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1 Introduction

1.1 Overview

We study decentralized strategic interactions in matching markets, incorporating both information

and time frictions. While much of the theoretical literature on two-sided matching markets

centers on outcomes generated through centralized clearinghouses, many real-world markets

function in a less structured, decentralized fashion—such as U.S. college admissions or various

labor markets, including those for law clerks and junior economists. Moreover, even in centralized

markets, decentralized interactions often occur before or after the clearinghouse’s operations.1

Understanding outcomes generated by decentralized markets is therefore important for the design

of decentralized and centralized institutions alike. This paper offers a step in that direction.

Empirically, persistent centralized clearinghouses are associated with stable outcomes, as

noted by Roth (1991).2 A folk argument contends that if an unstable outcome is implemented,

decentralized interactions, whether before or after the clearinghouse operates, will eventually lead

to stability; see Roth and Sotomayor (1992). However, these decentralized adjustments may come

at an efficiency cost when frictions are present. For example, in labor markets, already matched

employers and employees, who might have preferable matches elsewhere, must incur costs to

seek out and transition to these new arrangements. In this paper, we theoretically examine this

folk wisdom, offering conditions under which (non-cooperative) decentralized interactions lead to

stability. Specifically, we identify restrictions on information and time frictions that ensure the

emergence of stable outcomes.

We suggest a simple model of a decentralized market game in which firms make directed offers

to workers. This market game is characterized by three key ingredients: the preference distribution

of agents (both workers and firms), the information agents possess regarding their own preferences

and those of others, and the extent of time frictions in the economy.

For simplicity, we focus on markets where firms can hire only one worker, and each worker can

be employed by at most one firm. We assume all agents are acceptable: any match is preferred to

none. We consider environments with a unique stable matching.3 We do so for two reasons. First,

1See Roth (1984) and Roth (2008). For some evidence on the large outcome differences between centralized and

decentralized markets, see Fréchette, Roth, and Ünver (2007) and Niederle and Roth (2003).
2A stable matching is a pairing of workers and firms where no matched firm or worker would prefer to be unmatched,

and no firm and worker would both prefer to pair up over maintaining their assigned partners.
3Specifically, we require uniqueness in the entire market and in any sub-market formed after agents match or exit.
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uniqueness allows us to sidestep coordination problems, thereby eliminating one straightforward

hurdle to stability. Second, prior work suggests that some markets exhibit only a few possible

stable matchings (Roth and Peranson, 1999). Recent theoretical developments further suggest large

markets have a limited number of stable matchings under certain conditions (see Immorlica and

Mahdian, 2005; Kojima and Pathak, 2009; and Ashlagi, Kanoria, and Leshno, 2017). As many of

the leading applications of matching theory—from labor markets to school allocations—involve

hundreds of thousands of participants, these results align with our uniqueness assumption.

Specifically, we analyze markets with aligned preferences, a restriction ensuring uniqueness

of stable matchings in all sub-markets. Aligned preferences require that firms’ and workers’

preferences can be represented by a joint “ordinal potential,” analogous to ordinal potentials

of normal-form games (Monderer and Shapley, 1996). An ordinal potential specifies a value

for each firm and worker pair and captures the full preference profile of market participants.

Preference alignment generalizes many constraints previously used in the literature to establish

uniqueness of stable matchings. Notably, many prominent cases studied in the literature entail

aligned preferences. For instance, alignment is guaranteed whenever firms and workers split

revenue in fixed proportions, or when all participants on one market side agree on the ranking of

participants on the other side.

In our decentralized market game, each firm can make up to one offer each period if she does

not already have an offer held by some worker.4 Workers can accept, reject, or hold an offer, where

holding an offer ensures its availability in the future. A worker can accept at most one offer, but

can hold any number of offers. To study the impacts of time frictions, we assume firms and workers

receive discounted match utilities when they are matched.

We study two settings that differ in the initial information market participants hold about their

own and others’ preferences: complete and incomplete information. Under complete information, all

market participants are fully informed of the realized match utilities. As mentioned above, the

existing literature has mostly focused on complete information environments, with a few notable

exceptions that we discuss in our literature review below. However, allowing for incomplete

information is particularly important from an applied perspective. Many matching markets are

large and entail limited information exchange between participants. For instance, the economics

job market sees thousands of applicants and new positions annually, and the National Resident

Matching Program (NRMP) involves around 90,000 participants annually. Participants cannot

4Throughout, we refer to firms as female and workers as male.
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possibly communicate their complete preference rankings to all others. Our incomplete information

environment reflects these real-world conditions: each agent is fully informed only of her own

match utilities and holds accurate prior beliefs about others’ preferences. We analyze equilibria in

weakly undominated strategies.

Under complete information, analyzed in Section 4, all agents can identify the stable matching,

which indeed serves as an equilibrium outcome of the decentralized market game. Still, we show

that there may be equilibria that yield unstable matchings. This multiplicity underscores a first

departure from the case in which agents participate in a centralized market employing the Gale-

Shapley deferred acceptance algorithm (Gale and Shapley, 1962), where all equilibria in weakly

undominated strategies yield the stable matching. At the heart of this equilibrium multiplicity

is the observation that in dynamic decentralized markets, agents can condition their actions

on past activity. Nonetheless, a simple refinement—iterated elimination of weakly dominated

strategies—restores uniqueness of the stable matching as an equilibrium outcome.

In Section 5, we provide conditions that ensure equilibrium stability even when agents have

limited information about others’ preferences. With incomplete information, in an economy

without time frictions, stable matchings can still be implemented as an equilibrium outcome.

Firms and workers can replicate, in essence, the firm-proposing Gale-Shapley deferred acceptance

algorithm as part of an equilibrium profile. That is, firms make offers to workers in order of their

preferences, and workers accept offers when they are made by their most preferred firms. Aligned

preferences ensure there is always a firm and a worker that are each other’s favorite partner. This

guarantees that at least one firm and worker are matched in every period. In particular, such a

strategy profile leads to a stable market outcome in finite time.

Nevertheless, even with minimal time frictions, agents may have incentives to deviate from

these strategies. If all firms and workers emulate the firm-proposing deferred acceptance algorithm,

the timing of events—offers, responses to offers, and exits—feeds into the updating process. There

are then two types of manipulations: ones intended to speed up the matching process, and ones

intended to affect participants’ inferences about their expected partners. Consequently, in some

economies, no equilibrium yields the stable outcome in all the supported markets.

To glean intuition for manipulations driven by a desire to speed up matches, consider an

economy with two workers, Adrian and Bailey, and two firms, A and B. Suppose that (i) both

workers prefer firm A to firm B and (ii) both firms prefer Adrian to Bailey. Under deferred

acceptance strategies, both firms approach Adrian, their favorite, in the first period. Because
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Adrian prefers firm A, Adrian accepts firm A’s offer, and they match. Bailey then receives an offer

from firm B only in the second period. Foreseeing Adrien and firm A’s pairing, Bailey and firm B

realize that they are destined to match. If firm B proceeds out of order and makes an offer to Bailey

in the first period, Bailey should accept that offer immediately. In this case, firm B successfully

speeds up her match.

To understand what underlies manipulations designed to alter beliefs, consider a different

economy. Suppose that, using deferred acceptance strategies, some agent, Cooper, matches with

some firm C only when firm C makes an offer to Cooper in the first period. If there are markets in

the economy in which Cooper is preferable to firm C’s stable match partner, firm C has incentives

to make an immediate offer to Cooper. An early offer to Cooper allows firm C to manipulate

Cooper’s beliefs about the realized market and secure a superior match.

We illustrate the hurdles to achieving stability in economies composed of aligned markets and

patient agents. Without alignment, the possibility of coordination failures and the potential for

rejection cycles pose further challenges to stability. With impatient agents, speeding up incentives

can cause instability: highly impatient agents are willing to accept any partner who is preferable to

staying unmatched. Either misalignment or impatience make stability all the more elusive.

The hurdles to achieving stability cease to matter when the support of the preference distribu-

tion is rich enough. In order to implement stable outcomes through equilibrium play, the learning

that occurs from the timing of events per se has to be limited. Certainly, when information is

complete, there are no learning opportunities and, indeed, the stable outcome can be implemented

in equilibrium. We show that when the economy is sufficiently rich, when any aligned preference

profile is possible with some positive probability, learning is highly restricted. In rich economies,

there are many ways to rationalize various event sequences through the supported preference

profiles. Consequently, timing plays a more limited role in learning. Equilibrium implementation

of stable outcomes is then possible when agents are sufficiently patient.5

Since many applications pertaining to our model involve numerous participants, one may worry

that the equilibria we identify demand a long time for markets to stabilize. In Section 6, we use

simulations of randomly generated preferences and show that the duration required for markets

of reasonable size to culminate in a stable outcome is limited. Furthermore, these equilibrium

dynamics take substantially shorter times than naïve dynamics yielding stability, á la Roth and

Vande Vate (1990).

5In the Appendix, we provide more general sufficient conditions for implementation of stable matchings.
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Taken together, our results illustrate that implementing stable outcomes through decentralized

interactions is feasible, provided certain conditions are met. When information is either complete

or, in rich economies, profoundly incomplete, the precise sequencing of market interactions affords

no learning opportunities. Stable matchings can then be implemented in equilibrium, and our

framework offers a non-cooperative foundation for the cooperative notion of stability. However,

without richness, incomplete information and time frictions are detrimental to stability. In such

environments, centralized interventions may be beneficial if stability is an objective.

1.2 Related Literature

The recent and growing literature on dynamic matching considers dynamic interactions when the

set of market participants evolves, see e.g., Akbarpour, Li, and Gharan (2020), Baccara, Lee, and

Yariv (2020), and the survey by Baccara and Yariv (2022). In that literature, market participants ar-

rive over time—as is the case for organ patients and donors, children relinquished for adoption and

parents seeking to adopt, etc. The focus is often on optimal clearinghouses for such settings, rather

than outcomes of decentralized interactions that we consider. Several theoretical investigations

inspect market outcomes as consequences of a dynamic interaction between a fixed set of market

participants. Roth and Vande Vate (1990) and Ackermann et al. (2011) offer non-strategic dynamics

of blocking-pair formation that yield stability, which we return to in Section ??. Haeringer and

Wooders (2011) and Pais (2008) consider the case of complete information, and restrict firms’ strate-

gies by preventing offers to workers who had rejected them previously. Haeringer and Wooders

(2011) study a game similar to ours in which firms can only make exploding offers that have to

be accepted or rejected right away and show that in many environments equilibrium outcomes

are stable. Pais (2008) investigates a setting with one firm chosen randomly each period to make

an offer. She characterizes the set of (ordinal) subgame perfect equilibria and shows that outcome

multiplicity may arise even when the underlying market has a unique stable matching. Suh and

Wen (2008) consider a particular sequential protocol of offers in which each agent makes only one

decision—accept a previous offer, stay single, or make an offer to someone who follows them. With

complete information, they show conditions under which subgame perfect equilibrium outcomes

are stable. We add to this line of work by considering markets in which both firms and workers

interact strategically. We also consider both complete- and incomplete-information settings.6

6Dai and Jordan (2021) take an algorithmic approach for approximating payoff-maximizing strategies in decentralized

markets. Arnosti, Johari, and Kanoria (2014) study decentralized matching markets in which agents arrive and depart
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Recent empirical work indicates the relevance of incomplete information. Grenet, He, and

Kübler (2021) consider a decentralized phase in Germany’s university admission system and

find evidence for students’ costly learning about universities. Echenique et al. (2022a) show the

importance of the decentralized interview process preceding the US centralized medical match.

Using experiments, Pais, Pintér, and Veszteg (2020), Echenique, Robinson-Cortes, and Yariv

(2022b), and Agranov et al. (2022) consider selection of and convergence to stable matchings in lab

decentralized markets; see also references therein. In line with our results, complete-information

markets often culminate in stable matchings, but that is not the case with incomplete information.

Most of the theoretical matching literature effectively assumes complete information of prefer-

ences. Liu et al. (2014) and Liu (2020) suggest a cooperative notion of stability with incomplete

information allowing for transfers, while Bikhchandani (2017) offers a notion absent transfers. Roth

(1989) and Fernandez, Rudov, and Yariv (2022) illustrate the impacts of incomplete information

in a centralized clearinghouse; see also references there. We add to this literature by identifying

environments in which, even with incomplete information, non-cooperative stabilization dynamics

yield complete-information stable outcomes in equilibrium.7

The search and matching literature—Burdett and Coles (1997), Eeckhout (1999), Shimer and

Smith (2000), and the survey by Chade, Eeckhout, and Smith (2017)—studies dynamic interactions

in an often stationary market in which agents are commonly evaluated. As in our setting, time

frictions present a stability hurdle: they impose a search cost that leads agents to “compromise.”

However, in those models, as time frictions vanish, stability is approximated. We consider a richer

class of preferences and show that, with incomplete information, even vanishingly small time

frictions can present a severe impediment to stability unless learning opportunities are limited.

Gutin, Neary, and Yeo (2021) characterize preference restrictions guaranteeing a unique stable

matching. Preference alignment is somewhat more restrictive, but reminiscent of many identified

asynchronously. They study the effects of observing who is available. The role of commitment in complete-information

dynamic games is highlighted in Diamantoudi, Miyagawa, and Xue (2015) and Blum, Roth, and Rothblum (1997).

There is also some work analyzing endogenous salaries in decentralized markets with complete information and limited

dynamics, see Konishi and Sapozhnikov (2008).
7Chakraborty, Citanna, and Ostrovsky (2010) consider a many-to-one setting with incomplete information on one

side, where a centralized intermediation protocol precedes up to two stages of matchings. Their stability notion depends

on the information produced by the protocol and they identify when protocols yield stable outcomes. Immorlica et al.

(2020) consider information acquisition in a school choice setting where, again, one side of the market, the students,

have partial information on their preferences. They show that no mechanism guarantees “regret-free stability” due to

strategic effects on students’ information acquisition.
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uniqueness conditions (Clark 2006 and Eeckhout 2000). Some of its special cases often appear in

empirical work. For example, a similar assumption is made in Agarwal (2015) when analyzing the

medical match and in Dur et al. (2018) when examining a school-choice setting in Taiwan.

2 The Model

2.1 The Economy

A market is a tripletM = (F ,W ,U ), where F = {1, ...,F} andW = {1, ...,W } are disjoint sets of firms

and workers, respectively, and U =
{{
u
f
ij

}
,
{
uw
ij

}}
are agents’ match utilities. Each firm i ∈ F receives

match utility u
f
ij from matching with worker j ∈ W ∪∅, where matching to ∅ is interpreted as

remaining unmatched. Similarly, each worker j ∈W receives match utility uw
ij from matching with

firm i ∈ F ∪∅. We denote by U f =
(
u
f
ij

)
i∈F ,j∈W

and Uw =
(
uw
ij

)
i∈F ,j∈W

the matrices corresponding

to utilities from firm-worker pairs for both sides of the market.

For simplicity, we assume that all match utilities are strictly positive, that firms and workers

have strict preferences, and that all agents prefer to be matched over remaining unmatched.8 That

is, for any firm i and workers j, j ′ ∈W ∪∅,

u
f
ij , u

f
ij ′ > u

f
i∅ > 0.

Similarly, for any worker j and firms i, i′ ∈ F ∪∅,

uw
ij , u

w
i′j > uw

∅j > 0.

In particular, all outside options generate strictly positive utilities.9

For fixed sets F and W of firms and workers, an economy is a finite collection of markets

{(F ,W ,U )}U∈U together with a distribution G over possible match utilities U ∈ U . We assume G

has finite support U : each market in the economy has positive probability and cannot be ignored

in agents’ considerations.

A matching is a function µ : F ∪W →F ∪W ∪∅ such that for all i ∈ F , µ(i) ∈W ∪∅, and for all

j ∈W , µ (j) ∈ F ∪∅. Furthermore, if (i, j) ∈ F ×W , then µ(i) = j if and only if µ(j) = i. If µ(k) , ∅ for

k ∈ F ∪W , we say that k is matched under µ. A blocking pair for a matching µ is a pair (i, j) ∈ F ×W
8These assumptions simplify our presentation. Relaxing either would not alter our qualitative conclusions.
9With an outside option that generates a utility of 0, agents expecting to exit do not care about the timing of their

exit, which would generate equilibrium multiplicity mechanically.
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such that uf
ij > u

f
iµ(i) and uw

ij > uw
µ(j)j . A matching is stable if there exist no blocking pairs. Since all

agents prefer to be matched, individuals never block a matching.

As noted in our literature review, in a static setting, one could consider an adjusted notion of

stability that allows for incomplete information. Our goal here is to understand when learning

in matching markets can generate the complete-information stable outcomes. When it does,

outcomes are expected to be robust to any further information or interactions after the dust has

settled in the market. Throughout the paper, we slightly abuse terminology and refer to the

complete-information stable matchings in a market as stable matchings.

Gale and Shapley (1962) showed that any market has a stable matching, and provided an

algorithm that identifies one. The firm-proposing deferred acceptance (DA) algorithm, which underlies

many centralized matching markets, operates as follows. In step 1, each firm makes an offer to her

most preferred worker. Workers collect offers, hold the offer from their most preferred firm, and

reject all other offers. In a general step k, each firm whose offer was rejected in the last step makes

an offer to her most preferred worker who has not rejected her yet. Workers, once more, collect

offers including, possibly, an offer held from a previous step; they keep their most preferred offer,

and reject all other offers. The algorithm ends when there are no more offers that are rejected; that

is, when each firm either has her offer held by a worker, or has been rejected by all workers. Once

the algorithm ends, held offers are converted to matches.

2.2 A Decentralized Market

For a given economy {(F ,W ,U )}U∈U and a distribution G over utility realizations (or markets), we

analyze the following market game. The economy, together with the distribution G, are common

knowledge to all agents. At the outset, the market is realized according to the distribution G. Each

agent is privately informed only of their own realized match utilities. When the support of G is a

singleton, there is complete information: firms’ and workers’ match utilities are common knowledge.

This is the case that most of the literature has tackled. With complete information, both firms

and workers can deduce the stable outcome. We also analyze settings in which the support of G is

non-trivial. In this incomplete information case, participants may not be able to infer the underlying

market, nor its stable matching, from their private information.

In our market game, firms make offers over time, indexed by t ∈ {1,2, ...}, and workers react to

those offers. Specifically, each period has three stages. In the first stage, eligible firms simultane-
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ously decide whether to exit the market and, otherwise, to whom to make an offer, if at all. In the

second stage of any period, workers observe which firms exited, and the offers they themselves

received. Each worker j who has received an offer from firm i can accept, reject, or hold the offer. If

the offer is accepted, worker j is matched to firm i. A worker can accept at most one offer, but hold

any number of offers. Workers can also exit the market. In the third stage, firms observe rejections

and deferrals of their own offers. Finally, all participants are informed of the agents who exited the

market and the participants who were matched.10

Eligible firms are firms that have not yet hired a worker and have no offer held by a worker. In

each period t, eligible firms can make up to one offer to any worker that has not yet been matched.

The game ends once all participants have exited the market, matched or unmatched.

We consider market games with and without time frictions, which take the form of discounting.

If a firm i is matched to worker j at time t, firm i receives δtuf
ij and worker j receives δtuw

ij , where

δ ∈ [0,1] is the market discount factor. As long as agents are unmatched, they receive 0 in each

period. One interpretation is that once a worker and a firm are matched, they receive their match

utility or, equivalently, they receive a constant, perpetual stream of payoffs, the present value of

which is their match utility. One can also interpret the discount factor δ as the probability of

market collapse, or the probability that each firm loses her position and receives a payoff of 0 (and,

analogously, the probability that each worker leaves the market and receives 0 as well).11

We assume all offer benefits are captured by match utilities. In particular, firms do not offer

targeted transfers or wages to workers. Hall and Krueger (2012) suggest that a substantial fraction of

jobs entails posted wages, plausibly resistant to general equilibrium forces. Our analysis pertains to

such settings. With incomplete information, targeted transfers may introduce additional obstacles

to stability: market participants then need to infer not only their correct match partner, but also

the appropriate wage.12

The equilibrium notion we use is that of Bayesian Nash equilibrium, where types correspond to

agents’ private information. When the support of G is a singleton and information is complete, our

analysis pertains to the Nash equilibria of the corresponding game.

10Participants do not observe the entire stream of offers and responses made by others, only their matches and exits.

This assumption fits many applications and makes the belief-updating process tractable.
11An alternative source of frictions would be costly offers. An analogous model in which each offer costs a constant

amount would yield qualitatively similar results to those presented here.
12Agranov et al. (2022) report experimental results from decentralized markets with complete and incomplete

information. Identifying stable transfers is difficult for participants, particularly with incomplete information.
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We focus on equilibria of decentralized market games in which all agents use weakly undomi-

nated strategies. This imposes several restrictions on equilibrium play:

1. A worker who accepts an offer always accepts his best available offer. In particular, a worker

cannot exit and simultaneously reject an offer since offers always generate higher payoffs.

2. When δ < 1, a worker who receives an offer from his most preferred unmatched firm accepts

it immediately. Similarly, if only agents on one side of the market are unmatched, they exit

immediately since the payoffs from the outside option are strictly positive.

In our model, agents have discretion on offers and reactions to offers throughout the market’s

operations: in that sense, the market is decentralized. Nonetheless, our model imposes some

constraints on the protocol followed by market participants. There are two features that are

important for our results. The first is the dynamic nature of interactions. With incomplete

information, agents need opportunities to learn if there is any hope for complete-information

stable outcomes to be implemented. Dynamics are a natural channel for such learning that is in

line with many applications. The other important feature is that irreversible matches can form

before the market terminates. We view this as a realistic feature of many markets. For instance, in

labor markets, workers are often hired while other firms are still hiring. As we discuss in Section 6,

our qualitative results continue to hold under alternative protocols, allowing for exploding offers,

richer monitoring structures, etc.

2.3 Aligned Preferences

While the firm-proposing DA algorithm generates one stable matching, the one preferred by

all firms, there may be others. Certainly, in markets with multiple stable matchings, learning to

coordinate on a particular stable matching for any market realization would entail many difficulties.

For one, agents need to learn which stable matching is being played, in addition to various relevant

features of the market. Furthermore, incentive compatibility concerns akin to those emerging in

centralized settings with multiple stable matchings may surface in decentralized markets as well

(see Roth and Sotomayor 1992, and Section 3 below).

In dynamic markets such as those we study, agents match along the way, inducing a continuation

decentralized market game with a subset of participants. As an example, consider a complete

information market with three firms {f1, f2, f3} and three workers {w1,w2,w3}, where match utilities

are given by the following matrix:
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U f = Uw =

w1 w2 w3

f1 (2,3) (3,2) (1,1)

f2 (3,1) (2,3) (1,3)

f3 (3,2) (2,1) (1,2)

with underlined entries corresponding to the unique stable matching. Importantly, if f3 and w3

match and depart, the remaining firms and workers correspond to the red sub-market, which

entails two stable matchings. Consequently, in this example, there is a Nash equilibrium of our

decentralized market game in which f3 and w3 match at t = 1, while f1 matches with w2 and f2

matches with w1 at t = 2, thereby implementing an unstable outcome.13

In order to circumvent these hurdles and isolate the impacts of incomplete information and

frictions on learning, we focus on a class of preferences we term aligned preferences that exhibit a

unique stable matching in every sub-market, on top of several other desirable features.

Definition (Aligned Preferences). Firms and workers have aligned preferences if there exists an

ordinal potential Φ =
(
Φij

)
i∈F ,j∈W

, Φij ∈R such that for any firms i, i′ ∈ F and workers j, j ′ ∈W :

u
f
ij > u

f
ij ′ ⇐⇒ Φij > Φij ′ and uw

ij > uw
i′j ⇐⇒ Φij > Φi′j .

Intuitively, preference alignment imposes a link between firms’ and workers’ (ordinal) prefer-

ences through the ordinal potential. The preference ranking of both sides of the market can be

captured using one common matrix Φ . Let Û f = Ûw =
(
Φij

)
i∈F ,j∈W

. Then, Û f and Ûw capture the

same ordinal preferences over partners as U f ,Uw.14 Many applied papers implicitly assume that

preferences are aligned (e.g., Sørensen 2007, Agarwal 2015, and Dur et al. 2018).

Several special cases of preference alignment are prominent in the literature. For instance,

suppose firms and workers have a joint production output they share in fixed proportions when

matched. That is, for α > 0 and all (i, j) ∈ F ×W ,uw
ij = αu

f
ij > 0. Here, Φ =

(
Φij

)
i∈F ,j∈W

defined as

Φij = u
f
ij for all i and j serves as an ordinal potential. Alternatively, suppose participants on one

side of the market rank participants on the other side of the market identically—firms may all

13To sustain this as an equilibrium, upon any detectable deviation, remaining participants can emulate the firm-

proposing DA operations.
14The notion of ordinal potential is analogous to that of a potential in two-player games in which agents’ match

utilities replace the payoff matrix
(
Uw,U f

)
=
(
(uwij ,u

f
ij )

)
i∈F ,j∈W

, see Monderer and Shapley (1996).
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value potential employees using their college GPA, or students applying to colleges may all use the

U.S. News and World Report rankings to form their preferences. Such preferences are also aligned.15

As we now describe, preference alignment implies uniqueness of the stable matching, in

addition to several properties useful for our analysis.

Define a market (F̃ ,W̃ , Ũ ) as a submarket of (F ,W ,U ) if F̃ ⊆ F , W̃ ⊆ W , and ∀i, j ∈ (F̃ ∪∅)×

(W̃ ∪∅)\{∅,∅} , ũf
ij = u

f
ij and ũw

ij = uw
ij . A direct implication of preference alignment is that, for

any submarket (F̃ ,W̃ , Ũ ), there is a firm i and a worker j that form a top-top match, i.e., worker

j is firm i’s most preferred worker within W̃ and firm i is worker j’s most preferred firm within

F̃ . Indeed, when preferences are aligned, any submarket has an ordinal potential. Suppose Φ̃ is

an ordinal potential of the submarket (F̃ ,W̃ , Ũ ). Consider a pair (i, j) ∈ argmax(i′ ,j ′)∈F̃ ×W̃ Φ̃i′j ′ . It

follows that (i, j) is a top-top match in (F̃ ,W̃ , Ũ ). When every submarket has a top-top match, we

say that preferences satisfy the top-top match property. Preference alignment implies the top-top

match property.16

The top-top match property guarantees uniqueness of the stable matching. Indeed, find

the firm-worker pairs that constitute top-top matches, pairs (i, j) at which the ordinal potential

Φ =
(
Φij

)
is maximized. A firm and worker in such a pair are each other’s favorites in the market

and must be matched in any stable matching. The remaining firms and workers form a submarket

with aligned preferences. Continuing recursively achieves the unique stable matching.

Uniqueness of stable matchings is in line with prior work, even absent the focus on the

particular examples described above. For instance, Roth and Peranson (1999)’s analysis of the

medical residents’ match data finds small cores. As already mentioned, recent theoretical work

(see Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; and Ashlagi, Kanoria, and Leshno,

2017) supports the idea that, in applications that involve a large participant volume, there is a

small number of stable matchings.

Denote by µM the unique stable matching of market M = (F ,W ,U ) with aligned preferences.

Then, the stable blocking pair property holds. That is, for any unstable matching µ, there exists

a stable blocking pair: a blocking pair (i, j) for which µM(i) = j. Indeed, suppose µ , µM . Consider

the recursive process described above to illustrate uniqueness. At some stage, a discrepancy must

15Suppose, without loss of generality, that firms share a single preference ranking over workers. Order the workers

according to this ranking, with worker 1 being the least preferred worker and worker n being the most preferred worker.

Normalize each worker’s match utilities to ũwij , such that for all i, i′ ∈ F , j ∈ W : 0 < ũwij < 1, and ũwij < ũwi′j ⇔ uwij < uwi′j .

Then Φ =
(
Φij

)
i∈F ,j∈W with Φij = j + ũwij for all i, j is an ordinal potential.

16The top-top match property is referred to as α-reducibility in Clark (2006).
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arise between µM and µ. At that stage, a match that occurs under µM does not get formed. The

corresponding worker and firm form a stable blocking pair.

Finally, preference alignment implies that when firms make offers in the order of their prefer-

ences, a rejected offer of a worker cannot trigger a chain of offers and rejections that results in an

offer from a more desirable firm. That is, if a worker j rejects an offer from firm i, the resulting

chain of offers can only result in offers to worker j that he prefers less than the original offer from

firm i. Formally, there is no sequence i1, ..., in ∈ F and j1, ..., jn ∈W such that, by rejecting firm i2,

worker j1 can trigger a chain of offers yielding an offer from a preferred firm i1 :

uw
i1j1

> uw
i2j1

, u
f
i2j1

> u
f
i2j2

, uw
i2j2

> uw
i3j2

, u
f
i3j2

> u
f
i3j3

, ..., uw
injn

> uw
i1jn

, u
f
i1jn

> u
f
i1j1

Such a chain would be equivalent to having a cycle in the payoff matrix
(
Uw,U f

)
. We thus say that

preferences satisfy the no-cycle property. The characterization of potential games by Voorneveld

and Norde (1997) ensures that preference alignment is equivalent to the no-cycle property.

Proposition 1 summarizes the properties of markets with preference alignment.

Proposition 1 (Alignment – Properties).

1. If preferences are aligned, the stable matching is unique. Furthermore, the top-top match and stable

blocking pair properties hold.

2. Preferences are aligned if and only if the no-cycle property holds.

3 Centralized Matching Benchmark

Our decentralized market game shares features with the firm-proposing DA algorithm: firms make

at most one offer at any time and operate in stages; workers can hold on to offers until they are

content with one that they accept. There are important differences since market participants’

strategies are unrestricted. Firms need not go in order of their preference ranking and can make

repeat offers; workers can hold multiple offers, and accept or reject any of them. Furthermore,

dynamic interactions allow for non-trivial conditioning on and learning from observed histories.

Nonetheless, the centralized clearinghouse utilizing the firm-proposing DA is a natural benchmark

for what follows.

To ease analogies between centralized and decentralized markets, we assume that agents in a

centralized market report match utilities that are then converted into ordinal preferences. That is,
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each agent submits a vector of positive match utilities.17

Formally, for each type of agent α ∈ {f ,w}, and each agent l, let P (uα
l ) be the strict ordinal

preferences associated with l’s reported match utilities, in which ties are broken by favoring

lower-indexed match partners and by favoring being matched.18 Specifically, consider firm i, then

u
f
ij > u

f
ik implies jP (uf

i )k, for j,k , ∅, uf
ij = u

f
ik and j < k implies jP (uf

i )k, and for j , ∅, uf
ij ≥ u

f
i∅

implies jP (uf
i )i. Any worker’s preferences are constructed analogously.

We define a deferred acceptance (DA) mechanism as a mechanism in which all agents report

their match utilities simultaneously, after receiving private information. The mechanism then

computes the corresponding ordinal preferences as above and outputs the stable matching induced

by the firm-proposing DA algorithm. The payoffs of firms and workers are the match utilities

corresponding to the implemented matching.

It follows directly from incentive compatibility attributes of the DA algorithm that the DA

mechanism allows for a Bayesian Nash equilibrium in weakly undominated strategies in which the

resulting matching corresponds to the unique stable matching in each market of the economy (see

Roth and Sotomayor, 1992). That is,

Lemma 1 (Centralized Matching).

1. For any complete-information economy, all Nash equilibria in weakly undominated strategies of

the game associated with the DA mechanism yield the unique stable matching.

2. For any economy, there exists a Bayesian Nash equilibrium in weakly undominated strategies of the

game associated with the DA mechanism that yields the unique stable matching in each market.

Although implementing the stable matching is possible through a centralized clearinghouse

whenever there is a unique stable matching (even absent alignment), the stable matching is not

necessarily the unique equilibrium outcome with incomplete information (Fernandez et al. 2022).

As we show, equilibrium multiplicity is even more more severe in decentralized markets, where

further refinements are needed to guarantee uniqueness, even when information is complete.

17The restriction to positive numbers is made only for presentation simplicity. It suffices that the set of available

reports contains as many elements as the maximal number of different match utility vectors possible in the economy.
18Although agents are never indifferent in their realized match utilities, they may still report indifferences.
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4 Decentralized Complete Information Economies

We start by analyzing our decentralized market game in economies in which all participants are

informed of the details of the market, when the support of G is a singleton. In this case, all

agents can compute the stable matching. The stable matching can then be achieved in one period.

Intuitively, consider the following strategy profile. Each firm makes an offer to her stable match

partner under the unique stable matching µM and exits the market if unmatched under µM . Each

worker accepts his best available offer in period 1, and exits upon receiving no offers. This profile

constitutes an equilibrium in weakly undominated strategies that yields the matching µM .

Ruling out weakly dominated strategies is not sufficient to guarantee uniqueness, however.

First, there may be multiple equilibria generating µM . Indeed, for sufficiently high discount factors,

an alternative way of implementing µM through equilibrium involves emulating the DA algorithm.

Since this profile may entail several periods of market activity, it can generate different equilibrium

payoffs for non-trivial discount factors.

Furthermore, there may be outcomes generated by equilibria in weakly undominated strategies

that are unstable, as the following example illustrates.

Example 1 (Multiplicity with Complete Information). Assume an economy with four firms

{f1, f2, f3, f4} and four workers {w1,w2,w3,w4}. A firm and worker who match receive the same

match payoffs, defined by the following matrix:

U f = Uw =

w1 w2 w3 w4

f1 1 2 7 4

f2 5 6 3 8

f3 9 10 11 12

f4 13 14 15 16

Bold entries correspond to the unique stable matching: µM(fi) = wi for all i. For sufficiently

high δ < 1, we show there is an equilibrium in weakly undominated strategies that implements

the matching µ: µ(f1) = w2,µ(f2) = w1,µ(f3) = w3, and µ(f4) = w4, corresponding to the underlined

entries in the matrix.

Consider the following profile of strategies yielding the matching µ. In period 1, firms f2 and

f4 make an offer to workers w1 = µ(f2) and w4 = µ(f4), respectively. w1 and w4 accept these offers
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immediately, while workers w2 and w3 do not accept any offer, unless from their most preferred

unmatched firm. Consequently, f2 and w1, as well as f4 and w4 match, as described in the left table

below. In period 2, only two firms and two workers remain active in the market and the unique

stable outcome in that market is implemented: firms f1 and f3 make an offer to w2 = µ(f1) and

w3 = µ(f3), respectively, who accept their offers; see the right table below.

t=1

w1 w2 w3 w4

f1 1 2 7 4

f2 5 6 3 8

f3 9 10 11 12

f4 13 14 15 16

t=2

w2 w3

f1 2 7

f3 10 11

With detectable deviations, if workers w1 and w4 do not receive an offer from any firm in

period 1, they exit; otherwise, all workers reject any offer they receive, unless it is from their

most-preferred firm, and stay in the market until period 2. In period 2, if firms f2 and f4 have not

matched with µ(f2) and µ(f4), respectively, f3 makes an offer to w2 instead of w3 = µ(f3) if possible.

If w2 has already exited the market, f3 makes an offer to her most preferred unmatched worker,

and exits if all workers have left the market. Furthermore, in period 2, any worker who does not

receive offers exits immediately, and otherwise accepts his best offer. Any firm rejected in period 1

exits the market at the start of period 2.

This off-path behavior guarantees that deviations are not profitable. For instance, suppose f2

makes an offer to, say, w2, who is her stable partner and generates a higher payoff than she receives

in the candidate equilibrium. This is a detectable deviation that is followed by f3 making an offer

to w2. In equilibrium, w2 foresees this offer and waits to match with f3.

Indeed, the above profile constitutes an equilibrium in weakly undominated strategies that

implements an unstable matching. ∥

The crux of the multiplicity in the example above is the limited restraint that elimination of

weakly dominated strategies provides on off-equilibrium behavior. Specifically, f3 can “punish”

f2 for not making an offer to w1 = µ(f2) in period 1. Imposing subgame perfection would have

little impact in our decentralized market game since individuals do not observe others’ offers and

reactions: the set of proper subgames is limited after period 1. Nonetheless, iterated elimination
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of weakly dominated strategies rules out strategies such as those driving Example 1 and, in fact,

guarantees that the stable matching is the unique equilibrium outcome.

Proposition 2 (Complete Information). For any complete-information decentralized market game, there

exists a Nash equilibrium in weakly undominated strategies that yields the stable matching. Furthermore,

the stable matching is the unique Nash equilibrium outcome surviving iterated elimination of weakly

dominated strategies.

When using strategies that survive iterated elimination of weakly dominated strategies, firms

and workers that form top-top matches must be matched in period 1. Consider the top-top matches

in the remaining submarket. Since the corresponding workers realize that top-top matches in the

original market are formed in period 1, iterated elimination of weakly dominated strategies ensures

that they accept their top-top matches in the remaining submarket. Therefore, the corresponding

firms make those offers and are matched in period 1. Continuing recursively, iterated elimination

of weakly dominated strategies guarantees that the unique stable matching of the market is

implemented in one period.19

The above construction hinges on all agents being informed of the realized market, and hence

able to compute the stable matching. Proposition 2 shows that a robust non-cooperative outcome

coincides with the unique stable matching in that case. In what follows, we provide conditions that

yield similar conclusions even when information is incomplete and time frictions are present.

5 Decentralized Incomplete Information Economies

In economies with incomplete information, for participants to reach a stable outcome, sufficient

information has to be transmitted to ensure that (i) firms make offers to workers who are their

stable match partners in the realized market, and (ii) workers only accept offers from firms that are

their stable match partners in that market.

There are three channels through which information flows in the decentralized market we

study. First, information is publicly transmitted when agents exit the market or form a match.

Second, information is privately transmitted when workers receive offers from firms and workers

respond to those offers (unless offers are accepted, in which case that information becomes public).

The third component of information is time, which all market participants track.

19Preference alignment is important for Proposition 2. Without it, equilibria surviving iterated elimination of weakly

dominated strategies may generate multiple outcomes, even with complete information.
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5.1 The No-Discounting Case

Suppose there is no discounting: δ = 1. One way by which information can be transmitted within

the market is through agents emulating the DA algorithm. That is, firms extend offers to workers

in order of their match utilities, and exit the market only when all workers have rejected them.

Workers hold their best available offer, and accept an offer from any firm that generates the highest

match utility among the set of available firms. These prescriptions are adhered to by all agents,

even after any detectable deviation and are independent of the initial distribution G. We call these

strategies DA strategies.

Proposition 3 (No Discounting). Suppose δ = 1. The DA strategy profile constitutes a Bayesian Nash

equilibrium in weakly undominated strategies and yields the stable matching. Furthermore, the stable

matching in each of the economy’s markets is the unique Bayesian Nash equilibrium outcome surviving

iterated elimination of weakly dominated strategies.

Intuitively, when agents use DA strategies, workers ultimately hold offers from their stable

match partners. The top-top match property implies that, in every period, either a match is formed,

or only agents on one side remain unmatched. Thus, the game terminates in finite time. When

δ = 1, the timing of matches is inconsequential to market participants and unilateral deviations

cannot generate a preferable match. Certainly, the market could stall, with no agent acting, for

long but finite periods. Furthermore, as Example 1 already illustrated, even uniqueness of the

resulting matchings is not guaranteed without further refinements. Nonetheless, as with complete

information, alignment guarantees a unique matching outcome when selecting Bayesian Nash

equilibria surviving iterated elimination of weakly dominated strategies.

5.2 Instability in Economies with Discounting

When δ < 1, DA strategies are in general no longer incentive compatible. As an example, consider a

complete information economy with two firms and two workers, for which u
f
ij = uw

ij for all i, j and

match utilities are given as follows:20

U f = Uw =
4 1

3 2

20For presentation simplicity, we drop the labels of firms and workers when describing match utilities henceforth. We

continue using the convention that rows correspond to firms and columns correspond to workers.
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The unique stable matching is highlighted in bold. Firm 2 knows that worker 2 is her unique

stable match partner and, furthermore, that worker 2 would accept an offer from firm 2 immediately,

as firm 2 is worker 2’s first choice. Hence, it cannot be an equilibrium for firm 2 to first make an

offer to worker 1 and delay her match. Firms may therefore be tempted not to make all offers in

order of their preferences, but to instead concentrate on offers to plausible stable match partners.

Similarly, workers may accept an offer from their highest plausible stable match partner, even if

more preferred firms are still unmatched.

As it turns out, timing considerations are an inherent obstacle to stability in incomplete-

information economies with frictions. The incentives to speed up matches and affect inferences

may be so severe that no equilibrium guarantees the stable outcome in all markets in the economy’s

support, as the following example illustrates.

Example 2 (Instability through Belief Manipulation). Consider an economy with three firms

{f1, f2, f3} and three workers {w1,w2,w3}. Each of 4 markets occurs with positive probability. Match

utilities in market k = 1, ...,4 are given by U
f
k = Uw

k = Uk , with

U1 =

5 4 3

7 10 2

6 8 9

U2 =

5 9 4

7 10 3

6 8 2

U3 =

5 4 3

2 6 9

1 8 7

U4 =

5 4 3

9 7 10

6 8 2

Suppose that there exists δ∗ such that, for any δ > δ∗, there exists an equilibrium in weakly

undominated strategies that always implements the stable matching, highlighted in bold.

The specification of U3 guarantees that, in any such equilibrium, f1 with match utilities (5,4,3)

makes an offer to w1 with probability 1.21 Furthermore, the specification of U4 guarantees that, for

sufficiently high δ, in any such equilibrium, firm f3 with match utilities (6,8,2) always makes an

offer to worker w2 in period 1.22 From here on, we concentrate on the markets corresponding to U1

and U2.

When U2 prevails, any equilibrium yielding the stable outcome in weakly undominated strate-

gies must have f1 making an offer to w3 in period 1. Indeed, f1 can foresee matching with w3, who

accepts an offer from her immediately; any delay would be suboptimal. Therefore, w1 receives an

offer from f1 only when f1 is his stable match partner: when U2 prevails, f3 makes an offer to w2 in

21When U3 prevails, w1 accepts an offer from f1 immediately. Discounting implies that making this offer is optimal.
22Indeed, such an offer is immediately accepted when U4 prevails. Furthermore, if f3 makes an offer to w1 with some

probability p > 0 in period 1, then when U4 prevails, since w1 can infer his stable match partner is f1 generating a match

utility of 5, w1 accepts the offer from f3, yielding an unstable outcome. For sufficiently high δ, that cannot be optimal.
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period 1 and to w1 only in period 2. Thus, in any such equilibrium, w1 accepts an offer from f1 in

period 1 if it is the only offer he receives. But then, f1 can profitably deviate to making an offer to

w1 even when U2 prevails, in contradiction.

In this example, w1 cannot distinguish between U1 and U2. Hence, his set of plausible stable

match partners at t = 1 is {f1, f3} when either U1 or U2 govern match utilities. At the heart of the

difficulty in achieving equilibrium stability is the fact that w1 cannot be certain whether he will

receive his best offer in period 1 or in period 2. He tries to infer that from offers received in period

1. The example illustrates the potential for belief manipulation when information regarding the

set of potential stable match partners is transmitted by the mere timing of an offer (or its target’s

response). This form of information transmission needs to be restricted to allow for equilibria that

yield the stable matching in every market. As it turns out, the addition of markets can help prevent

this problem by limiting learning through the timing of events per se. For instance, suppose we

add another market to the economy, described by match utilities U f
5 = Uw

5 = U5 as follows:

U5 =

5 4 3

7 10 2

6 11 5

with an arbitrary, but strictly positive, probability of each of the 5 markets. In this augmented

economy, for sufficiently high discount factors, f2 first makes an offer to w2 since she cannot tell

whether U1 or U5 govern match utilities. Certainly, f3 makes an offer to w2 as well since she knows

they form a top-top match. It follows that, when U5 prevails, w1 receives only one offer from f1 at

t = 1, which he should no longer accept. This breaks the incentive of f1 to deviate when U2 prevails,

as in the original 4-market economy. ∥

5.3 Rich Economies and Stable Equilibrium Outcomes

Example 2 suggests that obstacles to stability emerge when learning occurs via the timing of events.

When all participants are informed of the realized market, timing bears no information as there is

no learning to be had; stable outcomes can then be implemented in equilibrium. As Example 2

further illustrates, the addition of certain markets limits the scope for manipulation as well. We

now show that, indeed, when there are many possible markets in the economy, learning through

the timing of events is restrained and stability can be achieved in equilibrium.

We introduce rich economies, where the support of G contains markets representing all possible
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constellations of aligned preferences. In rich economies, an agent’s utility type provides limited

information regarding other agents’ utility types. Furthermore, at the outset of the market game,

since all agents are acceptable, all matchings that pair min{F,W } of firms and workers, are conceiv-

ably stable regardless of an agent’s private information. As we show, in such economies, learning

from the timing of events is restricted and stable outcomes can be implemented in equilibrium.

Formally, a rich economy is an economy in which the distribution G over markets has full

support over all possible aligned preferences represented with payoffs from Π ⊆ R>0 with |Π| ≥

max{F,W }+ 1.23

Richness ensures that every possible preference constellation associated with an aligned market

has a positive probability. In particular, it drastically limits what agents can infer about others’

preferences from their own realized match utilities. We stress that richness imposes no restrictions

on the likelihood of any market in the economy, which can be arbitrarily small.

Proposition 4 (Stable Implementation in Decentralized Economies). Suppose the economy is rich.

In the decentralized market game with sufficiently high δ, there exists a Bayesian Nash equilibrium in

weakly undominated strategies that implements the unique stable matching in each supported market.

We describe the intuition for the proof of Proposition 4 in Subsection 5.4 below. While we

present Proposition 4 for rich economies, in the Appendix, we provide more general conditions

on the support of the distribution G that allow for the implementation of stable outcomes. The

conditions formalize the restrictions that, under a desirable class of strategy profiles that culminate

in stable matchings, the timing of events does not reveal information in and of itself. For instance,

full support on all aligned markets in which preferences are “assortative” on one side—say, where

all firms rank workers in the same way—also ensures implementation of stable outcomes.

Proposition 4 suggests that stability may be reached even with incomplete information and

time frictions when economies are rich. It does not, however, imply uniqueness of these outcomes.

In fact, uniqueness in such economies is much harder to guarantee and is more heavily tied with

the environments’ details, even when market participants are arbitrarily patient. Indeed, even

when the economy is rich, suppose one market is far more likely than others, which all occur with

equal (small) probability. Assume further that payoffs are such that, in any market, all agents

23The requirement that |Π| ≥max{F,W }+ 1 is needed since we assume agents are never indifferent. Indeed, suppose

max{F,W } = F. For each worker, we need to specify match utilities generated by all F firms, as well as the match utility

from remaining unmatched, necessitating F + 1 values. The assumption that payoffs are strictly positive is without loss

of generality given our presumption that all agents are acceptable.
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strictly prefer to match with any agent for sure rather than take a fair lottery between their most

favored partner and staying unmatched. Consider the following strategy profile. Firms make an

offer to their stable match partner in the most likely market. Workers accept their best offer that is

not inferior to their stable match partner in that market, and exit otherwise. Similarly, any firm

that is not accepted at t = 1 exits immediately. When the probability of the most likely market is

sufficiently high, and the economy is large enough, this profile constitutes an equilibrium in weakly

undominated strategies.24 In fact, the profile survives iterated elimination of weakly dominated

strategies. It allows for the stable matching to be implemented in the most likely market, but

not in others. Thus, the uniqueness apparent under mild refinements from Proposition 2 when

information is complete, does not carry over to environments with incomplete information.

Incomplete Information on One Side In some environments, one side of the market may have

more information about agents’ realized preferences. Firms might have longer histories of interac-

tions than workers and, therefore, a better grasp of competitors’ as well as potential employees’

preferences. Alternatively, workers might be more familiar with one another and utilize social

networks to learn about firms’ qualities and hiring practices. Proposition 4 provides a positive

result that depends only on the support of market participants’ beliefs. In particular, agents on one

side of the markets can have more “concentrated” beliefs than agents on the other side. A polar

case, not covered by the proposition, corresponds to settings in which one side of the economy is

completely informed of the underlying state.

We provide the full analysis pertaining to economies in which either the firms or the workers are

completely informed of the realized market in the Online Appendix. We show that, in both types

of environments, there exists a Bayesian Nash equilibrium in weakly undominated strategies that

implements the stable matching in each supported market. When firms are completely informed of

the realized markets, iterated elimination of weakly dominated strategies guarantees uniqueness of

Bayesian Nash equilibrium outcomes. This is not the case when workers are completely informed:

multiplicity is more challenging to escape.25

24A firm observing private information inconsistent with the most likely market may be tempted to make an offer

to a different worker than prescribed. However, in a large enough market, such an offer would at best generate an

approximately fair lottery between the targeted worker and staying unmatched.
25The distinction between these two cases is a consequence of the different roles firms and workers take in the market:

firms extending offers and workers responding.
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5.4 Implementing Stable Matchings—Proof Intuition

Before approaching the proof of Proposition 4, we analyze some minimal conditions strategies have

to satisfy in a centralized firm-proposing DA mechanism in order to guarantee a stable outcome.

This allows us to ignore incentive compatibility hurdles that are due to interim learning. In the

proof of Proposition 4, we illustrate how richness ensures that at least some of these strategy

profiles, translated into our dynamic game, are incentive compatible for all participants.

In the centralized setting (see Section 3), if there is any hope of achieving the complete-

information stable matching for any market realization, agents must declare plausible stable match

partners acceptable. Furthermore, consider the firms, for example. Since the firm-proposing DA

achieves the firm-optimal stable matching for submitted preferences, permuting the ranking of

agents that are less preferred than a firm’s stable match partner would not change the resulting

matching. However, it is crucial that agents ranked above any plausible stable match partner are,

in fact, preferred to that stable match partner. These restrictions suggest a class of strategies.

Formally, for any l ∈ F ∪W of type α ∈ {f ,w}, let Sα
l

(
uα
l (·)

)
denote agent l’s plausible stable

match partners at the outset, using only the information in l’s own match utilities.26 When

agent l submits utilities v corresponding to preferences P (v), let A(v) = {k : kP (v)∅} ∪ {∅}, where

A(v) ⊆W∪{∅} if l ∈ F and A(v) ⊆ F ∪{∅} if l ∈W . That is, A(v) is the union of l’s acceptable match

partners given P (v) and the option of staying unmatched, namely the “weakly acceptable” partners

of l under P (v).

Definition (Reduced DA Strategies). In an economy E, suppose agent l ∈ F ∪W of type α ∈ {f ,w}

submits utilities v corresponding to preferences P (v). Then v is a reduced DA strategy if:

1. Sα
l

(
uα
l (·)

)
⊆ A(v).

2. For each k,m ∈ Sα
l

(
uα
l (·)

)
, kP (v)m⇔ uα

l (k) > uα
l (m).

3. For each k ∈ A(v)\Sα
l

(
uα
l (·)

)
and each m ∈ Sα

l

(
uα
l (·)

)
, kP (v)m⇒ uα

l (k) > uα
l (m).

The first restriction requires that any plausible stable match partner—using the agent’s private

information on match utilities—is declared acceptable. The second restriction states that plausible

stable match partners are ranked truthfully. The third restriction is perhaps more subtle. To

glean intuition, suppose firm k is a “weakly acceptable” match partner for a worker l, but is not a

26If α = f (and l ∈ F ), then uαl (k) = u
f
lk ; otherwise, uαl (k) = uwkl .
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plausible stable match partner. Suppose further that worker l ranks firm k above a plausible stable

match partner, firm m, despite preferring m to k. Since m is a plausible stable match partner, in

some plausible market, agent l receives an offer from m. Under the declared preferences, such

an offer may end up being rejected in favor of an offer from k, which is less preferred and not

necessarily part of a stable matching. The third restriction rules out such cases, with similar

intuition holding for firms. Importantly, all three restrictions depend only on the support of stable

matchings, and not on their precise likelihood of occurrence.

We now show the sense by which reduced DA strategies place minimal requirements for

securing stability in centralized markets. Since we consider economies with a finite number of

potential markets, strategy profiles that generate the stable matching in each market need to be

robust to the underlying distribution over these markets. We say an agent l uses a rule if, for any

economy E containing agent l, the agent uses a strategy that depends only on the set of market

participants, the agent’s realized match utilities, and the set of potential stable match partners.

Agent l uses a reduced DA rule if the utilized strategy is a reduced DA strategy.27

Lemma 2 (Stable Implementation in Centralized Economies).

1. If all agents report preferences consistent with a reduced DA rule then, for any economy and any

realized market, the outcome produced by the DA mechanism is the unique stable matching in that

market.

2. In any economy, all agents using reduced DA strategies constitutes a Bayesian Nash equilibrium of

the game associated with the DA mechanism.

3. Suppose an agent l ∈ F ∪W uses a rule that is not a reduced DA rule. Then, there exists an economy

for which the DA mechanism produces an outcome that is not stable in some market realization.

Part 1 of Lemma 2 illustrates the effectiveness of reduced DA rules in generating stable outcomes.

Part 2 of the lemma is a strengthening of the second part of Lemma 1. Together with Part 1, it

highlights, again, the fact that in centralized matching markets, implementation of stable outcomes

27Reduced DA rules impose restrictions on the details of the economy agents can utilize in their strategies. In particular,

suppose E1 and E2 are two economies with the same set of firms and workers, both containing a market M = (U,F ,W )

such that, for some agent l ∈ F ∪W of type α ∈ {f ,w}, the set of a priori stable matches Sαl (uαl (·)) is identical when M is

realized in either economy. Then, if agent l uses a reduced DA rule, he or she must use the same reduced DA strategy in

both E1 and E2, whenever observing uαl (·).
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can be done through equilibrium, even with incomplete information. Part 3 of the lemma highlights

the necessity of the conditions imposed by reduced DA strategies for implementing stable outcomes

in any economy.

To prove Proposition 4, we translate reduced DA strategies to dynamic prescriptions. For firms,

the translation is straightforward. Whenever firm i submits a reduced DA strategy v, it acts as

follows in the decentralized market game. In each period in which firm i is not matched and does

not have an offer held by a worker, firm i makes an offer to her most preferred unmatched worker

who has not rejected firm i yet according to v (where ties are broken according to the same rules

determining P (v) in the centralized setting, depending on the index of the match partner and in

favor of matching). When firm i gets rejected by the last acceptable worker (according to v), firm i

exits the market.

For workers, there are two aspects of strategies that are important. The first is when to start

accepting offers, the second is which offer to accept. The use of weakly undominated strategies

implies that when a worker accepts an offer, it must be his favorite available. Thus, each worker

has to rank all firms in the “right” order. However, in a decentralized market, a worker may accept

an offer even if it is not from his most preferred unmatched firm. The translation of a reduced DA

strategy v is as follows. At each point in time, a worker accepts the best available offer that he likes

at least as much as his most preferred unmatched plausible stable match partner, ranked according

to v: the “threshold firm.” So, if the reduced DA strategy v only ranks potential stable match

partners, the worker accepts an offer as soon as he receives an offer he prefers at least as much as

the most preferred unmatched potential stable match partner. In order to mimic the operation

of reduced DA strategies within the firm-proposing DA mechanism, we require workers to hold

their best available offer as long as the offer is from a firm at least as desirable as the lowest-ranked

potential stable match, and reject all other offers.

When moving from a centralized to a decentralized market, agents may also condition their

actions on their histories. Specifically, in decentralized markets, given the strategy profile of all

other agents, each firm or worker can recalculate and possibly refine their set of plausible stable

match partners over time. Off path, when an agent observes an event that should occur with

probability zero—say, all the agent’s stable match partners exit—we assume the agent redefines the

set of plausible stable partners to include all remaining agents on the other side of the market.28

28As we show in the appendix, this condition is sufficient for decentralized reduced DA strategies to survive iterated

elimination of weakly dominated strategies.
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Decentralized reduced DA strategies are strategies that can be derived as above when allowing

agents to submit a new reduced DA strategy every period. This allows agents to take information

they accumulate into account. In particular, each firm makes successive offers to workers that

are at least as good as her most preferred unmatched plausible stable partner—assessed via each

period’s posterior—who has not rejected her yet. On the worker side, decentralization has two

implications. First, a worker immediately accepts an offer from any firm ranked as high as his most

preferred unmatched firm. Second, in analogy to the operation of the DA algorithm, the worker

rejects all offers that are not as good as the least preferred plausible stable partner, and holds at

most one offer.

In the proof of Proposition 4, we show that beliefs cannot be beneficially manipulated through

deviations from decentralized reduced DA strategy profiles when δ is high. The key intuition is

the following. Through deviating, an agent attempts to manipulate beliefs at the possible cost of

relinquishing the “true” stable match partner. For example, a firm makes an offer to a lower-ranked

worker or a worker rejects his best-held offer. Since all markets have full support, with positive

probability, such manipulations can cause an agent to miss out on the best match partner and

experience a strict utility loss. Furthermore, the no-cycle property of aligned markets ensures that

rejecting a good offer cannot generate a superior offer. In principle, deviations may expedite the

time at which an agent is matched. However, for sufficiently high δ, the strictly positive loss from

losing the most-preferred match overwhelms the gain due to timing.

6 Duration of Decentralized Markets

With richness, Proposition 4 guarantees the implementation of stable matchings even in the

presence of information and time frictions. One potential concern, however, pertains to the time it

takes markets to stabilize. In practice, prolonged durations of instability may entail substantial

efficiency losses: the use of unemployment benefits, limited learning-by-doing of the labor force,

and so on.

The longest any realized market might take to reach a stable outcome is given by min{F,W }.

This is due to our alignment assumption. In each period, at least one top-top match is present.

Therefore, at least one firm and one worker exit each period until one side of the market is

exhausted. Nonetheless, in principle, stable outcomes can be achieved more rapidly for “most”

conceivable markets. In order to get a sense of these durations of decentralized interactions, we
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(a) Decentralized market game dynamics

(b) Random paths to stability dynamics

Figure 1: Duration of activity across market sizes

consider markets in which firms’ and workers’ preferences are determined uniformly at random

from all possible aligned preference profiles. We run 15,000 simulations for each market size—the

number of firms and the (equal) number of workers. We assume agents follow decentralized

reduced deferred acceptance strategies.29 Figure 1a illustrates the average number of periods

markets take to reach the stable outcome.30

In our simulated markets, the number of periods required to reach stability is far smaller than

29It is straightforward to see that, in rich economies, all decentralized reduced DA strategy profiles generate the same

duration of interactions till the market game ends. In fact, the duration of interactions in each market corresponds to

the number of periods the firm-proposing DA algorithm takes in each realized market.
30The simulation code can be found at https://github.com/aaandrew152/DecentralizedMatchingSims.
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the upper bound. For instance, for a market with 200 participants (100 firms and 100 workers),

the average time to reach stability through equilibrium dynamics is approximately 7 periods.

While there is little work on stabilization dynamics, Roth and Vande Vate (1990) have offered a

different approach than ours. They suggest naïve dynamics, whereby at each period, one blocking

pair is selected at random and implemented, possibly severing the current pairings of the agents in

that blocking pair. The underlying idea is that agents see the current matching, know everyone’s

preferences—that is, complete information is implicitly assumed—and can therefore infer a viable

(myopic) improvement. In our setting, only firms make offers. They do not observe tentative

matches, and cannot always infer whether a prospective partner will accept their offer. We

therefore consider a modification of Roth and Vande Vate (1990), where only firms make offers

to arbitrary workers they prefer to their current match, chosen uniformly at random. Some such

offers are then rejected when not directed at blocking partners. In the Roth and Vande Vate (1990)

procedure, only one blocking pair is formed each period. This sequencing would mechanically

increase the duration of market interactions relative to the sequencing in our model, where multiple

firms can make simultaneous offers each period. In order to eliminate this mechanical effect, in

our simulations of the naïve dynamics, we introduce another modification by allowing all firms

to make offers each period. Specifically, we use 15,000 simulations for each market size for the

market game dynamics and 1,000 simulations for each market size for the incomplete information

dynamics, allowing multiple firms to make offers to a random partner they prefer in each period.

Figure 1b describes the simulation-based durations corresponding to this variant of the Roth and

Vande Vate (1990) procedure.

As can be seen, these myopic best-response dynamics lead to substantially longer durations

of market interactions. With 200 market participants, the average time to reach stability is

approximately 175 periods. In the Online Appendix, we provide analogous results for the original

Roth and Vande Vate (1990) process, where one random agent—firm or worker—selects a blocking

pair in each period. The resulting durations are substantially longer. In addition, we show that

restricting agents to make offers to their most desirable blocking pair as in Ackermann et al. (2011)

and Rudov (2022), decreases expected market durations, but still generates market interactions

that take far longer than those emerging through equilibrium play.

The simulations suggest three messages. First, strategic stabilization can be quite rapid, even

when agents require a lot of information to infer the market-wide stable matching. Second, strategic

stabilization is far quicker than naïve stabilization, which entails long durations and leads to
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participants being mismatched for long periods; see also Rudov (2022). Third, technically, models

assuming naïve sequential pairings require modification to allow for incomplete information,

balancing strategic and statistical sophistication.

7 Conclusions

We analyze a decentralized market game in which firms make offers that workers react to, allowing

for incomplete information and time frictions. We identify when there exists an equilibrium in

weakly undominated strategies that yields the complete-information stable matching. This is

the case with complete information, when the economy consists of a single market. It is also the

case when there are no time frictions. With both uncertainty and time frictions, the economy

needs to be sufficiently rich and market participants have to be sufficiently patient for there

to be an equilibrium that yields stability. When both conditions hold, our analysis provides a

non-cooperative foundation for the cooperative stability notion.

Taken together, our results indicate that when studying markets, it is crucial to understand

characteristics that go beyond the identification of market participants and their preferences. The

information available to participants and the plausibility of frictions both play an important role in

predicting outcomes. This, in turn, implies that channels by which information can be transmitted

among market participants can be a critical element of market design.

8 Appendix – Proofs

The following notation will be useful for several of our proofs. Suppose preferences are aligned

with ordinal potential Φ =
(
Φij

)
. Let

M(1) = {(i, j) ∈ F ×W|(i, j) ∈ arg max
(i,j)∈F ×W

Φij},

F (1)
M = {j |∃i ∈W s.t. (i, j) ∈M(1)},

W (1)
M = {i|∃j ∈ F s.t. (i, j) ∈M(1)}.

And denote

F (2)= F \F (1)
M , W (2)=W \W (1)

M .

The submarket corresponding to F (2) and W (2) has aligned preferences and Φ restricted to

those firms and workers serves as an ordinal potential. We can replicate the construction above
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recursively and define, for any k,

M(k) = {(i, j) ∈ F (k) ×W (k)|(i, j) ∈ arg max
(i,j)∈F (k)×W (k)

Φij},

F (k)
M = {j : ∃i ∈W s.t. (i, j) ∈M(k)},

W (k)
M = {i : ∃j ∈ F s.t. (i, j) ∈M(k)},

F (k+1) = F (k) \ F (k)
M , andW (k+1)=W (k) \W (k)

M .

The unique stable matching µM can be identified using this recursion: for each k, whenever

(i, j) ∈M(k), µM(i) = j. Any unassigned agents are unmatched under µM .

Proof of Proposition 1

1. Suppose preferences are aligned with ordinal potential Φ =
(
Φij

)
. For any submarket

(F̃ ,W̃ , Ũ ), any pair (i, j) ∈ argmax(i,j)∈F̃ ×W̃ Φij constitutes a top-top match, and the top-top match

property holds. In addition, suppose µ is a matching different than the unique stable matching

µM . Reconstruct µM by pairing successive top-top matches. Consider the smallest k such that

there is a pair (i, j) that is matched under µM but not under µ. Then, (i, j) blocks µ and (i, j) ∈M(k)

form a top-top match in the submarket corresponding to F (k),W (k). As this is the first discrepancy

between µM and µ in the iterative process, the match partners µ(i) of i and µ(j) of j are part of the

remaining set of firms and workers and hence inferior to µM(i) = j and µM(j) = i, respectively. That

is, the stable blocking property holds.

2. A rejection cycle is equivalent to the existence of a weak improvement cycle in the two-player

game with payoff matrix ((uw
ij ,u

f
ij ))i,j . Our claim then follows from Voorneveld and Norde (1997).■

Proof of Proposition 2

When δ = 1, the proof follows from Proposition 3. With δ < 1, consider any Nash equilibrium

that survives iterated elimination of weakly dominated strategies. At any stage, a worker receiving

an offer from the most preferred available firm accepts it immediately. In period 1, any firm i ∈ F (1)
M

must then make an offer to µM(i), who accepts immediately. Thus, any worker in W (2)
M accepts

an offer from firms in F (2)
M immediately. It follows that each firm i ∈ F (2)

M must make an offer to

µM(i) in period 1 as well. Continuing recursively, we get that all firms matched under µM must

make offers to their partners under µM in period 1, and those get accepted immediately. Firms

or workers that are not matched under µM must then exit the market in period 1 when δ < 1. In

particular, any profile surviving iterated elimination of weakly dominated strategies generates the

matches prescribed by µM in period 1. ■
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Proof of Proposition 3

Since preferences are aligned and everyone is acceptable to everyone, in every period with

unmatched agents, there is either a top-top match that is formed, or only agents on one side of the

market are unmatched. Thus, DA strategies generate a market matching in finite time. From the

convergence of the Gale-Shapley algorithm to a stable matching, it follows that DA strategies yield

the stable matching. We now show that DA strategies constitute a Bayesian Nash equilibrium.

Workers can deviate in two ways. First, a worker j can reject an offer from firm i instead of

holding it. From the no-cycle property, such a rejection cannot launch a chain generating a superior

offer for j. In addition, if i is a plausible stable match partner, such a rejection may lead j to forgo

his best offer in some market. Such a deviation could therefore be profitable only if it makes the

worker sufficiently better off in some market realization in which firm i is not his stable match

partner. However, in any market, it cannot be that i is strictly better than j’s stable match partner,

as then j should never receive an offer from i (indeed, by the construction of DA strategies, firm i

and worker j would form a blocking pair to the stable matching). The second potential deviation of

a worker is the acceptance of an offer that is not from his most preferred unmatched firm. However,

workers are made better off over time, as they receive new offers. Therefore, accepting an offer

early cannot be a profitable deviation when δ = 1.

Consider the firms. Suppose firm i deviates and makes an offer to worker j who is not the most

preferred among workers who have not rejected i yet. Since δ = 1, if there is a market in which i

strictly benefits from this deviation, it must be that i ends up matching with a strictly preferable

worker. Suppose the resulting market matching (assuming all other agents follow DA strategies) is

µ. The matching µ has the property that the set of firms F′, who prefer this match to the stable

match µM , is non-empty, as it contains at least firm i. By the Blocking Lemma, there exists a

blocking pair (i′ , j ′) with i′ not in F′ such that j ′ is matched in µ to a firm in F′ (Roth and Sotomayor,

1992). Since i′ and j ′ follow DA strategies, i′ must have made an offer to j ′, a contradiction.

We now show uniqueness of Bayesian Nash equilibrium matching outcomes under iterated

elimination of weakly dominated strategies. Whenever there is at least one remaining firm, a

worker’s strategy to exit in period t is weakly dominated by a strategy under which the worker stays

in period t and exits in period t+1 upon not receiving an offer. In particular, in any equilibrium

surviving iterated elimination of weakly dominated strategies, workers cannot exit in any market

unless there are no remaining firms. Similarly, if a worker receives an offer from her top remaining

firm, she cannot reject that offer or exit: a strategy incorporating either action would be weakly
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dominated by a strategy that dictates accepting that offer instead. This implies that if firm i

proposes to a worker who considers i to be his top remaining firm, i must eventually be accepted.

Last, a worker cannot accept an offer from a firm that is not from their top remaining firm: accepting

such an offer would be weakly dominated by holding the offer for one period, and allowing for a

better offer in the next period.

Our discussion suggests that in any equilibrium surviving iterated elimination of weakly

dominated strategies, workers never exit prior to the market concluding, cannot accept non-top

offers, and must eventually accept a top offer. It follows that workers either remain in the market

indefinitely, or accept their top remaining offers. Since realized matches are a result of workers

accepting their top remaining offers, alignment implies that those matches must coincide with

the unique stable matching. Furthermore, in any equilibrium, workers cannot remain unmatched

forever: they would be better off exiting at some point. Therefore, firms must eventually make

offers that are accepted on path, which ultimately culminates in the stable matching. ■

Proof of Lemma 2

1. Assume all agents use a reduced DA rule and suppose E is an economy with a market

realization in which the outcome µ is different than the stable matching µM . By Proposition 1, there

exists a pair (i′ , j ′) that blocks µ with µM(i′) = j ′. This implies that uf
i′j ′ > u

f
i′µ(i′) and j ′ ∈ S fi′ (u

f
i′ ·).

Hence, if firm i′ uses a reduced DA strategy, she must rank j ′ above µ(i′). For worker j ′, since i′ ∈

Swj ′
(
uw
·j ′
)
, j ′ cannot be matched with someone other than i′ unless, under DA, he receives a better

offer. However, uw
i′j ′ > uw

µ(j ′)j ′ implies that j ′ does not reject i′’s offer, in contradiction.

2. Assume all agents follow a profile v of reduced DA strategies. For firms, since truthful

revelation is a weakly dominant strategy in the firm-proposing DA algorithm, which the centralized

market emulates, no deviation can be strictly profitable.

Suppose a worker j has a strictly profitable deviation to a strategy σj . If σj is also a reduced DA

strategy, then by Part 1 above, the outcome is unchanged, in contradiction. Suppose, then, that σj

yields a matching µ such that uw
µ(j)j > uw

µM (j)j . Then, by Proposition 1, there exists a pair (i′ , j ′) that

blocks µ such that µM(i′) = j ′ . First, it is clear that j ′ , j since j strictly prefers µ to µM . Since both

i′ and j ′ submit reduced DA strategies, i′ must rank j ′ above µ(i′). Hence, it must be that j ′ rejects

i′ through the centralized mechanism, contradicting the fact that (i′ , j ′) is a blocking pair under µ.

3. Suppose l ∈ F ∪W is an agent who does not use a DA rule. That is, agent l ranks some agent

(including potentially the possibility of staying unmatched, ∅) as preferred to a plausible stable
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match partner when match utilities prescribe otherwise. Whenever there is only one worker or

only one firm, the claim follows trivially. Assume then that |F | , |W| ≥ 2.

Certainly, if l ranks a plausible stable match partner as unacceptable, then the centralized

outcome in some markets would be unstable.

Suppose that l ∈ W ranks a plausible stable match partner i below a firm i′, who is not a

plausible stable match partner when observing uw
·l , and the set of plausible stable matches is S.

Assume uw
il > uw

i′ l . Let j ∈W be another worker (other than l).

Consider an economy in which there are three markets characterized by match utilities U,Ũ ,

and Û in which, in the corresponding stable matchings, all agents A other than i, i′ , l, and j are

prescribed to be matched to agents in A or remain unmatched. It therefore suffices to focus on

match utilities corresponding to agents {i, i′ , l, j}.

We construct U and Ũ so that they satisfy the following:31

a. Firm i′ cannot distinguish between the two markets, while all other agents can.

b. Firm i′ prefers worker l to worker j in both markets.

c. Under U , i and l, and i′ and j, are part of the stable matching, while under Ũ , i′ and l are

part of the stable matching.

d. Under Ũ , i′ is both l’s and j’s most preferred firm.

Û is such that ûw
·j = ũw

·j , so that worker j cannot distinguish Ũ from Û , and j is the most

preferred worker for i′. Each of the remaining markets in the economy is one in which l’s match

utilities are given by uw
·l and the stable matching is an element i′′ ∈ S \ {i}.

If the stable matching is achieved under Û , worker j must rank firm i′ as acceptable when

observing ûw
·j = ũw

·j . Therefore, if the stable matching is achieved under Ũ , it must be the case that

i′ ranks l higher than j (and acceptable) when observing u
f
i′ ·. But then, under U , it cannot be the

case that the stable matching is established. Indeed, the centralized mechanism generates a stable

matching for the submitted preference rankings, and i′ and l would form a blocking pair.

31These conditions are consistent with alignment. Indeed, assuming, without restriction, that uwkl , ũ
f
kl > 2 for any

k ∈ {∅, l, j} and l ∈ {∅, i, i′}, the reader can think of the following manifestation of U,Ũ in which we summarize preferences

through the following two matrixes, where the first number in each entry corresponds to the firm’s preference and the

second number to the appropriate worker:

U :

l j

i uwil ,u
w
il uwil − 1,uwil − 1

i′ uwi′ l ,u
w
i′ l uwi′ l − 1,uwi′ l − 1

Ũ :

l j

i ũ
f
i∅ − 1, ũw

∅l − 1 ũ
f
i∅ − 2, ũw

∅j − 1

i′ uwi′ l , ũ
w
∅l + 1 uwi′ l − 1, ũw

∅j + 1

.
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A similar construction follows if l ∈ W ranks a plausible stable match partner i below a less

preferred plausible stable match partner i′ when observing uw
·l and the set of plausible stable

matches is S. Furthermore, analogous constructions follow for firms. ■

Before providing the proof of Proposition 4, we introduce a broader class of economies satisfying

what we term generalized richness.

We use µM(U ) to denote the unique stable matching in a realized market with match utilities U .

Let Mt ⊆ (F ∪∅)× (W ∪∅) denote the matches formed at time t, including firms and workers who

exit unmatched, and let the set of agents who exited the market up to, but excluding, period t be

X t ≡ {j | ∃k s.t. (j,k) ∈Mτ for some τ < t} ∪ {i | ∃l s.t. (l, i) ∈Mτ for some τ < t} .

Last, let MF
t ⊆ F ×∅ be the set of firms who leave the market in the first stage of period t.

At the start of period t, each active firm i observes a history consisting of her (timed) offers,

workers’ responses to those offers, denoted by r for rejection and h for holding (we denote an offer

to no worker as an offer to ∅ that is immediately rejected), and the (timed) exits of agents:32

h
f
t,i ∈ ((W ∪∅)× {r,h})t−1 ×

t−1∏
τ=0

Mτ .

Each unmatched worker acts in the interim stage of every period t and observes a history that

consists of all (timed) offers he received, including those at time t, a (timed) sequence of offers he

has held, and the (timed) set of agents that have left the market up to and including time t:

hwt,j ∈
(
2F

)t
×
(
2F

)t
×

t−1∏
τ=0

Mτ ×MF
t .

For a given prior distribution G over utility realizations, for any private information uα
l (·) of

agent l with α ∈ {f ,w} regarding the realized market, let G(uα
l (·)) denote the posterior distribution

over utility realizations. Let Sαl (uα
l (·)) =

{
µM(U )(l) |U ∈ supp G(uα

l (·))
}

denote the set of all ex-ante

plausible stable match partners of agent l. That is, agents that could conceivably be part of a stable

matching, under the distribution over market match utilities updated by the private information

uα
l (·). Analogously, given the strategies played by all agents, Sαl (uα

l (·),hαt,l) denotes the set of all

interim potential stable match partners given agent l’s available information at t.

32An offer of firm i to worker j that is held from period t to t′ is recorded as an offer made in periods t, t + 1, ..., t′ that

is held by the worker in each of these periods.
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A reduced DA strategy for a firm i is minimal if the following condition is satisfied:

A(v) = S
f
i (uf

i (·))

Intuitively, firm i must “skip” any workers that cannot be stable match partners. Similarly, a

reduced DA strategy for a worker j is minimal if the following condition is satisfied:

If ∀k ∈ Sw
j (uw

j (·)), uw
j (k) > uw

j (i) =⇒ i < A(v)

Namely, any firm i ranked by j below all of j’s stable match partners is listed as unacceptable. We

call a decentralized reduced DA strategy a decentralized minimal DA strategy, if in each stage,

the reduced DA strategy is minimal.

Assumption 1 Suppose all agents use decentralized minimal DA strategies. Consider any firm i and

market realization with match utilities U . At each period t, for all available workers j ranked below

firm i’s most-preferred potential stable match partner that has not rejected the firm yet, either

1. there exists Ũ ∈ supp G
(
u
f
i· ,h

f
t,i

)
such that ũw

ij > ũw
µM (Ũ )(j)j

, or

2. for all Ũ ∈ supp G
(
u
f
i· ,h

f
t,i

)
, ũw

ij < min{ũw
kj : k ∈ Swj

(
ũw
·j ,h

w
t,j

)
}.

Assumption 1 ensures that when all market participants follow decentralized minimal DA

strategies, a firm has no incentive to make an offer to a worker who is ranked below her favorite

unmatched plausible stable partner that has not rejected her yet. If the firm makes such an offer,

Assumption 1 guarantees the firm runs the risk of one of two eventualities. The first is that the

firm might have her offer held or accepted, as it is better than the stable match of the worker in the

realized market. The second occurs if the worker uses a decentralized minimal DA strategy that

specifies firms that are less preferred than all plausible stable matches as unacceptable. In that

case, the firm will be rejected immediately. Making an offer then has no benefit.

Denote by W̃ t
i the set of workers who have not rejected firm i before period t, by F̃t

j the set of

firms that have not made an offer to worker j up to (and including) period t and that he weakly

prefers to any firm that has made him an offer till then, and by X t the set of agents who have exited

by period t. Let

BS fi
(
u
f
i· ,h

f
t,i

)
≡

{
j |j ∈ S fi

(
u
f
i·

)
∩ W̃ t

i

}
\X t ,

BSwj
(
uw
·j ,h

w
t,j

)
≡

{
i|i ∈ Swj

(
uw
·j
)
∩ F̃t

j

}
\
(
X t ∪MF

t

)
.
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Assumption 2 Suppose all agents follow decentralized minimal DA strategies.33 Let U be in the support

of G and l be an agent of type α ∈ {f ,w}. Assume that in period t, if α = w, worker l has not received

offers from all but one of the remaining firms. For each j,k ∈ BSαl
(
uα
l (.),hαt,l

)
, if uα

l (j) > uα
l (k) and

k ∈ Sα
l

(
uα
l (.),hαt,l

)
, then j ∈ Sα

l

(
uα
l (.),hαt,l

)
.

Assumption 2 poses that when all market participants follow decentralized minimal DA

strategies, the ordering of offers and matches does not convey information in and of itself. Put

differently, it ensures firms cannot cross out their favorite available plausible stable match partner

from the set of perceived plausible stable matches S fi (uf
i· ,h

f
t,i) when updating based on worker

matches, exits, and rejections (generating BS fi (uf
i· ,h

f
t,i)). An analogous implication holds for

workers. An exception occurs when a worker receives F̃ − 1 offers, where F̃ is the number of firms

remaining. Suppose the worker does not receive an offer from his most-preferred firm. Then, since

a top-top match is made in each period, it must be that the remaining firm has formed a top-top

match and will exit. Thus, the worker believes the most-preferred firm of the F̃ − 1 that had made

him an offer is his stable partner.

An economy satisfies generalized richness if it satisfies Assumptions 1 and 2. As in our

definition of rich economies in the body of the paper, generalized richness refers to the support of

potential match utilities. It does not rule out probabilistic updating on the likelihood of different

agents being one’s stable match in the realized market. While generalized richness is still somewhat

restrictive, it allows for a rich class of settings. As we show in Proposition 4* below, generalized

richness is, indeed, a generalization of the richness assumption in the main body of the paper.

Generalized richness also allows for assortative economies, where the distribution of markets is

supported on all preference profiles in which, say, firms (similarly workers) have identical ordinal

rankings of workers (similarly, firms).

Proposition 4* (Generalized Richness–Implementation). Suppose the economy E satisfies generalized

richness. For sufficiently high δ, there is a Bayesian Nash equilibrium in weakly undominated strategies

of the decentralized market game that implements the unique stable matching in each supported market.

Proof of Proposition 4*

We first show that, for sufficiently high δ, a decentralized minimal DA strategy is a worker’s

33Any decentralized minimal DA strategy profile leads to the same learning pattern pertaining to stable matches, and

so the assumption’s requirement is not affected by which particular profile is used.
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best response when: 1. all other workers use decentralized minimal DA strategies; and 2. firms use

decentralized minimal DA strategies.

Indeed, at each period t, for sufficiently high δ, a worker cannot benefit by exiting the market

whenever a plausible stable partner is still available, nor from accepting an offer from a firm who

is not his most preferred plausible stable match. A worker with offers at hand cannot benefit by

holding on to firms other than his most preferred. This follows from the no-cycle property. Indeed,

rejection of firms cannot generate the arrival of an offer from a preferred firm, and decentralized

minimal DA strategies ensure that rejected firms will not make future (repeat) offers.

We proceed by showing that there exists a unique decentralized minimal DA strategy for any

firm. To begin, under DA strategies, for any firm and any preference ranking the set of plausible

stable match partners is fixed. The second restriction in the definition of DA strategies requires

all plausible stable match partners to be ranked truthfully. Furthermore, minimality requires

implausible stable match partners to be omitted from the firm’s list of acceptable match partners.

Then, only plausible stable match partners can be listed, and they must be ranked truthfully.

We now show that, for sufficiently high δ, the unique minimal DA strategy is a firm’s best

response whenever: 1. workers use decentralized minimal DA strategies; and 2. firms use their

unique minimal DA strategies.

Consider first a firm i that in period t has no outstanding offers, and whose updated strategies

suggest worker j as the most preferred stable match. There are two kinds of deviations from a

decentralized minimal DA prescription: make no offer, or make an offer to some other worker k

who is ranked below j.

If firm i does not make an offer at period t, there are three potential implications. First, if

making an offer according to any decentralized minimal DA strategy would not have affected

market participants’ history following period t,34 then the only effect of this deviation could be the

prolonging of her match creation. If not making an offer affects certain participants’ histories, then

due to Assumption 2, this cannot affect the firm’s final match. Again, such a deviation can only

prolong the timing of that final match. Finally, suppose that the firm’s most preferred plausible

stable partner receives offers from all other firms remaining on the market at period t. Then, the

worker will accept the best offer of those immediately, even if he prefers firm i (see our discussion

following Assumption 2), in which case firm i is made strictly worse off by the deviation.

34For instance, in the case in which any such strategy suggests an offer to j, who gets matched to another firm in that

period with probability 1.
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Suppose firm i makes an offer to a worker k who is ranked lower than her most preferred

plausible stable match j. By Assumption 1, the firm could be immediately rejected, in which case

she does not benefit. Alternatively, with positive probability, her offer will be held or accepted

by k in a market in which she would have otherwise gotten a preferable worker. Features of the

firm-proposing DA algorithm imply that such a deviation can never lead to a preferable ultimate

match. Indeed, such a deviation would be tantamount to submitting an untruthful preference

list when the firm-proposing DA algorithm is used (as, from Assumption 2, such an offer will not

make other participants change their effective rank orderings). However, revealing preferences

truthfully is a dominant strategy for firms in the firm-proposing DA algorithm. For sufficiently

high δ, benefits due to timing are of vanishing size relative to the losses due to mismatches. ■

Proof of Proposition 4

We show that rich economies satisfy generalized richness. By Proposition 4*, the result follows.

Alignment implies that agents’ match utilities are a monotonic transformation of the elements

of their respective row or column of the ordinal potential matrix. Without loss of generality, we

assume match utilities take values in {ε,1,2, . . . ,n}, where n = W or n = F depending on whether

the agent is a firm or a worker. ε ∈ (0,1) corresponds to the utility from remaining unmatched. An

equivalent construction follows for any other set of distinct values that contains at least as many

elements. Our construction also follows in much the same way if utility values differ across market

participants. For any ordinal potential Φ , the mapping from entries Φij to utility values for a firm

i is as follows. Let j1 = argmaxj Φij , j2 = argmaxj,j1 Φij , etc. Then, uf
ij1

= n,u
f
ij2

= n− 1, and so on.

Worker utility values are mapped similarly.

In what follows, we construct ordinal potentials that rationalize each history an agent observes

and guarantee generalized richness. Our arguments are constructive: we identify a set of ordinal

potentials consistent with preferences and histories any agent might observe when called upon

to act. However, the precise values we place on entries of these ordinal potentials are of no

importance—they simply allow us to identify the profile of plausible preference rankings that can

then be translated directly to match utilities. Notably, our construction is designed for on-path

play. It requires all agents to have followed reduced DA strategies. For the remainder of this proof,

we let n = max{F,W }.

First, we consider an arbitrary firm. We begin by establishing restrictions on the ordinal

potential Φ that correspond to the public history, namely the sequence of market exits. It is useful
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to note that, due to the top-top match property, at least one firm and worker pair exit each period

until only firms or only workers remain.

For any firm i and worker j that match and exit in period 1, set Φij = 0. Next, for any firm i and

worker j that match in period 2, choose an arbitrary firm i′, who exited in period 1. Set Φi′j = −j

and Φij = −(n+ 1). This restriction rationalizes behavior in these two periods. Indeed, with such an

ordinal potential, reduced DA instructs firm i to make an offer to worker j in period 1. Worker j

holds the offer but does not accept, in the hope that firm i′ will make him an offer. Upon observing

firm i′’s exit in period 1, worker j accepts his second-best firm i. This specification leads to an

additional constraint: the remaining elements in the row corresponding to firm i and the column

corresponding to worker j must be lower than −(n+ 1). We continue this construction iteratively

through time. In period k, for any firm i and worker j pair that exits, we set Φij = −(k − 1)(n+ 1)

and Φi′j = −(k − 2)(n+ 1)− j, where firm i′ is an arbitrary firm that exited in the previous period.

This specification rationalizes the public information available in the economy at any period.

Consider now firm i at some period t, with history h
f
t,i . The firm knows her own preference

ranking, as well as her history of rejections and holdings. We impose further restrictions on the

ordinal potential to accommodate this additional information and rationalize h
f
t,i . First, the firm’s

preference ranking implies that the ordering of Φix over x is determined by firm i’s preferences.

We only consider situations where every worker that firm i has made an offer to has rejected

the firm. This is without loss of generality, as otherwise the firm has no strategic choice and the

requirements for generalized richness are trivially satisfied.

If worker j held firm i’s offer for some number of periods, then exited with a firm i′ in period

t′ < t, Φi′j is specified by the above construction. Namely, Φi′j = −(t′ −1)(n+ 1). This implies that

firm i would have been chosen by worker j had firm i′ been unavailable. Furthermore, it ensures

any remaining workers rank below worker j in firm i’s preferences. This specification determines

Φi′j ′ for any worker j ′ that exited before t′ so that firm i′ does not make an early offer to worker

j. Importantly, the number of rounds that the firm’s offer is held is rationalized by the above

construction: worker j accepts the offer from firm i′ only when firm i′ is worker j’s most preferred

remaining firm.

Similarly, a worker j may hold firm i’s offer for some number of periods, then reject the firm’s

offer without exiting at period t′ < t. With reduced DA strategies, this implies worker j initially

preferred firm i’s offer to all other received offers. However, in period t′, some firm i′ made

the worker an offer preferable to firm i’s offer. Worker j remains in the market only if there
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exists another firm i′′ he prefers to firm i′ that is a plausible stable match. One path consistent

with firm i’s observed history has firm i′′ exiting in period t − 1. From our specification thus far,

Φi′′j ′ is determined, where worker j ′ is the worker with whom firm i′′ exited. Firm i can also

consistently expect worker j to exit with firm i′ in period t. We thus let Φi′j = −(t − 1)(n+ 1) and

Φij = −(t − 1)(n + 1) − j. Again, the fact that worker j remains in the market for t − t′ periods is

accounted for by our specifications up to now.

The restrictions imposed until now are consistent with firm i’s sequence of offers through

period t. We add a restriction: for all workers j to whom firm i has not made an offer, Φij ≤ −t(n+1).

This constraint is also consistent with the requirements placed so far.

For other entries of the potential, we require that remaining workers have not received offers

from their most-preferred remaining firms. Additionally, if there is more than one remaining firm,

we set the potential so that no remaining workers received offers from all but one firm. Specifically,

for each worker j who has not exited the market by period t, take a firm i′ who exited in period

t − 1 and set Φi′j = −(t − 2)(n+ 1)− j. Then, each unmatched worker waited for an offer from firm i′

in period t − 1.

Since the economy is rich, at least one market occurring with positive probability has an ordinal

potential that satisfies all the restrictions imposed above.

We now show that the restricted set of ordinal potentials that satisfy the above restrictions are

sufficient for generalized richness.

For Assumption 1, take any worker j who is not preferred to firm i’s most preferred worker and

who has not rejected her yet at period t. Consider ordinal potentials under which worker j might

accept an offer made by firm i. Without loss of generality, let firm i prefer worker 1 to worker 2

and so on. Then, indeed, we can add the restrictions Φij = −n(n+ 1)− j and Φi′j = −n(n+ 1)− j − i′

for each firm i′ still in the market. With this specification, every remaining worker j immediately

accepts offers made by firm i, thereby satisfying assumption 1. Richness implies that potentials

satisfying these additional restrictions are in the support of firm i’s beliefs.

As for Assumption 2, consider an ordinal potential where firm i’s most preferred remaining

worker j accepts the firm’s offer. Set Φij = −(t − 1)(n+ 1). By design, every firm-worker pair (i′ , j ′)

with Φi′j ′ > −(t−1)(n+ 1) contains at least one agent that has exited in a previous period. Therefore,

firm i and worker j constitute a top-top match in period t. In particular, worker j will immediately

accept firm i’s offer. Again, richness implies that potentials satisfying these additional restrictions

are in the support of firm i’s beliefs.
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Consider now a worker j at any arbitrary period t. The worker knows his own preference

ranking and the sequence of firms that have made him offers up to time t, captured by the history

hwt,j . As for firms, we find a subset of ordinal potentials that rationalize the worker’s preferences

and observed history. We will use the following claim.

Claim Suppose all agents follow reduced DA strategies. Assume that, in period t, worker j rejects an offer

from firm i. Then, if in period t′ > t firm i exits and worker j remains, there exists a firm i′ that has not

made an offer to worker j that also exits in period t′.

Proof of Claim: Assume Φ is the governing potential in the realized market. Under reduced

DA strategies, if a worker j rejects firm i, he must have received an offer from a preferred firm.

Suppose that, in period t′, the worker holds an offer from firm i∗. Let F̃ and W̃ be the sets of firms

and workers that have not exited before period t′, respectively. Any pair in argmax(ı̃,j̃)∈F̃×W̃ Φı̃j̃

constitutes a top-top match that exits in period t′. In particular, there is a firm i′ that exists with a

worker j ′. Suppose firm i′ made an offer to worker j at some period. From the definition of DA

strategies, it follows that Φi∗j > Φi′j and Φi′j > Φi′j ′ , in contradiction to firm i′ and worker j ′ being a

top-top match in period t′. ■

We restrict ordinal potentials to rationalize exited firm-worker pairs. Namely, we construct

an “optimistic” ordinal potential consistent with the public history, where any worker believes

his top firm remaining in the market is still achievable. Since all ordinal potentials occur with

positive probability, the worker prefers to follow a decentralized reduced DA strategy to avoid

risking losing his top firm. Specifically, suppose firm i and worker j ′ exit in period t. We consider

two cases. If firm i had made an offer to worker j before, we set Φij ′ = −(n+ 1)2. If firm i had not

made an offer to worker j before, we set Φij ′ = −(t − 1)(n+ 1).

In each period, either no firm makes an offer to worker j, or at least one firm does. Since the

worker has not exited prior to period t, he could not have received an offer from his most preferred

remaining firm in any prior period.

Suppose available firms i1, i2, . . . , ik have not made offers to worker j in any period t′ ≤ t for t > 1.

Then, worker j infers that each of these firms preferred other available workers in previous periods.

Set their preference rankings as follows. In period 1, take a matched firm-worker pair, with worker

j1. For every firm i ∈ {i1, i2, . . . , ik} set Φij1 = −i. That is, worker j assumes that every such firm made

an offer to the exiting worker. In period 2, there must be a worker j2 who exits with a firm that

never made worker j an offer. Indeed, if worker j rejected an offer in period 1, such a worker j2 is
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guaranteed by the claim above. If worker j did not receive any offers in period 1 or is holding his

period 1 offer, such a worker j2 is guaranteed from the top-top match property of aligned markets.

Then, for every firm i ∈ {i1, i2, . . . , ik}, set Φij2 = −(n+ 1)− i. Repeat this construction up to period t:

in each period l < t take a worker jl who exited in period l, and set Φijl = −(l − 1)(n+ 1)− i for all

firms i ∈ i1, i2, . . . , ik . This construction also generates the additional restriction that all remaining

potential entries involving two agents who have not yet exited be below −(t − 1)(n + 1). Firms

previously rejected by worker j are placed at the “bottom” of the ordinal potential in accordance

with their match utilities to ensure that the resulting ordinal potential is consistent with worker j’s

preferences as described in the previous section.

Suppose worker j has offers from firms ı̃1, ..., ı̃m in period t, which may include any offer held

from period t, and j has not received offers from all but one remaining firm. Without loss of

generality, suppose worker j prefers firm ı̃1 to firm ı̃2 to firm ı̃3 and so on. We consider two cases.

First, suppose firm ı̃1 is worker j’s most preferred remaining firm. In that case, reduced DA directs

worker j to accept the offer. Since generalized richness does not impose any restrictions in this case,

any specification of a consistent potential would do. Second, suppose there exists an available firm

i that worker j prefers to firm ı̃1. Decentralized reduced DA directs worker j to hold ı̃1’s offer and

reject the rest. For each rejected firm iv = ı̃2, . . . , ı̃k , set Φivj = −(n+ 1)2 +uw
ivj

. As for firm ı̃1 and the

most preferred firm i, set Φı̃1j = −t(n+ 1) and Φij = −(t − 1)(n+ 1)− i − 1.

Next, we show that both of the generalized richness assumptions hold for the workers. Assump-

tion 1 holds immediately, as it only places restrictions on firms’ beliefs.

Consider Assumption 2. If there exists only one remaining firm, assumption 2 is satisfied

automatically. Otherwise, if worker j has received an offer from his most preferred firm, there is no

remaining further preferred firm so assumption 2 holds, as suggested above. Last, suppose worker

j has not received offers from all but one of the remaining firms and has not received an offer from

his most preferred firm. Then, there exist two distinct firms, say i and i′, with i preferable to i′,

which have not made worker j an offer yet. Consistent with the construction above, we can set

Φij = −(t − 1)(n+ 1)− i and Φi′j = −(n+ 1)2 +uw
i′j .

The above construction is consistent with the worker’s observed history, which implies that i′

exits this period, and i makes an offer to worker j next period. Therefore, Assumption 2 is satisfied.

Since Assumptions 1 and 2 are satisfied, richness implies generalized richness. Proposition 4*

then implies that an equilibrium implementing the stable outcome market by market exists. ■
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