Micro Responses to Macro Shocks

Martín Almuzara Víctor Sancibrián

FRBNY Bocconi & IGIER

Toulouse School of Economics

December 9, 2025

- Estimates of transmission of aggregate shocks to individual outcomes are key objects.
- Panel local projection (LP) at horizon *h*:

$$Y_{i,t+h} = \beta(h)s_iX_t + \text{controls} + \xi_{it}(h)$$

with micro outcome Y_{it} , macro shock X_t and micro covariate $s_i \implies$ least squares $\hat{\beta}(h)$.

- Estimates of transmission of aggregate shocks to individual outcomes are key objects.
- Panel local projection (LP) at horizon h:

$$Y_{i,t+h} = \beta(h)s_iX_t + \text{controls} + \xi_{it}(h)$$

with micro outcome Y_{it} , macro shock X_t and micro covariate $s_i \implies$ least squares $\hat{\beta}(h)$.

→ Ottonello, Winberry (2020)

Y = firm-level investment

X = monetary policy shock,

s = leverage/distance to default

- Estimates of transmission of aggregate shocks to individual outcomes are key objects.
- Panel local projection (LP) at horizon h:

$$Y_{i,t+h} = \beta(h)s_iX_t + \text{controls} + \xi_{it}(h)$$

with micro outcome Y_{it} , macro shock X_t and micro covariate $s_i \implies$ least squares $\hat{\beta}(h)$.

- → Ottonello, Winberry (2020)
 - Y = firm-level investment
 - X = monetary policy shock,
 - s = leverage/distance to default

- → Holm, Paul, Tischbirek (2021)
 - Y =household income/spending,
 - X = monetary policy shock,
 - s =liquid assets indicator.

- Estimates of transmission of aggregate shocks to individual outcomes are key objects.
- Panel local projection (LP) at horizon h:

$$Y_{i,t+h} = \beta(h)s_iX_t + \text{controls} + \xi_{it}(h)$$

with micro outcome Y_{it} , macro shock X_t and micro covariate $s_i \implies$ least squares $\hat{\beta}(h)$.

- → Ottonello, Winberry (2020)
 Y = firm-level investment
 X = monetary policy shock,
 s = leverage/distance to default
- → Holm, Paul, Tischbirek (2021)
 Y = household income/spending,
 X = monetary policy shock,
 s = liquid assets indicator.
- Despite a lot of progress in time series, little is known about the panel data case.

- **1** What is $\hat{\beta}(h)$ estimating?
- 2 How to compute standard errors/confidence intervals?

- **1** What is $\hat{\beta}(h)$ estimating?
- 2 How to compute standard errors/confidence intervals?
- We study these questions in a general setup:
 - Observed and unobserved, macro and micro shocks.
 - Heterogeneous, dynamic transmission.
 - $\Rightarrow Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}$

- **1** What is $\hat{\beta}(h)$ estimating?
- 2 How to compute standard errors/confidence intervals?
- We study these questions in a general setup:
 - Observed and unobserved, macro and micro shocks.
 - o Heterogeneous, dynamic transmission.

$$\Rightarrow Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}$$

• We allow for DGPs with potentially low macro-micro signal-noise.

- **1** What is $\hat{\beta}(h)$ estimating?
- 2 How to compute standard errors/confidence intervals?
- We study these questions in a general setup:
 - Observed and unobserved, macro and micro shocks.
 - Heterogeneous, dynamic transmission.

$$Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}$$

- We allow for DGPs with potentially low macro-micro signal-noise.
- Macro shock of interest X is observed, recovered from SVAR or proxy/IV.

Contributions

- **1** Estimand of $\hat{\beta}(h)$.
 - Population projection of impulse response β_{ih} on s_i :

$$\beta(h) = \frac{\mathsf{Cov}(s_i, \beta_{ih})}{\mathsf{Var}(s_i)}.$$

Nonparametric in the sense of permitting unrestricted unobserved heterogeneity.

Contributions

- **1** Estimand of $\hat{\beta}(h)$.
 - Population projection of impulse response β_{ih} on s_i :

$$\beta(h) = \frac{\operatorname{Cov}(s_i, \beta_{ih})}{\operatorname{Var}(s_i)}.$$

Nonparametric in the sense of permitting unrestricted unobserved heterogeneity.

- Panel LP inference.
 - We propose a simple yet robust recipe: lags + clustering on t.
 - Relative to standard practice, offers both technical and practical advantages.

Uniform validity over DGPs with different macro-micro signal-noise.

Empirical relevance

- Disagreement in the choice of standard errors in applied work. In our review of almost 50 recent empirical papers:
 - (i, t)-clustering (two-way) $\approx 50\%$
 - *i*-clustering (within units) \approx 33%
 - Driscoll, Kraay (1998) ≈ **15**%

Empirical relevance

- Disagreement in the choice of standard errors in applied work. In our review of almost 50 recent empirical papers:
 - (i, t)-clustering (two-way) $\approx 50\%$
 - \emph{i} -clustering (within units) \approx 33%
 - Driscoll, Kraay (1998) ≈ **15**%
- Instead, our recommendation → t-LAHR inference:
 - Lags + clustering on t.
 - Small-sample refinements if T is small; Imbens, Kolesár (2016).
 - o Inference is simple and robust to the pervasiveness of micro variation.
- Code: https://github.com/TinchoAlmuzara/PanelLocalProjections

Literature

- Time series literature on local projections: Jordà (2005), Stock, Watson (2018), Montiel Olea, Plagborg-Møller (2021), Montiel-Olea, Plagborg-Møller, Qian, Wolf (2024) ...
- Econometrics with aggregate shocks: Hahn, Kuersteiner, Mazzocco (2020), Chang, Chen, Schorfheide (2024), Almuzara, Arellano, Blundell, Bonhomme (2025) ...
- Cross-sectional dependence: Driscoll, Kraay (1998), Andrews (2005), Pesaran (2006)
- Complement to regional exposure/shift-share: Adao, Kolesar, Morales (2019), Arkhangelsky, Korovkin (2023), Majerovitz, Sastry (2023), Hahn, Kuersteiner, Santos, Willigrod (2024), ...

Literature

- Time series literature on local projections: Jordà (2005), Stock, Watson (2018), Montiel Olea, Plagborg-Møller (2021), Montiel-Olea, Plagborg-Møller, Qian, Wolf (2024) ...
- Econometrics with aggregate shocks: Hahn, Kuersteiner, Mazzocco (2020), Chang, Chen, Schorfheide (2024), Almuzara, Arellano, Blundell, Bonhomme (2025) ...
- Cross-sectional dependence: Driscoll, Kraay (1998), Andrews (2005), Pesaran (2006)
- Complement to regional exposure/shift-share: Adao, Kolesar, Morales (2019), Arkhangelsky, Korovkin (2023), Majerovitz, Sastry (2023), Hahn, Kuersteiner, Santos, Willigrod (2024), ...
- → This paper: panel data + aggregate shocks + robustness to macro signal strength

Outline

1 Panel local projections

Main result Synthetic time series representation Additional structure: VAR DGP

- 2 Extensions: Panel LP-IV
- 3 Simulation study
- 4 Empirical illustration
- **5** Conclusion

Panel local projections

Main result

Panel local projections: estimator

• Panel LP at horizon h with p lags, controls and unit and time FEs:

$$Y_{i,t+h} = \hat{\beta}(h)s_iX_t + \hat{\psi}(h)'W_{it} + \hat{\mu}_i(h) + \hat{\nu}_t(h) + \hat{\xi}_{it}(h),$$

where $W_{it} = (s_i X_{t-1}, Y_{i,t-1}, \dots, s_i X_{t-p}, Y_{i,t-p})'$ and $\hat{\xi}_{it}(h)$ are least-squares residuals.

Panel local projections: estimator

Panel LP at horizon h with p lags, controls and unit and time FEs:

$$Y_{i,t+h} = \hat{\beta}(h)s_iX_t + \hat{\psi}(h)'W_{it} + \hat{\mu}_i(h) + \hat{\nu}_t(h) + \hat{\xi}_{it}(h),$$

where $W_{it} = (s_i X_{t-1}, Y_{i,t-1}, \dots, s_i X_{t-p}, Y_{i,t-p})'$ and $\hat{\xi}_{it}(h)$ are least-squares residuals.

- Can include additional macro and micro controls.
- Easy to extend to unbalanced panels and time-varying s_i .
- Focus on the dominant case where X_t is observable for simplicity (extensions).

Panel local projections: inference

Confidence interval based on sandwich formula:

$$\hat{C}_{\alpha}(h) = \left[\hat{eta}(h) \pm z_{1-\alpha/2}\hat{\sigma}(h)\right], \qquad \hat{\sigma}(h) = \sqrt{\frac{\hat{V}(h)}{(T-h)\hat{J}^2}},$$

where $\hat{J} = \frac{1}{N(T-h)} \sum_{i=1}^{N} \sum_{t=1}^{T-h} \hat{x}_{it}^2$ and \hat{x}_{it} are residuals from reg. $s_i X_t$ on W_{it} and the FEs.

Panel local projections: inference

Confidence interval based on sandwich formula:

$$\hat{C}_{\alpha}(h) = \left[\hat{eta}(h) \pm z_{1-\alpha/2}\hat{\sigma}(h)\right], \qquad \hat{\sigma}(h) = \sqrt{\frac{\hat{V}(h)}{(T-h)\hat{J}^2}},$$

where $\hat{J} = \frac{1}{N(T-h)} \sum_{i=1}^{N} \sum_{t=1}^{T-h} \hat{x}_{it}^2$ and \hat{x}_{it} are residuals from reg. $s_i X_t$ on W_{it} and the FEs.

• What about \hat{V} ? Right choice relies on time clustering:

$$\hat{V}(h) = \frac{1}{(T-h)} \sum_{t=1}^{T-h} \left(\frac{1}{N} \sum_{i=1}^{N} \hat{x}_{it} \hat{\xi}_{it}(h) \right)^{2}.$$

Panel local projections: inference

• Confidence interval based on sandwich formula:

$$\hat{C}_{\alpha}(h) = \left[\hat{eta}(h) \pm z_{1-\alpha/2}\hat{\sigma}(h)\right], \qquad \hat{\sigma}(h) = \sqrt{\frac{\hat{V}(h)}{(T-h)\hat{J}^2}},$$

where $\hat{J} = \frac{1}{N(T-h)} \sum_{i=1}^{N} \sum_{t=1}^{T-h} \hat{x}_{it}^2$ and \hat{x}_{it} are residuals from reg. $s_i X_t$ on W_{it} and the FEs.

• What about \hat{V} ? Right choice relies on time clustering:

$$\hat{V}(h) = \frac{1}{(T-h)} \sum_{t=1}^{T-h} \left(\frac{1}{N} \sum_{i=1}^{N} \hat{x}_{it} \hat{\xi}_{it}(h) \right)^{2}.$$

• We now study the properties of $\hat{\beta}(h)$ and $\hat{C}_{\alpha}(h)$ in a general class of DGPs.

DGP:

$$Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}, \quad t = 1, ..., T, \quad i = 1, ..., N,$$

$$v_{it} = \sum_{\ell=0}^{\infty} \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t-\ell}.$$

DGP:

$$\begin{aligned} Y_{it} &= \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}, \quad t = 1, ..., T, \quad i = 1, ..., N, \\ v_{it} &= \sum_{\ell=0}^{\infty} \gamma_{i\ell} \frac{Z_{t-\ell}}{Z_{t-\ell}} + \kappa \sum_{\ell=0}^{\infty} \delta_{i\ell} \frac{u_{i,t-\ell}}{Z_{t-\ell}}. \end{aligned}$$

• Macro errors Z_t and micro errors u_{it} (serially uncorrelated).

DGP:

$$\begin{aligned} Y_{it} &= \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}, \quad t = 1, ..., T, \quad i = 1, ..., N, \\ v_{it} &= \sum_{\ell=0}^{\infty} \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t-\ell}. \end{aligned}$$

- Macro errors Z_t and micro errors u_{it} (serially uncorrelated).
- Unobserved heterogeneity $\theta_i = \{\mu_i, \{\beta_{i\ell}\}_{\ell}, \{\gamma_{i\ell}\}_{\ell}, \{\delta_{i\ell}\}_{\ell}\}.$
 - Micro-macro Wold representation, more flexible than VAR.

DGP:

$$egin{aligned} Y_{it} &= \mu_i + \sum_{\ell=0}^\infty eta_{i\ell} X_{t-\ell} + v_{it}, \quad t=1,...,T, \quad i=1,...,N, \ v_{it} &= \sum_{\ell=0}^\infty \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^\infty \delta_{i\ell} u_{i,t-\ell}. \end{aligned}$$

- Macro errors Z_t and micro errors u_{it} (serially uncorrelated).
- Unobserved heterogeneity $\theta_i = \{\mu_i, \{\beta_{i\ell}\}_{\ell}, \{\gamma_{i\ell}\}_{\ell}, \{\delta_{i\ell}\}_{\ell}\}.$
 - Micro-macro Wold representation, more flexible than VAR.
- Macro-micro signal-noise κ .
 - We consider a range of DGPs P_{κ} where κ might grow as $N \to \infty$.

Model: assumptions

Assumption: stationarity and iidness

 $\{X_t, Z_t, \{u_{it}\}_i\}$ stationary given $\{\theta_i, s_i\}_i$. $\{\theta_i, s_i, \{u_{it}\}\}_i$ i.i.d. over i given $\{X_t, Z_t\}$.

Model: assumptions

Assumption: stationarity and iidness

```
\{X_t, Z_t, \{u_{it}\}_i\} stationary given \{\theta_i, s_i\}_i. \{\theta_i, s_i, \{u_{it}\}\}_i i.i.d. over i given \{X_t, Z_t\}.
```

Assumption: shocks and mean independence

$$\begin{split} & \mathsf{E} \big[\, X_t \, \big| \, \big\{ X_\tau \big\}_{\tau \neq t}, \big\{ Z_\tau, \big\{ u_{i\tau} \big\}_i \big\}, \big\{ \theta_i, s_i \big\}_i \, \big] = 0. \\ & \mathsf{E} \big[\, Z_t \, \big| \, \big\{ Z_\tau \big\}_{\tau \neq t}, \big\{ X_\tau, \big\{ u_{i\tau} \big\}_i \big\}, \big\{ \theta_i, s_i \big\}_i \, \big] = 0. \\ & \mathsf{E} \big[\, u_{it} \, \big| \, \big\{ u_{i\tau} \big\}_{\tau \neq t}, \big\{ X_\tau, Z_\tau \big\}, \theta_i, s_i \, \big] = 0. \end{split}$$

Model: assumptions

Assumption: stationarity and iidness

```
\{X_t, Z_t, \{u_{it}\}_i\} stationary given \{\theta_i, s_i\}_i. \{\theta_i, s_i, \{u_{it}\}\}_i i.i.d. over i given \{X_t, Z_t\}.
```

Assumption: shocks and mean independence

$$\begin{split} & \mathsf{E} \big[\, X_t \, \big| \, \{ X_\tau \}_{\tau \neq t}, \{ Z_\tau, \{ u_{i\tau} \}_i \}, \{ \theta_i, s_i \}_i \, \big] = 0. \\ & \mathsf{E} \big[\, Z_t \, \big| \, \{ Z_\tau \}_{\tau \neq t}, \{ X_\tau, \{ u_{i\tau} \}_i \}, \{ \theta_i, s_i \}_i \, \big] = 0. \\ & \mathsf{E} \big[\, u_{it} \, \big| \, \{ u_{i\tau} \}_{\tau \neq t}, \{ X_\tau, Z_\tau \}, \theta_i, s_i \, \big] = 0. \end{split}$$

Regularity cond's: decay of β , γ , δ + moments of X, Z, u + summability of squares.

Model: macro/micro signal-noise

• R²'s of aggregate shocks:

$$ar{R}^2 = 1 - rac{\mathsf{Var}ig(ar{Y}_t \mid \{X_{ au}, Z_{ au}\}, \{ heta_i\}ig)}{\mathsf{Var}ig(ar{Y}_t \mid \{ heta_i\}ig)} = 1 - Oigg(rac{\kappa^2}{N}igg)$$
 ,

with
$$\bar{Y}_t = N^{-1} \sum_{i=1}^N Y_{it}$$
.

- $\begin{array}{lll} \circ & \text{High-signal case} & \Longrightarrow & \kappa \text{ fixed,} & \bar{R}^2 \approx 1. \\ \circ & \text{Low-signal case} & \Longrightarrow & \kappa \propto \sqrt{N}, & \bar{R}^2 \in (0,1). \\ \circ & \text{"No-signal" case} & \Longrightarrow & \kappa \gg \sqrt{N}, & \bar{R}^2 \approx 0. \end{array}$

Model: macro/micro signal-noise

• R²'s of aggregate shocks:

$$ar{R}^2 = 1 - rac{\mathsf{Var}ig(ar{Y}_t \bigm| \{X_ au, Z_ au\}, \{ heta_i\}ig)}{\mathsf{Var}ig(ar{Y}_t \bigm| \{ heta_i\}ig)} = 1 - Oigg(rac{\kappa^2}{N}igg)$$
 ,

with
$$\bar{Y}_t = N^{-1} \sum_{i=1}^N Y_{it}$$
.

- $\begin{array}{lll} \circ & \text{High-signal case} & \Longrightarrow & \kappa \text{ fixed,} & \bar{R}^2 \approx 1. \\ \circ & \text{Low-signal case} & \Longrightarrow & \kappa \propto \sqrt{N}, & \bar{R}^2 \in (0,1). \\ \circ & \text{"No-signal" case} & \Longrightarrow & \kappa \gg \sqrt{N}, & \bar{R}^2 \approx 0. \end{array}$
- But... κ not always estimable.

Main result

• Asymptotics. T, $N \to \infty$ with $T/N \to 0$ holding $p \ge h$ fixed.

Proposition: estimand

$$\beta(h) = \mathsf{Cov}(s_i, \beta_{ih}) / \mathsf{Var}(s_i)$$
.

• If $s_i = 1$, this is we have $\beta(h) = E[\beta_{ih}]$.

Main result

• Asymptotics. T, $N \to \infty$ with $T/N \to 0$ holding $p \ge h$ fixed.

Proposition: estimand

$$\beta(h) = \operatorname{Cov}(s_i, \beta_{ih}) / \operatorname{Var}(s_i)$$
.

o If $s_i = 1$, this is we have $\beta(h) = E[\beta_{ih}]$.

Proposition: uniformly valid inference

$$\lim_{T,N\to\infty}\sup_{P_\kappa}\left|P_\kappa(\beta(h)\in\hat{\mathcal{C}}_\alpha(h))-(1-\alpha)\right|=0.$$

Main result

• Asymptotics. T, $N \to \infty$ with $T/N \to 0$ holding $p \ge h$ fixed.

Proposition: estimand

$$\beta(h) = \text{Cov}(s_i, \beta_{ih}) / \text{Var}(s_i)$$
.

o If $s_i = 1$, this is we have $\beta(h) = E[\beta_{ih}]$.

Proposition: uniformly valid inference

$$\lim_{T,N\to\infty}\sup_{P_{\kappa}}\left|P_{\kappa}(\beta(h)\in\hat{\mathcal{C}}_{\alpha}(h))-(1-\alpha)\right|=0.$$

Proof: drifting sequences + martingale approximations + uniform bounds.

Synthetic time series representation

Panel local projections

Synthetic time series representation (I)

• By FWL, the panel LP estimator with p lags + unit and time FEs can also be written as

$$Y_{i,t+h} = \hat{\beta}(h)\hat{s}_i\hat{X}_t + \sum_{\ell=1}^{p} \tilde{\varphi}_j(h)s_iX_{t-\ell} + \tilde{\mu}_i(h) + \tilde{\nu}_t(h) + \hat{\xi}_{it}(h),$$

with \hat{X}_t = residual from reg. X_t on $1, X_{t-1}, ..., X_{t-p}$ and $\hat{s}_i = s_i - N^{-1} \sum_{j=1}^N s_j$.

Synthetic time series representation (I)

• By FWL, the panel LP estimator with p lags + unit and time FEs can also be written as

$$Y_{i,t+h} = \hat{\beta}(h)\hat{s}_i\hat{X}_t + \sum_{\ell=1}^{p} \tilde{\varphi}_j(h)s_iX_{t-\ell} + \tilde{\mu}_i(h) + \tilde{\nu}_t(h) + \hat{\xi}_{it}(h),$$

with \hat{X}_t = residual from reg. X_t on $1, X_{t-1}, ..., X_{t-p}$ and $\hat{s}_i = s_i - N^{-1} \sum_{j=1}^{N} s_j$.

• Letting $\hat{Y}_t(h) = \left(\sum_{i=1}^N \hat{s}_i Y_{i,t+h}\right) / \left(\sum_{i=1}^N \hat{s}_i^2\right)$, we have

$$\hat{\beta}(h) = \frac{\sum_{t=1}^{T-h} \sum_{i=1}^{N} \hat{s}_{i} \hat{X}_{t} Y_{i,t+h}}{\sum_{t=1}^{T-h} \sum_{i=1}^{N} \hat{s}_{i}^{2} \hat{X}_{t}^{2}} = \frac{\sum_{t=1}^{T-h} \hat{X}_{t} \hat{Y}_{t}(h)}{\sum_{t=1}^{T} \hat{X}_{t}^{2}},$$

i.e., $\hat{\beta}(h)$ is also the regression coeff. on synthetic time series data $\{\hat{Y}_t(h), \hat{X}_t\}_{t=1}^{T-h}$.

Synthetic time series representation (II)

• Similarly, define the synthetic residuals as

$$\hat{\xi}_t(h) = \frac{\sum_{i=1}^N \hat{s}_i \hat{\xi}_{it}(h)}{\sum_{i=1}^N \hat{s}_i^2} = \hat{Y}_t(h) - \left(\hat{\beta}(h)\hat{X}_t + \sum_{\ell=1}^p \tilde{\varphi}_{\ell}(h)X_{t-\ell} + \tilde{\mu}(h)\right).$$

Synthetic time series representation (II)

Similarly, define the synthetic residuals as

$$\hat{\xi}_t(h) = \frac{\sum_{i=1}^N \hat{s}_i \hat{\xi}_{it}(h)}{\sum_{i=1}^N \hat{s}_i^2} = \hat{Y}_t(h) - \left(\hat{\beta}(h)\hat{X}_t + \sum_{\ell=1}^p \tilde{\varphi}_\ell(h)X_{t-\ell} + \tilde{\mu}(h)\right).$$

• $\hat{C}_{\alpha}(h)$, $\hat{\sigma}(h)$ also numerically the same as synthetic time series-based CI/SE.

Synthetic time series representation (II)

Similarly, define the synthetic residuals as

$$\hat{\xi}_t(h) = \frac{\sum_{i=1}^N \hat{s}_i \hat{\xi}_{it}(h)}{\sum_{i=1}^N \hat{s}_i^2} = \hat{Y}_t(h) - \left(\hat{\beta}(h)\hat{X}_t + \sum_{\ell=1}^p \tilde{\varphi}_\ell(h)X_{t-\ell} + \tilde{\mu}(h)\right).$$

- $\hat{C}_{\alpha}(h)$, $\hat{\sigma}(h)$ also numerically the same as synthetic time series-based CI/SE.
- This is a powerful tool that is behind many of our results:
 - Provides guidance for inference and qualifies the role of the cross-sectional dim.
 - A "low-dimensional" representation of the problem → visualization tool.

Macro-micro decomposition

Representation of estimation error:

$$\hat{\beta}(h) = \underbrace{\frac{\sum_{i=1}^{N} \hat{s}_{i} \beta_{ih}}{\sum_{i=1}^{N} \hat{s}_{i}^{2}}}_{\beta(h) + O_{p}\left(N^{-1/2}\right)} + \underbrace{\frac{\sum_{t=1}^{T-h} X_{t} \xi_{t}(h)}{\mathsf{E}\left[X_{t}^{2}\right]}}_{\mathsf{E}(h) + O_{p}\left(N^{-1/2}\right)}$$

Macro-micro decomposition

Representation of estimation error:

$$\hat{\beta}(h) = \underbrace{\frac{\sum_{i=1}^{N} \hat{s}_{i} \beta_{ih}}{\sum_{i=1}^{N} \hat{s}_{i}^{2}}}_{\beta(h) + O_{p}(N^{-1/2})} + \underbrace{\frac{\sum_{t=1}^{T-h} X_{t} \xi_{t}(h)}{\mathsf{E}[X_{t}^{2}]}}_{\mathsf{E}(h) + O_{p}(N^{-1/2})}$$

where

$$\xi_{t}(h) = \left(\sum_{\ell \notin [h,h+\rho]} \tilde{\beta}_{\ell} X_{t+h-\ell} + \sum_{\ell=0}^{\infty} \tilde{\gamma}_{\ell} Z_{t+h-\ell}\right) + \frac{\kappa}{\sqrt{N}} \left(\frac{\sum_{i=1}^{N} \hat{s}_{i} \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t+h-\ell}}{\sqrt{N} \mathsf{Var}(s_{i})}\right)$$

• Nature of estimation error depends on κ . Micro noise non-negligible if $\kappa \propto \sqrt{N}$.

Which inference procedures work?

- Regression score:
 - MA(h) with Cov $(X_t\xi_t(h), X_{t-\ell}\xi_{t-\ell}(h)) = 0$ if $1 \le |\ell| \le p$.
 - Moreover, only $Var(X_t\xi_t(h))$ depends on κ/\sqrt{N} .

Which inference procedures work?

- Regression score:
 - MA(h) with Cov($X_t\xi_t(h), X_{t-\ell}\xi_{t-\ell}(h)$) = 0 if $1 \le |\ell| \le p$.
 - Moreover, only $Var(X_t\xi_t(h))$ depends on κ/\sqrt{N} .
- A CI works if it captures score's sum of autocovariances.
 - Unit-level clustering ignores the presence of macro shocks.
 - Driscoll-Kraay OK in theory. Tricky in practice (kernel + difficulties with HAC).
 - It also estimates a lot of unnecessary autocovariances.
 - Two-way clustering ignores the MA(h) term in the scores.
 - Distortions are smaller if κ is large.
 - \emph{i} -clustering is redundant: it's aggregate rather than unit-level dynamics which matter.

Which inference procedures work?

- Regression score:
 - MA(h) with Cov($X_t\xi_t(h), X_{t-\ell}\xi_{t-\ell}(h)$) = 0 if $1 \le |\ell| \le p$.
 - Moreover, only $Var(X_t\xi_t(h))$ depends on κ/\sqrt{N} .
- A CI works if it captures score's sum of autocovariances.
 - Unit-level clustering ignores the presence of macro shocks.
 - Driscoll-Kraay OK in theory. Tricky in practice (kernel + difficulties with HAC).
 - It also estimates a lot of unnecessary autocovariances.
 - Two-way clustering ignores the MA(h) term in the scores.
 - Distortions are smaller if κ is large.
 - $\scriptstyle -i$ -clustering is redundant: it's aggregate $\scriptstyle -$ rather than unit-level $\scriptstyle -$ dynamics which matter.
- Applied recommendation: t-LAHR + small-sample refinement if T small.
 - \circ Choice of lags p is an important dimension in high- or moderate-signal regimes.

Panel local projections

Additional structure: VAR DGP

Panel VAR model: setup and estimation

- A low-order VAR often provides a reasonable approximation to the data.
 - Controlling for few lags of Y_{it} and $s_i X_t$ often suffices for valid inference.

Panel VAR model: setup and estimation

- A low-order VAR often provides a reasonable approximation to the data.
 - Controlling for few lags of Y_{it} and $s_i X_t$ often suffices for valid inference.
- Vector autoregressive DGP:

$$Y_{it} = m_i + \sum_{\ell=1}^{p} A_{\ell} Y_{i,t-\ell} + \sum_{\ell=0}^{p} B_{i\ell} X_{t-\ell} + C_{i0} Z_t + \kappa D_{i0} u_{it}.$$

• Estimation: LP augmented with p lags of Y_{it} and $s_i X_t$.

$$Y_{i,t+h} = \hat{\beta}(h)s_iX_t + \sum_{\ell=1}^{p} \left(\hat{\psi}_{\ell}(h)Y_{i,t-\ell} + \hat{\varphi}_{\ell}(h)s_iX_{t-\ell}\right) + \hat{\mu}_i(h) + \hat{\nu}_t(h) + \hat{\xi}_{it}(h).$$

Panel VAR model: inference

Proposition: uniformly valid inference (panel VAR)

$$\lim_{T,N\to\infty}\sup_{0\leq h\leq\phi T}\sup_{P_{\kappa}}\left|P_{\kappa}(\beta(h)\in\hat{C}_{\alpha}(h))-(1-\alpha)\right|=0.$$

- Time-level aggregation of $\hat{\xi}_{it}(h)$ + Eicker–Huber–White works for $h \propto T$.
 - Dimension reduction if low-order VAR is a good approximation.
 - o As in Montiel-Olea, Plagborg-Møller (2021), but lags serve another purpose.

Panel VAR model: inference

Proposition: uniformly valid inference (panel VAR)

$$\lim_{T,N\to\infty}\sup_{0< h<\phi T}\sup_{P_{\kappa}}\left|P_{\kappa}(\beta(h)\in\hat{C}_{\alpha}(h))-(1-\alpha)\right|=0.$$

- Time-level aggregation of $\hat{\xi}_{it}(h)$ + Eicker–Huber–White works for $h \propto T$.
 - Dimension reduction if low-order VAR is a good approximation.
 - o As in Montiel-Olea, Plagborg-Møller (2021), but lags serve another purpose.
- In practical terms, IC on the synthetic time series can guide lag length choice.

Shocks from SVARs

- t-LAHR inference remains uniformly valid when:
 - The shock X_t is observed with serial correlation: $X_t^* = \sum \alpha_{\ell} X_{t-\ell}^* + X_t$.
 - Inference uses lag-augmented LPs with controls for lags of X_t^* and Y_{it} .

Shocks from SVARs

- t-LAHR inference remains uniformly valid when:
 - The shock X_t is observed with serial correlation: $X_t^* = \sum \alpha_{\ell} X_{t-\ell}^* + X_t$.
 - o Inference uses lag-augmented LPs with controls for lags of X_t^* and Y_{it} .
- It also applies to cases where X_t is identified using conventional macro restrictions (recursive, long-run, etc.) in SVARs $\alpha_0 R_t = \sum_{\ell=1}^{p_R} \alpha_\ell R_{t-\ell} + \varepsilon_t$ where $\varepsilon_{jt} = X_t$.
 - LP on $\hat{\alpha}_{0,j\bullet} \mathbf{R}_t$ or $\hat{X}_t = \hat{\alpha}_{0,j\bullet} \mathbf{R}_t \sum_{\ell=1}^{p_R} \hat{\alpha}_{\ell,j\bullet} \mathbf{R}_{t-\ell}$ with a suitable choice of controls.
- E.g., consider recursive identification:
 - Either project on $s_i R_{jt}$ ($\hat{\beta}_R(h)$) or on estimated $s_i \hat{X}_t$ ($\hat{\beta}_X(h)$).
 - Use rich controls: lags of Y_{it} , macro variables, and fixed effects.
 - Result: Confidence intervals based on $\hat{\beta}_R(h)$ or $\hat{\beta}_X(h)$ are uniformly valid over h and κ .

Extensions

Panel LP-IV

Panel LP-IV model: setup

• General DGP (again):

$$Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + \sum_{\ell=0}^{\infty} \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t-\ell}.$$

- It is often more appealing to treat observed shocks as contaminated proxies.
- Rather than X_t , the researcher observes endogenous \tilde{X}_t and proxy X_t^* :

$$\begin{split} \tilde{X}_t &= \sum_{\ell=0}^{\infty} b_\ell X_{t-\ell} + \sum_{\ell=0}^{\infty} c_\ell Z_{t-\ell}, \\ X_t^* &= a_0 X_t + \nu_t. \end{split}$$

Panel LP-IV model: setup

General DGP (again):

$$Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + \sum_{\ell=0}^{\infty} \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t-\ell}.$$

- It is often more appealing to treat observed shocks as contaminated proxies.
- Rather than X_t , the researcher observes endogenous \tilde{X}_t and proxy X_t^* :

$$\begin{split} \tilde{X}_t &= \sum_{\ell=0}^{\infty} b_\ell X_{t-\ell} + \sum_{\ell=0}^{\infty} c_\ell Z_{t-\ell}, \\ X_t^* &= a_0 X_t + \nu_t. \end{split}$$

- Assumptions: $b_0 = 1$ (normalization) + $a_0 \neq 0$ (IV relevance) + regularity cond's.
- Panel counterpart to Stock, Watson (2018), Plagborg-Møller, Wolf (2021).

Panel LP-IV model: estimation

- LP-IV regresses $Y_{i,t+h}$ on $\tilde{\mathbf{X}}_t = (\tilde{X}_t, \dots, \tilde{X}_{t-p})'$ using instrument $\mathbf{X}_t^* = (X_t^*, \dots, X_{t-p}^*)'$ both interacted with s_i and controlling for unit/time FEs.
 - We are interested in the first entry $\hat{\beta}_0^{\text{IV}}(h)$ but need to instrument the whole vector.
- Estimand continues to be $\beta(h) = \text{Cov}(s_i, \beta_{ih}) / \text{Var}(s_i)$.

Panel LP-IV model: estimation

- LP-IV regresses $Y_{i,t+h}$ on $\tilde{\mathbf{X}}_t = (\tilde{X}_t, \dots, \tilde{X}_{t-p})'$ using instrument $\mathbf{X}_t^* = (X_t^*, \dots, X_{t-p}^*)'$ both interacted with s_i and controlling for unit/time FEs.
 - We are interested in the first entry $\hat{\beta}_0^{\text{IV}}(h)$ but need to instrument the whole vector.
- Estimand continues to be $\beta(h) = \text{Cov}(s_i, \beta_{ih}) / \text{Var}(s_i)$.
- Suitably residualized instrument \hat{X}_{t}^{*} :

$$\hat{\boldsymbol{\beta}}^{\mathsf{IV}}(h) = \left(\sum_{t=1}^{T-h} \hat{\boldsymbol{X}}_t^* \tilde{\boldsymbol{X}}_t'\right)^{-1} \sum_{t=1}^{T-h} \hat{\boldsymbol{X}}_t^* \hat{Y}_{i,t+h},$$

i.e., it also admits a synthetic time series LP-IV representation.

Panel LP-IV model: inference

• $\hat{C}_{\alpha}^{\text{IV}}(h) = \left[\hat{\beta}_{0}^{\text{IV}}(h) \pm z_{1-\alpha/2}\hat{\sigma}_{0}^{\text{IV}}(h)\right]$ with *t*-clustered heteroskedasticity-robust SE:

$$\hat{\sigma}_0^{\mathsf{IV}}(h) = \left[\frac{1}{(T-h)} \cdot \left(e_1' \left[\hat{\boldsymbol{J}}^{\mathsf{IV}}\right]^{-1}\right) \hat{\boldsymbol{V}}^{\mathsf{IV}}(h) \left(e_1' \left[\hat{\boldsymbol{J}}^{\mathsf{IV}}\right]^{-1}\right)'\right]^{1/2}$$

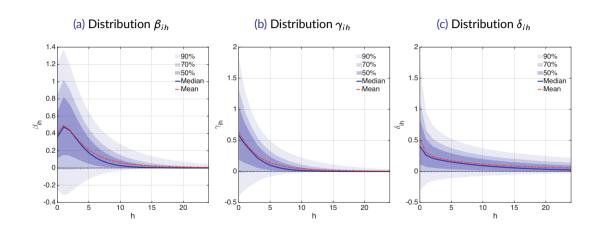
where \hat{J}^{IV} and $\hat{V}^{IV}(h)$ come from the usual sandwich formula.

Proposition: uniformly valid inference (panel LP-IV)

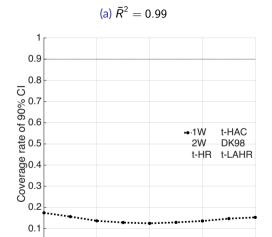
$$\lim_{T,N o\infty}\sup_{P}\left|P_{\kappa}(eta(h)\in\hat{\mathcal{C}}_{lpha}^{\mathsf{IV}}(h))-(1-lpha)
ight|=0.$$

Simulation study

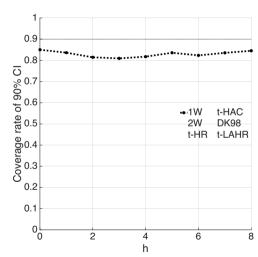
Design



2



(b)
$$\bar{R}^2 = 0.33$$



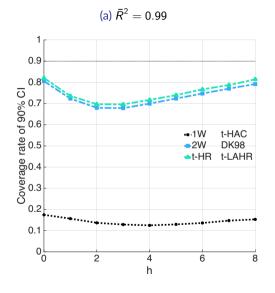
0 L

4

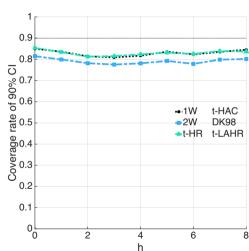
h

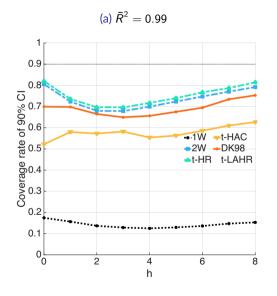
6

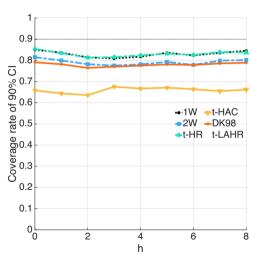
8

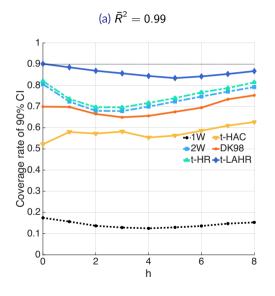


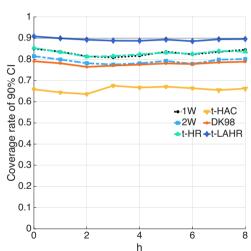
(b)
$$\bar{R}^2 = 0.33$$

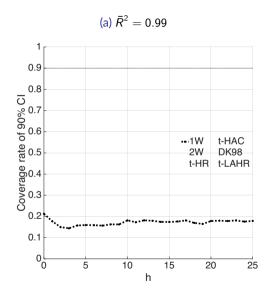


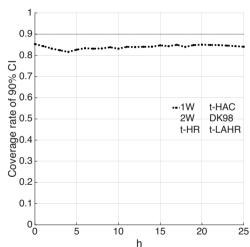


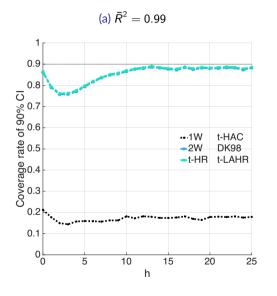


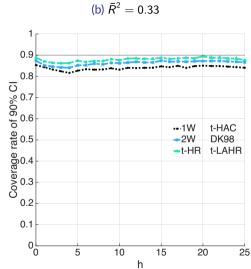


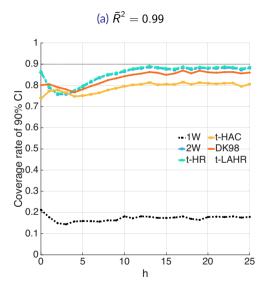


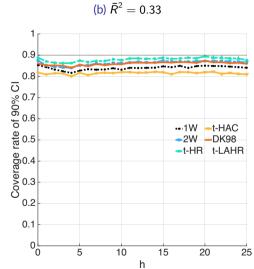


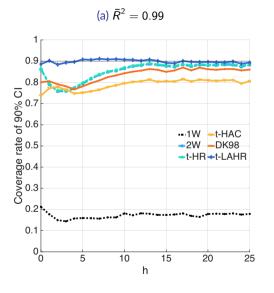


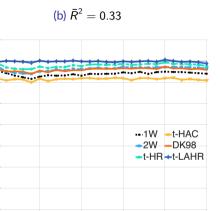












15

h

20

0.8

0.2

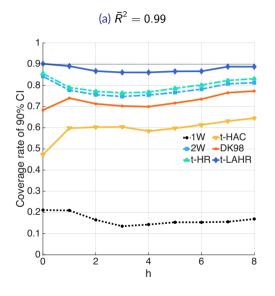
0.1

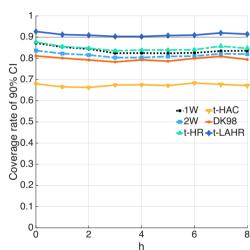
0 L

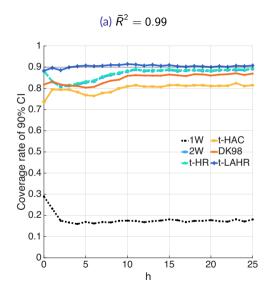
5

10

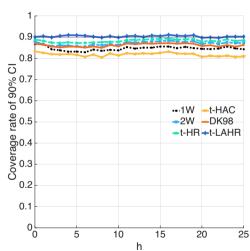
25







(b)
$$\bar{R}^2 = 0.33$$



Empirical illustration

Based on Ottonello, Winberry (2020, ECTA)

Data and background

- Goal: Quantify firm-level responses to exogenous changes in mon. policy:
 - o Ottonello, Winberry (2020): Default risk.
- Literature: Role of financial het. in shaping the transmission of mon. policy:
 - Crouzet, Mehrotra (2020): Firm size.
 - Cloyne, Ferreira, Froemel, Surico (2023): Firm age and dividends policy.
 - o Jeenas, Lagos (2024): Stock turnover.
- Dataset:
 - Based on Compustat/CRSP and high-frequency monetary policy shocks.
 - \circ *N* = 5, 992 firms and *T* = 72 quarters (1990Q1–2007Q4) **⇒** 335,878 observations.

Empirical framework

• Dependent variable is the cumulative investment change:

$$Y_{i,t+h} = \log\left(\frac{k_{i,t+h}}{k_{i,t-1}}\right)$$

where k_{it} is the capital stock for firm i during quarter t.

- Policy shocks X_t interacted with s_{it} (distance to default or leverage).
- Controls: s_{it} , firm size, sales growth, GDP growth, firm FE and sector \times quarter FE.

Empirical framework

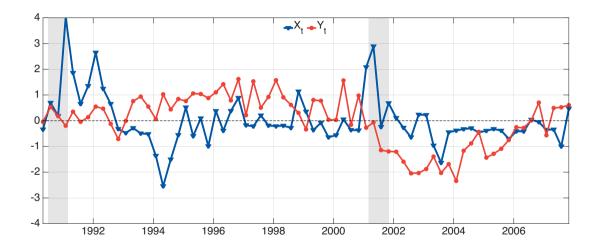
• Dependent variable is the cumulative investment change:

$$Y_{i,t+h} = \log\left(\frac{k_{i,t+h}}{k_{i,t-1}}\right)$$

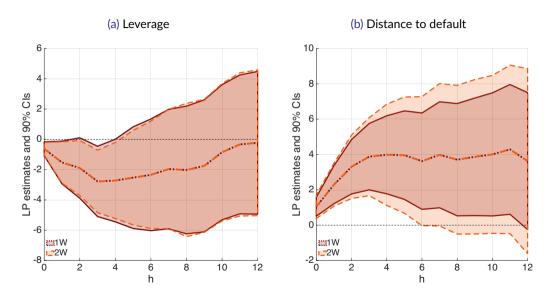
where k_{it} is the capital stock for firm i during quarter t.

- Policy shocks X_t interacted with s_{it} (distance to default or leverage).
- Controls: s_{it} , firm size, sales growth, GDP growth, firm FE and sector \times quarter FE.
- Interpretation:
 - Linear projection of firm-level impulse responses on s_{it} .
 - How does the average semi-elasticity of investment to mon. pol. change along s_{it} ?

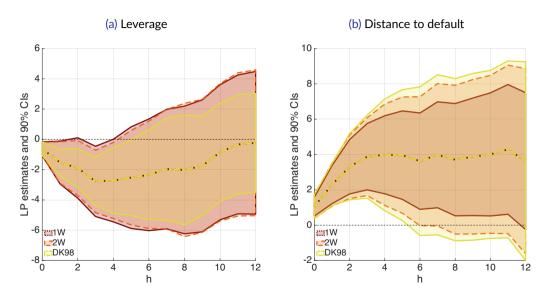
Synthetic time series



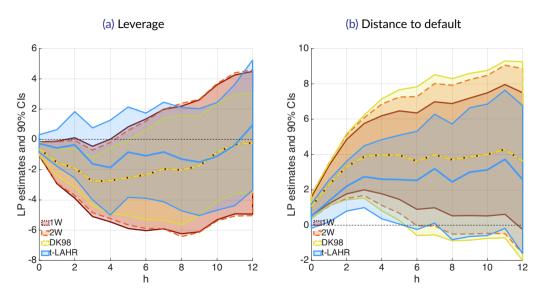
Confidence intervals



Confidence intervals



Confidence intervals



Conclusion

Conclusion and practical recommendations

- Explosion of empirical work using panel local projections with aggregate shocks.
- Estimand under unrestricted heterogeneity = population regression.
- Inference is simple and robust:
 - \circ Lags + t-clustering.
 - Reliable even in low-signal environments.
 - Easy to refine in small samples and tractable over moderate horizons.
 - Synthetic time series representation as a guiding principle.
- Code: https://github.com/TinchoAlmuzara/PanelLocalProjections

Conclusion and practical recommendations

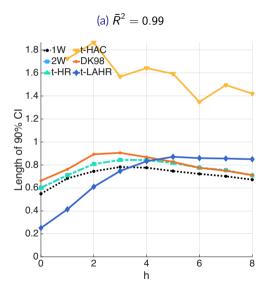
- Explosion of empirical work using panel local projections with aggregate shocks.
- Estimand under unrestricted heterogeneity = population regression.
- Inference is simple and robust:
 - Lags + t-clustering.
 - Reliable even in low-signal environments.
 - Easy to refine in small samples and tractable over moderate horizons.
 - Synthetic time series representation as a guiding principle.
- Code: https://github.com/TinchoAlmuzara/PanelLocalProjections

Thank you!

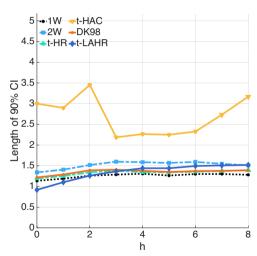
Appendix

Additional results on the simulations

Panel LP with sample size T = 30



(b)
$$\bar{R}^2 = 0.33$$

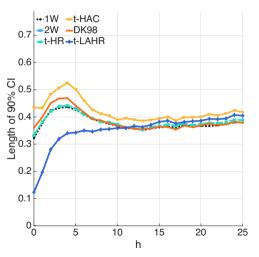


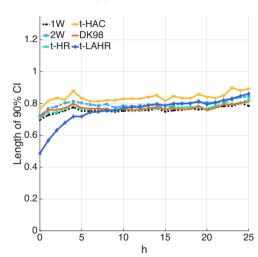
Panel LP with sample size T = 100

(a)
$$\bar{R}^2 = 0.99$$

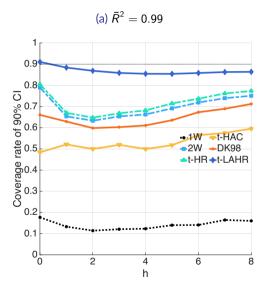
(a)
$$\bar{R}^2 = 0.99$$

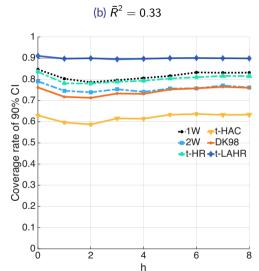
(b)
$$\bar{R}^2 = 0.33$$



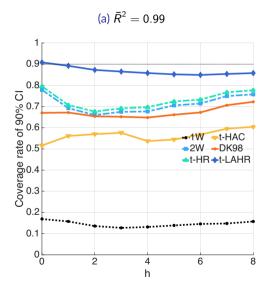


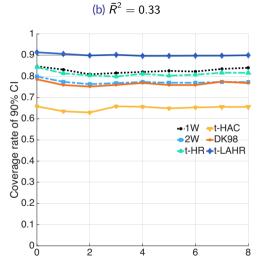
Panel LP with sample size T = 30 (cond. volatility)





Panel LP with sample size T = 30 (non-Gaussianity)





h