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Concentration inequalities for the sample mean, like those due to Bern-
stein, Hoeffding, and Bentkus, are valid for any sample size but overly conser-
vative, yielding confidence intervals that are unnecessarily wide. The central
limit theorem (CLT) provides asymptotic confidence intervals with optimal
width, but these are invalid for all sample sizes. To resolve this tension, we de-
velop new computable concentration inequalities for bounded variables with
asymptotically optimal size, finite-sample validity, and sub-Gaussian decay.
These bounds enable the construction of efficient confidence intervals with
correct coverage for any sample size and efficient empirical Berry-Esseen
bounds that require no prior knowledge of the population variance. We derive
our inequalities by tightly bounding non-uniform Kolmogorov and Wasser-
stein distances to a Gaussian using zero-bias couplings and Stein’s method of
exchangeable pairs and demonstrate practical improvements over the Bern-
stein, Hoeffding, Bentkus, Berry-Esseen, Feller-Cramér, Romano-Wolf, em-
pirical Bernstein, empirical Bentkus, and coin-betting inequalities.

1. Introduction. Concentration inequalities for the sample mean are ubiquitous in prob-
ability theory, statistics, and machine learning. Given n observations from an infinite se-
quence of independent and identically distributed (i.i.d.) random variables (Wi)

∞
i=1, they al-

low us to give finite-sample and high-probability guarantees that the sample mean W̄n ≜
1
n

∑n
i=1Wi is close to the population mean E[W1]. More specifically, they provide upper

bounds for the probability P
(
W̄n − E[W1] > t/

√
n
)

for each t ≥ 0. Such inequalities lie
at the heart of decision-making in reinforcement learning [3], generalization guarantees in
high-dimensional statistics, machine learning, and deep learning [5, 68, 70], and the design
[49] and selection [50] of efficient learning procedures.

However, standard concentration inequalities are overly conservative yielding confidence
intervals that are unnecessarily wide and generalization guarantees that are weaker than
needed. This is notably the case for the commonly used concentration inequalities of Ho-
effding [38] and Bernstein [12]. For bounded random variables Wi ∈ [0,R] with variance
σ2 ≜Var(Wi)> 0, the Hoeffding and Bernstein inequalities respectively state that the scaled
deviation Sn ≜

√
n(W̄n −E[W1]) satisfies

P(Sn > σu)≤ exp
(
−2u2σ2

R2

)
and P(Sn > σu)≤ exp

(
− u2

2(1+Ru/(3σ
√
n))

)
, ∀u≥ 0.(1)

Meanwhile, the central limit theorem (CLT) identifies the exact limit for each tail probability:

P(Sn > σu)
n→∞−−−→Φc(u) for all u ∈R,(2)

where Φ is the cumulative distribution function (CDF) of a standard normal distribution and
Φc = 1−Φ. As a result, standard confidence intervals based on the CLT are asymptotically

MSC2020 subject classifications: Primary 60F10, 62G15.
Keywords and phrases: Efficient concentration inequality, Gaussian approximation, tail bound, quantile

bound, confidence interval, empirical Berry-Eseen bound, zero-bias coupling, Stein’s method, non-uniform Kol-
mogorov distance, Wasserstein distance.

1

ar
X

iv
:2

20
8.

09
92

2v
8 

 [
m

at
h.

PR
] 

 2
2 

D
ec

 2
02

5

mailto:morgane.austern@gmail.com
mailto:lmackey@microsoft.com
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2208.09922v8


2 1 INTRODUCTION

exact and often much narrower than those obtained using concentration inequalities. How-
ever, these intervals are typically only asymptotically valid and provide incorrect coverage
for every sample size n.

The choice between loose but valid concentration inequalities and tight but invalid CLT-
based approximations is very unsatisfying. In this paper we derive new bounds that offer
the best of both worlds: our new concentration inequalities are both finite-sample valid and
efficient—that is, asymptotically of minimal width when scaled by

√
n. For example, our

primary result, Thm. 1, implies that, for all u≥ δn ≜ R
σ
√
n

,

P(Sn > σu)≤Φc(u) + R
σ
√
n
φ(u− δn) +

R (4+2u)
σ
√
n

e−
σ2

R2 (u− 3

2
δn)2+(3)

where φ(u) ≜ 1√
2π
e−u2/2 is the Lebesgue density of a standard normal. Underlying this

implication is a new, computable concentration inequality formed by explicitly bounding a
non-uniform Kolmogorov distance between the sample mean and a Gaussian.

It is informative to compare the result (3) with those obtained using classical CLT correc-
tions. The Berry-Esseen bound [28] guarantees that

P(Sn > σu)≤Φc(u) + CR,σ√
n

for all u≥ 0(4)

and a constant CR,σ depending only on R and σ. This yields an efficient concentration in-
equality, but the bound is overly conservative as the correction is independent of u. Non-
uniform Berry-Esseen bounds [14, 51] ameliorate this behavior by identifying a constant
C̃R,σ satisfying

P(Sn > σu)≤Φc(u) + C̃R,σ√
n(1+u)3

for all u≥ 0.(5)

Appealingly, this non-uniformity yields tighter bounds for larger u. However, the correc-
tion has only cubic, that is, O(u−3), decay in u as the underlying argument only exploits
the existence of a third moment of W̄n. Quantile coupling inequalities [see, e.g., 48] like
the groundbreaking Komlós-Major-Tusnády approximations [43, 44, Thm. 1] and the strong
embedding bounds of Bhattacharjee and Goldstein [13], Chatterjee [19] improve this u de-
pendence for W1 with finite exponential moments but provide at best exponential decay in u
and O(logn/

√
n) decay in n. By exploiting the boundedness of W1, our new efficient cor-

rection term (3) guarantees faster, sub-Gaussian e−Ω(u2) decay and eliminates the extraneous
logn factor present in prior quantile coupling inequalities. The aforementioned quantile cou-
pling and strong embedding bounds are also unsuitable for practical deployment due to their
unidentified constants. Crucially for our applications, our Thm. 1 is fully computable, allow-
ing us to develop practical efficient confidence regions in Secs. 5 and 6.

In Sec. 4, we supplement our primary result with a computational refinement that
yields tighter tail and quantile bounds for larger deviations by carefully controlling the
p-Wasserstein distance to Gaussianity. For example, our efficient Wasserstein tail bound,
Thm. 5, improves the dependence on u at the expense of a worse dependence on n and
provides an explicit relative error bound in the spirit of classical Cramér-type inequalities
[20, 23, 30, 31, 54]:

P(Sn > σu)≤Φc(u− δu,n) +
φ(u)√

n
for δu,n ≜ eKR,σ√

n
⌈log

( √
n

φ(u)

)
⌉

≤Φc(u) ·
(
e(u+1)δu,n + 1√

n
φ(u)
Φc(u)

)
for all u > δu,n.

Here, KR,σ is an explicit constant depending only on (R,σ) that we define in Sec. 4. Unlike
Thm. 5, most Cramér-type relative error bounds, including those derived by Cramér [23],
Petrov [54], Chen, Fang and Shao [20], and Fang and Koike [30], are unsuitable for practical
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use due to unidentified constants. A notable exception is the inequality of Feller [31, Thm. 1]
which delivers the Cramér-type bound

P(Sn > σu)≤Φc(u) exp( 6u3cR,σ

7
√
n−84ucR,σ

)
(
1 + 9

√
2πcR,σ√
n

φ(u)
Φc(u)

)
for all u ∈ (0,

√
n

12cR,σ
)(6)

for a constant cR,σ depending only on (R,σ). We will see in Sec. 6 that Thm. 5 provides a
substantially tighter bound than the Feller-Cramér inequality (6) in all of our experimental
settings.

Another important comparison is with the “missing-factor” bounds of Eaton [25, 26], Ta-
lagrand [67], Pinelis [55, 56, 58], and Bentkus [8–11], which imply tail decay proportional
to Φc(u)∼ 1

uφ(u). A representative example is the computable bound of Bentkus, Kalosha
and Van Zuijlen [11, Thm. 2.1],

P(Sn > σu)≤ inft∈[0,u)
E[(Gn−t)2+]

(u−t)2 for all u > 0(7)

where Gn ≜ 1√
n

∑n
i=1 ϵi for i.i.d. (ϵi)i≥1 with P(ϵi = Rσ

σ ) = σ2

R2
σ+σ2 = 1− P(ϵi =− σ

Rσ
),

Rσ ≜ 1
2R+ 1

2

√
R2 − 4σ2,(Rσ)

and a+ ≜ max(a,0) for a ∈ R. Like our new inequalities in Thms. 1 and 5, the Bentkus
bound (7) eschews a closed-form to obtain a significantly tighter tail bound that is still
straightforwardly computable [45, App. C]. However, unlike our new inequalities, the Ben-
tkus bound (7) is inefficient with a limit at least twice as large as the ideal width Φc(u).

PROPOSITION 1 (Inefficiency of Bentkus bound). For each u > 0,

inft∈[0,u)
E[(Gn−t)2+]

(u−t)2
n→∞−−−→ inft∈[0,u)

E[(Z−t)2+]

(u−t)2 ≥ 2Φc(u).

PROOF. Fix any u > 0 and any positive ϵ < E[(Z−u)2+], where Z is a standard Gaussian.
By the 2-Wasserstein CLT [16, Thm. 1], there exists an integer N such that supt≤u |E[(Gn−
t)2+]−E[(Z − t)2+]| ≤ ϵ for all n≥N . Now, fix any n≥N and suppose

fn(t)≜ E[(Gn − t)2+]/(u− t)2 ≤ fn(0) = E[(Gn)
2
+]/u

2 ≤ 1/u2

for some t ∈ [0, u). Then we necessarily have

(E[(Z − u)2+]− ϵ)/(u− t)2 ≤ (E[(Z − t)2+]− ϵ)/(u− t)2 ≤ fn(t)≤ 1/u2.

Parallel logic ensures f(t)≜ E[(Z−t)2+]

(u−t)2 ≤ f(0) only if 1
(u−t)2 ≤

1
u2E[(Z−u)2+] . Therefore,

| inft∈[0,u) fn(t)− inft∈[0,u) f(t)| ≤ ϵ
u2(E[(Z−u)2+]−ϵ) .

The result now follows from the arbitrariness of ϵ and the inequality of [11, Thm. 7.1].

In Sec. 5, we apply our new tools to develop practical empirical Berry-Esseen bounds that
are efficient and finite-sample valid even when the variance parameter σ2 is unknown. In
Sec. 6, we confirm numerically that our new bounds yield improvements over the Hoeffding,
Bernstein, and Bentkus inequalities, the uniform and non-uniform Berry-Esseen corrections,
the generalized Cramér bound of Feller, the popular but inefficient empirical Bernstein [3, 49,
50] and empirical Bentkus [45] bounds, and the efficient In,3 confidence interval of Romano
and Wolf [61]. We conclude with an application to Monte Carlo integration (Sec. 6.3) in
which our efficient empirical Berry-Esseen bounds yield narrower confidence intervals than
the state-of-the-art predictable plug-in and betting intervals of Waudby-Smith and Ramdas
[69] for larger sample sizes. Sec. 7 presents a discussion of these results and related work.



4 2 DEFINING EFFICIENT CONCENTRATION

2. Defining Efficient Concentration. To match the setting of the classical Hoeffding
and Bernstein inequalities (1), we will focus on random variables satisfying the following
distributional assumptions.

ASSUMPTION (R,σ). The scaled deviations (Sn)n≥1 satisfy Sn =
√
n(W̄n − E[W1])

for i.i.d. variables (Wi)
∞
i=1 with W̄n ≜ 1

n

∑n
i=1Wi, Var(W1) = σ2 > 0, and W1 ∈ [0,R]

almost surely.

Our first inferential goal is to tightly upper bound the tail probability P(Sn > σu) for a
given threshold u ≥ 0. The CLT provides an asymptotic lower bound for this problem as
P(Sn > σu) is known to converge precisely to Φc(u) as n increases.

PROPOSITION 2 (Asymptotic lower bound for valid tail bounds). Fix any u ≥ 0 and
any sequence of candidate tail bounds (δn(u))n≥1. Under Assump. (R,σ), if P(Sn > σu)≤
δn(u) for all n, then Φc(u)≤ lim infn→∞ δn(u).

PROOF. Suppose that a sequence δn(u) satisfies lim infn→∞ δn(u) < Φc(u). Then there
exists an ϵ > 0 such that δn(u) ≤ Φc(u) − ϵ for infinitely many n. However, by the CLT
[see, e.g., 24, Thm. 3.4.1], there exists an nϵ such that, for all n > nϵ, Φc(u)− ϵ < P(Sn >
σu). Therefore, δn(u) < P(Sn > σu) for infinitely many n, confirming the claim via its
contrapositive.

Unfortunately, the CLT limit does not provide a suitable tail bound for any finite n. How-
ever, by tightly bounding the distance between the distribution of Sn and the distribution of a
Gaussian we can correct the asymptotic bound to obtain one that is both valid in finite sam-
ples and asymptotically exact. We will call such bounds efficient concentration inequalities.

Our second inferential goal is to tightly bound the quantiles of Sn. That is, given a tail
probability δ ∈ (0,1) we wish to find qn(R,δ,σ) (a measurable function of (Wi)

n
i=1,R,σ,

and δ) satisfying P(Sn > qn(R,δ,σ)) ≤ δ. Such quantile bounds immediately deliver both
one- and two-sided confidence intervals for the population mean E[W1] as

P(W̄n − qn(R,δ,σ)√
n

≤ E[W1]) ∧ P(|E[W1]− W̄n| ≤ qn(R,δ/2,σ)√
n

)≥ 1− δ.

The interval efficiency theory of Romano and Wolf [61] implies that the CLT once again
provides an asymptotic lower bound for any valid sequence of quantile bounds.

PROPOSITION 3 (Asymptotic lower bound for valid quantile bounds). Fix any R,σ > 0,
any δ ∈ (0, 12), and any nonnegative candidate quantile bounds (qn(R,δ,σ))n≥1,σ>0. Under
Assump. (R,σ), if P(Sn > qn(R,δ,σ))≤ δ for all n, then (qn(R,δ,σ))n≥1 is not asymptoti-
cally concentrated1 on [0, a] for any a < σΦ−1(1− δ). Here, Φ−1 is the quantile function of
a standard normal distribution.

PROOF. The result follows by applying Thm. 2.1 of Romano and Wolf [61] to the conser-
vative confidence intervals In(δ,σ) = W̄n + 1√

n
[−qn(R,δ,σ), qn(R,δ,σ)] for the unknown

mean E[W1].

To construct efficient quantile bounds, we will once again tightly bound the distance be-
tween Sn and its Gaussian limit.

1A sequence of nonnegative random variables (Xn)n≥1 is asymptotically concentrated on [0, a] if (Xn −
a)+

p→ 0.
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2.1. Notation. Hereafter, we will write an ⪅ bn to indicate that two sequences (an)n≥1

and (bn)n≥1 satisfy an ≤ bn+ on(bn) and use the shorthand ∥X∥∞ = supsupport(|X|) and
∥X∥p ≜ E[|X|p]1/p when a random variable X is bounded or has a p-th absolute moment
for some p≥ 1. We will also make regular use of the parameter Rσ which provides a priori
bounds on the summand mean E[W1] and deviation |W1 −E[W1]|:

LEMMA 1 (Summand mean and deviation bounds). Under Assump. (R,σ), we have

R−Rσ ≤ E[W1]≤Rσ and |W1 −E[W1]| ≤Rσ almost surely .

PROOF. Since W1 ∈ [0,R], we have E[W1]
2 = E[W 2

1 ] − σ2 ≤ RE[W1] − σ2. Hence
E[W1] must lie between the roots 1

2R± 1
2

√
R2 − 4σ2 of this quadratic inequality.

3. Efficient Concentration with Zero-Bias Couplings. To derive our initial efficient
concentration inequality, we tightly bound a non-uniform Kolmogorov distance between the
scaled deviation Sn and a Gaussian using zero-bias couplings. As in Chen, Goldstein and
Shao [21, Prop. 2.1], we say that S⋆ has the zero-bias distribution for a mean-zero ran-
dom variable S with σ2 := Var(S) < ∞ if the distribution of S⋆ is absolutely continuous
with Lebesgue density p⋆(x) = E[S I(S > x)]/Var(S) or, equivalently, if σ2E[f ′(S⋆)] =
E[Sf(S)] for all absolutely continuous f with E[|Sf(S)|]<∞. Our primary result, proved
in Sec. 3.1, uses a close coupling of Sn and its zero-biased counterpart to establish efficient
concentration.

THEOREM 1 (Efficient zero-bias tail bounds). Under Assump. (R,σ), for all u≥0 and
λ∈[0,1],
P(Sn > σu+ R√

n
)≤Φc(u) + R

σ
√
n+Ru

[
hu(λu)−uΦc(u) + (hu(u)−hu(λu))Qn(λσu)

]
,

where, for ∆n ≜ Rσ

4
√
n

and all w ≤ u,

hu(w)≜ (w+ (1+w2)Φ(w)
φ(w) )Φc(u) and(8)

Qn(u)≜min
(
e−

2(u−∆n)2+

R2 , e
−

(u−∆n)2+

2(v2
n+Rσ(u−∆n)/(3

√
n)) ,Φc(u−∆n

ṽn
) + 0.56√

n
Rσv2

n +βn

ṽ3
n

)
,(9)

for v2n ≜ σ2+ 1
9n(R

2
σ−6σ2), ṽ2n≜ σ2(1− 89

144n), and βn≜min(14Rσ,R√
55σ

12

−Rσ)(
σ2

3n+
R2

σ

9n ).
Moreover, under the same conditions,

P(Sn > σu
√
n+1√
n

+ Rσ√
n
)

≤Φc(u) + R
σ
√
n+1+Ru

[
hu(λu)− uΦc(u) + (hu(u)− hu(λu))Qn+1(λσu

√
n√

n+1
)
]
.(10)

Like the popular concentration inequalities due to Hoeffding and Bernstein (1), Thm. 1 is
valid and computable for any sample size n. However, unlike the Hoeffding and Bernstein
inequalities, Thm. 1 is also efficient and converges to the asymptotically exact Gaussian tail
bound at a O(1/

√
n) rate. In fact, as our next corollary demonstrates, the suboptimality of

Thm. 1 also decays at a sub-Gaussian e−Ω(u2) rate in u, faster than the more conservative
Berry-Esseen (4), non-uniform Berry-Esseen (5), and quantile coupling inequalities [13, 18,
19, 43, 44, 48].

COROLLARY 1 (Efficient sub-Gaussian tail bound). Under Assump. (R,σ),

P(Sn > σu)≤Φc(u) + R
σ
√
n
φ(u− δn) +

R (4+2u)
σ
√
n

e−
σ2

R2 (u− 3

2
δn)2+

for all u≥ δn ≜ R
σ
√
n

.



6 3 EFFICIENT CONCENTRATION WITH ZERO-BIAS COUPLINGS

PROOF. Fix any u≥ δn, introduce the shifted value v = u− δn, and instantiate the nota-
tion of Thm. 1. For each w ≥ 0, we have Qn(w)≤ e−2(w−∆n)2+/R2

by (9) and

av(w)≜
(1+w2)Φ(w)

φ(w) Φc(v)≤ 2(1+w2)Φ(w)

v+
√

v2+8/π
e−

v2−w2

2 ≤ (2 +w)Φ(w)e−
v2−w2

2

by Abramowitz and Stegun [1, 7.1.13]. Invoking Thm. 1 with λ= 1/
√
2 therefore yields

P(Sn > σu)−Φc(v)

≤ R
σ
√
n+Rv

[
(av(λv)− (1− λ)vΦc(v))(1−Qn(λσv)) + av(v)Qn(λσv)

]
≤ R (2+v)Φ(v)

σ
√
n+Rv

(
e−

(1−λ2)v2

2 + e−
2(λσv−∆n)2+

R2
)
= R (2+v)Φ(v)

σ
√
n+Rv

(
e−

v2

4 + e−
(σv−

√
2∆n)2+

R2
)

≤ 2R (2+v)Φ(v)
σ
√
n+Rv

e−
(σv−

√
2∆n)2+

R2 ≤ 2R (2+u)
σ
√
n

e−
σ2

R2 (u− 3

2
δn)2+ .

The advertised result now follows from the relation

Φc(v) = Φc(u) +
∫ u
v φ(x)dx≤Φc(u) + (u− v)φ(v) = Φc(u) + δnφ(u− δn).

While the bound in Thm. 1 is more complex than that in Cor. 1, it is straightforward to
compute2 and significantly tighter in practice. In Secs. 5 and 6, we will use our efficient
concentration inequalities to develop efficient empirical Berry-Esseen bounds and efficient
confidence intervals for Monte Carlo integration.

3.1. Proof of Thm. 1: Efficient zero-bias tail bounds. The proof of Thm. 1 relies on four
auxiliary results. The first, proved in Sec. 3.2, provides a tail bound for a sum, Tn, of inde-
pendent random variables in terms of a sum, T ′

n, of interpolated zero-biased variables.

THEOREM 2 (Unidentical zero-bias tail bound). Suppose independent (Vi)i≥1 satisfy
E[Vi] = 0, Var(Vi) = σ2

i , and sup support(Vi)− inf support(Vi)≤R for all i ∈N. For each
n ∈ N, define the scaled sum Tn = 1√

n

∑n
i=1 Vi with variance parameter σ̄2

n = 1
n

∑n
i=1 σ

2
i

and auxiliary variable

T ′
n ≜ Tn +

1√
n
(V ′

In
− VIn) for V ′

i ≜ V ⋆
i +U(Vi − V ⋆

i ) and P(In = i) = 1
n
σ2
i

σ̄2
n
I(1≤ i≤ n),

where each V ⋆
i has the zero-bias distribution of Vi, and U ∼ Uniform([0,1]), (In)n≥1, and

(V ⋆
i )i≥1 are mutually independent and independent of (Vi)i≥1. Then, for all u≥ 0 and λ ∈

[0,1],

P(Tn > σ̄nu+ R√
n
)≤ σ̄n

√
n

σ̄n

√
n+Ru

Φc(u) + R
σ̄n

√
n+Ru

(hu(u)− hu(λu))P(T ′
n > λσ̄nu)

+ R
σ̄n

√
n+Ru

hu(λu).

The second result, also proved in Sec. 3.2, provides an alternative tail bound when the
summands underlying Tn are i.i.d.

2See https://github.com/lmackey/gauss_conc for our open-source Python implementation.

https://github.com/lmackey/gauss_conc
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THEOREM 3 (Identical zero-bias tail bound). Instantiate the notation and assumptions
of Thm. 2. If (Vi)

n+1
i=1 are i.i.d. with σ ≜ σ1 and V1 ≥−R′ almost surely, then

P(Tn > σu
√
n+1√
n

+ R′
√
n
)

≤ σ
√
n+1

σ
√
n+1+Ru

Φc(u) + R
σ
√
n+1+Ru

(hu(u)− hu(λu))P(T ′
n+1 > λσu

√
n√

n+1
)

+ R
σ
√
n+1+Ru

hu(λu).

The third result bounds the moments of interpolated zero-biased variables.

LEMMA 2 (Properties of V ′
i ). Instantiate the notation and assumptions of Thm. 2. For

any i ∈N, if |Vi| ≤R′ almost surely, then sup support(V ′
i )− inf support(V ′

i )≤R,

|E[V ′
i ]| ≤ R′

4 , E[V ′
i
2]≤ σ2

i

3 + R′2

9 , Var(V ′
i )≥

55σ2
i

144 ,

|V ′
i | ≤R′, and |V ′

i −E[V ′
i ]| ≤Ri ≜min(12R+ 1

2

√
R2 − 220

144σ
2
i ,

5
4R

′) almost surely.

PROOF. Fix any i ∈ {1, . . . , n}, and suppose |Vi| ≤R′ almost surely. We invoke the defi-
nition of V ′

i , Lem. 2.1(iv) of Goldstein and Reinert [34], and our boundedness assumption in
turn to find that

|E[V ′
i ]|= 1

2 |E[V
⋆
i ]|= 1

4σ2
i
|E[V 3

i ]| ≤ R′

4 .

The same invocations, coupled with the independence of Vi,U, and V ⋆
i , imply

E[V ′
i
2] = E[U2]E[V 2

i ] +E[(1−U)2]E[V ⋆
i
2] = 1

3σ
2
i +

1
9σ2

i
E[Vi

4]≤ 1
3σ

2
i +

1
9R

′2.

The same upper bound holds for Var(V ′
i ) = E[V ′

i
2] − E[V ′

i ]
2. Moreover, since E[V 3

i ]
2 ≤

E[V 2
i ]E[V 4

i ] by Cauchy-Schwarz and E[V 2
i ]

2 ≤ E[V 4
i ] by Jensen’s inequality, we have

Var(V ′
i )≥ 1

3σ
2
i +

1
9σ2

i
E[Vi

4]− 1
16σ2

i
E[Vi

4] = 1
3σ

2
i +

7
144σ2

i
E[Vi

4]≥ 1
3σ

2
i +

7
144σ

2
i =

55
144σ

2
i .

Next, by Goldstein and Reinert [34, Lem. 2.1(ii)], the support of V ⋆
i is the closed convex hull

of the support of Vi. Therefore, |V ′
i | ≤R′ almost surely by the triangle inequality, and

sup support(V ′
i )− inf support(V ′

i ) = supsupport(Vi)− inf support(Vi)≤R.

The second almost sure bound on |V ′
i − E[V ′

i ]| now follows from the triangle inequality,
while the first follows from Lem. 1 and our lower estimate for Var(V ′

i ).

The fourth result bounds the tail probabilities of the interpolated zero-biased sum T ′
n using

concentration inequalities for sums of potentially unidentically distributed random variables.

LEMMA 3 (T ′
n tail bound). Under the notation and assumptions of Lem. 2, for each

t ∈R,

P(T ′
n > t+ R′

4
√
n
)≤ 1

n

∑n
i=1

σ2
i

σ̄2
n
P( 1√

n
(V ′

i −E[V ′
i ]) +

1√
n

∑
j ̸=i Vj > t)

≤ 1
n

∑n
i=1

σ2
i

σ̄2
n
min

(
e−

2t2

R2 , e
− t2

2(v2
n,i

+ R′t
3
√

n
)
,Φc( t

ṽn,i
) + 0.56√

n

R′v2
n,i +

Ri−R′

n
(
σ2
i
3
+R′2

9
)

ṽ3
n,i

)
for v2n,i ≜ σ̄2

n + (R′2 − 6σ2
i )/(9n) and ṽ2n,i ≜ σ̄2

n − 89σ2
i /(144n).
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PROOF. The first claim follows from the definition T ′
n = 1√

n
V ′
In

+ 1√
n

∑
j ̸=In

Vj and

the Lem. 2 bound, E[V ′
i ] ≤ R′

4 for each index i. Since E[|V ′
i − E[V ′

i ]|3] ≤ RiVar(V
′
i ) and

E[|Vi|3] ≤ R′σ2
i for each i ∈ N, the second follows by combining the upper and lower esti-

mates of Lem. 2 with the Hoeffding [38, Thm. 1], Bernstein [17, Cor. 2.11], and Berry-Esseen
[63, Thm. 1] tail bounds for unidentically distributed summands.

Under Assump. (R,σ), the first result of Thm. 1 now follows from a direct application of
Thm. 2 and Lem. 3 with i.i.d. Vi =Wi −E[Wi], Tn = Sn, σi = σ, and, by Lem. 1, R′ =Rσ .
Analogously, under Assump. (R,σ), the bound (10) follows from Thm. 3 and Lem. 3.

3.2. Proofs of Thms. 2 and 3: Unidentical and identical zero-bias tail bounds. The crux
of our argument, inspired by Ross [62, Thm. 3.27] and proved in Sec. A, shows that a zero-
biased version S⋆ of a random variable S has tails close to those of a Gaussian whenever S⋆

and S have a close coupling.

THEOREM 4 (General zero-bias tail bounds). Suppose that S⋆ has the zero-bias dis-
tribution for a random variable S with E[S] = 0 and Var(S) = 1 and that S⋆ − S ≤ δ al-
most surely. For U ∼ Uniform([0,1]) independent of (S,S⋆), define the intermediate variable
S′ ≜ S⋆ +U(S − S⋆). Then, for all u≥ 0 and λ ∈ [0,1],

P(S⋆ > u)−Φc(u)≤ δ [hu(λu) + (hu(u)− hu(λu))P(S′ > λu)− uP(S′ > u)],

for hu defined in (8). If, in addition, S − S⋆ ≤ δ almost surely,

P(S > u+ δ)≤ 1
1+δ uΦ

c(u) + δ
1+δ u

(
hu(λu) + (hu(u)− hu(λu))P(S′ > λu)

)
.

Hence, to establish Thm. 2, it only remains to construct a suitable zero-bias coupling for
Tn/σ̄n. By Chen, Goldstein and Shao [21, Lem. 2.8], T ⋆

n = Tn + 1√
n
(V ⋆

In
− VIn) has the

zero-bias distribution for Tn. Therefore, by the zero-bias definition, T ⋆
n/σ̄n has the zero-

bias distribution for Tn/σ̄n. Furthermore, by Chen, Goldstein and Shao [21, Sec. 2.3.3],
support(V ⋆

i ) = [inf support(Vi), sup support(Vi)] for each i, so |T ⋆
n/σ̄n−Tn/σ̄n|= |V ⋆

I −
VI |/(σ̄n

√
n)≤R/(σ̄n

√
n) almost surely. The advertised result thus follows from the second

claim of Thm. 4 applied with S = Tn/σ̄n, S⋆ = T ⋆
n/σ̄n, and δ =R/(σ̄n

√
n).

Now suppose (Vi)
n+1
i=1 are i.i.d. with with σ ≜ σ1 and V1 ≥−R′ almost surely. By Chen,

Goldstein and Shao [21, Lem. 2.8], T ⋆
n+1 = Tn+1 +

1√
n+1

(V ⋆
In+1

− VIn+1
) has the zero-bias

distribution for Tn+1. By symmetry,
√
nTn + V ⋆

n+1
d
=

√
n+ 1T ⋆

n+1 and
√
nTn + V ′

n+1
d
=√

n+ 1T ′
n+1. Since V ⋆

n+1 ∧ V ′
n+1 ≥ −R′ almost surely by Chen, Goldstein and Shao [21,

Sec. 2.3.3],

P(Tn > σu
√
n+1√
n

+ R′
√
n
)≤ P(Tn +

1√
n
(V ⋆

n+1 ∧ V ′
n+1)> σu

√
n+1√
n

)

≤ P(T ⋆
n+1 > σu)∧ P(T ′

n+1 > σu).

Thm. 3 now follows from the first result of Thm. 4 with S = Tn+1/σ, S⋆ = T ⋆
n+1/σ, and

δ =R/(σ
√
n+ 1).

4. Computational Refinement with Wasserstein Approximation. To obtain a prac-
tical refinement of our initial concentration inequality (Thm. 1), we next bound a second,
complementary distance to Gaussianity, the p-Wasserstein distance,

Wp(Sn,N (0, σ2))≜ infγ∈Γ(Sn,N (0,σ2))E(X,Y )∼γ

(
|X − Y |p

)1/p for p≥ 1,

where Γ(Sn,N (0, σ2)) is the set of all couplings between the law of Sn and the normal distri-
bution N (0, σ2). In Sec. 4.1, we explicitly bound each p-Wasserstein distance to Gaussianity
to obtain the following efficient and computable concentration inequalities.
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THEOREM 5 (Efficient Wasserstein tail bound). Under Assump. (R,σ), for any u ≥ 0

and auxiliary upper bounds Q̂n(u) and Q̂d
n(u) on P

(
Sn > σu

)
and P

(
|Sn| > σu

)
respec-

tively, we have

P
(
Sn > σu

)
≤min

(
infp∈N, ρ∈(0,1)Φ

c(ρu) +
ωR

p (σ)p

(1−ρ)pup , Q̂n(u)
)

and(11)

P
(
|Sn|> σu

)
≤min

(
infp∈N, ρ∈(0,1) 2Φ

c(ρu) +
ωR

p (σ)p

(1−ρ)pup , Q̂
d
n(u)

)
where ωR

p (σ) is a computable bound on 1
σWp(Sn,N (0, σ2)) defined in Lem. 5 and satisfying

ωR
p (σ) ≤KR,σ

p√
n

for all p ∈ {1} ∪ [2,∞) and a constant KR,σ depending only on (R,σ)

defined in Lem. 6.

REMARK 1 (Auxiliary tail bounds). We include the auxiliary bounds Q̂n(u) and Q̂d
n(u)

to emphasize that our efficient bounds can be paired with any valid tail bounds to simultane-
ously reap the large-sample benefits of the former and the small-sample benefits of the latter.
A convenient default choice is to set Q̂d

n(u) = 2Q̂n(u) and Q̂n(u) equal to the minimum
of the zero-bias (Thm. 1), Hoeffding (1), Bernstein (1), Berry-Esseen (4), and non-uniform
Berry-Esseen (5) bounds.

Thm. 5 immediately gives rise to the following looser but evidently efficient tail bounds.

COROLLARY 2 (Efficiency and relative error). Under the conditions of Thm. 5,

P(Sn > σu)≤Φc(u− δu,n) +
φ(u)√

n
for δu,n ≜ eKR,σ√

n
⌈log

( √
n

φ(u)

)
⌉

≤Φc(u) ·
(
e(u+1)δu,n + 1√

n
φ(u)
Φc(u)

)
for all u > δu,n.(12)

PROOF. Fix any u > δu,n. Since ωR
p (σ) ≤ KR,σ

p√
n

for all p ∈ N by Thm. 5, we may

choose p = ⌈log(
√
n

φ(u))⌉ ∈ N and ρ = 1 − eωR
p (σ)/u ∈ (0,1) in the upper bound (11) to

deduce the first inequality. The log-concavity of Φc [4, Thm. 2] additionally implies that

Φc(u− δu,n)≤Φc(u) exp(δu,nφ(u)/Φ
c(u)).

The second inequality therefore follows from the Mills ratio bound φ(u)
Φc(u) ≤ u+ 1 [15].

While the n dependence of Cor. 2 is no better than that established for Thm. 1, the u
dependence is improved, yielding tighter bounds for larger deviations u and a relative error
bound (12) in the spirit of classical Cramér-type inequalities. For practical applications, the
Wasserstein tail bound of Thm. 5 is substantially tighter than Cor. 2, while still admitting a
straightforward implementation.2 Hence, for practical use, we recommend pairing the zero-
bias and Wasserstein inequalities as in Rem. 1 to simultaneously inherit the benefits of each
efficient bound.

In addition, to obtain efficient, computable quantile bounds, we recommend simply invert-
ing the tail bounds of Thm. 5 and Rem. 1. Our next result, also proved in Sec. 4.1, makes this
precise.

THEOREM 6 (Efficient Wasserstein quantile bound). Under Assump. (R,σ), for any δ ∈
(0,1) and auxiliary deterministic bounds q̃n and q̃dn satisfying P

(
Sn > q̃n(R,δ,σ)

)
≤ δ and

P
(
|Sn|> q̃dn(R,δ,σ)

)
≤ δ, we have

P(Sn > qn(R,δ,σ))≤ δ and P(|Sn|> qdn(R,δ,σ))≤ δ,
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for ωR
p (σ) as in Thm. 5 and

qn(R,δ,σ)≜min
(
infp∈N, ρ∈(0,1)

σωR
p (σ)

(δ(1−ρ))1/p + σΦ−1(1− δρ), q̃n(R,δ,σ)
)
,

qdn(R,δ,σ)≜min
(
infp∈N, ρ∈(0,1)

σωR
p (σ)

(δ(1−ρ))1/p + σΦ−1(1− δρ
2 ), q̃

d
n(R,δ,σ)

)
.

REMARK 2 (Auxiliary quantile bounds). Our efficient bounds can be paired with any de-
terministic quantile bounds q̃n(R,δ,σ) and q̃dn(R,δ,σ) to inherit the benefits of each. Conve-
nient defaults are provided by numerically inverting the default auxiliary tail bounds Q̂n(u)

and Q̂d
n(u) of Rem. 1.

In the sequel, we build upon the quantile bounds of Thm. 6 and Rem. 2 to develop efficient
empirical Berry-Esseen bounds that require no prior knowledge of the variance parameter σ.

4.1. Proof of Thms. 5 and 6. Thms. 5 and 6 will follow directly from three auxiliary
results. The first, proved in Sec. 4.2, shows that any upper bound on the Wasserstein distance
1
σWp(Sn,N (0, σ2)) also yields tail and quantile bounds for Sn.

LEMMA 4 (Tail and quantile bounds from Wasserstein bounds). Under Assump. (R,σ),
suppose that 1

σWp(Sn,N (0, σ2))≤ ωp for some p≥ 1 and ωp ≥ 0. Then, for any u≥ 0,

P
(
Sn > σu

)
≤ infρ∈(0,1)

{
Φc

(
ρu

)
+

ωp
p

(1−ρ)pup

}
and

P
(
|Sn|> σu

)
≤ infρ∈(0,1)

{
2Φc

(
ρu

)
+

ωp
p

(1−ρ)pup

}
.

Moreover, for all δ ∈ (0,1),

P(Sn > infρ∈(0,1)
σωp

(δ(1−ρ))1/p + σΦ−1(1− δρ))≤ δ and

P(|Sn|> infρ∈(0,1)
σωp

(δ(1−ρ))1/p + σΦ−1(1− 1
2δρ))≤ δ.

Our second result, proved in Sec. B, establishes that ωR
p (σ) is indeed an upper bound on

1
σWp(Sn,N (0, σ2)).

LEMMA 5 (Wasserstein upper bound). Under Assump. (R,σ), for p= 1 or p≥ 2,

1
σWp(Sn,N (0, σ2))≤ ωR

p (σ) and ωR,κ
p (σ)≤ ωR,κ,2

p (σ) for all κ > R̃2

n

where

ωR
p (σ)≜


Rσ

σ
√
n

if p= 1,

inf
κ> R̃2

n

ωR,κ,1
p (σ) if n+ 1≥ p≥ 2,

√
p− 1(1 + Rσ

σ ) if p > n+ 1,

(ωR
p )

and, for each p ∈ [2, n+ 1], κ > 0, and j ∈ {1,2},

ωR,κ,j
p (σ)≜

[
∥Z∥p

(
π
2 − sin−1

(√
1− R̃2

nκ

))
+ (bκ,p,R̃2,j ) + (bκ,p,R̃3,j )

]
1√

1− R̃2

nκ

if p > 2

1 if p= 2,

for R̃≜R/σ, Z ∼N (0,1), and (bκ,p,R̃2,1 ), (bκ,p,R̃3,1 ), (bκ,p,R̃2,2 ), and (bκ,p,R̃3,2 ) defined in (22), (23),
(25), and (26) respectively.
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Our final lemma, proved in Sec. 4.3, verifies the growth rate of ωR
p (σ).

LEMMA 6 (Growth of ωR
p (σ)). Instantiate the notation of Lem. 5 and define R̃σ ≜ Rσ

σ .
If p= 1 or p≥ 2, then ωR

p (σ)≤
KR,σp√

n
for

KR,σ ≜ 1 +max
(
R̃σ,

3e
4

√
R2

σ − σ2 +
√

2max(R2
σ − σ2, σ2)

+ ( 3
16 +

√
2 log(4e)R̃1−2/p(8π)1/4√

3e
+ R̃e

2
√
2
+ R̃2−2/p

√
2

)σπ
1/4e19/300(e

R̃2

2 −1)√
3

)
.(KR,σ)

4.2. Proof of Lem. 4: Tail and quantile bounds from Wasserstein bounds. Fix any u≥ 0,
ρ ∈ (0,1), p≥ 1, and ϵ > 0. By the definition of the Wasserstein distance, we can find G∼
N (0, σ2) that respects ∥Sn −G∥p ≤ ϵ+Wp(Sn,N (0, σ2)). Hence, by applying the union
bound and Markov’s inequality in turn, we find that

P(Sn > σu) = P(G+ Sn −G> σu)≤ P(G> ρσu) + P(Sn −G> (1− ρ)σu)

≤Φc(ρu) + E(|Sn−G|p)
(1−ρ)pσpup ≤Φc(ρu) + (ϵ+Wp(Sn,N (0,σ2)))p

(1−ρ)pσpup .

As this holds for arbitrary ϵ > 0 we obtain

P(Sn > σu)≤Φc(ρu) + Wp(Sn,N (0,σ2))p

(1−ρ)pσpup .

The triangle inequality and identical reasoning yield

P(|Sn|> σu)≤ P(|G|> ρσu) + P(|Sn −G|> (1− ρ)σu)≤ 2Φc(ρσuσ ) + (ϵ+Wp(Sn,N (0,σ2)))p

(1−ρ)pσpup .

Since ϵ > 0 is arbitrary, we conclude that

P(|Sn|> t)≤ 2Φc(ρtσ ) +
Wp(Sn,N (0,σ2))p

(1−ρ)ptp .

Now, fix any δ ∈ (0,1) and write tδ,ρ ≜
Wp(Sn,N (0,σ2))

(δ(1−ρ))1/p + σΦ−1(1 − δρ). We apply the
union bound, Markov’s inequality, and the Wasserstein condition in turn to find

P(Sn > tδ,ρ) = P(Sn −G+G> tδ,ρ)

≤ P(G> σΦ−1(1− δρ)) + P
(
Sn −G> Wp(Sn,N (0,σ2))

(δ(1−ρ))1/p

)
≤ δρ+ δ(1−ρ)(Wp(Sn,N (0,σ2))+ϵ)p

Wp(Sn,N (0,σ2))p .

Since this holds for any ϵ > 0, we deduce that

P(Sn > tδ,ρ)≤ δρ+ δ(1− ρ) = δ.

Moreover, since ρ was arbitrary and each tδ,ρ is deterministic, we further have

P
(
Sn > infρ∈(0,1) tδ,ρ

)
≤ δ.

Finally, the triangle inequality and identical reasoning yield

P
(
|Sn|> infρ∈(0,1) t

d
δ,ρ

)
≤ δ for tdδ,ρ ≜

Wp(Sn,N (0,σ2))
(δ(1−ρ))1/p + σΦ−1(1− 1

2δρ).
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4.3. Proof of Lem. 6: Growth of ωR
p (σ). If p= 1, then ωR

p (σ) =
R̃σ√
n

. If p > n+ 1,

ωR
p (σ) =

√
p− 1 (1 + R̃σ)≤ p√

n
(1 + R̃σ).

Now suppose p ∈ [2, n+ 1]. By Lem. 5, we have, for all κ > R2

σ2n ,

ωR
p (σ)

(Mn,κI(p>2)+I(p=2))
√
n

p

≤
√

(p−1)(p+2)σ

2p

[√
p+2n1/p

2
√
n

(max(R̃2
σ − 1,1))1−1/p +

√
R̃2

σ − 1
√
e(2e)1/p√

2

]
+ Cn,pσ

p
R̃2

3
√
nκ

e19/300π1/4[e
1

2
(p−1)(1− R̃2

nκ
)κ − 1] log(1+Mn,κ

1−Mn,κ
)

+
R
(
1+

R̃Ũn,p√
n

)
√
κ

π1/4e19/300
√
p−1

4
√
3

[
e

1

2
(p−1)κM2

n,κ − 1
]
+

√
n
√
p−1

p

[
π
2 − sin−1(Mn,κ)

]
where Mn,κ =

√
1− R̃2

nκ and Cn,p is a constant defined in (19) that satisfies Cn,p ≤

R̃1−2/p
√
8π

1/p
√
p√
e

by Batir [7, Thm. 1.5]. Since we additionally have π
2 − sin−1(Mn,κ) ≤

R̃2

nκMn,κ
by the mean value theorem, we can write

ωR
p (σ)

√
n
√

1− R̃2(p−1)

nC
I(p>2)

p

≤
√

(p−1)(p+2)σ

2p

(√
R̃2

σ − 1
√
e(2e)1/p√

2
+ R̃√

C

π1/4e19/300(p−1)

4p
√
3

[
e

C

2 − 1
])

+
√
p log( 4nC

(p−1)R̃2 )σ√
n

{
R̃3−2/p

√
8π

1/p

3
√
eC

p−1
p e19/300π1/4[e

C

2 − 1]
}

+
√
p+2σ√
n

1−2/p

(max(R̃2
σ−1,1))1−1/p

2 +
√
p+2σ√
n

[
R̃2

√
e(2e)1/p√

2√
C

π1/4e19/300(p−1)

4p
√
3

[
e

C

2 − 1
]]

+ (p+2)σR̃3−2/p

n1−1/p
1

2
√
C

π1/4e19/300(p−1)

4p
√
3

[
e

C

2 − 1
]
+ R̃2

√
p−1

3

p
√
nC

√
1− R̃2(p−1)

nC

in terms of the reparameterization C ≜ κ(p− 1). The advertised result now follows from the
choosing C = R̃2, since κ = R̃2

p−1 ≥ R̃2

n and (p+ 2)(log(p)− 1) ≤ n2/2 for p ≤ n+ 1 and
p→

√
p+ 2n1/p is decreasing for (p+ 2)(log(p)− 1)≤ n2/2.

5. Application: Efficient Empirical Berry-Esseen Bounds. The preceding sections as-
sumed that the variance parameter σ2 was a known quantity, but, in many applications, the
variance is unknown and can only be estimated from data. In this section, we leverage our ef-
ficient known-variance bounds to develop efficient quantile bounds that are valid even when
σ is unknown. We refer to these constructions as empirical Berry-Esseen bounds as they
combine Gaussian approximation in the spirit of Berry-Esseen (4) with empirical variance
estimation.

We begin by showing how to convert generic known-variance quantile bounds into valid
empirical-variance quantile bounds. Our construction in Lem. 7 makes use of a generic con-
fidence interval that contains the unknown variance with high probability.

LEMMA 7 (Empirical quantile bounds). Consider any nonnegative interval [σ̂2
low,a, σ̂

2
up,a]

and any nonnegative quantile bounds q̃n and q̃dn satisfying

P
(
σ /∈ [σ̂low,a, σ̂up,a]

)
≤ a, P

(
Sn > q̃n(R,δ,σ)

)
≤ δ, and P

(
|Sn|> q̃dn(R,δ,σ)

)
≤ δ
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whenever Sn satisfies Assump. (R,σ) and δ, a ∈ (0,1). Then, under Assump. (R,σ), we have,
for each confidence level δ ∈ (0,1) and an ∈ (0, δ),

P(Sn > q̂n(R,δ, an))≤ δ for q̂n(R,δ, a)≜ supσ̃∈[σ̂low,a,σ̂up,a] q̃n(R,δ− a, σ̃) and

P(|Sn|> q̂dn(R,δ, an))≤ δ for q̂dn(R,δ, a)≜ supσ̃∈[σ̂low,a,σ̂up,a] q̃
d
n(R,δ− a, σ̃).

PROOF. Fix any δ > 0 and a ∈ (0, δ). Under Assump. (R,σ), the union bound implies

P(|Sn|> q̂dn(R,δ, a))≤ P(|Sn|> q̃dn(R,δ− a,σ)) + P(σ /∈ [σ̂low,a, σ̂up,a])≤ δ.

The one-sided result is obtained identically using the event {Sn > q̃n(R,δ− a,σ)}.

Finally, we show how to convert efficient known-variance bounds into efficient empirical
Berry-Esseen bounds through appropriate choice of the variance confidence interval and the
confidence parameter an. For this purpose we use the sharp (and valid) empirical Bernstein
variance confidence intervals of Martinez-Taboada and Ramdas [47, Sec. 4.4] which depend
on the auxiliary functions

ΨE(x)≜− log(1− x)− x and ΨP (x)≜ ex − x− 1

and the following readily-computed quantities for i ∈ {1, . . . , n} and a ∈ (0,1):

• the µ≜ E[W1] estimates: µ̂i ≜ R
2i +

1
i

∑i−1
j=1Wj ,

• the σ2 estimates: σ̂2
i ≜

R2

4i +
1
i

∑i−1
j=1(Wj − m̂j)

2,
• the m2

4 ≜Var((W1 − µ)2) estimates: m̂2
4,i ≜

R4

8i +
1
i

∑i−1
j=1((Wj − µ̂j)

2 − σ̂2
j )

2,

• the upper estimate weights: λi,a ≜
√

2R4 log(2/a)
nm̂2

4,i
∧ 1

2 ,

• the auxiliary weights: λ̃i,a ≜
√

2R2 log((2+2 log(n))/a)
σ̂2
i i log(1+i) ∧ 2,

• the lower estimate weights: λ′
i,a ≜

λi, a log(n)

1+log(n)

if
log( 2+2 log(n)

a
)+

∑i−1
j=1 ΨP (λ̃j,a)σ̂2

i /R
2∑i−1

j=1 λ̃j,a

≤ 1

0 otherwise,
• the σ2 upper estimate:

σ̂2
up,a ≜

R2 log(2/a) +
∑n

i=1 λi,a(Wi − µ̂i)
2 +ΨE(λi,a)((Wi − µ̂i)

2 − σ̂2
i )

2/R2∑n
i=1 λi,a

,(13)

• and the σ2 lower estimate:

σ̂2
low,a ≜

−R2 log(2/a) +
∑n

i=1λ
′
i,a(Wi − µ̂i)

2 −ΨE(λ
′
i,a)((Wi − µ̂i)

2 − σ̂2
i )

2/R2∑n
i=1 λ

′
i,a

.(14)

THEOREM 7 (Efficient empirical Berry-Esseen bounds). Instantiate Assump. (R,σ), and
consider any bounds (q̃n, q̃dn) satisfying q̃n(R,δn, σn)→ σΦ−1(1− δ) and q̃dn(R,δn, σn)→
σΦ−1(1− δ

2) whenever (σn, δn)→ (σ, δ). If an → 0 and log(an)
n → 0, then

q̂n(R,δ, an)≜ supσ̃∈[σ̂low,an ,σ̂up,an ]
q̃n(R,δ− an, σ̃)

a.s.→ σΦ−1(1− δ) and

q̂dn(R,δ, an)≜ supσ̃∈[σ̂low,an ,σ̂up,an ]
q̃dn(R,δ− an, σ̃)

a.s.→ σΦ−1(1− δ
2)

when σ̂up,an
and σ̂low,an

are chosen as in (13) and (14).
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PROOF. The strong law of large numbers [24, Thm. 2.4.1] and Prop. C.1 of [47] imply that
µ̂n

a.s.→ µ, σ̂2
n

a.s.→ σ2, and m̂2
4,n

a.s.→ m2
4. Thus, with probability 1, there exists a finite integer

Ñmin for which σ̂2
i > σ̂2/2 and λ̃i,an

< 2 whenever Ñn ≜ Ñmin ∨ log(2+2 log(n)
an

) ≤ i ≤ n.

Defining d̃i ≜
√

2R2i log((2+2 log(n))/an)
log(i+1) for each i≤ n, we can therefore write

1
d̃i

∑i−1
j=1 λ̃

2
j,an

= 1
d̃i

∑(i−1)∧Ñn

j=1 λ̃2
j,an

+

√
log(i+1)

i

∑i−1
j=Ñn+1

√
2R2 log((2+2 log(n))/an)

σ̂2
j j log(j+1)

≤ 4Ñn

√
log(i+1)√

2R2i log((2+2 log(n))/an)
+ 2(1+log(i−1))

σ2

√
2R2 log((2+2 log(n))/an) log(i+1)

i log(2) and

1
d̃i

∑i−1
j=1 λ̃j,an

= 1
d̃i

∑(i−1)∧Ñn

j=1 λ̃j,an
+

√
log(i+1)

i

∑i−1
j=Ñn+1

1

σ̂j

√
j log(j+1)

≥ 2
√
i−2

√
Ñn+1

R
√
i

.

Since ΨP (x)≤ x2 for all x ∈ [0,2], we have
∑i−1

j=1ΨP (λ̃j,an
)
a.s.
≤

∑i−1
j=1 λ̃

2
j,an

for each i and
therefore λ′

i,an
= λi,a′

n
< 1

2 whenever i≥N ′
min ≜ cR,σÑn log(n+1)3 for some constant c̃R,σ

depending only on (R,σ) and a′n ≜ an log(n)
1+log(n) .

Similarly, Assump. (R,σ) and the inequalities 0≤ΨE(x)≤ x2 for all x ∈ [0, 12 ] imply

0≤
∑n

i=1ΨE(λi,an
) ((Wi−µ̂i)2−σ̂2

i )
2

R2

a.s.
≤

∑n
i=1min(R4λ2

i,an
, λi,an

((Wi−µ̂i)2−σ̂2
i )

2

2R2 ).(15)

We will now show that σ̂up,an

a.s.→ σ and σ̂low,an

a.s.→ σ by considering two cases.
Case 1: m4 > 0. Since log(an)

n → 0, with probability 1 a finite integer Nmin exists for
which λi,an

< 1
2 whenever Nmin < i ≤ n. Therefore, since dn ≜

√
2R4n log(2/an) → ∞,

log(an)/n→ 0, and each λi,an
≤ 1

2 , we have
1
dn

∑n
i=1 λi,an

= 1
dn

∑n∧Nmin

i=1 λi,an
+ 1

n

∑n
i=Nmin+1

1
m̂4,i

a.s.→ 1
m4

and

1
dn

∑n
i=1 λ

2
i,an

= 1
dn

∑n∧Nmin

i=1 λ2
i,an

+

√
2R4 log(2/an)

n
1
n

∑n
i=Nmin+1

1
m̂2

4,i

a.s.→ 0.

The almost sure boundedness, (Wi − µ̂i)
2 ∈ [0,R] for all i, further implies that

1
dn

∑n
i=1 λi,an

(Wi − µ̂i)
2

= 1
dn

∑n∧Nmin

i=1 λi,an
(Wi − µ̂i)

2 + 1
n

∑n
i=Nmin+1[(

1
m̂4,i

− 1
m4

)(Wi − µ̂i)
2 + (Wi−µ̂i)2

m4
]
a.s.→ σ2

m4
.

These results, together with the ΨE estimates (15) and the assumption log(an)
n → 0, ensure

|σ̂2
up,an

− σ2|
a.s.
≤ |

1

dn

∑n
i=1 λi,an (Wi−µ̂i)2

1

dn

∑n
i=1 λi,an

− σ2|+
1

dn
R2 log(2/an)+R4 1

dn

∑n
i=1 λ

2
i,an

1

dn

∑n
i=1 λi,an

a.s.→ 0.

Identical reasoning with (N ′
min, a

′
n) substituted for (Nmin, an) ensures that σ̂low,an

a.s.→ σ.
Case 2: m4 = 0. Since (W1 − µ)2

a.s.
= 0, we have σ̂2

n − σ2 a.s.
= 1

n(
R2

4 − σ2)→ 0,

|(Wn − µ̂n)
2 − σ2| a.s.= |(µ− µ̂n)

2 + 2(Wn − µ)(µ− µ̂n)|
a.s.
≤ (µ− µ̂n)

2 + 2R|µ− µ̂j |
a.s.→ 0,

and therefore ((Wn − µ̂n)
2 − σ̂2

n)
2 a.s.→ 0. Moreover, since m̂2

4,i

a.s.
≤ R4 for each i, we have∑n

i=1 λi,an

a.s.
≥

∑n
i=1(

√
16 log(2/an)/(R4n) ∧ 1

2) =
√

16n log(2/an)/R4 ∧ n
2 →∞.

Therefore, our assumption log(an)
n → 0, the ΨE estimates (15), and the Silverman-Toeplitz

theorem [37, Thm. 2] imply that

|σ̂2
up,an

− σ2| ≤ |
∑n

i=1 λi,an (Wi−µ̂i)2∑n
i=1 λi,an

− σ2|+ R2 log(2/an)+
∑n

i=1 λi,an ((Wi−µ̂i)2−σ̂2
i )

2/(2R2)∑n
i=1 λi,an

a.s.→ 0.
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Parallel reasoning implies that σ̂2
low,an

a.s.→ σ2 as∑n
i=1 λ

′
i,an

≥
∑n

i=N ′
min

(

√
16 log(2/a′

n)
R4n ∧ 1

2) =

√
16(n−N ′

min)
2
+ log(2/a′

n)
R4n ∧ n−N ′

min

2 →∞.

Since σ̂up,an
and σ̂low,an

both converge almost surely to σ, any

σ̃n,1 ∈ argmax
σ̃∈[σ̂low,an ,σ̂up,an ]

q̃n(R,δ− an, σ̃) and σ̃n,2 ∈ argmax
σ̃∈[σ̂low,an ,σ̂up,an ]

q̃dn(R,δ− an, σ̃).

must converge almost surely to σ as well. Finally, since an → 0,

q̂dn(R,δ, an) = q̃dn(R,δ− an, σ̃n,2)
a.s.→ −σΦ−1( δ2) and q̂n(R,δ, an)

a.s.→ −σΦ−1(δ).

REMARK 3 (Default settings). As convenient default settings, one can choose an =
δ√
n
Φ−1(1 − δ) for a one-sided quantile bound and an = δ√

n
Φ−1(1 − δ

2) for a two-sided

quantile bound and take (q̃n, q̃
d
n) to be the efficient quantile bounds (qn, q

d
n) of Thm. 6 with

the default auxiliary bounds of Rem. 2.

6. Numerical Evaluation. We now turn to a numerical evaluation of our efficient
bounds. Python code implementing our bounds and reproducing all plots can be found at

https://github.com/lmackey/gauss conc/.

6.1. Efficient quantile bounds. Fig. 1 compares the efficient two-sided quantile bound
of Thm. 6 and Rem. 2 with the Bernstein quantile bound P (|Sn| > Rσ

3
√
n
log(2/δ) +

σ
√

2 log(2/δ))≤ δ [17, Thm. 2.10] and the two-sided quantile bounds obtained by inverting
the Hoeffding (1) and Bentkus (7) tail bounds. As anticipated, the efficient bound converges
to the optimal asymptotic size as n increases, while the inefficient Bernstein, Hoeffding, and
Bentkus bounds remain bounded away from the optimum for all n.

Fig. 2 compares the efficient quantile bound of Thm. 6 and Rem. 2 to the two-sided quan-
tile bounds obtained by inverting the Feller-Cramér (6), Berry-Esseen (BE) (4), and non-
uniform BE (5) tail bounds with CR,σ = min(.3328(Rσ

σ + .429), .33554(Rσ

σ + .415)) [64]
and C̃R,σ =min(17.36Rσ

σ ,15.70Rσ

σ + 0.646) [65, p. 54].3 The new efficient bound provides
tighter estimates for higher confidence levels 1−δ, due to the improved underlying tail decay.

6.2. Application: Efficient empirical Berry-Esseen bounds. Fig. 3 compares the efficient
empirical Berry-Esseen (EBE) bound of Thm. 7 and Rem. 3 with the Hoeffding quantile
bound, P(Sn > R

√
log(1/δ)/2) ≤ δ; the empirical Bernstein quantile bound [49, Thm. 4]

commonly deployed in reinforcement learning [3, 50],

P
(
Sn > σ̂

√
log(2/δ) n

n−1 +
7
3R log(2/δ)

√
n

n−1

)
≤ δ for σ̂2 ≜ 1

n

∑
i≤n(Wi − W̄n)

2;

an empirical Bentkus quantile bound based on Kuchibhotla and Zheng [45, (33)]; and the
efficient In,3 quantile bound of Romano and Wolf [61],4 with its free parameter βn set to
match our default value, an = δ√

n
Φ−1(1− δ).

As advertised, the efficient EBE bound converges to the optimal asymptotic size as n
increases, while the empirical Bernstein, empirical Bentkus, and Hoeffding bounds remain
bounded away from the optimum for all n. Moreover, the efficient EBE bound provides a
consistently tighter estimate than the Romano-Wolf bound.

3The BE, non-uniform BE, and Feller-Cramér bounds can be infinite, but we constrain them to be no larger
than the always-valid Hoeffding bound.

4The Romano-Wolf bound can be infinite, but we constrain it to be no larger than the Hoeffding 1− (δ− βn)
quantile bound.

https://github.com/lmackey/gauss_conc/
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Fig 1: Quantile bounds for |Sn| with fixed boundedness parameter R= 1 and varying sam-
ple size n and variance σ2. Unlike the inefficient Hoeffding, Bernstein, and Bentkus bounds,
the efficient quantile bound of Thm. 6 and Rem. 2 converges to the optimal asymptotic size
as n increases.

6.3. Application: Monte Carlo Confidence Intervals for Numerical Integration. A com-
mon use of concentration inequalities is in numerical integration, to provide a confidence
interval for the expectation E(f(X1)) of a function f using an i.i.d. sample (f(Xi))

n
i=1. Re-

cently, Jain et al. [40] employed the state-of-the-art predictable plug-in empirical Bernstein
(PrPl-EB) and hedged capital betting (HCB) intervals of Waudby-Smith and Ramdas [69] for
this purpose, as they provide some of the narrowest confidence intervals known for bounded
observations. However, the PrPl-EB intervals are also provably inefficient, as they asymptot-
ically match the suboptimal width of Bernstein’s inequality rather than the optimal width of
the CLT [69, Sec. E.3]. Fig. 4 compares the PrPl-EB and HCB intervals with the efficient
empirical Berry-Esseen (EBE) interval of Thm. 7 and Rem. 3 for each of six benchmark test
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Fig 2: Efficient quantile bounds for |Sn| with fixed boundedness parameter R = 1 and
varying sample size n and variance σ2. The efficient quantile bound of Thm. 6 and Rem. 2
provides tighter estimates than the Berry-Esseen, non-uniform Berry-Esseen, and Feller-
Cramér bounds for higher confidence levels 1− δ.

functions studied by Jain et al. [40]. In each case, we find that the PrPl-EB and HCB intervals
remain bounded away from the optimal asymptotic width, while the EBE interval converges
to the optimum, resulting in the tightest bounds for larger sample sizes.

7. Discussion and Related Work. In this work, we have derived new computable tail
and quantile bounds for the scaled deviations Sn =

√
n(W̄n − E(W1)) with asymptotically

optimal size, finite-sample validity, and sub-Gaussian decay. These bounds enable the con-
struction of efficient confidence intervals with correct coverage for any sample size. Our
concentration inequalities arise from new computable bounds on a non-uniform Kolmogorov
distance and the p-Wasserstein distances to a Gaussian.
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Fig 3: Empirical quantile bounds for Sn with fixed boundedness parameter R = 1 and
varying sample size n and empirical variance σ̂2. The efficient empirical Berry-Esseen (EBE)
bound of Thm. 7 and Rem. 3 converges to the optimal asymptotic size as n increases, while
the empirical Bernstein, empirical Bentkus, and Hoeffding bounds remain bounded away
from the optimum for all n. In addition, the efficient EBE bound provides tighter estimates
than the efficient In,3 interval of Romano and Wolf [61].

The notion of efficient confidence intervals for the mean was introduced by Romano and
Wolf [61]. In their Thm. 2.1, Romano and Wolf showed that efficient—that is, asymptoti-
cally minimal-length when scaled by

√
n—confidence intervals must converge to the width

of the asymptotic Gaussian intervals implied by the CLT (2). Moreover, Sec. 3 of Romano
and Wolf surveys a number of procedures for constructing confidence intervals that are either
finite-sample invalid (including the bootstrap [27] and methods based on Edgeworth expan-
sions [36]) or inefficient (including the methods of Anderson [2] and Gasko [33]). Romano
and Wolf conclude by developing an efficient valid confidence interval for the mean of vari-
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Fig 4: Widths of Monte Carlo confidence intervals for E(f(X1)) relative to the empiri-
cal asymptotic width σ̂Φ−1(1− δ

2)
2√
n

with σ̂2 = 1
n

∑n
i=1(Wi − W̄n)

2 and confidence level
1 − δ = 0.95. We display relative widths averaged across 10 independent replicates of the
experiment. The efficient empirical Berry-Esseen intervals of Thm. 7 and Rem. 3 converge to
the optimal asymptotic size as n increases, while the predictable plug-in empirical Bernstein
and hedged capital betting bounds remain bounded away from the optimum for all n.

ables supported on [0,1] but report that it is “unfortunately, much too wide for a reasonable
sample.” Our new efficient bounds are developed in an entirely different manner, and, as we
demonstrate in Sec. 6, improve upon the Romano-Wolf interval and the most commonly used
empirical concentration inequalities.

Our zero-bias coupling arguments generalize the uniform, u-independent bounds of Chen,
Goldstein and Shao [21] and Ross [62] to derive tighter non-uniform bounds with sub-
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Gaussian decay. Our Wasserstein-bounding arguments build on the pioneering work of Bonis
[16] who derived Wasserstein convergence rates for the CLT with inexplicit constants. Our
new arguments lead to tighter estimates of the distance to Gaussianity and explicit, practical
constants.

Our results also suggest simple strategies for making any concentration inequality or con-
fidence region efficient. For efficient concentration, one can simply take the minimum of any
existing tail bound and Thm. 1 or Thm. 5 to simultaneously reap the small-sample benefits of
the former and the large-sample benefits of the latter. For efficient confidence, one can divide
the total confidence budget between an existing region and the efficient region of Thm. 7
and then intersect the two regions. The result will remain efficient if the budget allocated
to the auxiliary region vanishes as n grows. These strategies are particularly relevant given
the recent renewed interest in deriving tighter concentration inequalities for bounded random
variables [see, e.g., 42, 53, 69].

In Sec. 6.3, we demonstrated the usefulness of our bounds by constructing tighter confi-
dence intervals for Monte Carlo integration. A second natural application is to the construc-
tion of risk-controlling prediction sets, that is, sets of predicted outcomes that are guaranteed
to have high expected utility with high probability according to a given quality measure [6].
Bates et al. [6] reduce the problem of risk control to constructing confidence intervals for
the unknown expected utility and employ the concentration inequalities of Hoeffding [38],
Bentkus [10], Maurer and Pontil [49], and Waudby-Smith and Ramdas [69] to form their pre-
diction sets. A tighter confidence interval based on efficient concentration would yield more
informative and hence more actionable prediction sets.

Finally, while our work has focused on concentration of the sample mean assuming bound-
edness, non-zero variance, and a sampling distribution independent of the sample size, we
conjecture that our analyses can be adapted to (1) derive efficient, computable concentra-
tion inequalities for more general classes of asymptotically normal statistics or for self-
normalized statistics, in the spirit of Jing, Shao and Wang [41] and Pinelis [57]; (2) take
advantage of other favorable properties of the W1 distribution like symmetry or a vanishing
third moment; and (3) account for the non-Gaussian limits that arise when the distribution
underlying (Wi)

n
i=1 is allowed to vary with the sample size n. We leave these important

challenges for future work.
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APPENDIX A: Proof of Thm. 4: General zero-bias tail bounds

Fix any u ∈ R. Our proof structure, based on Stein’s method, mimics that of Ross [62,
Thm. 3.27] but employs u-dependent bounds in place of the u-independent bounds invoked
by Ross.
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Solving the Stein equation. First we define the Stein equation [66]

f ′
u(w)−wfu(w) = I(w ≤ u)−Φ(u).

By Chen, Goldstein and Shao [21, Lem. 2.2], the absolutely continuous function

fu(w) =
√
2π exp(w

2

2 )Φ(w ∧ u)Φc(w ∨ u)(16)

solves the Stein equation, and we can therefore write

P(S⋆ ≤ u)−Φ(u) = E[f ′
u(S

⋆)− S⋆fu(S
⋆)] = E[Sfu(S)− S⋆fu(S

⋆)] ,

where the final equality uses the definition of the zero-biased distribution. Negating both
sides, we obtain

P(S⋆ > u)−Φc(u) = E[S⋆fu(S
⋆)− Sfu(S)].

Bounding the Stein solution. Now let gu(w) = wfu(w). By Chen, Goldstein and Shao [21,
Eq. (2.81)], the function

hu(w)≜

{√
2πΦc(u)((1 +w2) exp(w2/2)Φ(w) +w/

√
2π) if w ≤ u√

2πΦ(u)((1 +w2) exp(w2/2)Φc(w)−w/
√
2π) if w > u

(17)

=w(Φc(u)− I(w > u)) + (1 +w2)fu(w)

=w(I(w ≤ u)Φc(u)− I(w > u)Φ(u)) + (1 +w2)fu(w)

matches the derivative of gu(w) whenever w ̸= u. Since the absolute continuity of fu implies
that gu is absolutely continuous on compact intervals, the fundamental theorem of calculus
yields

E[gu(S⋆)− gu(S)] = E[
∫ 1
0 hu(S

⋆ + x(S − S⋆))(S⋆ − S)dx] = E[hu(S′)(S⋆ − S)].

Our next result, proved in Sec. A.1 provides a suitable u-dependent bound on hu.

LEMMA A.1 (Growth of hu). For any u≥ 0, λ ∈ [0,1], and w ∈R,

0≤ hu(w)≤ hu(λu) + (hu(u)− hu(λu))I(w > λu)− uI(w > u).

for hu defined in (17).

S⋆ tail bound. Fix any λ ∈ [0,1]. Lem. A.1, our almost sure assumption S⋆ − S ≤ δ, and
the definition of S′ together imply that

P(S⋆ > u)−Φc(u)≤ δE[hu(S′)]

≤ δ [hu(λu) + (hu(u)− hu(λu))P(S′ > λu)− uP(S′ > u)].(18)

From S tails to S⋆ tails. When S − S⋆ ≤ δ almost surely, we additionally have

S − S′ ≤ (S − S⋆)(1−U)≤ δ and therefore

P(S > u+ δ) = P(S⋆ ∧ S′ > u+ δ+ S⋆ ∧ S′ − S)

≤ P(S⋆ ∧ S′ > u)≤ P(S⋆ > u)∧ P(S′ > u).

Combining this inequality with our S⋆ tail bound (18) yields

P(S > u+ δ)≤Φc(u) + δ [hu(λu) + (hu(u)− hu(λu))P(S′ > λu)− uP(S > u+ δ)].

Rearranging the terms of this expression yields the final advertised result.
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A.1. Proof of Lem. A.1: Growth of hu. Our proof relies on the following Φc property.

LEMMA A.2 (Growth of Φc). The following function is decreasing for w ≥ 0:

b(w)≜
√
2π(1 +w2) exp(w2/2)Φc(w)−w.

PROOF. Fix any w ≥ 0. The derivative of b takes the form

b′(w) = Φc(w)(3w+w3)/φ(w)− (2 +w2).

Since the Mills ratio Φc(w)
φ(w) < 2+w2

3w+w3 [46, Thm. 2.1], b′(w) is negative and b is decreasing.

Fix any u≥ 0, λ ∈ [0,1], and w ∈R. We divide our proof into cases based on w.

Lower bound, w ̸= u:. Since gu is differentiable for w ̸= u and increasing by Chen, Gold-
stein and Shao [21, Lem. 2.3], hu(w) = g′u(w)≥ 0.

Lower bound, w = u:. We have hu(u) = limv↑u hu(v)≥ 0.

Upper bound, w > u:. Since b is decreasing (Lem. A.2), the definition of fu (16) implies
that

(1 +w2)fu(w)I(w > u) =
√
2π(1 +w2) exp(w2/2)Φc(w)Φ(u)I(w > u)

≤ (b(u) +w)Φ(u)I(w > u).

Hence,

hu(w)I(w > u) = (1 +w2)fu(w)I(w > u)−wΦ(u)I(w > u)≤ b(u)Φ(u)I(w > u).

Upper bound, λu ≥ w ≥ 0:. Since gu is increasing [21, Lem. 2.3], fu is increasing for
w < u, and λufu(λu) +Φc(u) is nonnegative, we have

hu(w)I(λu≥w ≥ 0) = (fu(w) +w(wfu(w) +Φc(u)))I(λu≥w ≥ 0)

≤ [fu(λu) +w(λufu(λu) +Φc(u))]I(λu≥w ≥ 0)

≤ [fu(λu) + λu(λufu(λu) +Φc(u))]I(λu≥w ≥ 0)

= hu(λu)I(λu≥w ≥ 0) = hu(λu)(I(w ≥ 0)− I(w > λu)).

Upper bound, w < 0:. Since w < 0≤ u, we use the definition of fu (16), the fact that b is
decreasing (Lem. A.2), and the nonnegativity of Φc to derive

(1 +w2)fu(w)I(w < 0) =
√
2π exp(w2/2)Φc(|w|)Φc(u)I(w < 0)

= (b(|w|) + |w|)Φc(u)I(w < 0)

≤ (b(0) + |w|)Φc(u)I(w < 0).

Since λu≥ 0 by assumption, our prior derivation implies hu(λu)≥ hu(0) and hence,

hu(w)I(w < 0) = ((b(0) + |w|)− |w|)Φc(u)I(w < 0)

= b(0)Φc(u)I(w < 0) =
√

π
2Φ

c(u)I(w < 0)

= hu(0)I(w < 0)≤ hu(λu)I(w < 0).
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Upper bound, u≥w > λu:. Since u,w, fu(u), and Φc(u) are nonnegative, gu is increasing
[21, Lem. 2.3], and u≥w, we have

hu(w)I(u≥w > λu) = (fu(w) +w(wfu(w) +Φc(u)))I(u≥w > λu)

≤ (fu(u) +w(ufu(u) +Φc(u)))I(u≥w > λu)

≤ (fu(u) + u(ufu(u) +Φc(u)))I(u≥w > λu)

= hu(u)I(u≥w > λu) = hu(u)(I(w > λu)− I(w > u)).

Complete upper bound:. Taken together, our upper bounds yield

hu(w)≤ b(u)Φ(u)I(w > u) + hu(u)(I(w > λu)− I(w > u))

+ hu(λu)(I(w ≥ 0)− I(w > λu)) + hu(λu)I(w < 0)

≤ (b(u)Φ(u)− hu(u))I(w > u) + (hu(u)− hu(λu))I(w > λu) + hu(λu)

= (hu(u)− hu(λu))I(w > λu) + hu(λu)− uI(w > u).

APPENDIX B: Proof of Lem. 5: Wasserstein upper bound

We begin by defining some convenient shorthand notation. For each p≥ 1 and q ∈ [0,1],
we define ∥Binomial(n, q)∥p ≜ ∥V ∥p for V ∼ Binomial(n, q) and make use of the constants

R̃σ ≜Rσ/σ = 1
2R̃+ 1

2

√
R̃2 − 4,

Ap ≜
√
e
√
p+2(2e)1/p√

2
, A∗

n,p ≜
(p+2)n1/p

2
√
n

, Ãn,p ≜A∗
n,pR̃

−2/p,

Un,p ≜Ap + R̃Ãn,p, Ũn,p ≜
√
2Ap + 21/pR̃Ãn,p, and

Cn,p ≜min


Ãn,pR̃21/p +

√
2Ap

√
2
(
2Γ( p+1

2
)√

π

)1/p
{
R̃1−2/p if p < 4

R̃1−2/p ∧ R̃√
n

√
∥Binomial(n, 2

R̃2
)∥p/2 if p≥ 4.

(19)

We will focus principally on establishing the bound 1
σWp(Sn,N (0, σ2)) ≤ ωR

p (σ) and
derive the secondary bound ωR,κ,1

p (σ)≤ ωR,κ,2
p (σ) through a series of asides demarcated by

a vertical bar on the left-hand side. For the case of p = 1, we invoke Chen, Goldstein and
Shao [21, Cor. 4.2] and Lem. 1 in turn to find that

1
σW1(Sn,N (0, σ2))≤ E[|W1−E(W1)|3]

σ3
√
n

≤ Rσ

σ
√
n
= ωR

p (σ).

When p > n+ 1 the triangle inequality and Lems. C.1 and C.2 imply that

σ−1Wp(Sn,N (0, σ2))≤ ∥Z∥p + ∥Sn/σ∥p ≤
√
p− 1 +

√
p− 1Rσ/σ.

Now fix any p ∈ [2, n + 1], define S̃n ≜ Sn/σ, and let Z ∼ N (0,1) be independent of
(Wi)i≥1. For ease of notation, we will write Wp(S̃n,Z) in place of Wp(S̃n,N (0,1)) and use
(Xi)i≥1 to represent the centered and rescaled random variables

Xi ≜
Wi−E[Wi]

σ
√
n

,

which satisfy S̃n =
∑

i≤nXi, Var(X1) =
1
n , and ∥X1∥∞ ≤ R̃σ/

√
n by Lem. 1. Hence, for

all k ≥ 0, the moments of Xk
1 can be upper bounded as

∥Xk
1 ∥p =

(
E[|X1|kp]

)1/p ≤ (
∥X1∥kp−2

∞ E[X2
1 ]
)1/p ≤ R̃σ

k

R̃σ

2/p√
n

k
.
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Consider a random index I ∼ Uniform({1, . . . , n}) and a sequence (X ′
i)i≥1

d
= (Xi)i≥1

with (I, (X ′
i)i≥1, (Xi)i≥1) mutually independent. Define an exchangeable copy of S̃n,

S′
n ≜ S̃n + (X ′

I −XI),

and the exchangeable pair difference,

Y ≜ S̃n − S′
n.

Let hk(x)≜ ex
2/2 ∂k

∂xe
−x2/2 designate the k-th Hermite polynomial and define Hk ≜ hk(Z).

Finally, fix any κ > R̃2

n and define

Mn,κ ≜
√

1− R̃2

nκ .

A slight modification of Bonis [16, Thm. 3] shows that

Wp(S̃n,Z)≤
∫ − 1

2
log(1− R̃2

nκ
)

0 ∥e−tS̃n − e−2t
√
1−e−2t

Z∥p dt(20)

+
∫∞
− 1

2
log(1−R2

nκ
)
e−t∥nE[Y | S̃n]− S̃n∥p dt

+
∫∞
− 1

2
log(1− R̃2

nκ
)
e−2t∥H1∥p√

1−e−2t
∥n
2E[Y

2 | S̃n]− 1∥p dt

+
∑

k≥3

∫∞
− 1

2
log(1− R̃2

nκ
)

e−kt∥Hk−1∥p

k!(
√
1−e−2t)k−1

n∥E[Y k | S̃n]∥p dt

≜ (a0) + (a1) + (a2) + (a3).

Bounding (a0). We first bound (a0). To this end, fix ϵ > 0 and select G ∼ N (0,1)
independent from Z such that ∥S̃n −G∥p ≤Wp(S̃n,Z) + ϵ. By the triangle inequality,

(a0)≤
∫ − 1

2
log(1− R̃2

nκ
)

0 e−t∥S̃n −G∥p + ∥e−tG− e−2t
√
1−e−2t

Z∥p dt

(a)
= (1−Mn,κ)∥S̃n −G∥p + ∥Z∥p

∫ − 1

2
log(1− R̃2

nκ
)

0
e−t

√
1−e−2t

dt

≤ (1−Mn,κ)
(
Wp(S̃n,Z) + ϵ

)
+ ∥Z∥p

(
π
2 − sin−1(Mn,κ)

)
where (a) follows as e−tG− e−2t

√
1−e−2t

Z
d
= e−t

√
1−e−2t

Z . Since ϵ > 0 was arbitrary, we have

(a0)≤ (1−Mn,κ)Wp(S̃n,Z) + ∥Z∥p
(
π
2 − sin−1(Mn,κ)

)
.

In addition, if p= 2, by independence of Z and Sn we obtain that

(a0)≤
∫ − 1

2
log(1− R̃2

nκ
)

0

√
e−2t∥S̃n∥22 + e−4t

1−e−2t ∥Z∥22 dt

≤
∫ − 1

2
log(1− R̃2

nκ
)

0
e−t

√
1−e−2t

dt≤ π
2 − sin−1(Mn,κ).

These results together with the bound (20) yield the inequality

Wp(S̃n,Z)≤
[
∥Z∥p

(
π
2 − sin−1(

√
1− R̃2

nκ )
)
+ (a1) + (a2) + (a3)

]{ 1
Mn,κ

if p > 2

1 if p= 2.

Bounding (a1). We will next bound (a1) of (20). Note that, since I ∼ Uniform({1, . . . , n}),
E[Y | S̃n] =

1
n

∑
i≤nE[Xi −X ′

i | S̃n] =
1
n

∑
i≤nXi −E[Xi] =

1
n S̃n,

and hence ∥nE[Y | S̃n]− S̃n∥p = 0. Therefore (a1) = 0.
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Bounding (a2). We now turn to bounding (a2) of (20). By Jensen’s inequality,

∥n
2E[Y

2 | S̃n]− 1∥p ≤ ∥(12
∑

i≤nE[X2
i ] +X2

i )− 1∥p = 1
2∥

∑
i≤nX

2
i − 1∥p.

Moreover, by Lem. 1, |X2
i − 1/n|

a.s.
≤ max( 1nR̃

2
σ − 1

n ,
1
n

)
. First suppose 1

n ≥ R̃2
σ−1
n . Since

E[X2
i ] = 1/n, we know ∥X2

i − 1/n∥p is maximized when n

R̃2
σ

X2
i ∼ Bernoulli( 1

R̃2
σ

). Hence

∥X2
i − 1/n∥p ≤ 1

n

[
R̃2

σ−1

R̃2
σ

]1/p(
(R̃2

σ − 1)p−1 + 1
)1/p

.

Now suppose R̃2
σ − 1≥ 1. We instead obtain that

∥X2
i − 1/n∥p ≤ (∥X2

i − 1/n∥p−2
∞ ∥X2

i − 1/n∥22)1/p ≤ 1
n

(
R̃2

σ − 1
)1−1/p

.

Therefore using the Marcinkiewicz-Zygmund inequality (Lem. C.2) and the Rosenthal in-
equality (Lem. C.5) we find that

∥n
2E[Y

2 | S̃n]− 1∥p ≤ 1
2
√
n
min


√
p− 1(R̃2

σ − 1)1−1/p

(R̃2
σ − 1)1−1/pA∗

n,p +

√
R̃2

σ − 1Ap.

for R̃2
σ ≥ 2 and

∥n
2E[Y

2 | S̃n]− 1∥p ≤ 1
2
√
n
min


√
p− 1

[
R̃2

σ−1

R̃2
σ

]1/p(
(R̃2

σ − 1)p−1 + 1
)1/p[

R̃2
σ−1

R̃2
σ

]1/p(
(R̃2

σ − 1)p−1 + 1
)1/p

A∗
n,p +

√
R̃2

σ − 1Ap

for R̃2
σ ≤ 2. Alternatively, by Esseen [29, Eq. (2.8)] for p < 4 and Cox and Kemperman [22,

Thm. 2.6] for p≥ 4, we have the symmetrized estimate

∥
∑

i≤nX
2
i − 1∥p ≤ 2−1/p∥

∑
i≤nX

2
i − (X ′

i)
2∥p.

Since the random variables
(
X2

i − (X ′
i)
2
)
i≥1

are symmetric, with

E[(X2
i − (X ′

i)
2)2]≤ 2

n2 (R̃2
σ − 1) and E[(X2

i − (X ′
i)
2)p]≤ 2

np (R̃2
σ − 1)R̃σ

2(p−2)
,

an improvement on the Marcinkiewicz-Zygmund inequality for symmetric random variables
(Lem. C.3) implies

∥
∑

i≤nX
2
i − (X ′

i)
2∥p ≤


√
221/p
√
n

(
Γ( p+1

2
)√

π

)1/p
R̃σ

2(1−2/p)
(R̃2

σ − 1)1/p if p≥ 2
√
2
(
Γ( p+1

2
)√

π

)1/p
R̃2

n ∥Binomial(n, 2(R̃
2
σ−1)

R̃σ

4 )∥p if p≥ 4.

Hence we finally obtain that

∥n
2E[Y

2 | S̃n]− 1∥p(21)

≤Dn,p ≜ 1
2
√
n
min



√
p− 1max

(
(R̃2

σ − 1)1−1/p,
[
(R̃2

σ−1)p+R̃2
σ−1

R̃2
σ

]1/p)
max

(
(R̃2

σ − 1)1−1/p,
[
(R̃2

σ−1)p+R̃2
σ−1

R̃2
σ

]1/p)
A∗

n,p +

√
R̃2

σ − 1Ap

√
2
(
Γ( p+1

2
)√

π

)1/p
R̃σ

2(1−2/p)
(R̃2

σ − 1)1/p

√
22−1/p

(
Γ( p+1

2
)√

π

)1/p
R̃2
√
n

√
∥Binomial(n, 2(R̃

2
σ−1)

R̃σ

4 )∥p/2 if p≥ 4.
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This implies that∫∞
− 1

2
log(1−R2

nκ
)
∥n
2E[Y

2
t | S̃n]− 1∥p e−2t

√
1−e−2t

dt

≤Dn,p

∫∞
− 1

2
log(1−R2

nκ
)

e−2t
√
1−e−2t

dt=Dn,p

∫√
1−R2

nκ

0
t√
1−t2

dt=M2
n,κDn,p.

The definition (21) also implies the further upper bound

Dn,p ≤ 1
2
√
n
(max(R̃2

σ − 1,1))1−1/pÃ∗
n,p +

√
R̃2

σ − 1Ap.

Therefore since H1(Z) = Z we obtain

(a2)≤ (bκ,p,R̃2,1 )≜ ∥Z∥pDn,pM
2
n,κ.(22)

Since ∥Z∥p ≤
√
p− 1 by Lem. C.1, we have the further upper bound

(bκ,p,R̃2,1 )≤ (bκ,p,R̃2,2 )≜
√
p−1

2
√
n

[
(max(R̃2

σ − 1,1))1−1/pA∗
n,p +

√
R̃2

σ − 1Ap

]
.(23)

Bounding (a3). Finally, we turn to bounding (a3) of (20). Since

nE[Y k |X1, . . . ,Xn] =
∑

i≤nE[(Xi −X ′
i)
k |X1, . . . ,Xn] for all k ≥ 1,

by Jensen’s inequality, we have

n
∥∥E[Y k | Sn]

∥∥
p
≤
∥∥∑

i≤n(Xi −X ′
i)
k
∥∥
p

for all k ≥ 1.(24)

We will derive different bounds for odd and even k, so we begin by writing

(a3)≤
∑

k≥3:
k is odd

∫∞
− 1

2
log(1− R̃2

nκ
)

e−kt∥Hk−1∥p

k!(
√
1−e−2t)k−1

n∥E[Y k | S̃n]∥p dt

+
∑

k≥4:
k is even

∫∞
− 1

2
log(1− R̃2

nκ
)

e−kt∥Hk−1∥p

k!(
√
1−e−2t)k−1

n∥E[Y k | S̃n]∥p dt≜ (a3,1) + (a3,2).

Let k ≥ 3 be an odd integer. The random variables ((Xi −X ′
i)
k)i≥1 are symmetric and

therefore have a mean of zero. Moreover, if we define W ′
i ≜ σ

√
nX ′

i +E[Wi], then

∥(Xi −X ′
i)
k∥p = 1√

n
k
σk
∥|Wi −W ′

i |k∥p

≤ 1√
n

k
σk
∥max(Wi,W

′
i )

k−2/p|Wi −W ′
i |2/p∥p

≤ 1√
n

k
σ2/p

R̃k−2/p∥|Wi −W ′
i |2/p∥p ≤ 21/pR̃k−2/p

√
n

k .

Similarly, we also have

∥(Xi −X ′
i)
k∥2 ≤

√
2R̃k−1

√
n

k .

Therefore, Lems. C.2, C.3, and C.5 together imply
∥∥∑

i≤n(Xi−X ′
i)
k
∥∥
p
≤ R̃k−1

√
n

k−1Cn,p. Com-
bining this with the inequality (24) we obtain

(a3,1) =
∑

k≥3:
k is odd

∫∞
− 1

2
log(1− R̃2

nκ
)

e−tk∥Hk−1∥p

k!
√
1−e−2tk−1n∥E[Y k | Sn]∥p dt

≤
∑

k≥3:
k is odd

Cn,p

∫√
1− R̃2

nκ

0
xk−1R̃k−1∥Hk−1∥p

k!
√
1−x2k−1√

n
k−1 dx
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(a)

≤
∑

k≥1Cn,p
R̃2k∥H2k∥p

nk(2k+1)!

∫√
1− R̃2

nκ

0
x2k

(1−x2)k dx

(b)
= 1

2

∑
k≥1Cn,p

R̃2k∥H2k∥p

n(2k+1)!

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy,

where (a) is obtained by noting that all odd numbers k can be written as 2m + 1 for an
m ∈N+ and (b) by the change of variables y = n(1− x2).

To further upper bound the right-hand side, we will invoke the Hermite polynomial mo-
ment bound (Lem. C.1) ∥Hk−1∥p ≤

√
p− 1

k−1√
k− 1! and use two applications of Stirling’s

approximation [60] to conclude that, for all m ∈N \ {0},√
(2m)!≥

√√
2π(2m) · (2m/e)2m · exp

(
1

12(2m)+1

)
≥ e−19/3002mm!/(πm)1/4.

These estimates imply that, for all Kp ∈N+,

(a3,1)≤ Cn,p

2

{∑
1≤k≤Kp−1

R̃2k∥H2k∥p

n(2k+1)!

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4
∑

k≥Kp

2−kR̃2k(p−1)kk1/4

(2k+1)nk!

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy
}

(a)

≤ Cn,p

2

{∑
1≤k≤Kp−1

R̃2k∥H2k∥p

n(2k+1)!

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4 K1/4
p

(2Kp+1)

∑
k≥Kp

2−kR̃2k(p−1)k

nk!

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy
}

(b)

≤ Cn,p

2

{∑
1≤k≤Kp−1

R̃2k

n

(
∥H2k∥p

(2k+1)! −
K1/4

p 2−k(p−1)ke19/300π1/4

(2Kp+1)k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4 K1/4
p

(2Kp+1)n

∫ n
R̃2

κ

1√
1− y

n

[
e

1

2
(p−1)R̃2

(
1

y
− 1

n

)
− 1

]
dy

}
where (a) follows from the fact that x→ x1/4

(2x+1) is decreasing and (b) from the fact that

e
1

2
(p−1)R̃2( 1

y
− 1

n
) − 1 =

∑Kp−1
k=1

(R̃2(p−1))k2−k

k!

(
1
y −

1
n

)k
+
∑∞

k=Kp

(R̃2(p−1))k2−k

k!

(
1
y −

1
n

)k
.

Since ∑
1≤k≤K−1

R̃2k

n

(
∥H2k∥p

(2k+1)! −
K1/42−k(p−1)ke19/300π1/4

(2K+1)k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4 K1/4

(2K+1)n

∫ n
R̃2

κ

1√
1− y

n

[
e

1

2
(p−1)R̃2

(
1

y
− 1

n

)
− 1

]
dy

}
is decreasing in K , its largest value is attained for K = 1≤Kp. Moreover, for all x≤√

1− R̃2

nκ , we have 1
(1−x2)k ≤

(
nκ
R̃2

)k−1 1
1−x2 . Hence a change of variables implies

Cn,p

2

{∑
1≤k≤Kp−1

R̃2k

n

(
∥H2k∥p

(2k+1)! −
K1/4

p 2−k(p−1)ke19/300π1/4

(2Kp+1)k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4 K1/4
p

(2Kp+1)n

∫ n
R̃2

κ

1√
1− y

n

[
e

1

2
(p−1)R̃2

(
1

y
− 1

n

)
− 1

]
dy

}
≤Cn,pe

19/300π1/4 R̃2

3nκ

∑
k≥1

∫√
1− R̃2

nκ

0
x2k(p−1)kκk

2kk!(1−x2) dx

≤Cn,p
R̃2

3nκe
19/300π1/4

∫√
1− R̃2

nκ

0
[e

1
2
(p−1)x2κ−1]
(1−x2) dx
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≤Cn,p
R̃2

3nκe
19/300π1/4[e

1

2
(p−1)(1− R̃2

nκ
)κ − 1] log(1+Mn,κ

1−Mn,κ
).

Next suppose k ≥ 4 is even. Then
(
(Xi −X ′

i)
k
)
i≥1

are almost surely nonnegative. More-
over,

E[(Xi −X ′
i)
k]≤ 2 R̃k−2

√
n

k and E[(Xi −X ′
i)
kp]≤ 2 R̃kp−2

√
n

kp .

Therefore we can invoke a moment inequality for nonnegative random variables (Lem. C.4)
to conclude that

n∥E[Y k | Sn]∥p ≤ ∥
∑

i≤n(Xi −X ′
i)
k∥p ≤ R̃k

√
n

k ∥Binomial(n, 2
R̃2

)∥p.

Moreover by the triangle inequality and Lem. C.2 the following upper also holds

n
∥∥E[Y k | S̃n]∥p ≤

∥∥∑
i≤n(Xi −X ′

i)
k∥p

≤ nE[(X1 −X ′
1)

k] +
∥∥∑

i≤n(Xi −X ′
i)
k −E[(X1 −X ′

1)
k]∥p

≤ R̃k−2

√
n

k−2 (1 +
1√
n
Ũn,pR̃).

Hence we obtain

n∥E[Y k | Sn]∥p ≤ ∥
∑

i≤n(Xi −X ′
i)
k∥p ≤ Bp,nR̃k−2

√
n

k−2

for Bp,n ≜min( R̃
2

n ∥Binomial(n, 2
R̃2

)∥p,1 + 1√
n
Ũn,pR̃). This gives us the upper estimate∫∞

− 1

2
log(1− R̃2

nκ
)

e−tk

√
1−e−2tk−1n∥E[Y k | Sn]∥p dt≤Bp,n

∫∞
− 1

2
log(1− R̃2

nκ
)

e−tkR̃k−2

√
1−e−2tk−1√

n
k−2 dt.

To bound (a3,2), it remains to bound∑
k≥4:

k is even

∥Hk−1∥p

k!

∫∞
− 1

2
log(1− R̃2

nκ
)

e−tkR̃k−2

√
1−e−2tk−1√

n
k−2 dt

(a)

≤
∑

k≥3:
k is odd

R̃k−1∥Hk∥p

(k+1)!
√
n

k−1

∫√
1− R̃2

nκ

0
xk

√
1−x2k dx

(b)

≤
∑

k≥1
R̃2k∥H2k+1∥p

(2k+2)!

∫√
1− R̃2

nκ

0
x2k+1

√
1−x22k+1

nk
dx

(c)

≤ 1
2

∑
k≥1

R̃2k∥H2k+1∥p

(2k+2)!
√
n

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

where (a) and (c) are obtained by a change of variable, and (b) is a consequence of the
fact that every odd number can be written as 2m + 1 for an m ≥ 1. To upper bound this
quantity we will again employ a Hermite polynomial moment bound (Lem. C.1), ∥Hk−1∥p ≤√
p− 1

k−1√
k− 1!, and use Stirling’s approximation to deduce that, for all m ∈N \ {0},√
(2m+ 1)! =

√
2m+ 1

√
2m!≥

√
2m+ 1e−19/3002mm!/(πm)1/4.

Hence for any Kp ∈N+ we obtain that

(a3,2) =
∑

k≥4:
k is even

∥Hk−1∥p

k!

∫∞
− 1

2
log(1− R̃2

nκ
)

e−tk

√
1−e−2tk−1n∥E

(
(Yt)

k|Sn

)
∥p dt

≤ Bp,n

2

∑
Kp>k≥1

R̃2k∥H2k+1∥p

(2k+2)!
√
n

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

+ Bp,n

4

∑
Kp≤k

R̃2k(p−1)k+1/2

(k+1)
√
2k+1!

√
n

∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy
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≤ Bp,n

2

∑
Kp>k≥1

R̃2k
√
n

(
∥H2k+1∥p

(2k+2)! − 2−ke19/300π1/4K1/4
p

√
p−1

2k+1

2(Kp+1)
√

2Kp+1k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

+ Bp,n

4 e19/300π1/4 K1/4
p

√
p−1

(Kp+1)
√

2Kp+1

1√
n

∫ n
R̃2

κ

1√
y

(
e

1

2
(p−1)R̃2( 1

y
− 1

n
) − 1

)
dy.

Since ∑
K>k≥1

R̃2k
√
n

(
∥H2k+1∥p

(2k+2)! − 2−ke19/300π1/4K1/4
√
p−1

2k+1

2(Kp+1)
√
2K+1k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

+ e19/300π1/4 K1/4
√
p−1

2(K+1)
√
2K+1

1√
n

∫ n
R̃2

κ

1√
y

(
e

1

2
(p−1)R̃2( 1

y
− 1

n
) − 1

)
dy

is decreasing in K , its largest value is attained for K = 1 ≤Kp. Moreover for all x ≤√
1− R̃2

nκ we have 1√
1−x22k+1 ≤

(
nκ
R̃2

)k−1 1√
1−x23 . Hence a change of variables implies

Bp,n

2

∑
Kp>k≥1

R̃2k
√
n

(
∥H2k+1∥p

(2k+2)! − 2−ke19/300π1/4K1/4
p

√
p−1

2k+1

2(Kp+1)
√

2Kp+1k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

+ Bp,n

4 e19/300π1/4 K1/4
p

√
p−1

(Kp+1)
√

2Kp+1

1√
n

∫ n
R̃2

κ

1√
y

(
e

1

2
(p−1)R̃2( 1

y
− 1

n
) − 1

)
dy

≤Bp,n
∑

k≥1
∥H2k+1∥p

(2k+2)!

∫√
1− R̃2

nκ

0
x2k+1R̃2

√
κ
2k−2

√
1−x23

n
dx

≤
R̃2
(
1+

R̃Ũn,p√
n

)
nκ

π1/4e19/300
√
p−1

4
√
3

[
e

1

2
(p−1)κ

(
1− R̃2

nκ

)
− 1

] ∫√
1− R̃2

nκ

0
x√

1−x23 dx

≤
R̃
(
1+

R̃Ũn,p√
n

)
√
nκ

π1/4e19/300
√
p−1

4
√
3

[
e

1

2
(p−1)κ

(
1− R̃2

nκ

)
− 1

]
.

Therefore, to conclude, we obtain

(a3)≤ (bκ,p,R̃3,1 )

≜ Bp,n

2

{∑
Kp>k≥1

R2k
√
n

(
∥H2k+1∥p

(2k+2)! − 2−ke19/300π1/4K1/4
p

√
p−1

2k+1

2(Kp+1)
√

2Kp+1k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k
dy

+ Bp,n

4 e19/300π1/4 K1/4
p

√
p−1

(Kp+1)
√

2Kp+1

1√
n

∫ n
R̃2

κ

1√
y

(
e

1

2
(p−1)R̃2( 1

y
− 1

n
) − 1

)
dy

}
(25)

+ Cn,p

2

{∑
1≤k≤Kp−1

R̃2k

n

(
∥H2k∥p

(2k+1)! −
K1/4

p 2−k(p−1)ke19/300π1/4

(2Kp+1)k!

)∫ n
R̃2

κ

1√
y

(
1
y −

1
n

)k− 1

2 dy

+ e19/300π1/4 K1/4
p

(2Kp+1)n

∫ κ

R̃2

1

n

1

y3/2
√

y− 1

n

[
e

1

2
(p−1)R̃2

(
y− 1

n

)
− 1

]
dy

}
.

Moreover, (bκ,p,R̃3,1 ) can be further upper-bounded by

(bκ,p,R̃3,1 )≤ (bκ,p,R̃3,2 )≜
R̃
(
1+

R̃Ũn,p√
n

)
√
nκ

π1/4e19/300
√
p−1

4
√
3

[
e

1

2
(p−1)κ

(
1− R̃2

nκ

)
− 1

]
(26)

+Cn,p
R̃2

3nκe
19/300π1/4[e

1

2
(p−1)(1− R̃2

nκ
)κ − 1] log(1+Mn,κ

1−Mn,κ
).
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APPENDIX C: ADDITIONAL LEMMAS

LEMMA C.1 (Hermite polynomial moment bound [16, Lem. 3]). Let hk(x)≜ ex
2/2 ∂k

∂xe
−x2/2

and Hk ≜ hk(Z) for Z ∼N (0,1). Then the following holds for all k, p ∈N:

∥Hk∥p ≤
√
k!
√
p− 1

k
.

LEMMA C.2 (Marcinkiewicz-Zygmund inequality [59, Thm. 2.1]). Suppose (X̃i)i≥1 are
centered i.i.d. observations admitting a finite p-th absolute moment for some p≥ 2. Then

∥ 1√
n

∑
i≤n X̃i∥p ≤

√
p− 1∥X̃1∥p.

LEMMA C.3 (Improved Marcinkiewicz-Zygmund inequality for symmetric random vari-
ables). Suppose (X̃i)i≥1 are symmetric centered i.i.d. observations admitting a finite p-th
absolute moment for some p≥ 2. Then

∥ 1√
n

∑
i≤n X̃i∥p ≤

√
2
(
Γ( p+1

2
)√

π

)1/p√
n∥X̃1∥p.

If p≥ 4, E[X̃2
i ]≤ σ̃2, and E[|X̃i|p]≤ bp , we also have

∥
∑

i≤n X̃i∥p ≤
√
2
(
Γ( p+1

2
)√

π

)1/p
( bpσ̃2 )1/(p−2)

√
∥Binomial(n, ( σ̃p

bp
)2/(p−2))∥p/2.

PROOF. As the random variables (X̃i)i≥1 are symmetric, we know that∑n
i=1 X̃i

d
=
∑n

i=1 ϵi|X̃i|,

where (ϵi)i≥1
i.i.d.∼ Uniform({−1,1}). According to Haagerup [35, Thm. B] we have

E[|
∑n

i=1 ϵi|X̃i||p | (X̃i)
n
i=1]≤ 2p/2

Γ( p+1

2
)√

π
(
∑n

i=1 X̃
2
i )

p/2.

The tower property and Jensen’s inequality therefore imply that

∥
∑n

i=1 X̃i∥p ≤
√
2
(
Γ( p+1

2
)√

π

)1/p
(E[(

∑
i≤n X̃

2
i )

p/2])1/p ≤
√
2
(
Γ( p+1

2
)√

π

)1/p√
n∥X̃1∥p.(27)

Now suppose p ≥ 4, E[X̃2
i ] ≤ σ̃2, and E[X̃p

i ] ≤ bp. Then, by a moment inequality for non-
negative random variables (Lem. C.4), we obtain

∥
∑n

i=1 X̃
2
i ∥p/2 ≤ ( bpσ̃2 )2/(p−2)∥Binomial(n, ( σ̃

p

bp
)2/(p−2))∥p/2.

Combining this with the inequality (27) yields the advertised conclusion.

LEMMA C.4 (Moment inequality for nonnegative random variables). Let (X̃i)i≥1 be a
sequence of i.i.d. random variables that are almost surely nonnegative. If, for some p ≥ 2,
E(X̃1)≤ a and E(X̃p

i )≤ b for a, b > 0, then

∥
∑n

i=1 X̃i∥p ≤ ( ba)
1/(p−1)∥Binomial(n, (a

p

b )
1

p−1 )∥p

PROOF. Let (Vi)i≥1 be an i.i.d. sequence of Bernouilli random variables with

P(Vi = 0) = 1− (a
p

b )
1

p−1 and P(Vi = 1) = (a
p

b )
1

p−1 .

Then, by Ibragimov and Sharakhmetov [39, Thm. 2],

E[(
∑n

i=1 X̃i)
p]≤ E[(

∑n
i=1(

b
a)

1/(p−1)Vi)
p]≤ ( ba)

p/(p−1)E[(
∑n

i=1 Vi)
p].
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LEMMA C.5 (Rosenthal’s inequality with explicit constants). Let (X̃i)i≥1 be a se-
quence of centered i.i.d. observations. If ∥X̃1∥p <∞ for some p≥ 2, then

∥ 1√
n

∑
i≤n X̃i∥p ≤ (p2 + 1)n1/p−1/2∥X̃1∥p + 21/p

√
p/2 + 1e

1

2
+ 1

p ∥X̃1∥2.

PROOF. According to Nagaev and Pinelis [52, Thm. 2] we have

∥ 1√
n

∑
i≤n X̃i∥pp ≤ infc> p

2
cpn1− p

2 ∥X̃1||pp + pcp/2ecB(p2 , c−
p
2)∥X̃1∥p2,

where B(·, ·) is the Beta function. The choice c= p
2 + 1 yields

∥ 1√
n

∑
i≤n X̃i∥pp ≤ (p2 + 1)pn1− p

2 ∥X̃1||pp + p(p2 + 1)p/2e
p

2
+1B(p2 ,1)∥X̃1∥p2

= (p2 + 1)pn1− p

2 ||X̃1||pp + 2(p2 + 1)
p

2 e
p

2
+1||X̃1||p2.

The subadditivity of the p-th root now implies the result.

LEMMA C.6 (Kolmogorov-Smirnov quantile bound). Let (Xi)i≥1 be a sequence of i.i.d.
random variables taking values in [0,1] and, for a confidence level α > 0, let qKS

n,1(α) and
qKS
n,2(α) respectively be the 1 − α quantiles of the one-sided and two-sided Kolmogorov-

Smirnov (KS) distribution with parameter n. Then,

P
(
sup
k∈N

1
n

∑
i≤nX

k
i −E[Xk

1 ]≥ qKS
n,1(α)

)
∨ P

(
sup
k∈N

| 1n
∑

i≤nX
k
i −E[Xk

1 ]| ≥ qKS
n,2(α)

)
≤ α.

PROOF. We begin by proving the two-sided statement. Let µ be the distribution of X1 and
µ̂ the empirical distribution of (Xi)

n
i=1. Romano and Wolf [61, Prop. 3.1] showed that

supk∈N | 1n
∑

i≤nX
k
i −E[Xk

1 ]| ≤ dK(µ̂, µ)≜ supx∈[0,1] |P(X1 ≤ x)− PX∼µ̂(X ≤ x)|

for dK(µ̂, µ) the two-sided Kolmogorov distance between µ̂ and µ. Now let KS(n) denote
the two-sided Kolmogorov-Smirnov distribution with parameter n. If X1 is continuous, then
dK(µ̂, µ)∼ KS(n) [32, Thm. 1] and hence

P(supk∈N | 1n
∑

i≤nX
k
i −E[Xk

1 ]| ≥ qKS
n (α))≤ P(dK(µ̂, µ)≥ qKS

n (α))≤ α.(28)

If X1 is not continuous, fix any ϵ > 0, and define

Xϵ
i ≜

1
1+ϵ(Xi + ϵUi)

for (Ui)i≥1 an i.i.d. sequence of uniform random variables in [0,1]. Since the (Xϵ
i )i≥1 are

continuous i.i.d. random variables on [0,1], we have

P(supk∈N | 1n
∑

i≤n(X
ϵ
i )

k −E((Xϵ
1)

k)| ≥ qKS
n (α))≤ α.

As this holds for any arbitrary choice of ϵ > 0, the result (28) holds.
A nearly identical proof establishes the one-sided result, since, using integration by parts,

1
n

∑
i≤nX

k
i −E[Xk

1 ] =
∫ 1
0 xkd(µ̂− µ)(x) =

∫ 1
0 kxk−1(PX∼µ̂(X > x)− P(X1 > x))dx

≤ dK,1(µ, µ̂)
∫ 1
0 kxk−1dx= dK,1(µ, µ̂)

for dK,1(µ, µ̂)≜ supx∈[0,1] P(X1 ≤ x)−PX∼µ̂(X ≤ x), the one-sided Kolmogorov distance.
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