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Abstract

We develop a spatial model of climate risks when goods markets across regions are economi-
cally integrated but firms can only insure against local climate shocks. We show that firms’ in-
surance demands across regions can be strategic complements or substitutes depending on the
correlation of climate shocks across regions. Strategic complementarity can result in equilib-
rium multiplicity when regions are highly integrated, leading to underinsurance traps. Under-
insurance can persist even at actuarially fair insurance premiums and can be Pareto dominated
by an economy without insurance markets. We show that insurance market collapse in one
region creates contagion effects, potentially contracting insurance markets in other regions.
Insurance subsidies can paradoxically worsen the underinsurance problem.
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1 Introduction

Natural disasters and climate change are among the most significant business risks facing firms

today (e.g., Allianz, 2025). These events can disrupt firm operations, depress local productivity,

and threaten business continuity. According to the National Oceanic and Atmospheric Administra-

tion (NOAA), damages from large weather and climate disasters have increased multi-fold—from

approximately $22 billion per year in the 1980s to approximately $150 billion per year in the last

five years (NOAA, 2025). This trend is expected to accelerate, with businesses projected to face

annual earnings losses of of up to 7% from climate disasters by 2035 (WEF, 2024). Despite these

substantial and growing risks, many businesses remain underinsured against climate risks, despite

the widespread availability of insurance products aimed at reducing exposure to these risks, such as

commercial property and business interruption insurance. For instance, estimates by the National

Association of Insurance Commissioners suggest that only about 30%-40% of small businesses

have business interruption insurance (NAIC, 2020).

We develop a spatial model of climate risks to understand the determinants of firms’ insur-

ance choices when regions are economically integrated. The key friction is that insurance markets

are local while goods markets are integrated across regions. Firms can only insure their produc-

tion against local climate risks, but households consume goods from all regions. Consequently,

households are exposed to climate risks from other regions through economic spillovers.

Our findings demonstrate how economic linkages between regions create strategic interactions

in climate insurance demand. First, we show that firms’ insurance demands across economically

integrated regions can be strategic complements or substitutes. When climate shocks are positively

correlated across regions, insurance choices are strategic substitutes. Conversely, when climate

shocks are negatively correlated, insurance choices are strategic complements. Second, the strate-

gic complementarity can result in equilibrium multiplicity, creating underinsurance traps. Firms

across regions may choose too low a level of insurance due to coordination failures even when

a mutually higher level of insurance can be sustained at the same insurance premiums. Third,

we demonstrate that the undesirable low-insurance equilibrium can persist even at actuarially fair

insurance premiums. While actuarially fair pricing can result in a first-best equilibrium under

a utilitarian welfare criterion, coordination failures leading to underinsurance remain possible. In
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the low-insurance equilibrium, households can be worse off than in a benchmark without insurance

markets. Fourth, we show that the collapse of insurance markets in one region creates contagion ef-

fects, potentially contracting insurance markets in other regions. Finally, we show that discounted

insurance pricing can backfire and worsen the underinsurance problem.

We consider a two-period spatial model of climate risks with two regions. Competitive firms in

each region specialize in producing a distinct consumption good using their initial capital endow-

ment and local household labor. Households work locally but consume goods from both regions,

creating economic linkages between areas. Households supply labor inelastically and earn wages

that they spend on purchasing goods. We assume that households have constant relative risk aver-

sion (CRRA) preferences over a Cobb-Douglas composite of the two regions’ goods. This struc-

ture allows us to examine how the degree of economic integration affects equilibrium outcomes by

varying the expenditure share households allocate to the imported goods.

Production in both regions is subject to climate shocks that we model as productivity losses,

consistent with empirical evidence showing that climate change adversely affects firm productivity

(e.g., Burke et al., 2015; Moore and Diaz, 2015; Barrot and Sauvagnat, 2016). A key parameter in

our model is the correlation between climate shocks across regions, enabling us to examine how

the degree of correlation affects insurance decisions. The regions in our model can be broadly

interpreted as cities, states, or countries that are economically interconnected. Such economic

linkages mean that climate shocks in one region can have spillover effects on others, consistent

with evidence from Feng et al. (2023) who document sizable cross-country spillovers in economic

performance among trading partners after the flooding of major ports.

Our model is designed to capture climate risks, which differ fundamentally from more idiosyn-

cratic risks such as automobile accidents, and disability, health, or other life events. In our frame-

work, climate risks are perfectly correlated within each region. Since each region specializes in

producing a distinct consumption good that households across both regions consume, these shocks

become systematic rather than idiosyncratic. Crucially, because agents consume goods from both

regions, they care not only about insurance coverage in their own region but also about insurance

take-up elsewhere, as this determines their exposure to systematic climate risks. This contrasts

sharply with markets for other risks, where spillovers are largely absent. For automobile, health,
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or life insurance, individuals primarily care about insuring their own exposure, and their utility

is not significantly affected by others’ insurance choices. The systematic nature of climate risks

means that the correlation of shocks across economically connected regions becomes a central

determinant of insurance demand—making it a key focus of our analysis.

We first study a baseline model without insurance. We show that household expected util-

ity depends crucially on households’ relative preference for the other region’s good and on the

correlation of climate shocks across regions. When climate shocks are negatively correlated and

households value goods from both regions, households benefit from implicit insurance. Because

only one region typically experiences a climate shock in a given state of the world, low output in

one region is offset by high output in the other region. As shocks become increasingly positively

correlated, households’ implicit insurance benefit declines.

Next, we introduce an insurance contract that allows firms to protect against climate shocks

by reallocating capital from no-disaster states to disaster states. This reallocation is desirable

because it smooths consumption for risk-averse households. Insurance premiums determine the

cost of this capital reallocation. We assume that firms compete for household labor and therefore

choose the insurance contract that maximizes their workers’ expected utility. We require that firm

capital remains non-negative in all states, enabling firms to take negative insurance positions up to

a limit. A negative insurance position means that firms reduce their capital when hit by a disaster,

amplifying the decline in production in disaster states.

The insurance contract in our model most closely corresponds to commercial property and

business interruption insurance. These insurance products are widely available and designed to

replace damaged property, compensate for lost income, and cover continued operating expenses

following shocks such as climate disasters. In practice, policies pay for property replacement,

ongoing costs (e.g., lease payments and payroll), and extra expenses to maintain production or ac-

celerate reopening. This enables firms to sustain productivity in disaster states even while physical

assets are being repaired.

Although insurance markets are local, economic linkages give rise to strategic interactions in

insurance demands across regions. When firms insure their production, they increase the output

of their local good in disaster states, smoothing the consumption of households in both regions.
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This force creates a demand externality, whose nature depends on the correlation of climate shocks

across regions.

When climate shocks are positively correlated, insurance demands across regions are strategic

substitutes. To see this, consider the extreme case where climate disasters always occur simul-

taneously in both regions. In this scenario, insurance by firms in one region shifts that region’s

production from the no-disaster state to the joint-disaster state. This benefits households in the

other region during disasters—they can consume more of the insured region’s good during these

joint disasters. Insurance take-up by firms in one region therefore makes the joint-disaster state

less severe for households in the other region, reducing the benefit of insuring the production of

the other region’s firms.

By contrast, when climate shocks are negatively correlated, insurance demands across regions

are strategic complements. To see this, consider the extreme case where climate disasters never

occur simultaneously in both regions. In this scenario, insurance by firms in one region shifts that

region’s production toward its own disaster state, reducing production in its no-disaster state. This

creates opposing effects for households in the other region. Their utility is higher when their own

region does not experience a climate shock but the other region does, but lower when their region

experiences a climate shock and the other region does not. Insurance take-up by firms in one region

therefore makes the other region’s disaster state more severe, increasing the benefit of insuring the

production of the other region’s firms. Intuitively, insurance take-up in one region reduces the

implicit insurance that the other region receives through economic linkages, increasing the other

region’s demand for explicit insurance.

This strategic complementarity can give rise to multiple equilibria when economic linkages

across regions are sufficiently strong. Building on the logic above, firms face strategic comple-

mentarities in insurance demand when climate risks have a sufficiently low correlation: the benefit

of insuring their own production increases with the level of insurance in the other region. When

households derive substantial utility from imported goods, firms become highly sensitive to insur-

ance decisions in the other region. If firms anticipate high insurance in the other region, they have

a strong incentive to insure their own production; conversely, if they anticipate low insurance in

the other region, their incentive to insure diminishes. Such interactions can lead to multiple equi-
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libria and an underinsurance trap in which firms in both regions choose low insurance levels due to

coordination failures, even when mutually higher levels of insurance can be sustained at the same

insurance premiums.

We show that the low-insurance equilibrium persists even when insurance is offered at ac-

tuarially fair prices. In particular, we endogenize insurance supply by considering competitive,

deep-pocketed insurers, setting prices to break even in expectation in each region. Under these

conditions, there is always an equilibrium in which all firms purchase the first-best level of insur-

ance based on a utilitarian welfare criterion. In this equilibrium, firms in both regions are fully

insured against climate risks. However, a Pareto dominated low-insurance equilibrium may also

arise when strategic complementarities are sufficiently strong. Notably, firms may even choose

negative insurance positions, reducing their capital in disaster states and thereby amplifying the

productivity shock. In particular, the low-insurance equilibrium can make households in both re-

gions worse off than in an economy without insurance markets.

Insurance companies traditionally benefit from insuring risks with low or negative correlation.

By diversifying across regions and climate risks, insurers can more easily finance payouts during

climate disasters, reducing the cost of insurance provision. However, our analysis demonstrates

that the spatial nature of climate risks, and its impact on local economic activity, introduces a

novel counter-veiling channel that geographically links insurance demand. When economically

connected regions face negatively correlated climate risks, strategic complementarity emerges in

insurance demand. This complementarity operates through the benefit rather than the cost of in-

surance, and can lead to coordination failures that cause underinsurance traps.

We extend our framework to analyze two relevant economic scenarios. First, we study insur-

ance market collapse in one region. This issue is particularly pertinent given that insurer exit due

to climate disasters has been increasing over the past decade and is expected to accelerate (e.g.,

Sen et al., 2024a; Meredith, 2025). When climate shocks are negatively correlated, strategic com-

plementarity causes firms in the remaining region to underinsure their production—the absence of

insurance in one region reduces incentives to insure in the other. Conversely, when climate shocks

are positively correlated, strategic substitutability causes firms in the remaining region to overin-

sure. In both cases, households in the region where insurance markets collapse can be worse off
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than if insurance markets had collapsed in both regions. Firms may under- or overinsure to such a

large extent that they increase consumption risk of the imported good. The strategic responses by

firms in economically integrated regions can therefore amplify the negative effects of insurer exit.

As such, economic linkages can amplify the collapse of insurance markets because of spillover

effects.

Second, we study insurance choices when insurance premiums are offered at a discount to ac-

tuarially fair prices. This case is relevant because many government policies cap insurance prices,

keeping them at artificially low levels (e.g., Oh et al., 2022). As expected, discounted premiums

can give rise to overinsurance. Surprisingly, when multiple equilibria exist, discounted premi-

ums can also amplify the underinsurance problem in the low-insurance equilibrium. Discounted

insurance can therefore paradoxically worsen underinsurance.

While our framework is most applicable to commercial property and business interruption in-

surance, its insights can also be applied to other forms of insurance such as household demand for

flood or wildfire insurance. In such an interpretation, households individually decide whether to

take-up insurance for their home, making these decisions local, but they benefit from the condi-

tion and amenities of neighboring properties.1 When neighbors’ insurance choices affect property

values and local amenities, similar strategic interactions arise. Our framework can therefore also

help explain underinsurance problems among homeowners (e.g., Cookson et al., 2024; Sen et al.,

2024b).

Our model can also be interpreted in terms of supply chain linkages across firms. Households

may consume final goods produced locally while firms source inputs from other regions. The

degree of economic linkages through supply chains would depend on how critical these imported

inputs are for local production. When firms cannot fully insure shocks to their supply chains, our

mechanism creates strategic interactions in firm insurance demand across regions. If firms rely

heavily on imported inputs and climate risks across regions are negatively correlated, strategic

complementarities in insurance choices can create underinsurance traps.

1See Gao et al. (2021) for a model of spillover effects in housing markets within a neighborhood.
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2 Related Literature

Our paper contributes to the literature studying how climate risks affect insurance provision and

take-up. This literature examines several key dimensions: belief heterogeneity and risk misper-

ception (e.g., Kunreuther and Pauly, 2004; Bakkensen and Barrage, 2022; Conell-Price and Mul-

der, 2024; Mulder, 2024), catastrophe risk characteristics including fat-tailed distributions (e.g.,

Weitzman, 2009; Raykov, 2015; Louaas and Picard, 2021),2 adverse selection (e.g., Mulder, 2019;

Boomhower et al., 2024), regulatory interventions and pricing distortions (e.g., Kaplow, 1991;

Charpentier and Le Maux, 2009; Kousky, 2018; Goussebaı̈le, 2020; Wu, 2020; Ge et al., 2022;

Oh et al., 2022; Sen et al., 2024a,b; Ge et al., 2024; Jia et al., 2025b; Taylor et al., 2025), reinsur-

ance constraints and capital market frictions (e.g., Jaffee and Russell, 1997; Froot, 2001; Keys and

Mulder, 2024), contract design including term structure and catastrophe bonds (e.g., Lakdawalla

and Zanjani, 2011; Kleindorfer et al., 2012; Borensztein et al., 2017; Altunbas et al., 2024), and

household location responses to climate risks (e.g., Frame, 1998). We introduce a novel focus on

economic linkages across regions and demonstrate their significant implications for insurance de-

mand. In addition, while existing research focuses primarily on homeowner insurance, we study

business insurance—a particularly important area given the substantial climate risks firms face

(e.g., WEF, 2024; Allianz, 2025)—though our findings also extend to homeowner insurance mar-

kets.

We also contribute to the literature on spillover effects in insurance markets. One strand of this

literature examines peer effects in insurance take-up through information channels (e.g., Mobarak

and Rosenzweig, 2012; Karlan et al., 2014; Cai et al., 2015), showing that insurance choices are

influenced by neighbors’ beliefs and decisions. A second strand studies how insurance take-up

by one group affects insurance availability for others through adverse selection and pricing (e.g.,

Cutler and Reber, 1998; Handel et al., 2015). In contrast, our focus is on spillover effects arising

from economic linkages and geographic correlations of climate shocks.

Our paper also relates to the literature on spatial equilibrium models of climate change.3 This

literature examines how spatial heterogeneity in climate risks, migration, and the mobility of capi-

2See Rossi et al. (2005) for an overview of modeling features of catastrophe risks and insurance.
3See Desmet and Rossi-Hansberg (2024) for a recent review of this literature.
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tal and goods shape the economic impact of climate change. Most relevant to our work are papers

analyzing economic linkages between regions through trade (e.g., Dingel et al., 2019; Conte et al.,

2021; Rudik et al., 2021), which examine trade as an adaptation mechanism that can reallocate

production across regions. Our contribution differs by focusing on insurance markets. We show

that trade linkages can create strategic interactions in insurance demand, potentially leading to

underinsurance traps.4

Our paper connects to literature on international trade and production networks that examine

how local disasters propagate along supply chains and across space. For example, Barrot and

Sauvagnat (2016) show that input specificity amplifies disruption spillovers, while Boehm et al.

(2019) and Carvalho et al. (2021) document how climate shocks transmit through supply-chain

networks. Like these studies, our analysis recognizes that local shocks have broader consequences

due to economic interconnectedness. However, we examine how the propagation of shocks through

economic linkages influences firms’ insurance choices.

The paper proceeds as follows. Section 3 presents the baseline model without insurance, and

Section 4 analyzes this framework. Section 5 introduces and analyzes insurance markets. Section 6

examines insurance market collapse and discounted insurance pricing. The last section concludes.

3 Model

We develop a two-region spatial equilibrium model to analyze how climate disasters affect local

economies through productivity shocks. The economy consists of two regions, each specializing

in producing a distinct consumption good. Households in each region work locally but consume

goods from both regions, creating cross-region economic linkages. Firms in each region produce

using labor and capital, with their productivity subject to climate shocks that can be correlated

across regions. In the baseline model, climate risks cannot be insured, and all economic decisions

occur after shocks are realized. In Section 5, we extend the model to include insurance contracts

that are available before shocks occur.
4Another strand of this literature (e.g., Jia et al., 2025a) focuses on how climate risks impact business productivity

in the absence of trade effects.
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Spatial Setup: The economy consists of two regions, A and B. Let mi denote the mass of house-

holds in region i ∈ {A,B}, with mA +mB = 1. Each region specializes in producing a distinct

consumption good using household labor and capital, with region A producing good A and re-

gion B producing good B. Labor markets are local—households can only work in their region of

residence.

Households: Households in region i have constant relative risk aversion (CRRA) preferences

with risk aversion parameter γ > 1 over a Cobb-Douglas composite consumption good

Ci =

(
ci,i

1−α

)1−α (c−i,i

α

)α

, (1)

where c j,i denotes consumption of good j by a region i household, and the parameter α ∈ [0,1]

governs the expenditure share on the imported good. Throughout, we use i to index a household’s

region and −i to denote the other region. Since all households within a region are identical and

make identical choices, we omit household-specific subscripts.

Each household supplies one unit of labor inelastically in its region (li = 1) and receives wage

wi. After climate shocks realize, a household in region i solves

Vi = max
{cA,i,cB,i}

u(Ci) subject to pAcA,i + pBcB,i = wi, (2)

where pA and pB are the prices of goods A and B, respectively.

Firms: Each region contains a unit continuum of identical firms that produce the local consump-

tion good using the production technology

Yi = ZiLiKi,

where Zi is productivity, Li is labor input, and Ki is capital input. Each firm is endowed with K

units of capital. In the baseline model, firms use all their capital for production (Ki = K), such that

Yi = ZiLiK. With insurance, studied in Section 5, firms can allocate the capital endowment to pay

for insurance against climate shocks.
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Each firm chooses labor to maximize profits

Πi = max
Li

piZiLiK −wiLi. (3)

The first-order condition yields the equilibrium wage

wi = piZiK. (4)

In equilibrium, firms employ the entire labor force (Li = mi) and earn zero profits.

Climate Risks: Production in both regions is subject to climate shocks that reduce firm pro-

ductivity. Following Burke et al. (2015), Moore and Diaz (2015), and Barrot and Sauvagnat

(2016), who document that climate change adversely impacts economic productivity, we model

these shocks as productivity losses—for example fractional losses in output from impaired busi-

ness operations.

Without a climate shock in region i, Zi = 1. In the event of a climate shock in region i, produc-

tivity falls to Zi = φi, where φi ∈ (0,1) represents the fraction of output preserved. From equation

(4), wages decline in regions experiencing climate shocks due to reduced labor productivity. This

mechanism is consistent with Boustan et al. (2020), who document that the local economic re-

sponse to natural disasters in U.S. counties is characterized by declining labor productivity.

Table 1 presents the joint distribution of climate shocks. The parameter q ∈ (0,1) determines

each region’s marginal shock probability, while ρ controls the correlation between shocks across

regions, with the correlation coefficient given by

Corr(ZA,ZB) =
ρ −q2

q(1−q)
.

In the baseline model, these shocks cannot be insured.

This structure allows us to examine how equilibrium outcomes vary with the correlation be-

tween climate shocks across regions—a key comparative static that we consider in our analysis.

When ρ = q2, climate shocks are independent across regions. When ρ > q2 (ρ < q2), shocks are

positively (negatively) correlated. In the analysis, we will often focus on two polar cases. First,
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ZA\ZB 1 φB Marginal of ZA

1 1−2q+ρ q−ρ 1−q

φA q−ρ ρ q

Marginal of ZB 1−q q

Table 1: Joint Distribution of Productivity Shocks ZA and ZB

when ρ = 0, shocks are negatively correlated and regions are never hit by climate shocks simulta-

neously. Second, when ρ = q, shocks are perfectly positively correlated and regions are always hit

by climate shocks simultaneously.

Equilibrium: An equilibrium without insurance consists of prices {pi}i∈A,B, wages {wi}i∈A,B,

and consumption choices {cA,i,cB,i}i∈A,B, such that household choices solve the household prob-

lem (2), wages are determined by firm profit maximization (3), and goods markets clear:

mAcA,A +mBcA,B = ZALAK, (6)

mAcB,A +mBcB,B = ZBLBK. (7)

4 Equilibrium without Insurance

In this section, we study the equilibrium of the baseline model in which climate risks cannot be

insured. Proposition 1 characterizes the unique equilibrium.

Proposition 1. There exists a unique equilibrium with household consumption given by

ci,i = (1−α)ZiK,

and

c−i,i = α
Z−iKm−i

mi
,

where Zi ∈ {1,φi} and i ∈ {A,B}. The relative price of goods A and B is given by

pB

pA
=

ZAmA

ZBmB
.
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The expected utility of a household in region i ∈ {A,B} before climate shocks realize, E [Vi], is

given by

(
m−i
mi

)α(1−γ)
K1−γ

1− γ

[
(1−2q+ρ)+(q−ρ)

(
φ
(1−α)(1−γ)
i +φ

α(1−γ)
−i

)
+ρφ

(1−α)(1−γ)
i φ

α(1−γ)
−i

]
.

Proposition 1 shows that, as is standard, a household in either region consumes a fixed fraction

1−α of its own region’s good and a fraction α of the other region’s good. With the Cobb-Douglas

composite good, expenditure shares are constant, so consumption shares do not vary with income

or output. The relative prices of the two goods depend on relative outputs—the good with greater

supply is relatively cheaper.

Household expected utility increases with the productivity of each region, φi and φ−i, when

α ∈ (0,1). Higher productivity in either region raises that region’s output, expanding the consump-

tion bundle available to households in both regions. Expected utility also decreases with the size of

the local population and increases with the other region’s population. The Cobb-Douglas structure

implies that households in each region consume shares 1−α and α of domestic and imported

goods, respectively. When the local population increases, it raises local output but also increases

the number of people sharing that output. These two effects exactly offset each other for domes-

tic good consumption. However, a larger local population means each household gets a smaller

share of the fixed amount of the imported good, reducing expected utility. Conversely, when the

other region’s population increases, it increases imported good production without reducing each

household’s share. Expected utility is therefore increasing in the other region’s population.

Households expected utility depends crucially on households’ preference for the other region’s

good, α , and on the correlation of climate shocks, ρ . Figure 2 plots certainty equivalent consump-

tion as a function of α in a symmetric economy with identical populations and productivity shocks.

The blue line represents the case when ρ = 0 and climate shocks are negatively correlated and never

occur simultaneously, while the red line represents the case when ρ = q and climate shocks are

positively correlated and always occur simultaneously. When α = 0, households only care about

their own region’s good, so certainty equivalent consumption depends only on their region’s un-

conditional shock probability and is unaffected by the correlation between climate shocks. When
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ρ = 0, certainty equivalent consumption is inverted U-shaped in α . With negatively correlated

climate shocks, households benefit from implicit insurance when α ∈ (0,1)—when one region ex-

periences a shock, the other region’s production remains unaffected. In a symmetric economy, this

implicit insurance is maximized at α = 0.5 where households equally value both goods. When

ρ = q, households lose this implicit insurance benefit, resulting in flat certainty equivalent con-

sumption across α values.

Figure 1: Certainty Equivalent Consumption (Symmetric Economy): This figure plots cer-
tainty equivalent consumption of a household as a function of α for ρ = 0 (regions are never hit
by climate shocks simultaneously), and ρ = q (regions are always hit by climate shocks simul-
taneously), in the equilibrium without insurance. The figure shows a symmetric economy, with
parameters φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

Figure 2 examines an asymmetric economy where φA > φB, so region B experiences larger

productivity losses than region A during climate shocks. The solid lines plot certainty equivalent

consumption for households in region A, while the dashed lines plot that for households in region

B. When α = 0, households in region A have higher certainty equivalent consumption than those

in region B because they consume only the good with lower climate risk exposure. This reverses

when α = 1. With perfectly correlated shocks (ρ = q), certainty equivalent consumption remains

linear in α for both regions, but slopes in opposite directions: decreasing for region A households

and increasing for region B households. With negatively correlated shocks (ρ = 0), both regions

exhibit the same inverted U-shape due to implicit insurance, but at different levels reflecting their
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different risk exposures.

Figure 2: Certainty Equivalent Consumption (Asymmetric Economy): This figure plots cer-
tainty equivalent consumption as a function of α for ρ = 0 (regions are never hit by climate shocks
simultaneously) and ρ = q (regions are always hit by climate shocks simultaneously), in the equi-
librium without insurance. The figure shows an asymmetric economy in which region B has a
worse productivity shock when hit by a climate disaster relative to region A. The solid (dashed)
lines plot certainty equivalent consumption of households in region A (region B), with parameters
φA = 0.5, φB = 0.3, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

5 Equilibrium with Insurance

In this section, we introduce insurance that allows firms to protect against climate shocks. In

Section 5.1, we discuss how insurance operates in our model. In Section 5.2, we solve for insurance

demand by firms for given insurance premiums. In Section 5.3, we endogenize insurance supply

and characterize equilibrium when insurance markets are competitive and offer actuarially fair

insurance. In Section 5.4, we study welfare implications.

5.1 Setup

We extend the baseline model to introduce insurance that allows firms to protect against climate

shocks. The economy now has a two-period structure where firms choose insurance coverage at

14



date 0 before climate shocks realize, and production and consumption decisions occur at date 1

after shocks realize.

Each firm in region i can purchase insurance coverage fi at a premium rate πi ∈ (0,1) per unit of

coverage, where fi > 0 corresponds to purchasing insurance and fi < 0 corresponds to a negative

insurance position. The total premium fiπi is paid at date 0 from the firm’s capital endowment

regardless of whether a climate disaster subsequently occurs. If a climate disaster occurs in region

i at date 1, the insurance contract pays out fi. This insurance mechanism allows firms to reallocate

capital from the no-disaster state to the disaster state through a state-contingent contract. We solve

for insurance demand for given insurance premiums πi. In Section 5.3, we endogenize insurance

supply and premiums.

Insurance affects a firm’s capital available for production. Without a disaster in region i, the

firm’s productive capital is Ki = K − fiπi, where K is the initial capital endowment and fiπi repre-

sents the premium paid. With a disaster, the firm receives an insurance payout of fi, yielding pro-

ductive capital of Ki = K − fiπi + fi = K + fi(1−πi). We define the indicator variable δi ∈ {0,1}

to represent the insurance payout per unit of coverage, with δi = 1 if a disaster occurs and δi = 0

otherwise. Productive capital for a firm in region i is therefore Ki = K + fi(δi −πi).

Capital must remain non-negative in all states, so insurance choices are constrained by fi ≤ K
πi

and fi ≥ − K
1−πi

. The first constraint ensures that firms can afford the insurance premium in the

absence of a disaster, while the second constraint ensures non-negative capital when firms take

negative insurance positions.

Insurance in our setting is best interpreted as commercial property and business interruption

insurance. These insurance products are widely available and are designed to replace damaged

property, compensate for lost net income, and cover continued operating expenses following a

shock to the firm’s productivity, such as climate disasters. In practice, policies pay for property

repair or replacement, ongoing costs (e.g., rent, lease, and payroll), and extra expenses to maintain

production or accelerate reopening, enabling firms to sustain their productivity during disasters

even while physical assets are being repaired.

While we model insurance through capital reallocation, we could alternatively model direct

productivity insurance by allowing firms to spend resources on restoring productivity Zi in disaster
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states. The key feature we capture is that firms can insure their production, a feature of commercial

property or business productivity insurance. This differs from insurance that provides households

lump-sum payments, which would not directly insure firm production.

Firms in region i maximize profits by choosing labor input to solve

Πi = max
Li

piZiLiKi −wiLi,

where Ki depends on both the insurance choice fi at date 0 and the realization of climate shocks at

date 1. The first-order condition yields the equilibrium wage

wi = piZiKi = piZi(K + fi(δi −πi)). (8)

Due to the linearity of firms profits in Li, firms earn zero profits in equilibrium. We assume

firms compete for workers, so they choose their insurance coverage fi to maximize the expected

utility of their workers—the households in their region—E[Vi], given in Equation (2), taking goods

prices as given. This captures the idea that firms must internalize the welfare effects on local

households to attract labor: a firm offering lower expected utility cannot attract any workers.

5.2 Insurance Demand

We begin by analyzing insurance demand by firms in both regions for given insurance premiums.

Proposition 2 characterizes equilibrium with insurance.

Proposition 2. There exists an equilibrium with household consumption given by

ci,i = (1−α)ZiKi,

and

c−i,i = α
Z−iK−im−i

mi
,

where Zi ∈ {1,φi}, Ki = K + fi(δi − πi), and i ∈ {A,B}. The relative price of goods A and B is
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given by
pB

pA
=

ZAKAmA

ZBKBmB
.

The insurance position of a firm in region i ∈ {A,B} before climate shocks realize, fi, as a

function of the insurance position of a firm in the other region, f−i, is given implicitly by

(
φi(K + fi (1−πi))

K − fiπi

)(1−γ)(1−α)−1

=
πi

1−πi

1
φi

1−2q+ρ +(q−ρ)
(

φ−i(K+ f−i(1−π−i))
K− f−iπ−i

)(1−γ)α(
q−ρ +ρ

(
φ−i(K+ f−i(1−π−i))

K− f−iπ−i

)(1−γ)α
) .

The expected utility of a household in region i ∈ {A,B} before climate shocks realize, E [Vi], is

given by (
m−i
mi

)α(1−γ)

1− γ
E
[
(ZiKi)

(1−α)(1−γ)(Z−iK−i)
α(1−γ)

]
,

where the expectation is taken with respect to the joint distribution of climate shocks (Zi,Z−i).

Proposition 2 shows that insurance alters consumption by changing the state-contingent out-

put within each region. Firms purchasing insurance reallocate production across states, reducing

output in normal times to increase it during disasters. This reallocation smooths consumption

for risk-averse households. When firms in a region insure their production against climate risks,

they increase output in the disaster state, lowering the relative price of their good and increasing

the consumption of households in both regions. Thus, even though insurance markets are local,

households can benefit from insurance take-up in the other region.

Proposition 2 reveals strategic interactions between regions in firms’ insurance take-up. When

α ∈ (0,1), insurance choices by firms in one region ( fi) depend on insurance choices by firms in

the other region ( f−i). We examine the nature of this interaction by analyzing how fi varies with

f−i under negatively correlated shocks (ρ < q2) and positively correlated shocks (ρ > q2).

Corollary 1. Let α ∈ (0,1). Then, optimal insurance positions exhibit the following strategic

relationships: When ρ = q2 (uncorrelated climate shocks), fi is independent of f−i. When ρ < q2

(negatively correlated climate shocks), fi is increasing in f−i (strategic complements). When ρ >

q2 (positively correlated climate shocks), fi is decreasing in f−i (strategic substitutes).
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Corollary 1 shows that, although insurance markets are local, economic linkages give rise to

strategic interactions in insurance demands across regions. When firms insure their production,

they increase the output of their local good in disaster states, smoothing the consumption of house-

holds of that good in both regions. This force creates a demand externality, whose nature depends

the correlation of climate shocks across regions.

When climate shocks are positively correlated (ρ > q2), insurance demands across regions are

strategic substitutes. To see this, consider the extreme case where climate disasters always occur

simultaneously in both regions (ρ = q). In this scenario, insurance by firms in one region shifts that

region’s production from the no-disaster state to the joint-disaster state. This benefits households

in the other region during disasters—they can consume more of the insured region’s good during

these joint disasters. Insurance take-up by firms in one region therefore makes the joint-disaster

state less severe for households in the other region, reducing the benefit for firms in the other region

of insuring their own production.

By contrast, when climate shocks are negatively correlated (ρ < q2), insurance demands across

regions are strategic complements. To see this, consider the extreme case where climate disasters

never occur simultaneously in both regions (ρ = 0). In this scenario, insurance by firms in one

region shifts that region’s production toward its own disaster state, reducing production in its no-

disaster state. This creates opposing effects for households in the other region. Their utility is

higher when their own region does not experience a climate shock but the other region does, but

lower when their region experiences a climate shock and the other region does not. Insurance take-

up by firms in one region therefore makes the other region’s disaster state more severe, increasing

the benefit of insuring the production of firms in the other region. Intuitively, insurance take-up in

one region reduces the implicit insurance that the other region receives through economic linkages,

increasing the other region’s demand for explicit insurance.

Figure 3 plots region A firms’ best response function for insurance take-up. When ρ = 0,

fA increases with fB, demonstrating strategic complementarity in insurance demand. Conversely,

when ρ = q, fA decreases with fB, demonstrating strategic substitution in insurance demand.

Strategic complementarity in insurance take-up can lead to multiple equilibria, and coordina-

tion failures in insurance markets. The following proposition establishes necessary conditions for
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Figure 3: Best Response of Firms in Region A to Insurance Take-up by Firms in Region B:
This figure plots region A firms’ optimal insurance choice, fA as a function of region B firms’
insurance choice, fB, for ρ = 0 (regions are never hit by climate shocks simultaneously) and ρ = q
(regions are always hit by climate shocks simultaneously), with parameters φA = φB = 0.5, mA =
mB = 0.5, q = 0.3, K = 1, α = 0.5, and γ = 3.

equilibrium multiplicity.

Proposition 3. There exists a threshold ρ∗ < q such that necessary conditions for multiple equi-

libria are that α > 1
2

γ

γ−1 and ρ ≤ ρ∗.

Our model exhibits multiplicity because of strategic complementarities in insurance demands

across economically integrated regions. The first condition requires that α—the expenditure share

on the other region’s good—is sufficiently large, meaning that households highly value the other

regions good. The second condition requires that ρ—the correlation of climate shocks across

regions—is sufficiently low.

Figure 4 plots equilibrium insurance levels as a function of the expenditure share on the other

region’s good, α , in a symmetric economy. With negatively correlated shocks (ρ = 0), represented

by the blue and red lines, strategic complementarity creates interesting patterns. For low values

of α , firms increase their insurance as households value the other region’s good more. This result

occurs because strategic complementarity makes insurance mutually reinforcing across regions.

As α increases, households depend more heavily on the other region’s good. Insurance take-up in

that region then reduces the implicit insurance these households receive by reducing output of the
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imported good in their region’s disaster state, making explicit insurance in their own region more

valuable.

The most striking result emerges when α > 1
2

γ

γ−1 . At this threshold, households’ strong pref-

erence for the other region’s good creates a coordination problem. Recall from the intuition above

that when shocks are negatively correlated, insurance take-up in one region reduces the implicit

insurance available to the other region. With high α , this effect becomes so strong that firms face

two possible outcomes: if they anticipate high insurance in the other region, they find it optimal

to purchase high insurance themselves (blue line); but if they anticipate low insurance in the other

region, they optimally choose low insurance as well (red line). This coordination problem arises

because firms cannot directly insure against the other region’s productivity shock, yet households’

welfare depends critically on it.

By contrast, with positively correlated shocks (ρ = q), strategic substitutability eliminates this

multiplicity, yielding a unique equilibrium (green line).

Figure 4: Equilibrium Insurance (Symmetric Economy): This figure plots equilibrium insur-
ance take-up of firms in region A and region B for ρ = 0 (regions are never hit by climate shocks
simultaneously) and ρ = q (regions are always hit by climate shocks simultaneously), with param-
eters πA = πB = 0.1, φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

Figure 5 plots equilibrium insurance levels in both region for an asymmetric economy where

φA > φB when ρ = 0. The same patterns emerge—when α is sufficiently high, the economy ex-

hibits both high and low-insurance equilibria. Region B’s insurance take-up is higher than region
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A’s because region B experiences a larger productivity loss during climate shocks, making insur-

ance more valuable.

Figure 5: Equilibrium Insurance (Asymmetric Economy): This figure plots the equilibrium
insurance take-up of firms in region A and region B for ρ = 0 (the regions are never hit by climate
shocks simultaneously). The solid (dashed) line plots insurance take-up of firms in region A (region
B), with parameters πA = πB = 0.1, φA = 0.5,φB = 0.3, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

5.3 Insurance Supply

We endogenize insurance supply by assuming competitive insurance markets where deep-pocketed

insurers set premiums to earn zero expected profits in each region. Under competition, insurance is

priced actuarially fairly at E [Zi (δi −πi)]=0, where δi = 1 if a disaster occurs in region i and δi = 0

otherwise, which gives πi =
qφi

1−q+qφi
. The productivity term Zi appears in this pricing formula

because all agents in a region—including insurers—value capital at the same productivity-adjusted

rate. This ensures that the marginal value of capital is equated across all uses in equilibrium. In

Section 6.2, we examine insurance offered at a discount to actuarially fair prices.

When insurance is competitive and actuarially fair, there always exists a full-insurance equilib-

rium in which output in both regions is identical across all states. This full-insurance equilibrium

corresponds to the utilitarian optimum. However, a Pareto-inferior equilibrium with imperfect

insurance can still exist for sufficiently high values of α and sufficiently low values of ρ .
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Corollary 2. With actuarially fair insurance in both regions (πA = qφA
1−q+qφA

and πB = qφB
1−q+qφB

),

there exists a full-insurance equilibrium with

f FI
i =

(1−φi)K
πi +(1−πi)φi

,

in region i ∈ {A,B}. The full-insurance equilibrium maximizes utilitarian welfare. If α > 1
2

γ

γ−1

and ρ is sufficiently small, a second equilibrium with imperfect insurance may exist, which is

Pareto-inferior.

When insurance is actuarially fair, firms may insure their production completely. However,

because insurance markets are local, they cannot directly insure against the climate shocks of the

other region. When households have sufficiently strong preferences for the other region’s good

and climate shocks across regions have a sufficiently low correlation, two equilibria are possible.

If firms expect the other region to insure fully, they face only their own productivity risk and will

insure fully. However, if firms expect firms in the other region to underinsure, then they benefit

from increased implicit insurance—production of the imported good is higher in their disaster

state—and therefore may choose to underinsure as well.5

Figure 6 plots equilibrium insurance take-up with actuarially fair pricing in a symmetric econ-

omy. A full-insurance equilibrium always exists regardless of ρ . However, when ρ is sufficiently

low and α is sufficiently high, strategic complementarities create a second low-insurance equilib-

rium, illustrated by the red lines for ρ = 0. By contrast, Figure 4, showed insurance choices at

discounted prices. There, the high-insurance equilibrium featured overinsurance while the low-

insurance equilibrium featured underinsurance. We discuss discounted pricing in more detail in

Section 6.2.

Our mechanism suggests that small changes in economic linkages can trigger large shifts in

firms’ insurance take-up, echoing results in other literatures about how small changes in underly-

ing fundamentals can lead to severe market responses (e.g., Brunnermeier and Pedersen, 2009).

Specifically, low insurance take-up in one region can spill over and cause underinsurance in other

regions when economic integration increases even modestly.

5Note that the second equilibrium may feature over- or underinsurance.
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Figure 6: Equilibrium Insurance at Actuarially Fair Insurance Premiums (Symmetric Econ-
omy): This figure plots equilibrium insurance take-up of firms in region A and region B when in-
surance is actuarially for ρ = 0 (regions are never hit by climate shocks simultaneously) and ρ = q
(regions are always hit by climate shocks simultaneously), with parameters πA = πB = 0.1765,
φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

5.4 Welfare

Corollary 2 shows that full insurance always constitutes an equilibrium under actuarially fair pric-

ing and that from a utilitarian perspective, full insurance is optimal. However, a Pareto inferior

low-insurance equilibrium can also arise when economic linkages between regions are sufficiently

strong and climate shocks have sufficiently low correlation.

Figure 7 plots certainty equivalent consumption under actuarially fair pricing as a function of

households’ expenditure share on the other region’s good in a symmetric economy. Under full

insurance, certainty equivalent consumption remains constant across correlation levels (ρ = 0 and

ρ = q). The welfare gain from introducing insurance (relative to an economy without insurance

markets) is larger when ρ = q than when ρ = 0 because positively correlated shocks eliminate the

implicit insurance that economic integration provides with negatively correlated shocks.

Most strikingly, households can be worse off in the low-insurance equilibrium than without in-

surance entirely. This is illustrated by the red line falling below the blue line, showing that the low-

insurance equilibrium can generate lower certainty equivalent consumption than the no-insurance

benchmark. This counterintuitive result occurs because firms can take negative insurance posi-
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tions, amplifying climate shocks rather than mitigating them. When negative insurance positions

are prohibited, firms in the low-insurance equilibrium may choose no insurance, making welfare

identical to the no-insurance benchmark in this case.

Figure 7: Certainty Equivalent Consumption at Actuarially Fair Insurance Premiums (Sym-
metric Economy): This figure plots certainty equivalent consumption of households in region A
and region B for ρ = 0 (regions are never hit by climate shocks simultaneously) and ρ = q (regions
are always hit by climate shocks simultaneously), with parameters φA = φB = 0.5, mA = mB = 0.5,
q = 0.3, K = 1, and γ = 3.

Figure 8 plots certainty equivalent consumption under actuarially fair pricing in an asymmetric

economy. As in the symmetric case, certainty equivalent consumption remains constant across

correlation levels (ρ = 0 and ρ = q) under full insurance. Households can again be worse off

in the low-insurance equilibrium than without insurance markets. Note that we do not plot the

benchmarks without insurance in this plot but those are shown in Figure 2. Because region B

experiences larger productivity losses during climate shocks, asymmetric welfare patterns emerge

even under full insurance. When α < 0.5, households in region B are worse off than those in

region A, and vice versa for α > 0.5. Notably, because the low-insurance equilibrium occurs at

high values of α , households in region A—who highly value region B’s good—suffer most in this

equilibrium despite region B experiencing the worse productivity shock. This result highlights

how economic linkages can redistribute the welfare costs of climate risks across regions, making

insurance market coordination failures particularly damaging for regions that depend heavily on
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climate-vulnerable trading partners.

Figure 8: Certainty Equivalent Consumption at Actuarially Fair Insurance Premiums
(Asymmetric Economy): This figure plots certainty equivalent consumption of households in re-
gion A and region B for ρ = 0 (regions are never hit by climate shocks simultaneously) and ρ = q
(regions are always hit by climate shocks simultaneously), with parameters φA = 0.5, φB = 0.3,
mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

6 Extensions and Additional Analyses

In this section, we analyze two extensions. In Section 6.1, we examine insurance market collapse in

one region. In Section 6.2, we examine insurance offered at discounted prices relative to actuarially

fair prices.

6.1 Collapse of Insurance Markets

Insurers are exiting regions with high climate risks, and such exists are expected to accelerate (e.g.,

Sen et al., 2024a; Meredith, 2025). We examine how insurer exit in one region affects insurance

take-up in other regions by modeling the collapse of insurance in region B (setting the insurance

position to fB = 0) while maintaining competitive insurance markets in region A, where firms

choose their optimal insurance position fA.
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Corollary 3. Let α ∈ (0,1). When insurance markets collapse in region B ( fB = 0) and region A

has actuarially fair insurance (πA = qφA
1−q+qφA

), the optimal insurance position of firms in region A

is given by

fA =

(
q

1−q
1−2q+ρ+(q−ρ)φ

(1−γ)α
B

q−ρ+ρφ
(1−γ)α
B

) 1
(1−γ)(1−α)−1

−φA

(1−q)φA +

(
q

1−q
1−2q+ρ+(q−ρ)φ

(1−γ)α
B

q−ρ+ρφ
(1−γ)α
B

) 1
(1−γ)(1−α)−1

qφA

(1−q+qφA)K.

When ρ = q2 (uncorrelated climate shocks), fA equals the full insurance value f FI
A = (1−φA)K

πA+(1−πA)φA

for all α . When ρ < q2 (negatively correlated climate shocks), fA < f FI
A and ∂ fA

∂α
< 0. When ρ > q2

(positively correlated climate shocks), fA > f FI
A and ∂ fA

∂α
> 0.

Corollary 3 characterizes insurance demand by firms in region A when insurance is unavailable

in region B. When ρ = q2 (uncorrelated shocks), region A’s insurance demand is independent of

region B’s choices, so firms choose full insurance at actuarially fair prices. When ρ < q2 (nega-

tively correlated shocks), firms in region A underinsure relative to the full insurance benchmark.

This occurs because economic integration provides implicit insurance—when region A experi-

ences a disaster, region B typically does not and maintains high production of the good that region

A households import. However, as α increases and region A households depend more heavily on

region B’s good, firms in region A face a dilemma: they want to maintain high production precisely

when region B experiences disasters (and region A does not) to compensate for region B’s unin-

sured losses. This leads them to reduce their own insurance coverage as α increases. When ρ > q2

(positively correlated shocks), firms in region A overinsure relative to full insurance. Because dis-

asters typically occur simultaneously in both regions, region A’s insurance can partially substitute

for region B’s missing coverage by increasing production during joint disasters. As α increases,

this substitution becomes more valuable since region A households depend more on region B’s

good, leading firms to purchase even more insurance. The key insight is that region A’s optimal

insurance depends on whether it complements or substitutes for the missing insurance in region B,

which in turn depends on the correlation of climate shocks across regions.

Figure 9 plots insurance levels by firms in region A when insurance is unavailable in region B

( fB = 0) for an otherwise symmetric economy. The black dotted line represents the full-insurance
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benchmark. When ρ = 0 (regions are never hit by climate shocks simultaneously), firms in region

A underinsure relative to this benchmark, with insurance decreasing in α (blue line). At α = 1,

firms in region A choose negative insurance positions, reducing capital during their own disasters

to maintain higher production when region B experiences uninsured climate shock. Conversely,

when ρ = q (regions are always hit by climate shocks simultaneously), firms in region A overinsure

relative to the full-insurance benchmark, increasing insurance as α rises. This allows region A to

partially compensate for region B’s missing insurance during joint disasters.

Figure 9: Insurance in Region A when Insurance Markets Collapse in Region B: This figure
plots equilibrium insurance take-up of firms in region A at actuarially fair prices when insurance
in region B is unavailable for ρ = 0 (regions are never hit by climate shocks simultaneously) and
ρ = q (regions are always hit by climate shocks simultaneously), with parameters φA = φB = 0.5,
mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

Economic linkages can amplify insurance market collapse through spillover effects. When

insurance markets collapse in one region, this affects insurance demand in economically connected

regions. When insurance choices are strategic complements, firms in linked regions also reduce

their insurance coverage. This creates a contagion effect where insurance market collapse in one

region causes insurance markets to contract in other regions.

Figure 10 plots certainty equivalent consumption when ρ = 0 and insurance markets collapse in

region B. As α increases, region A’s welfare (solid blue line) declines because households cannot

insure against region B’s uninsured shock. Region B households (dashed blue line) initially benefit
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from higher α because they value region A’s good, and firms in region A continue to insure their

production at moderate levels of α . However, at high values of α , region B households become

worse off than if insurance markets had collapsed in both regions. This occurs because firms in

region A choose negative insurance positions, reducing their capital during their own disasters to

maintain higher production when region B experiences shocks. This reallocation amplifies rather

than mitigates climate risks, leaving region B households worse off than without any insurance

markets.

Figure 10: Certainty Equivalent Consumption when Insurance Markets Collapse in Region
B (ρ = 0): This figure plots certainty equivalent consumption of households in region A and region
B when insurance in region B is unavailable for ρ = 0 (regions are never hit by climate shocks
simultaneously). The solid (dashed) line plots certainty equivalent consumption of households in
region A (region B), with parameters φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

Figure 11 plots certainty equivalent consumption when ρ = q and insurance markets collapse

in region B. The pattern mirrors the ρ = 0 case: as α increases, region A households’ welfare de-

clines, and at high values of α , region B households become worse off than without any insurance

markets. However, the underlying mechanism differs. While region A firms underinsured when

ρ = 0, they now overinsure. This overinsurance reduces region A’s production during normal times

when no shock occurs, making region B households worse off than if region A had no access to

insurance at all.

Our results demonstrate that insurer exit imposes multiple costs on affected regions. House-
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Figure 11: Certainty Equivalent Consumption when Insurance Markets Collapse in Region
B (ρ = q): This figure plots certainty equivalent consumption of households in region A and region
B when insurance in region B is unavailable for ρ = q (regions are always hit by climate shocks
simultaneously). The solid (dashed) line plots certainty equivalent consumption of households in
region A (region B), with parameters φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and γ = 3.

holds suffer not only from the direct loss of insurance coverage but also from spillover effects as

firms in other regions adjust their insurance demand in response. Asymmetric insurance availabil-

ity can amplify the negative effects of insurer exit.

6.2 Discounted Insurance

Insurance against climate risks is often offered at a discount due to government policy (e.g., Oh

et al., 2022). We examine how such discounts affect insurance choices and welfare in our frame-

work. We first characterize how insurance demand responds to changes in premiums.

Corollary 4. In the high-insurance equilibrium, optimal insurance in region i, fi, is decreasing

in the premium πi. In the low-insurance equilibrium, optimal insurance in region i, fi, can be

increasing in the premium πi.

When insurance is discounted—available at prices below actuarially fair levels, it creates op-

posing effects across equilibria. In the high-insurance equilibrium, firms increase their insurance

as premiums decrease. With sufficiently deep discounts, firms overinsure to such an extent that
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their output is higher during disasters than in normal times. Conversely, in the low-insurance

equilibrium, firms may actually decrease their insurance as premiums fall. This counterintuitive

result occurs because firms must take even larger negative insurance positions when insurance is

cheap to achieve their desired capital transfer across states. Discounted insurance can therefore

paradoxically worsen underinsurance.

Figure 12 plots insurance take-up under discounted pricing compared to actuarially fair pricing.

With positively correlated shocks when regions are always hit by climate shocks simultaneously

(ρ = q), discounted insurance leads to overinsurance relative to actuarially fair pricing, as shown

by the green solid line lying above the green dashed line. With negatively correlated shocks when

regions are never hit by climate shocks simultaneously (ρ = 0), the effects are more complex.

Strategic complementarities amplify overinsurance in the high-insurance equilibrium under dis-

counted pricing. More strikingly, in this specific parameterization, underinsurance worsens in the

low-insurance equilibrium despite the price discount.

Figure 12: Equilibrium Insurance with Discounted and Actuarially Fair Insurance Premi-
ums: This figure plots equilibrium insurance take-up of firms in region A and region B for ρ = 0
(regions are never hit by climate shocks simultaneously) and ρ = q (regions are always hit by
climate shocks simultaneously), comparing discounted insurance premiums (πA = πB = 0.1) and
actuarially fair premiums, with parameters φA = φB = 0.5, mA = mB = 0.5, q = 0.3, K = 1, and
γ = 3.

Our analysis demonstrates that well-intentioned government policies that cap insurance prices

can have unintended consequences. When insurance premiums are kept below actuarially fair
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levels through regulatory price controls, these policies can paradoxically backfire and worsen un-

derinsurance problems in regions with strong economic linkages. The mechanism operates through

coordination failures: in the low-insurance equilibrium, firms may respond to cheaper insurance

by taking even more negative insurance positions, amplifying rather than mitigating climate risks.

This counterintuitive result highlights the importance of considering strategic interactions across

regions when designing insurance market interventions.

7 Conclusion

With businesses facing increasing exposure to climate risks, understanding how they insure against

these risks becomes critical. We analyze such insurance using a spatial model where insurance

markets are local but create spillovers across regions through economic linkages.

Our analysis reveals that economic linkages generate strategic interactions in insurance choices

across regions. Insurance demand by firms across regions exhibits strategic complementarity when

climate shocks have negative correlation and strategic substitutability when correlation is positive.

Strategic complementarity can create underinsurance equilibria even under actuarially fair pricing.

Economic linkages also generate contagion effects: insurance market collapse in one region can

cascade to other regions. Moreover, government policies designed to increase insurance take-up,

such as price caps, can paradoxically backfire and exacerbate underinsurance.
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A Proofs

Proof of Proposition 1. First, we solve the optimization problem of a household in region A. The

Lagrangian for region A is given by

LA =

(( cA,A
1−α

)1−α (cB,A
α

)α
)1−γ

1− γ
−λA

(
pAcA,A + pBcB,A −wA

)
,

with the first-order conditions

(1−α)C1−γ

A = λA pAcA,A,

and

αC1−γ

A = λA pBcB,A,

from which follows
pBcB,A

pAcA,A
=

α

1−α
. (9)

For a household in region B, we get the first-order conditions

(1−α)C1−γ

B = λB pBcB,B,

and

αC1−γ

B = λB pAcA,B,

from which follows
pAcA,B

pBcB,B
=

α

1−α
. (10)

Using Equations (9) and (10), the households’ budget constraints, and the equilibrium wages

from Equation (4), we get

cA,A = (1−α)ZAK, (11)

cB,B = (1−α)ZBK. (12)
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Using Li = mi and the market-clearing conditions (6) and (7), we get

cA,B = α
ZAKmA

mB
, (13)

cB,A = α
ZBKmB

mA
. (14)

Substituting Equations (11) and (14) into Equation (1), we arrive at

CA = (ZAK)1−α (ZBK)α

(
mB

mA

)α

,

and similarly by substituting Equations (12) and (13) into Equation (1), we get

CB = (ZAK)α (ZBK)1−α

(
mA

mB

)α

.

Finally, from Equations (9), (11), and (14), we have that

pB

pA
=

ZAKmA

ZBKmB
.

The utility of a household in region A after climate shocks have realized is given by

u(CA) =
(ZAK)(1−α)(1−γ) (ZBK)α(1−γ)

(
mB
mA

)α(1−γ)

1− γ
,

and for a household in region B is given by

u(CB) =
(ZAK)α(1−γ) (ZBK)(1−α)(1−γ)

(
mA
mB

)α(1−γ)

1− γ
.

Thus, the expected utility of a household in region A before the realization of climate shocks,

E [u(CA)], is

(
mB
mA

)α(1−γ)
K1−γ

1− γ

[
(1−2q+ρ)+(q−ρ)

(
φ
(1−α)(1−γ)
A +φ

α(1−γ)
B

)
+ρφ

(1−α)(1−γ)
A φ

α(1−γ)
B

]
.
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Similarly, for E [u(CB)], we get

(
mA
mB

)α(1−γ)
K1−γ

1− γ

[
(1−2q+ρ)+(q−ρ)

(
φ

α(1−γ)
A +φ

(1−α)(1−γ)
B

)
+ρφ

α(1−γ)
A φ

(1−α)(1−γ)
B

]
,

which completes the proof. ■

Proof of Proposition 2. Insurance Demand: We begin by taking the optimal insurance profile

from date 0 as given and solve for the date 1 equilibrium state by state. First, we solve the opti-

mization problem of a household in region A. The Lagrangian for region A is given by

LA =

(( cA,A
1−α

)1−α (cB,A
α

)α
)1−γ

1− γ
−λA

(
pAcA,A + pBcB,A −wA

)
,

with the first-order conditions

(1−α)C1−γ

A = λA pAcA,A,

αC1−γ

A = λA pBcB,A,

from which follows
pBcB,A

pAcA,A
=

α

1−α
. (15)

Using Equation (15), the households’ budget constraints, and the equilibrium wage from Equation

(8), we get

cA,A = (1−α)ZA(K + fA(δA −πA)),

cB,A = α
pA

pB
ZA(K + fA(δA −πA)).

The utility of a household in region A after the climate shocks have realized is therefore given

by

u(CA) =

(
ZA (K + fA(δA −πA))

(
pA
pB

)α)1−γ

1− γ
.
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Consequently, a firm in region A chooses fA to maximize

E [u(CA)] = (1−2q+ρ)

(
(K − fAπA)

(
pA
pB

)α)1−γ

1− γ
+(q−ρ)

(
(K − fAπA)

(
pA
pB

)α)1−γ

1− γ

+(q−ρ)

(
φA (K + fA(1−πA))

(
pA
pB

)α)1−γ

1− γ
+ρ

(
φA (K + fA(1−πA))

(
pA
pB

)α)1−γ

1− γ
.

Note that the price ratio pA
pB

is different in each state.

The first-order necessary condition for the optimal fA is then

0 =−(K − fAπA)
−γ

(
(1−2q+ρ)

(
pA

pB

)(1−γ)α

+(q−ρ)

(
pA

pB

)(1−γ)α
)

πA

+(φA (K + fA(1−πA)))
−γ

(
(q−ρ)

(
pA

pB

)(1−γ)α

+ρ

(
pA

pB

)(1−γ)α
)

φA (1−πA) ,

which we can write more succinctly as

E

[
(ZA (K + fA (δA −πA)))

−γ

(
pA

pB

)(1−γ)α

ZA (δA −πA)

]
= 0.

Following the same arguments as in the proof of Proposition 1, replacing K with region specific

capital Ki, we get the equilibrium price ratio pA
pB

= ZBKBmB
ZAKAmA

. Substituting this, and recognizing that

mA and mB are constants, we arrive at

E
[
(ZA (K + fA (δA −πA)))

(1−γ)(1−α)−1 (ZB (K + fB (δB −πB)))
(1−γ)α ZA (δA −πA)

]
= 0. (16)

From Table 1, we can expand Equation (16) to

1−πA

πA
φA

(
φA(K + fA (1−πA))

K − fAπA

)(1−γ)(1−α)−1
(

q−ρ +ρ

(
φB(K + fB (1−πB))

K − fBπB

)(1−γ)α
)

= 1−2q+ρ +(q−ρ)

(
φB(K + fB (1−πB))

K − fBπB

)(1−γ)α

.
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Similarly, for region B, we get

1−πB

πB
φB

(
φB(K + fB (1−πB))

K − fBπB

)(1−γ)(1−α)−1
(

q−ρ +ρ

(
φA(K + fA (1−πA))

K − fAπA

)(1−γ)α
)

= 1−2q+ρ +(q−ρ)

(
φA(K + fA (1−πA))

K − fAπA

)(1−γ)α

.

The two first-order conditions can be rewritten as

(
φA(K + fA (1−πA))

K − fAπA

)(1−γ)(1−α)−1

=
πA

1−πA

1
φA

1−2q+ρ +(q−ρ)
(

φB(K+ fB(1−πB))
K− fBπB

)(1−γ)α

q−ρ +ρ

(
φB(K+ fB(1−πB))

K− fBπB

)(1−γ)α
,

(17)

and

(
φB(K + fB (1−πB))

K − fBπB

)(1−γ)(1−α)−1

=
πB

1−πB

1
φB

1−2q+ρ +(q−ρ)
(

φA(K+ fA(1−πA))
K− fAπA

)(1−γ)α

q−ρ +ρ

(
φA(K+ fA(1−πA))

K− fAπA

)(1−γ)α
.

Define ζ = (1−γ)α
(1−γ)(1−α)−1 > 0 and xi =

(
φi(K+ fi(1−πi))

K− fiπi

)(1−γ)(1−α)−1
. We then get

xA =
πA

1−πA

1
φA

1−2q+ρ +(q−ρ)xζ

B

q−ρ +ρxζ

B

=
πA

1−πA

1
φA

1−q+qxζ

B

q−ρ +ρxζ

B

− πA

1−πA

1
φA

,

and

xB =
πB

1−πB

1
φB

1−2q+ρ +(q−ρ)xζ

A

q−ρ +ρxζ

A

=
πB

1−πB

1
φB

1−q+qxζ

A

q−ρ +ρxζ

A

− πB

1−πB

1
φB

. (18)

We thus get

xA =
πA

1−πA

1
φA

1−q+q
(

πB
1−πB

1
φB

1−q+qxζ

A

q−ρ+ρxζ

A

− πB
1−πB

1
φB

)ζ

q−ρ +ρ

(
πB

1−πB
1

φB

1−q+qxζ

A

q−ρ+ρxζ

A

− πB
1−πB

1
φB

)ζ
− πA

1−πA

1
φA

, (19)

which is a fixed-point equation in xA that identifies xA, and consequently fA. Equation (18) then

identifies the corresponding fB.
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Equilibrium Existence: As a next step, we show that an equilibrium exists. Let the right-hand

side of Equation (19) be g(xA). Notice that g is defined on [0,∞) and is a continuous function of

xA. Notice further that g ≥ 0.

Case 1: ρ > 0. If g(0) = 0, then xA = 0 is a solution to the fixed point problem and an

equilibrium exists.

Consider next the case g(0)> 0. Using ζ > 0 and applying L’Hospital’s Rule, we have

lim
xA→∞

xB =
πB

1−πB

1
φB

q−ρ

ρ
.

Thus, limxA→∞ xζ

B converges, and so does limxA→∞ g(xA). Since the left-hand side of Equation (19)

goes to infinity, there must be a crossing point and an equilibrium exists.6

Case 2: ρ = 0. Then, we can write g(xA) as

g(xA) =
πA

1−πA

1
φA

(
1−2q

q
+

(
πB

1−πB

1
φB

(
1−2q

q
+ xζ

A

))ζ
)
. (21)

Again, if g(0) = 0, then xA = 0 is a solution to the fixed point problem and an equilibrium exists.

Thus, we consider the case g(0)> 0 in the following.

Notice that ζ > 0 since γ > 1. If ζ ∈ (0,1), then asymptotically g(xA) grows according to

xζ 2

A < xA as xA → ∞. We conclude that there must be a crossing point and an equilibrium exists.

Consider next the case in which ζ > 1. Then g(xA) is convex in xA. Then there are three cases:

(i) it intersects the 45-degree line twice, (ii) it is tangent for one value, (iii) it never intersects.

In the first two cases, there is a solution to the fixed point problem and an equilibrium exists.

If it never intersects, the only solution is xA = ∞, which is equivalent to fA = − K
1−πA

because

(1− γ)(1−α)−1 < 0.

6We can also construct an algorithm for finding fixed points. Notice that g(x) is nondecreasing in xA because

dg(xA)

dxA
=

πA

1−πA

1
φA

πB

1−πB

1
φB

 ζ
(
q2 −ρ

)(
q−ρ +ρy(xA)

ζ
)(

q−ρ +ρxζ

A

)
2

y(xA)
ζ−1 xζ−1

A ≥ 0, (20)

where y(xA) =
πB

1−πB
1

φB

1−2q+ρ+(q−ρ)xζ

A

q−ρ+ρxζ

A

. We can then apply the Knaster-Tarksi fixed-Point theorem because g is

bounded to not only conclude an equilibrium exists, but also to provide an algorithm for finding them when there
are multiple. For instance, see Eisenberg and Noe (2001).
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Finally, consider the case in which ζ = 1. Then g(xA) is linear in xA. If the slope is lower than

one, there is a crossing point and an equilibrium exists. If the slope is larger or equal to one, then

xA = ∞ is a solution.

Household Expected Utility: Having characterized equilibrium insurance choices, we can

compute the other equilibrium quantities. Total output in each region is given by

ZAKALA = ZAKAmA,

ZBKBLB = ZBKBmB.

The ex-post utility of households in region A is

C1−γ

A
1− γ

=
(ZAKA)

(1−α)(1−γ) (ZBKB)
α(1−γ)

(
mB
mA

)α(1−γ)

1− γ
.

The ex-post utility of households in region B is

C1−γ

B
1− γ

=
(ZAKA)

α(1−γ) (ZBKB)
(1−α)(1−γ)

(
mA
mB

)α(1−γ)

1− γ
.

The expected utility of households in region A depending on insurance take-up in regions A

and B is given by

E

[
C1−γ

A
1− γ

]
=

(
mB
mA

)(1−γ)α

1− γ

[
(1−2q+ρ)(K − fAπA)

(1−γ)(1−α)(K − fBπB)
(1−γ)α

+(q−ρ)(K − fAπA)
(1−γ)(1−α)(φB(K + fB(1−πB)))

(1−γ)α

+(q−ρ)(φA(K + fA(1−πA)))
(1−γ)(1−α)(K − fBπB)

(1−γ)α

+ρ(φA(K + fA(1−πA)))
(1−γ)(1−α)(φB(K + fB(1−πB)))

(1−γ)α

]
.

(22)
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We can rewrite the expected utility of a households in region i as

E

[
C1−γ

i
1− γ

]
=

(
m−i
mi

)α(1−γ)

1− γ
E
[
(ZiKi)

(1−α)(1−γ)(Z−iK−i)
α(1−γ)

]
,

which completes the proof. ■

Proof of Corollary 1. We can write Equation (17) as G( fA, fB) = 0, where

G( fA, fB)≡

(
φA(K + fA(1−πA))

K − fAπA

)θ

− πA

1−πA

1
φA

1−2q+ρ +(q−ρ)y
q−ρ +ρy

,

θ ≡ (1− γ)(1−α)−1, and y ≡
(

φB(K+ fB(1−πB))
K− fBπB

)(1−γ)α
.

By the Implicit Function Theorem,

∂ fA

∂ fB
=−∂G/∂ fB

∂G/∂ fA
.

Because θ < 0 for γ > 1 and α ∈ (0,1), and φA(K+(1−πA) fA)
K−πA fA

is strictly increasing in fA, we have

∂G/∂ fA = θ

(
φA(K+ fA(1−πA))

K− fAπA

)θ−1(
∂

φA(K+ fA(1−πA))
K− fAπA

/∂ fA

)
< 0. Hence, we have sign(∂ fA/∂ fB)=

sign(∂G/∂ fB).

Only the second term of G depends on fB. Write

H(y)≡ 1−2q+ρ +(q−ρ)y
q−ρ +ρy

.

Then ∂G/∂ fB =− πA
1−πA

1
φA

H ′(y) ∂y
∂ fB

. We further have

∂y
∂ fB

= (1− γ)α

(
φB(K + fB(1−πB))

K − fBπB

)(1−γ)α−1 ∂

(
φB(K+ fB(1−πB))

K− fBπB

)
∂ fB

< 0,

since (1− γ)α < 0 and φB(K+ fB(1−πB))
K− fBπB

is strictly increasing in fB.

We also have

H ′(y) =
(q−ρ)2 −ρ(1−2q+ρ)

(q−ρ +ρy)2 =
q2 −ρ

(q−ρ +ρy)2 .
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Therefore sign(∂G/∂ fB) = sign(q2 −ρ).

When ρ = q2, and the shocks are uncorrelated, ∂ fA
∂ fB

= 0. When ρ < q2, and the shocks are

negatively correlated, ∂ fA
∂ fB

> 0. When ρ > q2, and the shocks are positively correlated, ∂ fA
∂ fB

< 0. ■

Proof of Proposition 3. Note that when ρ = q it is straightforward to show that xA = g(xA) has a

unique solution. We therefore consider the case ρ < q below. We first recognize that g(x) is a

continuous, increasing function of xA because

dg(xA)

dxA
=

πA

1−πA

1
φA

πB

1−πB

1
φB

 ζ
(
q2 −ρ

)(
q−ρ +ρy(xA)

ζ
)(

q−ρ +ρxζ

A

)
2

y(xA)
ζ−1 xζ−1

A ≥ 0, (23)

where y(xA) =
πB

1−πB
1

φB

1−2q+ρ+(q−ρ)xζ

A

q−ρ+ρxζ

A

.

In addition, notice that because ζ > 0 and ρ < q, we have

g(0) =
πA

1−πA

1
φA

1−2q+ρ +(q−ρ)
(

πB
1−πB

1
φB

1−2q+ρ

q−ρ

)ζ

q−ρ +ρ

(
πB

1−πB
1

φB

1−2q+ρ

q−ρ

)ζ
> 0,

from which follows that g(xA) is above xA at xA = 0 and is above 0 for all xA ≥ 0.

Notice that when g(xA) first crosses xA it must be the case that dg(xA)
dxA

< 1. It is therefore

sufficient that d2g(xA)

dx2
A

≤ 0 globally for there to be a unique equilibrium because g(xA) then never

subsequently increases sufficiently to intersect xA again.

Differentiating Equation (23), with some manipulation we arrive at

xA
dg(xA)

dxA

d2g(xA)

dx2
A

= ζ

(
ζ −1−2ζ

ρy(xA)
ζ

q−ρ +ρy(xA)
ζ

)
q2 −ρ

1−2q+ρ +(q−ρ)xζ

A

xζ

A

q−ρ +ρxζ

A

+ζ −1−2ζ
ρxζ

A

q−ρ +ρxζ

A

.

Notice that if ζ ≤ 1 and ρ ≤ q2, d2g(xA)

dx2
A

≤ 0.
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In the case that ρ > q2, we recognize that since q ≥ ρ and y(xA)
ζ ≥ 0, we have

ρy(xA)
ζ

q−ρ +ρy(xA)
ζ
≤ 1,

because generically z
a+z ≤ 1 for a,z ≥ 0 . This property, Equation (24), and ρ > q2 then imply

xA
dg(xA)

dxA

d2g(xA)

dx2
A

≤
ζ (ζ +1)

(
ρ −q2)

1−2q+ρ +(q−ρ)xζ

A

xζ

A

q−ρ +ρxζ

A

−2ζ
ρxζ

A

q−ρ +ρxζ

A

+ζ −1

≤ 2ζ
ρ −q2

1−2q+ρ +(q−ρ)xζ

A

xζ

A

q−ρ +ρxζ

A

−2ζ
ρxζ

A

q−ρ +ρxζ

A

+ζ −1

= −2ζ
(q−ρ)2 +(q−ρ)ρxζ

A

1−2q+ρ +(q−ρ)xζ

A

xζ

A

q−ρ +ρxζ

A

+ζ −1,

(26)

where the second step follows because ζ ≤ 1. It is then immediate from Inequality (26) that

xA
dg(xA)

dxA

d2g(xA)

dx2
A

≤ ζ −1.

Again, if ζ ≤ 1, we have d2g(xA)

dx2
A

≤ 0.

Consequently, if ζ ≤ 1, there is a unique equilibrium. The trivial exception is when ζ = 1,

ρ = q, and πA
1−πA

1
φA

= πB
1−πB

1
φB

, in which case there are infinitely-many solutions because from

Equation (18),

xAxB =
πA

1−πA

1
φA

1−q
q

=
πB

1−πB

1
φB

1−q
q

.

Consequently, it is necessary that ζ > 1 for there to be multiple equilibria because of demand

externalities. Given that ζ = (1−γ)α
(1−γ)(1−α)−1 , this imposes

α >
1
2

γ

γ −1
.

Consider the case in which ζ > 1. With respect to ρ , notice that when ρ = 0 and πA
1−πA

1
φA

1−2q
q

and πA
1−πA

1
φA

(
1

φB

πB
1−πB

)ζ

are sufficiently small but nonzero, then there are multiple equilibria from
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Equation (21). When ρ = q, we can solve Equation (19) when ζ ̸= 1 to find

xA =

(
πA

1−πA

1
φA

(
1−πB

πB
φB

)ζ
) 1

1−ζ 2 (1−ρ

ρ

) 1
1+ζ

,

and there exists a unique optimal choice of insurance. Thus, there exists a threshold ρ∗ < q such

that ρ ≤ ρ∗ is a necessary condition for multiple equilibria. ■

Proof of Corollary 2. If a firm in region A fully insures its production, then it chooses its insurance

position such that its production is the same in all states. This requires that

K − fAπA = φA (K + fA (1−πA)) , (27)

where the left-hand side of Equation (27) is output when there is no climate disaster in region A,

and the right-hand side is output when there is a climate disaster in region A. Equation (27) implies

that

f FI
A =

(1−φA)K
πA +φA (1−πA)

, (28)

and an analogous expression for fB in region B,

f FI
B =

(1−φB)K
πB +φB (1−πB)

. (29)

Substituting Equations (28) and (29) into Equation (17), we arrive at

πA

1−πA
=

q
1−q

φA,

which holds when πA = qφA
1−q+qφA

, and analogously for πB = qφB
1−q+qφB

. Consequently, if insurance

is actuarially fair, full insurance is an equilibrium. In particular, insured output in region A is

(1−q+qφA)K and in region B is (1−q+qφB)K in all states.

Another way to see that full insurance is an equilibrium, which corresponds to xA = 1, is to
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recognize that Equation (21) simplifies in the case of actuarially fair insurance to

xA = g(xA) = 1− q
1−q

+
q

1−q

(
1− q

1−q
+

q
1−q

xζ

A

)ζ

,

from which it is clear that xA = 1 is indeed an equilibrium.

Further, recall that equilibrium multiplicity is a generic feature of our framework when α >

1
2

γ

γ−1 and ρ = 0. From the proof of Proposition 2, if ρ = 0 and ζ > 1, then g(xA) is convex in xA,

and there are either zero, one, or two intersections with the 45-degree line. Because we have found

one equilibrium, xA = 1, we can rule out the zero solutions case. If there is only one solution, then

g(xA) must be tangent to xA at xA = 1, that is, dg(xA)
dxA

∣∣∣
xA=1

= 1. However, notice that when there is

actuarially fair insurance and ρ = 0, we have

dg(xA)

dxA

∣∣∣∣
xA=1

=

(
ζ

q
1−q

)2(
1− q

1−q
+

q
1−q

xζ

A

)ζ−1

xζ−1
A

∣∣∣∣∣
xA=1

=

(
ζ

q
1−q

)2

.

By continuity, it must be the case that there exists a second equilibrium for ρ sufficiently small if

ζ ̸= 1−q
q .

Finally, because insurers make zero profits in expectation, the optimal choice of fA that maxi-

mizes utilitarian welfare across both regions, where each region is weighted by its mass of house-

holds, satisfies from Equation (22) the first-order necessary and sufficient condition

0 = mA (1−α)

(
mB

mA

)(1−γ)α

E
[
(ZAKA)

(1−γ)(1−α)−1 (ZBKB)
(1−γ)α ZA (δA −πA)

]
+mBα

(
mA

mB

)(1−γ)α

E
[
(ZBKB)

(1−γ)(1−α) (ZAKA)
(1−γ)α−1 ZA (δA −πA)

]
. (30)

That it is sufficient, and the socially optimal choice of insurance is unique, follows from the strict

concavity of the utility functions of households in both regions in their insurance positions.

When πA and πB are set to their actuarially fair values, Equation (30) is satisfied at full in-

surance. This is because production is then constant across states of the world and Equation (30)
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reduces to

0 = mA (1−α)

(
mB

mA

)(1−γ)α

(ZAKA)
(1−γ)(1−α)−1 (ZBKB)

(1−γ)α E [ZA (δA −πA)]

+mBα

(
mA

mB

)(1−γ)α

(ZBKB)
(1−γ)(1−α) (ZAKA)

(1−γ)α−1E [ZA (δA −πA)] ,

and when insurance is actuarially fair, E [ZA (δA −πA)] = 0. By contrast, only the first term in

Equation (30) is zero (by construction from Equation (16)) at the other insurance equilibrium

when it exists, regardless of whether it is a high or low insurance equilibrium. A similar argument

applies to the socially optimal choice of fB.

This second insurance equilibrium must therefore deliver lower utilitarian welfare than that

under full insurance. In addition, the second insurance equilibrium must be Pareto inferior. ■

Proof of Corollary 3. In the special case that fB = 0, xB = φ
(1−γ)(1−α)−1
B , and Equation (19) sim-

plifies to

xA =
πA

1−πA

1
φA

1−2q+ρ +(q−ρ)φ
(1−γ)α
B

q−ρ +ρφ
(1−γ)α
B

.

In the case of actuarially fair insurance in region A, πA = qφA
1−q+qφA

, this equation further simplifies

to

xA =
q

1−q
1−2q+ρ +(q−ρ)φ

(1−γ)α
B

q−ρ +ρφ
(1−γ)α
B

. (31)

Using xA =
(

φA(K+ fA(1−πA))
K− fAπA

)(1−γ)(1−α)−1
, it follows that

fA =

(
q

1−q
1−2q+ρ+(q−ρ)φ

(1−γ)α
B

q−ρ+ρφ
(1−γ)α
B

) 1
(1−γ)(1−α)−1

−φA

(1−q)φA +

(
q

1−q
1−2q+ρ+(q−ρ)φ

(1−γ)α
B

q−ρ+ρφ
(1−γ)α
B

) 1
(1−γ)(1−α)−1

qφA

(1−q+qφA)K. (32)

When ρ = q2,
(

q
1−q

1−2q+ρ+(q−ρ)φ
(1−γ)α
B

q−ρ+ρφ
(1−γ)α
B

) 1
(1−γ)(1−α)−1

= 1, and Equation (32) reduces to

fA =
1−φA

πA +(1−πA)φA
K,
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that is, its full insurance value.

Define N(ρ)= 1−2q+ρ+(q−ρ)φ
(1−γ)α
B and D(ρ)= q−ρ+ρφ

(1−γ)α
B . Then, differentiating

xA w.r.t. ρ and using N′(ρ) = 1−φ
(1−γ)α
B and D′(ρ) =−1+φ

(1−γ)α
B ,

∂

∂ρ

(N
D

)
=

N′D−ND′

D2 =
(1−φ

(1−γ)α
B )[D+N]

D2 .

Using the fact that D+N = 1− q+ qφ
(1−γ)α
B > 0 and that φ

(1−γ)α
B > 1 since γ > 1, α > 0, and

φB ∈ (0,1), it follows that
∂xA

∂ρ
< 0.

Because xA is decreasing in fA, we get that ∂ fA
∂ρ

> 0. It follows that when ρ < q2, fA < f FI
A , and

when ρ > q2, fA > f FI
A .

Differentiating (31) w.r.t α we have

∂xA

∂α
=

q
1−q

· q2 −ρ(
q−ρ +ρφ

(1−γ)α
B

)2 (1− γ) ln(φB)φ
(1−γ)α
B .

It is clear that ∂xA
∂α

= 0 when ρ = q2, ∂xA
∂α

> 0 when ρ < q2, ∂xA
∂α

< 0 when ρ > q2.

Also differentiating xA =
(

φA(K+ fA(1−πA))
K− fAπA

)(1−γ)(1−α)−1
w.r.t α gives

∂xA

∂α
= xA

[
(γ−1) ln

(
φA(K + fA(1−πA))

K − fAπA

)
+
(
(1−γ)(1−α)−1

)( 1−πA

K + fA(1−πA)
+

πA

K − fAπA

)
∂ fA

∂α

]
.

Dividing both sides by xA and solving for
d fA

dα
yields

∂ fA

∂α
=

1
xA

∂xA

∂α
− (γ −1) ln

(
φA(K + fA(1−πA))

K − fAπA

)
(
(1− γ)(1−α)−1

)( 1−πA

K + fA(1−πA)
+

πA

K − fAπA

) .

When ρ = q2, ln
(

φA(K+ fA(1−πA))
K− fAπA

)
= 0 because φA(K + fA(1−πA)) = K −πA fA (full insurance),

and the numerator is 0. When ρ < q2, ln
(

φA(K+ fA(1−πA))
K− fAπA

)
< 0 because φA(K + fA(1− πA)) <

K − fAπA (underinsurance), and the numerator is positive. When ρ > q2, ln
(

φA(K+ fA(1−πA))
K− fAπA

)
> 0
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because φA(K + (1 − πA) fA) > K − πA fA (overinsurance), and the numerator is negative. The

denominator is always negative.

Therefore,

∂ fA

∂α


< 0, if ρ < q2,

= 0, if ρ = q2,

> 0, if ρ > q2,

which completes the proof. ■

Proof of Corollary 4. Let the right-hand side of Equation (19) be g(xi). In the equilibrium with

high insurance (low xi), ∂xi (xi −g(xi)) > 0 because the right-hand side intersects the 45-degree

line from above. In the equilibrium with low insurance (high xi), ∂xi (xi −g(xi)) < 0 because it

intersects the 45-degree line from below.

In the high insurance equilibrium, by the Implicit Function Theorem with some manipulation

∂xi

∂πi
=

1
πi (1−πi)

xi

∂xi (xi −g(xi))
> 0.

Given that fi =
K

πi+

(
1
φi

x
1

(1−γ)(1−α)−1
i −1

)−1 and (1− γ)(1−α)−1 < 0, we have that

∂ fi

∂πi
=− f 2

i

K

1+
1

1+(γ −1)(1−α)

1
φi

x
1

(1−γ)(1−α)−1
i(

1
φi

x
1

(1−γ)(1−α)−1
i −1

)2
1

πi (1−πi)

1
∂xi (xi −g(xi))

 .

In the high-insurance equilibrium ∂xi (xi −g(xi)) > 0 such that ∂ fA
∂πA

< 0. In the low-insurance

equilibrium, ∂xi (xi −g(xi))< 0. As such, if

1
1+(γ −1)(1−α)

1
φi

x
1

(1−γ)(1−α)−1
i(

1
φi

x
1

(1−γ)(1−α)−1
i −1

)2
1

πi (1−πi)

1
∂xi (xi −g(xi))

<−1,

then ∂ fA
∂πi

> 0. This condition is satisfied only when |∂xi (xi −g(xi)) | is sufficiently small. Other-

wise, ∂ fA
∂πA

< 0. ■
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