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Concentration inequalities for the sample mean, like those due to Bern-
stein, Hoeffding, and Bentkus, are valid for any sample size but overly conser-
vative, yielding confidence intervals that are unnecessarily wide. The central
limit theorem (CLT) provides asymptotic confidence intervals with optimal
width, but these are invalid for all sample sizes. To resolve this tension, we de-
velop new computable concentration inequalities for bounded variables with
asymptotically optimal size, finite-sample validity, and sub-Gaussian decay.
These bounds enable the construction of efficient confidence intervals with
correct coverage for any sample size and efficient empirical Berry-Esseen
bounds that require no prior knowledge of the population variance. We derive
our inequalities by tightly bounding non-uniform Kolmogorov and Wasser-
stein distances to a Gaussian using zero-bias couplings and Stein’s method of
exchangeable pairs and demonstrate practical improvements over the Bern-
stein, Hoeffding, Bentkus, Berry-Esseen, Feller-Cramér, Romano-Wolf, em-
pirical Bernstein, empirical Bentkus, and coin-betting inequalities.

1. Introduction. Concentration inequalities for the sample mean are ubiquitous in prob-
ability theory, statistics, and machine learning. Given n observations from an infinite se-
quence of independent and identically distributed (i.i.d.) random variables (W;)?°,, they al-
low us to give finite-sample and high-probability guarantees that the sample mean WW,, £
%Z?Zl W; is close to the population mean E[IV;]. More specifically, they provide upper
bounds for the probability P(W,, — E[W;] > ¢/y/n) for each t > 0. Such inequalities lie
at the heart of decision-making in reinforcement learning [3], generalization guarantees in
high-dimensional statistics, machine learning, and deep learning [5, 68, 70], and the design
[49] and selection [50] of efficient learning procedures.

However, standard concentration inequalities are overly conservative yielding confidence
intervals that are unnecessarily wide and generalization guarantees that are weaker than
needed. This is notably the case for the commonly used concentration inequalities of Ho-
effding [38] and Bernstein [12]. For bounded random variables W; € [0, R] with variance
0% £ Var(W;) > 0, the Hoeffding and Bernstein inequalities respectively state that the scaled
deviation S,, = /n(W,, — E[W]) satisfies

(1) P(Sy, >ou) <exp (_27£g2) and P(S, > ou) <exp (—WM),

Meanwhile, the central limit theorem (CLT) identifies the exact limit for each tail probability:

Yu > 0.

() P(S, > ou) === ®°(u) forall wueR,

where ® is the cumulative distribution function (CDF) of a standard normal distribution and
®° =1 — ®. As aresult, standard confidence intervals based on the CLT are asymptotically
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2 1 INTRODUCTION

exact and often much narrower than those obtained using concentration inequalities. How-
ever, these intervals are typically only asymptotically valid and provide incorrect coverage
for every sample size n.

The choice between loose but valid concentration inequalities and tight but invalid CLT-
based approximations is very unsatisfying. In this paper we derive new bounds that offer
the best of both worlds: our new concentration inequalities are both finite-sample valid and
efficient—that is, asymptotically of minimal width when scaled by /n. For example, our
primary result, Thm. 1, implies that, for all « > §, £ %,

3) P(Sy > ou) < B(u) + 5 =p(u — 6n) + Mfijgwef;—i(ufgan)i
1 —u?/2

where o(u) = ords is the Lebesgue density of a standard normal. Underlying this
implication is a new, computable concentration inequality formed by explicitly bounding a
non-uniform Kolmogorov distance between the sample mean and a Gaussian.

It is informative to compare the result (3) with those obtained using classical CLT correc-
tions. The Berry-Esseen bound [28] guarantees that

) P(S, > ou) < ®°(u) + ng forall u>0

and a constant C'r , depending only on R and o. This yields an efficient concentration in-
equality, but the bound is overly conservative as the correction is independent of u. Non-
uniform Berry-Esseen bounds [14, 51] ameliorate this behavior by identifying a constant
éR,U satisfying

(& éR,n
(5) P(S,, > ou) < P°(u) + N forall u>0.

Appealingly, this non-uniformity yields tighter bounds for larger u. However, the correc-
tion has only cubic, that is, O(u~2), decay in u as the underlying argument only exploits
the existence of a third moment of W,,. Quantile coupling inequalities [see, e.g., 48] like
the groundbreaking Komlds-Major-Tusnady approximations [43, 44, Thm. 1] and the strong
embedding bounds of Bhattacharjee and Goldstein [13], Chatterjee [19] improve this u de-
pendence for W with finite exponential moments but provide at best exponential decay in u
and O(logn/+/n) decay in n. By exploiting the boundedness of W7, our new efficient cor-
rection term (3) guarantees faster, sub-Gaussian e $2(w?) decay and eliminates the extraneous
log n factor present in prior quantile coupling inequalities. The aforementioned quantile cou-
pling and strong embedding bounds are also unsuitable for practical deployment due to their
unidentified constants. Crucially for our applications, our Thm. 1 is fully computable, allow-
ing us to develop practical efficient confidence regions in Secs. 5 and 6.

In Sec. 4, we supplement our primary result with a computational refinement that
yields tighter tail and quantile bounds for larger deviations by carefully controlling the
p-Wasserstein distance to Gaussianity. For example, our efficient Wasserstein tail bound,
Thm. 5, improves the dependence on w at the expense of a worse dependence on n and
provides an explicit relative error bound in the spirit of classical Cramér-type inequalities
[20, 23, 30, 31, 54]:

P(Sy, > ou) < @°(u—dypn) + % for Sun= d\{/%” [log (%)]

< @°(u) - (eToun 4 2 forall w6y

Here, KR is an explicit constant depending only on (R, o) that we define in Sec. 4. Unlike
Thm. 5, most Cramér-type relative error bounds, including those derived by Cramér [23],
Petrov [54], Chen, Fang and Shao [20], and Fang and Koike [30], are unsuitable for practical
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use due to unidentified constants. A notable exception is the inequality of Feller [31, Thm. 1]
which delivers the Cramér-type bound

(6)  P(Sy > ou) < O (u) exp(2odme—) (1 + 22eme 2y forall u e (0, 32 )

for a constant c , depending only on (R, o). We will see in Sec. 6 that Thm. 5 provides a
substantially tighter bound than the Feller-Cramér inequality (6) in all of our experimental
settings.

Another important comparison is with the “missing-factor” bounds of Eaton [25, 26], Ta-
lagrand [67], Pinelis [55, 56, 58], and Bentkus [8—11], which imply tail decay proportional
to ®°(u) ~ L(u). A representative example is the computable bound of Bentkus, Kalosha
and Van Zuijlen [11, Thm. 2.1],

E[(Gn—t)3]

7 P(Sy > ou) < infyejou) —

forall ©>0

2

where G, f S L€ foriid. (6)i>1 with P(e; = f) = rer = 1 — Plei=—%-),
(Ro) Ry £ 3R+ $VR? — 402,

and a; = max(a,0) for a € R. Like our new inequalities in Thms. 1 and 5, the Bentkus
bound (7) eschews a closed-form to obtain a significantly tighter tail bound that is still
straightforwardly computable [45, App. C]. However, unlike our new inequalities, the Ben-
tkus bound (7) is inefficient with a limit at least twice as large as the ideal width ®°(u).

PROPOSITION 1 (Inefficiency of Bentkus bound). For each u > 0,

. Gn—1)3] n—oo c

PROOF. Fix any u > 0 and any positive e < E[(Z — )2 ], where Z is a standard Gaussian.
By the 2-Wasserstein CLT [16, Thm. 1], there exists an integer N such that sup;,, [E[(G}, —
t)2] —E[(Z —t)2]| < e forall n > N. Now, fix any n > N and suppose

Fu(t) ZE[(Gn —1)2]/(u—1)? < fn(0) =E[(Gn)3]/u® < 1/u?
for some t € [0,u). Then we necessarily have

(E[(Z w3l —e)/(u—1)? < (E[(Z —t)3] — )/ (u—1)> < fu(t) < 1/u.

Parallel logic ensures f(t) = [(Z t*] < f(0) only if (uft)Q < UZE[(Zliu)i]. Therefore,

|infye 0. fn(t) — infyepon) F ()] < Emz=arT=-

The result now follows from the arbitrariness of € and the inequality of [11, Thm. 7.1]. [

In Sec. 5, we apply our new tools to develop practical empirical Berry-Esseen bounds that
are efficient and finite-sample valid even when the variance parameter o2 is unknown. In
Sec. 6, we confirm numerically that our new bounds yield improvements over the Hoeffding,
Bernstein, and Bentkus inequalities, the uniform and non-uniform Berry-Esseen corrections,
the generalized Cramér bound of Feller, the popular but inefficient empirical Bernstein [3, 49,
50] and empirical Bentkus [45] bounds, and the efficient I;, 3 confidence interval of Romano
and Wolf [61]. We conclude with an application to Monte Carlo integration (Sec. 6.3) in
which our efficient empirical Berry-Esseen bounds yield narrower confidence intervals than
the state-of-the-art predictable plug-in and betting intervals of Waudby-Smith and Ramdas
[69] for larger sample sizes. Sec. 7 presents a discussion of these results and related work.



4 2 DEFINING EFFICIENT CONCENTRATION

2. Defining Efficient Concentration. To match the setting of the classical Hoeffding
and Bernstein inequalities (1), we will focus on random variables satisfying the following
distributional assumptions.

ASSUMPTION (R,0). The scaled deviations (Sy)n>1 satisfy Sy, = /n(W,, — E[Wi])
for i.id. variables (W;)2%, with W, & 5™ W, Var(Wy) = 0% > 0, and Wy € [0, R]

almost surely.

Our first inferential goal is to tightly upper bound the tail probability P(.S,, > ou) for a
given threshold u > 0. The CLT provides an asymptotic lower bound for this problem as
P(S,, > ou) is known to converge precisely to ®¢(u) as n increases.

PROPOSITION 2 (Asymptotic lower bound for valid tail bounds). Fix any v > 0 and
any sequence of candidate tail bounds (6,,(u))n>1. Under Assump. (R, o), if P(Sy, > ou) <
dn(u) for all n, then ®¢(u) < liminf,, o 0 (u).

PROOF. Suppose that a sequence d,(u) satisfies liminf,,_, 6, (u) < ®°(u). Then there
exists an € > 0 such that §,(u) < ®°(u) — € for infinitely many n. However, by the CLT
[see, e.g., 24, Thm. 3.4.1], there exists an n. such that, for all n > n., ®°(u) — e <P(S,, >
ou). Therefore, 0, (u) < P(S, > ou) for infinitely many n, confirming the claim via its
contrapositive. O

Unfortunately, the CLT limit does not provide a suitable tail bound for any finite n. How-
ever, by tightly bounding the distance between the distribution of S, and the distribution of a
Gaussian we can correct the asymptotic bound to obtain one that is both valid in finite sam-
ples and asymptotically exact. We will call such bounds efficient concentration inequalities.

Our second inferential goal is to tightly bound the quantiles of S,,. That is, given a tail
probability 6 € (0,1) we wish to find ¢, (R,d,0) (a measurable function of (W;)? ,, R, 0,
and ¢) satisfying P(S,, > ¢, (R, 0,0)) < . Such quantile bounds immediately deliver both
one- and two-sided confidence intervals for the population mean E[IV] as

P(W, — 000 <E[W1]) A P(E[W:] — Wy| < 2UE229)) > 1 — 4,

n

The interval efficiency theory of Romano and Wolf [61] implies that the CLT once again
provides an asymptotic lower bound for any valid sequence of quantile bounds.

PROPOSITION 3 (Asymptotic lower bound for valid quantile bounds). Fix any R, > 0,
any § € (0,3), and any nonnegative candidate quantile bounds (qn(R,6,0))n>1,0>0. Under
Assump. (R, o), if P(Sy, > ¢n(R,6,0)) <6 for all n, then (qn(R,0,0))n>1 is not asymptoti-
cally concentrated' on [0, a) for any a < c®~1(1 — §). Here, ®~! is the quantile function of
a standard normal distribution.

PROOF. The result follows by applying Thm. 2.1 of Romano and Wolf [61] to the conser-
vative confidence intervals I,,(,0) = W,, + ﬁ[—qn(R, 0,0),qn(R,0,0)] for the unknown

mean E[IV;]. O

To construct efficient quantile bounds, we will once again tightly bound the distance be-
tween S,, and its Gaussian limit.

A sequence of nonnegative random variables (Xn)p>1 is asymptotically concentrated on [0, a] if (Xn —

a)+ £> 0.
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2.1. Notation. Hereafter, we will write a,, 5 < by, to indicate that two sequences (ap)n>1
and (by,)n>1 satisty a,, < b, + 0, (by,) and use the shorthand || X ||oo = supsupport(|X|) and
| X||, £ E[|X[P]'/P when a random variable X is bounded or has a p-th absolute moment
for some p > 1. We will also make regular use of the parameter 12, which provides a priori

bounds on the summand mean E[W7] and deviation |W; — E[W1]|:

LEMMA 1 (Summand mean and deviation bounds). Under Assump. (R, o), we have
R— R, <E[W1] <R, and |W1 —E[W1]| < R, almost surely .

PROOF. Since W; € [0, R], we have E[W;]? = E[W?] — 0? < RE[W;] — o%. Hence
E[W;] must lie between the roots %R + %\/ R? — 4072 of this quadratic inequality. O

3. Efficient Concentration with Zero-Bias Couplings. To derive our initial efficient
concentration inequality, we tightly bound a non-uniform Kolmogorov distance between the
scaled deviation S,, and a Gaussian using zero-bias couplings. As in Chen, Goldstein and
Shao [21, Prop. 2.1], we say that S* has the zero-bias distribution for a mean-zero ran-
dom variable S with 02 := Var(S) < oo if the distribution of S* is absolutely continuous
with Lebesgue density p*(z) = E[ST(S > )]/ Var(S) or, equivalently, if o?E[f'(5*)] =
E[Sf(S)] for all absolutely continuous f with E[|.Sf(S)|] < co. Our primary result, proved
in Sec. 3.1, uses a close coupling of .S;, and its zero-biased counterpart to establish efficient
concentration.

THEOREM 1 (Efficient zero-bias tail bounds). Under Assump. (R, o), for all u>0 and
A€(0,1],

P(S,, > ou+ %) < @°(u) + sty [hu(W) —u®® () + (hu(u) = hu (M) Qu(Aow)],

where, for A, \F and all w < u,

®) hu<w>é<w+w>¢c<> and

o(w)
A 2u—an)] (xoan)} A Rov? +8
9) Qn(u):min(e_T e 20E+Ro(u—2an)/(BVm) (I)C(UU n)_i_o%? 6”5% n)7
: R?
forv2 £ o2+ 5-(R2—607%), 02 02(1— 135%). andﬁn:mln(ZRg,R@—Ro)(%—kgﬁ).

Moreover, under the same conditions,

P(S, > ou ‘%1 + %)

(10) < @(u) + ——=E [hy (M) = u®(w) + (hu(u) — hy (A1) Quir(Aou ).

Like the popular concentration inequalities due to Hoeffding and Bernstein (1), Thm. 1 is
valid and computable for any sample size n. However, unlike the Hoeffding and Bernstein
inequalities, Thm. 1 is also efficient and converges to the asymptotically exact Gaussian tail
bound at a O(1/4/n) rate. In fact, as our next corollary demonstrates, the suboptimality of
Thm. 1 also decays at a sub-Gaussian e~**) rate in u, faster than the more conservative
Berry-Esseen (4), non-uniform Berry-Esseen (5), and quantile coupling inequalities [13, 18,
19, 43, 44, 48].

COROLLARY 1 (Efficient sub-Gaussian tail bound). Under Assump. (R, o),

— 6,) + B2 o~ (=303

P(S,, > ou) < ¢(u) + P~

s

forall u> 6, éT
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PROOF. Fix any u > J,, introduce the shifted value v = = on, and instantiate the nota-
tion of Thm. 1. For each w > 0, we have Q,,(w) < e 2w=An)3/R? by (9) and

ay(w) & GFEI2W) ge(y)y < 20+wt) o) gt (2 +w)¢(w)677v2;’”2

e(w) vt /02 48/
by Abramowitz and Stegun [1, 7.1.13]. Invoking Thm. 1 with A\ = 1/+/2 therefore yields
P(S, > ou) — ®¢(v)
< st [(an(A) — (1= N)e@°(0))(1 ~ Qu(Aov)) + au(v) Qu(Aov)]

w— A )2 o 2
R@10)0() (- 0= L Rf'”+) REO0) (=2 | o= (rv=vEany
ov/n+Rv ov/n+Rv

IN

2R (240)0(v) VAT gR(24w) 22 (y-25,)2
S o /mtRv RS el A
The advertised result now follows from the relation
Pe(v) = + [ p(z)de < @°(u) + (u — v)p(v) = ®(u) + dnp(u — bp).

O]

While the bound in Thm. 1 is more complex than that in Cor. 1, it is straightforward to
compute® and significantly tighter in practice. In Secs. 5 and 6, we will use our efficient
concentration inequalities to develop efficient empirical Berry-Esseen bounds and efficient
confidence intervals for Monte Carlo integration.

3.1. Proof of Thm. 1: Efficient zero-bias tail bounds. The proof of Thm. 1 relies on four
auxiliary results. The first, proved in Sec. 3.2, provides a tail bound for a sum, 7},, of inde-
pendent random variables in terms of a sum, 7., of interpolated zero-biased variables.

THEOREM 2 (Unidentical zero-bias tail bound). Suppose independent (V;)i>1 satisfy
E[V;] =0, Var(V;) = 02, and sup support(V) —infsupport(V;) < R forall i i e N. For each
n € N, define the scaled sum T, = \F S | V; with variance parameter 5% = L =3

=1 z
and auxiliary variable

TAéTn-l-ﬁ(V]’n 1.) for V! £V +U(V; = V*) and P(I,, =1) = lU—H(1<z<n)

where each V* has the zero-bias distribution of V;, and U ~ Uniform([0, 1]), (I,)n>1, and
(V*)i>1 are mutually independent and independent of (V;)i>1. Then, for all w> 0 and \ €

1

[0,1],

P(T, > g+ 2b) < 2000 (u) + 52 (ha(u) = hu (M) P(T;, > Aou)
+ mhu(Au)

The second result, also proved in Sec. 3.2, provides an alternative tail bound when the
summands underlying 7}, are i.i.d.

%See https://github.com/lmackey/gauss_conc for our open-source Python implementation.


https://github.com/lmackey/gauss_conc

3.1 Proof of Thm. 1: Efficient zero-bias tail bounds 7

THEOREM 3 (Identical zero-bias tail bound). [Instantiate the notation and assumptions
of Thm. 2. If (V; )"Jrl are i.i.d. with o = o1 and Vi > — R’ almost surely, then

P(T,, > auVj;i +

o)

< AR )+ g () — e Qu)P(T > Aou )

R
+ cr\/n+1+Ruhu()\u)'

The third result bounds the moments of interpolated zero-biased variables.

LEMMA 2 (Properties of V). Instantiate the notation and assumptions of Thm. 2. For
any i € N, if |V;| < R almost surely, then sup support(V/) — inf support(V/) < R,

’ o2 ’2 5502
EV/]I<Z, EVA<%+8 var(V))> 2%,

\V/|<R, and |V{—E[V/]|<R;£min(3R+ 5\/R?—2%62 2R') almost surely.

PROOF. Fix any i € {1,...,n}, and suppose |V;| < R’ almost surely. We invoke the defi-
nition of V;, Lem. 2.1(iv) of Goldstein and Reinert [34], and our boundedness assumption in
turn to find that

EV/)| = 4EV;]| = 7 BV < £
The same invocations, coupled with the independence of V;, U, and V.*, imply
E[V;?] = E[UZE[V?] + E[(1 - U)2E[V;*?] = §0? + 5L E[Vi!] < Jo? + §R™.
The same upper bound holds for Var(V/) = E[Vi’z] — E[V/]2. Moreover, since E[V;]2
E[V2]E[V;!] by Cauchy-Schwarz and E[V;?]? < E[V;*] by Jensen’s inequality, we have

Var(V/) 2 507 + 52 E[Vi!) = 5=EVi'] = 307 + 1= BVi'] 2 307 + 107 = $507-

14407

Next, by Goldstein and Reinert [34, Lem. 2.1(ii)], the support of V;* is the closed convex hull
of the support of V;. Therefore, |V/| < R’ almost surely by the triangle inequality, and

supsupport(V;) — inf support(V;) = sup support(V;) — inf support(V;) < R.

The second almost sure bound on |V; — E[V/]| now follows from the triangle inequality,
while the first follows from Lem. 1 and our lower estimate for Var(V}). O

The fourth result bounds the tail probabilities of the interpolated zero-biased sum 7}, using
concentration inequalities for sums of potentially unidentically distributed random variables.

LEMMA 3 (T}, tail bound). Under the notation and assumptions of Lem. 2, for each
teR,

P(T, > 4+ f2) < A S ER(L(V/ BV + 5,V > 1)

12

22 Toom L B Rv? 4R R +R/2
< 71121 1 0'2 mln(e "2 e 2( n,ﬁrg\/;)’(bc(ﬁjﬂ) + % Vs, 55’”( ))
for v} 262+ (R” —602)/(9n) and 2 ; £ 62 — 8907 /(144n).
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PROOF. The first claim follows from the definition 7], = \%VI,W + ﬁ > 21, Vj and

the Lem. 2 bound, E[V/] < £ for each index 4. Since E[[V/ — E[V}][*] < R;Var(V}) and

E[|Vi]3] £ R'o? for each i € N the second follows by combining the upper and lower esti-
mates of Lem. 2 with the Hoeffding [38, Thm. 1], Bernstein [17, Cor. 2.11], and Berry-Esseen
[63, Thm. 1] tail bounds for unidentically distributed summands. O

Under Assump. (R, o), the first result of Thm. 1 now follows from a direct application of
Thm. 2 and Lem. 3 with i.i.d. V; = W; — E[W;], T,, = Sy, 0; = 0, and, by Lem. 1, R = R,,.
Analogously, under Assump. (R, o), the bound (10) follows from Thm. 3 and Lem. 3.

3.2. Proofs of Thms. 2 and 3: Unidentical and identical zero-bias tail bounds. The crux
of our argument, inspired by Ross [62, Thm. 3.27] and proved in Sec. A, shows that a zero-
biased version S* of a random variable S has tails close to those of a Gaussian whenever S*
and S have a close coupling.

THEOREM 4 (General zero-bias tail bounds). Suppose that S* has the zero-bias dis-
tribution for a random variable S with E[S] = 0 and Var(S) =1 and that S* — S <6 al-
most surely. For U ~ Uniform([0, 1]) independent of (S, S*), define the intermediate variable
S' & S* +U(S — S*). Then, for all u >0 and ) € [0, 1],

P(S* > u) — ®°(u) < 0 [hy(Au) + (hy(u) — hy(Aw))P(S" > Au) — uP(S" > u)],
for hy, defined in (8). If, in addition, S — S* < § almost surely,
P(S>u+0) < 5= 00(u) + 52 (hu(M) + (hu(u) — by (Au))P(S" > Au)).

Hence, to establish Thm. 2, it only remains to construct a suitable zero-bias coupling for
T,/&y. By Chen, Goldstein and Shao [21, Lem. 2.8], Ty = T,, + f(VI V7,) has the

zero-bias distribution for 7),. Therefore, by the zero-bias definition, 7}'/7,, has the zero-
bias distribution for T,,/5,,. Furthermore, by Chen, Goldstein and Shao [21, Sec. 2.3.3],
support(V;*) = [inf support(V;), sup support(V;)] for each ¢, so |T}s /6, — T}, /G| = |V} —
Vi|/(Gnyv/1) < R/(Gn+/n) almost surely. The advertised result thus follows from the second
claim of Thm. 4 applied with S =T,,/7,, S* = T*/Un, and 0 = R/(ap/n).

Now suppose (V)”Jrl are i.i.d. with with o = o1 and V; > — R’ almost surely. By Chen,
Goldstein and Shao [21, Lem. 2.8], T}y = Ty 41 + \/7(1/*L+1 Vi has the zero-bias

distribution for T,,11. By symmetry, /nT, + V;, L /¥l 1 and /nT, +V, 4
Vn+1T) . Since Vi AV, | > —R almost surely by Chen Goldstein and Shao [21
Sec. 2.3.3],

n+1)

P(T, >0uv\’ﬁ +f)<]P’(T —I—I(V+1/\Vn+1)>auv\75)

<P(Ty > ou) NP(T), > ou).
Thm. 3 now follows from the first result of Thm. 4 with S = T),,1/0, S* =T, /o, and

§=R/(ocvn +1).

4. Computational Refinement with Wasserstein Approximation. To obtain a prac-
tical refinement of our initial concentration inequality (Thm. 1), we next bound a second,
complementary distance to Gaussianity, the p-Wasserstein distance,

. 1
Wp(Sn, N(0,0%)) £ inf e (s, A0.07)) Ex,y )y (1 X = YP) ® for p>1,

where I'(S,,, N'(0,02)) is the set of all couplings between the law of S,, and the normal distri-
bution (0, 2). In Sec. 4.1, we explicitly bound each p-Wasserstein distance to Gaussianity
to obtain the following efficient and computable concentration inequalities.



9

THEOREM 5 (Efficient Wasserstein tail bound). Under Assump. (R, o), for any u >0
and auxiliary upper bounds Qy(u) and Q%(u) on P (S, > ou) and P( ) respec-
tively, we have

(11)  P(S,>ou) <min <infp€N7p€(071) B (pu) + W , Onlu )) and

P(]Sn| > ou) <min (infpeN,pe(o,l) 20¢(pu) + (fﬁgpup ; Qﬁ(@)

where wff(a) is a computable bound on LW, (S,,,N'(0,0?)) defined in Lem. 5 and satisfying
wh(o) < KR’U% for all p e {1} U [2,00) and a constant Kp , depending only on (R, o)

defined in Lem. 6.

REMARK 1 (Auxiliary tail bounds). We include the auxiliary bounds Q,(u) and Q% (u)
to emphasize that our efficient bounds can be paired with any valid tail bounds to simultane-
ously reap the large-sample benefits of the former and the small-sample benefits of the latter.
A convenient default choice is to set Q%(u) = 2Q,(u) and Qn(u) equal to the minimum
of the zero-bias (Thm. 1), Hoeffding (1), Bernstein (1), Berry-Esseen (4), and non-uniform
Berry-Esseen (5) bounds.

Thm. 5 immediately gives rise to the following looser but evidently efficient tail bounds.

COROLLARY 2 (Efficiency and relative error). Under the conditions of Thm. 5,

P(Sy > ou) < O (u—bun) + £ for 8,52 e Nlog ()]

wn f@((u))) forall w>dyy.

(12) < 9%(u) - (et

PROOF. Fix any u > d,,,. Since wﬁ(a) < KR,U% for all p € N by Thm. 5, we may

choose p = [log( ‘(F)ﬂ €Nand p=1—ewl(0)/u € (0,1) in the upper bound (11) to
deduce the first inequality. The log-concavity of ®° [4, Thm. 2] additionally implies that

(1 — bun) < P(u) exp(dun p(u)/P(u)).

The second inequality therefore follows from the Mills ratio bound g’c(&)) <u-+1[15].

O]

While the n dependence of Cor. 2 is no better than that established for Thm. 1, the u
dependence is improved, yielding tighter bounds for larger deviations u and a relative error
bound (12) in the spirit of classical Cramér-type inequalities. For practical applications, the
Wasserstein tail bound of Thm. 5 is substantially tighter than Cor. 2, while still admitting a
straightforward implementation.” Hence, for practical use, we recommend pairing the zero-
bias and Wasserstein inequalities as in Rem. 1 to simultaneously inherit the benefits of each
efficient bound.

In addition, to obtain efficient, computable quantile bounds, we recommend simply invert-
ing the tail bounds of Thm. 5 and Rem. 1. Our next result, also proved in Sec. 4.1, makes this
precise.

THEOREM 6 (Efficient Wasserstein quantile bound). Under Assump. (R, o
(0,1) and auxiliary deterministic bounds §, and G satisfying P(Sn > gn(R,0
P(|Sn| > ¢4(R,6,0)) < 8, we have

P(S, > qu(R,6,0)) < and P(|S,|> qg(R, 0,0)) <4,

), forany § €
,0)) < J and
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for wﬁ(a) as in Thm. 5 and

4(R,8,0) 2 min (infper pe0.1) Gt + 0@ (1= 0p), GnlR.6,0)),

owl (o)

QZ(R7 57 U) £ min <infp€N,p€(0,l) W + 0.@—1(1 - 627p)7 qg(R7 670)> :

REMARK 2 (Auxiliary quantile bounds).  Our efficient bounds can be paired with any de-
terministic quantile bounds Gy, (R, 6,0) and GL(R, 6, ) to inherit the benefits of each. Conve-
nient defaults are provided by numerically inverting the default auxiliary tail bounds On (u)
and Q% (u) of Rem. 1.

In the sequel, we build upon the quantile bounds of Thm. 6 and Rem. 2 to develop efficient
empirical Berry-Esseen bounds that require no prior knowledge of the variance parameter o.

4.1. Proof of Thms. 5 and 6. Thms. 5 and 6 will follow directly from three auxiliary
results. The first, proved in Sec. 4.2, shows that any upper bound on the Wasserstein distance
LW, (S,, N(0,0?)) also yields tail and quantile bounds for .S,,.

LEMMA 4 (Tail and quantile bounds from Wasserstein bounds). Under Assump. (R, o),
suppose that %Wp(Sn,/\/'(O, %)) < wp for some p > 1 and wy, > 0. Then, for any u > 0,

P(Sp > ou) < inf,e(o,1) {‘I’C(P“) + } and
P(|Sn| > ou) < inf e {2¢C(pu) + %}

Moreover, for all § € (0,1),
P(Sy, > inf ¢ (0,1 W +0® 1(1-6p)) <5 and

P(]S,| > infpe(o’l) W + J<I>_1(1 — %5p)) < 4.

Our second result, proved in Sec. B, establishes that w}f(a) is indeed an upper bound on
%Wp(Sn,N(O, a?)).

LEMMA 5 (Wasserstein upper bound).  Under Assump. (R,0), forp=1o0rp>2,

LW, (S,,N(0,0%)) < wff(a) and wf’”(a) < wf’“’2(a) forall k> %
where
R, ; _
0_7\/5 if p= 1,
(wg‘) wff(a) = inf, _ 2 wﬁ’”’l(a) if n+1>p>2,

n

VP—1(1+ 82y if p>n+l,
and, for each p € 2,n+ 1], k>0, and j € {1,2},
! if p>2

Ko T R R2 k.p,R k.p, R _R2
W i(o) 2 (121, (5 —sin= (1 - ) + @52 F) + @52 P] § VI

1 if p=2,

for RE Rja, Z ~ N(0,1), and (b55), (0507, (6507, and (0557 defined in (22), (23),
(25), and (26) respectively.
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Our final lemma, proved in Sec. 4.3, verifies the growth rate of wﬁ(a).

LEMMA 6 (Growth of wff(a)). Instantiate the notation of Lem. 5 and define R, 2 %.

Ifp=1orp>2, thenwﬁ(a)g%fgr

Kpo =1+ max (I/%\;, 3¢ /R2 — 0% + \/2max(R2 — 02,02)

(KRJ) + ( 3 + \/ilog(4e)]5bl—2/p(8ﬂ.)1/4 n Fe

16 V3e 22

=2
n B2-2/p ) Uﬂ1/4€19/300(€% —1) )

V2 V3

4.2. Proof of Lem. 4: Tail and quantile bounds from Wasserstein bounds. Fix any u > 0,
p€(0,1), p>1, and € > 0. By the definition of the Wasserstein distance, we can find G ~
N(0,0?) that respects ||S,, — G|l < € + W,(S, N (0,0%)). Hence, by applying the union
bound and Markov’s inequality in turn, we find that

P(S, >ou)=P(G+ S, — G >ou) <P(G > pou) + P(S,, — G > (1 — p)ou)

< ®°(pu) + ((IS’iG\) < &°(pu) + (W, (S N (0.0%))7

1—p)PoPur — (1—p)rorur
As this holds for arbitrary € > 0 we obtain

Wy (Sn N (0,02))P

]P(Sn > UU) S (I)C(PU) + (17;))1’0'1)’11,7)

The triangle inequality and identical reasoning yield

P(|S,| > ou) <P(|G| > pou) +P(|S, — G| > (1 — p)ou) < 2¢(L2%) 4 (EDV(ELNO.07)"

(I—p)rorur

Since € > 0 is arbitrary, we conclude that

c & P(SnvN(Ovaz))p
P(IS] > 1) < 20°(#1) + WS 0eN)",

Now, fix any § € (0,1) and write ¢5, = W + 0@ (1 — 6p). We apply the

union bound, Markov’s inequality, and the Wasserstein condition in turn to find
P(Sn > t(s?p) = P(Sn -G+G> td,p)

_ W, (S, N (0,02
<P(G> 0@ (1—0p)) + P(S, — G > Walb M)

6(1— S, N(0,02))+€
<ép+ (1=p)( (S( N(O(a2)) )+e)r

Since this holds for any € > 0, we deduce that
P(Sy, >t5,) <op+0(1—p)=0.
Moreover, since p was arbitrary and each ¢5 , is deterministic, we further have
P(Sy, > inf,c(0.1) ts,) < 6.
Finally, the triangle inequality and identical reasoning yield

2 WolEn NO0G*) 4 =11 — 36p).

P(|Sn| > inf ey t§,) <0 for )77
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4.3. Proof of Lem. 6: Growth of wl'(c). 1If p=1, then k() = R— dfp>n+1,

3

wlo)=vp—1(1+R,) < %(1—1-}20).
Now suppose p € [2,n + 1]. By Lem. 5, we have, for all x >

R(U) (M, L(p>2)+1(p=2))\/n

0’277,’

w

P P
(r—1)(p+2) onl/» v 2e)1/P
< P 2pp 0[ p;\/% (max(R2 — 1 1))1 1/p 4 RQ \/5(\/%) ]
Cw ;D 2 — —i Mn K
4 o Ug\}}»ﬁ e19/30071/4(¢3 t-DH(1-E)k _ ]log( —M, . 5
R 1+RU"p 1/4,19/300 /7 10 2 — L
N NV= T
where M, , = /1 — n; and C,, is a constant defined in (19) that satisfies Cj,j, <
R“2/P\/8% 1/;;@ by Batir [7, Thm. 1.5]. Since we additionally have § — sin™* (M, ) <
mﬁ by the mean value theorem, we can write
V1= e D(p>2)
\/(p—l)(p+2)o (\/"5 _1/e(2e)/P R wl/4e19/300(p_1) % B )
e T RV Rl Sy el by -y v s LR |
flog( )0 [ Re-2/py/3rtP p—1 c
\(/a V7 {R 3\}6/27 117619/300771/4[62 _ 1]}
o (max( 51 1))1_1/p n T [Rz \/5(2\;27)1/;7 7[_1/4619/300(2771) [6% _ 1]}
\Fl /e 2 Vn Ve 4pV/3
(p+2)0.f%372/p 1 7r1/4619/300(p_1) % - Rz p—13
+ nl—-1/p 2\/5 4p\/§ [6 1} +p\/ﬁC’ /1 Rzipc 1)
in terms of the reparameterlzatlon c2 m( 1). The advertised result now follows from the
choosing C' = R?, since k = 2 and (p + 2)(log(p) — 1) < n2/2 for p<n+1 and

p—/p+2nt/Pis decreasmg for (p + 2)(log(p) — 1) <n?/2.

5. Application: Efficient Empirical Berry-Esseen Bounds. The preceding sections as-
sumed that the variance parameter o> was a known quantity, but, in many applications, the
variance is unknown and can only be estimated from data. In this section, we leverage our ef-
ficient known-variance bounds to develop efficient quantile bounds that are valid even when
o is unknown. We refer to these constructions as empirical Berry-Esseen bounds as they
combine Gaussian approximation in the spirit of Berry-Esseen (4) with empirical variance
estimation.

We begin by showing how to convert generic known-variance quantile bounds into valid
empirical-variance quantile bounds. Our construction in Lem. 7 makes use of a generic con-
fidence interval that contains the unknown variance with high probability.

)

g

LEMMA 7 (Empirical quantile bounds). ~ Consider any nonnegative interval |62 a2 Otp.al

and any nonnegative quantile bounds G,, and § qn satisfying

P(0 ¢ [6low,a, Oupa)) <@, P(Sp > Gn(R,0,0)) <8, and P(|S,|>¢i(R,8,0)) <6
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whenever Sy, satisfies Assump. (R, o) and 6,a € (0,1). Then, under Assump. (R, o), we have,
for each confidence level 6 € (0,1) and a,, € (0,6),

P(S, > Gu(R,0,a,)) <6 for Gu(R,5,a)2 SUPG €[5,y a,5up.a] In (1,0 —a,0) and
P(Sul > G (R.0.02)) <6 for GL(R.0,0) £ suDseis,, o, AR —a,5).

PROOF. Fix any § >0 and a € (0,6). Under Assump. (R, o), the union bound implies
P(|S,| > ¢L(R,6,a)) <P(|Sy| > GH(R,6 — a,0)) + P(0 ¢ [Glow.a Tup.al) < 5.

The one-sided result is obtained identically using the event {.S;, > ¢, (R, —a,0)}. O

Finally, we show how to convert efficient known-variance bounds into efficient empirical
Berry-Esseen bounds through appropriate choice of the variance confidence interval and the
confidence parameter a,. For this purpose we use the sharp (and valid) empirical Bernstein
variance confidence intervals of Martinez-Taboada and Ramdas [47, Sec. 4.4] which depend
on the auxiliary functions

Up(z)2 —log(l—z)—2 and VUp(z)2e® —x—1
and the following readily-computed quantities for i € {1,...,n} and a € (0,1):

* the £ E[W;] estimates: fi; = £ L Zl ! W,
« the o? estimates: 67 2 & 41 Z (W — 1),

o the m? £ Var((W; — ) ) estimates: 73 ; = B4l Z LW — )2 — 53)%,
2R4log(2/a)

* the upper estimate weights: )\i’a = it

1
A3,

. oy : .\, A [2R?log((2+2log(n))/a)
the auxiliary weights: \; , = \/ 53 Tog(1+3) A2,
)\ . 10g(2+210g(n))+2 i—1 \I’p( ;. a)CT /R2 < 1
. . . alog(n) —
* the lower estimate weights: \, 2 { %15t PP
0 otherwise,

* the o upper estimate:

13 57 o FI0B(R/0) + T MW - )+ Wp(ha) (Wi — ) = 6%/ R?
up,a Zn )\ ’
i=1"\,a

* and the o2 lower estimate:

—R?log(2/a) + 31 N, (Wi — ui)* = U (N ) (Wi — j1)? — 67)*/ R?
Z?:l Ag,a
THEOREM 7 (Efficient empirical Berry-Esseen bounds). Instantiate Assump. (R, o), and

consider any bounds (G, %) satisfying Gn(R, 0n,00) — c® (1 — §) and §A(R, 6, 00) —
o®~ (1 — ) whenever (01, 6,,) — (0,0). If a, — 0 and log( 2 0, then

(14) Jlow a =

a.s

Gn(R,6,a,) = SUPse(s 1Gn (R0 —an,0) = c®1(1-6) and

Olow,an y0up,an

GU(R,0 —an,5) 3 0 1(1-9)

qu(R, 9, CLn) = SUDge[s 2

Glow,ap Fup,an]

when 0yp q, and Oloy q, are chosen as in (13) and (14).
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PROOF. The strong law of large numbers [24, Thm. 2.4.1] and Prop. C.1 of [47] imply that
fin 3 1, 62 % 0, and 3 ,, “3 m3. Thus, with probability 1, there exists a finite integer
Nin for which 67 > 42/2 and \; ., <2 whenever N,, £ Ny, V log(72+2i°g(")) <i<n.

Defining d; £ \/ 2h2ilog((2+2log(n))/an) for aqch 4 < n, we can therefore write

log(i+1)
1yhi-lye (i— 1>ANn 2 log z+1) \/2R?log((2+21og(n)) /an)
d; ZJ 1 Jan - E )‘J,an + Z] =N, +1 G35log(j+1)
4N, \/log(i+1) 1+log i—1) )\/2R2 log((242log(n))/ax)log(i+1) and
- \/2R2ilog((2+210g(n))/an) ilog(2)
1 Z _ Z(z 1)/\N'n, s + log z+1) Z 1 Q\f 2\/N,L+1
=1 A s =N o oaG D © BV

Since ¥ p(x) < 2?2 for all x € [0, 2], we have 22;11 Up(Nja,) ES ZZ ! )\2 _for each i and

therefore \; , = Aj . < 3 wheneveri > N/, £

I A an log(n)
1+log(n) "

Similarly, Assump. (R, o) and the inequalities 0 < ¥ g (z) < 22 for all x € [0, 2] imply

cr.o Ny log(n+ 1)3 for some constant ¢p

depending only on (R,o) and an,

(15)  0< S Wp(Aig, ) Wi =00 2057 in(R1A2

L) Nia, (Wi—f1:)*—63)* ).

2R?

’LCL’

We will now show that 6, 4, % o and 610y A . by considering two cases.

Case 1: m4 > 0. Since M — 0, with probability 1 a finite integer Np,i, exists for

which \; 4, < % whenever Nmm < i < n. Therefore, since d,, = \/ 2R*nlog(2/a,) — oo,

log(an)/n — 0, and each \; 4, < 3, we have
1 n o1 NANmin 1\ 1 as. 1
d, Zi:l )\Z7an — d, Zz 1 )\'L N + n Zi:Nmin-‘rl as — T and
1 n 2 _ 1 n/\Nmm 2 2R* log 2/a7, a.S.
T" 2221 Ai7a” - dn ZT’ 1 AZ ;0n + T n Zl Nrn]n+1 — O'

The almost sure boundedness, (W; — ;)2 € [0, R] for all i, further implies that

dln >t e, (Wi — 13)?

= LS AN N (Wi — )2+ L5 1 W, — Wi—pu)*y a8 o>
n Z i an( i — i)+ n Zl:N;11ixl+1|:(m4 ; m4)( ,u,z) + — ] 3z

These results, together with the U g estimates (15) and the assumption M — 0, ensure

a.s. L. s (W-—ﬂ,-)z 1 R210g(2/a )+R4 1 A2
2 4, 2ei=1"Viran (Wi i 2 n i=1i,a, @.S.
|Uup an, — 0 | < ‘ {% T Aian | + 4 dl i /\7 . — 0.
Identical reasoning with (N/ . .al) substltuted for (Nymin, ) ensures that Gloy 4, 5 0.
2
Case 2: my = 0. Since (W — u)? 2 0, we have 62 — 02 = ,11(}2 0?) =0,

(W = in)? = 02| = (1 = f1n)? + 2(Wn — 1) (1 = fin)| < (1= fin)* + 2R — 5] =3 0,

and therefore ((W;, — jin)? — 62)2 “3 0. Moreover, since m?l <s R* for each i, we have
a.s. ]_
S X, = o (yv/1610g(2/an) /(R n) A §) = \/16nlog(2/ay)/R* A % — .

. log(an
Therefore, our assumption %

theorem [37, Thm. 2] imply that

" Aiay (Wi—fi)? R210g(2/an)+3", Aivay, (Wi—ji)2—62)2/(2R?) a.s.
2 o — 0% < | Diman i _ 2y | ROIogCen) 7 o (Wi =022/ GI) 0.

— 0, the U estimates (15), and the Silverman-Toeplitz

|6

i=1"Vi,an i=1"\,an
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. . . ~ a.s.
Parallel reasoning implies that 0'120W o 7 o2 as

’ N’ . )2 ’ N
D i1 Ny = 2 Lolog2/a) ALy = \/16(n Noso )1 08(2/02) p Main 5 00,

i=1",a, = Rin Rin

Since Oyp,qe, and Fow 4, both converge almost surely to o, any

Gn1 € argmax  (¢n(R,0—a,,6) and G,2€  argmax G%(R,6 — an,5).
G€[B1ow.an Fup,an] G€(G1ow,an Fup.an]

must converge almost surely to ¢ as well. Finally, since a,, — 0,
44(R,6,an) = GA(R,0 — ap,6n2) “5 —0®H(3) and §,(R,d,a,) “S —a@ ().
O]

REMARK 3 (Default settings). As convenient default settings, one can choose a,, =

%Q*I(I — 0) for a one-sided quantile bound and a,, = %q)*lﬂ — 8) for a two-sided

quantile bound and take (Gy,,G2) to be the efficient quantile bounds (q,,q2) of Thm. 6 with
the default auxiliary bounds of Rem. 2.

6. Numerical Evaluation. We now turn to a numerical evaluation of our efficient
bounds. Python code implementing our bounds and reproducing all plots can be found at

https://github.com/Imackey/gauss_conc/.

6.1. Efficient quantile bounds. Fig. 1 compares the efficient two-sided quantile bound

of Thm. 6 and Rem. 2 with the Bernstein quantile bound P(|S,| > 31?/“5 log(2/9) +

o+/2log(2/4)) <0 [17, Thm. 2.10] and the two-sided quantile bounds obtained by inverting
the Hoeffding (1) and Bentkus (7) tail bounds. As anticipated, the efficient bound converges
to the optimal asymptotic size as n increases, while the inefficient Bernstein, Hoeffding, and
Bentkus bounds remain bounded away from the optimum for all n.

Fig. 2 compares the efficient quantile bound of Thm. 6 and Rem. 2 to the two-sided quan-
tile bounds obtained by inverting the Feller-Cramér (6), Berry-Esseen (BE) (4), and non-
uniform BE (5) tail bounds with Cg , = min(.3328(% + .429), .33554(% + .415)) [64]
and Cp o = min(17.36%, 15.70% +0.646) [65, p. 54].> The new efficient bound provides
tighter estimates for higher confidence levels 1 — 9, due to the improved underlying tail decay.

6.2. Application: Efficient empirical Berry-Esseen bounds. Fig. 3 compares the efficient
empirical Berry-Esseen (EBE) bound of Thm. 7 and Rem. 3 with the Hoeffding quantile
bound, P(S,, > R+/log(1/4)/2) < §; the empirical Bernstein quantile bound [49, Thm. 4]
commonly deployed in reinforcement learning [3, 50],

]P(Sn > 5, [log(2/0) -2 + gRlog@/é)r@) <§ for 62ELIS (W= W%

an empirical Bentkus quantile bound based on Kuchibhotla and Zheng [45, (33)]; and the

efficient I,, 3 quantile bound of Romano and Wolf [61],* with its free parameter (3, set to

match our default value, a, = =@~ (1 - §).

As advertised, the efficient EBE bound converges to the optimal asymptotic size as n
increases, while the empirical Bernstein, empirical Bentkus, and Hoeffding bounds remain
bounded away from the optimum for all n. Moreover, the efficient EBE bound provides a
consistently tighter estimate than the Romano-Wolf bound.

3The BE, non-uniform BE, and Feller-Cramér bounds can be infinite, but we constrain them to be no larger
than the always-valid Hoeffding bound.

“The Romano-Wolf bound can be infinite, but we constrain it to be no larger than the Hoeffding 1 — (§ — 8n)
quantile bound.
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6 NUMERICAL EVALUATION
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Fig 1: Quantile bounds for |.S,,| with fixed boundedness parameter R = 1 and varying sam-
ple size n and variance o2. Unlike the inefficient Hoeffding, Bernstein, and Bentkus bounds,
the efficient quantile bound of Thm. 6 and Rem. 2 converges to the optimal asymptotic size
as n increases.

6.3. Application: Monte Carlo Confidence Intervals for Numerical Integration. A com-
mon use of concentration inequalities is in numerical integration, to provide a confidence
interval for the expectation E(f(X1)) of a function f using an i.i.d. sample (f(X;))" ;. Re-
cently, Jain et al. [40] employed the state-of-the-art predictable plug-in empirical Bernstein
(PrP1-EB) and hedged capital betting (HCB) intervals of Waudby-Smith and Ramdas [69] for
this purpose, as they provide some of the narrowest confidence intervals known for bounded
observations. However, the PrPl-EB intervals are also provably inefficient, as they asymptot-
ically match the suboptimal width of Bernstein’s inequality rather than the optimal width of
the CLT [69, Sec. E.3]. Fig. 4 compares the PrPlI-EB and HCB intervals with the efficient
empirical Berry-Esseen (EBE) interval of Thm. 7 and Rem. 3 for each of six benchmark test
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Fig 2: Efficient quantile bounds for |S,,| with fixed boundedness parameter R = 1 and
varying sample size n and variance o2. The efficient quantile bound of Thm. 6 and Rem. 2
provides tighter estimates than the Berry-Esseen, non-uniform Berry-Esseen, and Feller-
Cramér bounds for higher confidence levels 1 — 4.

functions studied by Jain et al. [40]. In each case, we find that the PrPl1-EB and HCB intervals
remain bounded away from the optimal asymptotic width, while the EBE interval converges
to the optimum, resulting in the tightest bounds for larger sample sizes.

7. Discussion and Related Work. In this work, we have derived new computable tail
and quantile bounds for the scaled deviations S,, = /n(W,, — E(W7)) with asymptotically
optimal size, finite-sample validity, and sub-Gaussian decay. These bounds enable the con-
struction of efficient confidence intervals with correct coverage for any sample size. Our
concentration inequalities arise from new computable bounds on a non-uniform Kolmogorov

distance and the p-Wasserstein distances to a Gaussian.
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Fig 3: Empirical quantile bounds for S,, with fixed boundedness parameter R = 1 and
varying sample size n and empirical variance 62. The efficient empirical Berry-Esseen (EBE)
bound of Thm. 7 and Rem. 3 converges to the optimal asymptotic size as n increases, while
the empirical Bernstein, empirical Bentkus, and Hoeffding bounds remain bounded away
from the optimum for all n. In addition, the efficient EBE bound provides tighter estimates
than the efficient I, 3 interval of Romano and Wolf [61].

The notion of efficient confidence intervals for the mean was introduced by Romano and
Wolf [61]. In their Thm. 2.1, Romano and Wolf showed that efficient—that is, asymptoti-
cally minimal-length when scaled by y/n—confidence intervals must converge to the width
of the asymptotic Gaussian intervals implied by the CLT (2). Moreover, Sec. 3 of Romano
and Wolf surveys a number of procedures for constructing confidence intervals that are either
finite-sample invalid (including the bootstrap [27] and methods based on Edgeworth expan-
sions [36]) or inefficient (including the methods of Anderson [2] and Gasko [33]). Romano
and Wolf conclude by developing an efficient valid confidence interval for the mean of vari-
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Fig 4: Widths of Monte Carlo confidence intervals for E( f (X)) relative to the empiri-
cal asymptotic width 6®~1(1 — %)% with % = 2 3% | (W; — W,,)? and confidence level
1 — 6 =0.95. We display relative widths averaged across 10 independent replicates of the
experiment. The efficient empirical Berry-Esseen intervals of Thm. 7 and Rem. 3 converge to
the optimal asymptotic size as n increases, while the predictable plug-in empirical Bernstein

and hedged capital betting bounds remain bounded away from the optimum for all n.

ables supported on [0, 1] but report that it is “unfortunately, much too wide for a reasonable
sample.” Our new efficient bounds are developed in an entirely different manner, and, as we
demonstrate in Sec. 6, improve upon the Romano-Wolf interval and the most commonly used
empirical concentration inequalities.

Our zero-bias coupling arguments generalize the uniform, u-independent bounds of Chen,
Goldstein and Shao [21] and Ross [62] to derive tighter non-uniform bounds with sub-



20 A Proof of Thm. 4: General zero-bias tail bounds

Gaussian decay. Our Wasserstein-bounding arguments build on the pioneering work of Bonis
[16] who derived Wasserstein convergence rates for the CLT with inexplicit constants. Our
new arguments lead to tighter estimates of the distance to Gaussianity and explicit, practical
constants.

Our results also suggest simple strategies for making any concentration inequality or con-
fidence region efficient. For efficient concentration, one can simply take the minimum of any
existing tail bound and Thm. 1 or Thm. 5 to simultaneously reap the small-sample benefits of
the former and the large-sample benefits of the latter. For efficient confidence, one can divide
the total confidence budget between an existing region and the efficient region of Thm. 7
and then intersect the two regions. The result will remain efficient if the budget allocated
to the auxiliary region vanishes as n grows. These strategies are particularly relevant given
the recent renewed interest in deriving tighter concentration inequalities for bounded random
variables [see, e.g., 42, 53, 69].

In Sec. 6.3, we demonstrated the usefulness of our bounds by constructing tighter confi-
dence intervals for Monte Carlo integration. A second natural application is to the construc-
tion of risk-controlling prediction sets, that is, sets of predicted outcomes that are guaranteed
to have high expected utility with high probability according to a given quality measure [6].
Bates et al. [6] reduce the problem of risk control to constructing confidence intervals for
the unknown expected utility and employ the concentration inequalities of Hoeffding [38],
Bentkus [10], Maurer and Pontil [49], and Waudby-Smith and Ramdas [69] to form their pre-
diction sets. A tighter confidence interval based on efficient concentration would yield more
informative and hence more actionable prediction sets.

Finally, while our work has focused on concentration of the sample mean assuming bound-
edness, non-zero variance, and a sampling distribution independent of the sample size, we
conjecture that our analyses can be adapted to (1) derive efficient, computable concentra-
tion inequalities for more general classes of asymptotically normal statistics or for self-
normalized statistics, in the spirit of Jing, Shao and Wang [41] and Pinelis [57]; (2) take
advantage of other favorable properties of the W distribution like symmetry or a vanishing
third moment; and (3) account for the non-Gaussian limits that arise when the distribution
underlying (W;)7, is allowed to vary with the sample size n. We leave these important
challenges for future work.
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APPENDIX A: Proof of Thm. 4: General zero-bias tail bounds

Fix any u € R. Our proof structure, based on Stein’s method, mimics that of Ross [62,
Thm. 3.27] but employs u-dependent bounds in place of the u-independent bounds invoked
by Ross.
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Solving the Stein equation. First we define the Stein equation [66)
Fw) = wfu(w) = I(w < u) — B(u).
By Chen, Goldstein and Shao [21, Lem. 2.2], the absolutely continuous function
(16) fulw) = V2 exp(L) P (w A u) B¢ (w V u)
solves the Stein equation, and we can therefore write
P(S* < ) — ®(u) = E[fL(S*) — $*fu(S)] = EIS£u(S) — S fu(5")],

where the final equality uses the definition of the zero-biased distribution. Negating both
sides, we obtain

P(S* > u) — ®°(u) = E[S* f4(S*) — Sfu(S)].

Bounding the Stein solution. Now let g, (w) = w f,,(w). By Chen, Goldstein and Shao [21,
Eq. (2.81)], the function

0 oy e (VIR ) explu? 2)0w) +0/vET) i<
“ V21 ®(u) (1 + w?) exp(w?/2)¢(w) — w/v/27) ifw>u
= w(®(u) — L(w > u)) + (1 + w?) fu(w)
= w([(w < u)®¢(u) — [(w > u)®(u)) + (1 + w?) fu(w)

matches the derivative of g, (w) whenever w # u. Since the absolute continuity of f,, implies
that g,, is absolutely continuous on compact intervals, the fundamental theorem of calculus
yields

E[g,(S*) — L[] ho(S* + 2(S — §%))(S* — S)da] = E[hu(S')(S* — S)].

Our next result, proved in Sec. A.1 provides a suitable u-dependent bound on £,,.

LEMMA A.1 (Growth of h,). Foranyu>0,\€[0,1], and w € R,
0 < hy(w) < hy(Au) + (hy(u) — hy(Aw)[(w > Au) — ul(w > u).
for hy defined in (17).
S* tail bound. Fix any A € [0,1]. Lem. A.1, our almost sure assumption S* — S < §, and
the definition of S together imply that
P(S* > u) — ®(u) < SE[hy(S")]
(18) <0 [hy(Au) + (hy(u) — hy(Aw))P(S" > Au) — uP(S" > u)].
From S tails to S* tails. When S — S* < almost surely, we additionally have
S—8"<(S=5*)(1-U)<Jd and therefore
P(S>u+0)=P(S*AS" >u+0+S*ANS —5)
<P(S*AS >u) <P(S*>u) AP(S" > u).
Combining this inequality with our S* tail bound (18) yields
P(S >u+8) < ®(u) + 0 [hy(Au) + (hy(u) — hy(Auw))P(S" > Au) — uP(S > u+6)].

Rearranging the terms of this expression yields the final advertised result.
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A.1. Proof of Lem. A.1: Growth of h,. Our proof relies on the following ® property.
LEMMA A.2 (Growth of ®¢). The following function is decreasing for w > 0:
b(w) £ V27 (1 +w?) exp(w?/2)®¢(w) — w.
PROOF. Fix any w > 0. The derivative of b takes the form
V(w) = &¢(w) (3w + w?) /p(w) — (2 + w?).

Since the Mills ratio q;c(%) < 3fv++w;3 [46, Thm. 2.1], b/ (w) is negative and b is decreasing. []

Fix any u > 0, A € [0,1], and w € R. We divide our proof into cases based on w.

Lower bound, w # u:. Since g, is differentiable for w # v and increasing by Chen, Gold-
stein and Shao [21, Lem. 2.3], h,(w) = g.,(w) > 0.

Lower bound, w=u:. We have hy(u) = limp, hy(v) > 0.

Upper bound, w > u:. Since b is decreasing (Lem. A.2), the definition of f, (16) implies
that

(14 w?) fu(w)I(w > u) = V27 (1 + w?) exp(w? /2)@¢(w) @ (u)[(w > u)
< (b(u) + w)®(u)l(w > u).
Hence,
Ry (w)I(w > u) = (1 4+ w?) fu (w)I(w > u) — w®(u)[(w > u) < b(u)®(u)l(w > u).

Upper bound, \u > w > 0:. Since g, is increasing [21, Lem. 2.3], f, is increasing for
w < u, and Au fy, (Au) + ©¢(u) is nonnegative, we have

ho(w)I(Au > w > 0) = (fu(w) + w(w fu(w) + 2(u)))[(Au > w > 0)
< [ulhat) 4w (hr) + B > 0 > 0)
< [fulhan) + v () + <I>C<u>>] (> w>0)
= hy(Au)I(Au > w > 0) = hy(Au) (I(w > 0) — I(w > Auw)).

Upper bound, w < 0:. Since w < 0 < u, we use the definition of f,, (16), the fact that b is
decreasing (Lem. A.2), and the nonnegativity of ®° to derive

(1+w?) fu(w)I(w < 0) = v/27 exp(w?/2)2*(Jw]) 2 (u)I(w < 0)
— (b(Jw]) + [w]) @ (w)I(w < 0)
< (b(0) + |w])®°(u)I(w < 0).
Since A\u > 0 by assumption, our prior derivation implies h, (Au) > h,(0) and hence,
hu(w)I(w < 0) = ((b(0) + |w]) — fw])(u)I(w <0)
=0(0)®°(u)I(w < 0) = /TP (u)L(w < 0)
= hy(0)[(w < 0) < hy(Au)I(w < 0).
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Upper bound, v > w > Au:. Since u,w, f,(u), and ®¢(u) are nonnegative, g, is increasing
[21, Lem. 2.3], and u > w, we have
ho(w)I(u > w > Au) = (fu(w) + w(w fu(w) + (u)))I(u > w > Au)
< (fulw) + w(ufi(u) + ©°(w)I(u > w > Au)
< (fulw) + u(uf(u) + ©°(w)I(u > w > Au)
= hy(u)(u > w > Au) = hy () (I(w > Au) — L(w > w)).
Complete upper bound:. Taken together, our upper bounds yield
ho(w) < b(w)®(uw)l(w > uw) + hy(w)(I(w > Au) — I(w > u))
+ hy (M) (I(w > 0) — I(w > Au)) + hy (Auw)I(w < 0)
< (b(u)®(u) — hy(w)[(w > u) + (hy(uw) — hy(Aw))I(w > Au) + hy (M)
= (hy(u) — hy(Au))L(w > Au) 4+ hy(Au) — ul(w > u).

APPENDIX B: Proof of Lem. 5: Wasserstein upper bound

We begin by defining some convenient shorthand notation. For each p > 1 and ¢ € [0, 1],
we define ||Binomial(n, q)||, = ||V, for V ~ Binomial(n, ¢) and make use of the constants

E;éRg/azéfer%\/RQfll,

& VeypF2(2e)/? « A (pE2)n'/r i A gx P2
A, & pﬂ , An,p_pwz , Anp 2 Ay JRTYP,

Unp2 Ay+RA,,,  Un,p2+V2A,+2/PRA,,, and

A, ,R2\VP 1+ \/24,
\/5(21—\(%))1/[) R1_2/p lf~p<4
v Pl-2/p A %\/HBinomial(n, 2l ifp>4.

We will focus principally on establishing the bound 1W,(S,,NV(0,0?)) < wf (o) and

derive the secondary bound wﬁ’”’l(a) < wﬁ’“’2(0) through a series of asides demarcated by
a vertical bar on the left-hand side. For the case of p = 1, we invoke Chen, Goldstein and
Shao [21, Cor. 4.2] and Lem. 1 in turn to find that

IWL(Sn. N (0,0%)) < FIEEIAIE < B — (o).

When p > n + 1 the triangle inequality and Lems. C.1 and C.2 imply that
oW, (Sn, N(0,6%) < |1 Zlp + |1Sn/olly < VP =1+ +/p— 1R, /0.

Now fix any p € [2,n + 1], define S, £ S,,/0, and let Z ~ N(0,1) be independent of
(W;):>1. For ease of notation, we will write W, (S,,, Z) in place of W, (S, N (0,1)) and use
(Xi)i>1 to represent the centered and rescaled random variables

(19) Chp £ min

A Wi—E[W)]
X; = o
which satisfy S,, = > i<n Xis Var(X1) = 1 and || X1l < R\;/\/ﬁ by Lem. 1. Hence, for
all k > 0, the moments of X¥ can be upper bounded as

1 1 RF
1xEl, = (B [#) 77 < (152 °EX) Y <



24 B Proof of Lem. 5: Wasserstein upper bound

Consider a random index I ~ Uniform({1,...,n}) and a sequence (X/);>1 £ (Xi)i>1

with (I, (X])i>1, (X;)i>1) mutually independent. Define an exchangeable copy of S,
S & Sn + (X7 — X1),
and the exchangeable pair difference,
Y£5, -5,
Let hy(z) 2 e”'/2 g—;e*ﬁ/ 2 designate the k-th Hermite polynomial and define Hj, £ hy.(Z2).

Finally, fix any x > %2 and define
Mn,n é \/ - %i

A slight modification of Bonis [16 Thm. 3] shows that

2log(1-

(20) Wp(Sn, Z) < fo 2 " || TSy — A Zpdt

+ ff% log(1—12) e !nE[Y | gn} - gn”p dt

o0 67% H1 pll N o
%% g2y LR I BEY? | 5] — 1l dt

kt H 1lp
+ Yo S S og0- ) mvei IEN S | Sa)lp dt

2 (ao) + (a1) + (az) + (a3).

Bounding (ap). We first bound (ag). To this end, fix € > 0 and select G ~ N (0,1)
independent from Z such that ||S — G|lp <Wp(Sn, Z) + €. By the triangle inequality,

tlog(1-22) _ —
(a0) < Jo =5 IS, = Gl + TG — A= 2 pdt
(@) Tlog(1-£2)
(1= Mo )18 = Gllp + 121, fy =) e a

<(1—M,,) (W (S*n, Z)+€) + | Z||p(% —sin™H (M)

where (a) follows as e !G — \/1 —= Z = 7= i% Z. Since € > 0 was arbitrary, we have

(ap) < (1 - Mn,ﬂ)Wp(Sna Z) + ||Z||p(g - Sinil(Mn,ﬂ))-
In addition, if p = 2, by independence of Z and S,, we obtain that

1 RZ —at
(a0) < fo =BT Je 2|8l + 15w | Z Bt

771 2 . —
< 80 we) Wdt< — sin™H (M)

These results together with the bound (20) yield the inequality
1

WS 2) < (120 (§ —sin (/1= ) + () + () + ()] { N

Bounding (al) We will next bound (al) of (20) Note that, since I ~ Uniform({1,...,n}),
and hence ||nE[Y | S,] — Sn||p = 0. Therefore (al) =0.



25

Bounding (a2). We now turn to bounding (az) of (20). By Jensen’s inequality,
IBEY? [ Sn] = Ulp < [1(3 25, BIXF) + X7) = Llp = 31l i X7 = llp-

a.s. —~ D2 _
Moreover, by Lem. 1, |[X? — 1/n| < max(1R2 — 1 1) First suppose = > %. Since
E[X? =1/n, we know || X? — 1/n||, is maximized when %X% ~ Bemoulli(%). Hence

o o

X2 = 1/ml, < 4[] P (B2 - 1t 4 1),

Now suppose ]/%v?, — 1> 1. We instead obtain that
1X2 = 1/nll, < (157 = 1/n]5 2| X7 = 1/n3)1/7 < (B2~ 1) 77,

Therefore using the Marcinkiewicz-Zygmund inequality (Lem. C.2) and the Rosenthal in-
equality (Lem. C.5) we find that

- VP (RS — 1)1
I12E[Y?]S,) — 1], < min{ —
’ < o (R2—1)'=1/p A% 41/ RZ— 14,

for ]/%v?, > 2 and

5111/
1|, < ~L- mi Vp_l[Rj}zl} p((R —1)P 1+1)1/p
_ﬁmln = ——
Lo [Régl] /p((R2 P 41) P45 4\ R2 - 14,

for },22 < 2. Alternatively, by Esseen [29, Eq. (2.8)] for p < 4 and Cox and Kemperman [22,
Thm. 2.6] for p > 4, we have the symmetrized estimate

1 icn X7 = Ul <27VPI 30 X7 = (XD lp-

Since the random variables (X? — (X )2)i>1 are symmetric, with

IEY? | Sn] ~

2(p—2)

)

E[(X? - (X)) < Z(R;—1) and E[(XZ— (X])?)] < 2(R3 - )R,

an improvement on the Marcinkiewicz-Zygmund inequality for symmetric random variables
(Lem. C.3) implies

\[21/p< (251) >1/p 2(1-2/p) R?y 1)1/ ifp>2

130 X2 — (XD, < f
va(

P

R— ||Binomial(n, (i =) )||p ifp>4.

Hence we finally obtain that

@D [|3EY? [ Sa] =1l
D2 1-1 (21 R2—1]"/P
VP T (7 — 1)1, [ o1 )

max ((;3\5 — 1)t [%] 1/p> A%,/ }Afg — 14,

( )1/p~2 (1-2/p) , == R2 )1/p

/ 2
\f2 1/p g \/HBmomlal

if p > 4.

7T
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This implies that
25 g1 m2) BB | Sn] = 1l dt

<Dy, [T Vi

t
110g1 R) /1 o2t np 0 V1—t2

2
- Mn,HDnyp

The definition (21) also implies the further upper bound

Dy < ghe(max(RE = 1,1)7VPAr  + /RS~ 14,

Therefore since H1(Z) = Z we obtain

(22) (az) < (37 By 2 ),D, pM7

Since || Z||, < /p — 1 by Lem. C.1, we have the further upper bound

@3) 5P < (557 2 [(max(RE - 1,1)) - Vr Ay, + /B2 - 14,

Bounding (a3). Finally, we turn to bounding (as3) of (20). Since
nE[Y*| X1, X = 3 BI(Xs — X)F | X3, X)) forall k>1,
by Jensen’s inequality, we have
(24) nfEY* S|, <[] i< (X = XD, forall k>1.

We will derive different bounds for odd and even k, so we begin by writing

(1) ST ko [ rogr 12 myresm B | Sallpd

k is o
—kt H 1lp
+ 3 ket [ o) iy BN | Salllpdt 2 (as) + (a2)
1S even

Let k£ > 3 be an odd integer. The random variables ((X; — X{)k),-zl are symmetric and
therefore have a mean of zero. Moreover, if we define W/ £ o/n X/ + E[W;], then

1(Xs = X"l = W = Wil

na’“

[ max (Wi, W))E=2/P|W; — W] P/7 ||,

1
kak

R/ [W; — W2/p|, < 22T

> \Fk 2/p Nk

Similarly, we also have

pk—1
(X = XM < Y2

Therefore, Lems. C.2, C.3, and C.5 together imply H D icn(Xi— X))k Hp < %Cnm. Com-
bining this with the inequality (24) we obtain

e | Hiallp k
(CL371) Zkkligddf_llog )k!mkflnHE[Y ’S’ﬂ]det

qll—é zk—1Rk— 1||H I
< Z >3 Cn f ne k—1|lp d$
— B P JO k=1 ,—k—1
k is odd klv1 vn
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- &2
RP*||Holl, V170 22" d

Zk>1 P nE(2k+1)! JO A—a2)r &

R2k H 1 k_l
22k>1 n,p nznk_ff”pr *(** ) 2 dy,

where (a) is obtained by noting that all odd numbers k£ can be written as 2m + 1 for an
m € N, and (b) by the change of variables y = n(1 — z?).
To further upper bound the right-hand side, we will invoke the Hermite polynomial mo-

ment bound (Lem. C.1) [|[Hp—1||, <+/p— 1""'\/k — 11 and use two applications of Stirling’s
approximation [60] to conclude that, for all m € N\ {0},

v (2m)! > \/\/27r(2m) -(2m/e)?m . exp(m) > e~ 19/3009mm [ (mm)1/4,

These estimates imply that, for all K, € N,

1

C, R2*||H. k—=
(az1) < T’”{ D 1<h<K,—1 n(zllkﬁllp fR *(* — ) tdy

92—k R2k 1)kj1/4 k—1
RO, e i 55— ) )

(a‘) C R2k H2k kfl
< Tm{ZlngK -1 n(2“k+1Hp Ji2 (G —%)" *dy

9/300..1/4 K3* 27k R2* (p—1)* k—3
+e!9/307 1/ TR Zk>K nk:'p fR *(’ —5) rdy

(®) c,

2 || Hal K1/42 F(p—1)ke 19/300,.1/4 k1
s =5 { 2<k<K,—1 <(2k+1)p - R, +1H fR2 7 —%) tdy

[ Lp-nR(2-1) —1] dy}

1/4
19/300_1/4_ Kp"™*
t+e ™GRO fRZ

where (a) follows from the fact that x — (21 +1) is decreasing and (b) from the fact that

ARG g Lyl Rt (1 gk s (G2t (1 1y

7l
Since
D A<k<K—-1n (g}iﬁl)p K42 k((gKi)]; :/300 1/4) fl?2 7(7 B 7)1@—; dy
+ 19/3001/4 Ilgﬁ fR2 [ Lp-1)R ( )_1] dy}

is decreasing in K, its largest value is attained for K = 1 < K,. Moreover, for all x <
1 ne\k—1 1
V 1- nn’ we have (1—ax2)* = (ﬁ) 1—x2
||H2kH B K1/42—k(p_1)k619/300ﬂ_1/4 - k—*
{Zl<kz<K 1 ((2k+1)p TRR, DM fﬂz =) Fdy

+619/3007r1/4 K fgz V= [62(p DR (3-1) _ 1] dy}

K,+Dn

<Chyp £19/3001/4 R*. R2 Zk>1f0v e 228 (p—D)FRE g

2k kl(1—12)

< Cpp 19/300 1/4fv e [e2<P Ve _q] do

(=)
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<C'n, 19/300 /e Lp-1)(1-E)s _

1 log(1757)-

‘n

Next suppose k > 4 is even. Then ((Xl - X! )k) .., are almost surely nonnegative. More-

i>1
over,

L /k:< kaz o /k Rkp2
E[(X; - X)M <282 and E[(X; - X)) <2872

Therefore we can invoke a moment inequality for nonnegative random variables (Lem. C.4)
to conclude that

B | Sulllp < 11 305<n (Xi = XD p <

\%k ||Binomial(n, %)Hp.
Moreover by the triangle inequality and Lem. C.2 the following upper also holds
n|[EY*] Salllp < | i<n (Xi = XD

<nE[(X; — X))k + HZK,,L (Xi — X))F —E[(X1 — XMl

S jﬁ;—g (1 + ﬁUn,pR)-

Hence we obtain

Bp,n,Rk72
nEYE | Salllp < Il Zicn (Xi = XDF[lp < 22255

for By, = min(% |Binomial(n, %) llp, 1+ ﬁffnpé) This gives us the upper estimate

—tk pk—2
—  n||E[Y*| S, dt < By [ L log(1— £2) Vl_zﬁfilﬁk,fz dt.

f log(l——) \/7

To bound (a32), it remains to bound

|Hk: al e—thk—Z
Z k>4: &l f_,l 1—R2Y T ——oph—1 k-2 dt
k is even os( *”‘) 1—em2 vn

(a) k—1
S s Bl (V1 dr

K isodd (RHDRAT 0 m’“
b
(<)Z ng||H2k+1||p V1 x2htl dx
> 20k>1 T (2k+2)! 0 mgkﬂnk

Rz}‘ Hopiillp
= 22k>1 2k:|+2 !J\rf” fR 7<7_E> dy
where (a) and (c) are obtained by a change of variable, and (b) is a consequence of the

fact that every odd number can be written as 2m + 1 for an m > 1. To upper bound this
quantity we will again employ a Hermite polynomial moment bound (Lem. C.1), || Hy_1 ||, <

VP —1""'/k =11, and use Stirling’s approximation to deduce that, for all m € N\ {0},
V2m 4+ D= v2m + 1V2m! > V2m + Le19/3009mm ! / (mm) /4,

Hence for any K, € N, we obtain that

Hi_+|, etk
(a32) =30 goa Ml 250 me W"HE((WH&)M“

k is even

k
By R2*|| Hopya |
<3 ZKp>k>1 o) fR v n)

N

R2k p 1) k4+1/2
2k+1
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- _ 2k+1 k
B " Rzk ||H2k+1|| 2 k619/300ﬂ.1/4K1/4\/m
< 5Dk, skl \/ﬁ( F - ) fR Zily—n)

(2k+2)! 2(Kp+1)y/2K,+1k!
+%619/3007T1/4 KI:/;\/WIIR 7( Lp-nR(2-1 1)y,
Since
2K>k21 % < ngkizl)“!p e 19/(31;0<0 J:S\I/(zlgﬂk' 2k+1> fRz Vy <7 N 7>kdy
+€19/3007T1/42(;((114)\/\/:ff12 7( T-DR(2-1) 1)dy
is decreasing in K, its largest value is attained for K =1 < K. Moreover for all z <
1-—- % we have W < (%)k ! \/17173. Hence a change of variables implies

ng ||H2k+1||p 27k619/3007r1/4Ké/4\/ﬁ2k+1
Vi - Jie (2= 1) ay

(2k+2)! 2(Kp+1)y/2K,+1k!

1

1/4_ KV A (L E-DRH(E-1)
T (K,,+1)\/WWIR ( 1)dy

|H2k+1|| \/ nr I2k+1R2f2k72
< Bpn2k>1 3 d

Bp.n ,19/300
+ —5i-e

(2k+2)! Jo Vi—z®'n t
B2 (1485922 1410/ T Ll(p_ _&R? V1-£2
< ( — ) al 4611\3;;\/1)71[62(17 1)%(1 M) — 1] Jo \/ﬁﬁs dzx
(1, RUn, -
- R(l;ﬁﬁ”) S )

Therefore, to conclude, we obtain

(az) < (b5 7'

e o 2 (e ZE T
Byun 19/300,1/4__IG VT 1 (p3-DR(E-1) }
(25) + =g KH)\/mffR g (e 1) dy
Co. |Fall, K327 (p-1)he/50m /4 -
{ZK’KK —17n <(2k+1) - R+ Ji2 (5 =) *dy

K1/4
+ 619/300771/4

p+1 fR2 3/2\/7

[ Lp-1)R? (y—%) — 1] dy}'

Moreover, (b3} Y can be further upper-bounded by

(26) (bS,IL ) (bg,g,~) N R(1+RUW p) ﬂ1/4619/300\/lﬁ[eé(p—l)ﬁ(l—%i) B 1]

Vnk 4v3
+c, 7p L £19/3001/4¢ Lp-1(1-2)s _ ]10g(}+%::)
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APPENDIX C: ADDITIONAL LEMMAS

LEMMA C.1 (Hermite polynomial moment bound [16, Lem. 3]).  Let hy(z) = 622/22—26*:”2/2
and Hy, 2 hy(Z) for Z ~ N(0,1). Then the following holds for all k,p € N:

||Hk”p < \/va - 1k-

LEMMA C.2 (Marcinkiewicz-Zygmund inequality [59, Thm. 2.1]).  Suppose (X;)i>1 are
centered i.i.d. observations admitting a finite p-th absolute moment for some p > 2. Then

175 Cica Xillp < VP =T Xallp.

LEMMA C.3 (Improved Marcinkiewicz-Zygmund inequality for symmetric random vari-
ables). Suppose (X;)i>1 are symmetric centered i.i.d. observations admitting a finite p-th
absolute moment for some p > 2. Then

~ T p+1 l/p ~
uﬁzmxiupsﬂ( ) vl Rl

Ifp >4, B[X?] <52 and E[| X;|P] < b, , we also have

. p(ey\ 1/p YT
||zz-§nxiupgx/§(%) (52)/@=2), /|[Binomial(n, (§)2/®~2))[| .

PROOF. As the random variables (Xz‘)iZI are symmetric, we know that
-~ d -~
Z?:l Xi= Z?:l €| Xil,
where (€;)i>1 = Uniform({—1,1}). According to Haagerup [35, Thm. B] we have

Bl S, 6l Xl | (X, < 222700 (o, X2y,

The tower property and Jensen’s inequality therefore imply that

@ 151 Killy < V(") T EIS i K202 < VR () v K

Now suppose p > 4, E[X?] < 42, and E[X?] < b,,. Then, by a moment inequality for non-
negative random variables (Lem. C.4), we obtain

127 X2 2 < (28)%/®2)||Binomial (n, (§2)%/®=2)] |, 2.

Combining this with the inequality (27) yields the advertised conclusion. O

LEMMA C.4 (Moment inequality for nonnegative random variables). Let (X,),>1 be a
sequence of i.i.d. random variables that are almost surely nonnegative. If, for some p > 2,
E(X;) < a and B(X?) < b for a,b >0, then

120, Xillp < (2)Y@D | Binomial(n, (4)77)]|,

PROOF. Let (V;);>1 be an i.i.d. sequence of Bernouilli random variables with
B(Vi=0)=1—-(§)7" and B(V;=1)=(§)7.

Then, by Ibragimov and Sharakhmetov [39, Thm. 2],
E[(327 X0)P] S E[(S ()Y Dvip < ()P P VE[(CE, Vi)
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LEMMA C.5 (Rosenthal’s inequality with explicit constants). Let (X;)i>1 be a se-
quence of centered i.i.d. observations. If || X1]|, < oo for some p > 2, then

1= S Killp < (B + DnV/P= V2| Xy, + 2V /p/2 4+ Tea 7 | X 2.
PROOF. According to Nagaev and Pinelis [52, Thm. 2] we have
I Yi<n Xillp <infesz Pn! 2| Xy |5 + peP/2e B(5, ¢ — B)|| X115,
where B(-,-) is the Beta function. The choice ¢ = § + 1 yields

| 5 S Xillp < (5 + 17! 5 Xallf + p(B + )7/ 2e5 1 B(5, 1) X5

= B+ 1Pl E X+ 25+ 1)FeE | X5,

The subadditivity of the p-th root now implies the result. 0

LEMMA C.6 (Kolmogorov-Smirnov quantile bound). Let (X;);>1 be a sequence of i.i.d.
random variables taking values in [0,1] and, for a confidence level o« > 0, let quisl (o) and

q}g(a) respectively be the 1 — a quantiles of the one-sided and two-sided Kolmogorov-
Smirnov (KS) distribution with parameter n. Then,

P<SUP % Zign Xz‘k - E[X{C] > q’rlisl(a)) \/P(SUP ‘% Zign Xz‘k - E[Xf” > qEE(a)) <o
keN keN

PROOF. We begin by proving the two-sided statement. Let i be the distribution of X; and
fu the empirical distribution of (X;)}" ;. Romano and Wolf [61, Prop. 3.1] showed that

SUPkeN \% Zign sz - E[X{“H <dg(f1,p) = SUPe(o0,1] IP(X1 <2) = Pxp(X <)

for dg (1, 1t) the two-sided Kolmogorov distance between [ and . Now let KS(n) denote
the two-sided Kolmogorov-Smirnov distribution with parameter n. If X is continuous, then
dr (i, p) ~ KS(n) [32, Thm. 1] and hence

(28)  P(supgen |y Yicn X~ EIXT]| 2 65 (@) < P(dic (2, 1) = g5 (@) < .
If X is not continuous, fix any € > 0, and define

X & (X +elh)

for (U;)i>1 an i.i.d. sequence of uniform random variables in [0, 1]. Since the (X[ );>1 are
continuous i.i.d. random variables on [0, 1], we have

P(supen |57 oi<n (X9)* = E(XD)*)| 2 4;5() <o

As this holds for any arbitrary choice of € > 0, the result (28) holds.
A nearly identical proof establishes the one-sided result, since, using integration by parts,

LY ien XE—E[XE] = [y ahd(i— p)(@) = fy ka " (Pxop(X > @) = B(X) > 2))da
<dg(pa 1) fy ko 1d$_dK1(M f1)

for dgc1(p, 1) 2 supgepo,1] P(X1 <) —Px3(X < z), the one-sided Kolmogorov distance.
O
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