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test. We construct a conditional critical value function for the test in the
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1 Introduction

Many widely used econometric models, such as the linear instrumental variables (IV)
regression, linear asset pricing, dynamic panel data and New-Keynesian Phillips curve
models, are analyzed using the generalized method of moments (GMM) of Hansen
(1982). Recently awareness has risen that structural parameters in popular models
estimated using GMM might be weakly identified, which implies that traditional in-
ference methods are unreliable; see, e.g., Staiger and Stock (1997), Dufour (1997),
and Stock and Wright (2000). Inference methods have therefore been developed which
remain reliable under weak identification; see, e.g., Kleibergen (2002, 2005), Moreira
(2003), Andrews and Cheng (2012), and Andrews and Mikusheva (2016). Weak iden-
tification in correctly specified GMM occurs when the Jacobian is relatively close to
a reduced rank value. Tests for a reduced rank value of the Jacobian are therefore
commonly employed to determine the strength of identification of the structural pa-
rameters of interest; see, e.g., Cragg and Donald (1997), Robin and Smith (2000),
and Kleibergen and Paap (2006).

The GMM toolkit of Hansen (1982) has foremost been developed for analyzing
correctly specified models, i.e., models for which there is a, so-called, true value of the
structural parameters at which the population moments are exactly zero. Many em-
pirical models estimated using GMM, or perhaps even every (over-identified) model
with more moment equations than structural parameters, are yet to some extent
misspecified. For these models, there is no longer a true value of the structural para-
meters at which the population moment conditions hold exactly. The earlier literature
on misspecified models primarily focusses on the consequences of the inconsistency
of estimators for the true value of the structural parameters; see, e.g., Maasoumi
(1990), and Maasoumi and Phillips (1982). Applied researchers, however, mostly just
proceed with interpretating the estimated structural parameters that result from mis-
specified models. The population analogs of these estimators are then referred to as
pseudo-true values which are defined as the minimizers of the population analogs of
the sample objective functions; see, e.g., Kan, Robotti, and Shanken (2013). Different
objective functions lead to distinct pseudo-true values under misspecification, while

for correctly specified models, true and pseudo-true values coincide. Inference meth-



ods for analyzing the pseudo-true values have therefore been developed by, amongst
others: Hall and Inoue (2003), Gospodinov, Kan, and Robotti (2014), Lee (2018),
and Hansen and Lee (2021).

Identification issues for the pseudo-true values similarly play out in misspecified
models. We show that the identification condition in misspecified over-identified mod-
els differs from the one in correctly specified models. For linear moment conditions,
identification of the pseudo-true value of the structural parameters is reflected by
the difference between the population analogs of the traditional rank statistic for
identification and the over-identification .J-statistic. Because the former results from
constrained optimization of the objective function involved in the latter, their differ-
ence, which is our proposed identification measure, is non-negative by construction.
Identification of the pseudo-true value fails when this identification measure equals
zero. For correctly specified models, the population analog of the .J-statistic equals
zero, so the identification measure reduces to the traditional one which just relies on
the population analog of the Jacobian rank statistic.

Because the traditional identification measure based on the Jacobian does not
properly reflect identification in misspecified linear models estimated by GMM, the
common practice of using its sample analog to test for (no) identification is inappro-
priate, i.e., it does not test the relevant no-identification hypothesis. In contrast, we
develop an appropriate (quasi) likelihood ratio (LR) no-identification test for mis-
specified linear models. Its test statistic equals the difference between the sample
analogs of the traditional rank statistic and the J-statistic. For a boundary set-
ting of no-identification, we construct a conditional critical value function based on
homoskedasticity which implies a Kronecker product structure (KPS) of the joint
covariance matrix of the sample moment vector and its Jacobian.

We develop the conditional critical value function for a sequence of gradually more
challenging (no) identification testing problems. For ease of exposition, we start from
the setting of one structural parameter and a known covariance matrix. It allows
us to specify the LR test statistic as a function of two of the three elements of an
appropriate specification of the maximal invariant while its third element provides

an approximately independent conditioning statistic. This is similar in spirit to the



conditional LR test of Moreira (2003) albeit that the conditioning statistic and the
null distribution under which the conditional critical value function is computed dif-
fer. Hereafter, we provide empirically important generalizations which incorporate
covariance matrix estimators and multiple structural parameters. Because misspeci-
fication allows for population moments which are non-zero at the pseudo-true value
of the structural parameters, an accurate approximation of the conditional distribu-
tion of the LR statistic has to take the estimation error resulting from the covariance
matrix estimators into account; see, e.g., Maasoumi and Phillips (1982), Hall and
Inoue (2003), Gospodinov, Kan, and Robotti (2014), Lee (2018), and Hansen and
Lee (2021). Alongside the dependence on the conditioning statistic, the conditional
critical value function that we provide for empirical settings with multiple structural
parameters therefore depends on the sample size at hand and a few consistently es-
timable nuisance parameters.

The remaining part of the paper is organized as follows. Section 2 introduces
the appropriate identification measure for possibly misspecified over-identified lin-
ear GMM. Section 3 emphasizes its empirical importance by showcasing eight well
known studies from the asset pricing literature. Section 4 develops the conditional
LR no-identification test along the lines alluded to previously. We show that the test
has good size and power properties, and also compare it with existing tests that test
part of the no-identification hypothesis or just use elements of the LR statistic. While
these existing tests can have superior power for specific settings, we show that they are
inadequate in other settings which overall renders them inappropriate for testing the
no-identification hypothesis. Section 4 also applies the LR test to the Fama-French
(1993) three-factor model using data from Lettau, Ludvigson, and Ma (2019). The
misspecification J-test signals that the three-factor model is misspecified, because the
J-test rejects correct specification at tiny significance levels for both the specification
that incorporates the zero-beta return and the one without. The traditional identi-
fication rank test indicates strong identification for both of these specifications. On
the other hand, the appropriate LR no-identification test just rejects no-identification
with 5% significance when the zero-beta return is not incorporated while it does not

when the zero-beta return is incorporated. Given the importance of the Fama-French



(1993) three-factor model, our empirical application illustrates the relevance of using
the appropriate identification test. The fifth section draws some conclusions and pro-
vides extensions for future work. Technical details and additional empirical findings

are relegated to the Appendix.

2 Identification in misspecified linear GMM

2.1 Over-identified linear moment equations

We conduct inference on a k-dimensional moment vector p;(¢), which is a continuous
function of the m-dimensional parameter vector . The parameter vector # is over-
identified by the linear moment equations, so k; > m. The linear moment equations

for GMM are specified accordingly:

Ex(f(0,X:) = ns(0)

= u(0) + J(0)0, @

with J(0) = 2% uu,(6). Many widely used econometric models, like, for example, the
linear IV regression model, the linear factor model, and the linear dynamic panel

data model, accord with this setting. The sample moment vector fi;(f) then just

depends on the estimators of 1;(0), fi;(0), and the Jacobian .J(0), J(0), whose joint

convergence when the sample size N increases results from Assumption 1.
Assumption 1:  The joint limit behavior of fi,(0) and J(0) is described by:

(o)~ Ctm ) = ()
vec(J(0)) vec(J(0)) d Ly

(2)
W
o~ N0, V),
() ~ o

where the covariance matriz V' of the limit behavior of (ji;(0)" : vee(J(0))) reads:



V = limE N( iy (0) = 1y (0) )( fig (0) = 41y (0) >
N—o0 vec(J(0)) — vece(J(0)) ) \vec(J(0)) — vec(J(0))

_ (Vuu VM) ’ (3)
Viw Vis
with Vi, Vg = Vju and Vyj resp. kg X k¢, ky X mky and mky x mky dimensional

matrices]

Assumption 1 is satisfied under mild conditions; see, e.g., White (1984)E]

2.2 Identification and misspecification measures

When the moment equations are correctly specified, there is a unique, so-called, true

value of 0, say 6, at which the population moment conditions exactly hold:
fi5(00) = p1(0) + J(0)8p = 0. (4)

The moment vector 11;(0) is then spanned by its Jacobian J(0), so (u;(0) : J(0)) is

a ks x (m + 1) dimensional matrix which is at most of rank m :

(1£(0) £ J(0)) = J(0) (=00 : Ln) < (1(0) £ J(0))(,) = 0. (5)

The true value of 0, 0y, is identified when J(0) is a full rank matrix, so the traditional
identification measure is based on a rank test which tests for a lower rank value of
J(0), like, for example, the Cragg and Donald (1997) rank test. We therefore define
the identification measure denoted by IS (identification strength) accordingly.

!The covariance matrix V is not required to be of full rank. Positive semi-definite values of V/
can, for example, occur for the moment equations resulting from linear dynamic panel data models.

*For example, consider the linear IV regression model with i, (0) = E(Z;Y;)—E(Z; X[)0, where Z;
is the kp-dimensional vector of instrumental variables, X; is the m-dimensional endogenous variables,
Y; is the scalar endogenous variable. In this case, we have 1;(0) = E(Z;Y;), J(0) = —E(Z;X]).
Assumption 1 then just imposes that a central limit theorem applies to ji;(0) = % Zf\il Z;Y; and
the vectorization of J(0) = -+ Zfil Z; X!



Definition 1:  The IS identification measure equals the population value of the Cragg
and Donald (1997) rank statistic which tests for a reduced rank value of J(0), see also
Kleibergen (2007) and Kleibergen and Mavroeidis (2009):

IS := mingerm-1 Qrs(p)
-1

Qis(e) = (}) 700y [((;) ® ka)'v” <(;) ® ]"“fﬂ J(0)(})
= min, koo [Vec (J(()) —A ( I . — so))],vﬁ (6)

01 -5))]

When the moment equations are misspecified, there is no longer a true value at
which the moment equations hold exactly and interest is on the, so-called, pseudo-
true value which is the minimizer of the population objective function. Different
population objective functions lead to distinct pseudo-true values, while we focus
on the pseudo-true value of the continuous updating estimator (CUE). We do so
for the invariance properties of CUE, because of which inference that results from
weak identification robust procedures is centered around it. Later we also discuss the
popular two-stage estimator and show that its identification condition corresponds
with the one for the CUE, which is counter to the condition one obtains at casual
inspection.

The pseudo-true value of the CUE, 6, is defined as the minimizer of the continuous

updating population objective function:

-1

/ Iy ! Iy,
QCUE(Q) = Mf(e) ((9®Ij;f)) V((9®Il;f)) p’f(g)7 (7)
SO
0" := arg mingerm Qcvr(f). (8)

Next, we define the misspecification measure as the minimum of the CUE popu-

lation objective function, which is the population analog of the J-statistic.



Definition 2: The MISS misspecification measure equals the minimal value of the

CUFE population objective function (@
MISS := mingeRm QCUE(‘9> (9)

When the moment equations are correctly specified, MISS equals zero but not so

in case of misspecified moment equationsf]
Theorem 1: MISS is at most as large as IS:

MISS < IS. (10)

Proof. MISS is invariant with respect to the specification of the moment equation,

so the same value results when we use the moment equation:
ne(a, ) = J(0)1 + pp(0)a + J(0)2p, (11)

with J(0) = (J(0)1 : J(0)2), J(0)1 : kf x 1, J(0)2 : k¢ X (m — 1), which results from

transforming the parameters:

a=07" o= |67, (12)
O

with = (01, 02, ..., 0,,)'. The transformation assumes that ¢; # 0 which holds in

sample with probability one, so

MISS = mingerm Qcur(f)
= MiNyeR, perm-1 Qcve(a, )

S mil’lweRm—l QCUE(Q/ = O, (p)

= IS.

(13)

3 As follows from Theorem 1, MISS can, however, still be equal to zero when IS is zero despite
that there is no value of # where the moment equation holds exactly.



Note that nests the m = 1 case, for which it reduces to

ny(a) = J(0) + pg(0)er, (14)

and the proof above similarly holds. m
The MISS at most as large as IS inequality in Theorem 1 implies that the identi-
fication condition of the pseudo-true value of the CUE in misspecified GMM is more

stringent than the identification condition of the true value in correctly specified
GMM.

Corollary 1: When MISS equals IS:

MISS = IS &
of = arg mingeg Mingegpm—1 Qevp(a, ) =0 < (15)
9; = % = OO,

which implies that the pseudo-true value of the CUE, 0%, is not identified.

Corollary 1 shows that IS has to exceed MISS for the pseudo-true value of the
CUE to be identified. When the moment equations are misspecified and

MISS > 0, (16)

we therefore need
IS > MISS > 0 (17)

for the pseudo-true value of the CUE to be identified.

Corollary 2: Because MISS is zero when the moment equations are correctly spec-
ified, an appropriate GMDM identification measure which applies to both misspecified

and correctly specified linear moment equations is:
IS — MISS > 0. (18)

Since the CUE of a equal to zero is a measure zero event, in sample the inequality



in Theorem 1 is a strict one, as stated in Corollary 3 below.

Corollary 3: The sample value of MISS, ]\ﬁ?g7 15 always strictly smaller than the
sample value of IS, 1{:5’, s0:

IS — MISS > 0 with probability one. (19)

Corollary 3 shows that just using IS to determine the identification strength over-
states the identification strength when the linear moment equations are misspecified.
Many commonly used empirical models have misspecified moment equations, so their

identification strength is overstated when using IS as the measure of identification.

3 Empirical IS — MISS identification measures

To emphasize the importance of IS—MISS to signal identification issues instead of just
I/S, Figure 1 shows a scatter plot of MISS (=J-statistic) and IS for eight well known
specifications of linear asset pricing models: Fama and French (1993), Jagannathan
and Wang (1996), Lettau and Ludvigson (2001), Yogo (2006), Savov (2011), Adrian,
Etula, and Muir (2014), Kroencke (2017), and He, Kelly, and Manela (2017) ]

The Appendix provides the specifications of the above linear asset pricing models,
as well as the detailed expressions of MISS and IS for gauging the identification of
risk premia (i.e., the parameters of interest).

Because MISS < I/S, all scatter points in Figure 1 are below the 45-degree line,
but their proximity to it is striking. For all points, the distance to the 45-degree line
measured by IS — m, is much smaller than the value of IS. Figure 1 overall shows
that IS overstates the identification strength, so it is important to use IS — MISS as

the identification measure.

4We thank the authors of Jagannathan and Wang (1996), Yogo (2006), Lettau and Ludvigson
(2001), Savov (2011), and Kroencke (2017) for sharing their data. For the models of Fama and
French (1993), Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we use the
extended data of risk factors and test assets as in Lettau, Ludvigson, and Ma (2019).

10



Figure 1: Scatter plot of MISS (=J) and IS statistics for different specifications.
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Notes: Figure 1 shows MISS and IS statistics for eight specifications of linear asset pricing
models. Their associated factors include Fama and French (1993): market, SMB, and HML;
Jagannathan and Wang (1996): market, corporate bond yield spread, and per capita labor
income growth; Lettau and Ludvigson (2001): consumption growth, (lagged) consumption
wealth ratio and their interaction; Yogo (2006): market, durable and nondurable consump-
tion growth; Savov (2011): garbage growth; Adrian, Etula, and Muir(2014): leverage;
Kroencke (2017): unfiltered consumption growth; He, Kelly, and Manela (2017): market
and the banking equity-capital ratio. All specifications incorporate the zero-beta return.
For detailed descriptions of the risk factors and test assets, we refer to the published articles.

Table 1 illustrates the effect on identification and misspecification from imposing
further restrictions. The left hand side of Table 1 contains the estimates of MISS and
IS shown in Figure 1, which all incorporate the, so-called, zero-3 return, \g, while the
right hand side shows the counterparts when we impose the restriction that the zero-3
return, )\, is zero, as described in the Appendix. Imposing restrictions leads to more
misspecification, so it increases @, but also improves identification, so IS rises as
well. The overall net effect on the identification strength is, however, reflected by

IS — @, which therefore incorporates the tradeoff of sacrificing misspecification to

11



Table 1: MISS and IS statistics

Notes: Panel A contains the MISS and IS statistics from Figure 1, for which the
zero-beta return, indicated by )y, is incorporated. In Panel B, the zero-beta return
is removed so \g = 0. Significance at 1%, ***; 5%, **; 10%, *.

A. ITmpose \g = 0: No B. Impose A\g = 0: Yes

MISS IS MISS IS

Fama and French (1993) 59.34***  106.81*** 87.47HHFK 974 39%H*
Jagannathan and Wang (1996) 75.07 103.54 86.46 103.56
Lettau and Ludvigson (2001) 31.11%* 31.75% 37.15%* 40.90**
Yogo (2006) 17.14 17.34 19.42 19.60
Savov (2011) 134.27**%  140.68*** 268.60%**F  296.78%**
Adrian, Etula, and Muir (2014) 28.42 31.97 30.41 42.03**
Kroencke (2017) 59.84%H* T8 4TH** 60.03%H*F  102.77H**
He, Kelly, and Manela (2017) 35.32%* 35.88%* 44.44%*% 59 TRk

improve identification. The right hand side of Table 1 shows that this clearly occurs
for the Fama and French (1993) application. The net effect on IS — MISS for Fama
and French (1993) shows that the additional misspecification is outweighted by the
improved identification, but this is much less so for the other specifications presented
in Table 1. For these other specifications, removing the zero- return has little effect
on the identification of the pseudo-true value of the risk premia in the studied linear

asset pricing models.

4 Conditional LR no-identification test

In this section, we propose IS — MISS as a conditional (quasi-) likelihood ratio (LR)
test statistic for no-identification in linear GMM. We do so in a sequence of five steps,

which correspond to Subsections 4.1-4.5, respectively:

1. We characterize the data generating process (DGP) parameter setting which

leads to equality of IS and MISS.

2. We show the implications of the no-identification DGP parameter setting for

the pseudo-true values of the CUE and two-stage estimator.

12



3. For a single structural parameter, IS — MISS is the (quasi-) LR statistic to
test for a zero value of o in (14). Using the maximal invariant, we obtain a
conditioning statistic which is approximately independent of the LR statistic.
It enables us to compute a conditional critical value function for the LR test of

no-identification with correct size.

4. We incorporate the randomness of the covariance matrix estimator in the con-

ditional critical value function.

5. We extend to multiple structural parameters in linear moment equations.

4.1 DGP parameter setting for IS = MISS

To obtain the parameter setting of the DGP for equality of IS and MISS, we assume a
Kronecker product structure (KPS) of the joint covariance matrix V' used in Assump-
tion 1. We later discuss why it is complicated to do so for more general covariance

matrix structures.
Assumption 2: The covariance matrix V' has a Kronecker product structure:

V=08, (20)

) — Wpp 1 Wpg —
with = o Q) W W = W Qyy, Xresp. 1 x1, mx1, mxm and

k¢ x k¢ dimensional matrices.

The KPS of the covariance matrix results, for example, under homoskedasticity
of the errors in linear IV regression and linear factor models.

Under the KPS covariance matrix from Assumption 2, the CUE population ob-

jective function @ is a ratio of quadratic forms:

() (11,(0) 3 J(0))S1(1,(0) £ J(0))(})

()26) |

Qcur(f) = (21)
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so its minimal value, MISS, equals the smallest root of the characteristic polynomial:
AQ = (115(0) 2 J(0))'E7H (g (0) £ J(0))] = 0. (22)

Similary, IS is the smallest root of the characteristic polynomial:
|7Q; — J(0)YX1J(0)] = 0. (23)

It is convenient to analyze these roots using the orthogonalized and normalized

components a and C' defined below.

Definition 3: Under Assumptions 1 and 2, let pu;(0) = pp(0) — J(0)Qjwp,
and Wy, = Wy — W#JQ;}C{)J#. Define a and C' as the normalized counterparts of

w;(0), J(0), respectively:

2 Ci=VNE2J(0)Q;7,
() (24)

1 = 1 1
1,00) = =Xraw?, 5. J(0) = 22007,

a:= VNS 2p,(0)w

The expressions above imply a drifting sequence of the parameters akin to the
ones used in weak instrument asymptotics; see, e.g., Staiger and Stock (1997). The

specifications for MISS and IS then simplify to the following:

e MISS is the smallest characteristic root of

. . / /C
/\]m+1—%(a:0)’(a:0)‘:0 = AJmH—%(M ¢ )‘:0. (25)

C'a C'C

e IS is the smallest characteristic root of
I, — xC'C| =0. (26)

For the single structural parameter setting with m = 1, it is straightforward to

derive the explicit expressions for MISS and IS. Corollary 4 thus relates the equality

14



of IS and MISS to the expressions based on a and C'.

Corollary 4: For the single structural parameter setting, m = 1, equality of IS and
MISS is equivalent with:
C'C <da

IS=MISS < . (27)
C'a=0

4.2 No-identification DGP and pseudo-true values

Next, we illustrate the implications of the no-identification DGP parameter setting
(C'C < d'a, C"a = 0) for the population objective functions and pseudo-true values
of the CUE and two-stage estimators for a single structural parameter, m = 1.
Figure 2 shows the population objective function and accompanying contour lines
for the CUE in a setting with a’a = 10 and C’a = 0 for varying values of C'C,
while Figure 3 does so for the two-stage estimator. Under Assumptions 1 and 2, the

population objective function of the two-stage estimator is:

Q2s(0) = () (117(0):7(0))'S7 (1 (0):7(0)) (5) (28)

with 65, the resulting pseudo-true value of the two-stage estimator:

05, = arg mingegm Qa5(0)

(29)
= —(J(0)S71J(0))"1T(0)'E " 11, (0).

The shape of the CUE population objective function in Figure 2 changes dramat-
ically around C'C' = a’a = 10. At the value of ten, the contour lines indicate that the
objective function is flat; while above ten, it is increasing away from zero, and below
ten it is decreasing away from zero. It all shows that for C'a = 0, the pseudo-true
value of the CUE is identified when C’'C' exceeds d’a, so IS > MISS, and not identified
when C’'C is smaller than or equal to a’a, so IS = MISS. All these findings are thus

consistent with Corollary 4.

15



Figure 2: CUE population objective function Qcyg(f) for a’'a = 10 and varying
values of C'C, C'a = 0.
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In contrast, the population objective function of the two-stage estimator in Figure
3 has a well defined minimum for all values of C’C. It thus does not show any effect
of the misspecification on the identification of the pseudo-true value of the two-stage
estimator, which is only not identified when C'C' = 0, i.e., the population objective

function is flat at C'C = 0.

Figure 3: Two-stage population objective function Q25(#) for a’a = 10 and varying
values of C'C, C'a = 0.
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The closed-form expressions for the pseudo-true values of the two-stage estimator
and CUE when expressed as functions of ¢ and C' similarly show the identification
issues (see also Andrews (2019)).

e T'wo-stage estimator:

03, = —(J(0)Z~1J(0)) "1 J(0) S 1y (0)
= —Q 5wy, — (J(0)X71I(0)) T (0)'E 4, (0)

1 : (30)
= _Q;}w«]# - QJJ2 (C,C) 1O/a’wu,u J
= —Q Wi, when IS = MISS > 0.
e CUE (k-class notation), see, e.g., Hausman (1983):
0ty = —(J(0)YS1J(0 ) — MISS x Q) " (J(0)'S 1 (0) — MISS X wy,,)
= —Q Wy, — QJJ (C'C' — N x MISS x I,,,)~ 1C”awiﬂj (31)

= not identified when IS = MISS = +-C'C (zero divided by zero).

While the pseudo-true value of the two-stage estimator under IS = MISS > 0
seems to indicate that it is identified, also shows that all values of a and C' with
C'a = 0 and d’a > C'C lead to the same pseudo-true value —(2;}w;,. This hints
that there are also identification issues for the pseudo-true value of the two-stage
estimator. These identification issues become more apparent from the limit behavior
of the sample analog of J(0)’>"'p;(0), which is an important component of the two-
stage estimator as shown by . Theorem 2 therefore provides the limit behavior of
J(0)'S711,(0), the sample analog of J(0)S~1,(0).

Theorem 2: For 0" the pseudo-true value of the CUE, D(0")'S ™ i (6%) = 0 with
D(0) = J(0)— uf(e)“ﬁ“g"g Wt (0) = wus+0'Qsy, wu(0) = wp+2w,0+60'Q,,0, under
and m = 1, the limit behavior of the normalized sample analog of J(0)'’>"11,(0),

J(0)S7 iy (0), is

17



NQ 20y iy () 2,
— (n*\! — [ O* N N*\! T/ N* wéu, Q% * —
~ Iu(9 ) (0) — D(0")' D(¢ )1 Ly (07 + QW)+

misspeciﬁcationTidentiﬁcation (32)
1 B * — * * -1 % ! * *
Nl [D<9 )\/ Whp.J + /1'(9 )(‘9 + QJJWJ/L)QJJ] wu(e )+

S [07) s — DENO" + Q7500005 0307 + 058 0L(6)

where 7, (0%) and 1g(0%) are independent k¢-dimensional standard normal random

vectors, Qy5,(0) = Qyy — wus(0)w,,(0) w,s(0), DO) = VNI 2D(0)2,,,(0) 2,
fi(0) = \/NE‘%uf(@ww(@)‘%-
Proof. See the Appendix. m

The expansion of J(0)'S'/i,;(0) in Theorem 2 results from the decomposition
of fi;(0) and J(0) into the independent building blocks of the weak instrument ro-
bust statistics, i.e., the sample analogs of 1;(¢) and D(f); see also Kleibergen and
Zhan (2025). We do so because this independence allows for unambiguous normal-
ized definitions for the strength of identification, D(0*)'D(6*), and misspecification,
A(6*)a(6"). It also leads to the decomposition of J(0)S~'/i,(0) into deterministic
and independent random components.

The first component of the expansion of .J(0)'S /i, (0) in Theorem 2 is the only de-
terministic one. It equals zero when * = —Q;}w Ju and when the normalized misspec-
ification and identification strengths at the pseudo-true value of the CUE are identical.
Tests based on .J (0)X7171,(0), like, for example, the two-stage t—statistic can there-
fore not have power for discriminating values of 6* from —Q7jw, if i(60*)'1(6*) and
D(6%) D(6*) are identical. The value of §* is thus not distinguishable from —Q 7w,
when 71(6%)'11(6%) equals D(0*) D(0*), so it is not identified.

The expansion in Theorem 2 implies for the two-stage estimator that distinct
CUE pseudo-true values #* for which the difference between the misspecification and
identifications strengths is the same, lead to two-stage estimators that only differ by

a random amount. This all results from the property that for different values of a

>The large sample distribution of the ¢-statistic is also non-standard for this setting.
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and C' with C'a = 0 and d’a > C'C, the pseudo-true value of the two-stage estimator
is identical as shown by (30). The identification condition for the pseudo-true value
of the two-stage estimator is thus the same as that for the CUE, although this is not
obvious at face value.

When the model is correctly specified, j1(60*) = 0, so the first component of the ex-
pansion in Theorem 2 is only equal to zero when either §* = —Qjw;s, or D(*) = 0.
Since D(6*) = J(0) under correct specification, the identification condition is just
the traditional one that the Jacobian, J(0), is non-zero. Thus, there is an additional
component in the deterministic part of the expansion of J(0)'S1/i(0) in case of mis-
specification, because of which the identification condition of the pseudo-true value
changes for both the CUE and the two-stage estimator when moving from correct
specification to misspecification. Theorem 2 therefore shows how the identification
condition changes when misspecification is present compared to the correctly specified
setting. Existing misspecification-robust test procedures, like, for example, Hansen
and Lee (2021), Lee (2018), and Kan, Robotti, and Shanken (2013), all require that
the identification strength as reflected by D(6*) D(#*) is larger than the misspecifi-
cation reflected by (0")'n(6).

The difference between IS and MISS is thus as indicative for interpreting the
pseudo-true values of the CUE as for the two-stage estimator. We therefore next
provide a generalization of the traditional test for identification in correctly specified
GMM, i.e., the sample analog of IS, I/S, towards a test for identification in possibly
misspecified GMM based on IS — MISS.

4.3 LR no-identification test for m =1

For ease of exposition, we first assume that the KPS covariance matrix from Assump-
tion 2 is known and there is a single structural parameter, so m = 1. We generalize to
a to-be-estimated covariance matrix and more structural parameters thereafter in the
next subsections. The sample analog of the CUE population objective function (21)
then equals (twice) the concentrated log-likelihood for € that results under normal
errors in linear models. Because IS (6)) and MISS (9) equal the CUE objective func-

tion at set or minimized values respectively, IS — MISS equals the (quasi-) likelihood
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ratio (LR) statistic that tests Hy : o = 0 in (14)):
LR(c = 0) = IS — MISS = N x Qcup(a = 0) — N x mingeg Qcur(a),  (33)

with IS, MISS and Qcup() the sample analogs of IS, MISS and QCUE(oz).
When m = 1, the characteristic polynomial in (25]) is quadratic so its smallest
root, which equals MISS in sample, has a closed-form expression, and we have an

analytical expression for the LR statistic (see Moreira (2003)):

A A A A 2 A
LR(a=0)=1|C"C—aa+ \/ (C’C - a'a) +4(Cra)? (34)

A

for a = VNY " 2f1,(0)w,?;, C = VNS~2J(0)2,7 and ji,(0) = f1,(0) — J(0)Q jwyy.
While the expression of the LR statistic is for testing Hy : @ = 0, our no-
identification hypothesis of interest concerns a specific setting of (a, C') that implies

a = 0 as provided in Corollary 4:
H,oning : MISS = IS <= C'C — d'a < 0 and C'a = 0. (35)

The expression of the LR statistic (34]) contains the sample analogs of all elements of
Hionind-

To obtain a conditional critical value function for the LR test that controls the size
over all parameter configurations of H, o, ing , we use the boundary non-identified
setting:

H*

non-in

4:C'C—da=0, C'a=0. (36)

A conditional critical value function that controls the size of the LR test for HY ;4
also does so for Hy,.inq, because the derivative of LR(«v = 0) with respect to (C” o=
a'a) is strictly positive at C'C — &a = 0. Negative values of C"C' — @'a for the same
value of C"a and conditioning statistic thus only decrease the value of LR(a = 0) and

will not lead to size distortion.

—1
!
fBased on , QeovEe(a) =ns(a) ((a®1kf)) V((a®1’“f)) n¢(a). However, the expressions of

ka ka
IS, MISS remain unaffected.
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To construct a conditional critical value function of the LR statistic , we

provide the limit behavior for a and C.

Corollary 5: When Assumptions 1 and 2, m = 1, and the drifting sequence in

1 _1 ~ 1 A _1
apply, the limit behavior of 4 =V NYX 2fi;(0)w,?;, C = VNE"2J(0)Q,7 with
fu7(0) = f;(0) = J(0)S2] jew gy, is:

a a Vi
00 -

where 1}, ; and Y} are independent k¢-dimensional standard normal random vectors.
The LR statistic (34)) is an invariant statistic and therefore, as all invariant statis-
tics are, a function of the maximal invariant which equals the normalized quadratic

~

form of (f17(0) : J(0)); see, e.g., Andrews, Moreira and Stock (2006):

N|=

MAXINV = N x Q% (ji;(0) : J(0))'S~(ji;(0) i J(0))Q~
= (a:0)(@: Q) (38)

_ (aa:ac
- Cla = C'C |-

The limiting distribution of the maximal invariant therefore only depends on three
population parameters: a’a, C'a, and C'C.

Any invertible function of the maximal invariant is also a maximal invariant. To
obtain a convenient conditioning statistic for the LR test of no-identification, we

transform the components of the maximal invariant:
MAXINV = (C'C — da, C'a, C'C +d'a), (39)

whose limiting distribution only depends on the population parameters C'C' — d’a,

C'a, and C'C' 4 d'a. The transformation is motivated by:

1. The LR statistic is only a function of the first two elements of the maximal
invariant : C'C — &a, C'a, and not of the third element, C'C + &'a.
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2. Under H* the third element of is approximately independent of the

non-ind?’

first two, as shown by Theorem 3 below.

Theorem 3: Under the conditions of Corollary 5 and H; . 4, the limit behavior
of C'C —da, C'a, C'C + da can be written as:
AL PN C / w* w* ! d)*
e —aa— 2(5) () + () ()
PN a\’ * */ | %
C'a — (&) (wij_,) + U5 (40)
A A ' / C\' (v RNy
C'C+da— C'C+da+2(7) (%J)%—(%J) (%J).
Under H; ;4. the dependence between the three components in (40) only results from

the last elements in their expressions which are uncorrelated.
Proof. Results from Corollary 5 and applying HY . , so (¢ )/ (&) =0, (_Ca)/ () =

—a a

0, and ( g)l(g) = 0, because of which only the last elements are dependent. m

Because the LR statistic is a function of the maximal invariant (39), it de-
pends on the same population parameters. Under Assumptions 1, 2, the drifting
sequence in and H?  ; ., the only parameter where the maximal invariant de-

pends on is C'C'+a’a because all the other parameters which it depends on, C'C —ad’a

and C'a, are equal to zero. We therefore use:
rk = C'C + d'a, (41)

as a conditioning statistic for the only parameter in the distribution of LR(a = 0) (34)).
The decomposition in shows that this conditioning statistic is independently

distributed of LR(ax = 0) for larger values of C'C' + a’a, because the multipliers of
vy
L
approximately independently distributed for smaller values of C'C + d’a.

The conditioning statistic differs from the conditioning statistic of the condi-

) are all orthogonal to each other under H* It is

the random components ( non-ind

tional LR test of Moreira (2003) for the linear IV regression model with one included
endogenous variable. For our specification, that conditioning statistic would corre-

spond to:
. (42)

Q>

~/
K\ oreira (2003) = @

22



Under the hypothesis of interest of Moreira (2003), provides a sufficient statistic
for the only parameter which the LR statistic then depends on and is also indepen-
dently distributed of. Our conditioning statistic provides an estimator for the
only parameter the limiting distribution of the LR statistic depends on under
Honinds

independent of the LR statistic because of which we use a different (simulation)

i.e., C'"C + d'a, but it is not a sufficient statistic. It is also approximately

algorithm to obtain conditional critical values than Moreira (2003)[|

The algorithm for computing the conditional critical value function is stated in the
Appendix. By sampling a and C using ¢, ; and v for a large range of values of a and
C' that satisfy Hf . .. it computes the conditional distribution of LR(ax = 0) given
rk= C'C'+@'a. The conditional critical value function for conducting a 5% significance
test of HY ., using LR(« = 0) then corresponds with the 95% percentiles of the

AP A

computed conditional distribution of LR(a = 0) given rk= C'C + d/a.

Figure 4: Conditional critical value function for testing H' . , at the 5% signif-
icance level using LR(a = 0) as a function of rk and the resulting rejection
frequencies for ky = 3 (solid), 10 (dash-dotted) and 25 (dashed).
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THillier (2009) provides a recurrence algorithm to provide critical values for the Moreira (2003)
conditional LR test that does not involve simulation.
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4.3.1 Size and power of the LR test for m =1

Figure 4 shows the 95% conditional critical value functions for different numbers
of moment equations in Panel 4.1, and the resulting rejection frequencies when we
conduct a 5% significance LR test of H!_ ., in Panel 4.2. It is striking how close
the rejection frequencies in Panel 4.2 are to the nominal 5%. There is only some
minor overrejection for small values of IS = MISS, which could be removed by further
calibrating the conditional critical value function. Because of the computational ease
of the algorithm and the just very small size distortions it leads to, we, for now, refrain
from doing so. It all shows that the approximate independence of the conditioning
statistic allows us to compute a conditional critical value function for the LR
test of no-identification with excellent size properties.

Figure 5 shows the power surfaces of the LR test of no-identification. The in-
volved conditional critical value function is calibrated to the boundary setting of
no-identification H* , but our main hypothesis of interest is Hyon.ing .

non-ind

The power surfaces in Figure 5 show the rejection frequencies with respect to poten-
tial violation of one of the two components in H, g-inq while the other one is kept
at the hypothesized value. Panel 5.1, and its contour lines in Panel 5.3, therefore
show the power surface of the LR test for violations of C'C' < a’a while C'a = 0, and
Panel 5.2 shows it for violations of C'a = 0 while C'C' = d'a.

Panels 5.1 and 5.3 show that the conditional LR test controls the size of testing
Hyon-ind because, while the conditional critical values are calibrated to HY . 4
([36]), the rejection frequency is at most 5% when a’a > C’C as indicated by the
contour lines in Panel 5.3. When H,,,.i.q does not hold, so C'C' exceeds a’a, Panels
5.1 and 5.3 show that the LR test has discriminatory power for rejecting H,on-ing-
Interestingly, the contour line at 5% in Panel 5.3 is on the 45° degree line. On lines
orthogonal to the 45° degree, C'C + d’a is constant and so is then, approximately,
the conditioning statistic. The contour lines therefore show that for constant values
of C'C + d'a, the LR test clearly discriminates between settings with C'C' > d’a, for
which it mostly rejects, or C'C' < d’a, for which it does not reject.

Panel 5.2 similarly shows that the LR test has discriminatory power for detecting

non-zero values of C’a when C'C = d'a.
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Figure 5: Power of 5% significance conditional LR no-identification test, ks = 3.
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4.3.2 Comparison of LR with IS, MISS, and DRLM tests

It is interesting to compare the power of the LR no-identification test with other tests
that test part of the composite null hypothesis of no-identification. Figure 6 therefore
shows the power of: the LR test of no-identification, the IS test whose test statistic
equals the F-statistic for testing J(0) = 0, and the MISS test whose test statistic
equals the J-statistic. The level of significance is 5%.

Panel 6.1 shows the power of the three tests when there is no misspecification.
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The IS test is then more powerful than the LR test, while the MISS test rejects at
most 5% because there is no misspecification. To facilitate comparison, Panel 6.2
has an increased level of misspecification of 10, for which the power curve of the
5% IS test has not changed compared to Panel 6.1. Up to IS equal to 10 there is,
however, no identification. The rejection frequency of the MISS test at IS = 10, is
around 45%. Panel 6.2 is interesting because the MISS test still mostly does not
reject up to IS = 10, at which the IS test rejects around 80%. The combination of
these two tests therefore overstates the identification strength and understates the
misspecification, which shows the importance of a proper test for no-identification
that allows for misspecification like the LR no-identification test. Note that Figure 6
also shows that the LR test is size-correct, i.e., its rejection frequencies are near the
nominal 5% at IS = MISS = 0 in Panel 6.1, and at IS = MISS = 10 in Panel 6.2,

respectively.

Figure 6: Power of 5% significance conditional LR no-identification test (solid), IS
(dashed) and MISS (dash-dotted) tests, k; = 3.
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Figure 7 shows the power surface of the double robust Lagrange multiplier (DRLM)
test proposed in Kleibergen and Zhan (2025), while the counterpart of the LR test is
presented in Figure 5. The DRLM test is a size-correct test of Hg : @ = 0 when using
x%(m) critical values. It is based on the score of the population objective function,

which equals zero when C’a = 0. Therefore, the power and size of the DRLM test
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coincide in Panel 7.1, for which C’a = 0 is imposed. In contrast, Panel 7.2 shows that
the DRLM test has good power, exceeding that of the LR test in Panel 5.2. Similar
to the IS test in Panel 6.1, Figure 7 shows that for specific settings, the power of
tests of just one component of the composite hypothesis H, oy_ina can exceed that
of the LR test, but these tests have misleading power or no power when the other

component of the composite hypothesis H,on-ina gets violated.

Figure 7: Power of 5% significance DRLM test of Hy : a« =0, ky = 3.
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4.4 Homoskedasticity, unknown covariance, m =1

The covariance matrices 2 = (3** © ¢*’) and ¥ in Assumption 2 are considered as
I

given for ease of exposition in the previous subsection. In empirical settings, these

covariance matrices are typically unknown, so we use consistent estimators 2 and X

instead, which can be written as:

A N i (ui\! _ [ @pu o “nd
Q %Zi:l (Vl) (%) - ((:JJ/,L ’ QJJ) (43)

& N
by % Zi:l ZiZz{?

with (7(;) and Z; realizations of m+-1 and k; dimensional random vectors that lead to
consistent esimation of €2 and 3, respectively. We use the covariance matrix estimators

and adapt a and C' defined below accordingly. Therefore, in this subsection,
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we consider @ = VN~ 2/LJ( Jw C = \/_Z_5J( ) J% with 1;(0) = f1,(0) —

J(O)Qj}wm, and g = Wy — wMJQJJwJM. The convergence of the covariance

MMJ’

estimators alters the behavior of the components of the LR statistic stated in

Theorem 3, so Theorem 4 states their higher order expansion.

Theorem 4: When Assumptions 1 and 2, m = 1, the drifting sequence in and
H q:C'C=da, C'a=0, apply, the higher order expressions for the components
of the LR statistic are:

CC—ia= 2(5)(F)+ (wJ)%éZ)+7%CﬁFY@ﬁ%+
(B0 () 1 (s ()
\/Lﬁ(a®a—C’®C+2(¢2J®a—¢’}®0)),vec(\1/g)+
7 ( %wa %@%) vee(Us)+
%( ?/JyJ) Uy, +Op(N7)
Cla= () (7 ) — R (C+ ) (C+ )~
%(C®a+wj®a+C®¢Z.J+wj®¢zlj)’vec(\yz)— (44)

(ww + wJJ) <(g)/(¢?) + ¢§/¢ZJ) + Op(N_l)

2W

C'Ctida= C'C+ada+ 2( ) () + () () = S5 (G (G-
& (20 G+ () () -
* (a®a—|—C’® C+2(W,,®at+v;eC)) vec(¥s)-
% (wy.J SRUMPE RO W})/ vec(¥s)—
2 (O (8) + 0507, Yo+ 0N,

where Y, Uy, ¥y and Ps, are 1, m, sm(m+1) and 3kg(kp+1) dimensional mean
zero standardized normal distributed random vectors further defined in the proof in
the Appendiz, and Vs is a symmetric ks X ky dimensional matriz which is such that
s, =vech(VUy).
Proof. See the Appendix. m

Compared to the known covariance matrix setting in Theorem 3, Theorem 4 shows
two main consequences of the covariance matrix estimation on the components of the

LR statistic, which are stated in Corollaries 6 and 7.
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Corollary 6. When C'C (= d’a under H?

* wind) 8 no longer fived but increases with

the sample size at a rate of at least /N, the higher order elements affect the large
sample behavior of each of the components in , which has to be accounted for in
the conditional critical value function of the LR test.

Corollary 7. The approrimate independence of (O’C’ —a'a, C”d) from C'C' + da
from Theorem 3 also applies to the higher order elements in . Firstly, it results
from the orthogonality of the components by which the standardized random variables
get multiplz’edﬂ Secondly, it results because dependent components are of a lower order

in the sample size, which are dominated by the zero-th order components.

Based on Corollary 7, we similarly use C'C + da as a conditioning statistic for
computing the conditional critical value function for LR(a = 0) under HY_ . , when
using the covariance matrix estimators .

Under H*__. .. Theorem 4 shows that the behavior of C'C'—é'a, C"a and C'C'+da
only depends on: the standardized random variables ¢, ., ¥ ;,, ¥ ;;, ¥y, wz, 7, U4, the
length of C' (and a) and the sample size N. We therefore compute the conditional

critical value function for LR(av = 0) under H* by using the same conditioning

non-ind

statistic as for the known homoskedastic covariance setting:
rk = C'C + da. (45)

The conditional critical value function is computed specifically for the sample size
under consideration, so all elements that contribute to LR(cv = 0) remain relevant.
We calibrate a conditional critical value function for LR (v = 0) by simulating @ and C
for a range of values of the identical lengths of a and C| while they are also orthogonal,
and the respective sample size N for the data under consideration. Using simulated
standardized i.i.d. random variables, we compute @ and C, using their expressions
stated in the proof of Theorem 4 in the Appendix, and construct the critical value

function given rk using the algorithm discussed previously and stated in the

8For example, (:ﬁ;;) is pre-multiplied by (_C/C), (g)l( i )+ Y3y, 5, and (Ca;ac) respectively,

a’a P
all of which are orthogonal to each other or independent under H
the elements by which vec(¥y) is pre-multiplied in .

*
non-ind "

This similarly applies to
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Appendix[]
For the estimated covariance matrix setting, Panels 8.1 and 8.2 in Figure 8 show

respectively: the 95% conditional critical value function of the conditional LR test of

H; ind given rk for ky = 3,10, 25 and N = 250, and the rejection frequencies
of the resulting 5% significance LR test of H? . .. Compared to Panel 4.1, Panel 8.1

shows that the 95% conditional critical values have increased for larger values of the
conditioning statistic. For these values, the assumption that C'C//v/N = d'a/v/N —
0, which validates the critical value function in Panel 4.1, is no longer appropriate.
The rejection frequencies in Panel 8.2 are all close to the nominal 5%, which shows
that the computed conditional critical value function controls the size of the LR test.
Power surfaces for the estimated covariance matrix setting are comparable to those
for the known covariance matrix setting shown in Figure 5, so they are omitted for

brevity.

Figure 8: Conditional critical value function for testing H? . , at the 5% significance

level using LR(a = 0) as a function of rk and the resulting rejection frequencies
for kf = 3 (solid), 10 (dash-dotted) and 25 (dashed), N = 250.
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9The conditional critical value function can similarly be computed by resampling the normalized
data using the bootstrap. It is also possible to construct the conditional critical value function using
the higher order approximation from Theorem 4, which similarly depends on the sample size N.
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4.5 Homoskedasticity, unknown covariance, m > 1

For more than one structural parameter, m > 1, the difference between the sample
analogs of IS and MISS equals the LR statistic that tests for a zero value of « in the

population moment equationf—_U]
(e, @) = J(0)1 + ps(0)a + J(0)2, (46)
with J(O) = (J(O)l J(O)Q), J(O)l . k’f X 1, J(0)2 . ]Cf X (m — 1), SO

LR(a=0) = IS— MISS
= N x mileCUE(a =0,90) — N X min QCUE(%SO), (47)

pER™— a€ER,peR™M—1
for
p -1
(a® Iy,) (a® I;)
Qcve(a,¢) = (o, @) Iy, v Iy, fp (e, ), (48)
(¢ ® Ii,) (¢ ® Ir,)

with 75 (a, ) = J(0)1 + jup(0)ax + J(0)ep.

While the expression of the LR statistic in is generic with respect to the
specification of the covariance matrix estimator V, we next pin down the parameter
setting for a DGP with the KPS covariance matrix from Assumption 2 that implies
equality of IS and MISS.

Theorem 5: Under Assumptions 1, 2 and the specification from , 1S equals %
times the squared smallest singular value that results from a singular value decompo-
sition (SVD) of C :

C =UcScVY, (49)

10See also . The moment equation in is normalized using the first column of J(0). The LR
statistic is invariant with respect to this normalization, so an identical value results when normalized
using any other column of .J(0).
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with Uc = (Uc1 : Uom : Uca) an orthonormal ks X kg dimensional matriz, Ucy @ kg X
(m—1), Uoum : kg x 1, Ucys : ky x (kf —m) dimensional matrices, Vo = (Ve ... Vo)
an m x m dimensional orthonormal matriz, and Sc a ky x m dimensional matrix
with the singular values, sc i1, ..., S5Cmm, 1 decreasing order on the main diagonal.
For large values of sci1...5c,m-1)(m-1), @ necessary and sufficient condition for no-

identification of the pseudo-true value of the CUE, or equality of IS and MISS, is:
Huon-ind : Ugpa = 0 and a' My, ,a > Szc,mm & Hyoning : IS = MISS. (50)

Proof. See the Appendix. m
Theorem 5 states the identification condition for large values of s¢ 11 . .. S¢,(m—1)(m—1)-
The identification condition for m > 1 is then basically identical to the one for m =1

when we pre-multiply (a : C') by the eigenvectors of the smallest and null singular
values that result from the SVD (49):

(a C)/(Uc,m UC,2>(UC,m UQQ)’(CL C)

B 1 0 a' My, a  a'Ucmscmm 1 0 (51)
0 Vom $CmmUG séymm 0 Vi ’
where we used that a'(Uc,m : Uc2)(Uom : Uc2)'a = o’ My, ,a. Since (éfvco ) is

orthonormal, the identification condition results from the matrix pre- and post-
multiplied by it in and can therefore be re-written identical to (27)):
Sermm < @' My, ,a

Hy : IS = MISS < { Cm

52
Utma = 0. 52)

Alongside the above analogy with m = 1, the assumed large values of sc 11, ...,
SC,(m—1)(m—1) imply that we can consistently estimate Ug 1, so we can construct a
conditional critical value function for the LR test of no-identification along the lines
for the one for m = 1.

For smaller values of s¢11,. .., 5¢,(m—1)(m-1), @ more stringent identification con-

dition than results because the smallest characteristic root of is a non-
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decreasing function of sc 11, ..., 8¢ (m—1)(m-1); see Kleibergen (2007). For values of
SC,(m—1)(m—1) close to s¢mm, the limiting distribution of :%mm is, however, also more

complicated so we, for now, refrain from analyzing such settings.

Theorem 6: Under Assumptions 1 and 2, the drifting sequence in , the SVD
of C:

C =UsSc VY, (53)
with Us = (Ucy * Uoyn * Uca), Uc < kp x (m—=1), Ugan = ki x 1, Ugg + kyp x (ky—m),
and VC orthonormal k¢ X kg and m x m dimensional matrices, and SC a kyxm
dimensional matriz with the singular values 5¢11...5¢mm n decreasing order on
the main diagonal, IS = §20,mm> and large values of 5c11 .. 5¢,(m—1)(m—1), $0 we can

consistently estimate Uc,h the LR no-identification statistic is approximately equal

to:

LR(a = 0)
— IS - MISS (54)

1], R R . R N\ 2 R A .
= 5 [SQC,mm - GIMUCJCL + \/(8%’,mm - a/MUcJa) + 48%‘,mm(Ué’,ma>2 + Op(l)'

Proof. See the Appendix. m

When U, is consistently estimable, we can prove the counterpart of Theorems 3
and 4 as well for the elements of LR(« = 0) in (54)). For reasons of brevity we refrain

from doing so and directly state the final result in Corollary 8 below.

Corollary 8. Under Assumptions 1 and 2, the drifting sequence in , large sin-
gular values sci ... Sc,(m—1)(m—-1)° UCJ is a consistent estimator of Ucy so Theo-

rems 3-6 and Corollary 7 jointly imply that the asymptotic behaviors under H*

non-ind *

/ — 2 — o/ .
Um@ =0, 8¢, = @' My, ,a, of:

o2 AT
SCmm — @ MUQ1

a, Ufpa, and 8, + ' My a (55)

Uca1™
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are approximately independent up to order N _%, and therefore also that of

LR(a =0) and 53, +a' My _ a. (56)

.1

Corollary 8 shows that we can use 53, + @ My, a as a conditioning statistic
for the LR test of no-identification. It equals the sum of the diagonal elements of
the sample analog of the matrix from which the identification condition results in
. When s¢11 - .. 8¢, (m—1)(m—1) are large, the eigenvalues of this matrix correspond
with the smallest two characteristic roots of the sample analog of . Their sum

therefore also provides an easy-to-compute conditioning statistic.

Corollary 9. Under the conditions of Corollary 8, the sum of the smallest two
eigenvalues of the sample analog of (25):

rk = MISS + /A\ac’m, (57)

with MISS = /A\ac,mﬂ, the smallest characteristic root of the sample analog of

and Sxa(;,m the second smallest characteristic root, is under H*

 onind GDPTOTIMAtElyY

independent up to order N—2 of LR(a = 0), so it provides a conditioning statistic

for the LR test of no-identification.

Comparing the boundary settings and conditioning statistics under H? ;4

for one structural parameter, m = 1, and several structural parameters, m > 1, we

then have:
m=1 m>1
H . C'C—da=0]| s> —a'My,a=0
non-ind C,mm Uy (58)
C'a=0 Usma =0
Conditioning statistic rk: C'C +da MISS + ;\aam

We then have two options to compute the conditional critical value function, both

of which are based on consistent estimation of Uc; and therefore need large singular

values sc11 - .. 8¢, (m—1)(m—1)-
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1. Appendix A8 shows the higher order expansion of a and C as a function of a* =
U’Cla,, 5011 - - - Sc;mm and estimators based on standardized random variables ;,
Viand Z;,i=1,...,N. The sampling algorithm for computing the conditional

critical value function of the LR test of no-identification is then:

(a) Use the estimators a* = U(’Jld y 80,11+ - - 80, (m—1)(m—1) from the data under

consideration.

(b) Generate standardized i.i.d. random variables i, Vi and Z;, for i =
1 N.

ey
(c) Generate @ and C' for a range of values of a/My,a = S¢mm Using the
expansion in Appendix A8 and the realizations of the standardized random

variables from b. and the estimates of a* and 5¢ 11 ... 5¢,(m—1)(m—1) from a.

(d) Compute LR(a = 0) and rk and use them to compute conditional distrib-
ution of LR(«av = 0) given rk.

2. Use the algorithm to compute critical values from Subsection 4.4 with the ex-
pression of the LR statistic from and conditioning statistic from (56

We next apply the above algorithms to test the hypothesis of no-identification.

4.6 Simulation and application, m > 1

For the Fama-French (1993) three-factor model with and without the zero-/3 return

using data from Lettau, Ludvigson, and Ma (2019), Panel 9.1 in Figure 9 shows

the 95% conditional critical value functions that result from incorporating the zero-

[ return or not. Panel 9.1 shows that these critical value functions are basically

identical, but differ from the one which would result when we ignore the estimation

error of the covariance matrix estimators. Panel 9.2 in Figure 9 shows the resulting

rejection frequencies which are very close to 5% for both specifications. Panel 9.2 also

shows that usage of the conditional critical value function that does not incorporate

the estimation error of the covariance matrix estimators leads to considerable size

distortion.
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Figure 9: Conditional critical value function for testing HX . . at the 5% significance

non-in

level using LR(«v = 0) as a function of rk calibrated to the Fama-French (1993)
three-factor model with zero-f3 return (solid), without (dash-dotted), k; = 25, m = 3,

N =201 and known covariance (dashed) and resulting rejection frequencies.
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Figure 10: Power of 5% significance LR no-identification test calibrated to the
Fama-French (1993) three-factor model, m = 3, k; = 25, Ay # 0.
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Figure 10 illustrates the power of the LR test calibrated to the Fama-French (1993)
three-factor model with the zero-g return and using the Lettau, Ludvigson, and Ma
(2019) data. Panel 10.1 shows the power surface over IS and MISS, while Ug,,,a = 0,
and Panel 10.2 shows the accompanying contour lines. The contour line at 5% is
very close to the 45° degree line, where IS = MISS, and the equivalue lines of the

population value of the conditioning statistic are orthogonal to it.

Table 2: LR test of no-identification for Fama-French (1993) with
market, HML and SMB factors. Significance at 1%,***; 5%,**; 10%,*.

Ao #0 Ao =0
IS 106.81*** | 974.39***
MISS 59.34% | 87.47
LR(a=0) = IS — MISS 47.47* | 886.91***
Conditioning statistic: MISS + S\GCVm 182.33 1109.47
95% conditional critical value 50.30 215.82

Table 2 shows the results of the LR no-identification test for the Fama-French
(1993) three-factor model using data from Lettau, Ludvigson, and Ma (2019). Both
for the specifications with and without the zero-/ return, the IS and MISS statistics
are strongly significant, which gives the impression that the risk premia are identified
in either specification while they are also misspecified. For the specification which
includes the zero-f return, the proper LR no-identification test is, however, not sig-
nificant at the 5% level but just at the 10% level. It shows that we can not reject
no-identification with 5% significance. For the specification which does not include
the zero- return, the risk premia are well identified as reflected by the very large
value of the LR statistic, which is well above its 95% conditional critical value.

The Appendix contains additional empirical applications for the models previously
presented in Figure 1 and Table 1. Unlike the Fama-French (1993) three-factor model,

we can not reject no-identification for any of them.
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5 Conclusions

The widely employed Jacobian rank test does not test the appropriate hypothesis of
no-identification of the structural parameters in potentially misspecified linear GMM.
We pin down the appropriate no-identification hypothesis and propose a conditional
LR test for testing it. For applications, alongside its conditioning statistic, the condi-
tional critical value function of the LR test depends on the sample size at hand and a
few consistently estimable nuisance parameters. When applying the conditional LR
no-identification test for linear asset pricing, we find that for some well known speci-
fications the hypothesis of no-identification can not be rejected at the 5% signficance
level, while the Jacobian rank test signals strong identification because it does not
test the appropriate no-identification hypothesis.

The conditional critical value function of the LR no-identification test is con-
structed for a setting of homoskedasticity. In future work, we plan to extend it to
more general covariance structures. The null distribution is then much more difficult
to pin down as it depends on more parameters. For reasons of brevity, we therefore

refrained from analyzing it in the current paper.
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Al.

Specifications for Figure 1 and Table 1. The specifications of the eight

different specifications used for Figure 1 and Table 1 are:

1.

Fama and French (1993), the prominent three, so-called Fama-French, factors:
the market return R,,, SMB (small minus big), and HML (high minus low).
We use quarterly data from Lettau, Ludvigson, and Ma (2019) over 1963Q3
to 2013Q4 for the three factors, and the twenty-five size and book-to-market

sorted portfolios as test assets.

Jagannathan and Wang (1996), three factors: R,,, corporate bond yield spread,
and per capita labor income growth. We use their monthly data from July 1963
to December 1990 so T" = 330, while one hundred size and beta sorted portfolios

are used as test assets.

. Yogo (2006), three factors: R,,, durable and nondurable consumption growth.

The sample period is 1951Q1 to 2001Q4 so T" = 204, with twenty-five size and

book-to-market sorted portfolios as test assets.

Lettau and Ludvigson (2001), three factors: (lagged) consumption-wealth ratio,
consumption growth, and their interaction. We use quarterly data from 1963Q3
to 1998Q3 so T' = 141, while the test assets are the twenty-five Fama-French

portfolios.

Savov (2011), one factor: garbage growth. We use the same annual data, 1960 -
2006, while the test assets are the twenty-five Fama-French portfolios augmented
by the ten industry portfolios, as suggested by Lewellen, Nagel, and Shanken
(2010).

. Adrian, Etula, and Muir (2014), one factor: leverage. Following Lettau, Lud-

vigson, and Ma (2019), we extend the time period to 1963Q3 - 2013Q4, and use

twenty-five size and book-to-market sorted portfolios as test assets.

Kroencke (2017), one factor: unfiltered annual consumption growth. We use
the postwar 1960 - 2014 sample from Kroencke (2017), while thirty portfolios,
sorted by size, value and investment alongside the market portfolio, are used as

test assets.
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8. He, Kelly, and Manela (2017), two factors: banking equity-capital ratio and R,,.
The data are also taken from Lettau, Ludvigson, and Ma (2019) for the period
1963Q3 - 2013Q4, and twenty-five size and book-to-market sorted portfolios are

the test assets.

A2. MISS and IS for linear asset pricing models. Let R;; be the return on
the i-th asset at time ¢, with ¢ =1,..., N, and t = 1, ...,T. The beta representation of

expected returns models it as linear in the beta vector of factor loadings:
E(Ri,t> = ﬂ;)\Fa

where Ap is the K x 1 vector of risk premia, and 3, is the K x 1 vector of factor
loadings:
B; = var(Fy) *cov(Fy, Ryy),

with F} the K x 1 vector of the specified risk factors. We can as well represent the
beta representation jointly for all assets by stacking the N equations to obtain

E(Rt) - 5/\Fa

with Ry = (R, ..., Rny)', 8= (81, ... Bn) ]
A scalar )\ is often added to the beta representation, so

E(R;) = tnXo + BAr,

with ¢ the N x 1 vector of ones, and )\ the so-called zero-beta return, or the expected
return on an asset with no exposure to priced risks. The Ay = 0 restriction can be
achieved by considering R; as the excess return.

To calculate IS and @, we consider the following two cases.

1. If A\ = 0 is imposed: consider R; as the observed N X 1 vector of asset returns,

and F; as the K x 1 vector of risk factors.

1'Here we use the standard notation for linear asset pricing models, so N and K play the roles of
ks and m in the GMM notation used in the main text, while T" is the sample size.
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2. If \p = 0 is not imposed: consider R; = (Ri;... Rn+14)'as the (N +1) x 1
vector of asset returns; F; is the K x 1 vector of risk factors, t = 1,...,7. By

subtracting the (N 4 1)-th asset return, we obtain the N x 1 column vector R;:
R, = (Rl,t .- -RN,t)/ - LNRNJrl,t-
The choice of the (IV + 1)-th asset does not affect IS and MISS statistics; see

Kleibergen and Zhan (2020).

For both cases above, we use the auxiliary linear factor model R, = o + SF} + uy,

which yields

where Ft = Ft—F, F = %Zleﬁ;g, Rt = Rt—R, R = %ZZ:lRt? and ﬁt =

(R; — R) — B(F; — F) is the residual at time .

Let 7,,;, be the smallest root of

which is identical to the smallest eigenvalue of the matrix Q 7 pB/Q’l B The IS statistic
reads:

I/S:TXTmZ'n.

Similarly, let A,,;, be the smallest root of

(g g ) (raYar(n @)':o,

1 0 o\ A _
which is equal to the smallest eigenvalue of ( . ) < R ) ot ( R ) .
0 QrF
The misspecification J-statistic (MISS) reads:
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A3. Proof of Theorem 2. We first specify the different components using the
asymptotically independent building blocks that make up the weak instrument robust

statistics: A
i (0) = f1,(0) + J(0)0
A D(O) = J(0) = iy ()22
D(0 = JJWJu) J(0),
ﬂf(e _QJJWJu) ﬂJ(O)a

with w“J(H) IWHJ—FQIQJJ,WML(Q) :wuu+2wujﬁ+0'ﬂjj9, SO w#J(Q QJJCL)J#) 0.
We have that:

VN (g (6) = 1p(6)) = ,(6) ~ N(0,0,,(0)),
VNvee (D(8) = D(8)) = 5(0) ~ N(0,25,(6) ® %),

where 1, (0) and 14(0) are independently distributed, ji,(0) = 11;(0) + J(0)8, D(0) =
J(0) — ,uf(Q)Zj""(e), Qrsu0) = Qg — w,s(0)w,,(0) *w,s(0), from which we next
have that for ' = —Q  wy,, QW (0") = Qg we(0Y) = wu.s, DO = J(0),
wus(0) = (0 = 0"y, wu(0) = wups + (0 — 0150 = 0%), Qyy(0) = Qg —
07 (0)' W (0) w0, (0) = 17— 25 (0—0") [wys + (0 — 01Y 250 — 1] (0—6"Y 2y,

Q
Q 9 — 1 _ Wyp.J56JJ .
52.:(0) QI THO—0Nw T (0-07) W s +(0—-01)0,,(0-0")

VN (D(el) - D(el))

i
D(8") = D(O) = ny(O)243 ) — y(0")

VN

/—

wuu.J+(9_61),QJJ(0_9*)

D(0)22,u(6) + 0) T + 5730 (0)

s 1(0) R 2y (01)

N 91> (0—0%y Vi 1 +0—07) Q5 5 (0—0%)

D(§
[ 0)\/rpd + 1(0)(0 01)Q§J},/WQJ{9)+E*§%(>
D(0

)25,(0)7%, 1(0) = VNE"2 11 (6)wyn(6) 2.

VRSTID(OY) — VNSTED(0) + VNS b (0) e n i, (01)

for D(§) = VNX~
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o e . w,g(0) 1\ Wpp.J .
Similarly, using 1 — G 0—0") = ww'ﬂ(@_ﬁ)@”(g_gl) :

VN (jig(0Y) = 1 (0) — 0, (0") =

VN (jig(0") = 1s(0) + T(O)(0 = 01) — v,(0) =

VN (160" = 11y 0) + (D(O) + g ()223) (0 - 0)) — 0,(6) ©
VN (i1 (0") = g (O)(1 = 2286 = 01) + DO - 01)) — ,(6")
VN (i1 (0") = [np(0) 2225 = DO)O 0] ) — 0,(0")

| S

VNS, (0) - VNS [W(eww(g D)6 — 61| + T3y, (6Y)
= O) s - <0>9JJH<9>%<?—01>+E-%wu<91>
= [60) @ - DO)O - 003, ] |22 + = he, (01,

Combining the expressions above, we then have when the DGP has the CUE

pseudo-true value 6 :

)
D(0") /s + B(O7)(0" = 67)92

— D(07)' D(07)] 2282 (0" — 0")+

wpp(0)
i [D0)E+ ()0 609, ] 2, )
2 [10°) s = DY = 005, S h0) + 00V, 01),
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d )
s [D0) @ + %) emi] Bb o, ()4
L [A(6) By — D)6 — 0093, ] 55\ 2 (6') +
[/ 201 5 [W%( >}

= [V — DE"YD(O")] b (0* — 0')+
o [DO) oy + )@~ 6903, 0+
L |6y — D) — 09, | vty

for 7 (6") and @Z)Z(@l) independent k; dimensional standard normal random vectors.
This shows that when expressing tests for the two-stage pseudo-true value to equal
—Q}}w Ju using the CUE pseudo-true value, these tests can only have power when

D(0*) D(60*) > u(6*)'1(6*) which corresponds with IS > MISS.

A4. Algorithm to compute the initial estimate of the conditional critical
value function of the LR test of wan mnd- The algorithm to compute the critical
value function of the LR test of H* . . (36) uses the entier function, [..], and the first

and second columns of I, ; indicated by e; ; and ey, ; respectively:

e Set all elements of the array "sum" to zero and for a range of values of ¢ from

0...Cmax, @ = v/ce1;, C = \/ceay, and set up the two-dimensional array Z :

1. Generate 7 and ¢}, ; from independent N (0, I;,,) distributions;

2. Compute & = a + ¢, ;, C = C +7;

w

A A A A 2 A
. Compute LR(a =0) = |C'C — d'a + \/(C”C’ — d’&) +4(C"a)? | ;

4. Compute conditioning statistic: rk= @'a + C'C and i = [rk];

5. sum; =sum; + 1;
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6. Set: Z(i,sum;) =LR(a = 0);
e Sort Z(i,:) in ascending order;

e The critical value cv(r, @) equals (1 — «) x 100-th percentile of sorted Z(r,:).

A5. Proof of Theorem 4. We specify the covariance matrix estimators QO =

w W R
i and X as
Wi Qg

Wrp

ot = SN 6 = () 8 = RS A2 i () - (),

1 . 1 . J
b — Vo 2 V=02V, 7 =37 wi 3 = s g
Ui = (ul - wMJQJJ‘/;)wMM,J7 ‘/Z - QJJ ‘/17 Z’L =X 2217 with Q2 = Q;J%WJH, . Qéj )

. . 1, . 1 1 1
Wopg = wuu—w#JQ;}wju. For (,uf(O) : J(O)) = \%NEi(a :C)Qz, ,uf(O) = \/Lﬁﬁiawju_‘]—i—
;1 [ B 1
52209 7w, J(0) = 282007, 15(0) = 1y (0) — J(0)Qjws = FwS2aw;, ;-
Under i.i.d. data and finite moments, the standardized random components w,,,,

W, $277 and X converge according to:

w## —1 wuu

w],u 2A],u
vech(X — Ii,) d (1
N > . *

]lv > im1 Zit (L
N .

% Zi:l ZiVi wJ

with ¢, ¥;,, ¥;; and ¢y : 1, m, 3m(m + 1) and $ks(ks 4 1) dimensional mean
zero normally distributed random vectors, and ¢}, ;, 5 independent normal k; di-

mensional random vectors.

The different elements of the covariance matrix estimator {2 can then be expressed
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as:

—1A
=550

~

Wy J

1
Wuu TWpp "’ WMJQJJ WJMW e + W P JWMJQJJ Wip + quQJJ QJJQJJWJu

/
QJJWJMWW gt QJJQJJQJJ Wip

~1

Wy,
1, . 1
2
QNQNQN
—7/

1 1 1 1
2 - 3/ 3! - 2 2’ ¢ -3
_Q QJJ QJJWJuw wg T 25809, 7w,

-Q; JWJAL
1 1

QJJ O JwJMw,u,u J

_1 1. 1
2 * 2 2 2
W . JW g +WHJQ JJ wJuW J T W, Wi wa +quQJJ Q8 wiu—
1

1
2
(WW JWMJQJJ + CL’uJQJJ QJJQJJ) (QJJ QJJWJMWW gt QJJWJM>
1 1 1 1
wuu TWpp + WMJQJJ WJMWW gt WW JwMJQJJ Wyp T+ wﬂJQJJ QJJQJJ Wip—
1 1
w JwMJQ ijuw cuW quJQ I CL/]H wa I (AJJ“UJ

pp-J pud

CL’uJQuQJ’JQ JwJu

Wop.J (ww - wﬂJQJJwJH> = Wup JWpp.J

For 4;, V; and Z;, resp. one, m and k¢ dimensional i.i.d. random variables with mean

zero and identity covariance matrices, we then have:

Q>

ii1(0) 1 J(0) ) = (uf(()) : J(())) 1%z (% sV Zl(l‘j)/> 0l

VN (ji,0) 5 J(0)) = = [(aso)+(71ﬁzflzi(g)’)]aé

A 1 . N A4 R _%
= VNS (i (0) = JO)Q S0 ) @7
= z—%((a C)+ -0, Z (3 ’) a9 ,
VN £i=1 (V) Q 7wy, Q2 QJJ QJJwJuwW ; QJJwJM
Wop WMJQ;}WJM> ’
: o 1 . -1
_1 . N a\! . . 1. 5
= X2 ((CL : O) + \/Lﬁ Zi:l Zz (V;) ) ( _Qflw (wuu - WMJQJ}(A}JM>
JIJ¥Jp )
= 7 <(a B CQ;}"L’JM) + <\/LN sz\il z(“z - ‘/Z/Q;}OJJN)>> <wuu - quQ;}wJu> ’
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C= \/Nif%j(())fz;;
= SO+ TN AV 95,0,
573 (0057 + & 8, 2003
. 573 0
VRS (o sio) S

_ O~ A2 A
QJJWJMWW.J Q7

|
l\J\»—‘

>
tﬂl>
ol
N\
=
=
=
=
=
N———
@|>
ol
|

N|=

1

= 2 eio (FEL L))ot

A1 (0 A1 =1
i= VN2 (Mf(o) — J(0) 305 ) s

The convergence of w,,,, W, Q;; and ¥ implies the intermediate results:

Q) = In— U+ O (N7Y)
Q;J% = I — 2\ﬁ‘I’JJ + O,(N 7
Qj}wJ“ - \/Nl/}Ju + Op( )
G50, = by, + Op(N713)
Dy =y = Qs = L = s Op(NHH)
w;lilj = 1- j_ﬁqﬂuu +Oy(N )
Wy = 1 ﬁww +Op(N )
27 = Iy — K Us+ Oy(N T
a— O30y, = a— 750, +O0p(NT)
\/LN Zz]il Zi(ts = Vi 300) = Vg — \/LNWSKDJ# + O,(N71)

for 1), =vech(¥), which we use to establish the higher order behavior of C'C,, @ and
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da = gty ((a—CQ5%om) + (G T Zili = Vi 3i,)) ) £
<( CQJJWJM) (% Zf\;l Zi(uz V/QJJWJM)>>
= (e —CQp05) S a — CQ i)+
QWW s(a CQJJWJM) » (% sz\; Zz(“z - WQ}}@JM)) +
s (e 0 Zitis = V00 ) 3574 (S 20 Zais = Vi b))

wWJ( yel9) JCUJ“) N Ya — CQ;}QJ“)

- ( - T%m) (a - LCQ&JM)I (ka - \}_N\IJE) <a - \/_lﬁCwJ,u) +Op(N7H)
= da— T ( ’\I/ga+aa@/) +2a/C¢Ju) ‘f'Op(N*l)

0 = O (5 T, Z‘(' - Vi)

= (1= ) (0= Fr0wn) (1~ Jws) (V5 = dgvivn) + 0,8
= advy,;— \/Lﬁ (Wmclwz.g] +a' Py, + %W g+ a/‘I’EZﬁZJ) +Op(N7)

s (S L0 Ziis = ViS00, ) 57 (G 0 Zilis = Vi3 )

- (1- fw,m) (50— 50) (B = %) (V0 — i) + Op(N )
= by — \/_ﬁ WM.J‘I’sz.J + N U s+ 2¢ZJ¢TJ¢JH) +Op(N71)

Combining the above, we obtain:

da = da+2a"; ;+ Y 0, — 75 (@ Usa+day,, +2dCYy,) —
\/LN (wi],ucll/};] + a,¢J¢JM + wuu /1/)“.] +a \I/Ew,u.J) -
\/Lﬁ (@DZ{JWE@D;.J + 0 2@/);,.{71/)3@/&1#) + Op(N7).

Similarly, we derive the higher order behavior of C'C, and ('a, as follows.
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¢'c= a5 (c+ &k ZV) (e D DMPAL)
= (I = W) (€ +03) (I, = Fe¥s) (C+u3) + O, (N
= c70t+20my—+w Wy — 5V (C'C+ 205 + ¢5y) —
I (C"UsC + 20Uy + 9 Usyy) + Op(N )

WC = ks (0 - COGk0,) + (J T Zitis - Vi5k0,,)) ) 571

R A K

= W;EJ(G - C'Q;}‘QJM)/EF1 (C + \/LN Zfil Zsz’) Q;J%
s (e S0 it — Vi0530s) ) 57 (C o+ o SO, 2V7) 03

= (1= 52vu) (- FOws) (1, — fe¥s) €+ (1 Hy) "
(1= sdwm) (50— 050s) (T = J¥s) (€ +07) (1= 5l ¥as) + 0N

= dCH+ad ¥+ 0+ 5 = 57m (W + W) (@O + a'yy) —
% (' UsC + ' U + ¥ ;7,C"(C + V) — #ﬁ (1/1## + V) (@Z};{JC + w;l.ﬂm) -
% (7?;/41‘1’20 + @DZ/.J\IJEwJ + 07 7(C + @DT])) +O,(N71)

Under H!  ,.4:C'C =da and C'a = 0:

C'C —da
= C'wJ H T = 20, = — 7V (C7C + 205 + ;) —
(C”\If C 420Uy + P Usthh) + \F ( ’\Ilga—kaaww)
(¢JHC/¢M gHavyby, + a0+ ad syl 7)+
(¢ J¥sy 5+ %J%.J%# + 2¢M.J¢J¢Ju) +Op(N71)

S5

a'C

= Yy + U0+ — 2\% (Vp + Wug) d'p—
77 ([@UnC +a" Oty +9,,0"(C +97)) = 505 (W + Cas) (1,0 + 45 4075) —
\/LN (I/JM.J\IJEC + ¢M.J\IJE¢J + ¢Ju¢?}/(0 + ¢§)) + OP(Nil)
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C'C +da
= C'C+da+2C5 + 5y +2dY, ; + 0y, — G0y (C'C + 20705 + ¢yh) —
75 (C"U5C + 20U + 45 Us)) — o= (a'Usa+day,,) —
\/LN (WIHO/@/)Z.J + a5y, + 0,0+ a/‘I’EIﬁZJ) -
\/LN (@ZJ:,.J\IJE@D;.J + b s s, + 2¢:{J¢§¢Ju) + Op(N7)
The above expressions are equivalent to those presented in Theorem 4, which are

re-organized.

A6. Proof of Theorem 5. Using the specfication from ([25))-(26]), IS and MISS
are defined by:

IS = smallest root of the characteristic polynomial: ‘T[m — %C” C ‘ =0

MISS = smallest root of the characteristic polynomial: |Alp1 — ~(a : C)(a: C)| = 0.

To specify the hypothesis of no-identification, H,,.inq : IS = MISS, more explicitly
as a function of a¢ and C, we first use the SVD of C' to specify:

(a:C)(a:C)
r / / /
. 1 0 1 0 ) 1 0 1 0
= |Ub(a:C) Ub(a : C)
0 VC 0 VC 0 VC 0 VC
- /
/ a* S 0 a* S 0
= a SCmm @ SCmm
0 Ve Com “ G, ¢ 0 Vo

b 0 0 b 0 0

1 0
for a* = Ug,a, b = Ug ya, which used that Uc and ( 0T ) are orthonormal, and
c

Sc, is the (m — 1) by (m — 1) diagonal matrix with sc 11, ..., S¢(m—1)(m—1) on the

diagonal.

1 0
Since ( 0V ) is also an orthonormal matrix, MISS equals the smallest eigen-
c
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value of ,

a* Sca 0 a* Sca 0
U’ama 0 Scmm U’Qma 0 SCmm
b 0 0 b 0 0
a’a* + (U’ama)2 +00  a’Scy (Ugm@)Scmm
- S, a° St 1S 0 ,
(Ut m@)scmm 0 (scymm)?

+st, 0 0 0 0
0 ' 0
2 /
R 0 0 + 58 m-1)m-1) 0 0 R,
0 0 b'b
0 0 0 (Ué‘,ma)Q + (SC,mm>2

for R = (Ry: Ry : Rimi1), R = €1m+1, €ims1 the i-th (m + 1)-dimensional unity

vector (or i-th column of I,,,11), a* = (aj,...,ak, 1),
\/GTQ‘*‘S%,M \/ m— 1+Sc (m—=1)(m—1)
SC,11 0 O
vV aT2+526*,11
0 0
R, = c(m+1) x (m—1),
0 O 5C,(m—1)(m—1)
\/ 158 (1) (m—1)
0 . 0
0 0
Ug,ma)
R 1= SC,mm e 1 1 + m el 1.
K R A

When Ug,,,a = 0, b'b and (Scmm)? are two of the eigenvalues, so a necessary and
sufficient condition for IS = MISS is: Ug,,,a = 0 and b'b > (SCmm)?
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AT7. Proof of Theorem 6. We use that

(@:¢) = VNS (ﬂf@ z j(())) Ok
+(0) — CA’Q;J%@J” A SVD of C results in
6 = TSV

with UC = (UC,l Uc,m UCQ), UC,l : kfx(m—l), UC,m : kle, ﬁc’g : kfx(kf—m), and

Sei 0
Ve orthonormal k ¢ x ky and mxm dimensional matrices, and Se = 0 Scmm |

0 0
Scia s (m—=1)x (m—=1), 8¢mm : 1x 1, a kf x m dimensional matrix with the singular
values in decreasing order on the main diagonal so IS = 58 mm-

MISS equals the smallest root of the characteristic polynomial:
M, —(a:C)(a:C)|=o.

We specify (a : C)(a: C) using the SVD of C' as

(@:C)(a:0)
A ANITT T (A ~
= (a:O)YUcUL(a: C)
~ N N / N N
oA / /A /
Ugsa UgyC Ugaa Ug,C
_ S A roA T A
- UC,ma UC mC UC m@ UC mc
N ~ a Sy N N
N A / N N
rf ULa S 0 UL,a 0
C,1 C,1 C,1 C,1
1 0 A . o A 1 0
- Ucm@ 0 Scmm Ucm@ 0 Scmm .
0 v o om 0 V.
Usqa 0 0 Usqa 0 0
AT A AT 2 AT A AT Q AT A
1 0 / CLUCJUCJG—F((I UC,m) +aU072U072a CLUCJSCJ CLUC?mSQmm
Qr  Frrooa qr &
(O oy ) SeaUgaa Seadca 0 <
C A A/ A /\2
SC,mmUC,ma 0 SC,mm
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1 0

V
to the eigenvalues of:

Because

@0 + (@ Ugm)? + 070 a*'Son
5”071&* géngal
§CmmUIC,m& 0
ai’ + 5, 0 0 0
0 0

= R 0 0 a1 + 8¢ m-1)m-1) . OA
0 0 b*/b*

0 0 0

for U a = (a3...a%

is an orthonormal matrix, the characteristic roots are identical

/\/ A A
a UC,mSC,mm

(

0

52
SC’,mm

0
0
0

&/U07m)2 + (é%,mm)2

/ s T A % T >IN > I » D :
) = a*, Uaza = b*, R = (Rl . Rm . Rm+1>7 Rm = €1,m+1, with

€im+1 the i-th (m 4+ 1)-dimensional unity vector (or i-th column of I, 1),

a*

a1 m—1
a? 453 1 \/d:;?—1+§%’7(m71)(m—1)
301,11 0 0
&T2+'§ZC 11
> 0 0
Ry = ) c(m+1) x (m—1),
5C,(m—1)(m—1)
0 O &*2 +§2
m=175C,(m—1)(m-1)
0 0
0 0
5 i'Uc,m)
R 1= _ SC,mm e 1 1 + A(a ,m 61 1-
m+ \/(&’Uc,m)2+§2amm m+1,m+ \/(a/UC,m)2+'§zc’mm M+
For relative large values of $% . compared to a;?, i = 1,...,m — 1, Ry becomes

orthogonal to R,, and Rerl; so the two smallest eigenvalues then result from

U Ui+ 076 @ Ucm3cmm

s 71
ScmmUc ma

&/(Uam : Uc,z)(UC,m

A

- 2
SC’,mm

A

A / A
SCymm UC7ma
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We can next analytically solve for the smallest root which leads to the approximate

expression of the LR statistic:
LR(a = 0)

2 ~
~D Y ~9 Y, R ~ A9 / ~AND
SC,mm M Uc a + \/(SC,mm a Ucyla> + 4SC,mm(UC,ma> ] :

~ 1

2

AS8. Expansion for computing conditional critical value function for m > 1.
Using the proof of Theorem 4 and the SVD from Theorem 5:

VN2 (gf(()) : j(O)) O3

_ yécaxn+g%§;1z@y)gﬁ
(

= 27% |:(CL chcvc)

. . | 10
= 00 (U 50)+ (5 EN 2 -t
eV 0 V4
st s s (A nnze)] (L L
¢ VN =l TRV VL b, 2, VER T
- 1 [ - L N w; !/ w;EJ 0 1
= u _<a ’ SC) + (\/N Zi:l Zi (V(/JVZ) >:| <—(VéQ.]JVC) VCWJM"J ? (VCQ‘”V )" 2)

I
E}ﬂ‘:

- .7%
.o N 5 ra\/ W 0
(a:SC)—i_(\/LﬁZilZi(Vi))} ( &= ’ -3 9 z)
- JJWJ;A HHJ JJ

. _1 1
(' SCQ;}(:{.)Jli).H;J \/721 1Z<u’5 VQJJWJIJJ) me)
Sefh + (& SN, ZV:653)]

NI

= %

for & = Uba, Z; = UsZy, S = USUe = 25N 2,70, 573 = $73Ug, V; = VAV,
QJJ = VC,«QJJVC, SO Q;} = (VC/«QJ{]VC)i = VC 1QJJVC,v 1= VC/«QJJVC because VC is

orthonormal, V' = V{,, and &, = Vi,

58



A9. Additional empirical applications.

Table Al: LR test of no-identification for Jagannathan and Wang (1996)
Significance at 1%,***; 5%,**; 10%,*.

Xo#0| A =0
IS 103.54 | 103.56
MISS 75.07 | 86.46
LR(a = 0) = IS — MISS 28.47 | 17.10
Conditioning statistic: @ + j\ac’m 251.45 | 272.29
95% conditional critical value 40.91 | 45.86

Table A2: LR test of no-identification for Lettau and Ludvigson (2001)
Significance at 1%,***; 5%,**; 10%,*.

Mo 20| =0
IS 31.75* | 40.90*
MISS 31.11% | 37.15*
LR(a = 0) = IS — MISS 0.65 | 3.75
Conditioning statistic: m + j\aC,m 70.55 | 79.77
95% conditional critical value 23.56 | 25.80

Table A3: LR test of no-identification for Yogo (2006)
Significance at 1%,***; 5%,**; 10%,*.

XN #0 | A=0
IS 17.34 | 19.60
MISS 17.14 | 19.42
LR(a = 0) = IS — MISS 020 |0.19
Conditioning statistic: MISS + Ayc, | 41.91 | 44.24
95% conditional critical value 14.91 | 15.28
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Table A4: LR test of no-identification for Savov (2011)
Significance at 1%,***; 5%,**; 10%,*.

MA0 | Ag=0
IS 140.68"* | 296.78***
MISS 134.27° | 268.60***
LR(a = 0) = IS — MISS 6.41 28.18
Conditioning statistic: MISS + Aecm | 812.86 | 984.98
95% conditional critical value 743.88 909.73

Table A5: LR test of no-identification for Adrian, Etula, and Muir (2014)
Significance at 1%,***; 5%,**; 10%,*.

MF#0 | XN=0
IS 31.97 | 42.03*
MISS 28.42 | 30.41
LR(a = 0) = IS — MISS 356 | 11.62
Conditioning statistic: m + j\aam 118.57 | 157.56
95% conditional critical value 72.88 | 122.51

Table A6: LR test of no-identification for Kroencke (2017)
Significance at 1%,***; 5%,**; 10%,*.

MNA0 | =0
IS 7847 | 102.77
m 59.84*** | 60.03***
LR(o = 0) = IS — MISS 18.63 | 42.74
Conditioning statistic: @ + j\aC,m 160.74 226.73
95% conditional critical value 111.56 | 178.03
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Table A7: LR test of no-identification for He, Kelly, and Manela (2017)
Significance at 1%,***; 5%,**; 10%,*.

MFZ0 | A=0
IS 35.88"* | 59.74***
MISS 35.32° | 44.44%
LR(a = 0) = IS — MISS 057 | 15.29
Conditioning statistic: @ + 5\a07m 114.40 | 167.37
95% conditional critical value 36.10 | 47.91
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