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Abstract

Real-time bottlenecks in non-storable infrastructure—most visibly electricity—can throttle mod-
ern production. We embed proportional rationing of grid supply into multi-sector economy,
showing that unexpected scarcity cuts output, employment, and consumption, while the prospect
of future capacity expansions mitigates those losses. To test the model’s predictions, we mea-
sure U.S. public firms’ exposure to realized electric capacity constraints and future expected
capacity tightness. We confirm the model’s predictions using panel regressions with fixed effects
and establish causality by exploiting two quasi-natural experiments: the 2021 Texas blackout
(a 34 GW supply shock) and subsequent state reforms that raised future expected capacity.
Difference-in-differences estimates indicate a drop in short-term profitability and firm value in
affected firms. Higher future anticipated capacity leads to higher longer-term employment, cap-
ital, and firm value. Investors demand higher expected returns for firms with greater exposure
to electric capacity constraints, confirming that infrastructure tightness, either due to excess
demand or limited supply, is a priced, macro-critical risk.
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1 Introduction

Infrastructure constraints are emerging as a central source of economic fragility. In an era of

electrification, digitization, and climate stress, modern production depends on systems—like elec-

tricity grids—that are essential but often non-storable, non-tradable, and capacity-constrained in

real time. When these systems become stressed, the consequences are not just technical or lo-

calized: they ripple through output, consumption, and asset markets. Yet, macroeconomics and

finance largely lack models that capture how real-time infrastructure scarcity affects production

and risk. We build and empirically test a framework in which electricity, a physically rationed and

economically essential input, acts as a state-contingent constraint that propagates into volatility

in firm-level cash flows and expected returns. The goal is to rethink infrastructure not just as a

background condition for growth, but as a priced economic risk in its own right.

The model introduces a non-tradable, non-storable production input—electricity—that is sub-

ject to stochastic supply and demand constraints. Firms differ in their reliance on this input, and

when total demand exceeds capacity, electricity is rationed through proportional allocation. This

creates a tightness ratio that varies over time and acts as an endogenous aggregate shock. Because

output, dividends, and aggregate consumption fall in tight states, electricity shortages co-move

with marginal utility, leading to priced risk. The model predicts: (i) on the real side, factor inputs

and firm profits are reduced in periods of electricity tightness; (ii) on the financial side, risk premia

are increasing in the degree of electricity tightness.

Although we anchor the model in electricity markets for expositional clarity, the economic logic

hinges on three generic features–not on anything idiosyncratic to power grids. First, the con-

strained input must be non-storable in real time, so short-run supply/demand shocks translate

one-for-one into quantity rationing rather than deferred inventory draw-downs; this applies equally

to data-center processing slots, last-mile broadband bandwidth, port berths, pipeline capacity, and

airport take-off slots. Second, the input must exhibit low short-horizon substitutability, that is,

firms cannot instantly switch to close substitutes without incurring large efficiency losses–precisely

the situation faced by manufacturers during water-use bans, retailers during logistics bottlenecks,

or cloud-native companies when CPU/GPU quotas are hit. Third, the constraint must be system-

ically shared, so rationing shocks co-move with aggregate consumption and feed into equilibrium

discount rates; data-center congestion during peak AI-training cycles, drought-driven canal closures,

or semiconductor-foundry capacity limits all satisfy this criterion because they simultaneously af-
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fect many firms’ cash flows and consumers’ welfare. Hence, the tightness-premium mechanism

we derive generalizes naturally beyond U.S. electricity grids to any economy where a real-time,

capacity-capped infrastructure service enters firm production technologies with limited short-run

substitutability.

To test the model’s predictions, we construct a panel of U.S. publicly traded firms based on

a unique match between individual plants and their corresponding regional electricity tightness

constraints. We proxy electricity supply tightness using two administrative data sources that are

commonly used in electric reliability and capacity analysis: (i) the System Average Interruption

Duration Index (SAIDI), which captures realized supply outages at the county level and is sup-

plied by the U.S. Energy Information Administration (EIA); and (ii) anticipated reserve margins

published in grid reliability assessments at the regional level by the North American Electric Re-

liability Corporation (NERC), which measures whether a region will have sufficient capacity to

meet forecasted peak demand. We further saturate the model with firm-level observables and firm

and year fixed effects. Finally, in the regressions with employment we also absorb firm-year and

establishment fixed effects, which allows us to control for any firm-level time-varying shocks and

time-invariant unobserved plant characteristics.

We show that firms facing greater exposure to tight periods–whether those periods reflect real-

ized scarcity or forward-looking constraints–have lower employment at the plant level. Such firms

have also lower profits and invest less. Further, in the cross-section, they also have lower equity

valuations and earn systematically higher future returns; this premium is not explained by firm

characteristics, sector effects, or energy input prices. In our asset-pricing tests, we show that the

electricity-tightness factor (ELX), a portfolio that takes a long position in companies with tight

electricity and a short position in companies with little tightness, is economically large and virtu-

ally unspanned by the Fama–French factors. Portfolios sorted on ELX exposure earn a monotonic

return spread of roughly 5–6 percent per year that survives the full six-factor model, and cross-

sectional regressions confirm a significantly negative price of risk for ELX betas after conditioning

on size, value, investment, profitability, momentum, liquidity, and betting-against-beta. These re-

sults align closely with the model’s prediction that real-time infrastructure scarcity co-moves with

marginal utility and is therefore a distinct, priced source of systematic risk. The results support the

core mechanism of the model: when electricity is scarce or is expected to become scarce, firms with

greater physical exposure to supply constraints face more shocks that covary with consumption and

command a return premium as compensation.
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For identification, we pivot to a two–pronged strategy built around the Texas Winter-Storm

Uri episode, which delivers both a realized and a forward-looking shock to grid tightness. First,

the February 2021 blackout itself functions as an exogenous, weather-driven collapse in available

capacity: overnight, 34 GW of generation went offline without any connection to firms’ pre-existing

fundamentals, giving us a clean realized-scarcity experiment. Second, the post-Uri policy pack-

age—ERCOT’s mandated reserve-margin uplift, the shift to firming-obligation contracts, improved

weatherization of power plants, and the $9k/MWh scarcity-price cap—provides an anticipated-

capacity shock: it sharply revised expectations of future tightness while leaving contemporaneous

output unaffected. We apply these two shocks in cross-sectional, panel, and event-study designs

using difference-in-differences approach, and show that both precipitate the same patterns in in-

puts, profits, and returns. We further document that our estimates of risk premia are unchanged

when the headline 2021 months are excluded. Taken together, the realized-plus-expected Uri tests

assuage concerns that our results reflect endogenous demand swings or time-series confounds.

In our final tests, we show that electricity tightness has aggregate consequences that adversely

affect employment and capital allocation in the entire regions more exposed to infrastructure con-

straints suggesting the general-equilibrium implications of the constraints. As a special example,

firms offering data services, which are known to be electricity intensive, avoid locations with known

electricity disruptions and adjust their production inputs accordingly.

Our paper relates to four strands of literature. First, it contributes to production-based as-

set pricing by introducing a novel friction: a non-storable, non-tradable production input that

generates time-varying, state-contingent constraints. Although prior work emphasizes capital ad-

justment costs (see, e.g., Zhang, 2005) or labor frictions (e.g., Belo et al., 2014), this paper shows

that real-time infrastructure scarcity can also be a priced source of aggregate risk. Second, it

connects to rare disaster and tail risk models (e.g., Gabaix, 2012; Gourio, 2012) by microfounding

aggregate consumption volatility through bottlenecks in physical production rather than exogenous

shocks to preferences or endowments. Third, it complements the growing literature on climate risk

and macrofinancial fragility (e.g., Bansal et al., 2019; Colacito and Croce, 2011) by focusing on

infrastructure capacity as an economically essential input subject to short-run constraints. Finally,

the article builds on theoretical and empirical studies showing that electricity shortages reduce firm

production, employment and investment (e.g., Colmer et al., 2024; Fried and Lagakos, 2023; Allcott

et al., 2016; Rud, 2012). Our paper adds to the existing literature by linking supply-side constraints

with systematic variation in asset prices. In doing so, the paper bridges macrofinance and infras-
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tructure economics, showing how physical bottlenecks can propagate into financial markets through

firm-level exposure and consumption risk. In addition, the empirical literature documenting the

importance of electricity access, reliability, and cost for firm-level performance focuses on devel-

oping countries (e.g., Abeberese, 2017; Fisher-Vanden et al., 2015; Dinkelman, 2011). This paper

documents the relevance of electricity constraints in the context of a developed country, the United

States. The empirical literature shows that energy endowments and access shape location decisions

and industry specialization (e.g., Greenspon and Hanson, 2025; Manderson and Kneller, 2020; Gilje

et al., 2016). These results nicely align with the macro implications of our paper, which indicate

that electricity constraints matter for local production decisions and are particularly relevant in

industries such as data centers that are large consumers of electricity. Our study highlights the

increasing importance of electricity constraints, given the general trends in increasing electricity

demand, tightening transmission restrictions, imperfect market integration, deregulation, and inte-

gration of renewables (e.g., Hausman, 2025; Borenstein et al., 2023). Finally, the remaining finance

literature on electricity has focused primarily on issues around the governance utilities, generators’

investment and financing decisions, and whether electricity consumption can predict stock returns,

and not on the pricing of electric constraints (e.g., Ambec et al., 2025; Hong et al., 2025; Demirer

and Karaduman, 2024; Andonov and Rauh, 2024; Lin et al., 2023; Garrett and Shive, 2022; Iyke

et al., 2021; Lin et al., 2021; Bolton and Rosenthal, 2019; Da et al., 2017; Aïd et al., 2011; Joskow

and Tirole, 2007)

The rest of the paper proceeds as follows. Section 2 lays out the model; Section 3 describes the

data and identification strategy; Section 4 presents results and discusses further extensions. Section

5 shows macro implications of the infrastructure constraint and provides welfare calibration. Section

6 concludes. An online appendix shows robustness to priority contracts, price-clearing markets,

capital dynamics, and correlated productivity-grid shocks.

2 Model

In many economies, electricity is a non-storable, centrally allocated input that becomes binding

during capacity stress. Firms anticipate these constraints and adjust production and factor demand

accordingly. This section develops a production-based asset pricing model in which electricity enters

as a non-tradable input subject to stochastic rationing. Firms operate a nested CES production

technology and choose capital and labor ex ante, while electricity is allocated ex post. A repre-
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sentative household has CRRA preferences, and asset prices reflect general equilibrium responses

to electricity shocks. The model delivers closed-form predictions for how expected tightness affects

firm input choices, profits, risk premia, and valuations.

2.1 Economic Environment

The representative diversified household supplies capital competitively and has CRRA preferences

over aggregate consumption Ct:

U = E0

∞∑
t=0

βt C1−θ
t

1 − θ
, θ > 0

There are a large number N of small firms indexed by i, each operating a decreasing returns-

to-scale technology using capital Ki,t, labor Li,t, and electricity Ei,t+1 as inputs. Capital and labor

are chosen at time t; factor rentals rt and wt are set at time t; whereas electricity is allocated at

t + 1 after uncertainty resolves. Electricity is supplied inelastically by a system operator and is

non-tradable and non-storable.

2.2 Firm Technology and Electricity Rationing

Firms produce output according to a nested CES production function:

Yi,t+1 = Ai,t+1

[
δKLZ

σ−1
σ

i,t + δE(Ei,t+1)
σ−1

σ

] σ
σ−1

, Zi,t ≡ Kα1
i,t Lα2

i,t

where Ai,t+1 is firm-specific productivity, δKL and δE , both positive numbers, represent capi-

tal/labor (electricity) intensity with δKL + δE = 1. The choice between capital and labor follows

DRS Cobb-Douglas technology with α1 + α2 < 1. We normalize to 1 the relative prices of Z and

E. The parameter σ governs the elasticity of substitution between the capital-labor composite and

electricity.1

When aggregate electricity demand ED
t+1 =

∑
i Ed

i,t+1 exceeds the available supply Ēt+1, a

proportional rationing rule is applied2:

Erat
i,t+1 = κt+1Ed

i,t+1, where κt+1 = min
(

1,
Ēt+1
ED

t+1

)
1We abstract from capital accumulation to keep the exposure channel transparent; adding convex adjustment

costs does not change the qualitative predictions of our model (see Appendix OA.4).
2Proportional rationing mimics ISO practice where bids are pro-rated. The qualitative predictions of this model

remain unchanged assuming instead priority contracts.
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Because firms lock in K and L before rationing, the shock is a quantity share κ rather than a

price. Even if firms were willing to pay an arbitrarily high price, extra megawatt-hours do not

exist ex post. Hence, rationing operates like a multiplicative productivity shock that cannot be

hedged in energy futures markets and that scales revenues one-for-one when κt < 1. Treating it as

a simple input-price fluctuation would miss this commitment and non-tradability channel. In our

model, firms take κt+1 as exogenous and anticipate its distribution when choosing Ki,t and Li,t. It

is stochastic and determined at t + 1 as a function of Ēt+1 and ED
t+1.

We assume the tightness process has expected value κ and is driven by a single mean-zero

innovation, εt+1

log κt+1 = log κ + εt+1, εt+1 ∼ N (0, σ2
ε), |εt+1| ≪ 1.

Empirically, ϵt+1 is the one-step forecast error in κ, also nesting errors from supply and demand

processes.3 We also assume idiosyncratic productivity, log Ai,t+1, is independent of both εt+1 and

the aggregate productivity shock driving Ct+1.

2.3 Firm Problem

At time t, each firm chooses Ki,t, Li,t to maximize expected profits at time t + 1:

max
Ki,t,Li,t

Et [Ai,t+1 · F (Ki,t, Li,t; κt+1) − rtKi,t − wtLi,t]

where F (·) is the nested CES function described above, and input prices rt, wt are competitively

determined. Firms do not choose electricity input; rather, their notional demand Ed
i,t+1 determines

their allocation via the exogenous rationing rule.

We define a firm’s notional electricity demand Ed
i,t+1 as the amount of electricity the firm would

wish to use in period t + 1 if electricity were unconstrained. This demand is determined by the

firm’s capital and labor choices and arises endogenously from the production technology.

Given the nested CES production function

Yi,t+1 = Ai,t+1
[
δKLZρ

i,t + δE(Erat
i,t+1)ρ

] 1
ρ ,

3One can show that κt+1 = κeεt+1 = κ
(
1 + εt+1 + O(ε2

t+1)
)

≈ κ
(
1 + εt+1

)
.
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the firm’s notional demand is:

Ed
i,t+1 = Zi,t · χ where χ ≡

(
δE

δKL

)σ

and ρ ≡ σ − 1
σ

.

Substituting the closed-form notional demand and aggregating across firms we obtain:

∑
i

Ed
i,t+1 = χ

∑
i

Zi,t

Thus, the tightness ratio becomes:

κt+1 = min
(

1,
Ēt+1

χ
∑

i Zi,t

)

The demand increases in the firm’s production scale and in electricity intensity δE , and decreases

in the elasticity of substitution σ. As the aggregate scale of production increases, the total notional

demand rises, reducing κt+1. This amplifies the impact of electricity supply shocks and tightens

the economy-wide constraint.

2.4 Optimal Capital and Labor Choices

Given that electricity is not a choice variable, and firms take its rationed level κt+1 as given, we

substitute the notional electricity demand into Erat
i,t+1:

Erat
i,t+1 = κt+1Ed

i,t = Kα1
i,t Lα2

i,t · χ · κt+1

Then:

Yi,t+1 = Ai,t+1
[
δKLZρ

i,t + δE(κt+1χZi,t)ρ
] 1

ρ = Ai,t+1Zi,t · [δKL + δE(κt+1χ)ρ]
1
ρ

Let:

Φ(κt+1) ≡
[
δKL + δE(κt+1χ)ρ]1/ρand Āi,t ≡ Et [Ai,t+1 · Φ(κt+1)]

Then the firm’s problem reduces to:

max
Ki,t,Li,t

Āi,t · Kα1
i,t Lα2

i,t − rtKi,t − wtLi,t
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Using first-order conditions for K and L we obtain their optimal choices:

K∗
i,t =

(
α1 · Āi,t(κ) · µα2

rt

) 1
1−α1−α2

, L∗
i,t(κ) = µK∗

i,t(κ)

where

µ = α2
α1

· rt

wt
.

We analyze the impact of electricity constraints on production factors via the following:

Proposition 1. Consider the firm’s optimal capital and labor choices when the mean electricity-

tightness parameter equals κ ∈ (0, 1]. Then

dK∗

dκ
> 0,

dL∗

dκ
> 0 for every κ ∈ (0, 1].

Proof in the Appendix.

Intuitively, as electricity tightness relaxes (κ increases), firms anticipate higher effective produc-

tivity and scale up production by increasing both capital and labor inputs. Because ∂2Φ/(∂κ ∂δE)

is positive, the model also predicts that the employment- and CAPEX-responses to κ are stronger

for plants with higher electricity intensity. Proposition OA.1 formalizes this result.

2.5 Profitability, Dividends, and Aggregate Consumption

We next analyze the role of electricity tightness for real outcomes, such as firm profits, dividends,

and aggregate consumption. Using our notation, expected one-period firm-level operating profit is

Et

[
Πi,t(K, L; κ)

]
= Et

[
Ai,t+1Φ(κt+1)Zi,t

]
− rtK − wtL = Āi,t(κ)Zi,t − rtK − wtL.

We can then establish the following effect of expected tightness:

Proposition 2. Let (K∗
i,t(κ), L∗

i,t(κ)) denote the unique FOCs solution. Then d
dκEt

[
Πi,t

(
K∗

i,t, L∗
i,t; κ

)]
>

0 for every κ ∈ (0, 1].

Proof in the Appendix.
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We next show the effects for dividends. At time t, the firm commits to K∗
i,t, L∗

i,t and pays rentals

rtK
∗
i,t + wtL

∗
i,t. Next period’s realized dividend therefore is

Di,t+1 = Ai,t+1 Φ(κt+1)Zi,t −
[
rtK

∗
i,t + wtL

∗
i,t

]
.

Because the second term of the equation is fixed at time t, the sign of ∂Di,t+1/∂κt+1 =

Ai,t+1Zi,tΦ′(κt+1) is positive. Taking expectations yields

d
dκ

Et[Di,t+1] = Zi,t
dĀi,t

dκ
.

Using the result from the previous section, the last identity has a strictly positive value. Next,

we analyze the link to aggregate consumption. Competitive factor markets imply Ct+1 = wt+1L̄ +

rt+1K̄ +
∑

i Di,t+1. Using wt+1L̄ + rt+1K̄ =
∑

i rtK
∗
i,t +

∑
i wtL

∗
i,t (known at t), we obtain

Ct+1 = At+1 Φ(κt+1)
∑

i

Zi,t, At+1 ≡ 1∑
i Zi,t

∑
i

Ai,t+1Zi,t.

We take the first-order (log-linear) expansion of aggregate consumption around the mean value

of the electricity-tightness parameter κ to obtain the expression for conditional variance of con-

sumption. The lemma below summarizes the result:

Lemma 1.

∆ log Ct+1 = λ(κt+1) εt+1, εt+1 ∼ N (0, σ2
ε), λ(κt+1) = κ

Φ′(κt+1)
Φ(κt+1)

Proof in the Appendix.

In summary, looser expected electricity tightness (higher κ) simultaneously (i) raises expected

dividends through a level effect (Āi,t goes up) and (ii) weakens the transmission of supply shocks

(λ(κ) goes down).
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2.6 Risk Premium

Building on the results, we study the implications of electricity constraints for individual firm risk

premia. With CRRA preferences, the stochastic discount factor (SDF) is:

Mt+1 = β

(
Ct+1
Ct

)−θ

The return of asset i is:

Ri,t+1 = Di,t+1
Pi,t

, with Pi,t = Et[Mt+1Di,t+1].

As before, the dividend process is of the form:

Di,t+1 = Zi,t Ai,t+1 Φ(κt+1) − rtK
∗
i,t − wtL

∗
i,t,

where Zi,t is fixed at t once inputs are chosen. The term rtK
∗
i,t +wtL

∗
i,t is known at t, so it drops out

of all conditional covariances. The factor prices affect the level of Di,t+1 but not its state-contingent

part that covaries with Mt+1. Hence, GE feedback drops out of the covariance.

Following our assumptions, the only covariance between the firm’s cash flow and the SDF comes

from εt+1 via the common factor Φ(κt+1). For any asset with return Ri,t+1, we can represent the

related risk premium as:

RPi,t+1(κ) = Et[Ri,t+1] − Rf,t = − Covt(Mt+1, Ri,t+1).

Because Pi,t is time-t measurable,

Covt(Mt+1, Ri,t+1) = 1
Pi,t

Covt
(
Mt+1, Di,t+1

)
.

Let

gt+1 ≡ ∆ log Ct+1 = log Ct+1
Ct

, ri,t+1 ≡ log Ri,t+1.

For a Lucas-tree asset whose payoff is proportional to Ct+1 and consumption growth is iid, we

have ri,t+1 = gt+1. The log SDF is
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mt+1 ≡ log Mt+1 = log β − θgt+1.

Using the standard log-normal covariance formula (Cochrane, 2005), jointly log-normal (mt+1, ri,t+1)

and small shocks imply

Covt(Mt+1, Ri,t+1) = exp
(

1
2σ2

mm + 1
2σ2

rr

)
(eσ2

mr − 1) ≈ σ2
mr,

so with CRRA preferences we obtain

RPi,t+1 = − Covt(mt+1, ri,t+1) = θ Vart(gt+1) = θ Vart
(
∆ log Ct+1

)
.

Using Lemma 1, we can rewrite firm-level risk premium and determine the sign of its total

derivative with respect to expected electricity tightness.

RPi,t+1(κ) = θσ2
ε λ(κt+1)2

Proposition 3.

dRPi,t+1
dκ

= −2θ σ2
ε λ(κt+1)2

[1 − ρ

κ
+ ρ λ(κt+1)

]
< 0, 0 < ρ < 1.

Proof in the Appendix.4

To summarize, relaxing the electricity constraint (κ goes up) makes consumption growth less

sensitive to supply shocks (λ goes down), shrinking the covariance between the firm’s dividend and

the SDF. The equity premium for the individual firm therefore falls. Firms with higher electricity

weight δE or lower substitution elasticity σ have a larger λ(κ) and therefore a bigger absolute drop

in their premium when κ rises.

In our data, we study equilibrium responses to both expected and unexpected electricity tight-

ness. To this end, we show that unexpected deviations in tightness, εt+1, also generate systematic

cash-flow and return shocks. Corollaries 1–2 formalize these results.

Corollary 1. For a small, mean-zero shock εt+1 = log κt+1 − log κ, |εt+1| ≪ 1 the first-order effect
4Similar comparative static result extends to a model with convex capital-adjustment costs of Section OA.4;

detailed derivations are available upon request.
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on next-period operating profit is

∆Πi,t+1 = Ai,t+1Zi,tΦ′(κ)εt+1

Given that Φ′(κ) is a positive number, a negative shock (unexpected tightening) lowers profits;

the magnitude scales with electricity intensity δE and low substitutability σ.

Linearizing the SDF and dividend around κ yields an equivalent result for the abnormal return:

Corollary 2.

ri,t+1 − Et[ri,t+1] = −θλ(κ)εt+1 + ηi,t+1,

where η is idiosyncratic noise.

Thus, unexpected tightness (negative ε) produces a negative abnormal return, stronger for firms

with high λ(κ), that is, high δE and low σ.

2.7 Firm Value

Next, we study implications of tightness for firm value. For a single firm i that pays next-period

dividend Di,t+1,

Pi,t = Et[Di,t+1]
Rf,t + RPi,t(κ) ≡ Et[Di,t+1]

Ri,t
,

using the usual log-linear approximation that the dividend–price ratio is near its steady state value

and one-period risk captures the relevant discount rate.5 We establish the following result for the

total derivative of firm value with respect to expected electricity tightness.

Proposition 4.
dPi,t

dκ
> 0.

The valuation effect naturally combines two previously established effects: the cash-flow channel,

in which looser electricity tightness raises effective productivity, so expected dividends rise; and the

discount-rate channel, in which the same change reduces both volatility and covariance of dividends

with the SDF, so the required return falls. With higher cash flows and a lower discount rate, the

equity price must increase.
5We assume that volatility is small.
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2.8 Extensions

In this section, we discuss a number of extensions to our basic model, which underscore the ro-

bustness of our baseline model and generate additional testable implications. First, we discuss the

amplification effects driven by differences in electricity intensity and input substitutability. We fur-

ther discuss basic intuition for the versions of the model with priority weights, capital adjustment,

correlated shocks, and electricity price adjustment. Finally, we summarize the main welfare results.

The Online Appendix establishes that the baseline tightness–premium mechanism is remark-

ably robust. (i) Heterogeneous technologies. Cross–partial derivatives in Section OA.2 show that

relaxing expected tightness κ lowers risk premia more for firms that are (a) electricity–intensive

(δE large) and (b) have low short-run substitutability (σ small). (ii) Priority-weighted rationing.

Granting firm-specific weights ωi preserves all monotone comparative statics—high–priority firms

simply face a stochastically larger κi,t and generates testable dispersion in size, profits, and premia

(Section OA.3). (iii) Capital dynamics. Introducing quadratic adjustment costs turns rationing

shocks into persistent investment wedges; nonetheless Propositions 1-3, the risk-premium formula,

and valuation results survive with attenuated magnitudes (Section OA.4). (iv) Correlated pro-

ductivity–grid shocks. Allowing arbitrary covariance between technology and supply shocks only

alters the intercept of premia; the slope d RP/dκ < 0 flips sign only under implausibly large neg-

ative correlation (Section OA.5). (v) Price-clearing markets. A competitive spot price with a

hard capacity cap yields the same allocation and risk as quantity rationing (Section OA.6). (vi)

Welfare. Because higher κ raises average consumption and dampens its volatility, lifetime utility

is strictly increasing in κ; with convex grid-upgrade costs this delivers a unique optimal target κ∗

(Section OA.7). Taken together, these extensions confirm that our empirical tests identify a general

infrastructure-tightness channel rather than a knife-edge special case.

3 Data

In this section, we provide the sources and definitions of our main variables. First, we describe

information related to electricity tightness, followed up by plant-level, corporate and stock market,

and county data. Next, we provide summary statistics of the variables utilized in our regression

models. For reference, Table A.1 of the Appendix provides the list of all the variables we use in

our empirical tests.

We use two sources of U.S. administrative data to measure realized and expected electricity
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tightness. First, for realized tightness, we use the System Average Interruption Duration Index

(SAIDI), which captures realized supply outages and is measured as the number of days a particular

entity is without electricity supply. We measure SAIDI at the county level based on the data

from the U.S. Energy Information Administration (EIA) via Form 861, the Annual Electric Power

Industry Report. EIA Form 861 is a federally required annual survey that collects utility-level

data on customer counts, electricity sales, revenues, service territories, and reliability for all electric

utilities and power marketers in the United States. These entities report reliability metrics for each

state in which they operate, as well as the exact counties and number of customers they serve locally.

We compute the county-level SAIDI as a customer-weighted average of the state-level SAIDI values

reported by all utilities serving that county. That is, we assign each utility’s state-level SAIDI to

every county it serves within that state, and then weight these values by the number of customers

the utility serves in the county to arrive at the county-level measure (similar to e.g., Borenstein

et al., 2023). Moreover, to calculate exposure to outages during the Uri Winter Storm, we use

county-level outage data from the U.S. Department of Energy’s EAGLE-I historic dataset, which

includes power outage information at the county level at 15-minute intervals.

For expected tightness, we rely on anticipated reserve margins published in Long-Term Reli-

ability Assessments at the regional level by the North American Electric Reliability Corporation

(NERC), which measures whether a region will have sufficient capacity to meet forecasted peak

demand. The anticipated reserve margin is expressed as a percentage over the expected peak elec-

tricity demand. This means it shows how much extra electricity capacity there will be compared to

the highest amount of electricity people are expected to use at once (the peak demand). NERC’s

Long-Term Reliability Assessment is the federally recognized benchmark for evaluating future ca-

pacity and reserve margins in the United States, drawing on standardized, region-specific data from

planning authorities to assess long-term resource adequacy. It is published annually at year end

and forecasts reserve margins for up to 10 years ahead. We focus on the short-term, one-year ahead

forecasts made by NERC. This data provides us a measure of Anticipated Excess Capacity (AEC).

For illustration, Figure 1 displays geographical distribution of the two measures of electricity

tightness for the year 2021. Panel 1a presents the geographic distribution of SAIDI. We note a

significant presence of scattered outages in Texas, North West, and North East, with a primary

driver of the outages in Texas being the Uri Winter Storm (Brelsford et al., 2024). In fact, some

of the most exposed counties in that year experienced outages lasting close to 10 days. Figure 1b

shows the geographic distribution of AEC. AEC is regionally more clustered as electricity regions
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span larger areas than counties. Florida (FERC), Midwest (MISO), New York (NPCC) had the

lowest values of AEC, at around 5%, while East, Southeast, and Southwest recorded the highest

values, at around 20%.

We create firm-level exposures to electricity tightness by utilizing the locations of firms’ es-

tablishment data. We first determine establishments of public firms and their locations. We then

map establishments to counties and electricity regions. Afterwards, we calculate establishment-

level exposure to realized and forecasted electricity tightness. To arrive at firm-level measures, we

aggregate the exposure of firms’ establishments and weigh them by the employment shares of the

establishments.

Our data on firm-level fundamentals (annual) and stock returns (monthly and daily) come from

Capital IQ. Our data on factor returns come from WRDS. We define the book value of common

equity as a difference between the book value of stockholder’s equity, adjusted for tax effects, and

the book value of preferred stock. To construct the book value per share, we follow Asness and

Frazzini (2013), and adjust book value for corporate actions between fiscal year-end and the date

of portfolio formation. To construct price-to-book ratio, we divide current price by book value

per share. The measure is updated monthly. LOG(MARKET/BOOK) is the natural logarithm of

the price-to-book ratio. Market capitalization is a product of number of shares outstanding and

stock prices (prccm). We use the last reported shares outstanding on the last trading day of the

month (cshom). LOG(SIZE) is the natural logarithm of firm’s market capitalization; LEVERAGE

is the ratio of debt to book value of assets; momentum, MOMENTUM, is the average of the

most recent 12 months’ returns on stock i, leading up to and including month t − 1; capital

expenditures, CAPEX/ASSETS, is the firm’s capital expenditures divided by the book value of its

assets; CASH/ASSETS, is the firm’s net cash divided by the book value of its assets; PPE/ASSETS

is the firm’s property, plant, and equipment over assets; the firm’s assets’ performance, ROA, is the

ratio of a firm’s net yearly income divided by the value of its assets; VOLATILITY, is the standard

deviation of returns using the past 12-month observations; SALES GROWTH is the annual growth

rate in firm sales. To mitigate the impact of outliers, we winsorize LEVERAGE, CAPEX/ASSETS,

ROA, MOMENTUM, VOLATILITY, and SALES GROWTH at the 2.5% level. To arrive at our

final sample of stock returns, we focus on primary issues of ordinary shares and exclude observations

with stock prices below $1.

Constrained by the availability of SAIDI, our baseline sample for real outcomes covers the

period 2014–2024. However, since AEC is available for earlier periods, our sample for stock return
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regressions, which relies on AEC, begins in January 2005, the first year in which reserve-margin

forecasts, and plant-level ISO assignments are systematically reported under the current NERC

taxonomy.6 Table 1 presents summary statistics of key variables we use in our main tests.

Panel A reports information at firm level. We observe substantial heterogeneity in both the

infrastructure variables that underpin our identification strategy and the usual balance-sheet con-

trols. AEC, the forward-looking measure of grid slack, averages 0.11 with an inter-decile range of

0.04–0.20, whereas realized outages, SAIDI, are markedly more right-skewed, climbing from 0.07

at the 10th percentile to 0.37 at the 90th. Firm scale varies sharply: the median company employs

e0.363 ≈ 1.4 k workers and holds roughly $1.1 bn in assets (log Assets = 7.0), but the upper decile

reaches e9.8 ≈ 18 bn. Investment intensity is modest (median CAPEX/Assets = 1.7%); profitabil-

ity is thin (median ROA = 1.3% with a left-tailed mean), and financial leverage centers around

23% of assets. Market valuations are equally dispersed, with Market-to-Book spanning 0.25–2.11

across the inter-decile range. Collectively, this breadth of variation along infrastructure, operating,

and financial dimensions furnishes ample cross-sectional and time-series power for the regression

analysis that follows.

Panel B shows that the establishment panel is both granular and dispersed. Anticipated Excess

Capacity averages 0.10 (s.d. 0.07), with a wider spread than in Panel A (P10–P90: 0.02–0.20).

Realized outages (SAIDI ) are more right–skewed at the plant level: the median is just 0.13, while

the mean rises to 0.23 and the 90th percentile reaches 0.44. Establishment size varies sharply: the

median unit has about e2.303 ≈ 10 employees (P10 = e0.693 ≈ 2; P25 = e1.609 ≈ 5; P75 = e3.258 ≈ 26;

P90 = e4.522 ≈ 92). Relative to the firm-year summary, these statistics indicate slightly lower

average slack but greater cross-sectional dispersion in both infrastructure exposure and operating

scale, providing useful within–and across-firm variation for the analyses that follow.

Panel C reports the summary statistics for stock returns at the firm-day level. Mean daily

returns are 0.33%, with a standard deviation of 3.61%. Daily returns are calculated as log returns.

Panel D reports the summary statistics at the county level. Panel C1 reports grid tightness

and local economic size for all industries. EMP and EST are total employment and establishments;

the table shows means (with SD) and selected percentiles (p10, p25, p50, p75, p90). Panel C2

restricts to NAICS 518210 (data processing/hosting). Industry Presence indicates whether the

county has any establishments in this industry; EMP and EST are the corresponding employment
6Using the full 1991-2024 window for AEC yields qualitatively similar results, but the earlier period is noisier

because of reporting changes and structural breaks in electricity markets.
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and establishments. Log variables are computed on the positive support (zeros excluded), so they

summarize the size distribution conditional on the industry being present.

4 Empirical Results

In this section, we present empirical results testing the main predictions of our model. We first

show that measures of capacity constraints, both expected and realized, correlate with real firm-level

outcomes—factor inputs, profitability, and valuations. Next, we study the effect of the constraints

on stock returns and risk premia and show that expected tightness significantly increases risk

premia. Third, we provide robustness of our results to potential endogeneity concerns using evidence

from Uri Winter storm and subsequent policy intervention in the Texas (ERCOT) market. Finally,

we show that firm-level constraints affect aggregate macro outcomes at the county level thereby

suggesting strong welfare implications.

4.1 From Capacity Tightness to the Real Economy

The model in Section 2 delivers sharp comparative-static predictions along two distinct margins. (i)

When firms expect future reserve margins to widen (higher AEC), the shadow cost of infrastructure

falls and they scale up hiring, investment, and production. (ii) Conversely, realized distribution

shortfalls (higher SAIDI) destroy effective labor hours and idle capital in real time, eroding cash

flows and valuations.

The empirical strategy below is designed to take these implications to the data: first on real

outcomes under anticipated excess capacity (Table 2); next on the same outcomes under realized

outages (Table 3); and finally on market valuation (Table 4). All specifications are annual, include

the full set of controls listed in the tables, and rely on clustering by firm headquarter county (or

establishment county).

We estimate:

yit = α + βAEC it + δXit−1 + µi + γt + εit, (4.1)

where yit is log-employment, log-capital, investment rate, or ROA for firm i in year t; AEC it is

the anticipated reserve-margin gap of firm i based on its employee-weighted aggregated plant-level

exposures at region r; Xit−1 is a vector of firm-level controls observed at year t − 1; and µi and γt

are firm and year fixed effects. Standard errors are double clustered by firm and year.

Columns 1–5 of Table 2 document that a one-standard-deviation increase in AEC is associated
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with a 2.5% rise in firm-level employment and a parallel, if muted, uptick at the establishment level.

Notably, the latter specification absorbs firm-year fixed effects, thus controls for any time-varying

firm-level unobservables, such as firm-specific demand shocks. Further, the rise in capacity also

predicts a 2.1% expansion of the capital stock and a 6 basis point boost in the investment rate.

Finally, we observe a 90 basis point improvement in ROA. These elasticities match the model’s

prediction that looser expected constraints operate through both intensive-margin productivity and

extensive-margin scale channels (Proposition 2). As an auxiliary result, in column 2, we find that

firms anticipating electricity constraints reallocate their labor from plants facing tighter constraints

to those facing weaker constraints.

Next, we estimate similar regression model for realized outages. Formally:

yit = α + βSAIDI it + δXit−1 + µi + γt + εit, (4.2)

where SAIDI it is the plant-weighted distribution-outage index for firm i based on the county-

level variation. The controls mimic those in equation 4.1. Table 3 shows that outages shave

statistically significant fractions off establishment employment (column 2), investment (column

4), and profitability (column 5). The firm-level employment effect in column 1 is close to zero,

indicating intra-firm reallocation that partly cushions the blow—again in line with the model’s

short-run adjustment frictions. Similarly, the effect for assets is negative but estimated with noise.

Finally, we estimate the model alternately relating AEC and SAIDI to firm-level valuation:

qit = β1AEC it + β2SAIDI it + δXi + µi + γt + εit, (4.3)

where qit is log market-to-book. Table 4 shows that firms with a one-standard-deviation higher

AEC are associated with roughly 1.7% higher q, whereas a comparable increase in SAIDI depresses

valuations by about 90 basis points. Both results obtain after conditioning on lagged, current, and

forward sales and profitability growth, momentum, volatility, and a host of fixed effects.

Overall, three facts emerge. First, signs align with theory: expected slack stimulates, realized

scarcity constrains. Second, the magnitudes are economically meaningful–comparable to canonical

technology or demand shocks. Third, the results survive an exhaustive set of controls, alleviating

the concern that tightness is merely a re-labeled firm-characteristic premium. Together, Tables 2–4

provide the real-side foundation for the risk premia estimated in Section 4.2.
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4.2 Infrastructure Tightness as a Priced Risk Factor

This section establishes three facts. First, the electricity-tightness factor (ELX), defined as a

difference in monthly stock returns of most-tight minus least-tight companies based on AEC, is

economically large and poorly spanned by the usual Fama–French factors (Panels E of Table 1 and

Table 5). Second, ELX commands a statistically significant premium in sorted-portfolio regressions

(Tables 6-7). Third, the factor earns a positive price of risk in the cross-section of individual stocks

once conventional characteristics are controlled for (Table 8). Taken together, these results are

fully consistent with the model’s comparative statics in Section 2.

Panel E of Table 1 reports moments of asset pricing factors we use in our analysis. ELX is

highly volatile (monthly σ ≈ 2.5%) and its inter-quartile range exceeds 2.5 percent, comparable to

the BAB factor and lower than most other factors. Importantly, the mean return equals 0.49 percent

per month, implying an annualized premium of 5.9 percent.7 The monthly Sharpe ratio is 0.2.

Table 5 shows that ELX is only weakly correlated with the six benchmark factors (maximum

absolute correlation ≤ 0.20). Both the canonical market factor and investment (CMA) loadings are

near zero. This low collinearity anticipates the incremental explanatory power documented below.

We next study time-series properties of the tightness factor using portfolio sorts. Following

Fama and French (1993), each period, we sort all stocks into decile portfolios using the previous-

month AEC measures and compute their value-weighted returns, Rp
t . Next, we regress the time

series of each portfolio returns, net of the risk-free rate, on the asset-pricing factors (F ). We further

regress ELX on the same set of factors.

Rp
t − Rf

t − = αp + β⊤
p Ft + εpt, p = 1 : 10. (4.4)

Table 6 reports the results. In Panel A, the five-factor alphas turn from positive (Decile 1) to

negative (Decile 10). The return spread between Decile 1(most constrained) and Decile 10 (least

constrained) portfolios is highly significant (t > 9). In the FF regression, alpha on Decile 10 is

highly significant and p-value of GRS test is significant. Once we include ELX, in deciles 2-9, the

alpha values become modest, and the GRS statistics cannot reject the joint null of zero intercepts

(p = 0.60). Columns 1–10 of Panel B show that the coefficients from the regression of the decile

portfolios on ELX decline monotonically from about 0.55 for the most constrained portfolio to

−0.46 for the least constrained portfolio. Adding three other auxiliary factors—momentum, BAB,
7The sign is economically intuitive: investors require compensation to hold capacity-constrained firms that suffer

in tight grids.
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and liquidity—in Table 7 leaves the patterns intact, while the stricter GRS test still fails to reject.

Next, we examine the pricing of risk due to electricity following Fama-MacBeth approach. For

each firm, we calculate a 60-month rolling-window electricity betas, as well as other risk-factor betas

coming from the FF framework. We require a minimum of 36 monthly observations to estimate

betas. We further winsorize all betas at 0.5% to mitigate the impact of outliers.

Table 8 implements a panel regression of individual excess stock returns on betas using ∼530,000

firm–month observations:

Re
i,t+1 = λ0t + λELX,t β̂ELX

i,t +
5∑

j=1
λj,t β̂

F Fj

i,t + Xi,tδt + εi,t+1. (4.5)

We double cluster standard errors at firm and month dimensions to allay concerns of cross-

sectional and autocorrelation across observations. Our coefficient of interest is λ, the price of

electricity risk.

The slope of the ELX beta is 11 bp per unit of beta (8 bp for the relative capacity specification)

and significant at the 5% level (columns 1–4). Economic magnitude is meaningful: moving from the

10th to 90th percentile of the beta distribution (∆β̂ = 1.49) predicts an expected-return differential

of about 18 bp per month, that is, 2.1 % annually, closely matching the realized spread in Table 6.

In columns 2 and 4, we further present the results that additionally include stock characteristics

as potential risk confounders, following the approach of Daniel and Titman (1997). In particular,

we include measures of excess capacity and electricity price as well industry-fixed effects at 2-digit

NAICS level. The results from this more comprehensive tests leave our main coefficient λ almost

unchanged, which provides additional support that stock returns reflect differences in covariances

rather than idiosyncratic characteristics, consistent with the predictions of our model.

Three further checks (unreported, available upon request) confirm robustness: (i) the time-

series and cross-sectional price of tightness risk is not driven by the February 2021 Texas event.

Re-estimating the specification in Table 8 on the 2005–2024 sample excluding the year 2021 yields

λ = 0.124 (t = 2.2), slightly larger in magnitude than the baseline 0.113. All other factor prices

remain virtually unchanged. Hence the ELX premium reflects pervasive covariation with the SDF

rather than a single disaster episode. Similarly, the pricing results are unchanged if we restrict

our sample to pre-2020 period reflecting potential effects due to Covid or the war in Ukraine.

The coefficient λ remains virtually unchanged for the restricted sample. (ii) not winsorizing the

top/bottom 0.5 % of extreme betas leaves λELX unchanged; (iii) excluding utilities and energy
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stocks from both factor construction and regressions does not affect the sign or significance of any

estimate.

Overall, the evidence supports the model’s core prediction that electricity-network tightness

is a priced aggregate shock. The factor materially improves both time-series and cross-sectional

pricing relative to state-of-the-art factor models, while requiring no additional risk exposures once

capacity improves.

4.3 Empirical Identification: Winter Storm Uri and ERCOT Reforms

For our identification, we utilize two shocks. Our first shock is the abrupt and severe generation

shortfall in the Texas grid during February 2021, which we treat as a negative realization of κ.

Winter Storm Uri was first flagged by U.S. forecasters as a dangerous event on February 10, 2021,

when the National Weather Service (NWS) began issuing winter storm watches and warnings

for large parts of the central United States, including Texas. By February 13, 2021, the NWS

and local emergency agencies were explicitly warning of life-threatening cold, widespread power

outages, and dangerous travel conditions, as the storm approached Texas. The peak electricity

crisis, when ERCOT initiated rolling blackouts, was February 15–18, 2021. We present the specific

time resolution of the weather news in Figure 3 of the Online Appendix.

In response to the shock and realization of network fragility, in the second quarter of 2021, the

state of Texas implemented reserve margin uplifts, firming obligations, and adjustments to scarcity

pricing caps. These policy changes altered forward capacity expectations without contemporane-

ously shifting demand. One of the most salient legislation was Texas Senate Bill 3 whose purpose

was to reform the state’s electricity system to improve reliability and resilience after the widespread

power outages during Uri. The Texas Legislature enacted post-Uri reforms on May 31, 2021; the

Public Utility Commission of Texas (PUCT) subsequently implemented these through rule makings

and financing orders that introduced the ERCOT uplift securitization charges and initiated market

redesign. We treat the reform as a second, positive shock, this time to expected tightness, κt—the

looseness of expected capacity constraint.8 In our analyses, we consider the ex-post consequences

of the two shocks for our variables of interest, along the predictions of Corollary 1 and 2.

To illustrate the role of the two shocks we begin with an event-study difference-in-differences
8Unlike it is for the Uri shock where the timing and resolution of the weather shock has been very clear, the Texas

anticipated upgrade has been made of a number of initiatives taking place in 2021 and 2022. For our purpose, the
important fact is that SB 3 has been one of the first if not the first significant shock in this regard. Also, to many
observers it was the first shock that removed any uncertainty related to the ERCOT uplift plans.
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for cumulative stock returns:

cumretit =
∑

k ̸=−1
βk1t=k × Shockc + δXit−1 + µi + γt + εit, (4.6)

where cumretit is the cumulative stock return for firm i up to and including day t, µi are firm fixed

effects, γt are day fixed effects, and Xit−1 includes a vector of firm controls. Shock is a generic

variable for the two shocks we study. We cluster standard errors at the firm headquarter county.

For the first shock, our treatment sample, Uri = 1, includes companies in the top 10% empirical

distribution of outage exposure to Uri. Our control sample, Uri = 0, includes companies in the

bottom 90% in terms of the outage exposure to Uri. Both groups also require a minimum 50% of

their total employment to be located in a Texas plant. The last choice allows for the possibility

of geographical spillovers outside Texas border. For the second shock, our treatment sample,

ERCOT = 1, includes companies with minimum 90% of employment exposure to ERCOT system.

Our control sample, ERCOT = 0, includes companies with no exposure to ERCOT. Note that

treatment definitions differ across events by design. The Uri shock was a meteorological disruption

with spillovers beyond Texas; we therefore define treatment using exposure to the storm/outages,

not ERCOT per se. In contrast, the post-Uri legislation affected market design within the Texas

ERCOT footprint; to minimize contamination from multi-state operations we require a very high

ERCOT footprint (≥ 90%) for treated firms and 0% for controls. Results are robust to alternative

cutoffs and to continuous exposure specifications.

We begin by validating the unexpected nature of our shocks using daily stock returns. For

our first shock, we set as zero event date February 16, which is the first trading day after which

widespread electricity outages followed in Texas. For our second shock, we consider June 1, 2021,

the first trading day after the passage of the Texas Senate Bill 3. For each shock, we present the

daily differences in cumulative stock returns between the samples of treatment and control groups

in the event window of -6 to +5 trading days for the Uri shock, and -6 to +2 trading days for the

ERCOT policy shock. For each day, we show point estimates of the differences along with 90%

confidence intervals.9

Figure 6 presents the results for the Uri shock. We can observe no visible pre-trend in the

period running up to the onset of the storm. Upon arrival of forecasts and the storm itself we
9We use a longer, 5-day post-period for Uri shock because different locations were affected within a few days

of February 15, the first peak day. Given the overlapping nature of these events it is difficult to consider them as
independent events. Hence, we set the first and the last day of the peak storm as our event window.
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can see a visible decrease in stock prices progressively deepening as the storm intensified. Figure 3

presents the results for the ERCOT policy shock. Again, prior to the shock we observe no significant

difference in cumulative returns between treatment and control groups, consistent with the idea of

parallel trends and the unexpected nature of the shock. We can then see a positive 2-day response

after June 1, 2021 when the Texas House and Senate agreed on the final version of the Bill.

To provide a statistical assessment of the return patterns, in Table 9, we present return responses

to the shock using the difference-in-differences regression framework with day and firm fixed effects.

We use daily returns as the outcome and a sample of 6 days before and 5 days after the respective

shocks. For the Uri shock, we find a strong negative response of stock returns of treated stocks,

relative to the control group. The difference is 120 basis points in daily returns. Conversely, for the

policy shock and the loosening of electricity constraints, we find a strong positive response of 106

basis points in daily returns. Both results support the direction of the expected economic change

and are statistically significant at 10% and 5% significance levels, respectively.

Subsequently, we trace down the short-term and long-term consequences of the shocks for real

outcomes using annual frequency data. We first document the effect of the shock for AEC and

SAIDI. Subsequently, we study the response for employment, assets, CapEx, ROA, and Tobin’s q.

Like before, we first report the graphical illustration of the difference-in-differences effects. Figures

4 and 5 present the results. Consistent with our hypotheses, we find that in response to both shocks

SAIDI experienced a short-term jump in 2021 while AEC observed a longer-term increase in value.

We also observe an increase in employment, firm assets, CapEx, and Tobin’s q. The values for ROA,

in turn, are lower for the year of the shock but muted for the longer term. We further confirm

the statistical significance of the results in Table 10 for the short-term effects. For the short-term

effects, we restrict the post period to one year, 2021. In Table 11, we present the longer-term

effects, in which we omit year 2021 and focus on the years 2022–2024 of the post period.10

5 Aggregate and Welfare Implications

In this section, we take an aggregate perspective on our results. In particular, we examine the

general equilibrium implications of electricity constraints. To the extent that firms may be differ-

entially exposed to such constraint, the aggregate implications may simply be a wash. We assess

this possibility empirically by relating county-level aggregates to our measures of constraints, AEC
10We also test for the presence of pre-trends in both tests and report the results in Table 12. We find little evidence

of significant pre-trends possibly invalidating the assumptions of the difference-in-differences approach.
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and SAIDI.

County-level aggregates provide a necessary complement to the firm- and establishment-level

tests. First, they capture general-equilibrium spillovers that micro units cannot internalize—for

example, reallocation of activity across firms within a county, migration of workers, or entry and

exit along the extensive margin. Second, aggregate responses are the relevant objects for welfare

and risk: in the model, electricity tightness scales aggregate consumption volatility and thus the

stochastic discount factor. If grid scarcity is macro-critical, it must register in county employment

and business formation. Third, aggregation guards against micro measurement error (e.g., plant-

level reporting noise in employment) by exploiting a high signal-to-noise ratio in county totals.

Table 13 implements these ideas using two complementary shifters of tightness—anticipated excess

capacity (forward-looking slack) and SAIDI (realized outages).

Panel A of Table 13 links anticipated excess capacity to county real activity. Columns 1–2

show that higher expected slack is associated with larger county-scale economic activity: both

employment and establishment counts rise with the forecast gap. The estimates are statistically

precise and economically meaningful, indicating that when the grid is expected to be farther from its

capacity constraint, local labor demand expands and the business base deepens. The model maps

this directly to a lower shadow cost of the non-storable input, which raises effective productivity

and scale (Proposition 1). Column 3 indicates that expected capacity constraints in the electricity

system have implications for average establishment sizes: greater expected slack in the grid is

associated with lager average establishment sizes. Columns 4–5 demonstrates implications for firm

dynamics: while the anticipated excess capacity does not significantly affect firm entry, there is a

strong negative association with firm exit. Higher expected capacity correlates with firm survival.

Panel B replaces expectations with realized SAIDI outages. The signs flip as the framework

predicts for quantity rationing that arrives after inputs are chosen: higher outage duration is

associated with lower county employment and fewer establishments (columns 1–2). Moreover,

realized electricity constraints have significant implications for average establishment sizes. Based

on the estimation in column 3, higher outages are associated with smaller establishment sizes. In

addition, higher realized outages are negatively associated with firm entry (column 4), but have no

effect on firm exit (column 5).

Panel C links anticipated excess capacity to county outcomes in industry NAICS 518210 (data

processing/hosting), a power-intensive benchmark sector that includes data centers. County em-

ployment and establishment sizes in the data processing/hosting sector rise with the AEC (columns 1

25



and 3), mirroring the sector’s sensitivity to the expected availability of electricity. Establishment

counts are not affected by variation in AEC (column 2). Additionally, the probability that the in-

dustry is present in the county increases with anticipated slack (column 4) but not in a significant

way. Effects on firm entry and exit are not estimated due to lack of public Census data at this level

of granularity. Overall, these patterns line up with the model’s cross-partials: sectors with higher

electricity intensity (δE) should display stronger scale responses to κ.

Panel D connects realized SAIDI outages to activity in the NAICS 518210 sector. We find

effects on both the extensive and intensive margins. Realized outages compress employment (col-

umn 1). There are no significant effects on establishment counts and average establishment sizes.

Furthermore, column 4 displays that realized scarcity lowers the likelihood of industry presence,

consistent with entry being less likely when realized rationing is high. Intuitively, outages destroy

effective labor hours and idle installed capital in real time, so realized tightness operates as a

negative productivity shock that scales down output one-for-one when κt < 1.

Two features deserve emphasis. First, the extensive margin reacts strongly in the power-

intensive industry: expected slack predicts entry and scale, while realized outages discourage both.

This is precisely the mechanism by which κ shifts the distribution of future rationing states that

firms face; when the distribution stochastically improves, entry thresholds fall. Second, the aggre-

gate results mirror the micro findings without being mechanically driven by them: the county totals

incorporate within-county reallocation and net migration, which validates that electricity tightness

bites at the macro level rather than merely reshuffling activity across incumbent plants.

All specifications in Table 13 are annual and use the covariates and fixed effects reported in the

table notes (including time fixed effects and location/industry structure as applicable); standard

errors are clustered by county as indicated. Outcomes are in logs where appropriate to accommodate

heavy right tails in county size (see summary statistics). The 518210 “presence” regression is binary,

while EMP and EST in that panel measure levels. Results are unchanged when we scale outcomes

by county population or use alternative exposure definitions; these robustness checks are reported

in the Online Appendix.

The county-level evidence in Table 13 substantiates the paper’s central mechanism at macro

scale: (i) forward-looking slack expands local employment and the business base, with pronounced

effects in electricity-reliant industries; (ii) realized outages compress the same margins. These

aggregate responses are the sufficient statistics that link infrastructure tightness to consumption

growth and, ultimately, to the priced risk documented in Section 4.2.
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6 Concluding Remarks

Infrastructure that cannot be stored or easily traded in real time reshapes both the real economy and

financial markets. By embedding proportional grid rationing into a general-equilibrium production

model, we have shown that unexpected scarcity compresses output, employment, and consumption,

while the anticipation of future capacity reverses those losses and shrinks risk premia. Empirically,

the 2021 Texas blackout and the ensuing reserve-margin reforms provide two clean, opposite shocks.

Our plant–grid matches confirm the model’s predictions: scarcity wipes out roughly 4 percentage

points of local employment and 2 percent of Tobin’s q; both margins recover once capacity is credibly

secured. Equity investors price this risk, demanding higher expected returns from electricity-

intensive firms.

Because tightness shocks are macro-critical, the welfare gains from even small improvements

in reserve margins or demand response can be substantial. The results therefore lend support to

recent proposals for firming-obligation contracts and dynamic scarcity pricing in wholesale markets.

Three directions for future research seem particularly promising. First, extending the framework

to multi-node networks would allow for spatial spillovers and congestion rents. Second, incorporat-

ing endogenous investment in both generation and storage would shed light on transition dynamics

and the pace of electrification. Third, the logic of real-time tightness applies equally to other non-

storable infrastructures such as data-center cycles, pipeline capacity, or port berths; quantifying

their macro–financial footprints is an open agenda.

Taken together, our findings reframe infrastructure not as a silent background condition but as

a priced state variable that links engineering constraints to business cycles and asset markets.
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Figures

(a) SAIDI

(b) AEC

Figure 1: Geographical Distribution of Realized and Expected Electricity Constraints in 2021

These figures plot the county-level distributions of electricity constraints in the U.S. in 2021. Figure
1a displays the results for SAIDI. Figure 1b displays the results for AEC. AEC measures future
excess capacity relative to the NERC reference capacity in percent. SAIDI measures total annual
outages in days.
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Figure 2: Cumulative Stock Returns around Uri Winter Storm Shock

This figure plots the cumulative stock market responses for treatment versus control firms to the
Uri Winter storm shock. The sample consists of firms with at least 50% employment footprint
in areas belonging to the Texas ERCOT grid. Treatment firms are firms in the top 10% of the
empirical distribution in terms of outage exposure to Uri, and control firms are those in the bottom
90% of the same distribution. Event date t=0 is February 16, 2021, which is the first trading day
after the widespread outages due to Uri storm. The sample window starts 6 trading days before
the shock and ends 5 trading days after the shock. Confidence intervals are at the 10% level.
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Figure 3: Cumulative Stock Returns around ERCOT Policy Adoption

This figure plots the cumulative stock market responses for treatment versus control firms to the
signing of post-Uri legislations in the Texas Senate and House. Treatment firms are firms with at
least 90% employment footprint in locations belonging to the Texas ERCOT grid, and control firms
have no exposure to the Texas ERCOT grid. The figure displays the response to the policy adoption
in the aftermath of the Uri shock. Event date t=0 is June 1, 2021, which is the first trading day
after the signing of the post-Uri legislations in the Texas Senate and House. The sample window
starts 6 trading days before the shock and ends 2 trading days after the shock. Confidence intervals
are at the 10% level.
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Figure 4: Firm Electricity Constraints and Outcomes around Uri Outage Shock

These figures plots the short-term firm responses for treatment versus control firms to the Uri shock
using equation 4.6. The sample consists of firms with at least 50% employment footprint in areas
belonging to the Texas ERCOT grid. Treatment firms are firms in the top 10% of the empirical
distribution in terms of outage exposure to Uri, and control firms are those in the bottom 90% of
the same distribution. The sample starts in 2018 and ends in 2021. Confidence intervals are at the
10% level.
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Figure 5: Firm Electricity Constraints and Outcomes around ERCOT Capacity Shock

These figures plot the firm responses for treatment versus control firms to the Texas shocks using
equation 4.6. Treatment firms are firms with at least 90% employment footprint in locations
belonging to the Texas ERCOT grid, and control firms have no exposure to the grid. The sample
starts in 2018 and ends in 2024. Confidence intervals are at the 10% level.
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Tables

Table 1: Summary Statistics

Panel A: Firm-Year
VARIABLE MEAN SD P10 P25 P50 P75 P90

ANTICIPATED EXC CAP (AEC) 0.113 0.058 0.040 0.074 0.104 0.152 0.195
SAIDI 0.208 0.251 0.065 0.097 0.154 0.238 0.371
LOG(EMP 1000s) 0.196 2.417 -2.996 -1.514 0.363 1.946 3.178
LOG(ASSETS) 6.703 2.646 3.161 5.138 7.002 8.482 9.800
CAPEX/ASSETS 0.032 0.041 0.001 0.004 0.017 0.044 0.082
ROA -0.146 0.666 -0.433 -0.068 0.013 0.058 0.119
LOG(MARKET/BOOK) 0.807 1.046 -0.246 0.126 0.649 1.354 2.112
PPE/ASSETS 0.218 0.251 0.009 0.026 0.109 0.321 0.678
LEVERAGE 0.300 0.346 0.002 0.060 0.227 0.411 0.632
SALES GROWTH 0.128 0.452 -0.206 -0.037 0.060 0.189 0.453
CASH/ASSETS 0.194 0.232 0.010 0.032 0.095 0.261 0.569
HHI NAICS-3 0.074 0.070 0.021 0.023 0.048 0.093 0.187
ROE GROWTH -0.046 2.158 -1.545 -0.586 -0.063 0.346 1.464
MOMENTUM 0.055 0.466 -0.510 -0.225 0.024 0.265 0.600
VOLATILITY 0.139 0.104 0.050 0.071 0.107 0.169 0.265

Panel B: Firm-Establishment-Year
VARIABLE MEAN SD P10 P25 P50 P75 P90

AEC 0.102 0.070 0.023 0.042 0.094 0.158 0.204
SAIDI 0.228 0.354 0.055 0.081 0.131 0.231 0.440
LOG(EMP) 2.507 1.378 0.693 1.609 2.303 3.258 4.522

Panel C: Firm-Day
VARIABLE MEAN SD P10 P25 P50 P75 P90

DAILY RETURN 0.326 3.612 -2.252 -0.795 0.054 1.333 2.980

Panel D: County-Year
VARIABLE MEAN SD P10 P25 P50 P75 P90

Panel D1: All Industries
AEC 0.114 0.077 0.022 0.052 0.102 0.170 0.226
SAIDI 0.280 0.438 0.073 0.105 0.166 0.281 0.540
EMP 40634.8 148288.6 936 2252 6806 21443 78565
EST 2585.5 9049.3 114 231 564 1583 5189
LOG(EMP) 8.933 1.741 6.842 7.720 8.826 9.973 11.272
LOG(EST) 6.485 1.503 4.736 5.442 6.335 7.367 8.554

Panel D2: NAICS 518210
INDUSTRY PRESENCE (0/1) 0.232 0.422 0 0 0 0 1
EMP 435.6 1710.9 0 0 10 139 882
EST 12.04 38 0 0 1 7 29
LOG(EMP) 4.604 2.052 2.251 2.398 4.317 6.148 7.474
LOG(EST) 1.890 1.405 0 1.099 1.609 2.773 3.912

Panel A reports summary statistics for the firm-year sample. The sample consists of U.S. firms in Compustat. Panel
B reports summary statistics for the firm-establishment-year sample. Panel C reports summary statistics for the
county-year sample and consists of all U.S. counties in the CBP data. The sample period begins in 2014 and ends in
2024.
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Table 1: Summary Statistics (continued)

Panel E: Firm-Month Factors
VARIABLE MEAN SD P25 P50 P75

ELX 0.49 0.55 -0.77 1.78 2.52
ELXREL 0.46 0.61 -1.00 1.84 2.37
MKT 0.81 1.26 -1.85 3.36 4.47
SMB -0.02 -0.03 -1.85 1.52 2.67
HML -0.10 -0.32 -1.82 1.45 3.20
RMW 0.35 0.34 -0.76 1.33 1.85
CMA 0.02 -0.09 -1.15 1.00 1.90
PS_VWF 0.09 0.22 -2.14 2.69 3.90
MOM 0.12 0.43 -1.74 2.61 4.40
BAB 0.39 0.47 -0.74 1.90 2.69

Panel E reports factor summary statistics. Returns are monthly in percent. ELX is most-tight minus least-tight
decile portfolio return. ELXREL scales absolute excess capacity by reference margin. The sample starts in 2005 and
ends in 2024.
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Table 2: Anticipated Excess Capacity and Real Outcomes

LABOR CAPITAL PROFIT

DEP VAR: LOG(FIRM EMP) LOG(EST EMP) LOG(ASSETS) CAPEX/ASSETS ROA

(1) (2) (3) (4) (5)

AEC 0.439∗∗∗ 0.008∗ 0.358∗∗∗ 0.010∗ 0.155∗

(0.155) (0.004) (0.107) (0.006) (0.089)
PPE/ASSETS 0.136 -0.136 0.002 0.205∗∗

(0.141) (0.085) (0.007) (0.088)
LEVERAGE -0.039 -0.279∗∗∗ -0.012∗∗∗ -0.490∗∗∗

(0.041) (0.036) (0.002) (0.054)
SALES GROWTH 0.089∗∗∗ 0.114∗∗∗ 0.006∗∗∗ 0.051∗∗∗

(0.017) (0.012) (0.001) (0.010)
CASH/ASSETS -0.072 -0.292∗∗∗ 0.003 0.138∗∗∗

(0.070) (0.055) (0.002) (0.053)
HHI NAICS-3 0.706∗∗ -0.134 -0.009 -0.283

(0.319) (0.222) (0.012) (0.193)
CAPEX/ASSETS 0.799∗∗∗ 0.461∗∗ -0.669∗∗∗

(0.261) (0.187) (0.169)
ROA 0.083∗∗∗ 0.088∗∗∗ -0.001∗

(0.022) (0.017) (0.001)
LOG(ASSETS) -0.011∗∗∗

(0.001)

N 37,528 3,691,660 37,528 37,528 37,528
R2 0.934 0.987 0.976 0.692 0.759

YEAR FE X X X X
FIRM FE X X X X
FIRM-YEAR FE X
ESTABLISHMENT FE X

The table reports coefficient estimates from panel regressions (equation 4.1). FIRM EMP denotes firm employment. EST
EMP denotes establishment employment. ASSETS denotes total assets. CAPEX/ASSETS denotes capital expenditure
over lagged assets. ROA denotes return on assets. AEC measures firm exposure to anticipated electricity capacity, which
measures future excess capacity relative to the NERC reference capacity in percent. The firm measure is an employment-
weighted mean of the firms’ establishment exposures. Columns 1, 3, 4, and 5 report results at the firm level. Column 2
is at the establishment level. Standard errors are clustered at the firm headquarter county level in firm-level regressions,
and establishment county level in establishment-level regressions. ***, **, and * denote statistical significance at the 1%,
5%, and 10% levels, respectively.
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Table 3: SAIDI and Real Outcomes

LABOR CAPITAL PROFIT

DEP VAR: LOG(FIRM EMP) LOG(EST EMP) LOG(ASSETS) CAPEX/ASSETS ROA

(1) (2) (3) (4) (5)

SAIDI -0.005 -0.002∗∗∗ -0.011 -0.002∗∗ -0.032∗∗∗

(0.018) (0.001) (0.013) (0.001) (0.011)
PPE/ASSETS 0.134 -0.138 0.002 0.204∗∗

(0.141) (0.086) (0.007) (0.088)
LEVERAGE -0.038 -0.278∗∗∗ -0.012∗∗∗ -0.490∗∗∗

(0.041) (0.036) (0.002) (0.055)
SALES GROWTH 0.089∗∗∗ 0.114∗∗∗ 0.006∗∗∗ 0.051∗∗∗

(0.017) (0.012) (0.001) (0.010)
CASH/ASSETS -0.075 -0.295∗∗∗ 0.003 0.137∗∗

(0.070) (0.055) (0.002) (0.053)
HHI NAICS-3 0.731∗∗ -0.113 -0.008 -0.274

(0.320) (0.224) (0.012) (0.194)
CAPEX/ASSETS 0.799∗∗∗ 0.461∗∗ -0.669∗∗∗

(0.261) (0.187) (0.169)
ROA 0.084∗∗∗ 0.089∗∗∗ -0.001∗

(0.022) (0.017) (0.001)
LOG(ASSETS) -0.011∗∗∗

(0.001)

N 37,528 3,691,660 37,528 37,528 37,528
R2 0.934 0.987 0.976 0.692 0.759

YEAR FE X X X X
FIRM FE X X X X
FIRM-YEAR FE X
ESTABLISHMENT FE X

This table reports coefficient estimates from panel regressions (equation 4.2). FIRM EMP denotes firm employment. EST
EMP denotes establishment employment. ASSETS denotes total assets. CAPEX/ASSETS denotes capital expenditure
over lagged assets. ROA denotes return on assets. The independent variable SAIDI measures firm exposure to realized
electricity capacity constraints, which measures total annual outages in days. The firm measure is an employment-
weighted mean of the firms’ establishment exposures. Columns 1, 3, 4, and 5 report results at the firm-level. Column 2
is at the establishment level. Standard errors are clustered at the firm headquarter county-level in firm level regressions,
and establishment county level in establishment-level regressions. ***, **, and * denote statistical significance at the 1%,
5%, and 10% levels, respectively.
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Table 4: Electricity Constraints and Firm-Level Valuation

DEP VAR: LOG(MB) LOG(MB)

(1) (2)

AECt 0.286∗∗

(0.118)
SAIDIt -0.035∗

(0.021)
SALES GROWTHt−1 0.129∗∗∗ 0.129∗∗∗

(0.016) (0.016)
SALES GROWTHt 0.112∗∗∗ 0.112∗∗∗

(0.015) (0.015)
SALES GROWTHt+1 0.181∗∗∗ 0.180∗∗∗

(0.016) (0.016)
ROE GROWTHt−1 0.026∗∗∗ 0.026∗∗∗

(0.003) (0.003)
ROE GROWTHt 0.028∗∗∗ 0.028∗∗∗

(0.003) (0.003)
ROE GROWTHt+1 0.036∗∗∗ 0.036∗∗∗

(0.003) (0.003)
ROAt−1 -0.148∗∗∗ -0.148∗∗∗

(0.042) (0.042)
LOG(ASSETS)t−1 0.039∗∗∗ 0.039∗∗∗

(0.005) (0.005)
MOMENTUMt−12:t−1 0.627∗∗∗ 0.626∗∗∗

(0.015) (0.015)
VOLATILITYt−12:t−1 -1.289∗∗∗ -1.291∗∗∗

(0.124) (0.125)

N 26,766 26,766
R2 0.365 0.365

YEAR FE X X
NAICS-3 FE X X
HQ-COUNTY FE X X

This table reports coefficient estimates from panel regressions
(equation 4.3). MB is market-to-book ratio. The independent
variable AEC measures firm exposure to anticipated electric-
ity capacity, which measures future excess capacity relative to
the NERC reference capacity in percent. The firm measure
is an employment-weighted mean of the firms’ establishment
exposures. The independent variable SAIDI measures firm ex-
posure to realized electricity capacity constraints, which mea-
sures total annual outages in days. The firm measure is an
employment-weighted mean of the firms’ establishment expo-
sures. Standard errors are clustered at the firm headquarter
county-level. ***, **, and * denote statistical significance at
the 1%, 5%, and 10% levels, respectively.
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Table 5: Factor Correlation Matrix (2005–2024)

ELX ELXREL MKTRF SMB HML RMW CMA PS_VWF MOM BAB

ELX 1.0000
ELXREL 0.9169 1.0000
MKTRF -0.0102 -0.0257 1.0000
SMB 0.0108 -0.0183 0.3703 1.0000
HML 0.1059 0.0846 0.1467 0.3246 1.0000
RMW 0.1045 0.0874 -0.1915 -0.3758 0.0038 1.0000
CMA 0.0299 0.0324 -0.1351 0.0449 0.5932 0.0971 1.0000
PS_VWF -0.0102 0.0069 0.1788 0.1464 -0.2750 -0.1412 -0.3576 1.0000
MOM -0.0301 -0.0281 -0.3748 -0.3033 -0.3320 0.0916 -0.0054 0.1430 1.0000
BAB 0.0217 -0.0122 -0.0323 -0.1214 -0.1077 0.0566 0.0324 0.1801 0.3141 1.0000

This table presents correlations for variables in the firm-month sample. Complete matrices are reported for both
samples; Panel B can be relegated to the Online Appendix without loss of continuity. The sample starts in 2005 and
ends in 2024.
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Table 6: Portfolio Sorts (deciles) and ELX Factor Returns

PANEL A: REGRESSIONS OF DECILE PORTFOLIOS ON FIVE FACTORS
DEP VAR: VALUE-WEIGHTED EXCESS RETURN OF DECILE d 1–10 SPREAD

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

MKT-RF 0.950∗∗∗ 1.007∗∗∗ 1.042∗∗∗ 0.969∗∗∗ 1.067∗∗∗ 0.991∗∗∗ 0.917∗∗∗ 0.967∗∗∗ 0.888∗∗∗ 0.934∗∗∗ 0.015
(0.037) (0.033) (0.033) (0.025) (0.029) (0.026) (0.032) (0.030) (0.028) (0.030) (0.046)

SMB 0.252∗∗∗ 0.028 0.090 0.055 −0.101∗∗∗ −0.045 0.100 −0.067 0.200∗∗∗ 0.270∗∗∗ −0.018
(0.069) (0.058) (0.058) (0.044) (0.032) (0.040) (0.061) (0.063) (0.054) (0.063) (0.082)

HML −0.042 −0.054 −0.104∗∗ 0.019 0.011 0.094∗∗ 0.055 −0.090∗∗ −0.103∗∗ 0.075 −0.118
(0.054) (0.060) (0.049) (0.048) (0.037) (0.045) (0.053) (0.044) (0.052) (0.082) (0.097)

RMW −0.102 0.031 0.090 0.100∗ 0.057 −0.033 −0.078 −0.097 −0.156∗∗ 0.055 −0.157
(0.087) (0.084) (0.074) (0.060) (0.044) (0.056) (0.079) (0.076) (0.071) (0.078) (0.111)

CMA 0.055 0.173∗ 0.061 −0.095 0.057 −0.128∗ 0.048 0.019 0.166∗ −0.043 0.098
(0.085) (0.104) (0.085) (0.076) (0.057) (0.073) (0.094) (0.079) (0.087) (0.111) (0.130)

CONSTANT 0.167 −0.027 −0.171 0.045 −0.100 −0.004 0.000 −0.010 0.026 −0.353∗∗∗ 0.490∗∗∗ 0.520∗∗∗

(0.134) (0.121) (0.113) (0.087) (0.080) (0.087) (0.118) (0.118) (0.118) (0.128) (0.166) (0.174)

N 240 240 240 240 240 240 240 240 240 240 240 240
R2 0.839 0.853 0.879 0.916 0.947 0.925 0.863 0.855 0.859 0.858

PANEL B: REGRESSIONS OF DECILE PORTFOLIOS ON ELX
ELX 0.556∗∗∗ 0.101 0.081 0.077 0.049 −0.078 −0.113 −0.170 −0.011 −0.444∗∗∗

(0.168) (0.152) (0.161) (0.148) (0.157) (0.157) (0.161) (0.150) (0.140) (0.168)

This table presents estimations of monthly regressions of decile-portfolio excess returns on factors. Panel A shows regressions on five factors
market, size, value, profitability, and investment. Panel B displays regressions on the electricity tightness factor. Deciles are formed based on
AEC, with decile 1 having lowest AEC and decile 10 having highest AEC. Columns 11 and 12 show the results with the decile 1-decile 10
return spread as a dependent variable. Robust standard errors (Newey–West, five lags) are reported in parentheses. The sample covers the
period 2005–2024. ∗∗∗,∗∗ ,∗ denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 7: Portfolio Sorts (deciles) and ELX Factor Returns: Expanded Factors

DEP VAR: VALUE-WEIGHTED EXCESS RETURN OF DECILE d 1–10 SPREAD

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

MKT-RF 0.938∗∗∗ 1.028∗∗∗ 1.044∗∗∗ 0.985∗∗∗ 1.048∗∗∗ 0.986∗∗∗ 0.915∗∗∗ 0.976∗∗∗ 0.887∗∗∗ 0.919∗∗∗ 0.020
(0.035) (0.034) (0.037) (0.023) (0.024) (0.025) (0.032) (0.032) (0.029) (0.032) (0.049)

SMB 0.250∗∗∗ 0.030 0.079 0.077∗ −0.123∗∗∗ −0.048 0.101 −0.061 0.210∗∗∗ 0.267∗∗∗ −0.016
(0.072) (0.057) (0.060) (0.047) (0.033) (0.040) (0.063) (0.064) (0.056) (0.064) (0.078)

HML −0.029 0.012 −0.066 −0.003 0.009 0.104∗∗ 0.077 −0.059 −0.117∗∗ 0.094 −0.123
(0.060) (0.063) (0.049) (0.043) (0.043) (0.046) (0.051) (0.046) (0.055) (0.072) (0.103)

RMW −0.104 0.037 0.096 0.096 0.059 −0.033 −0.078 −0.095 −0.160∗∗ 0.053 −0.157
(0.087) (0.080) (0.074) (0.058) (0.046) (0.055) (0.077) (0.076) (0.072) (0.074) (0.111)

CMA 0.055 0.155 0.076 −0.134∗ 0.100∗ −0.125∗ 0.042 0.001 0.147 −0.041 0.095
(0.091) (0.103) (0.083) (0.073) (0.060) (0.073) (0.096) (0.083) (0.092) (0.102) (0.137)

PS_VWF 0.030 0.056 0.071∗∗ −0.093∗∗∗ 0.065∗∗∗ 0.024 0.025 0.015 −0.041 0.044 −0.014
(0.043) (0.040) (0.035) (0.027) (0.025) (0.026) (0.038) (0.036) (0.034) (0.038) (0.055)

MOM −0.021 0.102∗∗∗ 0.036 0.022 −0.046∗∗ −0.005 0.009 0.045 −0.014 −0.028 0.007
(0.047) (0.037) (0.031) (0.026) (0.022) (0.038) (0.034) (0.031) (0.027) (0.043) (0.072)

BAB 0.113∗ −0.004 0.006 −0.059 0.030 0.048 0.070 0.029 0.030 0.146∗∗ −0.033
(0.066) (0.058) (0.052) (0.039) (0.043) (0.042) (0.050) (0.043) (0.051) (0.070) (0.088)

CONSTANT 0.134 −0.055 −0.185 0.061 −0.098 −0.019 −0.026 −0.033 0.020 −0.395∗∗∗ 0.490∗∗∗ 0.529∗∗∗

(0.134) (0.124) (0.113) (0.083) (0.083) (0.093) (0.119) (0.117) (0.120) (0.125) (0.166) (0.183)

N 240 240 240 240 240 240 240 240 240 240 240 240
R2 0.843 0.862 0.883 0.922 0.950 0.926 0.866 0.858 0.861 0.865

Deciles are formed based on AEC, with decile 1 having lowest AEC and decile 10 having highest AEC. The final two columns regress the 1-10
return spread on the same factors. Robust standard errors (Newey–West, five lags) are reported in parentheses. The sample covers the period
2005–2024. ∗∗∗,∗∗ ,∗ denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 8: Price of Risk in the Cross-section of Stocks

DEP VAR: EXRETt+1 (%)

(1) (2) (3) (4)

βELX
t−1 0.113∗∗ 0.107∗∗

(0.055) (0.054)
βELXREL

t−1 0.087∗ 0.081∗

(0.047) (0.046)
βMKT

t−1 0.113 0.089 0.118 0.095
(0.152) (0.102) (0.152) (0.102)

βSMB
t−1 0.003 0.036 0.003 0.037

(0.082) (0.058) (0.082) (0.057)
βHML

t−1 0.066 0.068 0.066 0.067
(0.087) (0.067) (0.087) (0.067)

βRMW
t−1 0.035 -0.003 0.033 -0.006

(0.045) (0.036) (0.045) (0.036)
βCMA

t−1 −0.061 −0.067∗ −0.063 −0.068∗

(0.044) (0.039) (0.043) (0.039)
AEC t−1 −0.011∗ −0.011∗

(0.006) (0.006)
ELECTRICITY PRICEt−1 0.409 0.393

(0.939) (0.938)
VOLATILITYt−12:t−1 -0.356 -0.385

(1.022) (1.021)
LOG(SIZE)t−1 -0.046 -0.046

(0.046) (0.046)
LOG(BM)t−1 0.022 0.022

(0.064) (0.064)
LOG(PPE)t−1 0.085∗∗∗ 0.085∗∗∗

(0.029) (0.029)
MOMENTUMt−12:t−1 -0.026 -0.025

(0.118) (0.118)
LOG(TURNOVER)t−1 -0.033 -0.034

(0.062) (0.062)
ROEt−1 0.182∗∗ 0.183∗∗

(0.076) (0.076)
HHI EMPt−1 -0.158 -0.158

(0.105) (0.105)
LEVERAGEt−1 -0.174 -0.175

(0.236) (0.236)
CONSTANT 0.502∗∗∗ 0.942 0.498∗∗∗ 0.947

(0.188) (0.720) (0.188) (0.720)

N 530,416 530,416 530,416 530,416
R2 0.193 0.193 0.193 0.193
YEAR-MONTH FE Y Y Y Y
NAICS-3 FE N Y N Y

Robust standard errors (double–clustered by firm and month) in parentheses. The
sample covers the period 2005–2024. ∗∗∗, ∗∗, and ∗ denote significance at the 1%,
5%, and 10% levels, respectively.
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Table 9: Uri-related Shocks and Stock Returns

URI SHOCK POST-URI POLICY ADOPTION

DEP VAR: DAILY RETURN (1) (2) (3) (4)

POST URI × TREAT URI -1.197∗

(0.682)
POST URIt−5× TREAT URI -0.489

(1.081)
POST URIt−4× TREAT URI -0.908

(0.928)
POST URIt−3× TREAT URI -2.742∗∗∗

(0.841)
POST URIt−2× TREAT URI -1.373

(1.919)
POST URIt−1× TREAT URI -0.789

(0.864)
POST URIt× TREAT URI -1.798∗

(0.994)
POST URIt+1× TREAT URI -2.802∗

(1.607)
POST URIt+2× TREAT URI -2.579

(2.040)
POST URIt+3× TREAT URI -3.154∗∗

(1.409)
POST URIt+4× TREAT URI -1.598

(1.095)
POST URIt+5× TREAT URI -1.652

(1.716)
POST ERCOT × TREAT ERCOT 1.060∗∗

(0.416)
POST ERCOTt−5× TREAT ERCOT -0.619

(0.866)
POST ERCOTt−4× TREAT ERCOT -1.315

(0.973)
POST ERCOTt−3× TREAT ERCOT -0.627

(0.913)
POST ERCOTt−2× TREAT ERCOT -0.332

(0.761)
POST ERCOTt−1× TREAT ERCOT -0.750

(1.834)
POST ERCOTt× TREAT ERCOT 1.329∗

(0.689)
POST ERCOTt+1× TREAT ERCOT 0.247

(0.988)
POST ERCOTt+2× TREAT ERCOT -0.210

(1.368)

N 1,982 1,982 9,311 9,311
R2 0.186 0.189 0.065 0.066
WINDOW [-6,5] [-6,5] [-6,2] [-6,2]

DAY FE X X X X
FIRM FE X X X X

Sample widow is measured in trading days. TREAT URI is an indicator variable that equals one
for firms in the top 10% of the empirical distribution in terms of outage exposure to Uri, and zero
for those in the bottom 90% of the same distribution. POST URI equals one from February 16,
2021. TREAT ERCOT equals one for firms with at least 90% employment footprint in locations
belonging to the Texas ERCOT grid, zero for firms have no exposure to the Texas ERCOT grid.
POST ERCOT equals one from June 1, 2021, and zero otherwise. Standard errors are clustered at
the firm headquarter county-level. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively. 44



Table 10: Short-Run Real Effects of SAIDI: Uri Winter Storm Shock

ELECTRICITY LABOR CAPITAL PROFIT VALUE

DEP VAR: SAIDI LOG(FIRM EMP) LOG(ASSETS) CAPEX/ASSETS ROA LOG(MB)

(1) (2) (3) (4) (5) (6)

URI ×P OST 0.673∗∗∗ 0.123 0.159 0.003 -0.095∗ -0.172
(0.085) (0.091) (0.101) (0.013) (0.057) (0.111)

N 743 743 743 743 743 533
R2 0.698 0.926 0.981 0.729 0.739 0.903

CONTROLS X X X X X X
YEAR FE X X X X X X
FIRM FE X X X X X X

This table reports coefficient estimates from difference-in-differences regressions of the short-run (one period) effects of the
Texas shocks. The sample covers the period 2018–2021. The variable SAIDI measures firm exposure to realized electricity
capacity constraints, which measures total annual outages in days. The firm measure is an employment-weighted mean of
the firms’ establishment exposures. The sample consists of firms with at least 50% employment footprint in areas belonging
to the Texas ERCOT grid. URI is a binary variable that equals one for firms in the top 10% of the empirical distribution in
terms of outage exposure to Uri, and zero for firms in the bottom 90% of the same distribution. POST is a binary variable
that equals one if it is the first period after the Uri shock, and zero otherwise. FIRM EMP denotes firm employment.
ASSETS denotes total assets. CAPEX/ASSETS denotes capital expenditure over lagged assets. ROA denotes return on
assets. MB denotes market-to-book ratio. Standard errors are clustered at the firm headquarter county-level. Controls
include the same variables reported in the cross-sectional real outcome tests. ***, **, and * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.
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Table 11: Long-Run Real Effects of AEC: ERCOT Shock

ELECTRICITY LABOR CAPITAL PROFIT VALUE

DEP VAR: AEC LOG(FIRM EMP) LOG(ASSETS) CAPEX/ASSETS ROA LOG(MB)

(1) (2) (3) (4) (5) (6)

ERCOT × POST 0.097∗∗∗ 0.168∗∗∗ 0.072 0.317 -0.048 0.177∗∗∗

(0.037) (0.056) (0.044) (0.531) (0.058) (0.067)

N 5,969 5,969 5,969 5,969 5,969 3,989
R2 0.774 0.896 0.981 0.716 0.758 0.850

CONTROLS X X X X X X
YEAR FE X X X X X X
FIRM FE X X X X X X

This table reports coefficient estimates from difference-in-differences regressions of the long-run effects of the Texas shocks. AEC
measures firm exposure to anticipated electricity capacity, which measures future excess capacity relative to the NERC reference
capacity in percent. The firm measure is an employment-weighted mean of the firms’ establishment exposures. ERCOT is a
binary variable that equals one for firms with at least 90% employment footprint in locations belonging to the Texas ERCOT
grid, and zero for firms with no exposure to the Texas ERCOT grid. POST is a binary variable that equals one for periods from
2021 onwards, and zero otherwise. FIRM EMP denotes firm employment. ASSETS denotes total assets. CAPEX/ASSETS
denotes capital expenditure over lagged assets. ROA denotes return on assets. MB denotes market-to-book ratio. Standard
errors are clustered at the firm headquarter county-level. Controls include the same variables reported in the cross-sectional
real outcome tests. The sample starts in 2018 and ends in 2024, with the short-run effects in 2021 being omitted. ***, **, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 12: Dynamic Effects of the Shocks

PANEL A: DYNAMIC EFFECTS OF THE URI SHOCK
ELECTRICITY LABOR CAPITAL PROFIT VALUE

DEP VAR: SAIDI LOG(FIRM EMP) LOG(ASSETS) CAPEX/ASSETS ROA LOG(MB)

(1) (2) (3) (4) (5) (6)

POSTt−3 × URI 0.058 0.117 -0.260∗∗ -0.003 -0.068 0.079
(0.057) (0.120) (0.104) (0.013) (0.075) (0.162)

POSTt−2 × URI -0.066 0.181 -0.189∗ -0.001 0.006 0.144
(0.079) (0.138) (0.096) (0.011) (0.096) (0.182)

POSTt × URI 0.669∗∗∗ 0.206∗ 0.037 0.002 -0.110 -0.106
(0.098) (0.116) (0.089) (0.013) (0.069) (0.137)

N 743 743 743 743 743 533
R2 0.699 0.926 0.981 0.729 0.740 0.904

CONTROLS X X X X X X
YEAR FE X X X X X X
FIRM FE X X X X X X

PANEL B: DYNAMIC EFFECTS OF THE TEXAS SHOCK
ELECTRICITY LABOR CAPITAL PROFIT VALUE

DEP VAR: AEC LOG(FIRM EMP) LOG(ASSETS) CAPEX/ASSETS ROA LOG(MB)

(1) (2) (3) (4) (5) (6)

POSTt−3 × ERCOT 1.057 -0.103 0.116 2.669∗∗ 0.091∗ -0.076
(0.979) (0.104) (0.100) (1.164) (0.048) (0.091)

POSTt−2 × ERCOT -2.349∗ -0.164 0.112∗ 1.354 0.058 -0.065
(1.219) (0.125) (0.064) (0.969) (0.080) (0.061)

POSTt × ERCOT 6.651∗∗∗ 0.042 0.080∗ 0.828 -0.064 -0.071
(1.697) (0.072) (0.049) (0.672) (0.047) (0.065)

POSTt+1 × ERCOT 7.389 0.051 0.114∗∗ 1.515∗ 0.015 0.113
(4.793) (0.088) (0.056) (0.801) (0.037) (0.080)

POSTt+2 × ERCOT 9.384∗∗∗ 0.128 0.173∗∗∗ 1.235 -0.021 0.322∗∗∗

(2.870) (0.119) (0.067) (0.895) (0.067) (0.096)
POSTt+3 × ERCOT 7.416∗ 0.226∗ 0.652∗∗ 4.395∗∗∗ 0.051

(4.354) (0.125) (0.327) (1.463) (0.037)

N 7,669 7,669 7,669 7,669 7,669 5,551
R2 0.738 0.892 0.980 0.705 0.732 0.865

CONTROLS X X X X X X
YEAR FE X X X X X X
FIRM FE X X X X X X

This table reports coefficient estimates from (dynamic) difference-in-differences estimations of the effects of the Texas shocks.
Panel A presents the one-period results for the Uri shock. Panel B presents the long-term results. URI is a binary variable that
equals one for firms in the top 10% of the empirical distribution in terms of outage exposure to Uri, and zero for firms in the bottom
90% of the same distribution. ERCOT is a binary variable that equals one for firms with at least 90% employment footprint in
locations belonging to the Texas ERCOT grid, and zero for firms with no exposure to the Texas ERCOT grid. POST are dummy
variables for the respective time periods. The omitted (reference) category is t-1 (the year before the shocks, i.e. 2020). FIRM
EMP denotes firm employment. EST EMP denotes establishment employment. ASSETS denotes total assets. CAPEX/ASSETS
denotes capital expenditure over lagged assets. ROA denotes return on assets. MB denotes market-to-book ratio. Standard errors
are clustered at the firm headquarter county-level. Controls include the same variables reported in the cross-sectional real outcome
tests. Cragg-Donald Wald F statistics are reported. The sample starts in 2018 and ends in 2021 (Panel A) and 2024 (Panel B).
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 13: Capacity Tightness and Real Effects: Aggregate Outcomes

PANEL A: COUNTY TOTALS - ANTICIPATED EXCESS CAPACITY
ESTABLISHMENTS FIRMS

DEP VAR: LOG(EMP) LOG(EST) LOG(EMP/EST) LOG(START-UPS) LOG(EXITS)

(1) (2) (3) (4) (5)

AEC 0.049∗∗∗ 0.029∗∗∗ 0.020∗ -0.006 -0.097∗∗

(0.015) (0.009) (0.012) (0.041) (0.038)

N 30,157 30,157 30,157 25,352 25,352
R2 0.998 0.999 0.963 0.975 0.976

YEAR FE X X X X X
COUNTY FE X X X X X
PANEL B: COUNTY TOTALS - SAIDI

ESTABLISHMENTS FIRMS

DEP VAR: LOG(EMP) LOG(EST) LOG(EMP/EST) LOG(START-UPS) LOG(EXITS)

(1) (2) (3) (4) (5)

SAIDI -0.005∗∗∗ -0.003∗∗∗ -0.002∗∗ -0.011∗∗∗ 0.004
(0.001) (0.001) (0.001) (0.004) (0.004)

N 30,157 30,157 30,157 25,352 25,352
R2 0.998 0.999 0.963 0.975 0.976

YEAR FE X X X X X
COUNTY FE X X X X X
PANEL C: COUNTY NAICS 518210 - ANTICIPATED EXCESS CAPACITY

ESTABLISHMENTS

DEP VAR: EMP EST LOG(EMP/EST) INDUSTRY PRESENT (1/0)

(1) (2) (3) (4)

AEC 0.428∗ -0.118 0.420∗ 0.007
(0.233) (0.079) (0.234) (0.068)

N 12,002 12,002 6,886 30,157
(PSEUDO-)R2 0.964 0.925 0.789 0.034

YEAR FE X X X X
COUNTY FE X X X
PANEL D: COUNTY NAICS 518210 - SAIDI

ESTABLISHMENTS

DEP VAR: EMP EST LOG(EMP/EST) INDUSTRY PRESENT (1/0)

(1) (2) (3) (4)

SAIDI -0.034∗ 0.005 -0.003 -0.023∗∗∗

(0.019) (0.007) (0.022) (0.007)

N 12,002 12,002 6,886 30,157
(PSEUDO-)R2 0.966 0.925 0.788 0.034

YEAR FE X X X X
COUNTY FE X X X

This table reports coefficient estimates from panel regressions. EMP denotes employment. EST denotes establishment count.
START-UPS stands for start-up count. EXITS denotes the number of firm exits. INDUSTRY PRESENT is binary variable that
equals one if the industry is present in a county, and zero otherwise. NAICS 518210 is an industry code for data processing,
hosting, and related services. AEC measures county exposure to anticipated electricity capacity, which measures future excess
capacity relative to the NERC reference capacity in percent. The independent variable SAIDI measures county exposure to
realized electricity capacity constraints, which measures total annual outages in days. Estimations in columns (1) and (2) of
panels C and D are Poisson regressions. Standard errors are clustered at the county-level. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. 48



Appendix

A.1 Proofs and derivations
Proof of Proposition 1. In our framework, the CES aggregator Φ(κt+1) converts the rationed elec-
tricity input into effective productivity.

Φ′(κt+1) = δEρ χρ κρ−1 [δKL + δE(κχ)ρ] 1−ρ
ρ > 0.

Taking the logarithm of K∗ we obtain

log K∗(κ) = 1
1 − α1 − α2

[
log Āi,t(κ) + log α1 + α2 log µ − log rt

]
.

Differentiation yields
dK∗

dκ
= K∗(κ)

1 − α1 − α2

1
Āi,t(κ)

dĀi,t

dκ
,

We next obtain the derivative of Āt(κ). By definition

Āt(κ) = Et

[
At+1Φ

(
κt+1

)]
, Et[κt+1] = κ.

Because Φ is increasing and κt+1 shifts up with κ, the envelope theorem for expectations implies

dĀt

dκ
= Et

[
At+1Φ′(κt+1

)]
> 0.

which is strictly positive because every factor on the right is positive.
Since L∗(κ) = µ K∗(κ) with µ > 0 constant at time t,

dL∗

dκ
= µ

dK∗

dκ

is positive. Hence, both optimal inputs are strictly increasing in the expected electricity-tightness
parameter κ.

Proof of Proposition 2. Because (K∗, L∗) maximizes Π for a given κ, the envelope theorem yields

d

dκ
Π
(
K∗(κ), L∗(κ); κ

)
= ∂Π

∂κ
= Zi,t

dĀi,t

dκ
, Zi,t = K∗α1

i,t L∗α2
i,t > 0.

It remains to sign dĀi,t/dκ, which we already showed is positive, establishing the result.

Proof of Lemma 1. From the production, for next-period aggregate consumption

Ct+1 = Λt At+1 Φ
(
κt+1

)
.

Λt =
∑

i Zi,t is already known at time t. κt+1 is the only object in that product that carries the
electricity-supply shock.

Taking a first-order Taylor expansion, we write consumption growth as
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∆ log Ct+1 ≡ log Ct+1
Ct

=
[
log Λt − log Λt−1

]
+
[
log At+1 − log At

]
+
[
log Φ(κt+1) − log Φ(κ)

]
.

The only random piece that depends on εt+1 is the last bracket. Linearizing that term around
the mean value κ we obtain:

log Φ(κt+1) ≈ log Φ(κ) + ∂ log Φ
∂κ

∣∣∣
κ

(κt+1 − κ).

Because κt+1 − κ = κ(eεt+1 − 1) ≈ κεt+1,

log Φ(κt+1) − log Φ(κ) ≈
[
κ

Φ′(κ)
Φ(κ)

]
︸ ︷︷ ︸

λ(κ)

εt+1.

The last approximation follows from:

∂

∂ε
log Φ

(
κeε) =

Φ′(κeε
)

Φ
(
κeε

) · ∂(κeε)
∂ε

, and at ε = 0, we have ∂(κeε)
∂ε

= κ.

Hence the coefficient in front of εt+1 is exactly κΦ′(κ)/Φ(κ).
To isolate the part of consumption growth that co-moves with the electricity shock, we can

simply write

∆ log Ct+1 = λ(κ) εt+1 + (terms independent of εt+1).

For the covariance calculations used to price risk, those other terms drop out because they are
uncorrelated with εt+1. Hence,

∆ log Ct+1 = λ(κ) εt+1, εt+1 ∼ N (0, σ2
ε),

and
Vart(∆ log Ct+1) = λ(κ)2σ2

ε

.

Proof of Proposition 3. To sign the risk premium, let

v(κ) = σ2
ε λ(κ)2, λ(κ) ≡ Φ′(κ)

Φ(κ) .

Then RPi(κ) = θ v(κ).

We differentiate v(κ). Because v = σ2
ελ2,

dv

dκ
= 2 σ2

ε λ(κ) λ′(κ).

Using the quotient rule

λ′(κ) = d

dκ

(
Φ′

Φ

)
= Φ′′

Φ −
(

Φ′

Φ

)2
.
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Computing λ′(κ) for the specific CES form of Φ, we can write

λ(κ) = Φ′(κ)
Φ(κ) = δEχ(κχ)ρ−1

δKL + δE(κχ)ρ
.

We define λ ≡ A(κ)/D(κ) with

A(κ) = δEχ(κχ)ρ−1, D(κ) = δKL + δE(κχ)ρ,

and
A′ = (ρ − 1) A

κ
, D′ = ρ κ

A

κ
= ρA.

Quotient rule implies:

λ′ = A′D − AD′

D2 = (ρ − 1)A
κD

− ρ
A2

D2 = (ρ − 1)λ

κ
− ρλ2.

Substituting λ′

dv

dκ
= 2σ2

ε λ2
[ρ − 1

κ
− ρ λ

]
,

which is a strictly negative number.
Plugging this expression back into the risk premium formula and dRPi,t

dκ = θ dv
dκ we obtain the

final result.
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A.2 Variable definitions

Table A.1: Variable definitions

Variable Definition
Panel A: Firm-Year

ANTICIPATED EXCESS CAPACITY One-year ahead forecasts of anticipated reserve margins, supplied by NERC. We use the exact location of estab-
lishments and map them to electricity regions of NERC’s Long-Term Reliability Assessment. We aggregate the
exposure of a firm’s establishments and weigh them by the employment shares of the establishments.

SAIDI System Average Interruption Duration Index, supplied by the EIA via Form 861, the Annual Electric Power
Industry Report. We compute the county-level SAIDI as a customer-weighted average of the state-level SAIDI
values reported by all utilities serving that county. That is, we assign each utility’s state-level SAIDI to every
county it serves within that state, and then weight these values by the number of customers the utility serves in
the county to arrive at the county-level measure (similar to e.g., Borenstein et al., 2023). We use the location of
establishments and map them to counties. We aggregate the exposure of firms’ establishments and weigh them
by the employment shares of the establishments.

LOG(EMP) Log of firm employment. Compustat: log(emp).
LOG(ASSETS) Log of firm assets. Compustat: log(at).
CAPEX/ASSETS Capital expenditure scaled by lagged total assets. Compustat: capx/L.at.
ROA Return on assets. Compustat: ib/L.at.
LOG(MARKET/BOOK) Log of market-to-book ratio. Compustat: Depending on data availability, we calculate book equity as (i) seq -

pstk + txditc, (ii) seq, (iii) ceq + pstk, or (iv) at - lt. Book equity is replaced as missing if negative. Market value
of equity is defined as csho*prcc_f.

PPE/ASSETS Property, plant and equipment scaled by total assets. Compustat: ppent/at.
LEVERAGE Book leverage scaled by total assets. Compustat: (dlc+dltt)/at.
SALES GROWTH Sales growth. Compustat: (sale-L.sale)/L.sale
CASH/ASSETS Cash scaled by assets. Compustat: che/at.
HHI NAICS-3 Herfindahl–Hirschman Index (industry concentration) based on sales and three-digit NAICS code industry defi-

nition.
ROE GROWTH Return on equity growth. Compustat: Return on equity is defined as ib over lagged book equity, with book equity

being calculated as defined above.
MOMENTUM Cumulative return over the last 12 months, excluding the most recent month.
VOLATILITY Standard deviation of the last 12 monthly returns.
URI Binary variable that equals one if a firm is in the top 10% of outage exposure during Uri outages, and zero

otherwise. This variable is restricted to firms with at least 50% employment exposure to the ERCOT grid.
ERCOT Binary variable that equals one if a firm has at least 90% employment exposure to the ERCOT grid, and zero if

it has no exposure to the ERCOT grid.
POST Binary variable that equals one for fiscal years after the Uri shock, and zero otherwise.

Panel B: Firm-Establishment-Year
ANTICIPATED EXCESS CAPACITY One-year ahead forecast of anticipated reserve margin calculated at electricity region-level to which establishment

belongs.
SAIDI System Average Interruption Duration Index calculated at county-level of the establishment.
LOG(EMP) Log of establishment employment.

Panel C: Firm-Month
ELX Electricity capacity factor (absolute). Firm-level exposure to one-year ahead anticipated tightness based on estab-

lishment exposure to NERC’s anticipated reserve margin forecast (absolute gap to reference margin in percentage
points). ELX is most-tight minus least-tight decile portfolio return.

ELXREL Electricity capacity factor (relative). Firm-level exposure to one-year ahead anticipated tightness based on estab-
lishment exposure to NERC’s anticipated reserve margin forecast (relative gap to reference margin in percent).
ELXREL is most-tight minus least-tight decile portfolio return.

MKT Market factor, obtained from Ken French’s website/WRDS.
SMB Small-minus-big factor, obtained from Ken French’s website/WRDS.
HML High-minus-low factor, obtained from Ken French’s website/WRDS.
RMW Robust-minus-weak factor, obtained from Ken French’s website/WRDS.
CMA Conservative-minus-aggressive factor, obtained from Ken French’s website/WRDS.
MOM Momentum factor, obtained from Ken French’s website/WRDS.
BAB Betting against beta factor from Frazzini and Pedersen (2014).
ELECTRICITY PRICE Average annual electricity price supplied by the EIA via Form 861, the Annual Electric Power Industry Report.
VOLATILITY Standard deviation of the last 12 monthly returns.
LOG(SIZE) Log of market capitalization. Compustat: Log(cshom*prccm/1000000).
LOG(BOOK/MARKET) Log of book-to-market ratio as defined above.
LOG(TURNOVER) Log of monthly turnover. Compustat: log(cshtrm/cshom).
LOG(PPE) Log of property, plant, and equipment. Compustat: Log(ppent).
MOMENTUM Cumulative return over the last 12 months, excluding the most recent month.
ROE Return on equity. Compustat: Return on equity is defined as ib over lagged book equity, with book equity being

calculated as defined above.
HHI EMP Herfindahl–Hirschman Index (firm employment concentration) based on a firm’s establishment employment.
LEVERAGE Book leverage scaled by total assets. Compustat: (dlc+dltt)/at.
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Table A.1: Variable definitions (Continued)

Variable Definition
Panel D: Firm-Day

DAILY RETURN Daily log return. Compustat: log(((prccd/ajexdi)*trfd)/((L.prccd/L.ajexdi)*L.trfd)) * 100.
TREAT URI Binary variable that equals one if a firm is in the top 10% of outage exposure during Uri outages, and zero

otherwise. This variable is restricted to firms with at least 50% employment exposure to the ERCOT grid.
TREAT ERCOT Binary variable that equals one if a firm has at least 90% employment exposure to the ERCOT grid, and zero if

it has no exposure to the ERCOT grid.
POST URI Binary variables that equals one for trading days from February 16, 2021, which is the first trading day after

Uri-induced rolling outages in the ERCOT grid.
POST ERCOT Binary variables that equals one for trading days from June 1, 2021, which is the first trading day after the Texas

Senate and House approved ERCOT-related policy changes.
Panel E: County-Year

ANTICIPATED EXCESS CAPACITY One-year ahead forecast of anticipated reserve margin calculated at electricity region-level to which county belongs.
SAIDI System Average Interruption Duration Index calculated at county-level.
EMP Level of employment. Census County Business Patterns: EMP.
EST Level of establishments. Census County Business Patterns: EST.
LOG(EMP) Log of employment.
LOG(EST) Log of establishments.
LOG(EMP/EST) Log of employment/establishments.
LOG(START-UPS) Log of number of new firms. Census Business Dynamics Statistics: Number of firms with age 0.
LOG(EXITS) Log of number of exiting firms. Census Business Dynamics Statistics: Number of firms exiting.
INDUSTRY PRESENCE Binary variable that equals one if a county has at least one establishment belonging to the NAICS code 518210

Data Processing, Hosting, and Related Services, and zero otherwise.
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Online Appendix
In this Online Appendix, we present additional results related to our main model. In Section OA.1,
we present additional propositions and proofs; in Section OA.2, we examine comparative statics in
the world with heterogeneous firm dependence on electricity; in Section OA.3, we consider electricity
rationing with firm-specific priority weights; in Section OA.4, we extend the model to account for
capital accumulation with quadratic adjustment costs; Section OA.5 examines robustness for the
case with correlated productivity and supply shocks; in Section OA.6, we present the model in
which price of electricity can adjust to accommodate shortage shocks; in Section OA.7, we discuss
welfare implications of our setting.

OA.1 Additional Proofs
Proposition OA.1 (Cross-partials for production inputs). The firm’s effective-productivity shifter
is

Φ(κ, δE) =
[
δKL + δE(κχ)ρ] 1

ρ , 0 < ρ < 1.

All real choices scale with

Āi,t(κ, δE) = Et[Ai,t+1 Φ(κt+1, δE)] .

Because ∂2Φ
∂κ∂δE

= (ρ − 1) (κχ)ρ−1χρ[δKL + δE(κχ)ρ] 1−ρ
ρ is positive, the cross-partial of Āi,t is

also positive. From the first-order conditions,

K∗
i,t ∝ Āi,t(κ, δE)

1
1−α =⇒ ∂2K∗

i

∂κ∂δE
> 0,

and the same holds for L∗
i and Zi,t.

OA.2 Heterogeneity in Electricity-related Production Parameters
We focus on two parameters electricity intensity (δE) and input substitutability between electricity
and other inputs (σ). We show the following two results:

Proposition OA.2 (Proposition (Cross effect with δE)). Under the regularity conditions
(ρ ∈ (0, 1), κ ∈ (0, 1], δE ∈ (0, 1), δKL = 1 − δE).

∂2RP (κ, δE)
∂κ∂δE

< 0

for all κ ∈ (0, 1], δE ∈ (0, 1).

Proof of Proposition OA.2. Slope of log-consumption with respect to the electricity shock

λ(κ, δE) ≡ κ
∂ log Φ

∂κ
= δEχ(κχ)ρ−1κ

δKL + δE(κχ)ρ
= M

S + M
, S ≡ δKL, M ≡ δE(κχ)ρ.

Firm-level conditional variance of consumption growth

v(κ, δE) = σ2
ε λ2.
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Risk premium

(κ, δE) = θv(κ, δE).

For the cross derivative it suffices to work with v since θ is the positive constant.

We can write M = M(κ, δE) = δE(κχ)ρ and note

Mκ = ρ
M

κ
, Mδ = σ

M

δE
, Mκδ = ρσ

M

κδE
.

Because λ = M/(S + M),

λκ = MκS

(S + M)2 = ρSM

κ(S + M)2 < 0,

λδ = MδS

(S + M)2 = σSM

δE(S + M)2 > 0,

λκδ =
S
[
Mκδ(S + M) − 2MκMδ

]
(S + M)3 = ρσSM

κδE(S + M)3
[
S − M

]
< 0,

where the signs use S = δKL > 0 and M > 0. M > S almost always holds once electricity is an
important input (empirically δE is at least 0.2–0.3 in power-intensive sectors).

Because v = σ2
ελ2,

∂v

∂κ
= 2σ2

ελ λκ,
∂2v

∂κ∂δE
= 2σ2

ε

[
λδλκ + λλκδ

]
.

Plugging in the previous expressions:

λδλκ = ρσS2M2

κδE(S + M)4 < 0,

λ λκδ = ρσSM2(S − M)
κδE(S + M)4 < 0,

so their sum is strictly negative. Hence

∂2v

∂κ ∂δE
< 0 =⇒ ∂ 2RP

∂κ ∂δE
= θ

∂2v

∂κ∂δE
< 0.

Negative cross partial means that the risk-reducing effect of increasing κ is stronger for firms whose
technology is heavily tilted toward electricity (large δE). Intuitively, a kilowatt-hour shortage hurts
such firms twice—directly through lower current output and indirectly by amplifying covariance
with the SDF—so giving them an extra unit of expected availability (κ goes up) trims their premia
by more.

Proposition OA.3 (Proposition (Cross effect with σ)).

∂2(κ, σ)
∂κ ∂σ

> 0 whenever δE < δKL.
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Proof of Proposition OA.3. Throughout we keep the intensity parameters δKL, δE fixed, so that
only σ > 1 is varied. The key object is again

RP (κ, σ) = θσ2
ε λ(κ, σ)2, λ(κ, σ) = P

Q + P
,

with

Q ≡ δKL, P (κ, σ) ≡ δE

(
κ χ(σ)

)ρ(σ)
.

From P = δE κρqσ−1 where q ≡ δE/δKL:

Pκ = ∂P

∂κ
= ρ

P

κ
,

Pσ = ∂P

∂σ
= P

[
ln q + ln κ

σ2

]
,

Pκσ = ∂2P

∂κ ∂σ
= ρσ−1 P

κ

[
ln q + ln κ

σ2

]
.

Because λ = P/(Q + P ),

λκ = PκQ

(Q + P )2 = ρQ P

κ(Q + P )2 < 0,

λσ = PσQ

(Q + P )2 = Q P

(Q + P )2

[
ln q + ln κ

σ2

]
,

λκσ = Q

(Q + P )3

[
Pκσ(Q + P ) − 2PκPσ

]
.

Using v = σ2
ελ2 we have

∂2v

∂κ ∂σ
= 2σ2

ε

[
λσλκ + λ λκσ

]
.

Substituting the partials from above:

∂2v

∂κ ∂σ
= 2σ2

ε Q P 2

κ(Q + P )4

{
ρ
[
ln q + ln κ

σ2
] [

Q − P
]

+ ρ
σ (Q + P )

}
.

Let

Ξ(κ, σ) ≡
[
ln q + ln κ

σ2
]
[Q − P ] + Q+P

σ ,

so that ∂2RP

∂κ∂σ
= θ

2σ2
ε ρQP 2

κ(Q + P )4 Ξ(κ, σ).

Empirically, the capital–labor share dominates the electricity share in gross output, that is,
δE < δKL ⇒ q < 1 ⇒ ln q < 0. Because κ ≤ 1 ⇒ ln κ ≤ 0, both logarithms are non-positive.
Moreover Q − P > 0 whenever q is not too large (again typical in the data).

The first product in Ξ is therefore non-negative (negative×negative). The second term Q+P
σ is

strictly positive. Hence

56



Ξ(κ, σ) > 0, 0 < κ ≤ 1, 1 < σ < ∞, q < 1.

Because every other multiplicative factor is positive, we conclude

∂2RP (κ, σ)
∂κ∂σ

> 0 whenever δE < δKL.

When firms can substitute away from electricity more easily, the risk-saving effect of relaxing the
average constraint is muted. Put differently, technologies with low substitution elasticity suffer
most from expected shortages, so they benefit most (in terms of premium reduction) from higher
κ.

OA.3 Electricity Rationing with Firm-specific Priority Weights
We discuss the alternative model of assigning electricity to firms in which the system operator
assigns to every firm i a permanent, exogenously given priority weight

ωi > 0,
1
N

N∑
i=1

ωi = 1,

reflecting, e.g., critical-infrastructure status or bilateral reliability contracts.
Let Ω ≡

∑
j Ed

j,t+1 ωj be the priority-weighted aggregate notional demand. If available supply
Ēt+1 is insufficient, the operator satisfies firms in descending order of ωi until supply is exhausted;
ties are broken proportionally. The resulting allocation is

Epri
i,t+1 =


Ed

i,t+1, if ωi ≤ Ēt+1
Ω

,

Ēt+1
Ω

ωi Ed
i,t+1, otherwise.

Define the random tightness factor for firm i

κi,t+1 ≡
Epri

i,t+1
Ed

i,t+1
= min

(
1,

Ēt+1
Ω

ωi

)
∈ (0, 1].

Unlike the proportional case, κi,t+1 is firm-specific–high-priority firms (large ωi) face a truncated
risk distribution that first-order-stochastically dominates that of low-priority firms.

Under priority rationing output becomes

Yi,t+1 = Ai,t+1
[

δKLZρ
i,t + δE

(
κi,t+1χZi,t

)ρ]1
ρ = Ai,t+1Zi,t Φ(κi,t+1), Φ(κ) ≡

[
δKL + δE(κχ)ρ]1

ρ .

Let the mean effective-productivity shifter for firm i be

Āi,t(κ, ωi) ≡ Et
[
Ai,t+1Φ(κi,t+1)

]
.

Because κi,t+1 inherits the two-point support of rule (P-rule), we can write this explicitly as
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Āi,t = Pr
t

(
ωi ≤ Ēt+1

Ω

)
Ai,t+1Φ(1) + Et

[
Ai,t+1Φ

(
Ēt+1

Ω ωi

) ∣∣∣ ωi > Ēt+1
Ω

]
Pr
t

(
ωi > Ēt+1

Ω

)
.

With DRS Cobb-Douglas, the static profit maximization is unchanged except that Āi,t now
depends on the priority weight:

max
K,L

Āi,t(κ, ωi) Kα1Lα2 − rtK − wtL.

First-order conditions yield

K∗
i,t(κ, ωi) =

[
α1
[
Āi,t(κ,ωi)

]
µα2

rt

] 1
1−α1−α2 , L∗

i,t = µ K∗
i,t,

where µ ≡ (α2/α1) (rt/wt) as before.

Because κi,t+1 is weakly increasing in expected tightness κ for every ωi, the proofs of Proposition
1 (inputs) and Proposition 2 (profits) go through verbatim once expectations are taken conditional
on ωi. The monotone-comparative-statics result therefore strengthens.

In particular, for any two firms i, j with ωi > ωj and for every κ ∈ (0, 1],

K∗
i,t(κ, ωi) > K∗

j,t(κ, ωj), L∗
i,t(κ, ωi) > L∗

j,t(κ, ωj).

Priority access strictly increases optimal scale.

Asset-pricing moments All subsequent derivations (dividends, consumption, SDF, and risk
premia) hold after replacing the common κt+1 with the firm-specific κi,t+1. Expected return differ-
entials now load on two observables:

dRPi,t

dκ
< 0,

dRPi,t

dωi
< 0,

implying that high-priority stocks command lower premia–an empirical prediction one can test
by interacting firm-level electricity contracts with system-wide tightness shocks.

Overall, priority weights convert a purely aggregate shock into a partly idiosyncratic one. This
destroys the knife-edge result of identical firms in the proportional model and naturally generates
cross-sectional dispersion in size, profitability, and risk premia even when Ai,t+1 is i.i.d.

OA.4 Capital Accumulation with Quadratic Adjustment Costs
We can also extend our model by exploring the dynamic propagation of proportionally rationed
electricity shocks. We endogenize the capital stock and introduce standard quadratic installation
costs. Each firm i chooses (Ii,t, Li,t) and evolves its capital according to

Ki,t+1 = (1 − δ) Ki,t + Ii,t, 0 < δ < 1.

Besides the purchase outlay rtIi,t, the firm pays adjustment costs of

AC(Ii,t, Ki,t) = φ

2
( Ii,t

Ki,t
− δ

)2
Ki,t, φ > 0,
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so the period-t dividend generalizes to

Di,t = Yi,t − wtLi,t − rtIi,t − AC(Ii,t, Ki,t),

where output with proportional rationing is Yi,t = Ai,tΦ(κt) Kα1
i,t Lα2

i,t and Φ(κt) ≡ [δKL+δE(κtχ)ρ]1/ρ.
Let qi,t be Tobin’s q (shadow value of capital in consumption units), and write Mt,t+1 for the

stochastic discount factor. The current-value Hamiltonian is

Hi,t = Di,t + qi,t
[
(1 − δ)Ki,t + Ii,t − Ki,t+1

]
.

Taking first-order conditions, we obtain

Labor: wt = α2 Āi,t(κ) Kα1
i,t Lα2−1

i,t , (OA.4.1)

Investment: qi,t = rt + φ
( Ii,t

Ki,t
− δ

)
, (OA.4.2)

Capital Euler: qi,t = β Et

[
M−1

t,t+1
(
α1 Āi,t+1(κ) Kα1−1

i,t+1 Lα2
i,t+1 + (1 − δ)qi,t+1

)]
, (OA.4.3)

where Āi,t(κ) ≡ Et
[
Ai,t+1Φ(κt+1)

]
is exactly the tightness-adjusted productivity already used in

the main text.
From (OA.4.1) we recover the familiar capital–labor ratio L∗

i,t = µtKi,t. Hence Proposition 1
remains valid.

Solving (OA.4.2) for investment gives

Ii,t

Ki,t
= δ + qi,t − rt

φ
, (OA.4.2′)

so the adjustment-cost wedge (qi,t − rt) drives investment. Combining this with (OA.4.3) and the
labor rule yields the capital policy

K∗
i,t+1 =

[α1 Et
[
Ai,t+1Φ(κt+1)

]
rt q 1−α1

i,t µ−α2
t

] 1
1−α1−α2 ,

which collapses to the static optimum when φ → 0.
With φ > 0, proportional-rationing shocks affect output gradually via investment, moderating

the instantaneous volatility relative to the baseline. Dividends now include the capital-gain term
qi,t+1, but Propositions 3–4 still hold; the magnitudes are dampened by φ and δ. Equation (OA.4.2′)
predicts that ∆(Ii,t/Ki,t) covaries negatively with electricity tightness κt, offering an additional
empirical validation.

OA.5 Correlated Productivity and Supply Shocks
In the baseline model we assumed that the firm–specific (or aggregate) productivity shock Ai,t+1
is independent of the tightness shock εt+1 := log κt+1 − log κ. To gauge the importance of this
assumption, let

∆ log At+1 = ζt+1, (ζt+1, εt+1) ∼ i.i.d. log-normal
(
0, Σ

)
, Σ =

(
σ2

ζ σζε

σζε σ2
ε

)
.

Hence σζε ̸= 0 allows productivity to co-move with electricity supply.
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Aggregate consumption growth. With decreasing returns to scale and proportional rationing,

∆ log Ct+1 = ζt+1︸︷︷︸
productivity

+ λ(κ)εt+1︸ ︷︷ ︸
rationing

, λ(κ) := κ
Φ′(κ)
Φ(κ) .

Because λ(κ) is time-t measurable, the conditional variance that prices risk is now

Vart[∆ log Ct+1] = σ2
ζ + 2 λ(κ)σζε + λ(κ)2σ2

ε .

Proposition OA.4 (Risk premium with correlated shocks). Under CRRA utility with risk-aversion
θ > 0 the one-period equity premium for any firm satisfies

RPi,t(κ) = θ
[
σ2

ζ + 2 λ(κ) σζε + λ(κ)2 σ2
ε

]
.

Its sensitivity to the expected tightness parameter is

dRPi,t

dκ
= 2θ

dλ

dκ

[
λ(κ) σ2

ε + σζε

]
,

dλ

dκ
=
[ρ − 1

κ
− ρ λ(κ)

]
λ(κ) < 0.

Proof. Because prices are known at time t, RPi,t = − Covt(Mt+1, Di,t+1)/Pi,t as in the baseline.
With log Mt+1 = −θ∆ log Ct+1 and jointly log-normal shocks, the log-normal covariance formula
(Cochrane 2005, App. B) gives RPi,t = θ Vart(∆ log Ct+1), delivering the first equality.

Only λ(κ) depends on κ, so dRPi,t/dκ = θ (2σζε + 2λσ2
ε) (dλ/dκ), and dλ/dκ is obtained by

differentiating λ(κ) = Φ′(κ)/Φ(κ) for the CES aggregator Φ(·). The sign of dλ/dκ is negative (cf.
Proposition 3); substituting yields the second claim.

Interpretation. Setting σζε = 0 collapses to the formula in Proposition 3.
Positive correlation (σζε > 0). Productivity booms coincide with slack grids. The bracket

[λσ2
ε + σζε] is larger than in the baseline, so the slope dRP/dκ is more negative: easing expected

tightness cuts risk premia even more strongly.
Negative correlation (σζε < 0). If electricity shortages arrive together with positive productivity

surprises, the cross term can dominate. A necessary and sufficient condition for the sign reversal
dRP/dκ > 0 is

σζε < −λ(κ) σ2
ε .

Empirically, this would require an implausibly large negative covariance (e.g., massive hydropower
losses when non-energy TFP soars), but the inequality provides a transparent falsifiable bound.

Robust qualitative prediction. For moderate |σζε|—in particular whenever |σζε| < λ(κ)σ2
ε–the

sign remains negative, and all comparative-statics in the main text carry through verbatim.

OA.6 Price– vs. Quantity–Clearing Electricity Markets
We now show that allowing a competitive spot price to clear the market yields the same real
allocations and risk premia as quantity rationing, provided the grid faces a hard capacity cap. The
result reconciles our proportional-rationing shortcut with the empirical reality that U.S. markets
clear via price spikes rather than administrative pro-rationing.

Let the aggregate electricity supply curve be

pE(ED) =

c, if ED ≤ Ē,

c + γ (ED − Ē) + Π, if ED > Ē,
(OA.6.1)
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where c is marginal cost, γ >0 captures a steep upward slope near the cap, and Π>0 is a scarcity
adder (possibly hitting a regulatory ceiling).11

Each firm solves, taking the spot price as given,

max
K,L,ED

PY A F (K, L, ED) − rK − wL − pE(ED) ED s.t. 0 ≤ ED ≤ Ē,

with F (·) the CES technology from Section 2.

Let Ẽ(K, L) denote the notional electricity demand that maximizes the objective when the
constraint is slack (pE = c).

Proposition OA.5. For any K, L chosen in stage t, the firm’s optimal electricity purchase under
(OA.6.1) is

ED∗(K, L) = min
{
Ẽ(K, L), Ē

}
.

When the capacity constraint binds, the Lagrange multiplier on ED ≤ Ē is λ = PY A ∂F/∂E − c
and the realized input equals κ Ẽ with κ = Ē/Ẽ exactly as in the main text.

Proof. Set up the Lagrangian L = PY AF (K, L, ED) − rK − wL − pE(ED)ED + λ(Ē − ED).
With pE continuous and strictly increasing once ED > Ē, the first-order condition for ED is
PY A∂F/∂ED = pE(ED) + λ.
(i) Slack constraint. If Ẽ(K, L) ≤ Ē, the optimum satisfies the FOC at λ = 0 with pE = c, hence
ED∗ = Ẽ.
(ii) Binding constraint. If Ẽ(K, L) > Ē, any ED > Ē raises cost at the steep slope c + γ(·) without
increasing output (diminishing marginal product), so the optimum is at the corner ED∗ = Ē. Here
λ > 0 absorbs the gap between marginal product and marginal cost c, yielding λ = PY A ∂F/∂E

∣∣
Ē

−
c.

Thus ED∗ = min{Ẽ, Ē}, equivalently ED∗ = κ Ẽ with tightness κ = Ē/Ẽ ∈ (0, 1].

Because the optimal realized electricity input is Erat = κẼ, output collapses to Y = AΦ(κ)Kα1Lα2 ,
exactly as in the baseline model. The firm’s profit and every derivative ∂Π/∂κ are therefore identical
to those under pure quantity rationing. Price spikes enter profits only through pEED∗ = cĒ + λĒ,
that is, a constant plus the multiplier term already embedded in κ. Consequently all comparative-
static signs in Propositions 1–3 and the asset-pricing results carry over unchanged.

Intuitively, when supply is perfectly (or near-perfectly) inelastic at Ē, the spot price redistributes
surplus but cannot relax the physical cap; the firm perceives a quantity shock, which drives both
real outcomes and risk premia.

OA.7 Welfare Implications
We further study welfare implications of electricity constraints. The representative household’s
lifetime utility is

U(κ) =
∞∑

t=0
βt Ct(κ)1−θ

1 − θ
, θ > 0,

where κ ∈ (0, 1] is chosen by the system operator (or the policy maker). Aggregate consumption
in period t equals

Ct(κ) = At Φ(κt) Λt−1(κ), (OA.7.1)
11In many wholesale markets γ is effectively infinite once the security-constrained dispatch exhausts physical

capacity; then pE jumps to the price cap and additional quantity cannot be procured.

61



with Λt−1(κ) ≡
∑

i Zi,t−1(κ), the aggregate scale of inputs decided in the previous period.
Firms solve exactly the problem in Section 2.5. Under decreasing returns to scale (α ≡ α1+α2 <

1), their optimal choices imply

Λt−1(κ) ∝ Āt−1(κ)
1

1−α , Āt−1(κ) := Et−1
[
AtΦ(κt)

]
.

Proposition 2 already established that both Φ and Ā are increasing in κ; hence

∂Λt−1
∂κ

> 0.

Differentiating (OA.7.1) yields

∂Ct

∂κ
= At

[
Φ′(κt)Λt−1 + Φ(κt)Λ′

t−1

]
.

Taking expectations conditional on t − 1:

Et−1
[

∂Ct
∂κ

]
= Āt−1(κ)

[
Φ′(κ) Λt−1(κ) + Φ(κ) Λ′

t−1(κ)
]
.

The derivative is positive. Its first term represents the direct effect of lower tightness on period-t
productivity; the second term is the general-equilibrium scale effect stemming from larger input
choices at t − 1.

Differentiating U(κ) term-by-term:

∂U

∂κ
=

∞∑
t=0

βt Ct(κ)−θ Et−1
[∂Ct

∂κ

]
.

which is a positive number. Hence any marginal increase in expected electricity availability raises
lifetime welfare. Intuitively, a higher κ lifts average productivity through (positive) Φ′(κ) and
encourages firms to install more inputs (the Λ′

t−1 term). As shown earlier, ∂ Var[∆ log C]/∂κ is a
negative number; the representative risk-averse household values this risk reduction.

We obtain the decomposition of the welfare into a level and risk components by taking a second-
order Taylor expansion around the steady state C̄ ≡ E[Ct]:

dU ≈ β C̄−θ

1 − θ

[
dln C̄ − θ

2 d Var
[
∆ ln C

]]
,

with
d ln C̄ = d ln Φ(κ) + 1

1 − α
d ln Ā(κ).

Overall, grid-reliability investments or market-design reforms that raise the average tightness
ratio κ deliver dual dividends–higher average consumption and lower macro-risk–and the former is
magnified by endogenous scale adjustment.

We further derive optimal target for expected tightness κ∗ assuming a resource cost. Formally,
the planner chooses κ ∈ (0, 1] to maximize lifetime utility

W (κ) = U(κ) − G(κ), U(κ) =
∞∑

t=0
βt Ct(κ)1−θ

1 − θ
,

where G captures the resource cost of lifting the grid’s average availability (e.g., reliability invest-
ments, emergency-reserve contracts). We assume
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G(0) = 0, G′(κ) > 0, G′′(κ) ≥ 0 for all κ ∈ (0, 1].

We study the effects for marginal utility. From (OA.7.1) in the main text Ct(κ) = At Φ(κt) Λt−1(κ)
with Φ′(κ) > 0 and Λ′

t−1(κ) > 0. Differentiating term-by-term yields

∂U

∂κ
=

∞∑
t=0

βt Ct(κ)−θ At

[
Φ′(κt)Λt−1(κ) + Φ(κt)Λ′

t−1(κ)
]

≡ M(κ) > 0,

so marginal utility from relaxing the constraint is strictly positive.
The planner’s optimal target κ∗ solves

M(κ∗) = G′(κ∗) (OA.7.2)

with the sufficient second-order condition ∂2U
∂κ2 − G′′(κ) < 0.

Assuming a stationary environment (At ≡ Ā, κt ≡ κ) and using decreasing returns α ≡ α1 +
α2 < 1, we obtain Ct ≡ C̄(κ), and

C̄(κ) = Φ(κ)
1

1−α Ā
1

1−α ,
∂C̄

∂κ
= C̄(κ)

[ Φ′(κ)
Φ(κ) + 1

1 − α

Ā′(κ)
Ā(κ)

]
.

Plugging into equation OA.7.2 and discounting the geometric series (
∑∞

t=0 βt = 1
1−β ) gives

β

(1 − β) (1 − θ) C̄(κ∗)−θ+1
[Φ′(κ∗)

Φ(κ∗) + 1
1 − α

Ā′(κ∗)
Ā(κ∗)

]
= G′(κ∗). (OA.7.3)

The choices of κ depend on the functional form of costs. For any strictly increasing convex G,
equation OA.7.3 has a unique interior solution because the LHS is positive and strictly decreasing
in κ, while the RHS is increasing. Comparative statics follow directly:

∂κ∗

∂θ
< 0,

∂κ∗

∂φ
< 0 if G(κ) = φ

2 κ2,

so higher risk aversion or a steeper cost curve lowers the optimal target.
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OA.8 Quarterly firm response to Uri Winter Storm
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Figure 6: SAIDI

This figure plots SAIDI for treatment versus control firms around the Uri Winter storm shock. The
sample consists of firms with at least 50% employment footprint in areas belonging to the Texas
ERCOT grid. Treatment firms are firms in the top 10% of the empirical distribution in terms of
outage exposure to Uri, and control firms are those in the bottom 90% of the same distribution.
Event quarter t=0 is the quarter in which firms were exposed to the Uri shock. Confidence intervals
are at the 10% level.
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OA.9 Uri Storm Timeline

February 2021
Feb 10

Arctic cold front
arrives

Feb 11
First Winter
Weather Advi-
sories

Feb 13

Statewide Winter
Storm Warnings

Feb 14–15
Hard Freeze
and Wind Chill
Warnings

Feb 16

Storm at peak;
broad warnings

Feb 17–18
Continuing warn-
ings, major outages
across Texas

Figure 7: Warning timeline for Winter Storm Uri, February 2021
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OA.10 Policy Timeline

2021Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Legislative & PUCT
policy design
(uplift/credit propos-
als & rules)

May 31, 2021
HB 4492 & SB 3
passed (end of reg-
ular session)

SB 3 signed (Jun 8)
Grid reform & relia-
bility measures

HB 4492 sign:
Jun 16 PUCT rulemakings

uplift cost allocation
rules

ERCOT implement.
uplift/credit mech.

Securit. execution
(bonding/settlement
milestones)
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