrice differentiable and, as f is Lipschitz, we have supx | fϵ(x)− f (x)| ≤ 6ϵ
√

q. Write

X j(t) B
√

tX j +
√

1 − tG j , a jl B
(
θ1 jβ1 jl , . . . , θq jβq jl

)
∈ Rq , A j B


← a⊺j1 →

...

← a⊺jp →

 ∈ Rp×q ,

and (
X j,i,ℓ,0(t)

)
m B

0 if ( j,m) ∈ Bi,ℓ

X j,m(t) otherwise.
.
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Using the fundamental theorem of calculus we obtain that

∣∣∣∣∣∣∣∣∣∣E fϵ


∑k

i=1 θ1iX
⊺
i β1i

...∑k
i=1 θqiX

⊺
i βqi

 − E fϵ


∑k

i=1 θ1iG
⊺
i β1i

...∑k
i=1 θqiG

⊺
i βqi


∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣E[ fϵ
(∑

j≤n X⊺j A j
)]
− E

[
fϵ
(∑

j≤n G⊺j A j
)]∣∣∣∣

≤

∫ 1

0

∣∣∣∣∂t E
[
fϵ
(∑

j X⊺j (t) A j
)]∣∣∣∣ dt

(d1)
≤

∫ 1

0

∣∣∣∣E[∂ fϵ(
∑

j X⊺j (t)A j)
∑

i≤k A⊺i
( Xi

2
√

t
−

Gi

2
√

1 − t

)]∣∣∣∣dt

(d2)
≤

∫ 1

0

∣∣∣∣∑i≤k

∑
ℓ≤p E

[
∂ fϵ

(∑
j X⊺j,i,ℓ,0(t)A j

)⊺
ail

( Xi,ℓ

2
√

t
−

Gi,ℓ

2
√

1 − t

)]∣∣∣∣dt

+
1
2

∫ 1

0

∣∣∣∣∑i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃)∈Bi,ℓ

E
[(

Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

)
a⊺

ĩ,l̃
∂2 fϵ

(∑
j XT

j,i,ℓ,0(t)A j
)

ail( Xi,l

2
√

t
−

Gi,l

2
√

1 − t

)]∣∣∣∣dt

+
1

6ϵq

∫ 1

0
E
[ ∥∥∥∥∑

i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)
∈Bi,ℓ

( Xi,l

2
√

t
−

Gi,l

2
√

1 − t

) (
Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

)
(
Xĩ2,ℓ̃2

√
t +Gĩ2,ℓ̃2

√
1 − t

)
(ail ⊗ aĩℓ̃ ⊗ aĩ2,ℓ̃2

)
∥∥∥∥ ]

dt

≤ (a) + (b) + (c) ,

where X̃ j,i,l(t) ∈ [X j(t), X j,i,l,0(t)]. In (d1), we have used the product rule; in (d2), we have used a
third-order Taylor expansion together with the bound that ∥∂3 fϵ∥∞ ≤ 1

ϵq . Using the independence
between X j,i,ℓ,0(t) and Xi,ℓ and Gi,ℓ and the fact that these variables are centered, we obtain that for
all i ≤ k and ℓ ≤ p we have

E
[
∂ fϵ

(∑
j X⊺j,i,ℓ,0(t)Θβj

)
(Θβi )⊺

( Xi,ℓ

2
√

t
−

Gi,ℓ

2
√

1 − t

)]
= 0 .

Hence we know that (a) = 0. Similarly we notice that

E
[(

Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

)(
Θ
β,(l̃)
ĩ

)⊺ ∂2 fϵ
(∑

j XT
j,i,ℓ,0(t)Θβj

)
(Θβi )⊺

( Xi

2
√

t
−

Gi

2
√

1 − t

)]
= 0 ,
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where we use the independence between (Xi, j) and (Gi, j) to ignore cross terms and the fact that
E(Xi,ℓXĩ,ℓ̃) = E(Gi,ℓGĩ,ℓ̃). Hence (b) = 0. Finally to handle (c), we see that

E
[ ∥∥∥∥∑

i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

( Xi,l

2
√

t
−

Gi,l

2
√

1 − t

)
×

(
Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

) (
Xĩ2,ℓ̃2

√
t +Gĩ2,ℓ̃2

√
1 − t

)
(ail ⊗ aĩℓ̃ ⊗ aĩ2,ℓ̃2

)
∥∥∥∥ ]

= E
[( ∑

s,s̃,s̃2≤q

(∑
i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

( θsiβsilXi,l

2
√

t
−
θsiβsilGi,l

2
√

1 − t

)
θs̃ĩβs̃ĩl̃

(
Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

)
θs̃2 ĩ2βs̃2 ĩ2 l̃2

(
Xĩ2,ℓ̃2

√
t +Gĩ2,ℓ̃2

√
1 − t

))2 )1/2]
(d3)
≤

∑
s,s̃,s̃2≤q

∑
i≤k E

[∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|θsiβsil|

∣∣∣∣ Xi,l

2
√

t
−

Gi,l

2
√

1 − t

∣∣∣∣ |θs̃ĩβs̃ĩl̃|
∣∣∣Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

∣∣∣
|θs̃2 ĩ2βs̃2 ĩ2 l̃2 |

∣∣∣Xĩ2,ℓ̃2

√
t +Gĩ2,ℓ̃2

√
1 − t

∣∣∣]
(d4)
≤

∑
s,s̃,s̃2≤q

∑
i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|βsil| |βs̃ĩl̃| |βs̃2 ĩ2 l̃2 |

× E
[∣∣∣∣ Xi,l

2
√

t
−

Gi,l

2
√

1 − t

∣∣∣∣ ∣∣∣Xĩ,ℓ̃

√
t +Gĩ,ℓ̃

√
1 − t

∣∣∣∣∣∣Xĩ2,ℓ̃2

√
t +Gĩ2,ℓ̃2

√
1 − t

∣∣∣]
(d5)
≤

∑
s,s̃,s̃2≤q

∑
i≤k

∑
ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|βsil| |βs̃ĩl̃| |βs̃2 ĩ2 l̃2 | ×
( 1

2
√

t
+

1

2
√

1 − t

)
(1 +

√
3)2 max

i,ℓ
∥Xi,ℓ∥

3
L3
.

In (d3), we have moved the summations outside a squareroot and an absolute value; in (d4), we
have noted that θ ∈ Sk−1; in (d5), we have used that for Z ∼ N(0, 1), ∥Z∥L3 ≤

√
3. Now

let (βmix)s B (|(βmix)s11|, . . . , |(βmix)skp|) ∈ Rkp and M(i,ℓ) ∈ Rkp×kp be a matrix with entries
M(i,ℓ)

(i′,ℓ′),(i′′,ℓ′′) = I{(i
′, ℓ′) ∈ Bi,ℓ} I{(i′′, ℓ′′) ∈ Bi,ℓ}. Also recall that by the definition of Sp in (4),

there are fixed constants L, r > 0 such that ∥βsi∥∞ ≤ Lp1/2−r and ∥βsi∥2 ≤ Lp1/2 for all s ∈ q, i ≤ k.
Then ∑

ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|βsil| |βs̃ĩl̃| |βs̃2 ĩ2 l̃2 | ≤ Lp1/2−r
∑

ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|βs̃ĩl̃| |βs̃2 ĩ2 l̃2 |

= Lp1/2−r
∑

ℓ≤p(βmix)⊺s̃ M(i,ℓ)(βmix)s̃2

≤ Lp1/2−r ∥(βmix)s̃∥ ∥(βmix)s̃2∥
∥∥∥∑

ℓ≤p M(i,ℓ)
∥∥∥

op

≤ L3kp3/2−r
∥∥∥∑

ℓ≤p M(i,ℓ)
∥∥∥

op

In the last line, we have noted that ∥(βmix)s̃∥
2 =

∑
ĩ≤k ∥(βmix)s̃ĩ∥

2 ≤ L2kp. Now observe that the
(i′, ℓ′)-th column of the matrix

∑
ℓ≤p M(i,ℓ) is given by(∑

ℓ≤p I{(i
′, ℓ′) ∈ Bi,ℓ} I{(i′′, ℓ′′) ∈ Bi,ℓ}

)
i′′≤k,ℓ′′≤p

.

Since |Bi,ℓ| ≤ maxi,ℓ |Bi,ℓ|, the column has at most maxi,ℓ |Bi,ℓ| non-zero entries. For each (i′′, ℓ′′),
since the dependency neighborhood induces an equivalence relation and |Bi′′,ℓ′′ | ≤ maxi,ℓ |Bi,ℓ|, the
(i′′, ℓ′′)-th entry cannot exceed maxi,ℓ |Bi,ℓ|. In other words, the l2-norm of each column vector of∑
ℓ≤p M(i,ℓ) cannot exceed

√
maxi,ℓ |Bi,ℓ| ×maxi,ℓ |Bi,ℓ|

2 = maxi,ℓ |Bi,ℓ|
3/2, which implies∑

ℓ≤p

∑
(ĩ,ℓ̃),(ĩ2,ℓ̃2)∈Bi,ℓ

|βsil| |βs̃ĩl̃| |βs̃2 ĩ2 l̃2 | ≤ L3kp3/2−r max
i,ℓ
|Bi,ℓ|

3/2 ; .
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Combining the bounds, we obtain that for some constant Cq > 0 depending only on q,

(c) ≤
Cq

ϵ2q k2 p3/2−r max
i,ℓ
|Bi,ℓ|

3/2 max
i,ℓ
∥Xi,ℓ∥

3
L3
.

This gives us the desired result by choosing ϵ := (Cq k2 p3/2−r maxi,ℓ |Bi,ℓ|
3/2 maxi,ℓ ∥Xi,ℓ∥

3
L3

)1/(2q+1).

K.6. Polynomial Approximation Properties

In this section we discuss some of the properties of our polynomial approximation that are used in
the proof of our main theorem and also Theorem 27.

Lemma 43 Let α, δ, γ, τ > 0. Then there exists finite D = D(k, α, τ) such that, if we define

QD(x) :=
D∑
ℓ=0

(1 − x)ℓ, RD(x) :=
1
x
− QD(x),

then

E(i,k)

[
RD

(
⟨e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)
⟩i,k

)2]
< τ.

Proof For t > 0, define the event

At :=
{

max
j∈Bi

∣∣∣∣U⊺j β∣∣∣∣ ≤ t
}
=

⋂
j∈Bi

{∣∣∣∣U⊺j β∣∣∣∣ ≤ t
}
.

Then we have that

P
(
Ac

t
) (i)
= P

⋃
j∈Bi

{∣∣∣∣U⊺j β∣∣∣∣ > t
}

(ii)
≤

∑
j∈Bi

P
(∣∣∣∣U⊺j β∣∣∣∣ > t

)
(iii)
≤

∑
j∈Bi

2e−ct2/C2
1

≤ C2ke−ct2 . (97)

where (i) is via De Morgan’s Law, (ii) is via a union bound, and (iii) is from (60) which bounds the
sub-Gaussian norm of each

∣∣∣∣U⊺j β∣∣∣∣ along with Proposition 2.5.2 of Vershynin (2018). We can then
say that

E(i,k)

[
RD

(
⟨e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)
⟩i,k

)2] (i)
≤ E(i,k)

〈
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2〉
i,k

(ii)
=

〈
E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2]〉
i,k

(iii)
=

〈
E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2
IAt

]〉
i,k

(98)

+

〈
E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2
IAc

t

]〉
i,k

(99)

83



ESMAILI MALLORY HUANG AUSTERN

where (i) is because R2
D is convex, as it is the square of a positive, convex function, (ii) is because

E(i,k)[ ] and ⟨ ⟩i,k commute, and (iii) is the Law of Total Probability. We first bound the term inside
the expectation of (99) as

E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2
IAc

t

] (i)
≤ E

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)4]1/2
P
(
Ac

t
)1/2

(ii)
≤ E

[
e4α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

]1/2
C3
√

ke−ct2

(iii)
≤ eC4k2α2

C3
√

ke−ct2

= C(k, α)e−ct2 , (100)

where (i) is via Cauchy-Schwarz and block dependence, (ii) is via (97) and the fact that

QD(x) > 0 =⇒ RD(x) =
1
x
− QD(x) <

1
x

for x ∈ (0, 1), and (iii) is via (62). Thus, if we choose t sufficiently large, namely

t >

√
1
c

log
(
2C(k, α)

τ

)
,

then (100) yields that

E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2
IAc

t

]
≤
τ

2
. (101)

For (98), we know that since the eventAt occurs in this case, we have

At =⇒
∑
j∈Bi

ω jℓ j(β) ≤
∑
j∈Bi

∣∣∣∣U⊺j β∣∣∣∣ + 1 ≤ k(t + 1),

and so this forces that the argument of RD satisfies

exp

−α∑
j∈Bi

ω jℓ j(β)

 ∈ [e−αk(t+1), 1].

By definition of QD(x) being the power series of 1
x with radius of convergence equal to 1, there must

exist D(k, α, τ) such that

sup
x∈[e−αk(t+1),1]

|RD(x)| ≤
√
τ

2
.

This means that the term inside the expectation of (98) may be bounded as

E(i,k)

[
RD

(
e−α

∑
j∈Bi ω jℓ(η j,U

⊺
j β)

)2
IAt

]
≤
τ

2
, (102)

and so the result follows from this choice of D by combining (101) and (102).
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K.7. Properties of sub-Gaussian Vectors

Lemma 44 Let Y be a sub-Gaussian vector in Rd with sub-Gaussian constant K. Write ΣY :=
Var(Y). Then there exists C > 0 such that

∥ΣY∥op ≤ CK2.

Proof Define Z := Y −E[Y], which by Lemma 2.6.8. of Vershynin (2018) is still sub-Gaussian with

∥Z∥ψ2 ≤ C1K

for some fixed C1 > 0. Now, let v ∈ Rd. We first know by Definition 9 that since Z is sub-Gaussian
with constant C1K, Z⊺v must also be sub-Gaussian with constant at most C1K∥v∥. We observe that

v⊺ΣYv
(i)
= Var(Z⊺v)

(ii)
≤ C2K2

∥v∥2,

where (i) is because Y and Z share the same covariance matrix, and the inequality in (ii) is via
Proposition 2.5.2 of Vershynin (2018). This lets us conclude that

v⊺ΣYv
∥v∥2

≤ C2K2,

and since this holds for all v ∈ Rd, it holds for the supremum, which exactly defines the operator
norm as ΣY is necessarily positive semi-definite.

Appendix L. Proofs for the dependent CGMT

In this section, we prove Theorem 13, which recovers Theorem 5 directly, and Corollary 7. The
proof recipe is similar to that of a standard CGMT: We start by proving a Gaussian min-max theorem
(GMT) on discrete sets in Lemma 45, proceed to extend it to compact sets in Lemma 46, and then
prove the results in Theorem 13. Corollary 7 then follows directly from Theorem 13(ii).

As with the standard CGMT, the Gaussian min-max theorem (GMT) on discrete sets is proved
for a surrogate optimization problem. Let (ξl)l≤M be a collection of univariate standard Gaussians
independent of H, and define

Ψ
ξ
Sw,Su

B min
w∈Sw

max
u∈Su

Lξ
Ψ

(w, u) , where Lξ
Ψ

(w, u) B w⊺Hu +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) + f (w, u) .

We also recall the risk ψIp,In of the auxiliary optimization defined in Theorem 13.

Lemma 45 (GMT on discrete sets) Let Ip ⊆ R
p, In ⊆ R

n be discrete sets, and f be finite on
Ip × In. Then for all c ∈ R,

P
(
Ψ
ξ
Ip,In

≥ c
)
≥ P

(
ψIp,In ≥ c

)
.

85



ESMAILI MALLORY HUANG AUSTERN

Proof of Lemma 45 Similar to the proof for the standard GMT (see e.g. proof of Lemma A.1.1 of
Thrampoulidis (2016)), the proof relies on an application of Gordon’s Gaussian comparison in-
equality (see e.g. Corollary 3.13 of Ledoux and Talagrand (1991)) applied to two suitably defined
Gaussian processes. Consider the two centred Gaussian processes indexed on the set Ip × In:

Yw,u B w⊺Hu +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) ,

Xw,u B
∑M

l=1
(
∥w∥Σ(l)h⊺l

(
Σ̃(l))1/2u + w⊺

(
Σ(l))1/2gl∥u∥Σ̃(l)

)
.

To compare their second moments, we use the independence of H and {ξl}l≤M as well as the inde-
pendence of (hl, gl)l≤M: For w,w′ ∈ Ip and u, u′ ∈ In, we have

E[Yw,uYw′,u′] − E[Xw,uXw′,u′]
(a)
= E[w⊺Hu(w′)⊺Hu′] +

∑M
l=1 ∥w∥Σ(l) ∥w′∥Σ(l) ∥u∥Σ̃(l) ∥u′∥Σ̃(l)

−
∑M

l=1
(
∥w∥Σ(l) ∥w′∥Σ(l) u⊺Σ̃(l)u′ + w⊺Σ(l)w′ ∥u∥Σ̃(l) ∥u′∥Σ̃(l)

)
(b)
=

∑M
l=1

(
w⊺Σ(l)w′ u⊺Σ̃(l)u′ + ∥w∥Σ(l) ∥w′∥Σ(l) ∥u∥Σ̃(l) ∥u′∥Σ̃(l)

− ∥w∥Σ(l) ∥w′∥Σ(l) u⊺Σ̃(l)u′ − w⊺Σ(l)w′∥u∥Σ̃(l)∥u′∥Σ̃(l)

)
=

∑M
l=1

(
∥w∥Σ(l) ∥w′∥Σ(l) − w⊺Σ(l)w′

)(
∥u∥Σ̃(l) ∥u′∥Σ̃(l) − u⊺Σ̃(l)u′

)
.

(103)

In (a), we have used that ξl’s, hl’s and gl’s are all standard Gaussians; in (b), we have used

E[w⊺Hu(w′)⊺Hu′] =
∑n

i,i′=1

∑p
j, j′=1 wiw′i′u ju′j′ E[Hi jHi′ j′]

=
∑M

l=1

∑n
i,i′=1

∑p
j, j′=1 wiΣ

(l)
ii′w
′
i′u jΣ̃

(l)
j j′u
′
j′

=
∑M

l=1 w⊺Σ(l)w′ u⊺Σ̃(l)u′ .

By the positive semi-definiteness of Σ(l) and Σ̃(l), (103) is non-negative, and equals to zero when
w = w′. This shows that the Gaussian processes (Yw,u)w∈Ip,u∈In and (Xw,u)w∈Ip,u∈In verify the condi-
tions of the Gaussian comparison inequality (Corollary 3.13 of Ledoux and Talagrand (1991)) and
therefore for any real sequence (λw,u)w∈Ip,u∈In ,

P
(
∩w∈Ip ∪v∈In {Yw,u ≥ λw,u}

)
≥ P

(
∩w∈Ip ∪v∈In {Xw,u ≥ λw,u}

)
.

Choosing λw,u = − f (w, u) + c yields that

P
(

min
w∈Ip

max
v∈In

(Yw,u + f (w, u)) ≥ c
)
≥ P

(
min
w∈Ip

max
v∈In

(Xw,u + f (w, u)) ≥ c
)
.

Noting that the two min-max quantities correspond to Ψξ
Ip,In

and ψIp,In concludes the proof.

The next result extends Lemma 45 to compact sets.

Lemma 46 (GMT for compact sets) Suppose Sw ⊂ R
p and Su ⊂ R

n are compact and f is con-
tinuous on Sw × Su. Then for all c ∈ R,

P(Ψξ
Sw,Su

≥ c) ≥ P(ψS p,S n ≥ c) .
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Proof of Lemma 46 The proof is almost identical to the proof of standard GMT results for compact
sets, now that we have established Lemma 45: We show by a compactness argument that both losses
only change a little when replacing Sw and Su by their δ-nets Sδp and Sδn, induced by the Euclidean
norms on Rn and Rd respectively. The only difference from their proof is that we use a slightly
different concentration inequality. Therefore we only set up the essential notation, highlight the
differences and refer interested readers to the proof of Theorem 3.2.1 of Thrampoulidis (2016),
found in Pg 185-187.

First fix some ϵ > 0. Since f is continuous and thereby uniformly continuous on the compact
set Sδp × S

δ
n, there exists some δ = δ(ϵ) > 0 such that for all (w, u), (w′, u′) ∈ Sw × Su with

∥(w, u) − (w′, u′)∥ ≤ δ, we have ∥ f (w, u) − f (w′, u′)∥ ≤ ϵ. Use this δ to form the δ-nets Sδp and Sδn.
We also write ∥ • ∥op as the operator norm of a matrix, and write

S B max1≤l≤M max{∥Σ(l)∥op , ∥Σ̃
(l)∥op} and K B max

{
supw∈Sw

∥w∥ , supu∈Su
∥u∥

}
.

K is bounded since Sw and Su are compact, and for w ∈ Sw, u ∈ Su and l ≤ M, we have

∥w∥ ≤ K , ∥w∥Σ(l) ≤ S K , ∥u∥ ≤ K , ∥u∥Σ̃(l) ≤ S K .

Then by the same argument as the proof of Theorem 3.2.1 of Thrampoulidis (2016), there exists
w1 ∈ Sw, w′1 ∈ S

δ
p with ∥w1 − w′1∥ ≤ δ and u1 ∈ S

δ
n such that

∆
ξ
Ψ
B minw∈Sδp maxu∈Sδn Lξ

Ψ
(w, u) − minw∈Sw maxu∈Su Lξ

Ψ
(w, u)

≤ Lξ
Ψ

(w′1, u1) − Lξ
Ψ

(w1, u1) .

Computing the difference gives

∆
ξ
Ψ
≤ (w′1 − w1)⊺Hu1 +

∑M
l=1 ξl (∥w′1∥Σ(l) − ∥w1∥Σ(l))∥u1∥Σ̃(l) + ( f (w′1, u1) − f (w1, u1))

≤ δ∥H∥K + S K
∑M

l=1 |ξl| ∥w′1 − w1∥Σ(l) + | f (w′1, u1) − f (w1, u1)|

≤ δK∥H∥ + δS 2K
∑M

l=1 |ξl| + ϵ .

We seek to control ∥H∥ and
∑M

1=1 |ξl| via concentration inequalities. Let vec(H) denote the Rpn-
valued vector formed from the entries of H, and ΣH B Var[vec(H)]. Then we can express, for some
Rpn-valued standard Gaussian vector η,

∥H∥2 = ∥vec(H)∥2 = η⊺ ΣH η .

Then by a Chernoff bound, we have that for any t > 0,

P(∥H∥ ≥ t) ≤ infa>0 e−at2E
[
ea∥H∥2] = infa>0 e−at2E

[
ea η⊺ΣHη

]
Applying the formula of the moment-generating function of a Gaussian quadratic form (see e.g. Rencher
and Schaalje (2008)) followed by setting a = 1

4∥ΣH∥op
, we obtain

P(∥H∥ ≥ t) ≤ infa>0
e−at2√

det(Ipn − 2aΣH)
≤

e−t2/(4∥ΣH∥op)√
det(Ipn −

1
2∥ΣH∥op

ΣH)
≤ 2pn/2 e−t2/(4∥ΣH∥op) . (104)
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On the other hand, a standard concentration result on univariate Gaussians yields

P(|ξl| > t) ≤ 2e−t2/2 .

Taking a union bound, we obtain that for any t > 0,

P
(
∆
ξ
Ψ
≤ δKt + δS 2KMt + ϵ

)
≥ 1 − 2pn/2 e−t2/(4∥ΣH∥op) − 2Me−t2/2 ,

and therefore for any c ∈ R and t > 0,

P
(

minw∈Sw maxu∈Su Lξ
Ψ

(w, u) ≥ c − δKt − δS 2KMt − ϵ
)

≥ P
(

minw∈Sδp maxu∈Sδn Lξ
Ψ

(w, u) ≥ c
)
− 2pn/2 e−t2/(4∥ΣH∥op) − 2e−t2/2 . (105)

A similar argument as in the proof of Theorem 3.2.1 of Thrampoulidis (2016) shows that, there
exists w2 ∈ S

δ
p, u2 ∈ Sw and u′2 ∈ S

δ
n with ∥u2 − u′2∥ ≤ δ such that

min
w∈Sδp

max
u∈Sδn

Lψ(w, u) − min
w∈Sw

max
u∈Su

Lψ(w, u) ≥ Lψ(w2, u′2) − Lψ(w2, u2)

=
∑M

l=1

(
∥w2∥Σ(l)h⊺l

(
Σ̃(l))1/2(u′2 − u2) + w⊺2

(
Σ(l))1/2gl(∥u′2∥Σ̃(l) − ∥u2∥Σ̃(l))

)
+ ( f (w2, u′2) − f (w2, u2))

≥ −δS 2K
∑M

l=1(∥hl∥ + ∥gl∥) − ϵ .

Applying (104) to each ∥hl∥ and ∥gl∥ yields that, for any t > 0 and 1 ≤ l ≤ M,

P(∥hl∥ ≥ t) ≤ 2n/2e−t2/4 and P(∥gl∥ ≥ t) ≤ 2p/2e−t2/4 .

Taking another union bound, we get that for any t > 0,

P( minw∈Sw maxu∈Su Lψ(w, u) ≥ c + 2δS 2KMt + ϵ )

≤ P( minw∈Sδw maxu∈Sδu Lψ(w, u) ≥ c ) + 2n/2Me−t2/4 + 2p/2Me−t2/4 . (106)

Now by Lemma 45, we have

P( minw∈Sδu maxu∈Sδd
Lψ(w, u) ≥ c ) ≤ P

(
minw∈Sδp maxu∈Sδn Lξ

Ψ
(w, u) ≥ c

)
.

Combining this with (105) and (106) yields

P( minw∈Su maxu∈Sd Lψ(w, u) ≥ c + 2δS 2KMt + ϵ )

≤ P
(

minw∈Su maxu∈Sd Lξ
Ψ

(w, u) ≥ c − δKt − δS 2KMt − ϵ
)

+ 2n/2Me−t2/4 + 2p/2Me−t2/4 + 2np/2 e−t2/(4∥ΣH∥op) + 2e−t2/2 .

The above holds for all ϵ > 0 and t > 0. Set t = δ−1/2, take ϵ → 0 and choosing a sequence
δ(ϵ)→ 0, we obtain that

P( minw∈Sw maxu∈Su Lψ(w, u) ≥ c ) ≤ P
(

minw∈Sw maxu∈Su Lξ
Ψ

(w, u) ≥ c
)
,

i.e. P(Ψξ
Sw,Su

≥ c) ≥ P(ψS p,S n ≥ c).
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We are now ready to prove Theorem 13 and Corollary 7.

Proof of Theorem 13 The proof is almost identical to the proof of Theorem 3.3.1 of Thrampoulidis
(2016) given the GMT result from Lemma 46, and we focus on highlighting the differences. To
prove the first bound in (i), we first apply Lemma 46 to obtain that for all c ∈ R,

P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) ≤ c
)
≤ P(ψS n,S d ≤ c) ,

where (ξl)l≤M is a collection of univariate standard Gaussians independent of H. First notice that,
by conditioning on the event ∩l≤M{ξl ≥ 0}, we have that

P(ΨSp,Sn ≤ c) = P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) ≤ c
)

≤ P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) ≤ c
∣∣∣ ξ1, . . . , ξM ≤ 0

)
which holds almost surely. Since ξl’s are all independent and symmetric about zero, and there are
2M possibilities for the signs of (ξ1, . . . , ξM), we obtain that

1
2M P(ΨSp,Sn ≤ c) ≤

1
2M P

(
min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) ≤ c
∣∣∣ ξ1, . . . , ξM ≤ 0

)
≤ P

(
min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1 ξl ∥w∥Σ(l)∥u∥Σ̃(l) ≤ c
)

≤ P(ψS n,S d ≤ c) ,

which gives the desired statement.

The proof of the bound in (ii) is exactly the same as the proof of Theorem 3.3.1(ii) of Thram-
poulidis (2016): It relies on the ability to apply a min-max theorem or a min-max inequality for
swapping minimum and maximum under the stated convex-concave assumptions, as well as the
invariance of the random term of the loss under a sign change. Both hold for our losses LΨ and
Lψ, since H in our LΨ is still zero-mean Gaussian, Lψ is a linear sum of independent mean-zero
Gaussian terms and all additional matrices Σ(l) and Σ̃(l) are positive semi-definite. We refer readers
to the proof of Theorem 3.3.1(ii) of Thrampoulidis (2016) for a detailed derivation, and note that
the only difference in our result is in that the coefficient from the first bound in (i) is now 2M instead
of 2.

The proof of (iii) is also exactly the same as the proof of Theorem 3.3.1(iii) of Thrampoulidis
(2016), which only relies on the three assumptions, the statements (i) and (ii) proved above and a
union bound. We again refer readers to the proof of Theorem 3.3.1(iii) of Thrampoulidis (2016) for
a detailed derivation.

Proof of Corollary 7 The result follows directly from Theorem 13(ii); see Corollary 3.3.2 of
Thrampoulidis (2016).

Appendix M. Intermediate results for applying CGMT to data augmentation

For clarity, throughout Sections M and N, we will index all augmentations as ϕi j where i ≤ m, the
number of original data, and j ≤ k, the number of augmentations. Recall that n = mk. We also write
the label of ϕi j(Zi) as yi(Zi) to emphasize the dependence on the original data Zi.
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M.1. Equivalence of different optimization problems

To prove Theorem 12, we seek to obtain a set of deterministic equations whose solutions charac-
terize the high-dimensional behavior of logistic regression estimate. This involves establishing the
equivalence of a series of optimization problems, which are defined in this section. We also formally
state all lemmas used to establish the equivalence.

Original optimization (OO). The loss on the augmented data computed on β ∈ Rp is given as

Lβ(X,XΦ) B
1

mk

∑m
i=1

∑k
j=1

(
log

(
1 + e(ϕi j(Zi))⊺β) − yi(Zi) × (ϕi j(Zi))⊺β

)
+

λ

2n
∥β∥22 . (107)

Here, the loss is computed on the two dependent Rm×p and Rmk×p-valued data matrices

X B

←Z⊺1→
...

←Z⊺m→

 and XΦ B

 XΦ1
...

XΦm

 where XΦi B
←(ϕi1(Zi))⊺→

...
←(ϕik(Zi))⊺→

 .
Let S be any convex and compact subset of Rp. We denote the minimized risk over S and the
corresponding minimizer respectively as

R̂S (X,XΦ) B min
β∈S

Lβ(X,XΦ) and β̂S (X,XΦ) B arg min
β∈S

Lβ(X,XΦ) . (OO)

We label (OO) as the original optimization. By our universality result, we may replace the depen-
dent data matrices in (OO) by Gaussian matrices.

Gaussian optimization (GO). Recall that Σo = Var[Z1] and Σ = Var[ϕ11(Z1)]. We denote the
corresponding minimized risk under Gaussian data as

R̂S (GΣ1/2
o ,GΦΣ1/2) B minβ∈S Lβ(GΣ1/2

o ,GΦΣ1/2) ,

and β̂S (GΣ1/2,GΦΣ1/2
o ) B arg min

β∈S
Lβ(GΣ1/2,GΦΣ1/2

o ) . (GO)

The risk is computed on the two correlated Gaussian matrices

G B

←G⊺1→
...

←G⊺m→

 and GΦ B

 GΦ1
...

GΦm

 where GΦi B


←(GΦi1)⊺→

...
←(GΦi jk)⊺→

 ,
where Σ1/2

o Gi corresponds to Zi, GΦi Σ
1/2 corresponds to XΦi and Σ1/2GΦi j corresponds to ϕi j(Zi), and

E[(G,GΦ)] =E[(X,XΦ)] = 0 and Var[(GΣ1/2
o ,GΦΣ1/2)] =E[(X,XΦ)] .

Primary optimization (PO). Since (GO) only depends on Gaussian data, we may adapt the
CGMT technique to analyze its limiting behaviour. This requires a reformulation of (GO) in a
similar way to the reformulation of the primary optimization in Salehi et al. (2019). To make this
reformulation precise, we introduce some more notations. Given an Rmk-valued vector v, we denote

ρ(v) B
(

log
(
1 + ev11

)
, . . . , log

(
1 + evmk

))⊺
∈ Rmk .

90



UNIVERSALITY OF HIGH-DIMENSIONAL LOGISTIC REGRESSION & CGMT UNDER DEPENDENCE

Also write the Rmk-valued vector of labels for (the Gaussian surrogates for) the augmented data as

y(GΣ1/2
o β∗) B

(
y1(Σ1/2

o G1), . . . , y1(Σ1/2
o G1)︸                             ︷︷                             ︸

repeated k times

, . . . , ym(Σ1/2
o Gm), . . . , ym(Σ1/2

o Gm)︸                               ︷︷                               ︸
repeated k times

)⊺ ,
where we highlight that y depends on G only through the Rn vector GΣ1/2

o β∗. For d ∈ N, we also
write 1d as the all-one vector in Rd.This allows us to rewrite the loss in (GO) as

Lβ(GΣ1/2
o ,GΦΣ1/2) =

1
mk

1⊺mk ρ(GΦΣ1/2β) −
1

mk
y(GΣ1/2

o β∗)⊺GΦΣ1/2β +
λ

2n
∥β∥22 .

Introducing a new variable u ∈ Rmk and a corresponding Lagrange multiplier v ∈ Rmk, we can
consider an alternative loss

LPO
β,u,v(GΣ1/2

o β∗,GΦΣ1/2) B
1

mk
1⊺mk ρ(u) −

1
mk

y(GΣ1/2
o β∗)⊺u +

λ

2n
∥β∥22 +

1
mk

v⊺(u −GΦΣ1/2β) .

For subsets S ⊆ Rp and S u, S v ⊆ R
mk, we denote the minimized loss and the minimizer as

RPO
S ,S u,S v

(GΣ1/2
o β∗,GΦΣ1/2) B min

β∈S ,u∈S u
max
v∈S v

LPO
β,u,v(GΣ1/2

o β∗,GΦΣ1/2)

and βPO
S ,S u,S v

(GΣ1/2
o β∗,GΦΣ1/2) B arg min

β∈S
min
u∈S u

max
v∈S v

LPO
β,u,v(GΣ1/2

o β∗,GΦΣ1/2) . (PO)

Lemma 47 (Equivalence of (GO) and (PO))

R̂S (GΣ1/2
o ,GΦΣ1/2) = RPO

S ,Rmk ,Rmk (GΣ
1/2
o β∗,GΦΣ1/2) ,

β̂S (GΣ1/2
o ,GΦΣ1/2) = βPO

S ,Rmk ,Rmk (GΣ
1/2
o β∗,GΦΣ1/2) .

Proof of Lemma 47 The proof is exactly the same to the reformulation of the primary optimization
in Salehi et al. (2019) by the Lagrange multiplier method, and we refer readers to their (37) – (40)
in Appendix C for the proof.

Auxiliary optimization (AO). Before we present the auxiliary optimization, we notice that two
key issues make our problem more complicated from the setup in Salehi et al. (2019):

• In Salehi et al. (2019), they have the same data matrices for G and GΦ with i.i.d. standard
normal entries and Σo = Σ = Id. This allows them to project GΦ onto the subspace orthogonal
to β∗, which is independent of Gβ∗, and apply CGMT. In our case, G and GΦ are different
and have non-trivial dependence. We instead make use of a projection P⊥∗ adapted to the
variance-covariance structure in Assumption 11, defined through

P∗ B


(Σ∗Σ

1/2
o β∗)(Σ∗Σ

1/2
o β∗)⊺

∥Σ∗Σ
1/2
o β∗∥2

if Σ∗Σ
1/2
o β∗ , 0

0 otherwise ,
and P⊥∗ B Ip − P∗ .

In other words, P⊥∗ is a projection onto the subspace orthogonal to Σ∗Σ
1/2
o β∗. This is explicitly

addressed in Section N.1;
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• As discussed in Section 5, the Gaussian matrix handled by existing work on CGMT is either
one with i.i.d. coordinates, or one formed by multiplying a coordinate-wise i.i.d. matrix by
an Rm×m matrix and an Rp×p matrix from both sides. Our augmented matrix, GΦ, cannot be
expressed in either form due to the simultaneous presence of two forms of variances: Each
row of GΦ admits a variance of Ip, whereas the rows corresponding to different augmentations
of the same data admit a variance of Σ∗. We resolve this issue by applying our dependent
CGMT (Theorem 5) with M = 2.

Having addressed these two issues, we are able to borrow most of the algebraic calculations from
Salehi et al. (2019) for analyzing the auxiliary optimization, except that the limiting terms we obtain
are different due to augmentations.

To state the auxiliary optimization, let g1, g2, h1, h2 be independent standard Gaussians such
that gl’s are Rp-valued and hl’s are Rmk-valued. We also denote the collections g = (g1, g2) and
h = (h1, h2) for short, and define the matrices

Σ1 B Σ
1/2P⊥∗ (Ip − Σ∗)P⊥∗ Σ

1/2 , Σ2 B Σ
1/2P⊥∗ Σ∗P

⊥
∗ Σ

1/2 , Jmk B

 1k×k

. . .
1k×k

 ∈ Rmk×mk .

The loss of (AO), parameterized by β ∈ Rp and u, v ∈ Rmk, is given as

LAO
β,u,v(y,GΦP∗, g,h) B

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2n
∥β∥22 +

1
mk

v⊺(u −GΦP∗Σ1/2β) −
1

mk
v⊺h1∥β∥Σ1

−
1

mk
∥v∥g⊺1Σ

1/2
1 β −

1
mk3/2 v⊺Jmkh2∥β∥Σ2 −

1
mk
∥v∥Jmk g

⊺
2Σ

1/2
2 β .

Note that we have abbreviated y = y(GΣ1/2
o β∗). We also denote the minimized loss with respect to

the subset (S , S u, S v) ⊆ Rp × Rmk × Rmk as

RAO
S ,S u,S v

(y,GΦP∗, g,h) B min
β∈S ,u∈S u

max
v∈S v

LAO
β,u,v(y,GΦP∗, g,h) . (AO)

The next result applies Theorem 5 to convert (PO) into (AO).

Lemma 48 (Equivalence of (PO) and (AO)) Suppose Assumption 11 holds. Let S ⊂ Rp and
S u, S v ∈ R

mk be compact, convex and non-empty. Then all conclusions of Theorem 5 hold with
ΨSp,Sn replaced by RPO

S ,S u,S v
(GΣ1/2

o β∗,GΦΣ1/2) and ψSp,Sm replaced by RAO
S ,S u,S v

(y,GΦP∗, g,h).

Scalar optimization (SO). The next step is to convert (AO) into a scalar formulation. For
convenience we write ∥ • ∥ = ∥ • ∥2 as the Euclidean norm throughout this section, unless otherwise
specified. While the form of the optimization is complicated, we note that the terms are largely
similar to the AO in Salehi et al. (2019), except for additional parameters (σ1, ν1, r1, τ1) introduced
to handle the additional covariance across different augmented versions of the same data. To define
the scalar formulation, given the convex compact and non-empty subsets S ⊂ Rp, S u, S v ∈ R

mk, we
define the following compact domains of optimization:

S r1 B
{ 1
√

mk
∥P⊥mkv∥

∣∣∣∣ v ∈ S v
}
, S r2 B

{ 1
√

mk
∥Pmkv∥

∣∣∣∣ v ∈ S v
}
,
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where we have defined the projection matrices Pmk B
1
k Jmk and write P⊥mk = Imk − Pmk. Also define

S α B
{ v(β∗)⊺Σ1/2β
√

p κ2
∗

∣∣∣∣ β ∈ S
}
,

where v(β∗) B
√

pΣ∗Σ
1/2
o β∗, κ∗ = ∥Σ∗Σ

1/2
o β∗∥. Define

S σ1 B
{
∥(Ip − Σ∗)P⊥∗ Σ

1/2β∥
∣∣∣ β ∈ S

}
, S σ2 B

{
∥Σ∗P⊥∗ Σ

1/2β∥
∣∣∣ β ∈ S

}
.

The optimization will be performed over the two R5-valued vectors

α̃ B (α, σ1, σ2, ν1, ν2) ∈ S α × S σ1 × S σ2 × (R+0 )2 B S 1 ,

θ̃ B (r1, r2, τ1, τ2, θ) ∈ S r1 × S r2 × (R+0 )2 × R B S 2 .

We also define PΣ = (Σ†)1/2Σ1/2, the projection onto the positive eigenspace of Σ, and the matrix

Σ̃σ,τ B
1

2σ1τ1
(PΣ − Σ∗) +

1
2σ2τ2

Σ∗ .

Also define the Gaussian random vectors

q B 1
κ∗
√

p
GΦ v(β∗) = GΦ Σ∗Σ

1/2
o β∗

∥Σ∗Σ
1/2
o β∗∥

, h̃α,σ B κ∗αq − σ1h1 −
σ2
√

k
Jmkh2 ,

g̃ B − r1 + r2
√

mk
(PΣ − Σ∗)g1 −

r2
√

m
Σ∗g2 .

For a function f : S′ → R and some S′ ⊆ Rmk, we define the Moreau envelope

MS ( f ; v, t) B min
x∈S

f (x) +
1
2t
∥x − v∥22 .

Now we are ready to define the loss

LSO
α̃,θ̃

(y, q, g, h) B −
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ2

∗ −
α2κ2

∗

2σ2τ2
+ Mg,σ,τ,θ −

1
4

∥∥∥(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

+
1

mk
My,h̃α,σ,r,ν −

1
2r2ν2mk

∥y∥2 − 1
mk

y⊺h̃α,σ ,

where we have defined the nested Moreau envelope My,h̃α,σ,r,ν via

M⊥h̃α,σ,r,ν(ũ) BMP⊥mk(S u)
(
1⊺mk ρ(ũ + • ) ; P⊥mkh̃α,σ,

1
r1ν1

)
,

My,h̃α,σ,r,ν BMPmk(S u)
(
M⊥h̃α,σ,r,ν ;

1
r2ν2

y − Pmkh̃α,σ , r2ν2
)
,

as well as another Moreau envelope like term

Mg,σ,τ,θ B min
µ∈S

λ

2n
∥PΣµ∥22 +

∥∥∥Σ̃1/2
σ,τ (Σ1/2µ) −

1
2

(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2
+

r2
√

n
g⊺2 P∗Σ1/2µ .

The minimized risk is denoted as

RSO
S ,S u,S v

(y, q, g, h) B min
α̃∈S 1

max
θ̃∈S 2

min
χ̃∈S 3

LSO
α̃θ̃

(y, q, g, h) . (SO)

The next lemma shows that (AO) can be replaced by (SO) in that it satisfies similar inequalities
as (AO) in terms of their relationships to (PO). The inequalities in the result are to be compared
with those in Theorem 5.
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Lemma 49 (Equivalence of (PO) and (SO)) Let S ∈ Rp and S u, S v ∈ R
mk be compact, convex

and non-empty. Also assume that the linear span span(S ) = Rp. Then for any c ∈ R,

P(RPO
S ,S u,S v

≤ c) ≤ 4 P(RSO
S ,S u,S v

≤ c) and P(RPO
S ,S u,S v

≥ c) ≤ 4 P(RSO
S ,S u,S v

≥ c) .

If instead of S , the set of values of β we consider is the non-convex set

S c,ϵ B S \
{
β ∈ S

∣∣∣ |(PΣβ)⊺Σo(PΣβ) − c| ≤ ϵ
}

for some c ∈ R and some sufficiently small ϵ > 0 such that S c,ϵ is non-empty. Then we have

P(RPO
S c,ϵ ,S u,S v

≤ c) ≤ 4 P(RSO
S c,ϵ ,S u,S v

≤ c) .

Deterministic optimization (DO). The next step is to compute the asymptotics of (SO) as
m, p → ∞ and p/m → κ/k for special cases of S ⊂ Rp. The limit is given by a deterministic
optimization

RDO
S B min

α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ̄2

∗ −
α2κ̄2

∗

2σ2τ2
− χ̄r,θ,σ,τ

1 + ϵ2
S
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

−
1

4r2ν2
− αE

[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
+ M̄r,ν,α,σ

ρ , (DO)

where we have defined the limits

κ̄∗ B lim
p→∞

κ∗ = lim
p→∞
∥Σ∗Σ

1/2
o β∗∥ , κ̄o B lim

p→∞
∥(Ip − Σ∗)Σ

1/2
o β∗∥ ,

χ̄r,θ,σ,τ
1 B

(r1 + r2)2σ1τ1

2k
χ̄σ,τ11 +

r2
2σ2τ2

2
χ̄σ,τ12 +

θ2κ̄2
∗σ2τ2

2
χ̄σ,τ13 ,

χ̄r,θ,σ,τ
2 B

(r1 + r2)2σ2
1τ

2
1

k
χ̄σ,τ21 + r2

2σ
2
2τ

2
2 χ̄

σ,τ
22 + θ

2κ̄2
∗σ

2
2τ

2
2 χ̄

σ,τ
23 ,

χ̄r,θ,σ,τ
3 B

(r1 + r2)2σ2
1τ

2
1

k
χ̄σ,τ31 + r2

2σ
2
2τ

2
2 χ̄

σ,τ
32 + θ

2κ̄2
∗σ

2
2τ

2
2 χ̄

σ,τ
33 ,

with

χ̄σ,τ11 B lim
Tr

((σ1τ1λ
m Σ

† + Ip
)†(PΣ − Σ∗))

m
,

χ̄σ,τ12 B lim
Tr

((σ2τ2λ
m Σ

† + Ip
)†
Σ∗

)
m

,

χ̄σ,τ13 B lim Tr
((σ2τ2λ

m
Σ† + Ip

)†
P∗

)
,

χ̄σ,τ21 B lim
∥∥∥Σ1/2

new(Σ†)1/2(σ1τ1λ
m Σ

† + Ip
)†(PΣ − Σ∗)∥∥∥2

m
,

χ̄σ,τ22 B lim

∥∥∥Σ1/2
new(Σ†)1/2

(σ2τ2λ

m
Σ† + Ip

)†
Σ∗

∥∥∥2

m
,

χ̄σ,τ23 B lim
∥∥∥∥Σ1/2

new(Σ†)1/2
(σ2τ2λ

m
Σ† + Ip

)†
P∗

∥∥∥∥2
,

χ̄σ,τ31 B lim
∥∥∥( λ

2mΣ
† + Σ̃σ,τ

)1/2
Σ1/2PΣnew (Σ†)1/2(σ1τ1λ

m Σ
† + Ip

)†(PΣ − Σ∗)∥∥∥2

m
,

χ̄σ,τ32 B lim

∥∥∥( λ
2mΣ

† + Σ̃σ,τ
)1/2
Σ1/2PΣnew (Σ†)1/2

(σ2τ2λ

m
Σ† + Ip

)†
Σ∗

∥∥∥2

m
,

χ̄σ,τ33 B lim
∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2PΣnew(Σ†)1/2

(σ2τ2λ

m
Σ† + Ip

)†
P∗

∥∥∥∥2
.
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We have also defined an expected Moreau-envelope-like term

M̄r,ν,α,σ
ρ B E

[
min
ũ∈Rk

1
k

1⊺k ρ(ũ) +
r1ν1

2k

∥∥∥∥(Ik −
1
k

1k×k
)
(ũ + σ1η)

∥∥∥∥2

+
r2ν2

2k

∥∥∥∥1
k

1k×k
(
ũ −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k

)∥∥∥∥2]
,

where Z̄0, Z̄1, Z̄2, η1, . . . , ηk are i.i.d. univariate Gaussians and η = (η1, . . . , ηk), and ε1 is an indepen-
dent Logistic(0, 1) variable. The two cases of S we consider are

S = Sp and S = Sc
ϵ B

{
β ∈ Sp

∣∣∣ ∣∣∣ √β⊺Σnewβ − (χ̄r̄,θ̄,σ̄,τ̄
2 )1/2

∣∣∣ > ϵ} ,
where r̄ = (r̄1, r̄2), σ̄ = (σ̄1, σ̄2), θ̄ and τ̄ = (τ̄1, τ̄2) are the optimal solutions to (DO). We also set
ϵS = 0 for S = Sp and ϵS = ϵ for S = Sc

ϵ .

Lemma 50 (Equivalence between (SO) and (DO)) Assume that the set S u ⊂ R
mk is closed under

permutation of the m blocks of k coordinates. Also suppose that as m, p → ∞, supu∈S u

∥u∥22
mk → ∞

and supu∈S v

∥v∥22
mk → ∞. Also assume that the limits κ̄∗, χ̄

r,θ,σ,τ
1 , χ̄r,θ,σ,τ

2 and χ̄r,θ,σ,τ
3 exist for every

r1, r2, θ, σ1, σ2, τ1, τ2. Then for S = Sp and S = Sc
ϵ ,

∣∣∣ RSO
S ,S u,S v

(y, q, g, h) − RDO
S

∣∣∣ P
−→ 0 .

As with Salehi et al. (2019), it remains to prove that the first order condition of (DO) for S = Sp

is equivalent to the system of 10 equations (EQs) in (α, σ1, σ2, τ1, τ2, ν1, ν2, r1, r2, θ). This involves
computing the derivative of the Moreau-envelope-like term M̄r,ν,α,σ

ρ using the envelope theorem.

Lemma 51 Assume that the minimizer-maximizers of (DO) are within the interior of the domain
of optimization and that S = Sp. Then these minimizer-maximizers are solutions to (EQs).

M.2. Verifying conditions for different augmnetations

Isotropic data with no augmentation. Salehi et al. (2019) derives a set of equations that gov-
erns the behavior of high-dimensional logistic regression with ridge regularization, isotropic data
and no data augmentation. Here, we verify that our formula recover their formula exactly as a spe-
cial case, and that (r2, ν2, σ2, τ2, α, θ) play the role of the parameters in the original unaugmented
optimization.

Lemma 52 Suppose that Xnew
d
= Z1 with Var[Z1] = 1

p Ip, that k = 1 and ϕ1(Zi) = Zi almost surely
for all i ≤ m = n. Also write γ = 1

r2ν2
, ρ( • ) = log

(
1 + exp( • )

)
and denote the proximal operator

Proxtρ( • )(v) B arg minx∈R
1
2t (v − x)2 + ρ(x). Then (EQs) is equivalent to the following system of
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equations: 

θ =
ακ

γ
,

τ2 =
κ−1γ

σ2(1 − γλ)
,

r2 =
σ2
√
κ

γ
,

σ2κ

2
= E

[
∂ρ(−κ̄∗Z̄1)

(
ακ̄∗Z̄1 + σ2Z̄2 − Proxγρ( • )(ακ̄∗Z̄1 + σ2Z̄2)

)2] ,
1 − κ + γλκ = E

[ 2ρ′(−κ̄∗Z1)
1 + γρ′′(Proxγρ( • )(κ̄∗αZ̄1 + σ2Z̄2))

]
,

−
ακ

2
= E[∂2ρ(−κ̄∗Z̄1)Proxγρ( • )(κ̄∗αZ̄1 + σ2Z̄2)] ,

with r1 = σ1 = 0, ν1, τ1 → ∞, κ̄∗ = limp→∞
∥β∗∥
√

p and κ = lim p/n.

Remark 53 (i) Lemma 51 and Theorem 12 apply even though the values of r1, σ1, ν1 and τ1 are
not in the interior of the domain of optimization, as these variables can be removed much earlier in
the proof of Lemma 49 and allow us to handle only a smaller system of equations. Moreover, the
only quantity χ̄r,θ,σ,τ

2 that enters the test risk is independent of these variables. (ii) To identify the
equations in Lemma 52 with those in (14) and (16) from Theorem 2 of Salehi et al. (2019), we note
several notational differences: We have used κ = lim p/n, whereas they use δ = lim n/p; our κ̄∗, Z̄1
and Z̄2 should be identified with their κ, Z1 and Z2; our r2, σ2 and τ2 should be identified with their
r, σ and τ; our regularization is defined as λ

2n∥
• ∥2 whereas theirs is defined as λ

2p∥
• ∥2, so to see the

equivalence, one needs to make the replacement λ 7→ λκ−1 above.

Random permutations and sign flipping. Recall the setup for random permutations and
random sign flipping in Section 6. We first verify that the equations (EQs) do apply to these two
augmentations in special cases. In view of Theorem 12, the key condition to verify is Assump-
tion 11.

Lemma 54 Suppose the coordinates of each Z(t)
1 are i.i.d. within the group. Then Assumption 11

holds for random permutations.

Lemma 55 Suppose Var[Z1] = 1
p Ip. Then Assumption 11 holds for random sign flipping.

Random cropping. Recall the random cropping scheme defined in Section 6. While random
cropping does not satisfy Assumption 11, it does satisfy a slightly relaxed notion of Assumption 11:

Lemma 56 Suppose Var[Z1] = 1
p Ip. For random cropping, there exist some a1, a2 > 0 such that

(i) Σ∗ = a1(Σ†)1/2 Cov[ϕ1(Z1) , Z1](Σ†o)1/2 and (ii) Σ2
∗ = a2Σ∗ . (108)

The core CGMT statement — the equivalence of (PO) and (AO) — does hold for random
cropping. To see this, notice that Assumption 11 is equivalent to having a1 = a2 = 1 in (108). We
observe that to prove the equivalence of (PO) and (AO) in Lemma 48, Assumption 11 is only critical
for showing the independence of the differently projected data matrices, which hold even under the
rescaling a1 and a2 in (108); see the proof of Lemma 57 below. As such,
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Meanwhile, a tedious extension of (EQs) also holds for random cropping. Notice that Assump-
tion 11 is used again only in the calculations from (110) onwards in the proof of Lemma 49, which
relates (AO) to (SO). There, we only use the idempotency of Σ∗ such that Σ∗ and Ip − Σ∗ are projec-
tions onto orthogonal subspaces, which simplify many subsequent calculations. If instead (108)(ii)
holds, a similar calculation still works by writing Σ∗ = Σ1 + Σ2 and Ip − Σ∗ = Σ

′
2 + Σ3, such that

Σ1, Σ2 and Σ3 have mutually orthogonal positive eigenspaces, and Σ2 and Σ′2 share the same positive
eigenspace. This would lead to a system of equations involving (σ1, σ2, σ3, τ1, τ2, τ3) instead of
just (σ1, σ2, τ1, τ2) in (EQs), and we omit the calculations for simplicity.

Appendix N. Proofs for Section M

N.1. Proofs for the equivalence of (PO) and (AO)

The next lemma confirms that the projection P∗ decouples the different random quantities.

Lemma 57 Under Assumption 11, GΦP⊥∗ is independent of (GΣ1/2
o β∗,GΦP∗).

Proof of Lemma 57 By Gaussianity, to prove independence, it suffices to check that the covariance
between the random quantities are zero. We first verify that the covariance between GΦP⊥∗ and
GΣ1/2

o β∗ is zero, for which it suffices to compute

Cov[P⊥∗GΦ11 , G⊥1 Σ
1/2
o β∗] = P⊥∗ Cov[(Σ†)1/2ϕ11(X1), (Σ†o)1/2X1]Σ1/2

o β∗

= P⊥∗ (Σ†)1/2 Cov[ϕ11(X1), X1] (Σ†o)1/2Σ
1/2
o β∗

= P⊥∗ Σ∗Σ
1/2
o β∗ = 0 .

In the last line, we used Assumption 11(i), and concluded that the covariance evaluates to zero by
the definition of P∗. This proves that GΦP⊥∗ is independent of GΣ1/2

o β∗.

To check the independence between GΦP⊥∗ and GΦP∗, we first note that since Σ = Var[ϕ11(X1)],
we have

Cov[P⊥∗GΦ11 , P∗GΦ11] = P⊥∗ (Σ†)1/2 Var[ϕ11(X1)] (Σ†)1/2P∗ = P⊥∗ P∗ = 0 .

We also need to compute

Cov[P⊥∗GΦ11 , P∗GΦ12] = P⊥∗ (Σ†)1/2 Cov[ϕ11(X1) , ϕ12(X1)] (Σ†)1/2P∗
= P⊥∗ Σ∗ P∗ .

Now note that if Σ∗Σ
1/2
o β∗ = 0, the above evaluates to zero automatically. Otherwise, we have

Σ∗ P∗ = Σ∗
(Σ∗Σ

1/2
o β∗)(Σ∗Σ

1/2
o β∗)⊺

∥Σ∗Σ
1/2
o β∗∥2

= P∗ ,

where we have used Σ2
∗ = Σ∗ by Assumption 11(ii). This implies

Cov[P⊥∗GΦ11 , P∗GΦ12] = P⊥∗ P∗ = 0 ,

which proves that GΦP⊥∗ is independent of GΦP∗.

Lemma 57 suggests that we can apply Theorem 5 to GΦP⊥∗ Σ
1/2 conditionally on (GΣ1/2

o β∗,GΦP∗).
To facilitate this, the next lemma computes the covariance structure of GΦP⊥∗ Σ

1/2.
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Lemma 58 For i, i′ ≤ m, j, j′ ≤ k and l, l′ ≤ p,

Cov[(Σ1/2P⊥∗GΦi j)l , (Σ1/2P⊥∗GΦi′ j′)l′] = (Imk)i j,i′ j′ (Σ1)l,l′ + (Jmk)i j,i′ j′ (Σ2)l,l′ .

Moreover, Σ∗, Σ1 and Σ2 are all positive semi-definite.

Proof of Lemma 58 For i, i′ ≤ m, j, j′ ≤ k and l, l′ ≤ p, we have

Cov[(Σ1/2P⊥∗GΦi j)l , (Σ1/2P⊥∗GΦi′ j′)l′]

= Cov[(Σ1/2P⊥∗ (Σ†)1/2ϕi j(Xi))l , (Σ1/2P⊥∗ (Σ†)1/2ϕi′ j′(Xi′))l′]

= I{i = i′}I{ j = j′}
(
Σ1/2P⊥∗ (Σ†)1/2 Var[ϕ11(X1)] (Σ†)1/2P⊥∗ Σ

1/2 )
l,l′

+ I{i = i′}I{ j , j′}
(
Σ1/2P⊥∗ (Σ†)1/2 Cov[ϕ11(X1) , ϕ12(X1)] (Σ†)1/2P⊥∗ Σ

1/2 )
l,l′

(a)
= (Imk)i j,i′ j′

(
Σ1/2P⊥∗ Σ

1/2 − Σ1/2P⊥∗ Σ∗P
⊥
∗ Σ

1/2)
l,l′ + (Jmk)i j,i′ j′

(
Σ1/2P⊥∗ Σ∗P

⊥
∗ Σ

1/2)
l,l′

= (Imk)i j,i′ j′ (Σ1)l,l′ + (Jmk)i j,i′ j′ (Σ2)l,l′ .

In (a), we have used that (Σ†)1/2 Var[ϕ11(X1)] (Σ†)1/2 = Ip, (P⊥∗ )2 = P⊥∗ and the definition of Σ∗.
This gives the desired formula. Now by the total law of covariance (see e.g. Lemma 41(i) of Huang
et al. (2022)),

Σ∗ = (Σ†)1/2 Cov[ϕ11(X1) , P⊥∗ ϕ12(X1)] (Σ†)1/2

= (Σ†)1/2 VarE[ϕ11(X1) | X1] (Σ†)1/2

which is positive semi-definite. This implies that Σ2 is also positive semi-definite. Moreover, by
another total law of variance, we get that

Σ∗ ⪯ (Σ†)1/2 Var[ϕ11(X1)] (Σ†)1/2 = Ip ,

where ⪯ denotes the Loewner partial order on positive semi-definite matrices. This implies that
Ip − Σ∗ is positive semi-definite and so is Σ1.

We are now ready to prove the equivalence of (PO) and (AO).

Proof of Lemma 48 We recall that (PO) can be expressed as

min
β∈S ,u∈S u

max
v∈S v

1
mk

1⊺nk ρ(u) −
1

mk
y(GΣ1/2

o β∗)⊺u +
λ

2m
∥β∥22 +

1
mk

v⊺u

−
1

mk
v⊺GΦP∗Σ1/2β −

1
mk

v⊺GΦP⊥∗ Σ
1/2β .

By Lemma 57, GΦP⊥∗ is independent of (GΣ1/2
o β∗,GΦP∗). This allows us to condition on the ran-

dom variables (GΣ1/2
o β∗,GΦP∗), apply the CGMT result to GΦP⊥∗ Σ

1/2, and then marginalize out
(GΣ1/2

o β∗,GΦP∗). Notice that the loss is convex-concave in (β, v), the sets of optimization are com-
pact convex, and the variance-covariance structure of GΦP⊥∗ Σ

1/2 is given by Lemma 58, which
satisfies the condition of Theorem 5 with M = 2. The conclusions of Theorem 5 therefore hold for
(PO) and (AO).
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N.2. Proof of Lemma 49: Equivalence between (PO), (AO) and (SO)

The calculations are mostly similar to that of Salehi et al. (2019), so we focus on highlighting the
differences in the proof.

Analyzing the auxiliary optimization. We first notice that, other than the regularization term
∥β∥22, β appears in the loss only through Σ1/2β, Σ1/2

1 β and Σ1/2
2 β, where

Σ1 = Σ
1/2P⊥∗ (Ip − Σ∗)P⊥∗ Σ

1/2 and Σ2 = Σ
1/2P⊥∗ Σ

1/2 .

Therefore it suffices to restrict the set of minimization, β ∈ S , to the intersection of S and the
positive eigenspace of Σ. Define the projection to the positive eigenspace of Σ as PΣ B Σ†Σ, which
allows us to rewrite the auxiliary optimization as

min
β∈S ,u∈S u

max
v∈S v

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2m
∥PΣβ∥22 +

1
mk

v⊺(u −GΦP∗Σ1/2β)

−
1

mk
v⊺h1∥β∥Σ1 +

1
mk
∥v∥g⊺1Σ

1/2
1 β

−
1

mk3/2 v⊺Jmkh2∥β∥Σ2 +
1

mk
∥v∥Jmk g

⊺
2Σ

1/2
2 β . (109)

For simplicity, we have abbreviated y ≡ y(GΣ1/2
o β∗).

Salehi et al. (2019) showed that, under their CGMT result (analogous to our Theorem 5(i) and
Theorem 5(ii)), the minimum and maximum can be exchanged in the auxiliary optimization in an
asymptotic sense since they can be exchanged in the primary optimization. Throughout the analysis
of AO, we will highlight explicitly where such flipping is done, and in the case where the min-max
theorem is not applicable, we defer a rigorous justification to the end of the proof.

For simplicity of notation, given a matrix A ∈ Rd′×d and a subset S ∈ Rd, we also write A(S ) =
{Av | v ∈ S } for short.

Maximizing over v ∈ S v ⊂ R
mk. Consider the projection matrix Pmk B

1
k Jmk and write

P⊥mk = Imk − Pmk. Notice also that ∥ • ∥Jmk =
√

k ∥Pmk( • )∥. Then the maximization over v can be
re-expressed as

max
P⊥mkv∈P⊥mk(S v)

max
Pmkv∈Pmk(S v)

1
mk

v⊺Pmk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

+
1

mk
v⊺P⊥mk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −

1
√

k
Jmkh2∥β∥Σ2)

+
1

mk
∥Pmkv∥g1Σ

1/2
1 β +

1
mk
∥P⊥mkv∥g⊺1Σ

1/2
1 β +

1

m
√

k
∥Pmkv∥g⊺2Σ

1/2
2 β .

Maximizing the above over Pmkv and P⊥mkv separately, choosing each vector to be what it multiplies
and writing r1 = ∥P⊥mkv∥/

√
mk and r2 = ∥Pmkv∥/

√
mk (analogous to (44) – (45) in Salehi et al.

(2019)), the above can be rewritten as

max
(r1,r2)∈S r1×S r2

r1
( 1
√

mk
g⊺1Σ

1/2
1 β +

1
√

mk

∥∥∥P⊥mk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥)
+ r2

( 1
√

mk
g⊺1Σ

1/2
1 β +

1
√

m
g⊺2Σ

1/2
2 β

+
1
√

mk

∥∥∥Pmk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥) ,
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where we have denoted

S r1 B
{ 1
√

mk
∥P⊥mkv∥

∣∣∣∣ v ∈ S v
}

and S r2 B
{ 1
√

mk
∥Pmkv∥

∣∣∣∣ v ∈ S v
}
.

Substituting this into (109) yields

min
β∈S
u∈S u

max
(r1,r2)∈S r1×S r2

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2m
∥PΣβ∥22 +

r1 + r2
√

mk
g⊺1Σ

1/2
1 β +

r2
√

n
g⊺2Σ

1/2
2 β

+
r1
√

mk

∥∥∥P⊥mk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥
+

r2
√

mk

∥∥∥Pmk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥ .
Minimizing over β ∈ S . As with (47) of Salehi et al. (2019), we introduce new variables

µ,w ∈ Rp to replace β in the regularization term via the Lagrange multiplier method applied to the
constraint PΣµ = PΣβ:

min
β∈S
u∈S u
µ∈S

max
w∈Rp

(r1,r2)∈S r1×S r2

L1(β, u, µ,w, r1, r2) ,

where

L1(β, u, µ,w, r1, r2) B
1

mk
1⊺mk ρ(u) −

1
mk

y⊺u +
λ

2m
∥PΣµ∥22 +

1
p

w⊺PΣ(µ − β)

+
r1 + r2
√

mk
g⊺1Σ

1/2
1 β +

r2
√

m
g⊺2Σ

1/2
2 β

+
r1
√

mk

∥∥∥P⊥mk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥
+

r2
√

mk

∥∥∥Pmk(u −GΦP∗Σ1/2β − h1∥β∥Σ1 −
1
√

k
Jmkh2∥β∥Σ2)

∥∥∥ . (110)

To minimize over β ∈ S , we first swap the order of minβ∈S and maxw∈Rp, (r1,r2)∈S r1×S r2
. Notice

that the β-dependence in the loss comes from PΣβ, Σ1/2
1 β, Σ1/2

2 β and GΦP∗Σ1/2β. Writing β̃ =
√

p P∗Σ1/2β, β̃⊥ =
√

p P⊥∗ Σ
1/2β, v(β∗) B

√
pΣ∗Σ

1/2
o β∗ and κ∗ B ∥Σ∗Σ

1/2
o β∗∥, we can express

Σ
1/2
1 β =

(
Σ1/2P⊥∗ (Ip − Σ∗)P⊥∗ Σ

1/2)1/2β
(a)
=

1
√

p
(Ip − Σ∗)β̃⊥ ,

Σ
1/2
2 β =

(
Σ1/2P⊥∗ Σ∗P

⊥
∗ Σ

1/2)1/2β
(b)
=

1
√

p
Σ∗β̃

⊥ ,

GΦP∗Σ1/2β =
1
√

p
GΦv(β∗)︸        ︷︷        ︸
Cκ∗q

×
v(β∗)⊺Σ1/2β
√

p κ2
∗︸     ︷︷     ︸

Cα(β̃)

,

PΣβ =
1
√

p
(Σ†)1/2β̃ +

1
√

p
(Σ†)1/2β̃⊥ =

α(β̃)
√

p
(Σ†)1/2v(β∗) +

1
√

p
(Σ†)1/2β̃⊥ .

In (a) and (b) above, we have used Assumption 11(ii) to note that Ip − Σ∗ and Σ∗ are both idempo-
tent. This allows us to express all β-dependent terms in terms of α(β̃) and β̃⊥, where β̃ and β̃⊥ are
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orthogonal and can be optimized separately. Therefore, the optimization can be rewritten as

min
u∈S u
µ∈S
α∈S α

max
w∈Rp

(r1,r2)∈S r1×S r2

min
β̃⊥∈S̃⊥

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2m
∥PΣµ∥22 +

1
p

w⊺PΣµ

−
α

p
√

p
w⊺(Σ†)1/2v(β∗) −

1
p
√

p
w⊺(Σ†)1/2β̃⊥

+
r1 + r2√

mkp
g⊺1 (Ip − Σ∗)β̃⊥ +

r2
√

mp
g⊺2Σ∗β̃

⊥

+
r1
√

mk

∥∥∥∥P⊥mk

(
u − κ∗αq − 1

√
p

h1∥(Ip − Σ∗)β̃⊥∥ −
1√
pk

Jmkh2∥Σ∗β̃
⊥∥

)∥∥∥∥
+

r2
√

mk

∥∥∥∥Pmk
(
u − κ∗αq − 1

√
p

h1∥(Ip − Σ∗)β̃⊥∥ −
1√
pk

Jmkh2∥Σ∗β̃
⊥∥

)∥∥∥∥ , (111)

where we have defined the sets

S α B
{ v(β∗)⊺Σ1/2β
√

p κ2
∗

∣∣∣ β ∈ S
}

and S̃ ⊥ B {
√

p P⊥∗ Σ
1/2β | β ∈ S } .

Note that we have moved the minimization over α to the outmost part of the loss. The steps so far
are analogous to (46) – (47) of Salehi et al. (2019). Before proceeding, we notice that since Ip − Σ∗
and Σ∗ are symmetric and idempotent by Assumption 11(ii), they are in fact projection matrices
onto two orthogonal subspaces. Therefore to optimize the above over β̃⊥, it suffices to do so over
(Ip − Σ∗)β̃⊥ and Σ∗β̃⊥ individually. Moreover, when optimizing over each of the projected β̃⊥’s,
the optimization takes exactly the same form as (47) of Salehi et al. (2019). Similar to them, we
introduce

σ1 B
1
√

p
∥(Ip − Σ∗)β̃⊥∥ ∈ S σ1 and σ2 B

1
√

p
∥Σ∗β̃

⊥∥ ∈ S σ2 ,

where S σ1 B {∥(Ip − Σ∗)P⊥∗ Σ
1/2β∥ | β ∈ S } and S σ2 B {∥Σ∗P

⊥
∗ Σ

1/2β∥ | β ∈ S } are both subsets of
non-negative real numbers, as well as the auxiliary variables ν1, ν2, τ1, τ2 ≥ 0. We also take note of
the fact that

(Ip − Σ∗)β̃⊥ ∈ S ⊥Σ B {
√

p (Ip − Σ∗)P⊥∗ Σ
1/2β | β ∈ S } ,

Σ∗β̃
⊥ ∈ S Σ B {

√
pΣ∗P⊥∗ PΣΣ1/2β | β ∈ S } ,
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and denote the projection onto span(S ⊥
Σ

) as PS⊥
Σ

and the projection onto span(S Σ) as PS Σ . Then by
the same algebra from (47) – (49) of Salehi et al. (2019), we obtain

min
u∈S u
µ∈S
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
w∈Rp

(r1,r2)∈S r1×S r2
τ1,τ2≥0

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2m
∥PΣµ∥22 +

1
p

w⊺PΣµ

−
α

p
√

p
w⊺(Σ†)1/2v(β∗)

−
σ1

2τ1
−
σ1τ1

2

∥∥∥∥PS⊥
Σ

( r1 + r2
√

mk
g1 −

1
p

(Ip − Σ∗)(Σ†)1/2w
)∥∥∥∥2

−
σ2

2τ2
−
σ2τ2

2

∥∥∥∥PS Σ

( r2
√

n
g2 −

1
p
Σ∗(Σ†)1/2w

)∥∥∥∥2

+
r1

2ν1
+

r1ν1

2mk

∥∥∥∥P⊥mk

(
u − κ∗αq − σ1h1 −

σ2
√

k
Jmkh2

)∥∥∥∥2

+
r2

2ν2
+

r2ν2

2mk

∥∥∥∥Pmk
(
u − κ∗αq − σ1h1 −

σ2
√

k
Jmkh2

)∥∥∥∥2
. (112)

Note that we have moved the maximization over w, r1, r2 to be inside the minimization over ν1,
ν2, σ1 and σ2. Note also that P⊥mkσ2Jmkh2 evaluates to zero, but we keep this term for the ease of
computation later. We also remark that ν1 can be restricted to be in a compact set

{∥∥∥P⊥mk
(
u − κ∗αq −

σ1h1 −
σ2√

k
Jmkh2

)∥∥∥ ∣∣∣ u ∈ S u
}

for the purpose of flipping minimization and maximization, and so are
ν2, τ1, τ2, but we do not do so for notational simplicity.

Maximization over w ∈ Rp. We first derive some useful relationships between the different
projection matrices introduced so far: By the definition of Σ∗, we have

Σ∗PΣ = (Σ†)1/2Cov[ϕ11(X1), ϕ11(X2)](Σ†)1/2PΣ = Σ∗ . (113)

Also by the definition of P∗ and the idempotency of Σ∗,

P∗Σ∗ = Σ∗P∗ =

Σ∗
(Σ∗Σ

1/2
o β∗)(Σ∗Σ

1/2
o β∗)⊺

∥Σ∗Σ
1/2
o β∗∥2

= P∗ if Σ∗Σ
1/2
o β∗ , 0

Σ∗ × 0 = P∗ otherwise .
(114)

This implies that

S ⊥Σ = {
√

p (Ip − Σ∗)(Ip − P∗)Σ1/2β | β ∈ S } = {
√

p (Ip − Σ∗)Σ1/2β | β ∈ S } ,

S Σ = {Σ∗(Ip − P∗)Σ1/2β | β ∈ S } = {(Σ∗ − P∗)Σ1/2β | β ∈ S } ,

and combining these with the assumption that span(S ) = Rp, we can express

PS⊥
Σ
= Ip − Σ∗ and PS Σ = Σ∗ − P∗ . (115)

This in turn implies that

PS⊥
Σ
(Ip − Σ∗) = PS⊥

Σ
, PS ΣΣ∗ = PS⊥

Σ
, PS⊥

Σ
PS Σ = P∗PS⊥

Σ
= P∗PS Σ = 0 , (116)
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and that

PΣw = Σ1/2(Σ†)1/2w

= Σ1/2P∗(Σ†)1/2w + Σ1/2PS⊥
Σ
(Σ†)1/2w + Σ1/2PS Σ(Σ

†)1/2w

= Σ1/2 v(β∗)v(β∗)⊺

pκ2
∗

(Σ†)1/2w + Σ1/2PS⊥
Σ
(Σ†)1/2w + Σ1/2PS Σ(Σ

†)1/2w .

Substituting these into (112), we obtain

min
u∈S u
µ∈S
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
w∈Rp

(r1,r2)∈S r1×S r2
τ1,τ2≥0

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2n
∥PΣµ∥22

+
( 1

p2κ2
∗

µ⊺Σ1/2v(β∗) −
α

p
√

p

)
v(β∗)⊺P∗(Σ†)1/2w

+
1
p

(Σ1/2µ)⊺PS⊥
Σ
(Σ†)1/2w +

1
p

(Σ1/2µ)⊺PS Σ(Σ
†)1/2w

−
σ1

2τ1
−
σ1τ1

2

∥∥∥∥PS⊥
Σ

( r1 + r2
√

mk
g1 −

1
p

(Σ†)1/2w
)∥∥∥∥2

−
σ2

2τ2
−
σ2τ2

2

∥∥∥∥PS Σ

( r2
√

n
g2 −

1
p

(Σ†)1/2w
)∥∥∥∥2

+
r1

2ν1
+

r1ν1

2mk

∥∥∥P⊥mk(u − κ∗αq − σ1h1 −
σ2
√

k
Jmkh2)

∥∥∥2

+
r2

2ν2
+

r2ν2

2mk

∥∥∥Pmk(u − κ∗αq − σ1h1 −
σ2
√

k
Jmkh2)

∥∥∥2
. (117)

To optimize the above over w, it again suffices to optimize over three mutually orthogonal vectors
P∗(Σ†)1/2w, PS⊥

Σ
(Σ†)1/2w and PS Σ(Σ

†)1/2w. The optimization over P∗(Σ†)1/2w is exactly analogous
to the optimization over Pw in (49) of Salehi et al. (2019), whereas the optimization over the other
two vectors are exactly analogous to that over P⊥w in (49) of Salehi et al. (2019). Therefore by
the exact same completion-of-squares argument as in (49) – (51) in Salehi et al. (2019) but without
taking the asymptotic approximation, the optimization becomes

min
u∈S u
µ∈S
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

1√
pµ
⊺Σ1/2v(β∗)=ακ2

∗

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

λ

2m
∥PΣµ∥22 −

σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2

+
1

2σ1τ1
∥PS⊥

Σ
Σ1/2µ∥2 +

r1 + r2
√

mk
g⊺1 PS⊥

Σ
Σ1/2µ

+
1

2σ2τ2
∥PS ΣΣ

1/2µ∥2 +
r2
√

m
g⊺2 PS ΣΣ

1/2µ

+
r1ν1

2mk

∥∥∥P⊥mk(u − κ∗αq − σ1h1 −
σ2
√

k
Jmkh2)

∥∥∥2

+
r2ν2

2mk

∥∥∥Pmk(u − κ∗αq − σ1h1 −
σ2
√

k
Jmkh2)

∥∥∥2
, (118)
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Rewriting the minimization over µ ∈ S . We now flip the order of optimization such that we
can perform the minimization over µ first. This involves computing

min
µ∈S

λ

2n
∥PΣµ∥22 +

1
2σ1τ1

∥PS⊥
Σ
Σ1/2µ∥2 +

r1 + r2
√

mk
g⊺1 PS⊥

Σ
Σ1/2µ

+
1

2σ2τ2
∥PS ΣΣ

1/2µ∥2 +
r2
√

n
g⊺2 PS ΣΣ

1/2µ s.t.
1
√

p
µ⊺Σ1/2v(β∗) = ακ2

∗ . (119)

Recall from (115) that PS⊥
Σ
= Ip − Σ∗ and PS Σ = Σ∗ − P∗. Denote

Σ̃c
σ,τ B

1
2σ1τ1

(PΣ − Σ∗) +
1

2σ2τ2
(Σ∗ − P∗) ,

g̃c B −
r1 + r2
√

mk
(PΣ − Σ∗)g1 −

r2
√

m
(Σ∗ − P∗)g2 .

Then the problem comes

min
µ∈S

λ

2n
∥PΣµ∥22 + (Σ1/2µ)⊺Σ̃c

σ,τ(Σ
1/2µ) − (g̃c)⊺Σ1/2µ s.t.

1
√

p
µ⊺Σ1/2v(β∗) = ακ2

∗ .

By (114) and (113), PΣP∗ = PΣΣ∗P∗ = Σ∗P∗ = P∗ and by (115), PS⊥
Σ
= Ip − Σ∗ and PS Σ = Σ∗ − P∗.

Then by a similar argument as (117), we may express

PΣ = PΣ(P∗ + PS⊥
Σ
+ PS Σ) = P∗ + (PΣ − Σ∗) + (Σ∗ − P∗) , (120)

where P∗, PΣ − Σ∗ and Σ∗ − P∗ are projections onto mutually orthogonal subspaces. Meanwhile,
recalling the definition of Σ̃σ,τ and g̃, we can express

Σ̃σ,τ =
1

2σ1τ1
(PΣ − Σ∗) +

1
2σ2τ2

Σ∗ = Σ̃
c
σ,τ +

1
2σ2τ2

P∗ ,

g̃ = − r1 + r2
√

mk
(PΣ − Σ∗)g1 −

r2
√

m
Σ∗g2 = g̃c −

r2
√

m
P∗g2 .

Recalling also that P∗ = v(β∗)v(β∗)⊺/(pκ2
∗), we can write

(Σ1/2µ)⊺Σ̃c
σ,τ(Σ

1/2µ) − (g̃c)⊺Σ1/2µ

= (Σ1/2µ)⊺Σ̃σ,τ(Σ1/2µ) − g̃⊺Σ1/2µ −
1

2σ2τ2
(Σ1/2µ)⊺P∗(Σ1/2µ) +

r2
√

n

(
P∗g2

)⊺
Σ1/2µ

= (Σ1/2µ)⊺Σ̃σ,τ(Σ1/2µ) − g̃⊺Σ1/2µ −
α2κ2

∗

2σ2τ2
+

r2
√

m
g⊺2 P∗Σ1/2µ .

Now using a Lagrange multiplier θ to remove the constraint, the optimization becomes

min
µ∈S

max
θ∈R

λ

2n
∥PΣµ∥22 + (Σ1/2µ)⊺Σ̃σ,τ(Σ1/2µ) −

(
g̃ + θ

√
p

v(β∗)
)⊺
Σ1/2µ

−
α2κ2

∗

2σ2τ2
+

r2
√

m
g⊺2 P∗Σ1/2µ + αθκ2

∗ .

Since the problem is convex-concave, we can apply the min-max theorem of Rockafellar (1970) to
flip the order of minimum and maximum. Doing this together with a completion of squares, we
obtain

max
θ∈R

Mg,σ,τ,θ −
1
4

∥∥∥(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2
−

α2κ2
∗

2σ2τ2
+ αθκ2

∗ , (121)
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where we have denoted the Moreau envelope like term

Mg,σ,τ,θ B min
µ∈S

λ

2n
∥PΣµ∥22 +

∥∥∥Σ̃1/2
σ,τ (Σ1/2µ) −

1
2

(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

+
r2
√

m
g⊺2 P∗Σ1/2µ .

Rewriting the minimization over u ∈ S u. Meanwhile, the minimization over u ∈ S u involves

min
u∈S u

1
mk

1⊺mk ρ(u) −
1

mk
y⊺u +

r1ν1

2mk

∥∥∥P⊥mk(u − h̃α,σ)
∥∥∥2
+

r2ν2

2mk

∥∥∥Pmk(u − h̃α,σ)
∥∥∥2
, (122)

where we have used the shorthand h̃α,σ = κ∗αq − σ1h1 −
σ2√

k
Jmkh2. Recall that by definition,

y = Pmky since y is a length-mk vector formed by k-fold repetitions of m entries. Then we can
re-express the loss above as

min
u∈S u

1
mk

1⊺mk ρ(u) −
1

mk
y⊺Pmku +

r1ν1

2mk

∥∥∥P⊥mk(u − h̃α,σ)
∥∥∥2
+

r2ν2

2mk

∥∥∥Pmk(u − h̃α,σ)
∥∥∥2

= min
u∈S u

1
mk

1⊺mk ρ(Pmku + P⊥mku) +
r2ν2

2mk

∥∥∥∥Pmk
(
u −

1
r2ν2

y − h̃α,σ
)∥∥∥∥2
+

r1ν1

2mk

∥∥∥P⊥mk(u − h̃α,σ)
∥∥∥2

−
1

2r2ν2mk

∥∥∥Pmky
∥∥∥2
−

1
mk

y⊺Pmkh̃α,σ .

The loss can therefore be minimized separately in Pmku and P⊥mku. Recall that for a function f :
S → R and S ⊆ Rmk, we defined the Moreau envelope

MS ( f ; v, t) B min
x∈S

f (x) +
1
2t
∥x − v∥22 ,

Also recall the definition

M⊥h̃α,σ,r,ν(ũ) BMP⊥mk(S u)
(
1⊺mk ρ(ũ + • ) ; P⊥mkh̃α,σ,

1
r1ν1

)
,

My,h̃α,σ,r,ν BMPmk(S u)
(
M⊥h̃α,σ,r,ν ;

1
r2ν2

y − Pmkh̃α,σ , r2ν2
)
.

Then (122) can be expressed as

min
ũ∈Pmk(S u)

1
mk

M⊥h̃α,σ,r,ν(ũ) +
r2ν2

2mk

∥∥∥∥Pmk
(
ũ −

1
r1ν1

y − h̃α,σ
)∥∥∥∥2
−

1
2r2ν2mk

∥∥∥Pmky
∥∥∥2
−

1
mk

y⊺Pmkh̃α,σ

=
1

mk
My,h̃α,σ,r,ν −

1
2r2ν2mk

∥y∥2 − 1
mk

y⊺h̃α,σ , (123)

where we have used Pmky = y again in the last line. Substituting both (121) and (123) into (118)
yields

min
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ2

∗ −
α2κ2

∗

2σ2τ2

+ Mg,σ,τ,θ −
1
4

∥∥∥(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

+
1

mk
My,h̃α,σ,r,ν −

1
2r2ν2mk

∥y∥2 − 1
mk

y⊺h̃α,σ ,
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which equals RSO
S ,S u,S v

.

Justifying the flipping of the minima and maxima. To conclude, we need to justify the
flipping of min-max in the analysis of the auxiliary optimization above. The same argument has
been performed for the logistic loss in the isotropic, unaugmented case in Salehi et al. (2019) and
in more details for general losses in Thrampoulidis et al. (2018). For completeness, we repeat the
arguments of the proof of Lemma A.3 of Thrampoulidis et al. (2018) in our context to illustrate how
the non-asymptotic inequalities arise in our result for one particular flipping, and refer readers to
Appendix A of Thrampoulidis et al. (2018) for more details in the general setup.

We now consider the flipping of minβ∈S and max(r1,r2)∈S r1×S r2
in (110). First define the loss

function L1(β, u, µ,w, r1, r2) as in (110) and denote the risk at (110) by

R1 B min
β∈S
u∈Su
µ∈S

max
w∈Rp

(r1,r2)∈S r1×S r2

L1(β, u, µ,w, r1, r2) .

For convenience, we also abbreviate the dependence on random variables in

RPO
S ,S u,S v

= RPO
S ,S u,S v

(GΣ1/2
o β∗,GΦΣ1/2) , LPO

β,u,v = LPO
β,u,v(GΣ1/2

o β∗,GΦΣ1/2) ,

LAO
β,u,v = LAO

β,u,v(y,GΦP∗, g,h) .

By the computation of the auxiliary formulation up to (110), and by Lemma 48, we can apply
Theorem 5(i) and (ii) to obtain that

P
(
RPO

S ,S u,S v
≤ c

)
≤ 4P

(
R1 ≤ c

)
and P

(
RPO

S ,S u,S v
≥ c

)
≤ 4P

(
R1 ≥ c

)
(124)

for all c ∈ R. Now define

R′1 B max
(r1,r2)∈S r1×S r2

min
β∈S
u∈Su
µ∈S

max
w∈Rp
L1(β, u, µ,w, r1, r2) .

By the min-max inequality (Rockafellar (1970), Lemma 36.1), we have R′1 ≤ R1 and therefore

P
(
RPO

S ,S u,S v
≤ c

)
≤ 4P

(
R1 ≤ c

)
≤ 4P

(
R′1 ≤ c

)
. (125)

To relate {RPO
S ,S u,S v

≥ c} to {R′1 ≥ c}, we apply the min-max theorem (Rockafellar (1970), Corollary
37.3.2) to obtain that

RPO
S ,S u,S v

= min
β∈S
u∈S u

max
v∈S v

LPO
β,u,v = max

v∈S v
min
β∈S
u∈S u

LPO
β,u,v ,

and applying Theorem 5 gives

P(RPO
S ,S u,S v

≥ c) ≤ 4 P
(

max
v∈S v

min
β∈S
u∈S u

LAO
β,u,v ≥ c

)
. (126)

Now recall that

S r1 B
{ 1
√

mk
∥Pmkv∥

∣∣∣∣ v ∈ S v
}

and S r2 B
{ 1
√

mk
∥P⊥mkv∥

∣∣∣∣ v ∈ S v
}
.
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Defining S̃ v(r1, r2) B {v ∈ S v
∣∣∣ 1√

mk
∥Pmkv∥ = r1 ,

1√
mk
∥P⊥mkv∥ = r2}, we can rewrite

max
v∈S v

min
β∈S
u∈S u

LAO
β,u,v = max

(r1,r2)∈S r1×S r2

max
ṽ1∈S̃ v(r1,r2)

min
β∈S
u∈S u

LAO
β,u,ṽ

(a)
≤ max

(r1,r2)∈S r1×S r2

min
β∈S
u∈S u

max
ṽ∈S̃ v(r1,r2)

LAO
β,u,ṽ

(b)
= R′1 ,

where we have applied the min-max inequality (Rockafellar (1970), Lemma 36.1) in (a) followed
by the same computation up to (110) to maximize the loss over ṽ. Combining this with (126) gives

P(RPO
S ,S u,S v

≥ c) ≤ 4 P
(

max
v∈S v

min
β∈S
u∈S u

LAO
β,u,v ≥ c

)
≤ 4P(R′1 ≥ c) .

Together with (125), this shows that R′1 is equivalent to R1 in the sense that the CGMT inequalities
of (124) hold also with R1 replaced by R′1, therefore justifying the flipping of the minimum and
the maximum. The remaining flipping of minimum and maximum over compact sets hold for the
same reason, and any flipping that involves the Lagrange multiplier w ∈ Rp in (110) can be done in
a similar manner by introducing the Lagrange multiplier directly to the (PO). This proves the first
statement that for all c ∈ R,

P(RPO
S ,S u,S v

≤ c) ≤ 4 P(RSO
S ,S u,S v

≤ c) and P(RPO
S ,S u,S v

≥ c) ≤ 4 P(RSO
S ,S u,S v

≥ c) .

Partial statement when S is replaced by S c,ϵ . When the optimization is over S c,ϵ , which is
no longer compact, we cannot apply the min-max theorem for flipping min and max that involve
S c,ϵ . However, notice that this change only affects optimizations over β, α, σ1 and σ2. For the
optimization over β, we have shown in (125) that for the desired partial bound, the flipping of min
and max does not require the min-max theorem. For the optimizations over α, σ1 and σ2, notice
that the new domains of optimization for each of these variables are

{ v(β∗)⊺Σ1/2β
√

p κ2
∗

∣∣∣∣ β ∈ S
}
,

{
∥(Ip − Σ∗)P⊥∗ Σ

1/2β∥
∣∣∣ β ∈ S

}
,

{
∥Σ∗P⊥∗ Σ

1/2β∥
∣∣∣ β ∈ S

}
,

which are the 1d images of continuous functions on Rp. Since S c,ϵ is connected, the above sets are
connected and therefore convex since they are one-dimensional. Therefore the replacement of S by
S c,ϵ does not affect the application of min-max theorem that concerns α, σ1 and σ2. This proves
the partial upper bound analogous to (125): For all c ∈ R,

P(RPO
S c,ϵ ,S u,S v

≤ c) ≤ 4 P(RSO
S c,ϵ ,S u,S v

≤ c) .
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N.3. Proof of Lemma 50: Equivalence between (SO) and (DO)

It is convenient to restate the optimization (SO):

min
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ2

∗ −
α2κ2

∗

2σ2τ2

+ Mg,σ,τ,θ −
1
4

∥∥∥(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

+
1

mk
My,h̃α,σ,r,ν −

1
2r2ν2mk

∥y∥2 − 1
mk

y⊺h̃α,σ ,

As with Salehi et al. (2019), we exploit the fact that the optimization is over finitely many one-
dimensional variables. It therefore suffices to analyze the asymptotics of the loss function directly,
as one may first approximate the minimization and maximization over (α̃, θ̃) by a smooth function
and then take the approximation error to zero as m, p→ ∞.

Compute terms involving g1 and g2. Recall that g1 and g2 are independent standard Gaussian
Rp vectors, and that

g̃ = − r1 + r2
√

mk
(PΣ − Σ∗)g1 −

r2
√

m
Σ∗g2 ,

Σ̃σ,τ =
1

2σ1τ1
(PΣ − Σ∗) +

1
2σ2τ2

Σ∗ ,

Mg,σ,τ,θ = min
µ∈S

λ

2n
∥PΣµ∥22 +

∥∥∥Σ̃1/2
σ,τ (Σ1/2µ) −

1
2

(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

+
r2
√

m
g⊺2 P∗Σ1/2µ .

We focus on handling Mg,σ,τ,θ. First note that r2√
n
g⊺2 P∗Σ1/2µ depends on µ through the scalar

v(β∗)Σ1/2µ, so by a similar reasoning as above, we can apply the law of large numbers directly
to this term and obtain that it converges to zero in probability. Using oP(1) to denote terms that
converge in probability to zero, we then have

Mg,σ,τ,θ = oP(1) +min
µ∈S

λ

2m
∥PΣµ∥22 +

∥∥∥Σ̃1/2
σ,τ (Σ1/2µ) −

1
2

(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥2

= M̃g,σ,τ,θ +
1
4

∥∥∥∥(Σ̃†σ,τ)
1/2(g̃ + θ

√
p

v(β∗)
)∥∥∥∥2
+ oP(1) , (127)

where

M̃g,σ,τ,θ B min
µ∈S

(Σ1/2µ)⊺
( λ

2n
Σ† + Σ̃σ,τ

)
(Σ1/2µ) − (Σ1/2µ)⊺

(
g̃ + θ

√
p

v(β∗)
)
.

The second term of (127) cancels with the other (g1, g2)-dependent term in the overall loss, so the
only remaining (g1, g2)-dependent term is M̃g,σ,τ,θ. By a completion of squares, we obtain

M̃g,σ,τ,θ = min
µ∈S

∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
(Σ1/2µ) −

1
2

(( λ

2m
Σ† + Σ̃σ,τ

)†)1/2(
g̃ + θ

√
p

v(β∗)
)∥∥∥∥2

−
1
4
(
g̃ + θ

√
p

v(β∗)
)⊺( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
)
.
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The second term does not involve µ, so we first seek to take a limit of this term. Recall from (120)
that P∗, PΣ−Σ∗ and Σ∗−P∗ are projections onto mutually orthogonal subspaces and that PΣΣ∗ = Σ∗,
PΣP∗ = P∗. We can then express( λ

2m
Σ† + Σ̃σ,τ

)†
=

( λ

2m
Σ† +

1
2σ1τ1

(PΣ − Σ∗) +
1

2σ2τ2
Σ∗

)†
,

which implies that( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
)
= −

2(r1 + r2)σ1τ1
√

mk

(2σ1τ1λ

2m
Σ† + Ip

)†
(PΣ − Σ∗)g1

−
2r2σ2τ2
√

m

(2σ2τ2λ

2m
Σ† + Ip

)†
Σ∗g2

+
2σ2τ2θ
√

p

(2σ2τ2λ

2m
Σ† + Ip

)†
v(β∗)

+ O
(
∥m−1/2P∗g1∥ + ∥m−1/2P∗g2∥

)
. (128)

Also notice that any term linear in g1 or g2 has expectation zero, which vanishes. Recall also that
v(β∗) =

√
pΣ∗Σ

1/2
o β∗ and κ∗ = ∥Σ∗Σ

1/2
o β∗∥. Computing the inverse along each orthogonal subspace

explicitly and taking a limit with m, p→ ∞ and p/n = p/(mk)→ κ, we obtain

−
1
4
(
g̃+ θ
√

p
v(β∗)

)⊺( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
)

P
→ −

(r1 + r2)2σ1τ1

2k
χ̄σ,τ11 −

r2
2σ2τ2

2
χ̄σ,τ12 −

θ2κ̄2
∗σ2τ2

2
χ̄σ,τ13 = −χ̄

r,θ,σ,τ
1 .

where we have recalled that P∗ = v(β∗)v(β∗)⊺/(pκ2
∗), κ̄∗ = lim κ∗ and

χ̄σ,τ11 B lim
Tr

(( 2σ1τ1λ
2m Σ

† + Ip
)†(PΣ − Σ∗))

m
,

χ̄σ,τ12 B lim
Tr

(( 2σ2τ2λ
2m Σ

† + Ip
)†
Σ∗

)
m

,

χ̄σ,τ13 B lim Tr
((2σ2τ2λ

2m
Σ† + Ip

)†
P∗

)
.

To address the minimization over µ ∈ S , notice that the only difference between the two choices
of S are via the restriction on µ⊺Σnewµ. Recall that the two different choices of S differs only in
β⊺Σnewβ. Let PΣnew be the projection onto the positive eigenspace of PΣnew and P⊥

Σnew
= Ip − PΣnew .

Then we can rewrite the minimization as

min
µ∈PΣnew (S )
µ′∈P⊥

Σnew
(S )

∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2

(
µ + µ′ −

1
2

(Σ†)1/2
( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
))∥∥∥∥2

.

With either choice of S , µ′ can be chosen freely within P⊥
Σnew

(Rp) so long as ∥µ′∥2 = O(
√

p).

Minimizing over µ′ first and noting that PΣnew = (Σ†new)1/2Σ
1/2
new, we obtain

min
µ∈PΣnew (S )

∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2(Σ†new)1/2

(
Σ

1/2
newµ −

1
2
Σ

1/2
new(Σ†)1/2

( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
))∥∥∥∥2

.
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Setting Σ1/2
newµ in the direction of minimization, we have that for some c(µ) ∈ R,

Σ
1/2
newµ = c(µ)g′ , g′ B 1

2
Σ

1/2
new(Σ†)1/2

( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
)
,

which allows us to rewrite∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2(Σ†new)1/2g′

∥∥∥∥2

∥g′∥2 × min
µ∈PΣnew (S )

(c(µ)∥g′∥ − ∥g′∥)2 .

This is now an optimization over a scalar, so we can again take the limit inside the minimization.
We proceed to compute the limits of the two norms involving g′. Recycling the computation in
(128), we have

∥g′∥2 = (r1 + r2)2σ2
1τ

2
1

mk

∥∥∥∥Σ1/2
new(Σ†)1/2

(2σ1τ1λ

2m
Σ† + Ip

)†
(PΣ − Σ∗)g1

∥∥∥∥2

+
r2

2σ
2
2τ

2
2

n

∥∥∥∥Σ1/2
new(Σ†)1/2

(2σ2τ2λ

2m
Σ† + Ip

)†
P∗g2

∥∥∥∥2

+
θ2σ2

2τ
2
2

p

∥∥∥∥Σ1/2
new(Σ†)1/2

(2σ2τ2λ

2m
Σ† + Ip

)†
v(β∗)

∥∥∥∥2
+ oP(1)

P
→

(r1 + r2)2σ2
1τ

2
1

k
χ̄σ,τ21 + r2

2σ
2
2τ

2
2 χ̄

σ,τ
22 + θ

2κ̄2
∗σ

2
2τ

2
2 χ̄

σ,τ
23 = χ̄r,θ,σ,τ

2 ,

where we have denoted

χ̄σ,τ21 B lim
∥∥∥Σ1/2

new(Σ†)1/2( 2σ1τ1λ
2m Σ

† + Ip
)†(PΣ − Σ∗)∥∥∥2

m
,

χ̄σ,τ22 B lim

∥∥∥Σ1/2
new(Σ†)1/2

( 2σ2τ2λ

2m
Σ† + Ip

)†
Σ∗

∥∥∥2

m
,

χ̄σ,τ23 B lim
∥∥∥∥Σ1/2

new(Σ†)1/2
(2σ2τ2λ

2m
Σ† + Ip

)†
P∗

∥∥∥∥2
.

Similarly, we have∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2(Σ†new)1/2g′

∥∥∥∥2

=
∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2PΣnew(Σ†)1/2

( λ

2m
Σ† + Σ̃σ,τ

)†(
g̃ + θ

√
p

v(β∗)
)∥∥∥∥2

P
→

(r1 + r2)2σ2
1τ

2
1

k
χ̄σ,τ31 + r2

2σ
2
2τ

2
2 χ̄

σ,τ
32 + θ

2κ̄2
∗σ

2
2τ

2
2 χ̄

σ,τ
33 = χ̄r,θ,σ,τ

3 ,

where we used

χ̄σ,τ31 B lim
∥∥∥( λ

2mΣ
† + Σ̃σ,τ

)1/2
Σ1/2PΣnew (Σ†)1/2( 2σ1τ1λ

2m Σ
† + Ip

)†(PΣ − Σ∗)∥∥∥2

m
,

χ̄σ,τ32 B lim

∥∥∥( λ
2mΣ

† + Σ̃σ,τ
)1/2
Σ1/2PΣnew (Σ†)1/2

( 2σ2τ2λ

2m
Σ† + Ip

)†
Σ∗

∥∥∥2

m
,

χ̄σ,τ33 B lim
∥∥∥∥( λ

2m
Σ† + Σ̃σ,τ

)1/2
Σ1/2PΣnew(Σ†)1/2

(2σ2τ2λ

2m
Σ† + Ip

)†
P∗

∥∥∥∥2
.

Combining the calculations above, we obtain that

M̃g,σ,τ,θ
P
→ − χ̄r,θ,σ,τ

1 +
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

× min
µ∈PΣnew (S )

(
c(µ)

√
χ̄r,θ,σ,τ

2 −

√
χ̄r,θ,σ,τ

2

)2
.
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Notice that ∥Σ1/2
newµ∥ = c(µ)∥g′∥

P
−→ c(µ)

√
χ̄r,θ,σ,τ

2 , and recall that our two choices of S only differs

through ∥Σ1/2
newµ∥ − (χ̄r̄,θ̄,σ̄,τ̄

2 )1/2, where r̄ = (r̄1, r̄2), σ̄ = (σ̄1, σ̄2), θ̄ and τ̄ = (τ̄1, τ̄2) are the optimal
solutions to (DO). This implies that

M̃g,σ,τ,θ
P
→ − χ̄r,θ,σ,τ

1 + ϵ2
S
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

,

where ϵS = 0 for S = Sp and ϵS = ϵ for S = Sc
ϵ . Substituting this back into the overall optimization,

we can approximate (SO) in distribution by

min
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ̄2

∗ −
α2κ̄2

∗

2σ2τ2
− χ̄r,θ,σ,τ

1 + ϵ2
S
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

+
1

mk
My,h̃α,σ,r,ν −

1
2r2ν2mk

∥y∥2 − 1
mk

y⊺h̃α,σ .

Compute terms involving y and h̃α,σ. Recall that h̃α,σ = κ∗αq − σ1h1 −
σ2√

k
Jmkh2, where

q = q(GΦ) = 1
κ∗
√

p GΦv(β∗), and h1 and h2 are i.i.d. standard Rmk Gaussians independent of q(GΦ)

and y = y(G). Also recall that y = yPmk =
1
k yJmk. We can then express the last two terms of the

loss above as

−
1

2r2ν2mk
∥y∥2 − 1

mk
y⊺h̃α,σ = −

1
2r2ν2mk

∥y∥2 − κ∗α

mk
y⊺q + σ1

mk
y⊺h1 +

σ2

m
√

k
y⊺Pmkh2 . (129)

Since h1 and h2 are zero-mean and y is coordinate-wise bounded by one, by the weak law of large
numbers,

1
mk

y⊺h1
P
−→ 0 and

1

m
√

k
y⊺Pmkh2

P
−→ 0 . (130)

To handle the first two terms, recall that

y =
(

y1(Σ1/2
o G1), . . . , y1(Σ1/2

o G1)︸                             ︷︷                             ︸
repeated k times

, . . . , yn(Σ1/2
o Gn), . . . , yn(Σ1/2

o Gn)︸                             ︷︷                             ︸
repeated k times

)⊺ ,
where yi(Σ

1/2
o Gi)’s are i.i.d. by definition. Therefore by the weak law of large numbers,

1
mk
∥y∥2 = 1

m

∑m
i=1 yi(Σ

1/2
o Gi)

P
−→ E[y1(Σ1/2

o G1)] =
1
2
. (131)

In the last equality, we recall that

P
(
y1(Σ1/2

o G1) = 1
∣∣∣G1

)
= σ(G⊺1Σ

1/2
o β∗) .

yi ∈ {0, 1} is a logistic variable evaluated at a random input (Σ1/2
o G1)⊺β∗ that is symmetric about

zero. On the other hand, recalling that v(β∗) =
√

pΣ∗Σ
1/2
o β∗,

1
mk

y⊺q = 1
mk

∑
i≤m

∑
j≤k yi(Σ

1/2
o Gi)

1
κ∗
√

p
(
GΦi j

)⊺v(β∗)

=
1
κ∗

1
mk

∑
i≤m

∑
j≤k yi(Σ

1/2
o Gi)

(
GΦi j

)⊺
Σ∗Σ

1/2
o β∗ . (132)
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Notice that each yi(Σ
1/2
o Gi) depends on Gi only through G⊺i Σ

1/2
o β∗, so Gi and GΦi j appear in each

summand only via the Gaussian vector
G⊺i Σ

1/2
o β∗(

GΦi1
)⊺
Σ∗Σ

1/2
o β∗

...(
GΦik

)⊺
Σ∗Σ

1/2
o β∗

 ∼ N
(
0 ,

 (β∗)⊺Σoβ
∗ (β∗)⊺Σ1/2

o Σ∗Σ
1/2
o β∗ ...

(β∗)⊺Σ1/2
o Σ∗Σ

1/2
o β∗ (β∗)⊺Σ1/2

o Σ∗Σ
1/2
o β∗

...
. . .

) d
→


κ̄oZ̄0+κ̄∗Z̄1

κ̄∗Z̄1
...

κ̄∗Z̄1

 ,
where we recall that by Assumption 11,

Σ
1/2
o Cov[Gi,GΦi1]Σ∗Σ

1/2
o = Σ

1/2
o (Σ∗)2Σ

1/2
o = Σ

1/2
o Σ∗Σ

1/2
o ,

Σ
1/2
o Σ∗Cov[GΦi1,G

Φ
i2]Σ∗Σ

1/2
o = Σ

1/2
o (Σ∗)2Σ

1/2
o = Σ

1/2
o Σ∗Σ

1/2
o ,

Z̄0 and Z̄1 are two i.i.d. standard normals and

κ̄∗ B lim
p→∞

κ∗ = lim
p→∞
∥Σ∗Σ

1/2
o β∗∥ , κ̄o B lim

p→∞
∥(Ip − Σ∗)Σ

1/2
o β∗∥ .

Then by the law of large numbers, we have

κ∗
mk

y⊺q
P
−→ E

[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
. (133)

Combining (129), (130), (131) and (133) gives

−
1

2r2ν2mk
∥y∥2 − 1

mk
y⊺h̃α,σ

P
−→ −

1
4r2ν2

− αE
[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
,

so the optimization can be approximated by

min
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ̄2

∗ −
α2κ̄2

∗

2σ2τ2
− χ̄r,θ,σ,τ

1 + ϵ2
S
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

−
1

4r2ν2

− αE
[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
+

1
mk

My,h̃α,σ,r,ν . (134)

Computing the nested Moreau envelope. We are left with

1
mk

My,h̃α,σ,r,ν = min
u2∈Pmk(S u)

1
mk

M⊥h̃α,σ,r,ν(u2) +
r2ν2

2mk

∥∥∥∥Pmk
(
u2 −

1
r2ν2

y − h̃α,σ
)∥∥∥∥2

= min
u2∈Pmk(S u)

min
u1∈P⊥mk(S u)

1
mk

1⊺mk ρ(u1 + u2) +
r2ν2

2mk

∥∥∥∥Pmk
(
u2 −

1
r2ν2

y − h̃α,σ
)∥∥∥∥2

+
r1ν1

2mk

∥∥∥P⊥mk(u1 − h̃α,σ)
∥∥∥2
.

Write u1i j as the (i, j)-th coordinate of u1 ∈ R
mk and similarly write u2i j for that of u2, qi j for q,

h1i j for h1 and h2i j for h2. Recalling the definition of ρ, Pmk =
1
k Jmk and P⊥mk = Imk − Pmk, we can

re-express the loss above as

1
mk

∑k
i, j=1 Li j(u1, u2) ,
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where

Li j(u1, u2) B log
(
1 + eu1i j+u2i j

)
+

r2ν2

2

(1
k

∑k
j′=1

(
u2i j′ −

1
r2ν2

yi(Σ
1/2
o Gi) − κ∗αqi j′ + σ1h1i j′ +

σ2
√

k

(∑
j′′≤k h2i j′′

)))2

+
r1ν1

2
(u1i j − κ∗αqi j + σ1h1i j)2 −

r1ν1

2

(1
k

∑k
j′=1(u1i j′ − κ∗αqi j′ + σ1h1i j′)

)2
.

Consider the Rk-valued vectors u1i = (u1i1, . . . , u1ik) and u2i = (u2i1, . . . , u2ik) for 1 ≤ i ≤ m. Notice
that the loss Li j(u1, u2) = L̃i j(u1i, u2i) only depends on u1 and u2 through u1i, u2i. This allows us to
rewrite

1
mk

My,h̃α,σ,r,ν =
1
m

∑m
i=1 min

u2i∈(Pmk(S u))i
min

u1i∈(P⊥mk(S u))i

1
k

∑k
j=1 L̃i j(u1i, u2i) ,

where (Pmk(S u))i and (P⊥mk(S u))i are the corresponding subspaces in which u2i and u1i take values.
Since S u is closed under permutation of its m blocks of k coordinates, the m summands above are
i.i.d., which allows us to apply a weak law of large numbers to the above average. Also note that
the minima are over Rk-valued vectors, which allows us again to take a limit with p→ ∞ inside the
loss function. Using the computation of yi jqi j via Z̄0 and Z̄1 in (132), we obtain that My,h̃α,σ,r,ν can
be approximated by

E
[

min
u′∈(Pmk(S u))1
u′′∈(P⊥mk(S u))1

1
k

∑k
j=1 log

(
1 + eu′j+u′′j

)
+

r2ν2

2

(1
k

∑k
j=1

(
u′j −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1} − ακ̄∗Z̄1 + σ1η j + σ2Z̄2

))2

+
r1ν1

2

(1
k

∑k
j=1(u′′j − ακ̄∗Z̄1 + σ1η j)2 −

(1
k

∑k
j=1

(
u′′j − ακ̄∗Z̄1 + σ1η j

))2)]
,

where η1, . . . , ηk and Z̄2 are i.i.d. standard normals and ε1 is an independent Logistic(0, 1) variable..
Notice that u′ ∈ (Pmk(S u))1 has equal entries, say u0, and u′′ ∈ (P⊥mk(S u))1 satisfies

∑k
j=1 u′′j = 0.

Also recall the assumption that supu∈S u

∥u∥22
mk → ∞. Setting ũ = (u′′1 + u0, . . . , u′′k + u0), the above can

be further approximated by

E
[

min
ũ∈Rk

1
k

∑k
j=1 log

(
1 + eũ j

)
+

r2ν2

2

( 1
k

∑
j≤k

(
ũ j −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1} − ακ̄∗Z̄1 + σ1η j + σ2Z̄2

) )2

+
r1ν1

2

(1
k

∑k
j=1(ũ j − ακ̄∗Z̄1 + σ1η j)2 −

(1
k

∑k
j=1

(
ũ j − ακ̄∗Z̄1 + σ1η j

))2)]
= E

[
min
ũ∈Rk

1
k

1⊺k ρ(ũ) +
r1ν1

2k

∥∥∥∥(Ik −
1
k

1k×k
)
(ũ − ακ̄∗Z̄11k + σ1η)

∥∥∥∥2

+
r2ν2

2k

∥∥∥∥1
k

1k×k
(
ũ −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k

)∥∥∥∥2]
,
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which equals M̄r,ν,α,σ
ρ . Substituting this into (134) while also applying the assumption that supv∈S v

∥v∥22
mk →

∞, we obtain

min
α∈S α

(σ1,σ2)∈Sσ1×Sσ2
ν1,ν2≥0

max
(r1,r2)∈S r1×S r2

τ1,τ2≥0
θ∈R

−
σ1

2τ1
−

σ2

2τ2
+

r1

2ν1
+

r2

2ν2
+ αθκ̄2

∗ −
α2κ̄2

∗

2σ2τ2

− χ̄r,θ,σ,τ
1 + ϵ2

S
χ̄r,θ,σ,τ

3

χ̄r,θ,σ,τ
2

−
1

4r2ν2
− αE

[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
+ M̄r,ν,α,σ

ρ .

N.4. Proof of Lemma 51: (DO) to (EQs)

Since S = Sp, we can ignore terms involving χ̄r,θ,σ,τ
2 and χ̄r,θ,σ,τ

3 . Setting the first derivative of (DO)
to zero with respect to each variable, we obtain



0 = θκ̄2
∗ −

ακ̄2
∗

σ2τ2
− E

[
σ(κ̄oZ̄0 + κ̄∗Z̄1)κ̄∗Z̄1

]
+ ∂αM̄r,ν,α,σ

ρ ,

0 = − 1
2τ1
− ∂σ1 χ̄

r,θ,σ,τ
1 + ∂σ1 M̄r,ν,α,σ

ρ ,

0 = − 1
2τ2
+

α2κ̄2
∗

2σ2
2τ2
− ∂σ2 χ̄

r,θ,σ,τ
1 + ∂σ2 M̄r,ν,α,σ

ρ ,

0 = σ1
2τ2

1
− ∂τ1 χ̄

r,θ,σ,τ
1 ,

0 = σ2
2τ2

2
+

α2κ̄2
∗

2σ2τ
2
2
− ∂τ2 χ̄

r,θ,σ,τ
1 ,

0 = − r1
2ν2

1
+ ∂ν1 M̄r,ν,α,σ

ρ ,

0 = − r2
2ν2

2
+ 1

4r2ν
2
2
+ ∂ν2 M̄r,ν,α,σ

ρ ,

0 = 1
2ν1
− ∂r1 χ̄

r,θ,σ,τ
1 + ∂r1 M̄r,ν,α,σ

ρ ,

0 = 1
2ν2
+ 1

4r2
2ν2
− ∂r2 χ̄

r,θ,σ,τ
1 + ∂r2 M̄r,ν,α,σ

ρ ,

0 = ακ̄2
∗ − ∂θχ̄

r,θ,σ,τ
1 .

(135)

The next step is to compute the derivatives of

M̄r,ν,α,σ
ρ B E

[
min
ũ∈Rk

1
k

1⊺k ρ(ũ) +
r1ν1

2k

∥∥∥(Ik −
1
k

1k×k
)
(ũ + σ1η)

∥∥∥2

+
r2ν2

2k

∥∥∥∥1
k

1k×k
(
ũ −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k

)∥∥∥∥2]
.
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Recall that we denote uZ̄,ε1,η as the minimizer of the minimization inside the expectation. By the
envelope theorem and noting that E[I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}] = E[σ(κ̄oZ̄0 + κ̄∗Z̄1)], we have

∂αM̄r,ν,α,σ
ρ = −

r2ν2κ̄∗
k
E

[
Z̄1

(
1⊺k uZ̄,ε1,η −

k
r2ν2

σ(κ̄oZ̄0 + κ̄∗Z̄1)
)]
+ r2ν2ακ̄

2
∗ ,

∂σ1 M̄r,ν,α,σ
ρ =

r1ν1

k
E
[
η⊺

(
Ik −

1
k

1k×k
)

uZ̄,ε1,η

]
+

r1ν1σ1(k − 1)
k

+
r2ν2

k
E
[
η⊺

1
k

1k×kuZ̄,ε1,η

]
+

r2ν2σ1

k
,

∂σ2 M̄r,ν,α,σ
ρ =

r2ν2

k
E
[
Z̄21⊺k uZ̄,ε1,η

]
+ r2ν2σ2 ,

∂ν1 M̄r,ν,α,σ
ρ =

r1

2k
E
[∥∥∥(Ik −

1
k

1k×k
)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

∂ν2 M̄r,ν,α,σ
ρ =

r2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k

)∥∥∥∥2]
+

1
ν2k
E
[
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}

(
1⊺k uZ̄,ε1,η −

k
r2ν2

σ(κ̄oZ̄0 + κ̄∗Z̄1) − kακ̄∗Z̄1
)]
,

∂r1 M̄r,ν,α,σ
ρ =

ν1

2k
E
[∥∥∥(Ik −

1
k

1k×k
)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

∂r2 M̄r,ν,α,σ
ρ =

ν2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k

)∥∥∥∥2]
+

1
r2k
E
[
I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1}

(
1⊺k uZ̄,ε1,η −

k
r2ν2

σ(κ̄oZ̄0 + κ̄∗Z̄1) − kακ̄∗Z̄1
)]
.

Writing Ȳ = I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1} and substituting the bounds above into the system of equations
recovers (EQs).

N.5. Proofs for Section M.2

N.5.1. PROOF OF LEMMA 52: ISOTROPIC, NO AUGMENTATION

Under the stated setup, the covariance matrices in the formula evaluate to Σo = Σ =
1
p Ip and Σ∗ = Ip.

In this case, as m = n, p→ ∞ and p/n→ κ, we can compute the limit terms defined in (DO):

κ̄∗ = lim
p→∞

∥β∗∥
√

p
, κ̄o = χ̄σ,τ11 = 0 , χ̄σ,τ12 =

κ

σ2τ2λκ + 1
, χ̄σ,τ13 =

1
σ2τ2λκ + 1

,

χ̄σ,τ21 = 0 , χ̄σ,τ22 =
κ

(σ2τ2λκ + 1)2 , χ̄σ,τ23 =
1

(σ2τ2λκ + 1)2 .

This implies

χ̄r,θ,σ,τ
1 =

r2
2κ + θ

2κ̄2
∗

2(λκ + σ−1
2 τ

−1
2 )

, χ̄r,θ,σ,τ
2 =

r2
2κ + θ

2κ̄2
∗

(λκ + σ−1
2 τ−1

2 )2 ,
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which are in particular independent of σ1, τ1 and r1. Now recall that (EQs) read



0 = θκ̄2
∗ −

ακ̄2
∗

σ2τ2
−

r2ν2κ̄∗
k E

[
Z̄11⊺k uZ̄,ε1,η

]
+ r2ν2ακ̄

2
∗ ,

0 = − 1
2τ1
− ∂σ1 χ̄

r,θ,σ,τ
1 +

r1ν1
k E

[
η⊺

(
Ik −

1
k 1k×k

)
uZ̄,ε1,η

]
+

r1ν1σ1(k−1)
k +

r2ν2
k E

[
η⊺ 1

k 1k×kuZ̄,ε1,η

]
+

r2ν2σ1
k ,

0 = − 1
2τ2
+

α2κ̄2
∗

2σ2
2τ2
− ∂σ2 χ̄

r,θ,σ,τ
1 +

r2ν2
k E

[
Z̄21⊺k uZ̄,ε1,η

]
+ r2ν2σ2 ,

0 = σ1
2τ2

1
− ∂τ1 χ̄

r,θ,σ,τ
1 ,

0 = σ2
2τ2

2
+

α2κ̄2
∗

2σ2τ
2
2
− ∂τ2 χ̄

r,θ,σ,τ
1 ,

0 = − r1
2ν2

1
+

r1
2k E

[∥∥∥(Ik −
1
k 1k×k

)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

0 = − r2
2ν2

2
+ 1

4r2ν
2
2
+

r2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2

Ȳ1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k
)∥∥∥∥2]

+
1
ν2k
E
[
Ȳ
(
1⊺k uZ̄,ε1,η −

k
r2ν2

Ȳ − kακ̄∗Z̄1
)]
,

0 = 1
2ν1
− ∂r1 χ̄

r,θ,σ,τ
1 +

ν1
2k E

[∥∥∥(Ik −
1
k 1k×k

)
(uZ̄,ε1,η + σ1η)

∥∥∥2]
,

0 = 1
2ν2
+ 1

4r2
2ν2
− ∂r2 χ̄

r,θ,σ,τ
1 +

ν2

2k
E
[∥∥∥∥1

k
1k×k

(
uZ̄,ε1,η −

1
r2ν2

Ȳ1k − ακ̄∗Z̄11k + σ1η + σ2Z̄21k
)∥∥∥∥2]

+
1

r2k
E
[
Ȳ
(
1⊺k uZ̄,ε1,η −

k
r2ν2

Ȳ − kακ̄∗Z̄1
)]
,

0 = ακ̄2
∗ − ∂θχ̄

r,θ,σ,τ
1 .

By the 4th equation, σ1 = 0. In this case, the defining optimization of uZ̄,ε1,η is symmetric under
permutation of ũ ∈ Rk and in particular 1

k 1k×kuZ̄,ε1,η = uZ̄,ε1,η. This implies that uZ̄,ε1,η = uZ̄,ε1
1k

where uZ̄,ε1
is the minimizer of the 1-d random optimization problem

min
ũ∈R

ρ(ũ) +
r2ν2

2
(
ũ −

1
r2ν2

Ȳ − ακ̄∗Z̄1 + σ2Z̄2
)2 . (136)

Recall that Proxtρ( • )(v) B arg minx∈R
1
2t (v − x)2 + ρ(x). This allows us to express

uZ̄,ε1
= Prox(r2ν2)−1ρ( • )

( 1
r2ν2

Ȳ + ακ̄∗Z̄1 − σ2Z̄2
)
.

Meanwhile, substituting (Ik −
1
k 1k×k)uZ̄,ε1,η = 0 into the 6th and 8th equations above yields r1 = 0

and ν1 → ∞. We can WLOG take ν1 → ∞ such that r1ν1 → 0. By the 2nd equation we then obtain

τ1 =
1
2

(r2ν2

k
E
[
η⊺1kuZ̄,ε

])−1
→ ∞ ,
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by noting that η is zero-mean and independent of uZ̄,ε. This removes (σ1, r1, ν1, τ1) from the equa-
tions. Substituting uZ̄,ε1,η = ūZ̄,ε1

1k and the derivatives of χ̄r,θ,σ,τ
1 , we obtain



0 = θκ̄2
∗ −

ακ̄2
∗

σ2τ2
− r2ν2κ̄∗E

[
Z̄1uZ̄,ε1

]
+ r2ν2ακ̄

2
∗ ,

0 = − 1
2τ2
+

α2κ̄2
∗

2σ2
2τ2
− 1

σ2
2τ2

r2
2κ+θ

2κ̄2
∗

2(λκ+σ−1
2 τ−1

2 )2 + r2ν2E
[
Z̄2uZ̄,ε1

]
+ r2ν2σ2 ,

0 = σ2
2τ2

2
+

α2κ̄2
∗

2σ2τ
2
2
− 1

σ2τ
2
2

r2
2κ+θ

2κ̄2
∗

2(λκ+σ−1
2 τ−1

2 )2 ,

0 = − r2
2ν2

2
+ 1

4r2ν
2
2
+

r2
2 E

[(
uZ̄,ε1

− 1
r2ν2

Ȳ − ακ̄∗Z̄1 + σ2Z̄2
)2]
+

1
ν2
E
[
Ȳ
(
uZ̄,ε1

− 1
r2ν2

Ȳ − ακ̄∗Z̄1
)]
,

0 = 1
2ν2
+ 1

4r2
2ν2
−

r2κ

λκ+σ−1
2 τ−1

2
+
ν2

2
E
[(

uZ̄,ε1,η −
1

r2ν2
Ȳ − ακ̄∗Z̄1 + σ2Z̄2

)2
]

+
1
r2
E
[
Ȳ
(
uZ̄,ε1,η −

1
r2ν2

Ȳ − ακ̄∗Z̄1
)]
,

0 = ακ̄2
∗ −

θκ̄2
∗

λκ+σ−1
2 τ−1

2
.

(137)

Now let γ = 1
r2ν2

. Notice that the 4th and 5th equations above both involve

(⋆) B
1
2
E
[(

uZ̄,ε1
− γȲ − ακ̄∗Z̄1 + σ2Z̄2

)2]
+ γE

[
Ȳ
(
uZ̄,ε1

− γȲ − ακ̄∗Z̄1
)]

(a)
= E

[
1 − Ȳ

2
(
Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)
− ακ̄∗Z̄1 + σ2Z̄2

)2
]

+ E
[

Ȳ
2
(
Proxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

)
− γ − ακ̄∗Z̄1 + σ2Z̄2

)2
]

+ γE
[
Ȳ
(
Proxγρ( • )

(
γȲ + ακ̄∗Z̄1 − σ2Z̄2

)
− γ − ακ̄∗Z̄1

)]
(b)
= E

[
∂ρ(−κ̄∗Z̄1)

2
(
Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)
− ακ̄∗Z̄1 + σ2Z̄2

)2
]

+ E
[
∂ρ(κ̄∗Z̄1)

2
(
Proxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

)
− γ − ακ̄∗Z̄1 + σ2Z̄2

)2
]

− γE
[
∂ρ(κ̄∗Z̄1)

(
ακ̄∗Z̄1 + γ − Proxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

))]
(c)
= E

[
∂ρ(−κ̄∗Z̄1)

2
(
Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)
− ακ̄∗Z̄1 + σ2Z̄2

)2
]

+ E
[∂ρ(κ̄∗Z̄1)

2
(
Proxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

)
− ακ̄∗Z̄1 + σ2Z̄2

)2
]
−
γ2

2
+
γ2

4
(d)
= E

[
∂ρ(−κ̄∗Z̄1)

(
ακ̄∗Z̄1 + σ2Z̄2 − Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

))2
]
−
γ2

4
.

In (a) above, we have recalled that Ȳ = I≥0{κ̄oZ̄0 + κ̄∗Z̄1 − ε1} = I≥0{κ̄∗Z̄1 − ε1} is an indicator
function; in (b) we have noted the equality of the conditional distributions 1 − I≥0{κ̄∗Z̄1 − ε1} | Z̄1

d
=

I≥0{−κ̄∗Z̄1 − ε1} | Z̄1 by the symmetry of ε1 followed by σ( • ) = ∂ρ( • ); in (c) we have expanded the
square in the second term and noted that E[∂ρ(κ̄∗Z̄1)] = E[(1 + e−κ̄∗Z̄1)−1] = 1

2 since Z̄1 is symmetric

about zero; in (d), we have used in the second expectation that Z̄1
d
= −Z̄1, Z̄2

d
= −Z̄2 and that

Proxγρ( • )
(
γ + ακ̄∗Z̄1 − σ2Z̄2

)
= −Proxγρ( • )

(
− ακ̄∗Z̄1 + σ2Z̄2

)
,
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where we have used Proxγρ( • )(x + γ) = −Proxγρ( • )(−x) (see e.g. Lemma 3 of Salehi et al. (2019)).
Substituting this into the last three lines of (137) gives

γ2 =
2
r2

2
E
[
∂ρ(−κ̄∗Z̄1)

(
κ̄∗αZ̄1 + σ2Z̄2 − Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

))2
]
,

γ = κ
λκ+σ−1

2 τ−1
2
,

α = θ
λκ+σ−1

2 τ−1
2
.

(138)

Meanwhile, the third line of (137) implies

σ2
2 + α

2κ̄2
∗ =

r2
2κ + θ

2κ̄2
∗

(λκ + σ−1
2 τ

−1
2 )2 =

r2
2κ

(λκ + σ−1
2 τ

−1
2 )2 + α

2κ̄2
∗ . (139)

Combining the two calculations, we obtain

θ =
ακ

γ
, τ2 =

κ−1γ

σ2(1 − γλ)
, r2 =

σ2
√
κ

γ
, (140)

which gives the first three desired equations. Substituting these back into the first line of (138) gives

σ2κ

2
= E

[
∂ρ(−κ̄∗Z̄1)

(
ακ̄∗Z̄1 + σ2Z̄2 − Proxγρ( • )(ακ̄∗Z̄1 + σ2Z̄2)

)2] , (141)

which is the fourth desired equation. The first and second equations of (137) are handled similarly
as appendix C.3 of Salehi et al. (2019). We recall that 1 − I≥0{κ̄∗Z̄1 − ε1} | Z̄1

d
= I≥0{−κ̄∗Z̄1 − ε1} | Z̄1

and Proxγρ( • )(x + γ) = −Proxγρ( • )(−x) again to compute

E
[
Z̄1 uZ̄,ε1

]
= E

[
Z̄1Proxγρ( • )

(
γȲ + ακ̄∗Z̄1 − σ2Z̄2

)]
= E

[
Z̄1ȲProxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

)]
+ E

[
Z̄1(1 − Ȳ)Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)]
= E

[
Z̄1 ∂ρ(κ̄∗Z̄1) Proxγρ( • )

(
γ + ακ̄∗Z̄1 − σ2Z̄2

)]
+ E

[
Z̄1 ∂ρ(−κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)]
= − E

[
Z̄1 ∂ρ(κ̄∗Z̄1) Proxγρ( • )

(
− ακ̄∗Z̄1 + σ2Z̄2

)]
+ E

[
Z̄1 ∂ρ(−κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)]
= 2E

[
Z̄1 ∂ρ(−κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)]
= − 2E

[
κ̄∗∂

2ρ
(
− κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)]
+ κ̄∗αE

[
∂ρ(−κ̄∗Z̄1)

1 + γ∂2ρ
(
Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)) ] ,
(142)

where the last line is exactly the same as (87)–(88) of Salehi et al. (2019) via Stein’s lemma and by
noting that Z̄2

d
= −Z̄2. Similarly

E
[
Z̄2uZ̄,ε1

]
= 2E

[
Z̄2 ∂ρ(−κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 − σ2Z̄2

)]
= 2σ2 E

[
∂ρ(−κ̄∗Z̄1)

1 + γ∂2ρ
(
Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)) ] ,
(143)

where the last line is exactly the same as (83) of Salehi et al. (2019) via Stein’s lemma. Substituting
(143) into the second equation of (137) gives

0 = −
1

2τ2
+

α2κ̄2
∗

2σ2
2τ2
−

1
σ2

2τ2

r2
2κ + θ

2κ̄2
∗

2(λκ + σ−1
2 τ−1

2 )2 +
2σ2

γ
E
[

∂ρ(−κ̄∗Z̄1)
1 + γ∂2ρ

(
Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)) ] + σ2

γ
.
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Upon rearranging and a substitution of σ2
2 + α

2κ̄2
∗ =

r2
2κ+θ

2κ̄2
∗

(λκ+σ−1
2 τ−1

2 )2 from (139) and τ2σ2 =
κ−1γ
1−γλ from

(140) , we obtain

1 −
γ

τ2σ2
= 1 − κ + γλκ = E

[
∂ρ(−κ̄∗Z̄1)

1 + γ∂2ρ
(
Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)) ] , (144)

which gives the fifth desired equation. Substituting this into (142) implies

E
[
Z̄1uZ̄,ε1

]
= − 2E

[
κ̄∗∂

2ρ
(
− κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)]
+ κ̄∗α − κ̄∗α

γ

τ2σ2
,

and substituting this into the first equation of (137) gives

0 = θκ̄2
∗ −

ακ̄2
∗

σ2τ2
−
κ̄∗
γ

(
− 2E

[
κ̄∗∂

2ρ
(
− κ̄∗Z̄1) Proxγρ( • )

(
ακ̄∗Z̄1 + σ2Z̄2

)]
+ κ̄∗α − κ̄∗α

γ

τ2σ2

)
+
ακ̄2
∗

γ
,

which simplifies to

−
γθ

2
= E[∂2ρ(−κ̄∗Z̄1)Proxγρ( • )(κ̄∗αZ̄1 + σ2Z̄2)] .

Replacing γθ by ακ in view of (140) gives the last desired equation.

N.5.2. PROOF OF LEMMA 54: RANDOM PERMUTATIONS

Since Z1
d
= ϕ1(Z1), Assumption 11(i) holds. Now note that by the total law of covariance followed

by that ϕ1 and ϕ2 are i.i.d.,

Cov [ϕ1(Z1) , ϕ2(Z1)] = Cov [E[ϕ1(Z1) |Z1] , E[ϕ2(Z1) |Z1]] + E [Cov[ϕ1(Z1) , ϕ2(Z1) |Z1]]

= VarE[ϕ1(Z1) |Z1] .

Denote p̃t = ⌈rperm pt⌉, the number of fixed entries of the l-th group to be permuted. We can
WLOG suppose they are chosen as the first p̃t entries of the t-th group. Also write Z(t)

t( p̃t+1):tpt
=

(Z(t)
t(p̃t+1), . . . ,Z

(t)
tpt

)⊺, the vector of un-permuted coordinates within the t-th group. Then we may
compute

Σ∗ = (Σ†)1/2 Cov [ϕ1(Z1) , ϕ2(Z1)] (Σ†)1/2

= (Σ†)1/2 VarE[ ϕ1(Z1) |Z1 ] (Σ†)1/2

= (Σ†)1/2Var



1
p̃1

∑
l≤p1 Z(1)

1l × 1 p̃1

Z(1)
1(p̃1+1):1p1

...
1

p̃N

∑
l≤p̃N Z(N)

Nl × 1 p̃N

Z(N)
N(p̃N+1):N pN


(Σ†)1/2

= (Σ†)1/2



1
p̃1

Var[Z(1)
11 ] × 1 p̃1×p̃1

Var[Z(1)
11 ] × Ip− p̃1

. . .
1

p̃N
Var[Z(N)

11 ] × 1 p̃N× p̃N

Var[Z(N)
11 ] × Ip− p̃N


(Σ†)1/2 ,
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whereas

Σ = Σo = Var[Z1] =


Var[Z(1)

11 ]×Ip1

. . .
Var[Z(N)

11 ]×IpN

 ,
and therefore

Σ∗ =



1
p̃1

1p̃1×p̃1 I{Var[Z(1)
11 ] > 0}

Ip−p̃1 I{Var[Z(1)
11 ] > 0}

. . .
1

p̃N
1p̃N× p̃N I{Var[Z(1)

11 ] > 0}
Ip− p̃N I{Var[Z(1)

11 ] > 0}


,

which satisfies Σ2
∗ = Σ∗. Thus Assumption 11(ii) holds.

N.5.3. PROOF OF LEMMA 55: RANDOM SIGN FLIPPING

Since Σ = Σo =
1
p Ip, we can write

Σ∗ = (Σ†)1/2 Cov[ϕ1(Z1) , ϕ2(Z1)] (Σ†)1/2 = E[ϕ1]E[ϕ2]

and

(Σ†)1/2 Cov[ϕ1(Z1) , Z1] (Σ†o)1/2 = E[ϕ1] .

WLOG we can suppose that the ⌈rflip p⌉ entries are chosen as the first ⌈rflip p⌉ entries. Then each
ϕi j = diag{Radi j1, . . . ,Radi j⌈rflip p⌉, 1, . . . , 1}, where Radi jl’s are i.i.d. Rademacher random variables.
Therefore E[ϕ1] = diag{0, . . . , 0, 1, . . . , 1}, where there are ⌈rflip p⌉ zeros, and in particular E[ϕ1] =
E[ϕ1]E[ϕ1] = E[ϕ1]E[ϕ⊺2 ]. This verifies both Assumption 11(i) and (ii).

N.5.4. PROOF OF LEMMA 56: RANDOM CROPPING

In the random cropping setup, Σo = Σnew =
1
p Ip. Also note that each ϕi is a random projection

matrix and independent of Zi. Then by the total law of covariance,

Σ = Var[ϕ1(Z1)] = EVar[ϕ1(Z1) | ϕ1] + VarE[ϕ1(Z1) | ϕ1]

= E[ϕ1Var[Z1]ϕ1] + 0 =
1
p
E[ϕ1] =

1
p

p − ⌈rcrop p⌉
p

Ip .

This implies

Σ∗ = (Σ†)1/2 Cov[ϕ1(Z1), ϕ2(Z1)] (Σ†)1/2

=
( 1

p
p − ⌈rcrop p⌉

p

)−1
E[ϕ1] Var[Z1]E[ϕ2] =

p − ⌈rcrop p⌉
p

Ip ,

and

(Σ†)1/2Cov[ϕ1(Z1), Z1](Σ†o)1/2 = (Σ†)1/2E[ϕ1]Var[Z1](Σ†o)1/2 = Ip .

Therefore the desired statements hold with a1 = a2 =
p−⌈rcrop p⌉

p .
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