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Abstract

Motivated by the prevalence of prediction problems in the economy, we study mar-
kets in which firms sell models to a consumer to help improve their prediction. Firms
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sumer can purchase multiple models and use a weighted average of the models bought.
Market outcomes can be expressed in terms of the bias-variance decompositions of the
models that firms sell. We give conditions when symmetric firms will choose different
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show firms can choose inefficiently biased models or inefficiently costly models to deter
entry by competitors.
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1 Introduction

Prediction problems are ubiquitous in the economy. To give a few examples, firms selling
products often want to predict customers’ willingness to pay and may use business analytics
tools to do so. Banks want to assess the credit risk of borrowers, and rely on predictive
models to guide their decisions. In science and engineering, researchers want to predict
the viability of compounds in domains ranging from drug discovery to materials science.
Campaigns and observers want to predict elections, and may commission polls to do so.

Making quantitative predictions usually involves collecting relevant data and training sta-
tistical models based on that data. While firms, organizations, and individuals can conduct
this modeling internally, many rely on external firms for these services. There is considerable
interest in understanding competition among firms providing data or artificial intelligence
services,! but much of the recent theoretical work focuses on monopoly settings. In this
paper, we provide an economic theory analysis of settings where firms compete to sell pre-
diction models. Our focus is on how market structure and welfare depend on the statistical
properties of the models available to firms.

Before describing our analysis in some detail, we describe two high-level findings. First,
even identical firms servicing identical consumers will often choose differentiated models.
Second, firms can choose biased or excessively expensive models to deter competition or
to achieve more favorable divisions of the total surplus. This generates inefficient market
structures as well as inefficient choices of models.

We consider an agent, who we call a consumer, facing a prediction problem. The con-
sumer’s utility is the negative of the mean squared error of their prediction (or a fixed outside
option). To make predictions, the consumer purchases models from firms. These firms decide
whether to enter, choose models to train on their datasets (which we assume are independent
across firms), and set prices for the resulting predictions. We take an abstract approach to

model choice that can accommodate simple models such as linear or ridge regression but

1See, for example, Korinek and Vipra (2025) and Hagiu and Wright (2025), for discussions of competition
in these markets.



also allows for more complex models. Importantly for our analysis, the consumer can use
a single model but can also purchase multiple models and use a weighted average of these
models.?

A key part of the setup is what the consumer and competitors know about firms’ models,
and we assume that model choices are observable but the underlying datasets are not. The
content of this assumption is that the consumer makes purchasing decisions based on knowl-
edge of the modeling techniques used by firms and the structure of their datasets but not
on information depending on the realized data points. As a consequence, market outcomes
given model choices can be expressed in terms of the bias-variance decompositions of the
models that firms sell. When a single firm enters the market, it can extract all surplus.
When multiple firms enter, each is paid the marginal value of combining their model with
other models. These marginal values can be expressed in terms of the chosen models’ bi-
ases, which are deterministic and often well-behaved, and variances, which are easy to relate
under our independence assumption. Our modeling choices therefore yield straightforward
mappings from the statistical structures of firms’ models to outcomes and payoffs, and we
use these mappings to explore market structure under various circumstances.

We begin by considering firms making simultaneous choices about whether to enter the
market and what model to use. In this setting, efficient outcomes can always be supported
as equilibrium outcomes: because firms are paid the marginal value of their models to the
consumer, incentives can be aligned. But there can also be inefficient equilibria. Moreover,
even under efficient equilibria, the division of surplus between consumer and firms can depend
in nontrivial ways on the underlying statistical properties of the available models.

To illustrate firms’ entry choices, we consider a special case where all firms share the
same statistical model (and therefore the main strategic consideration is whether to enter).
Pure-strategy equilibria exist, and entry decisions at these equilibria are efficient. Higher
variance models induce more entry because noisier models allow scope for competitors to

enter. The effect of model variance on consumer surplus is non-monotonic: a higher variance

2In the context of demand for LLMs, Fradkin (2025) documents a number of popular apps making use
of a mix of available models.



decreases total surplus but increases competition, and we show the consumer attains the
highest surplus when only two firms enter the market. Overall, decreasing model noise leads
to more concentrated markets, which can actually harm consumers.

Next, we analyze firms’ model choices and ask when firms will choose distinct models
at equilibrium. We consider a setting with a single consumer and firms with the same sets
of possible models, so any differentiation must be driven by complementarities between dif-
ferent modeling techniques. We derive necessary conditions for firms to choose the same
model and decompose these conditions into interpretable forces favoring and opposing dif-
ferentiation. We provide examples of differentiation when firms use linear regression and
choose which covariates to include. We show firms can choose distinct subsets of covariates
for the regressions at equilibrium—even if each firm could costlessly include all covariates in
the true model. This corresponds to different companies offering predictive models based on
different types of data.

Finally, we consider a setting with an incumbent firm and a potential challenger and
describe strategies the incumbent can use to deter entry. The incumbent chooses a model,
and the challenger then decides whether to enter the market and choose a model. First,
we show that the incumbent can bias their model to deter entry. Intuitively, if available
modeling techniques share common biases, an incumbent firm can have little incentive to
correct those biases. Second, we show that the incumbent can overinvest in reducing model
variance. A natural interpretation is the incumbent firm acquiring a large dataset, e.g.,
artifical intelligence firms building ‘data moats’ to protect market position. Both behaviors
lead to both inefficient entry and inefficient model choices. The equilibrium markets are
monopolies although competitive markets would generate more surplus, and the incumbent
chooses a more biased or more expensive model than would be optimal given a monopoly.

The rest of this paper is organized as follows. The remainder of this section reviews the
existing literature relevant to this paper. Section 2 formally describes our setup. Section 3
studies the case where firms enter simultaneously, including analyzing when equilibrium

features model differentiation. Section 4 looks at the problem with sequential entry and



analyzes strategies to deter entry. Section 5 concludes. All omitted proofs are deferred to

Appendix A.

Related Literature Research on the economics of providing predictions, models, and
forecasts spans fields including economics, finance, and computer science. Like this paper,
some recent computer science work has considered agents or firms competing to provide
predictions (e.g., Ben-Porat and Tennenholtz (2017), Ben-Porat and Tennenholtz (2019),
Feng, Gradwohl, Hartline, Johnsen, and Nekipelov (2022), Jagadeesan, Jordan, Steinhardt,
and Haghtalab (2024a), and Jagadeesan, Jordan, and Steinhardt (2024b)). A bit further
afield, recent research considers agents competing to provide algorithms to consumers in other
domains, including ranking alternatives (e.g., Immorlica, Kalai, Lucier, Moitra, Postlewaite,
and Tennenholtz (2011) and Kleinberg and Raghavan (2021)) and reinforcement learning
(e.g., Aridor, Mansour, Slivkins, and Wu (2020)).

We highlight three contributions relative to other work on markets for prediction models.
First, we provide a microfounded framework in which equilibrium outcomes depend straight-
forwardly on the bias-variance decompositions of firms’ chosen models. Relatedly, Feng et al.
(2022) take a class of models with a bias-variance tradeoff as a primitive in a contest model.
They find competition pushes toward higher variance and lower bias models. Second, we
ask what market structures emerge in a variety of settings with endogenous entry. Perhaps
closest, Jagadeesan et al. (2024b) also consider entry in a model focused on regulatory con-
straints. Third, we allow consumers the possibility of purchasing models from several firms
and find this can lead to quite different market structures.

Several strands of research in economics and finance consider agents competing to make
predictions or forecasts, with a focus on contests and related games. Montiel Olea, Ortoleva,
Pai, and Prat (2022) consider auctions when bidders use subjective models and evaluate

prediction error using those models (and not as correctly specified Bayesians).> Ottaviani

3Several recent papers study settings in which decision makers’ beliefs are derived from (potentially)
misspecified models (e.g., Spiegler, 2016, Eliaz and Spiegler, 2020, Levy, Razin, and Young, 2022). Relatedly,
Izzo, Martin, and Callander (2023) and Montiel Olea and Prat (2025) study settings in which political parties
compete by providing statistical models that help explain past data.

4



and Sgrensen (2006), Ottaviani and Sgrensen (2007), and a subsequent financial economics
literature consider forecasters in contests and in cheap talk games. We instead focus on firms
selling models to consumers and ask about the resulting market structure. A common thread
is that there can be strategic reasons to provide biased models. We find the relevant strategic
forces are different in markets than in contests, however, e.g., choosing biased models to deter
entry.

Our work also relates to two rapidly growing strands of literature: the literature that
studies markets for information (Bergemann, Bonatti, and Smolin, 2018, Bergemann and
Bonatti, 2019, Yang, 2022, Galperti, Levkun, and Perego, 2024), and the literature that
studies the economics of large language models (Duetting, Mirrokni, Leme, Xu, and Zuo,
2024, Mahmood, 2024, Kumar, 2025, Bergemann, Bonatti, and Smolin, 2025). Our contri-
bution relative to these strands of literature is to propose a framework to study competition
among model providers.

Lastly, our work relates to another relevant literature that considers sender-receiver games
with multiple senders (Milgrom and Roberts, 1986, Gentzkow and Kamenica, 2016, 2017, Li
and Norman, 2021). These papers focus on settings in which the incentives of senders and
receiver are misaligned, and study how competition influences the information that senders
disclose in equilibrium. Instead, we consider a setting in which the incentives of model
providers and the consumer are aligned, and focus on how market structure depends on the

statistical properties of the models available to firms.

2 Basic Setup

There are N € N firms and a consumer. The consumer’s problem is to predict

y=flz)+e

where f : R¥ — R is measurable and ¢ is an i.i.d., mean zero error term with variance o2.

The distribution of the noise term e and the distribution G(-) of the vector of covariates z



are common knowledge among firms and the consumer. The function f is drawn from a
common knowledge distribution F(-).

Each firm 7 chooses a model and then trains this model on an independent dataset. A
dataset D is a finite set of n independent data points. Data points are (r;,y;) € R¥L,
where z; are drawn independently from distribution G(-), and y; = f(x;) + €;. We call the
set of possible datasets D.*

A model is a measurable function M : R¥ x D — R. Given a dataset D € D, each model
M defines an estimator fp : R¥ — R by fp(z) = M(z, D). The consumer can buy at most
one model from each firm in the market to help with her prediction.

We study two versions of our game: one in which firms choose models simultaneously
(Section 3) and one in which firms choose models sequentially (Section 4). In both versions,
each firm ¢ chooses an action M; € M; U (), where M, is the set of available models to firm
i and () denotes not entering the market. We allow entry costs to vary with the model that
firms choose: the cost of choosing model M € M, is ¢(M), with ¢ : |, M; — R, while the
cost of choosing action () is 0.

After firms choose their models, all firms publicly observe the model choices of all their
competitors, and simultaneously set prices (p;).

The consumer observes the models and prices of the firms and decides which models
to buy. Call the set of models purchased by the consumer P C {1,2,..., N}. To form a
prediction, the consumer combines the models she bought, and we assume that the consumer
does so by choosing non-negative weights w” € {w € ]R'fl : Y ;ep Wi = 1} for the models in P.
In the interim stage, each firm ¢ privately observes its dataset D, and the consumer learns
the vector z. Each firm ¢ € P gives the consumer their prediction f; oo () = M;(z, D).

The consumer’s prediction is then

<{sz(’ ’LEP Zw sz<)

ieP

The consumer’s payoff is equal to the negative of the mean squared error in her prediction,

4In Section 3 we briefly discuss how our results generalize when firms have correlated datasets.



minus the prices of the models she bought. Hence, the consumer’s expected payoff from

buying models in P and using prediction ¢({fi7D(i)(ﬂf)}ieP> is

—EfDac [<¢({fi,p<i>($)}iep) - y) 1 -

ieP

We assume that the consumer’s beliefs about the true model f, datasets D = (D(j))j-v:l,
vector x and noise € are equal to the prior for any models that the firms choose; that is,
the consumer doesn’t update her beliefs after observing firms’ model choices. We denote
by u < 0 consumer’s utility from taking the outside option, which represents the expected
payoff from not buying any models and making the prediction on her own.

A firm that enters the market with model M; earns profits p;1;cp — ¢(M;), and a firm
that does not enter the market earns zero profits. Our solution concept is subgame perfect
Nash equilibrium (SPNE).

We now present a preliminary result that will be useful in our analysis and several
illustrative examples. This first result is a bias-variance decomposition of the mean squared

loss, which is a standard result in statistics and machine learning (see, for example, James,

Witten, Hastie, Tibshirani, and Taylor (2023)).

Lemma 1. Suppose model M gives estimator fD(x) for each dataset D. The mean squared

loss can be decomposed as:

Efpel(fo(@)=9)") = Ego | (Eplfo() | f.2] = f(2))? | +Eso[Ep[(Eplfp(2) | f.a] = fo(2))*]+0”.

bias variance

We now provide several examples of prediction problems and classes of models M, along

with the bias-variance decomposition for each.

Example 1. Suppose data points are signals y = 0 + ¢ about a Gaussian state § ~ N (0, v?)
with Gaussian noise € ~ N(0,02) This is a special case of our framework where the functions
f =0 are constant and the prior F(-) is Gaussian.

If each firm observes a single data point, this recovers a standard model of forecasting
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(e.g., Ottaviani and Sorensen (2006)). A standard class of models to consider is then
M= {ry:rel0,1]}.

This corresponds to taking a weighted average of the prior belief about 6 (which we have

normalized to 0) and the signal y. The model ry has bias (1 — )0 and variance r*c?.

Example 2. Suppose the true models f(x) = x'3 are linear. Then a natural model is

ordinary least squares (OLS), which corresponds to fD(x) = 273 where B minimizes

>y -l BP
(z5,y5)€D
In the classical regime k < n—1, the estimator is § = (XTX) "' XTY, where X is the matriz

of covariates and Y is the vector of outcomes in the dataset D. This model has zero bias

and variance (conditional on 8 and x) equal to o?xTEp[(XTX) ).

Example 3. Suppose the true models f(x) = x* 3 are linear. Another widely used model is

ridge regression,® which corresponds to fp(x) = x1 3 where 3 minimizes

D Iy — ] B+ MBI
(z5,y5)€D
Increasing the penalization parameter A leads to lower variance but higher bias. The estima-

tor is

B=(XT"X 4+ )Xy,

Writing X = UXVT for the singular value decomposition of X (so U and V are orthogonal

matrices and Y is a diagonal matriz) and o; = ¥y, a standard calculation shows that the

°For an in-depth analysis of the ridge case see Colla Rizzi (2025), who considers a setting where the
Bayesian optimal model is a ridge regression and analyzes the value of data under this model.



estimator 1s

~ g 02 g g
= Vdiag [ ——— ... LI I VYO I V% LI F ) UT(Y — XB).
& 1ag(a§+x ’a,3+A) b+ lag(a%+>\’ i) U 2

If the distribution of covariates G(+) is rotationally invariant, then we can write the squared

(1 - on [szfi /\}) (xT5)27

where the expectation is taken over the singular values o; of the random matriz X. Thus

bias conditional on x and 3 as

squared bias is increasing in A.

One feature of Example 1 and Example 3 with rotationally invariant covariates is that
the choice of model affects the magnitude of biases but not the direction. This property will
be useful as a special case throughout and as an assumption for one of our results. We say

models have a common bias direction if for each model M € |J, M,

Ep[ f(x) = f(x) | f,x] = ab(f, ) (1)

where a > 0 can depend on M but by(f,x) does not.

2.1 Discussion

Before turning to our analysis we briefly discuss the setup and our assumptions. We study
settings where firms sell models rather than directly selling data. We note two reasons why
this often occurs. First, consumers may lack resources or domain knowledge to train models
internally. Second, because data is non-rival, firms have incentives to protect their raw data
to maintain market power (Jones and Tonetti, 2020).

Relatedly, we allow firms to choose models from a restricted set rather than modeling
firms as unrestricted Bayesian agents. This lets our framework accomodate a range of mod-

eling techniques used in practice.



We assume that the consumer makes purchasing decisions based on observing firms’
modeling choices but not based on any information about the realized datasets. Our observ-
ability assumptions fit well if firms can communicate their modeling techniques but want to
keep their datasets proprietary. An alternative approach, which is more challenging to work
with in most settings, would be to let consumers calculate prediction errors given realized
datasets.

We let consumers combine several models but restrict them to choosing weighted aver-
ages of these models. If the consumer could choose arbitrary functions of the predictions
purchased from firms, then they would adjust the predictions to remove biases. We remove
such concerns, which would lead to highly sophisticated behavior that we do not see as
matching the spirit of our approach. We do let the consumer choose the optimal weights to
average predictions across firms.

Finally, we note that a firm’s choice of model in our framework can capture both decisions
about the modeling technique (formally represented by M) and decisions about the structure
of its dataset. We focus on the former in our analysis. But for some discussions and examples,
we allow the size of firms’ datasets to depend on the model that they choose: as part of their

entry decision, firms may choose how many data points, or how many covariates, to collect.

3 Simultaneous Entry

We now study the game we described above, in the case in which all firms choose their models
simultaneously. In particular, in the first stage of the game, each firm ¢ simultaneously
chooses an action in M; = M, U (. In the second stage, firms’ model choices are publicly
observed, and all firms that entered the market simultaneously set prices. The consumer
then observes the firms’ models and prices, and chooses which models to purchase and their
weights. Lastly, all uncertainty is resolved: each firm ¢ privately observes its dataset D®; and
the consumer learns vector x, receives prediction fz p (z) = M;(z, D) from each model i
she bought, and combines them according to the chosen weights.

We begin by describing the equilibrium pricing behavior of the firms. Let M = (M),

10



be the profile of actions chosen by the firms in the first stage. Let E(M) = {i : M; # 0} be
the set of firms that enter the market and Ny = |E(M)| be the number of entrants. For any
non-empty subset £/ C E(M), let U(E’, M) denote the negative of the expected square loss
from purchasing models (M;);ep = ( fl p )icgr and weighting them optimally:

2
U(E’ (Z w; f] D(J) y)
JEE!
We also let U((), M) = u be the consumer’s payoff from not buying any models.

Proposition 1. Suppose firms choose models M = (M;);. Then, the subgame that starts at
the pricing stage has a SPNE in which the consumer purchases all models in E(M), with

prices satisfying

Vie EM), p;= min |UEM),M)-UE M) - Y pl. (2)
E'CE(M)\{i} BN
J#i

Moreover, in every SPNE of the pricing subgame under which the consumer buys all models

in E(M), prices must satisfy (2).

Proposition 1 characterizes the prices that firms charge when the consumer buys all mod-
els in F(M). We note that, since firms face strictly positive entry costs, on the equilibrium
path of every pure strategy SPNE the consumer buys all models in £ (M).

To understand equation (2), consider first the case in which two or more firms enter the

market. The utility that the consumer gets from purchasing all models is

U(E( - > pj,

jJEE(M

while the maximum utility that the consumer can get from not purchasing firm ¢’s model is

max
E'CEM)\{i}

’M)—ij].

11



The consumer is willing to buy firm ¢’s model if

' UEM),M)—-U(E M) — s —p;| > 0.
E/Cg(lll\/rll)\{z} ( ( )7 ) ( ) ) 4 Z lpj p -
JEE(M\E

i
The price p; in (2) leaves the consumer indifferent between buying all models and not pur-
chasing ¢’s model.
When there is one entrant, that firm extracts all the surplus from the consumer by
charging a price of U(E(M),M) — U((, M) = U(E(M),M) — u.
In general, the system of equations (2) defines a fixed-point condition that can have many

solutions. We next show that a natural condition simplifies this system considerably.

Definition 1. We say that models satisfy decreasing marginal returns if, for all M € [], M,,
ECEM),ECEandjeF

In words, models have decreasing marginal returns if the marginal value for the consumer
of buying an additional model is decreasing in the number of models the consumer is already
buying. Note that the condition is always satisfied when there are two firms in the market
(i.e., N = 2) and the consumer’s outside option is sufficiently negative. In Section 3.1, we
show that Definition 1 also holds when all firms have access to the same unique model and
the consumer’s outside option is sufficiently negative. Intuitively, models satisfy decreasing
marginal returns unless (i) the outside option is high or (ii) certain sets of models are very
complementary because their biases at least partially cancel each other out.

When models satisfy decreasing marginal returns, the pricing subgame has a simple
equilibrium. Each firm charges a price equal to the marginal value of their model to the

consumer, assuming the consumer purchases all other available models:

Corollary 1. Suppose models satisfy decreasing marginal returns. Then, the subgame that

starts at the pricing stage has a SPNE in which the consumer purchases all models in E(M),

12



with prices satisfying
Vie E(M), p;=U(EM),M)—UEM)\{i},M). (3)

Going back to the firms’ entry decisions, we now show that any efficient action profile
is a Nash equilibrium of the simultaneous-move game. For any models M, let T'S(M) =
U(E(M), M) = > sy ¢(M;) — u denote the total surplus (adjusted for consumer’s outside

option u so that total equilibrium surplus is nonnegative) when firms choose models M.

Proposition 2. Suppose models satisfy decreasing marginal returns, and let M* be an action
profile that maximizes total surplus TS(M). Then, there exists a pure-strateqy SPNE in

which firms choose actions M*.

When models have decreasing marginal returns, each firm charges a price equal to its
marginal contribution to total surplus (see equation (3)). Hence, firms have incentives to
choose models that maximize total surplus.

As a Corollary of Proposition 2, we get the following existence result.

Corollary 2. Suppose models satisfy decreasing marginal returns. Then, the set of pure-

strateqy SPNE is non-empty if arg max TS(M) is non-empty.

For the remainder of Section 3, we focus on settings in which models satisfy decreasing

marginal returns and therefore Corollary 2 holds.

Correlated datasets. While our model assumes that firms’ datasets are independent,
we note that our results in this section do not depend on this assumption. With correlated
datasets, equilibrium prices continue to satisfy equation (2) (and, if models satisfy decreasing
marginal returns, equation (3)). However, as the analysis below shows, the assumption of
independent datasets greatly simplifies the analysis by allowing us to compute the consumer’s

expected utility U(E, M) from buying and combining models.
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3.1 Entry with a Common Model

To illustrate the workings of our model, we consider a simple symmetric setting in which all
firms have access to one statistical model: for all i, M; = {M}, though each firm ¢ observes
an independent dataset D). Hence, the only decision of the firms is whether or not to enter.
We let ¢ > 0 denote the cost of model M.

Let B=E;, {(ED[fD(x) = f@) | f, 55])1 andV =E;p, {(ED [JED(SU) |/, x} - JED(SC))Q}
denote, respectively, the expected squared bias and variance of the model M (z, D) = fD(x)

available to all firms. We assume that the number N of potential entrants is large, with

\%

o < C We also assume that the consumer’s outside option is low enough so that at

least one firm enters the market, which holds when additionally v < —B — V — 0% — ¢, and
low enough to ensure decreasing marginal returns, which we show in the appendix holds
when u < —B — %V — 02, Decreasing marginal returns and Corollary 1 together imply that,
in this setting with symmetric firms, the pricing subgame has a SPNE in which firms set
prices according to (3) and the consumer purchases all models.

We define producer surplus as the sum of firms’ profit, and consumer surplus as U (P, M)—
> icp Pi — U, that is, the negative of the prediction error using the models bought, minus the
price of the models, adjusted for the outside option u so that consumer surplus is nonnegative.

We can use this model to study how improvements in predictions affect entry and con-
sumer surplus. We describe outcomes under pure-strategy equilibrium where firms enter if
they are indifferent.® The effects of changes in bias are fairly straightforward, and we focus

on the more interesting case of changes in variance.

Proposition 3. Suppose all firms are symmetric and have access to the same model M with

expected variance V' and expected squared bias B. Then:
(i) The number Ng of entrants increases with V.

(i1) Consumer surplus attains a mazimum atV = 2¢, with Ng = 2.

6Generically, all pure-strategy equilibria are payoff equivalent. Equilibrium payoffs are not unique at the
measure-zero subset of parameters where a firm is indifferent to entering, and we select an equilibrium where
indifferent firms enter to simplify the proposition statement.

14



(111) Total surplus is decreasing in V.

Buying additional models reduces the variance of the consumer’s prediction because
these models are trained on independent data. So when the model variance decreases, firms
have a weaker incentive to enter because an additional model decreases the variance of the
consumer’s prediction by less. Hence, the market becomes more concentrated as models
improve. Additional entry increases the consumer’s surplus by providing more competing
models. But there is also a competing effect: conditional on the number of firms in the
market, a higher variance decreases consumer surplus. It turns out that consumer surplus
is maximized at the smallest level of variance such that Np = 2. Total surplus, however, is
decreasing in model variance. One way to see this is that entry decisions are efficient in the
sense that they maximize total surplus, so adding noise cannot help.

To illustrate Proposition 3 numerically, consider the OLS model from Example 2, which
has zero bias. Figure 1 plots the number of entrants, producer surplus, consumer surplus,
and total surplus, as a function of the variance V' of the model available to firms. Parameter
values are set to ¢ = 0.25,u = —5,02 = 1. The change in variance could arise, for example,

from a change in the number of data points available to firms.

3.2 Model Differentiation

Suppose multiple firms enter and choose models from the same set M. We now ask whether
these firms will all choose the same model or will select different models. Because firms
are symmetric and there is one consumer (or equivalently a population of homogeneous con-
sumers), any differentiation must be driven by complementarities between different modeling
choices.

We begin by presenting a general characterization of when firms will choose the same
interior model. The characterization relies on a rich set of available models, but illustrates
the main forces for and against differentiation. We then discuss several examples of model

differentiation. We focus for simplicity on the case of two firms; extending the analysis to
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Figure 1: Equilibrium number of firms and surpluses as a function of model variance V.

allow more firms is straightforward. The following proposition also assumes that all models
have cost ¢(M) = ¢, but can similarly be extended to allow heterogeneous model costs.
Suppose the two firms choose from the same set of models M and that this set of models
contains a one-parameter family {M(t)},e,7 C M for some t < 7. Let V(t) be the expected
variance of M (t). Writing fp,(z) for the estimator defined by M (t), let by(f, ) = Ep[fi(z) |
f.z] — f(x) be the conditional bias given f(z) and z, and let B(t) = E;,[b,(f,z)?] be the

expected squared bias.
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A key quantity in the following result is the angle

cos™t J b f, 2)be(f, 2)dFdG
B B)

between the conditional biases of M (t) and M (t'). Fixing to, we write 6(¢) for the angle
between M (t) and M (ty). We note that 0(t) is identically zero when models have a common
bias direction, but can be non-zero more generally.

We assume that the expected variance V' (t) and the conditional bias b;(f, z) are twice-
differentiable functions of ¢. Finally, we continue to assume that the outside option is suffi-

ciently negative for decreasing marginal returns to hold.

Proposition 4. Suppose both firms choose model M (ty) in an equilibrium, where t < to < t.

Then
V/(ty) + 2B/ (t) = 0 (4)
and
1 " 1 " / 2 1 1 B<t0) / 2
—V'(to) = 5 B'(t) + B'(t) (SBW + 4V(t0>) + 2 ) <0 (5)

We obtain the result by simplifying the first-order condition and second-order condition
for both firms to choose model M (t;). One can show firms choose different models by ruling
out boundary models and showing the left-hand side of (5) is positive whenever the first-order
condition holds.

The first-order condition (4) is straightforward: if both firms choose model M (ty), the
consumer’s prediction error is

%V(to) + Blto).

The expression places more weight on bias than variance because when two firms choose the
same model, the biases are identical while the variances are independent.
The left-hand side of the inequality (5) can be split into three interpretable terms, which

we discuss in turn:
(1) =2 V"(to) — £B"(to): These second derivatives measure the curvature of the bias-
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variance tradeoff. The sign of this term, which can be positive or negative, determines
whether the firms prefer both choosing M (ty) to both choosing M (t) for t # ty nearby.
If 1V (¢) + 3B(t) is concave, this rules out both firms choosing an interior model. The

interesting case is therefore when this term is negative.

(2) B/(to)? ( SBl(tO) + 4V%t0)): The second term, which is always non-negative, measures the
benefits to differentiating between bias and variance. Because variances are independent
of biases, it can be beneficial for one firm to choose a higher variance model and the
other to choose a higher bias model. These benefits are larger when the bias-variance

tradeoff is steeper (B'(t) larger).

(3) @9’ (to)?: The third term, which is also always non-negative, measures the benefits
from choosing models with biases in different directions. This term is zero when models
have a common bias direction, but will be positive if perturbing ¢ changes the angle
between the models M(t) and M (ty). When firms choose the same model, biases will
be equal. But if the firms choose differentiated models with non-parallel biases, these

biases will contribute less to prediction error.

A key step in the proof uses the envelope formula to simplify the consumer’s weights
when we calculate firm payoffs. We can do this because the firm and consumer are aligned

in their preferences over weights: both want to minimize the overall prediction error.

We now show through an example how differentiation can arise in equilibrium. We
consider the following setting:

y=a"B+e,

where & ~ N(0, I},), € ~ N(0,02), and 3 € R*. For tractability, we assume that the entries
of § are drawn i.i.d. from distribution Fj.

Each firm observes n independent data points, and the models available to firms are
OLS models. In particular, firms choose the subset of covariates to include in their model:
models correspond to subsets 2t1-%}. Abusing notation, we identify models M € M with

the corresponding subsets of covariates.
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We assume that there are two firms. For ¢ = 1,2, let M; denote firm ¢’s model. Firm
i’s dataset is D® = (Y;, X;), where ¥; € R™ and X; € R™*. We assume n > k, so that
there are more datapoints than covariates. Let X, € R™*IMil denote the submatrix of
X, including only the coviarates in ¢’s model M;. Firm ¢’s prediction is xTB(i), where the
estimator B(i) € R* is constructed as follows: for covariates [ € M;, Bl(i) are obtained from
the OLS estimator B](\Z) = (X0, Xing,) 7 X[ Y5, For covariates | ¢ M;, we set B =o.

Finally, we consider entry costs that depend on model size: the cost of model M is ¢(| M),
where | M| is the number of covariates in M. We now show that, in this setting, firms may

choose models that include different covariates.

Differentiation with costly covariates. We start considering a setting in which the
number of covariates k is large and additional covariates are costly. Assume that firms’
entry cost ¢(|M|) is strictly increasing and convex, with ¢(1) small. We now argue that firms
never choose the same model when k£ is large: there is always differentiation in equilibrium.
The details are in Appendix A.6, but the result follows from two observations. First, be-
cause c(-) is strictly increasing and convex, firms optimally choose models that exclude some
covariates when k is large. Second, if both firms choose the same model M that excludes
some covariates, a firm strictly profits from swapping a covariate in model M for a covariate
that is not included in the model. This deviation makes the biases of firms’ models differ-
ent, reducing consumer’s prediction error. An intuition for this is that firms’ models are
more complementary when they include different covariates; this increased complementarity

allows firms to charge higher prices.

Differentiation with costless covariates. The argument in the previous paragraph re-

lies on the assumption that entry costs are strictly increasing in model size. This is not

needed: differentiation can also arise when all models are equally costly, so additional co-

variates are free to include. To illustrate this, suppose we increase the number of covariates

k and the number of data points n at the same rate. In Appendix A.6 we show that for large
Er[5?]

k and n, when the signal-to-noise =25 is in some intermediate range, in equilibrium firms
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choose models with different covariates.

These examples illustrate that market equilibria can feature firms selling models based
on different parts of a data set. Indeed, this can happen even if all relevant characteristics
are available to all firms at no additional cost. A number of real-world markets feature com-
peting firms using different types of data. For example, the credit rating industry includes
traditional credit rating models as well as alternative credit rating models emphasizing a
range of characteristics not included in traditional models. Our analysis identifies one set of

forces that could generate this market structure.

In the examples above, differentiation increases the complementarity of firms’ models
and allows them to charge higher prices. We end this section by noting that this is a general

result: differentiation always benefits firms at the expense of the consumer.

Proposition 5. Suppose M1 = My and consider an equilibrium with model choices M #*
M,. There exists i € {1,2} such that the consumer surplus at this equilibrium is less than or

equal to consumer surplus in the equilibrium of the pricing subgame after both firms choose

M;.

The basic force is simple. The consumer’s payoff at the equilibrium is
U({1,2}, (M, My)) sz = U({1,2}, (My, Ma))=) (U({1,2}, (My, My))=U({i}, (My, M5))),

and the right-hand side is actually decreasing in the utility U({1,2}, (M;, M)) from the
equilibrium prediction. Because the consumer must pay each firm the marginal value of
their model, improving the prediction by differentiating the two models (without improving

their individual prediction errors) harms the consumer.

4 Entry Deterrence

We have so far studied models in which all firms choose whether to enter simultaneously.

We now consider a sequential entry game in which an incumbent firm chooses a model and
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then a competitor decides whether to enter. This can generate several new forces, and we
focus on two: the incumbent firm can choose a model with more bias to deter entry and can
choose an inefficiently expensive model to deter entry.

There is an incumbent firm (firm 1), a competitor firm (firm 2), and a consumer. The
consumer, firms, and informational environment continue to follow the basic setup from
Section 2. The incumbent firm first chooses a model M; € M, where M, is compact. The
competitor then observes this model choice and decides whether to enter. If the competitor
enters, they choose a model M; € M, where M, is also compact. We decompose model
costs ¢(M) into a fixed cost ¢y € R and a model-dependent cost ¢ @ U;eqy 0y Mi = Ry
so that we can easily vary entry costs. After choosing models, the firm(s) in the market
simultaneously choose prices p; for their model(s). The consumer can purchase one or both
of the models or choose the outside option.

So the timing is:

1. Firm 1 chooses a model M; € M.

2. Firm 2 chooses a model M, € M or chooses not to enter.
3. The firm(s) simultaneously set prices p;.

4. The consumer decides which model(s) to purchase.

We assume firm 1’s model is sold at a positive price in any equilibrium, ruling out some
cases where firm 1’s models have much higher bias than firm 2’s models. We also assume

the outside option is sufficiently low for decreasing marginal returns to hold.

4.1 Excessive Bias

We will show that the incumbent firm can choose a biased model to deter entry. The basic
force relies on the incumbent and entrant having models with “similar” biases. For simplicity,

we will assume a common bias direction, and it should be clear that we could obtain the
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same result in cases with less structure. Recall this means that

Ep[ f(z) = f(z) | f.x ] = abo(f, ),

where the right-hand side only depends on the chosen model through o. We call o the bias
constant corresponding to model M and write By = E;,[||bo(f,)||3], so that a?By is the
expected squared bias.

Corollary 1 applies: there is a unique equilibrium of the pricing subgame under which

both models are purchased, with prices given by

pr = | (¥ (@) +0f * fo@) ) | +E [ (F) ) |,

po = —E | (" fi(@) + uf P o) — ) | + B :(f @) =) |

When both of these prices are positive, this is the unique equilibrium of the pricing subgame.
When the second firm’s price is zero there can be other equilibria where its model is not
purchased, but these equilibria are payoff equivalent.

A consequence is that when models have a common bias direction, equilibria only depend
on the bias constants o; and variances V; = E;, p[(Ep[fi(z) | f,2] — fi(x))?] of models
M; € M;. Identifying models with (a;, Vi) € R?, we can define the Pareto frontier of M,
to be the set of models that are not dominated in this space. That is, M; € M, with
bias constant and variance (o, V;) is contained in the Pareto frontier if there does not exist
M € M; with bias constant and variance (o}, V/) such that o < a; and V! < V; with at
least one inequality strict.

We next show that when there is a binding bias-variance tradeoff, there are parameter

ranges where firm 1 will choose a more biased model to deter entry.

Proposition 6. Suppose models have a common bias direction. Let M; € My be a model
minimizing mean-squared error and o be its bias constant, and suppose the boundary of the

Pareto frontier is a smooth curve with My in the interior of this curve. Then there is an
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open subset of pairs (cy,u) such that at equilibrium, firm 1 chooses a model M; € My with

a; > o and firm 2 does not enter.

The proposition highlights two inefficiencies. To discuss these, it is easiest to consider
the case when there is only a fixed model cost ¢(M) = ¢;. First, there is inefficient model
choice conditional on entry. The incumbent firm biases their model relative to the optimal
monopoly model M* to maintain their market position. Second, there is inefficient entry
because firm 1 deters firm 2 from entering.

The basic idea is that combining two models decreases variance (as averaging noise terms
decreases variance) but does not substantially decrease bias under the common bias assump-
tion. The competitor enters when the marginal value they provide to the consumer is high.
This marginal value is high when the incumbent chooses a high variance model but low
when the incumbent chooses a high bias model. Therefore, the incumbent chooses a high
bias model to ensure monopoly profits. The proposition shows this occurs whenever (i) the
competitor’s cost ¢y is in an intermediate range where the incumbent can influence the entry
choice, and (ii) the outside option is low enough for deterring entry to be desirable.

As a simple example, suppose the available models for each firm are ridge regressions with
penalization parameters A > 0 in some compact set. We saw in Example 3 that this set of
models satisfies the common bias assumption when the covariates are rotationally invariant.
The proposition then says that for an open subset of parameters ¢ and u, the incumbent
will choose a higher A\ than would minimize mean squared error and the competitor will not
enter. Because all available models bias the coefficients 3 toward zero, the incumbent can

deter entry by choosing a lower variance model with smaller coefficients.

4.2 Overinvestment

Next, we study entry deterrence when firms choose between models with different costs. To
do so, we allow the entry cost to depend on the model choice. We find that the incumbent
firm can choose a model that is too expensive to deter entry.

Suppose that the conditional biases Ep[fp(z) | f,2] — f(z) are equal for all models M;
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and that the cost ¢,,,(M) is a decreasing and continuous function of the expected variance

V =Efp.[(Eplfo(z) | f,2] — fo(2))].

One example is linear regression (which has zero bias), with different models corresponding
to different dataset sizes. Collecting more data points is more costly but decreases variance.
When the set of models available to firm 1 has the structure described in the previous

paragraph, firm 1 can choose an inefficiently costly model to deter entry:

Proposition 7. Let My € My be an optimal choice of model for a monopoly incumbent.
Suppose there exists a model M| € My with cost c(M]) greater than c(My). Then there is
an open subset of pairs (cg,u) such that at equilibrium, firm 1 chooses a model M, € M,

with ¢(My) > c¢(My) and firm 2 does not enter.

The proposition shows that incumbent firms can overinvest in modeling costs to maintain
market power. As in Proposition 6, this happens when entry costs are intermediate and the
outside option is low. If we interpret the model cost as the cost of collecting data, this
overinvestment corresponds to practices often termed building a ‘data moat’ in the context
of artificial intelligence. The proposition illustrates potential inefficiencies associated with
these practices.

An intuition is that investing to reduce variance makes entry less profitable for the com-
petitor, and the incumbent will make such an investment if doing so will deter entry. As
in Proposition 6, the result implies two inefficiencies. First, entry is inefficiently low at the
equilibrium described in the result. Second, the firm spends an inefficiently high amount on
data even assuming a monopoly: the firm purchases data with cost higher than its value to

the consumer.

Propositions 6 and 7 show how an incumbent can deter entry by an incumbent by choosing
an inefficient model, giving rise to inefficiently concentrated market structures. This is in
spite of the fact that our framework favors competition and entry by allowing the consumer

to buy all models available to her.
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5 Conclusion

This paper proposed a theoretical framework to study how firms that sell prediction models
compete in the market. We showed that market outcomes can be expressed in terms of the
bias-variance decompositions of the models that firms sell. This tractable characterization
of market outcomes allowed us to study how market structure depends on the statistical
properties of the models available to firms.

Our analysis delivers several key insights. First, symmetric firms can choose distinct
models that are complementary, which allows them to charge higher prices. Second, firms
may choose inefficiently biased or costly models to deter entry by competitors or to achieve
higher profits.

Our microfoundation for model choice has potential applications beyond the setup in this
paper. Market outcomes would continue to depend on the bias-variance decomposition of the
models that firms sell in frameworks that need not have all the features studied here (e.g.,
if consumers only purchase a single model). One natural direction is allowing heterogeneous
consumers, which would give another reason for model differentiation. Another is considering
objectives or welfare functions depending on more than mean-squared prediction error. As
one example, if the agent we term the ‘consumer’ is itself a firm predicting willingness-to-pay

and setting prices, better predictions may not always be desirable.
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A  Proofs

A.1 Proof of Proposition 1

Proof. We start by showing that equation (2) has a solution with non-negative prices. Fix

M, and let ¥(p) : REM) — REM) he defined by

Ui(p) = min  U(EM),M)-U(E''M) — Z '
(v) E'CEM)\{i} (BM), M) ( ) jeE(M)\E'p]
i

for each ¢ € E(M). Define

p= max U(EM),M)—U(EM)\{j},M)

JEE(M)

p=—(EM) - 1])p.

—]E(M)

Note that ¥ is continuous, and maps prices in [p,p to prices in [p, p|"™M) . Indeed, for

every p € [p, p|P™) and every i € E(M),
Vi(p) < U(E(M), M) — U(E(M)\{i},M) <P,

and

Ti(p) > = p;>p,
j#i

where the last inequality follows from the inequality p; < p and the definition of p. Hence,
by Brouwer’s fixed point theorem, there exists p € [p, p|FM™M) with U(p) = p.

Next, we show that any fixed point p of W satisfies p > 0. Let p be a fixed point of V.
Fix i € E(M), and let

E € ar min ~ U(EM),M) —-U(E'\M) — A
gE'CE(M)\{i} (B, M) ( ) jeE(zM:)\E’pj

JF#i
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We consider two cases: (i) |[E(M)\E| =1, so E = E(M)\{i}, and (ii) |[E(M)\E| > 2. In

case (i),

pi=U(EMM),M) —U(E,M) = S py = U(E(M), M) — U(E(M)\{i}, M) > 0,
JEE(M)\E

J#
since adding a model can only weakly increase the consumer’s payoff (because the consumer
can always assign zero weight to the added model). In case (ii), there exists k # i with

k ¢ E, and so

= i EM),M) — U(E',M) — :
Pk Efcé?ﬁ?)\{k}w (M), M) —U(E',M) | > o
JEE(M)\E'
ik
< U(E(M)a M) - U(E U {Z}a M) - Z by
JEE(M)\EU{i}
itk

— > p SUEM),M)-U(EU{i},M).

JEE(M)\EU{i}

Hence,

bi = U<E<M)7 M) - U(E7 M) - Z Pj
jeEj%)\E
> U(E(M), M) — U(E, M) — (U(E(M), M) — U(E U {i}, M))

— U(BU{i},M) — U(E,M) > 0.

Hence, if p = ¥(p), p > 0.
Next, we show that given any p solving (2), the subgame that starts at the pricing stage
has a SPNE in which firms set prices p, and in which the consumer buys all models in E(M).
Consider first the case with Ng = |E(M)| = 1, and note that the price p; of the only
entrant in (2) is p; = U(E(M),M) — U(0,M) = U(E(M),M) — u: i.e., the entrant charges

a price that extracts all the surplus from the consumer. Clearly, this is the only equilibrium
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price of the pricing subgame when there is one entrant.
Next, consider the case with Ny > 2. Note first that, under the prices in (2), the

consumer finds it optimal to purchase all models. To see this, note that

Vi, pi= min  U(EM),M)—U(E M) —
bopi= g min (E(M), M) = U( ) > ke
JEEM)\E
J#
Vi, U[EM)M) - g p;= max U(E''M E D;-
. E'CEM)\{i} f
JEEM) JjeE

Hence, at these prices, the consumer (weakly) prefers to buy all models in £(M) than to
buy any subset of models (including not buying any model).

Next, note that the payoff that the consumer obtains from purchasing all models is

U(E( - >

JEE(M)

while the payoff that the consumer gets from not purchasing model i € E(M) is

max U(E''M D,
E'CE(M)\{i} Z g
jeE
Hence, in any equilibrium of the pricing subgame in which the consumer buys all the models,
firm ¢ charges a price p; that leaves the consumer indifferent between buying all models or

not buying model ¢:

ECEUED SR AR 31

jeEE(M €L’

& p, = min UEM,M—UEI;M_ j
b E'CEM)\{i} (EM) ) ( ) ng(l\%\:E’,j;éipj
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A.2 Proof of Corollary 1

Proof. Fix models M, and suppose firm prices (p;) are given by (3). To establish the result,
we show that, under these prices, for each i € F(M),

UE''M i = U(E(M)\{i}, M). 6
poex (UM E ST gy = UM\ M) ©)
JEEM\E
JF

Note that this implies that prices (p;) given by (3) satisfy (2). Proposition 1 then implies
that these prices form a SPNE of the pricing subgame.

Note first that, when |E(M)| = 1, equation (6) automatically holds. Consider next the
case with |[E(M)| > 2. Pick i € E(M), and E' C E(M)\{i}, E’ # E(M)\{i}, so that there
exists k # i with k € E(M) but k ¢ E'. Let E” = E' U {k}, and note that

U(Elv M) + Z pj | — (E”’ M) + Z Dj
JEE(MM\E JEE(M)\E"
jF#i J#i

=U(E"\{k},M) — U(E", M) + pi
U(E"\{k},M) - U(E",M) + U(EM), M) — U(E(M)\{k},M) <0,

where the second equality follows since prices satisfy (3), and the inequality follows from

decreasing marginal returns. Hence,

UE", M) + E p; =UE U{k},M) + E p; > U(E' M) + E Dj-
JEE(MN\E" JEEM)\E'U{k} JEE(M)\E'
J# J#t ]#z

Since this inequality holds for all £ C E(M)\{i}, E' # E(M)\{i}, it follows that
VE'C EOM\{i}, UEMN\}M) 2UE M)+ > p;

JEE(M)\E'
J#i

and so (6) holds. O
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A.3 Proof of Proposition 2

Proof. Fix models M = (M;), and for each i let fiva (z) = M;(x, D). The total surplus
from models M is

2

TSM)=-E [ Y w™fpo@ —y| |- D M) -u

i€ E(M) i€ E(M)

Suppose the action profile M* maximizes total surplus. For each firm i, let fz* D<i>(') =
M (-, D@). Consider firm j and model M # M. Let f]/‘,DU)(') = M(-, D). Given optimal
weights and the prices in Corollary 1, the profit (net of entry costs) that firm j gets under
action profile M’ = (Mij, MJ’) is

2

H](M/):_]E w ZDZ )_y
i€E(M)
2
+E S WM @)y | | = (M)
i€ E(M*)\ {5}
=TS(M') = TS (M*,,0)

Note then that,

IL;(M') — II;(M*) = TS(M') =TS (M*,,0) — TS(M*) + TS (M*,0)

_‘77

= TS(M')—TS(M*)

IN

0.

Hence, the game has a SPNE in which firms choose M* and set the corresponding prices in

Corollary 1, and the consumer purchases all models and chooses weights optimally. O]
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A.4 Proof of Proposition 3

We begin with a lemma characterizing when models satisfy decreasing marginal returns.

Lemma 2. Models satisfy decreasing marginal returns when all firms have access to the

same model and u < —B — 3V — o2,

Proof. Note first that, when all firms choose the same model, it is optimal for the consumer

to assign equal weights to each model. Hence, for any set E C E(M)

2
1 -
UE,M)=-Efp. (Z Efi,Di - ?J)

i€l
1

—_B—
|E]

V — o,

where the last equality uses Lemma 1, together with all models being identical with bias B
and variance V', and with datasets being iid across firms (so that the variance of the averaged
prediction is 1/|E| the variance of each model).

Fix E C E(M), a nonempty E' C E, and j € E'. If |E’| > 2, then

UE',M) - U(E"\{j},M) = m
V .
S e M TR

If |E'| =1, then E' = {j}, and so
UE',\M) — U(E\{j},M)=-B -V —¢* —uw.
We consider two cases when |E'| = 1. If ' = E, then

U(E', M) = U(E"\{j},M) = U(E,M) = U(E\{j}, M).
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If £/ C FE, then

UE'M) - U(E\{j},M)=-B-V -0"—u

1 \% )
> 5V 2 EEr = = VM)~ UGG M),

where the first inequality follows by assumption. m

The proposition follows from a second lemma, which describes equilibrium outcomes and

surpluses:

Lemma 3. Suppose all firms are symmetric and have access to the same model M with
expected variance V and expected squared bias B.

In every pure-strateqy SPNE, firms’ entry decisions mazimize total surplus.

(i) If V < 2c¢, in every pure-strateqy SPNE one firm enters, and sets pricep = —B —V —

o —u. The consumer surplus is 0.

(1) If V' > 2¢, in every pure-strateqy SPNE the number of entrants is

NE:max{jEN:j(jL_l)Zc}, (7)

and all firms that enter charge price p = The consumer surplus is —B —

_2Ng—-1 v _ ;2
Nop—nV ~O0 U

S A
Ng(Ng—1)"

Proof. Consider first the pricing subgame. Suppose that Ng = |E(M)| firms entered the
market, and each choose the model M. Since all firms have the same model, by Corollary 1,
in an equilibrium in which all models are bought, all firms set a price equal to their marginal
contribution. Further, since each firm sells the same model given their data, the consumer
must weigh each model equally, that is, w; = NLE for all 4.

Using the bias-variance decomposition in Lemma 1, we can explicitly compute the equi-

librium price. If there is only one entrant,

p= K [(fl,D(l)(x> - y)2 —u=-B-V -0’ —u.
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If there are two or more entrants, Np > 2, then

| e 2 L Ne 27
p=—Esps (N_E ;sz(x) - y) +Efpg (NE T Z fipi(z) — y)

=1

| Ne ) ] Np—1 )
= Epe Y Z;VMD (fz’,Di (z) | 37) + Np—1)p Z_; Varp <fi,Di (z) | 37)
R V -
~ Np(Ng—1)

Note that price is strictly decreasing in the number of firms in the market when Ng > 2, and
that a firm’s profit is independent of B. Intuitively, the marginal value for the consumer of
purchasing one model is that it reduces the variance. At the same time, since all firms have
access to the same model, buying one more model leaves the bias unchanged.

Next, consider the stage where the firms are making entry decisions. The equilibrium
price p should be higher than the cost of entry ¢ so that firms are willing to enter. Hence, the
number of entrants is given by Ng in (7). One can check that Np maximizes total surplus
TS:—B—NLEV—O'Q—NEC—Q.

Now we consider surpluses. A firm’s surplus in equilibrium is just the price minus the
entry cost:

—B—-V—-0?—u—c ifNg=1

For consumer surplus, if Ng = 1, the market is a monopoly and equilibrium price is
such that the consumer is indifferent between purchasing the model and the outside option.

The monopolist extracts all surplus and thus, consumer surplus is 0. If Ng > 2, consumer
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surplus is equal to

1 & i
—Efa (N—E;fi(x)—y> —pNg —u
:_B_NLE_UQ_NEV—l__
2Ng — 1
= B—NE(AE;E_DV—JQ—U
This completes the proof. O

A.5 Proof of Proposition 4

Proof. Suppose firm 1 chooses M (t) and firm 2 chooses M (ty). Let w(t) be the weight the

consumer places on firm 1’s prediction. Firm 1’s payoff is

I1(t) = V(o) + Blto) — (1 — w(t))*(V (to) + B(to)) — w(t)*(V(t) + B(t))
—2w(t)(1 —w(t)) /bo(f, )b (f, z)dFdG — ¢
= V(to) + B(to) — (1 — w(t))*(V(to) + B(to)) — w(t)*(V(t) + B(t))
—2w(t)(1 — w(t))\/Blty) B(t) cos(8(t)) — c.

The result will follow from computing the first-order condition and second-order condition
for optimality of the best response M (t).
The optimal weights for the consumer also maximize firm 1’s payoff. So by the envelope

formula, we can calculate % taking w(t) to be constant. We then compute
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We now evaluate at ¢ = to. By symmetry, we have w(to) = 3. Since 6(ty) = 0, we obtain
the first-order condition

1, 1
= —ZB'(ty) = 0.
4V (to) 5 (t)) =0

We next consider the second-order condition. To calculate the second derivative, it is

helpful to write

Z(t) =/ B(to) (25% cos(0(t)) — /B(t)sin(0(t)) (9'(16))
and calculate
Z'(t) = \/Blty) (2% cos(6(t)) — % cos(6(t)) — B;Z) sin(6(¢))6'(t)

— V/B(#) cos(0()) 0 (1)? — /Bt sin(0(1)) 9”(t)) .

We then have

%g=—w®””®—w®“7®—2wﬂﬂ—wﬁﬂﬁ)

2wty () (V'(t) + B'(t)) — 2(1 — 2w(t))w' (t)Z(1).

We want to evaluate this expression at ¢ = to. Recall that w(ty) = 3 and 6(ty) = 0. We

can compute Z(tg) = —B/éto) and Z'(tg) = —an(tO) — % — B(t0)#'(to)*. So

d?11 L L / / ! B'(to)’
TRl = =1V (t0) — 5 B"(t0) ~ v/ () (V'(10) + B(t0) + oA
t=to

N B(to)

8 B(ty) 2 (o)’

The second-order condition requires that this quantity is non-positive. To complete the

proof, we will show that

—w'(to)(V'(to) + B'(t0)) =

37



We want to find w'(t,). The weight w(t) is chosen to minimize
w(t(V(5) + B(8)) + (1~ w(t)2(V (o) + B(to)) + 2w(t)(1 — w(t))v/B()Blto) cos(6(t)).
The first-order condition for w(t) gives
w(t)(V (1) + B(1)) + (w(t) — DV (to) + Blto)) + (1 — 20(t))v/B)Blto) cos(6(t)) = 0.

Implicitly differentating in ¢, we obtain

w'(t)(V () + B(t) + V(to) + Bl(to) — 2/ B(t)B(to) cos(6(t)))

Fule)(V() + B'(0) + (1~ 20(0))v/Blio) < [VBW cos((t))] = 0.

Substituting ¢ = ¢y, we have

V/(to) + B'(t)
4V (to)

w/(to) = —

Finally, the first-order condition V'(tg) + 2B'(ty) = 0 gives

B/(tO)Q
—(V'(to) + B'(to)w' (to) =
(V'(to) + B'(to))w' (o) V(1)
Substituting into the expression for ‘% above gives the result. O

=to

A.6 Differentiation in Linear Regression Models

Let BZ = E3[B7]. The following Lemma gives the bias-variance decomposition of the expected

mean squared error for the linear regression setting.

Lemma 4. Suppose firm i chooses model M; that includes |M;| < k covariates. Then, firm
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1’s prediction error is

_ T30 = 42 2201 . 2201 A o2 | M;|
El(y ﬂM—-+ﬁw|Mn+w@|MM»(;mﬂj) ®)

Bi=B{(e -2 E[30)?) VimE[(zTE[30)] 2T 30)2]

Proof. Fix amodel M; with |M;| = d < k, and assume wlog that model M; includes covariates

l=1,...,d. By Lemma 1, we have the following bias-variance decomposition:

A

E[(y—2"5%)? = 0® +Es,[(27 B—2"Epes[3V) I +Eg por o [(2 Epeys[37] =27 BD)?. (9)

Consider the second term on the RHS of (9), and note that

k 2
Epol(x"8 — 2 Epwys[8”])?] = Ese (Z wi(B - Epmm[@(i)]))

=1

[k
= Epo | Y27 (B = EposlB lmDQ]
Li=1

k

N Eu#fEs (8 — EposlB])?

=1

= E4[[18 — Epw 8P|,

where the second and third equalities use  ~ N(0, I;) and x independent of D® = (X;,Y;)
and 3, and the last equality again uses x ~ N (0, I},), and so E[z?] = 1 for all [.
Consider next the last term on the RHS of (9):

k 2
EB,D(i),x[(xTED(i)mw(i)] - xTﬁ(i))2] - E@D(i)@ (Z Xy (ED(i)w[Bl(Z)] - 5;”))

_E. 2 (g 30 _ 50
B8,D() Z D(z>|5[/31 ] 1

k » N2
Z]Ex [x?]E@D(i) (EDQ)W[@(U] - 5;”) ]

=1

= Es p [|Epws[87] — B9
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Hence,
E[(y — «"B9)’] = o” + g[8 — Eps[8]I1P] + Eg p [IEpe 53] — B9
Let Bar; = (B1)ien, denote the coefficients of the covariates included in M;. Note that
B, = (X Xian) T X0 Ye = (X Xian) ™ Xy (X B ) = B (X, Xinn) ™ X
where n =Y; — X, a, B, = Zf:dﬂ zifi+e~ N(0,03 x I) with 03 = Zf:dﬂ (% +0?. Then,
EDWW[BJ(\Z] = Bm; + ED(i)|B[(XgMiXi7Mi) vl = By,

where we used Epos[(X] ), Xia) ' X ym = 0 (since 7 is independent of X;y,, and
Epa sln] = 0). Since Bl(i) = 0 for all [ ¢ M;, and using Bye = (8))ign, and 32 = Ez[87], we

get

Es[|8 — EpoyslBV11% = Bslll B 2] = B (k — d) = B (k — | M),

Consider next the term Eg po| |ED(1)|5[ 9] — BD]|2]. Note that, since Bl(i) = 0 for all
[ ¢ M, Eg,p(i)[HED(i)m[ﬂ - B9 = Eﬁ,D<i)[||ED<i)|ﬂ[ﬂzw),-] - ](\2||2] Hence, using 51(\2- =
Bar, + (XTag, X)X yn and B s[B32] = B, we get

Es pol

IE ps[89] — BN = Es[Epoor 5| (Xi s, Xinr,) ™ X ps,ml17]]
= [Eg [ED(Z')|5[77TXZ',M¢ (X0, X)) ™ (X g X))~ X))
= Es[E o 5t (X, Xoan) ™ (Xian Xion) ™ X am” X))
= tr(Eg[Epw sl (X, Xoan) ™ (X Xion) ™ X Bl 1 X ]])
= tr (Es [Epwsl(Xia,Xing) ']o7])
d

= m(z (k—d) +0°)

where the fourth equality uses the independence of n and X; s, the fifth equality uses
E,[nm"] = o3I (since n ~ N(0,031), with 02 = (X1, 87 + 02)), and the last equality
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follows since Eg[87] = 52 and since (XZT a, Xi,) " has an inverse-Wishart distribution with

n degrees of freedom and scale matrix I, and so ED(i)|5[(XZT”MiXZ'7Mi)_1] = n—i—d[d' O

Suppose firms 1 and 2 enter the market with models M; and M,. Let w € [0, 1] denote

the weight that the consumer puts on model 1. The price the consumer pays for model 1 is
1 = El(y —2"5%) —El(y — wa” BV — (1 — w)a” O’
— ]E[(y — [ETB(Q))Q] _ 0'2 . w231 o w?v'l . (1 . w)232 . (1 o w)QVvQ
_ 2w<1 — U))]Ef,x[(f<x> - ]ED(l) [fAl,D(l) ($)|f, Jf])(f(l’) — ED(2) [f;’D(g) (x)|f7 SL’])]
=E[(y — 278?)? - 0% —w?B; — w?V; — (1 — w)?By — (1 — w)*Vy

—2w(l — w)F{l € {1, k} : 1 ¢ My UM}, (10)
where fz pi () = 2T 3@ is i’s prediction. The last equality follows since, for i = 1,2,

f(@) = Epo [fipo (2)| f, 2] = 278 - xTED(i)\B[B(i)] = Z By,

1¢M;

and so

Ef.[(f(x) = Epw[fipo (@)|f: ) (f (@) = Epe [fo pe ()], 2])

=Epa | Y (Bm) D (@'iﬂl')]
Ligar, U éMs

> a:m?]
_Z¢M1UM2

—B{le{1,. . k}:1¢ M UMY,

where the second and third equalities use z; ~ N (0, I) and [ independent of x.

Assume that the entry cost ¢(|M]) is strictly increasing and convex, with ¢(1) small. We
claim that if k is large enough, there is no equilibrium in which both firms enter with the

same model. To see why, note first that since firms’ payoff from entering is bounded above
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by the consumer’s outside option, for k large enough a firm that enters will choose a model
that excludes some covariates.

Suppose by contradiction that there exists an equilibrium in which both firms enter with
the same model M. By our arguments above M must exclude at least one covariate. Pick
le Mandl' ¢ M, and let M’ = MU{lI'}\{l}. That is, model M’ is equal to M, except that
it includes covariate I’ and does not include covariate [. Let B and V denote respectively,
expected squared bias and expected variance of model M. Note that since covariates are
exchangeable, model M’ also has squared bias B and variance V.

Firm 1’s payoft from choosing model M when firm 2 chooses M is
T A(2)\2 1 12 2
Bl(y — 27§ — 5(B+V) = 57 (b — [M]) — * — e(|M))

where we used (10) together with the fact that the consumer optimally chooses a weight of
1/2 when both firms sell the same model.

Instead, firm 1’s payoff from choosing model M’ when firm 2 chooses M is
T A(2)\2 1 122 2 /
Bl(y — 274 - 5(B+V) = 5 (k= [M] - 1) 0> — (M),

where we again used (10) and the fact that the consumer optimally chooses a weight of 1/2
when firms choose models M and M’. Since models M and M’ are equally costly, choosing

model M’ is a strictly profitable deviation.

Next, we consider entry costs that do not depend on model size, i.e., ¢(|M]) = ¢ for all
M. By Lemma 4, the model with covariates {1,...,d} for 0 < d < k has expected squared

bias and expected variance

By=B(k—d) and V; = (B°(k — d) + o?) (ﬁ) .
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The consumer’s utility from prediction if both firms use this model is
9 1
U(d) = —0°— Bg — 5Vd.

We compute that

2

(B (k> =3k(n —1) +2(n — 1)) — (n — 1)0?
2(n —k —1)2 '

—2
k—2n+2)+ 0
G A 2:_2”" and U'(k) =

We have U’'(0) > 0 and U'(k) < 0 if

k2 2
—Bk4+2m—2< 2 < —k+2n—2.
g

n—1

We can always choose 02 so these inequalities are both satisfied. This implies U(d) has an
interior maximum on the interval [0, k] C R. We want to find parameters such that U(d) has
an interior maximum on {0,1,...,k} C Z.

Note the signs of U’(0) and U’(d) are unchanged if we rescale k, n, and ¢ proportionally,
and their values converge. So we can choose these variables sufficiently large so that U(d) has
an interior maximum on {1,...,k} C Z. For these parameters, the efficient set of covariates
when both firms are constrained to use the same covariates is interior. Then the same
argument as in the costly covariates case above shows that this cannot be an equilibrium, so

there must be an equilibrium in which the firms use different covariates.

A.7 Proof of Proposition 5

Proof. The consumer’s expected payoff at the equilibrium with models (M, Ms) is

U<{1’ 2}’ (Mlv MQ)) —P1—P2= U({lv 2}’ (Mlv MQ)) - (U<{17 2}’ (Mh MQ)) - U({l}v (Mh MQ)))
— (U({L, 2}, (M1, Ma)) — U({2}, (M3, Mb)))
= U({1}, (My, M)) + U ({2}, (M, Ma)) — U({1,2}, (My, M)).
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We can assume without loss of generality that
U({1}, (My, Ma)) — co(My) > U ({2}, (My, My)) — c(Mo). (11)

The consumer’s expected payoff in the pricing subgame after firms choose models (M, M)

is

U<{1’ 2}a (Mla Ml)) —P1—P2= U({L 2}a (Mla Ml)) - Q(U({LQ}» (Mlle)) - U({1}7 (Mh Ml)))
= QU({1}7 (Mla Ml)) - U({la 2}7 (Mla Ml))

We must have
U<{1’ 2}’ (Mlv Ml)) - C(M1> < U({lv 2}7 (Mla MQ)) - C<M2) (12)

because otherwise firm 2 would deviate to choose M in the equilibrium with models (M, Ms).
Further note that U({1}, (M, My)) = U({1}, (M, M;)). Combining inequalities (11) and
(12) and adding U ({1}, (M, M;)) to both sides gives

U({1}, (My, M2))+U ({2}, (My, My))=U({1,2}, (My, Ms)) < 2U ({1}, (M1, My))—U({1, 2}, (My, My)).

This inequality shows that the consumer surplus at the equilibrium with differentiation is
weakly less than consumer surplus in the equilibirum of the pricing subgame after both firms

choose model M;. We further note the inequality is strict if either of (11) and (12) are. [

A.8 Proof of Proposition 6

Proof. Let V} = Efyx,D[(]EDU[fl(x)] — f1(x))? be the expected variance of M;. The payoff

to firm 2 from entering and choosing M, with bias constant a, and expected variance Vo =
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N A~

Efpo[(Epiflfo(x)] — fo(z))?] is po — ¢(Ms), where (omitting superscripts from weights)

=& (o) +wafte) 1)+ [ (o) -3)]

= (1 —w})(a?By + V1) — wi(a2By + V) — 2wiwyanay By by Lemma 1 and eq. (1).
So the payoff under firm 2’s optimal model choice is

max (1 —w?)(a?By+ V1) — (1 —w)*(a3By + V) — 2w(1l — w)aja By — ¢(Ms)
wel0,1],MaEMo

where w is the weight the consumer places on model M;. Firm 2 will enter if this maximum
is positive and will not enter if it is negative.
At M} = M*, we can perturb M; such that the derivative of a?By + Vi is zero but the

derivative of « is positive. This decreases
(1 —wH(aiBy+ V1) — (1 —w)*(a2By + V5) — 2w(1l — w)arae By — c(My)

for every feasible w and M,. Therefore this perturbation decreases the equilibrium payoff
for firm 2, which is the maximum over feasible w and M; of this expression, and so decreases
the value of entry. So there exists an interval of ¢; such that firm 2 would enter if firm 1
chooses any M; with oy < o (where o is the bias constant of M*) but not if firm 1 chooses
some M; with a; > «*. If the outside option is sufficiently low, firm 1 will choose such a

model M; at equilibrium. O
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A.9 Proof of Proposition 7

Proof. Suppose firm 1 chooses model M; with expected variance V. Firm 2’s payoff from

entering is

Do = max (gp(w, M) + (1 — w*)Vi — ¢ (Ms) — cf)

we(0,1],M2eMo

= (1 —-w?)V; — My) — ¢ (M.
(L—wWi—ept | max  (p(w, M) = em(Mr))

for some function p(w, M) that is independent of firm 1’s choice M;. So fixing c¢f, firm 2
chooses to enter if V; is above a threshold level and not to enter if V; is below this threshold
level.

Given € > 0, we can choose ¢y such that this threshold level is V" + ¢, where V" is the
expected variance of model M. Taking e sufficiently small, firm 2 would enter if firm 1
chooses model M; but not if firm 1 chooses model M. Then for u sufficiently negative,
it is optimal for firm 1 to choose a model such that firm 2 does not enter, which requires

c(My) > c(My). O
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