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Abstract
We analyze the mechanism-design problem of a principal allocating amounts of a perfectly
divisible good to n agents, each of whom desires as much of the good as possible. The prin-
cipal has an ideal allocation for each agent, which is private information held by that agent.
The principal has access to an auditing technology that allows her to perfectly uncover the
private information of any k (< n) of the agents. We present a tractable approach to solve for
the principal’s optimal mechanism, which combines targeted random audits with allocative
distortions to ensure compliance. Agents whose reported type falls above a cutoff enter a
pool for random audits. The allocation to audited agents coincides with the principal’s ideal.
For unaudited agents, upward distortions reward conservative reporting, while downward
distortions discipline over-reporting.

1 Introduction

Across regulatory, fiscal, and organizational settings, auditing serves as a fundamental tool for ensur-

ing compliance, whether to uphold public trust, enforce laws, safeguard financial stability, or maintain

internal accountability. Audits are crucial for verifying information, deterring misconduct, and rein-

forcing regulatory or organizational policies. Yet, across public agencies, tax authorities, and corpora-

tions, auditing capacity is often constrained by tight budgets and limited resources. These constraints

necessitate selective auditing strategies, raising the question of how best to deploy limited audits to

encourage truthful reporting and optimal resource use.

This paper analyzes the mechanism-design problem of a principal who must allocate resources to

agents with private information under a fixed auditing capacity. The goal of our analysis is to shed light

on how limited auditing capacity can be optimally managed and on the allocative distortions that arise

as agents strategically respond to the constraints imposed by limited audits. Our findings underscore

the trade-offs inherent in designing effective, resource-constrained compliance policies.

In our model, the principal (she) is tasked with allocating perfectly divisible units of a good to n

agents (he/they), each of whom desires as large an allocation as possible. The principal has an ideal
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target allocation for each agent, and incurs a loss for deviating from this target. The difficulty is that the

ideal allocation to an agent is private information held by that agent. In other words, each agent has a

privately known type, which corresponds to the principal’s bliss allocation for that agent. The principal

has access to an auditing technology allowing her to perfectly certify the type of any k of the agents,

where k < n. Under these constraints, the principal commits to a mechanism that specifies reports that

the agents can submit, which agents to audit based on these reports, and how much to allocate to each

agent based on the information gathered through reporting and audits.

For concreteness, let us map the model to the following regulatory situation. Consider an agency

allocating carbon emissions permits among a number of firms. These permits, often allocated at no

cost to firms,1 represent production flexibility. Thus, each firm prefers a larger allocation to operate

with less constraint. The regulator has an objective to curb emissions, but is also concerned with min-

imizing economic efficiency losses associated with disrupting the firms’ production processes. As a

consequence, the ideal permit allocation would depend on each firm’s unique abatement costs, which

are private information held internally. Although audits can reveal these abatement costs, the regulator

is limited in the number of audits they can conduct due to budget and staffing constraints.2

Our assumption that audits are costless but subject to a hard constraint merits further discussion.

Most of the literature on auditing (reviewed below) adopts the costly state verification paradigm, where

the number of audits that can be conducted is flexible, with each additional audit being costly. In con-

trast, we study situations where investment in auditing capacity may have been decided ex-ante, but

it is prohibitively costly to adjust it ex-post, conditional on the agents’ reports. We believe this scenario

is perfectly realistic in many environments, for instance in cases where the principal is a bureaucratic

entity operating with a fixed number of auditors available on the payroll and limited time to imple-

ment an allocation. This approach allows us to focus on the optimal use of a pre-established auditing

capacity. Furthermore, as we show in Section 5, the aforementioned distinction between ex-ante and

ex-post flexibility disappears as the number of agents grows large, with the costly state verification

problem nested as a limit case of our model. In other words, our fixed-auditing-capacity assumption is

more general and allows for a precise assessment of the benefits of ex-post flexibility.3

We solve for the principal’s optimal mechanism, which effectively determines an auditing strategy

and a resulting allocation rule. Let us now describe its main features. The optimal mechanism adopts

1For instance, in the EU, home to the largest and longest-operating emissions trading system (ETS), 43 percent of carbon
permits are allocated to firms for free (Matthes, Mehling, & Duan, 2021).

2This issue is highlighted in implementation guidelines as a crucial concern in practice. Matthes et al. (2021) devote an
entire chapter (Chapter 7) to challenges posed by limited auditing resources.

3We also discuss the robustness of our results to other alternatives in modeling the cost of auditing at the end of Section 5.
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a targeted random sampling approach to auditing. Each agent is asked to report his private type, with

a pre-specified cutoff in place for each agent. If an agent reports a type below his cutoff, he sidesteps

any chance of audit and receives a fixed basic allocation, which is equal to his cutoff. However, agents

reporting above their cutoff enter a random audit pool, from which up to k agents are selected for

verification.4 For agents reporting above their cutoff, the allocation depends on whether an audit occurs

and, if it does, on the audit’s outcome. Unsurprisingly, in order to encourage honest reporting, audited

agents who are found to have misrepresented their type are maximally punished with an allocation of

zero. Conversely, agents who are audited and verified as truthful receive an allocation exactly equal to

their reported type, which, recall, corresponds to the principal’s ideal allocation. Finally, agents in the

audit pool who are not selected for auditing receive an allocation that is deliberately distorted away

from the principal’s ideal.

Let us examine more closely some key implications from the structure of the optimal mechanism.

First, allocative distortions are specifically used to supplement auditing as a tool to discourage agents

from misreporting. In fact, two kinds of distortions arise within the mechanism. Agents whose report

falls below their cutoff receive more than their type (an upward distortion), while agents reporting

above the cutoff face a downward distortion in case they are not selected for an audit.5 Notably, it is

unnecessary to distort the allocation to an agent who has been audited (and truthful). Perhaps interest-

ingly, this feature can be interpreted as a reward for honesty: from the perspective of a truthful agent,

getting selected for an audit is good news as it implies an increase in his allocation. As an illustra-

tion, on the left panel (a) of Figure 1, we plot the allocation rule that is part of the principal’s optimal

mechanism under specific assumptions covered by our model.

Second, in equilibrium, the principal’s two instruments — audits and distortions — are optimally

combined so that agents may strictly prefer to report their true type but remain indifferent among all

possible lies. The intuition is simple. If an agent has a worst possible lie, it must be that either this lie

is highly likely to be detected or that the distortion when undetected is severe. Therefore, the principal

could (i) economize on scarce auditing resources by lowering the audit probability for that report,

or (ii) improve allocative efficiency by reducing the distortion when no audit occurs. The resulting

indifference among all lies implies a simple relationship between the interim probability that an agent

is audited and the allocation that he would receive if an audit does not occur, illustrated on the right

4It is possible that fewer than k agents may report above their cutoff on the equilibrium path. In this event, the principal’s
auditing capacity is not exhausted, despite the fact that it would be costless to audit up to k agents. The reason is that there
is no particular benefit to auditing agents reporting below their cutoff.

5Since upward distortions benefit the agent, they do not constitute an efficiency loss relative to the principal’s first-best
allocation, whereas downward distortions do.
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(b) Interim probability that an agent is audited, as
a function of the allocation he would receive if not
audited.

Figure 1: Solution to the principal’s mechanism-design problem in a special case with n = 2 symmetric
agents and k = 1 audit available. Types are independent and, for this special case, assumed to be uni-
formly distributed on [0, 1]. The principal’s payoff for allocating amount zi to agent i = 1, 2 with type ti
is (z1 − t1)− z1 ln(z1/t1) + (z2 − t2)− z2 ln(z2/t2). The optimal mechanism treats agents symmetrically.
The cutoff type is ≈ 0.1607.

panel (b) of Figure 1.

In the context of carbon permit allocation mentioned previously, the optimal mechanism derived

in this paper suggests the following approach. Each firm has the option to accept a basic permit de-

termined by observable characteristics, which ensures a minimum level of compliance with minimal

scrutiny. Firms seeking a larger allocation are free to request any amount, but targeted random audits

are such that their likelihood of being audited increases with the size of their request. Audited firms

receive efficient allocations if their claims are truthful, while misrepresentation leads to severe penal-

ties. Firms that are not audited, by contrast, receive permits intentionally skewed from their requested

amounts, with under-provision reinforcing compliance incentives.

This last feature may appear blatantly unfair at first glance. In effect, firms that report equally

honestly face different outcomes due to the random nature of audits, with truthful but unaudited firms

receiving less than they request. Nevertheless, the optimal mechanism can be viewed in a different

light. Firms’ allocations are determined by a graduated system: the more they request, the more they

receive, but full alignment with their request can only be granted after an audit. Given the limited
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auditing capacity, the inclusion of an element of chance reflects a practical necessity. Whether this

randomness constitutes unfairness is a matter of debate, as similar approaches, such as randomized

selection in research grant allocations, have often been defended as a step toward greater fairness.6

Literature Review.— As mentioned previously, the costly state verification framework has been the dom-

inant approach to study auditing, with foundational contributions by Townsend (1979), Gale and Hell-

wig (1985), Border and Sobel (1987), and Mookherjee and Png (1989). This literature has experienced

a revival in mechanism design environments without transfers, following the seminal contribution of

Ben-Porath, Dekel, and Lipman (2014). Significant recent contributions to the topic include Ben-Porath,

Dekel, and Lipman (2019), Erlanson and Kleiner (2020), Li (2020), Li (2021), Patel and Urgun (2022), and

Kattwinkel and Knoepfle (2023). Within this broad literature, our model is most closely related to the

problems studied by Harris and Raviv (1996) and Halac and Yared (2020).

Harris and Raviv (1996) apply costly state verification to the problem of budget allocation in or-

ganizations. Their environment is a special case of ours with a ternary type space and a particular

payoff structure for the principal, both of which are encompassed by our framework.7 Halac and Yared

(2020) generalize the model of Harris and Raviv (1996) in several key directions. However, motivated

by applications, they restrict attention to deterministic auditing rules. In our model, randomization in

auditing is unavoidable due to the fixed capacity constraint. In the limit when the number of agents

grows large, the limited-auditing-capacity and costly-state-verification frameworks coincide, and we

obtain the optimal (random) mechanism in a special case of Halac and Yared (2020)’s model. This re-

sult allows for a detailed qualitative and quantitative assessment of the value of randomization in their

problem, which we delve into in Section 5.

In contrast to the costly state verification framework, some papers have considered alternative as-

sumptions where verification is constrained rather than costly. Notable examples include Glazer and

Rubinstein (2004) and Carroll and Egorov (2019), who study environments where a single agent pos-

sesses multidimensional private information, and the principal is constrained in the number of di-

mensions she can audit. While this constraint is similar in spirit to our limited auditing capacity, the

strategic structure of the problem is different since, in our setting, each dimension corresponds to the

type of a distinct agent. The specific constraint that we impose on auditing is inspired by Erlanson and

Kleiner (2024), who study capacity-constrained verification in a setting involving a fixed number of

6See Fang and Casadevall (2016).
7The assumptions that we impose on the principal’s payoff are discussed in detail in Section 2. Regarding the type space,

we should emphasize that we allow for any compact Borel set (where the upper bound will be normalized to 1), including in
particular sets with three elements.
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goods to allocate across multiple agents. Relative to their framework, our model provides the princi-

pal with more flexibility in designing agent-specific allocative distortions, clarifying the role of limited

auditing capacity in shaping those distortions. Mylovanov and Zapechelnyuk (2017) also investigate a

form of constrained verification, where the principal’s ability to audit an agent is inherently tied to the

implemented allocation (“ex-post verification”).

Our paper focuses on auditing, which is related yet distinct from monitoring, where inspections are

employed to deter fraudulent behavior rather than to verify private information.8 Nevertheless, there

are meaningful parallels between our analysis and those of Mookherjee and Png (1994) and Bond and

Hagerty (2010), who emphasize the joint role of inspection frequency and the severity of penalties in

models of deterrence.9

2 Model

Environment.— We consider the mechanism-design problem of a principal (she) who must allocate

resources to n (≥ 2) agents (he, they). Agents are labeled by i ∈ {1, ..., n}. Throughout we use index

−i to refer to all agents except i. The set of feasible allocations is [0,∞)n, with typical element z =

(z1, ..., zn), where for each i, zi is the non-negative quantity assigned to agent i. Each agent i has a

type ti (∈ [0, 1]), which is his private information. Types are drawn independently. We denote Fi

the cumulative distribution function of type ti. Given the realized type profile t = (t1, ..., tn) and an

allocation z, the payoff to each agent i is zi, while the principal’s payoff is:

−
n∑

i=1

ℓi(ti, zi),

where for all i and ti, ℓi(ti, ·) : [0,∞) → R is uniquely minimized at ti. Without loss, we normalize

ℓi(ti, ti) = 0. Additional technical assumptions on the functions ℓi are discussed later.

In words, the principal’s problem is to allocate amounts of a good to each of n agents. Agents care

only about their own allocation, which we identify with their payoff.10 Those are a priori unbounded

at the top. However, we impose a non-negativity constraint on allocations, reflecting limited liability.

The principal has an ideal allocation for each agent, and incurs a loss for deviating from this target. The
8Strausz (2006) highlights this distinction in moral hazard environments.
9Enforcement resources are fixed in the short run in Bond and Hagerty (2010), analogous to our assumption of a fixed

auditing capacity.
10Since each agent’s payoff coincides with his allocation, one interpretation of the model is that the principal directly

allocates utils to each agent. In light of this interpretation, the model can be seen as a reduced-form representation of a
variety of settings, e.g. involving richer risk attitudes.
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challenge is that the ideal allocation for an agent is unknown to the principal, as it is private information

held by the agent.

We endow the principal with limited auditing capacity. Specifically, we assume that the principal

can perfectly verify, at no cost, the type of any k (< n) of the agents. Observe that, in the absence of

additional tools, the principal would have no means to elicit useful information from any of the agents.

We should also emphasize that the constraint on auditing is the only reason the agents are linked in

this model.

Technical Assumptions.— We introduce four technical assumptions regarding the principal’s payoff.

Assumption 1. For each i and zi, ℓi(·, zi) is Fi-measurable.

Assumption 1 is a minimal requirement for the principal to be able to evaluate the likelihood of

achieving any payoff.

Assumption 2. For all i and ti, ℓi(ti, ·) is convex.

Assumption 2 is not critical but is maintained throughout for clarity of exposition.11 It implies that

the principal is risk-averse, so she would not seek to implement a random mechanism just because she

likes randomness.

A consequence of Assumption 2 is that, for each i and ti, ℓi(ti, ·) has well-defined left- and right-

derivatives at each zi > 0. Throughout, we write (∂ℓi/∂zi)(ti, zi) to refer to an element of the interval

[(∂ℓi/∂zi)−(ti, zi), (∂ℓi/∂zi)+(ti, zi)]. The following assumption applies to any such selection.

Assumption 3. For each i and zi ∈ (0, 1), (∂ℓi/∂zi)(·, zi) is Fi-integrable.

Note that the assumption is only imposed for zi ∈ (0, 1). Since ℓi(ti, zi) is minimized when zi = ti,

(∂ℓi/∂zi)(·, zi) does not change sign on [0, 1] when zi /∈ (0, 1). Thus, even if the integral diverges, its

sign remains unambiguous.

In order to state our next assumption, we define D = {(t, z) ∈ [0, 1]× [0,∞) : 0 < z < t}, the set of

type-allocation pairs such that the allocation is below the type but non-zero. Observe that D is a lattice.

Assumption 4. For each i, the average loss, defined by (ti, zi) 7→ ℓi(ti, zi)/zi, is submodular on D.

11If one wishes to relax the convexity assumption, they may define ℓi(ti, ·), the biconjugate (convexification) of ℓi(ti, ·)
(Hiriart-Urruty & Lemaréchal, 2001). As long as ℓi(ti, ·) remains uniquely minimized at 0, the whole analysis that follows
applies to the model where we replace ℓi(ti, ·) by ℓi(ti, ·). Then, in order to recover a solution to the original problem, it is
sufficient to replace those allocations that fall where ℓi(ti, ·) and ℓi(ti, ·) do not coincide by lotteries, which are constructed to
achieve the convexified payoff.
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A large part of our analysis remains valid if Assumption 4 is violated: it is only used to estab-

lish monotonicity properties of solutions (see Lemma 3 and Proposition 2). Therefore, we defer our

discussion of the interpretation of this Assumption to Section 3, where those results are established.

For the moment, we emphasize that those four assumptions are satisfied by many natural modeling

choices to capture the loss associated to misallocation relative to an ideal allocation.

Examples.12

(i) For any i, suppose that ℓi(ti, zi) = ci(ti−zi), where ci is a convex function uniquely minimized at 0

with ci(0) = 0. Then Assumptions 1, 2, 3, and 4 are satisfied. Examples in this class include the standard

quadratic loss function with ci(x) = x2, the usual distance with ci(x) = |x|, or possibly asymmetric

losses between upward and downward misallocations, e.g. with ci(x) = ex + (x− 1/2)2 − 5/4.

(ii) [Bregman divergences] For any i, suppose that ℓi(ti, zi) = ci(zi)− ci(ti)− (zi − ti)c
′
i(ti), where ci

is a differentiable convex function. Then Assumptions 1, 2, 3, and 4 are satisfied. Examples in this class

include the standard quadratic loss function with ci(x) = x2, or losses related to relative entropy with

ci(x) = x ln(x), as for the introductory example of Figure 1.

Mechanisms.— Next, we formulate the principal’s mechanism-design problem. A standard revelation

principle applies and implies that it is without the loss of generality to restrict attention to direct and

truthful mechanisms. Therefore, a mechanism elicits simultaneous type reports from the agents. Con-

ditional on the profile of reports, the mechanism selects (possibly randomly) up to k agents to audit.

Conditional on the profile of reports and the information learned through auditing, the mechanism

selects (possibly randomly) a feasible allocation z ∈ [0,∞)n. Furthermore, it is an equilibrium for all

agents to report their type truthfully.

First, let us consider the auditing rule, which maps profiles of type reports into probability distribu-

tions over subsets of size at most k of the set of n agents, specifying whom are the audited agents. It will

be convenient (and equivalent13) to specify directly the probability that each agent gets audited. That

is, an auditing rule is given by a (F1, ..., Fn)-measurable function q : [0, 1]n → [0, 1]n, where for each

(t1, ..., tn) ∈ [0, 1]n and each i ∈ {1, ..., n}, qi(t1, ..., tn) is the probability that agent i gets audited when

the profile of type reports is (t1, ..., tn). Since at most k agents are audited, the following constraint

must be satisfied.
n∑

i=1

qi(t1, ..., tn) ≤ k, ∀(t1, ..., tn) ∈ [0, 1]n. (1)

12Formal proofs of the claims associated to those examples are presented in Appendix B.
13See Appendix C.
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In what follows, we refer to q as the ex-post auditing rule. It will also be useful to define the interim au-

diting rule {Qi}1≤i≤n, where for each i, Qi : [0, 1] → [0, 1] maps agent i’s type report into his probability

of being audited if all other agents are truthful. That is:

Qi(ti) =

∫
[0,1]n−1

qi(ti, t−i)dF−i(t−i). (2)

Let us turn to the allocation rule, specifying which allocation is implemented conditional on the

reports and the information learned through auditing. Notice that, without the loss of optimality, the

allocation implemented by the mechanism can be assumed to be deterministic. This follows from the

fact that the agents are risk-neutral in the allocation they receive, and Assumption 2.14 Furthermore, it

can be assumed that, for each i, the amount zi allocated to agent i depends only on (a) his own type

report, (b) whether he is audited or not, and (c) in case he is audited, whether his report is truthful or

not. The reason is that, at the reporting stage, only interim evaluations of agent i’s probability of being

audited and expected allocations are payoff relevant. There is no resource constraint on allocations, so

interim allocations can always be trivially implemented ex-post. As a result, we can simply identify

each agent’s interim allocation with his ex-post allocation. However, due to the capacity constraint

on auditing, the dependence of each agent’s allocation on whether he is audited or not must remain

explicit. Let us denote xi(ti) the amount allocated to agent i if he is audited and found to have reported

his type ti truthfully. If agent i is audited and found to have misreported his type, it can be assumed

that he is allocated 0. This way, deviations from truthful reporting are maximally punished. Finally, we

denote yi(ti) the amount allocated to agent i if his report is ti and he is not audited by the mechanism.

It remains to express the incentive-compatibility constraints, which guarantee that it is an equilib-

rium for all agents to report their type truthfully.

Qi(ti)xi(ti) + [1−Qi(ti)]yi(ti) ≥ [1−Qi(t̂i)]yi(t̂i), ∀i∀ti∀t̂i. (3)

To summarize, a mechanism is of the form (q, {Qi}1≤i≤n, {xi}1≤i≤n, {yi}1≤i≤n), where q : [0, 1]n →

[0, 1]n is (F1, ..., Fn)-measurable and, for each i, Qi : [0, 1] → [0, 1], xi : [0, 1] → [0,∞), and yi : [0, 1] →

[0,∞) are Fi-measurable. A mechanism is feasible if constraints (1), (2), and (3) are satisfied. Let us

denote M the set of all feasible mechanisms.15 The principal chooses a mechanism in M to minimize

14See also footnote 11.
15The set of feasible mechanisms is non-empty. For example, setting, for each i, qi(t1, ..., tn) = k/n for all (t1, ..., tn),

Qi(ti) = k/n for all ti, and xi(ti) = yi(ti) = 0 for all ti, defines a feasible mechanism, which audits agents uniformly at
random and allocates 0 in any case.
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her expected loss:

n∑
i=1

∫
[0,1]

[
Qi(ti)ℓi

(
ti, xi(ti)

)
+
[
1−Qi(ti)

]
ℓi
(
ti, yi(ti)

)]
dFi(ti).

3 Optimal Mechanism

This section lays out our approach to solve the principal’s problem. As a first step, we fix an arbitrary

auditing rule and study the problem of finding optimal allocations given this auditing rule. We show

that, in an optimal mechanism, for each i, the functions xi and yi can be assumed to take a simple

form, parameterized by agent i’s best deviation payoff θi (∈ [0, 1]). As a second step, we show that the

structure of those optimal allocations helps narrow our search for an optimal auditing rule. Indeed, we

can, without loss, restrict attention to economical auditing rules, which minimize the expected number

of audits conducted without affecting the equilibrium allocations. As a result, the principal’s problem

reduces to a well-behaved optimization problem over the auditing rule and the vector θ ∈ [0, 1]n of

best-deviation payoffs, which we analyze in a third step. A generalized first-order approach applies

and characterizes a solution. In general, the characterization remains difficult to work with. However,

using Assumption 4, we show that an optimal mechanism treats each agent monotonically in his type.

Therefore, in a fourth and final step, we develop an operational characterization of this monotonic

solution.

Optimal Allocations for a Given Auditing Rule.— In what follows, we take as given a feasible auditing

rule (q, {Qi}1≤i≤n). Let us first introduce a notation. Given a vector θ ∈ [0, 1]n, we denote mθ (∈ M)

the mechanism with auditing rule (q, {Qi}1≤i≤n) and allocation rule defined by:16

x∗i (ti) = max{θi, ti}, y∗i (ti) = max
{
θi,min

{
ti, θi/[1−Qi(ti)]

}}
, ∀i∀ti. (4)

Observe that mθ is indeed a feasible mechanism. Measurability restrictions are inherited from Qi and

ti 7→ ti. Moreover, the incentive compatibility constraints (3) hold. To see this, note that, for each i and

ti, x∗i (ti) ≥ θi and y∗i (ti) ≥ θi, hence Qi(ti)x
∗
i (ti) + [1 − Qi(ti)]y

∗
i (ti) ≥ θi. That is, truthful reporting

guarantees an expected payoff of at least θi. In addition, for any deviation t̂i, either y∗i (t̂i) = θi or

y∗i (t̂i) = min
{
t̂i, θi/[1−Qi(t̂i)]

}
≤ θi/[1−Qi(t̂i)], thus in any case [1−Qi(t̂i)]y

∗
i (t̂i) ≤ θi. That is, agent

i’s best deviation expected payoff is bounded above by θi.
16In the definition of y∗

i (ti), if it happens to be the case that Qi(ti) = 1, we interpret the fraction with 0 in the denominator
θi/[1−Qi(ti)] as ∞, so that min

{
ti, θi/[1−Qi(ti)]

}
= ti ∈ [0,∞).
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Our first result establishes that an optimal mechanism is of the form mθ, for some θ ∈ [0, 1]n.

Lemma 1. For any feasible mechanism m = (q, {Qi}1≤i≤n, {xi}1≤i≤n, {yi}1≤i≤n) ∈ M, there exists θ ∈

[0, 1]n such that the principal prefers mθ to m.

Proof. See Appendix A.1

Let us briefly sketch the logic of the arguments leading to Lemma 1. A key observation is that an

agent’s type does not directly affect his own payoff. As a result, for each agent i and type t̂i, all types

ti ̸= t̂i would have the same expected payoff from deviating to reporting t̂i. It follows that we can

define a single best deviation payoff θi for every type of agent i. Now, fixing the auditing rule and the

vector θ = (θ1, ..., θn) of best deviation payoffs, we can characterize allocations that are optimal point-

wise for the principal, subject to the constraints that each agent i (1) has expected payoff at least θi from

truthful reporting, and (2) has expected payoff at most θi from misreporting his type. Those point-wise

optimal allocations turn out to be x∗i and y∗i defined previously. Moreover, the proof of Lemma 1 also

establishes that the vector of best deviation payoffs θ can be taken in [0, 1]n.

Before proceeding, let us highlight some notable features of the optimal allocations. Recall that

the principal aims to allocate his type to each agent. Effectively, each agent i has a cutoff type θi. All

types of agent i below this cutoff are allocated the fixed amount θi, irrespective of whether they are

audited or not. In particular, allocations to the lowest types are distorted upwards in order to meet

incentive-compatibility constraints. Without this distortion, the lowest types, having little to lose due

to limited liability, would be the most prone to misreport. Allocations to types above the cutoff depend

on whether the agent is audited. If the agent is audited and found to be truthful, the allocation is always

weakly greater, serving as a reward for truth-telling. In fact, in the case of auditing, the allocation is

exactly the agent’s type, thus coinciding with the principal-optimal allocation. However, if the agent is

not audited, his allocation may be distorted downwards. This downward distortion to a type ti ensures

that it is not attractive for any other type to deviate to reporting ti.

Economical Auditing Rules.— The shape of the optimal allocations characterized in (4) suggests that, in

some cases, the allocation to a type ti of agent i does not depend on whether the agent is audited or

not (as long as he is truthful). Namely, if Qi(ti) > 1 − θi/ti,17 marginal changes in the probability of

auditing type ti do not affect the principal’s payoff. Since the principal’s auditing capacity is limited,

it is convenient and without the loss of optimality to restrict attention to auditing rules such that such

excessive auditing is excluded. This observation is formalized in the following Lemma.
17Observe that the condition Qi(ti) > 1− θi/ti includes the case ti < θi since probabilities are non-negative.
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Lemma 2. Without the loss of optimality, for any i, agent i is never audited when his type is below his best-

deviation payoff. That is:

ti ≤ θi ⇒ qi(ti, t−i) = 0, ∀t−i.

Moreover, for any type ti of agent i, we have:

Qi(ti) ≤ max{0, 1− θi/ti}.

Proof. First, observe that, for ti ≤ θi, agent i receives the same allocation θi irrespective of whether he is

audited or not. As a consequence, auditing type ti does not benefit the principal. Setting the probability

of audit to 0 in this case only slackens the auditing capacity constraint, without affecting the principal’s

payoff. In other words, we can assume that, for all t−i, qi(ti, t−i) = Qi(ti) = 0 = max{0, 1− θi/ti}.

Second, consider a type ti > θi. If Qi(ti) > 1 − θi/ti, then x∗i (ti) = y∗i (ti) = ti, so again the

allocation to that type does not depend whether he is audited or not. Therefore, a small reduction

in the probability of audit slackens the auditing capacity constraint without affecting the principal’s

payoff. Specifically, denote ε = (1 − θi/ti)/Qi(ti) ∈ (0, 1). For all t−i, we replace the probability of

auditing agent i by:

q̂i(ti, t−i) = εqi(ti, t−i).

This new auditing rule remains feasible and does not affect the induced allocations. Furthermore, the

corresponding interim probability of auditing type ti satisfies:

Q̂i(ti) = εQi(ti) = 1− θi/ti.

Optimal Audits.— Using Lemmata 1 and 2, we eliminate the allocations from the problem and sim-

ply optimize over the auditing rule and the vector of best deviation payoffs. Specifically, since types

of agent i below the cutoff θi are audited with probability 0, we can replace the amount allocated

conditional on a truthful audit by xi(ti) = ti. Similarly, following Lemma 2, the amount allocated con-

ditional on no audit can be replaced by yi(ti) = θi/[1 − Qi(ti)]. As a result, the principal’s choice set

reduces to the set, which we shall denote M̃, of elements of the form (θ, q, {Qi}1≤i≤n), where θ ∈ [0, 1]n,

q : [0, 1]n → [0, 1]n is (F1, ...Fn)-measurable and, for all i, Qi : [0, 1] → [0, 1] is Fi-measurable, such that
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constraints (1) and (2) are satisfied, as well as:

Qi(ti) ≤ max{0, 1− θi/ti}, ∀i∀ti. (5)

Given this definition, the principal’s problem is:

min
(θ,q,{Qi}i)∈M̃

n∑
i=1

∫ 1

0
[1−Qi(ti)]ℓi

(
ti, θi/[1−Qi(ti)]

)
dFi(ti). (6)

We tackle this problem using a first-order approach. Necessary and sufficient optimality conditions

are stated in the following result.18

Proposition 1. (θ, q, {Qi}i) ∈ M̃ is a solution to Problem (6) if and only if there exist ψ : [0, 1]n → [0,∞)

(F1, ..., Fn)-measurable and, for each i, λi : [0, 1] → R Fi-measurable, αi : [0, 1]n → [0,∞) (F1, ..., Fn)-

measurable, βi : [0, 1]n → [0,∞) (F1, ..., Fn)-measurable, γi ∈ [0,∞), and δi ∈ [0,∞), such that, for all

i: ∫ 1

0

∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
dFi(ti)− γi + δi = 0, (7)

γiθi = 0, (8)

δi(1− θi) = 0, (9)

and for all i and (t1, ..., tn):

λi(ti) = ℓi

(
ti,

θi
1−Qi(ti)

)
− θi

1−Qi(ti)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
, (10)

βi(t1, ..., tn)− αi(t1, ..., tn) = λi(ti)− ψ(t1, ..., tn), (11)

αi(t1, ..., tn)qi(t1, ..., tn) = 0, (12)

βi(t1, ..., tn)[1− qi(t1, ..., tn)] = 0, (13)

ψ(t1, ..., tn)

 n∑
j=1

qj(t1, ..., tn)− k

 = 0. (14)

Proof. See Appendix A.2.

18As discussed in Section 2, the generalized partial derivatives of the loss functions ℓi with respect to its second argument
are well-defined. At points where ℓi(ti, ·) is not differentiable, the corresponding optimality condition should be understood
as an inclusion. See Clarke (1990).
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Let us discuss in turn each condition. Condition (7) is a first-order condition with respect to agent

i’s best-deviation payoff θi, where γi and δi are Lagrange-multipliers associated to the boundary con-

ditions 0 ≤ θi ≤ 1. Conditions (8) and (9) are the corresponding complementary-slackness conditions.

Recall that types ti < θi of agent i receive an allocation that is distorted upward relative to the principal-

optimal allocation, while the allocation to types ti > θi is (weakly) distorted downward. Condition (7)

implies that, across all types of agent i, the marginal loss to the principal from upward distortions and

the marginal loss from downward distortions exactly compensate each other.

For each i and ti, condition (10) is a first-order condition with respect to the interim probability

Qi(ti) of auditing type ti of agent i. On the left-hand side, λi(ti), which is the Lagrange multiplier

associated to constraint (2), can be interpreted as the interim evaluation of the marginal cost of auditing

type ti, to the extent that the principal’s auditing resources are limited. The expression on the right-

hand side captures the marginal benefit of auditing that type. Observe that there are two channels

through which auditing is beneficial. First, if an audit is conducted, the mechanism implements the

principal’s optimal allocation, whereas the allocation to non-audited types is distorted. This effect is

captured by the term ℓi(ti, θi/[1 − Qi(ti)]) in equation (10). Second, even in the event of no audit,

the increased likelihood that this type report would have been audited makes reporting type ti a less

attractive deviation to other types, implying that the allocative distortion for that type can be reduced.

This second benefit is represented by the term −(θi/[1−Qi(ti)]) · (∂ℓi/∂zi)(ti, θi/[1−Qi(ti)]), which is

non-negative when ti > θi.

Let us now consider the remaining conditions (11)-(14), which relate the interim optimality of the

auditing rule from condition (10) to its ex-post feasibility. Condition (11) is a first-order condition with

respect to the ex-post probability qi(t1, ..., tn) of auditing agent i, where αi(t1, ..., tn) and βi(t1, ..., tn)

are Lagrange-multipliers associated to the constraints that 0 ≤ qi(t1, ..., tn) ≤ 1, while ψ(t1, ..., tn) is the

Lagrange-multiplier associated to the auditing capacity constraint (1). Conditions (12), (13), and (14)

are the corresponding complementary-slackness conditions. Those conditions yield useful insights

about the structure of the ex-post auditing rule. In particular, if λi(ti) > ψ(t1, ..., tn), since αi(·) and

βi(·) are both non-negative, then it must be that βi(t1, ..., tn) > 0, which, by complementary slack-

ness, implies that qi(t1, ..., tn) = 1. Similarly, λi(ti) < ψ(t1, ..., tn) implies that αi(t1, ..., tn) > 0 and

qi(t1, ..., tn) = 0. These observations suggest the following structure. Given a profile of type reports

(t1, ..., tn), agents are ranked by according to the profile (λ1(t1), ..., λn(tn)) of marginal costs of audit.

The multiplier ψ(t1, ..., tn) can be assumed to be equal to the maximum between 0 and the kth largest

λi(ti). Those agents with λi(ti) > ψ(t1, ..., tn) are audited with probability 1, while those agents with
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λi(ti) < ψ(t1, ..., tn) are audited with probability 0. The mechanism possibly randomizes among agents

with λi(ti) = ψ(t1, ..., tn) in case of ties for the kth position in the ranking. Now, for a fixed agent i,

notice that λi(ti) depends only on that agent’s own type ti. Thus, for any profile of other reports t−i,

the higher λi(ti), the more likely it is that agent i gets audited. Furthermore, we have the following

result.

Lemma 3. Under the hypotheses of Proposition 1, for each i, λi(·) is monotonic on [θi, 1].

Proof. See Appendix A.3.

Building on Lemma 3, we obtain the following result.

Proposition 2. Without loss, a solution to problem (6) features a monotonic interim auditing rule. That is, for

all i, Qi(·) is weakly increasing.

Proof. See Appendix A.4.

The proofs of Lemma 3 and Proposition 2 crucially rely on Assumption 4. To understand why, it is

useful to reformulate the integrand in the principal’s objective in Problem (6) in terms of the allocation

rule:

[1−Qi(ti)]ℓi

(
ti,

θi
1−Qi(ti)

)
= θi

ℓi (ti, yi(ti))

yi(ti)
,

where, recall, the identity yi(ti) = θi/[1−Qi(ti)] follows from the restriction to economical auditing rules,

which limit the use of auditing to ensuring incentive compatibility. In other words, since (i) distortions

arise only when the agent is not audited, and (ii) the probability that the agent is not audited is in-

versely proportional to the allocation he would receive in that case, the principal’s effective objective

is, for fixed θi, to minimize the average loss per unit allocated to each type of the agent. Assumption

4 precisely imposes discipline on this effective objective. Indeed, it requires that, for a downward-

distorted allocation, reducing the distortion by a fixed amount leads to a larger decrease in the average

loss to the principal when the agent’s type is higher. As a consequence of this assumption, an optimal

mechanism treats each agent monotonically in his own type. By Proposition 2, higher type are more

likely to be audited. Furthermore, it follows that both xi and yi are monotonic.

Reduced-Form Optimal Auditing.— Proposition 2 has important consequences in terms of tractability. Let

us explain why. Notice that, in the formulation problem (6), only the best-deviation payoffs and the in-

terim auditing rule directly enter the principal’s objective, whereas the ex-post auditing rule is relevant

exclusively for feasibility of the interim auditing rule. Therefore, the problem could be simplified if we
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could abstract away from the ex-post auditing rule and rely on a direct characterization of the feasible

interim auditing rules. This very issue turns out to have been relevant in Auction Theory.19 Following

seminal contributions by Maskin and Riley (1984) and Border (1991), Che, Kim, and Mierendorff (2013)

provide a general characterization of feasible interim rules, which can be applied to our context. This

characterization is a priori hardly operational. However, having now established that we can restrict

attention to monotonic interim auditing rules by Proposition 2, the formulation of the reduced-form

problem drastically simplifies, as we show next. We rely on the following result by Che et al. (2013).

Lemma 4. For each i, let Qi : [0, 1] → [0, 1] Fi-measurable and non-decreasing. There exists a feasible ex-post

auditing rule q consistent with {Qi}1≤i≤n if and only if:

n∑
i=1

∫ 1

si

Qi(ti)dFi(ti) ≤
∫
[0,1]n

min {k,#{i : ti ≥ si}} dF(t), ∀(s1, ..., sn). (15)

Proof. Immediate application of Theorem 5 in Che et al. (2013).

Following Lemma 4, we further reduce the principal’s choice set to the set M of elements of the

form (θ, {Qi}1≤i≤n}), where θ ∈ [0, 1]n and, for each i, Qi : [0, 1] → [0, 1] is Fi-measurable and non-

decreasing. Furthermore, constraints (5) and (15) must be satisfied by elements of M. The principal’s

problem becomes:

min
(θ,{Qi}i)∈M

n∑
i=1

∫ 1

0
[1−Qi(ti)]ℓi (ti, θi/[1−Qi(ti)]) dFi(ti). (16)

In this reduced-form problem, the optimality conditions analogous to Proposition 1 can be ex-

pressed as follows.

Proposition 3. (θ, {Qi}i) ∈ M is a solution to the principal’s reduced-form problem (16) if and only if there

exist vectors γ ∈ [0,∞)n and δ ∈ [0,∞)n, a positive measure µ on [0, 1]n,20 and for each i, an Fi-measurable

function νi : [0, 1] → [0,∞), such that:

n∑
i=1

∫ 1

si

Qi(ti)dFi(ti) =

∫
[0,1]n

min {k,#{i : ti ≥ si}} dF(t), µ− a.s.,

19The formal connection is intuitive. In our setting, the principal has a limited number of audits to assign across multiple
agents who, at the reporting stage, care about the probability that they will be audited. In an auction setting, the principal has
a limited number of goods to allocate across multiple agents who, at the bidding stage, care about the probability that they
will obtain a good.

20More precisely, µ must be defined on the sigma algebra of (F1, ..., Fn)-measurable subsets of [0, 1]n.
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for all i: ∫ 1

0

∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
dFi(ti)− γi + δi = 0,

γiθi = 0,

δi(1− θi) = 0,

and for all i and ti:

µ
(
[0, ti]× [0, 1]n−1

)
− νi(ti) = ℓi

(
ti,

θi
1−Qi(ti)

)
− θi

1−Qi(ti)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
,

Qi(ti)νi(ti) = 0.

The proof is analogous to that of Proposition 1, so we do not repeat the argument. The measure

µ acts as a Lagrange multiplier associated to constraint (15). The first condition is the corresponding

complementary-slackness condition. The following three conditions are identical to conditions (7), (8),

and (9). The next condition is a reformulation of condition (10), where λi(ti) is decomposed into the

difference between a positive part µ
(
[0, ti]× [0, 1]n−1

)
and a negative part νi(ti). The interpretation

remains the same: λi(ti) is an evaluation of the marginal cost of auditing type ti of agent i. This term

may be positive due to the principal’s limited auditing resources, which are now captured by constraint

(15). Thus, the positive part directly corresponds to the impact of type ti on the Lagrange multiplier

associated to (15). In addition, the negative part νi(ti) is the Lagrange multiplier associated to the

non-negativity constraint Qi(ti) ≥ 0. By complementary slackness, expressed as the final optimality

condition, this negative part plays a role only for those types that the principal finds optimal not to

audit at all.

Let us also remark that it is not necessary to define Lagrange multipliers associated to the mono-

tonicity constraint on Qi nor constraint (5). This follows from arguments similar to those used in the

proofs of Propositions 1 and 2.

Summary.— As we illustrate in the next section, Proposition 3 provides a practically useful charac-

terization of solutions to the principal’s problem. The optimality conditions can be used to construct

candidate solutions and to certify their optimality. Before moving on, let us briefly take stock of our

findings so far regarding the structure of an optimal mechanism.

From the interim perspective, each agent i is treated monotonically in his own type. In terms of the

auditing rule, the best deviation payoff θi corresponds to a cutoff type. Types below the cutoff are not
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audited. Types above the cutoff are audited randomly, with a probability Qi(ti) that is monotonic in

the type ti. The allocation to an audited agent (if truthful) matches the type xi(ti) = ti. If the agent

is not audited, his allocation satisfies yi(ti)[1 − Qi(ti)] = θi. This allocation rule implies that the agent

remains indifferent between any lie.

We can abstract away from the problem of constructing an optimal ex-post auditing rule. However,

the optimality conditions of Proposition 1 still provide some insight into the structure of optimal ex-

post auditing rules. Specifically, types of agent i above the cutoff θi are mapped into a non-decreasing

index λi(ti). Now, given a profile (t1, .., tn), agents are ranked according to their respective λi(ti), and

the mechanism selects agents to audit in order of this ranking until possibly reaching the full capacity

k. Ex-post randomization may remain needed when multiple agents tie for the kth position.

4 Illustration of Explicit Constructions

In this section, we illustrate how to use the optimality conditions of Proposition 3 to construct an ex-

plicit solution to the principal’s problem and certify its optimality. For clarity, we slightly simplify the

problem and restrict attention to symmetric environments. That is, we assume that for all i, ℓi = ℓ

and Fi = F , where F is an atomless cumulative distribution function on [0, 1]. This last assumption

simplifies the exposition by ensuring that agents almost surely have different types.

Since the agents are ex-ante symmetric, an optimal mechanism is symmetric.21 Therefore, from now

on, we omit the index i and denote by θ ∈ [0, 1] the cutoff type and Q(·) the interim auditing rule. In

the symmetric case, the reduced-form auditing capacity constraint takes a particularly simple form:

∫ 1

s
Q(t)dF (t) ≤

∫ 1

s
Rn

k (t)dF (t), ∀s, (17)

where Rn
k is the interim evaluation of the rank-based auditing rule, which audits agents with the k

highest reported types. That is, since F has no atom:22

Rn
k (t) =

k−1∑
j=0

(
n− 1

j

)
F (t)n−1−j [1− F (t)]j .

21To see this, observe that, given an optimal mechanism, one can create n! optimal mechanisms by relabeling the agents.
In each of these, agent’s have the same optimal strategy to report their type truthfully, and the principal achieves the same
expected payoff. The mechanism consisting of privately randomizing uniformly among the n! possible relabelings is a sym-
metric direct mechanism in which it is an equilibrium for all agents to report their type truthfully. In addition, the principal
again achieves the same expected payoff, so it is an optimal mechanism.

22It would be easy to adjust the notations in case F has atoms, observing that, due to symmetry, ties must be broken
uniformly at random.
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A first remark is that, having imposed symmetry and ruled out atoms, we can guarantee that the

cutoff type θ is interior. Indeed, suppose by contradiction that θ = 0. Then, the symmetric counterpart

to condition (7) would imply: ∫ 1

0

∂ℓ

∂z
(t, 0) dF (t)− γ + δ = 0,

with, for all t > 0, (∂ℓ/∂z)(t, 0) < 0, γ ≥ 0, and δ = 0 since θ = 0 < 1. This obviously cannot hold. A

similar argument rules out the possibility that θ = 1.

With this remark in mind, the optimality conditions of Proposition 3 can be translated under our

simplifying assumptions as follows:

∫ 1

s
Q(t)dF (t) =

∫ 1

s
Rn

k (t)dF (t), µ-a.s., (18)

∫ 1

0

∂ℓ

∂z

(
t,

θ

1−Q(t)

)
dF (t) = 0, (19)

µ(t)− ν(t) = ℓ

(
t,

θ

1−Q(t)

)
− θ

1−Q(t)
· ∂ℓ
∂z

(
t,

θ

1−Q(t)

)
, ∀t, (20)

Q(t)ν(t) = 0, ∀t, (21)

where ν : [0, 1] → [0,∞) is F -measurable and µ is a positive measure on [0, 1]. As in condition (20), we

write µ(t) for µ([0, t]).

Next, we investigate necessary implications of those conditions. In particular, we show that we can

partition the type space [0, 1] into different regions. Moreover on each region, we can derive an explicit

parameterized functional form for the interim auditing rule Q. Thus, finding a solution boils down to

identifying the boundaries of those regions together with the corresponding parameters which satisfy

the feasibility constraints and the optimality conditions (18)-(21).

As a first step, we write [0, 1] = suppµ ∪ ([0, 1] \ suppµ). On the support of µ, by condition (18), the

reduced-form auditing capacity constraint (17) binds. As a consequence, we can set, without loss:

∀t ∈ suppµ, Q(t) = Rn
k (t).

To see this, consider t ∈ suppµ. We have, for all t′ ≥ t,
∫ 1
t′ Q(u)dF (u) ≤

∫ 1
t′ R

n
k (u)dF (u), with equality

at t′ = t. Thus, for all t′ > t,
∫ t′

t Q(u)dF (u) ≥
∫ t′

t Rn
k (u)dF (u). Furthermore, recall that Q must be

monotonic and that Rn
k inherits the continuity of F . Hence, it must be the case that: limt′→t,t′>tQ(t′) ≥

Rn
k (t). Moreover, a similar argument implies that limt′→t,t′<tQ(t′) ≤ Rn

k (t). If the two limits coincide,
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then it must be the case that Q(t) = Rn
k (t) by monotonicity. Otherwise, it is without loss to redefine

Q(t) = Rn
k (t) at that point, since Q has a measure zero of such discontinuities, again by monotonicity

(and using the fact that F is atomless).

The previous argument specifies an explicit solution forQ on suppµ. Next, we derive an expression

for Q outside suppµ. As a special case, consider the region below the support of µ, that is for t ∈ [0, t0),

where t0 denotes the lower end of suppµ. Observe that, for t ≤ θ, Q(t) = 0, so constraint (17) must be

slack below θ, implying that t0 ≥ θ. If there exists t ∈ (θ, t0), condition (20) at that point can only be

satisfied with µ(t) = ν(t) = 0, thus Q(t) = 1− θ/t. Combining those observations, we conclude that:

∀t < t0, Q(t) = max{0, 1− θ/t}.

By definition, t0 ∈ supp(µ). Hence Q(t0) = Rn
k (t0) ≥ 1 − θ/t0, where the inequality is by mono-

tonicity of Q. In addition, with Rn
k (t0) > 0, condition (20) implies:

ℓ

(
t0,

θ

1−Rn
k (t0)

)
− θ

1−Rn
k (t0)

· ∂ℓ
∂z

(
t0,

θ

1−Rn
k (t0)

)
= µ(t0) ≥ 0.

As a consequence, since ℓ(t0, ·) is convex and minimized at t0, it must be the case that θ/[1−Rn
k (t0)] ≤ t0,

or equivalently Rn
k (t0) ≤ 1 − θ/t0. As a result, we obtain the following condition, which relates t0 to

the best deviation payoff θ:

Rn
k (t0) = 1− θ/t0.

Another special case concerns the region above the support of µ. Indeed, note that Rn
k (t) −−→

t→1
1,

since the rank-based auditing rule must audit with probability converging to 1 an agent whose type

approaches 1. However, by constraint (5), Q(t) is bounded above by 1 − θ < 1. As a result, constraint

(17) must be slack for s sufficiently close to 1. Therefore, there exists t1 < 1, such that µ(t) is constant on

(t1, 1]. Let us denote µ1 the value of this constant. On this interval, ν(t) = 0, so condition (20) implies:

µ1 = ℓ

(
t,

θ

1−Q(t)

)
− θ

1−Q(t)
· ∂ℓ
∂z

(
t,

θ

1−Q(t)

)
.

Equivalently, we can write:

∀t > t1, Q(t) = 1− θ

yµ1
(t)
,

where yµ1
(t) is solution to ℓ(t, y)− y(∂ℓ/∂z)(t, y) = µ1.

Note that the expression Q(t) = 1 − θ/yµ1
(t) remains valid at the top as long as constraint (17)
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remains slack. Thus, t1 can be defined as the upper boundary of the support of µ, where:

∫ 1

t1

(
1− θ

yµ1
(t)

)
dF (t) =

∫ 1

t1

Rn
k (t)dF (t).

This is a condition relating µ1, t1, and θ. A second condition is obtained by monotonicity of Q and µ.

Indeed, by monotonicity of Q, we must have:

lim
t→t1,t>t1

(
1− θ

yµ1
(t)

)
≥ Rn

k (t1).

On the other hand, monotonicity of µ requires:

ℓ

(
t1,

θ

1−Rn
k (t1)

)
− θ

1−Rn
k (t1)

· ∂ℓ
∂z

(
t1,

θ

1−Rn
k (t1)

)
≤ µ(t1) = ℓ

(
t1, yµ1

(t1)
)
−yµ1

(t1)·
∂ℓ

∂z

(
t1, yµ1

(t1)
)
.

Since ℓ(t1, ·) is convex, we obtain equivalently:

Rn
k (t1) ≤ 1− θ

yµ1
(t1)

.

In particular, if yµ1
happens to be continuous at t1, we obtain an exact condition relating again the

parameters µ1, t1, and θ.

We now extend the logic applied to those two special cases in order to complete the construction.

Observe that [0, 1]\suppµ can be partitioned into a (at most) countable union of disjoint open intervals:

[0, 1] \ suppµ =
⋃
p∈N

Ip,

where I0 = [0, t0) and I1 = (t1, 1] correspond to the two special cases already discussed. For p ≥ 2, let

us denote Ip = (tp, tp). On each of those intervals, µ(t) must be constant, and we denote µp its constant

value. We have already discussed the case p = 0, with µ0 = 0. Thus, let us consider cases with µp > 0.

In this case, ν(t) = 0 on Ip, so condition (20) implies:

∀t ∈ (tp, tp), Q(t) = 1− θ

yµp
(t)
,

where, again, yµp
(t) is solution to ℓ(t, y)− y(∂ℓ/∂z)(t, y) = µp.

As for the special cases, we obtain conditions that relate the parameters µp, tp, and tp to the best-
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deviation payoff θ. First, note that constraint (17) binds at both boundaries, thus:

∫ tp

tp

(
1− θ

yµp
(t)

)
dF (t) =

∫ tp

tp

Rn
k (t)dF (t). (22)

Furthermore, similar to the previous cases, we have boundary conditions:

lim
t→tp,t>tp

(
1− θ

yµp
(t)

)
≥ Rn

k (tp) ≥ 1− θ

yµp
(tp)

, (23)

lim
t→tp,t<tp

(
1− θ

yµp
(t)

)
≤ Rn

k (tp) ≤ 1− θ

yµp
(tp)

. (24)

To summarize, we have obtained a full description of a candidate solution in terms of the parame-

ters θ and {µp, tp, tp}p. Those are restricted by conditions (22), (23), (24), and the optimality condition

(19). Reciprocally, to verify optimality of the candidate solution, it is sufficient to verify that, on suppµ,

the induced:

µ(t) = ℓ

(
t,

θ

1−Rn
k (t)

)
− θ

1−Rn
k (t)

· ∂ℓ
∂z

(
t,

θ

1−Rn
k (t)

)
remains monotonic.

For concreteness, let us apply this approach to the introductory example presented in Figure 1.

Example.— Suppose that there are n = 2 agents and only k = 1 audit available. Furthermore, the agents’

types are independently and identically distributed uniformly on [0, 1], that is F (t) = t. In this case, we

have:

R2
1(t) = t.

The principal’s loss function is assumed to take the functional form ℓ(t, z) = z ln(z/t) − (z − t). As a

consequence, we have:

ℓ(t, y)− y
∂ℓ

∂z
(t, y) = t− y,

so that:

yµp
(t) = t− µp.

In particular, note that yµp
is continuous. As a result, conditions (23) and (24) simplify to exact equalities

in this case.

Let us now follow the approach outlined previously using those simple functional forms. At the
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bottom of the type space, we have:

∀t < t0, Q(t) = max{0, 1− θ/t},

with the condition:

t0(1− t0) = θ.

At the top, we have:

∀t > t1, Q(t) = 1− θ

t− µ1
,

with the condition:

µ1 = t1 −
θ

1− t1
.

Furthermore, the binding constraint (17) provides the additional condition:

∫ 1

t1

(
1− θ

t− µ1

)
dt =

∫ 1

t1

tdt.

Simple algebra, where we substitute µ1 = t1 − θ/(1− t1), leads to the equivalent condition:

(1− t1)
2

θ
= 2 ln

(
1 +

(1− t1)
2

θ

)
.

For future reference, note that this condition implies that (1− t1)
2/θ > e− 1 > 1, thus t1 < 1−

√
θ.

On the support of µ, we have Q(t) = t, thus:

µ(t) = t− θ

1− t
.

Observe that the expression on the right-hand side is monotonic in t on [0, 1−
√
θ] ⊇ [t0, t1]. As a result,

we can set suppµ = [t0, t1], and it is not necessary to introduce additional parameters.

To summarize, we propose the following parameterized candidate:

Q(t) =



0 if t ≤ θ,

1− θ/t if θ ≤ t ≤ t0,

t if t0 ≤ t ≤ t1,

1− θ/(t− µ1) if t ≥ t1,
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where:

t0(1− t0) = θ, µ1 = t1 −
θ

1− t1
,

(1− t1)
2

θ
= 2 ln

(
1 +

(1− t1)
2

θ

)
.

It remains to use condition (19) which expresses optimality with respect to the best-deviation payoff θ,

which in the context of this example, takes the form:

∫ 1

0
ln

(
θ

t[1−Q(t)]

)
dt = 0.

Using previous conditions, we can compute the integral to obtain the equivalent condition:

t0(1− t0) + 2(t1 − t0) + ln(t0) +

(
1− t1 +

t0(1− t0)

1− t1

)
· ln
(
1 +

(1− t1)
2

t0(1− t0)

)
= 0.

Thus, it is sufficient to solve a system of 4 conditions, with 4 unknown parameters. Given a solution to

this system, it is easy to verify that conditions (18)-(21) hold with:

ν(t) = max

{
−ℓ
(
t,

θ

1−Q(t)

)
+

θ

1−Q(t)
· ∂ℓ
∂z

(
t,

θ

1−Q(t)

)
, 0

}
= max{θ − t, 0},

and

µ(t) = max

{
ℓ

(
t,

θ

1−Q(t)

)
− θ

1−Q(t)
· ∂ℓ
∂z

(
t,

θ

1−Q(t)

)
, 0

}
= max

{
t− θ

1−Q(t)
, 0

}
.

Furthermore, a solution can be computed numerically, and we obtain θ ≈ 0.1607, µ1 ≈ 0.1116, t0 ≈

0.2012, t1 ≈ 0.3645.

It is insightful to plot the marginal benefit of auditing any type t at the optimum, which, by condi-

tion (20), is equal to µ(t) − ν(t). Recall that, by Proposition 1, an optimal ex-post auditing rule ranks

agents according to this marginal benefit and, if an agent is audited, his marginal benefit must be

weakly higher than that of the other agent. The plot, which is presented in Figure 2, reveals that the

type space can be decomposed into different categories.

A first category contains types below the cutoff θ, for whom the marginal benefit is negative. In-

deed, those types are never audited by the optimal mechanism. A second category consists of the inter-

val of types (t0, t1), where the marginal benefit is strictly increasing and positive. As a result, for those

types, a tie in marginal benefit is a zero-probability event, and from the ex-post perspective, they must

be audited if and only if the other agent’s report is below their type. This is exactly what the optimal

interim auditing rule that we have derived suggests. Since this interval corresponds to (the interior of)
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θt0 t1
0

type

marginal benefit of audit

Figure 2: Marginal benefit of auditing any type, as implied by the optimal mechanism.

the support of µ, the reduced-form auditing capacity constraint binds, and they are audited according

to the rank-based auditing rule R2
1. Finally, a third category includes types in [θ, t0] and in [t1, 1], where

having the same marginal benefit of audit as the other agent is a positive-probability event. There, an

ex-post implementation of the optimal interim auditing rule may rely on randomization.

Beyond the specific functional forms of this example, those insights carry over more generally.

Given the structure of solutions that we have obtained previously, we can define a first category of

types, below the cutoff θ, that are never audited. The interior of the support of the measure µ defines

a second category, of types who are audited according to the rank-based auditing rule. Finally, the rest

of the type space forms the third category. In a sense, this third category corresponds to a true pool

of targeted random audits as we have described it in the Introduction. Instead the second category of

types constitute a reserve pool, of types that are considered for auditing when the principal’s capacity

allows it, that is, if they make it to the top k.

5 Scaling Up the Problem and Costly Verification

In our model, the principal can conduct k audits for free, but the (k + 1)th audit is infinitely costly. In

this section, we address the sensitivity of our results to this assumption.

It is clear that allowing the principal to conduct additional audits can only benefit her, as it would

expand her choice set. Slightly less obvious is the fact that the principal would also find it advantageous

to scale up the problem. This is most vividly apparent when agents are ex-ante symmetric, as in Section
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4. Indeed, for two natural integers p ≤ p̂, we have:

∫ 1

s
Rpn

pkdF (t) ≤
∫ 1

s
Rp̂n

p̂kdF (t), ∀s.

Thus, if k and n both increase in a way that maintains k/n constant, the reduced-form auditing capacity

constraint (17) slackens, widening the set of feasible auditing rules.

We can push this argument to the limit, when both k and n grow towards infinity, with k/n re-

maining constant. Let us denote κ ∈ (0, 1) this constant. The principal’s value in the limit problem

constitutes a lower bound for her expected loss from an optimal mechanism in any finite environment

with k/n = κ. Moreover, in its reduced form, the limit problem is a special case of the mechanism-

design problem we have analyzed, with rank-based auditing rule:

Rκ(t) = 1 (F (t) ≥ 1− κ) .

Now, observe that we have the equivalence:

∫ 1

s
Q(t)dF (t) ≤

∫ 1

s
Rκ(t)dF (t), ∀s ⇔

∫ 1

0
Q(t)dF (t) ≤ κ.

Therefore, for the limit problem, the family of constraints (17) could be replaced by the single con-

straint limiting the ex-ante probability of auditing any agent not to exceed κ. The Lagrange multiplier

associated with this constraint then acts as a constant marginal cost of each audit. In other words, the

standard costly state verification problem emerges by duality as a special case of our model.

This connection is intuitive. As mentioned in the Introduction, our model applies to environments

such that investment in auditing capacity would have to be decided ex-ante because it is prohibitively

costly to adjust in the short run. In contrast, the costly state verification model assumes that auditing

capacity can be adjusted flexibly ex-post. However, with infinitely many (i.i.d.) agents, population

uncertainty vanishes and there is no difference between ex-ante and ex-post from the principal’s per-

spective. As a result, the two models coincide in this case.

The limit problem can be solved using the approach of Section 4, where we useRκ as the rank-based

auditing rule. Again, there exist µ1 and t1 such that:

∀t > t1, Q(t) = 1− θ

yµ1
(t)
,
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where yµ1
(t) is solution to ℓ(t, y) − y(∂ℓ/∂z)(t, y) = µ1. At t1, the reduced-form auditing capacity

constraint binds, so: ∫ 1

t1

(
1− θ

yµ1
(t)

)
dF (t) =

∫ 1

t1

Rκ(t)dF (t).

This condition can only be satisfied if Rκ(t1) = 0. To see this, note that 1 − θ/yµ1
(t) ≤ 1 − θ < 1,

whereas Rκ is a step function jumping once from 0 to 1. As a result, for any t ≤ t1, it must be the case

that Q(t) = 0. Then, the solution is characterized by the three parameters θ, t1, and µ1, satisfying the

three conditions: ∫ 1

t1

(
1− θ

yµ1
(t)

)
dF (t) = κ,

yµ1
(t1) ≤ θ ≤ lim

t→t1,t>t1
yµ1

(t),

∫ t1

0

∂ℓ

∂z
(t, θ)dF (t) +

∫ 1

t1

∂ℓ

∂z

(
t, yµ1

(t)
)
dF (t) = 0.

The optimal mechanism conducts random audits for types t > t1. In this region, audits indeed

have constant marginal cost equal to µ1. Thus, as explained previously, the corresponding mechanism

is optimal for the costly state verification problem with cost µ1.

This limit optimal mechanism shares most of its qualitative features with the solution to the princi-

pal’s problem in the finite model discussed in previous sections of this paper. One notable difference

though, is that audits are conducted only for types above the threshold t1, which is typically strictly

greater than the best deviation payoff θ.23 In other words, in this case, the cutoff type marking entry

into the audit pool and the basic allocation to those types below the cutoff are two distinct objects.

Observe that, in contrast to types below θ, which she does not value auditing, the principal’s marginal

benefit from auditing those types in (θ, t1) is positive. However, although positive, it remains below

the marginal cost µ1.24 In the finite model, those types correspond to the second category discussed

at the end of Section 4, of types left in reserve in case auditing resources permit. With infinitely many

agents, auditing resources never permit to audit them, so they completely exit the audit pool.

The difference between the optimal mechanisms in the finite and infinite-limit model is illustrated

in Figure 3, where we reproduce the left panel of Figure 1, plotting allocations to each type in the

introductory example with n = 2 agents and k = 1 audit available. We add to the figure the allocations

to each type in the limit model with κ = 1/2, under the same assumptions regarding the principal’s

23It is easy to verify that a sufficient condition for t1 > θ is that, for all t, z 7→ ℓ(t, z) is differentiable at z = t.
24Indeed, in this case, the condition at the lower boundary of the support of µ yields t0 = θ. Moreover, µ(t) increases from

µ(θ) = 0 to µ(t1) = µ1 on [θ, t1].
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allocation if not audited

allocation if not audited, when n→ ∞

type
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Figure 3: Amount allocated to each type by the optimal mechanism when n = 2 and k = 1 (dashed
red) and when k/n = κ = 1/2 with n → ∞ (solid blue). If the agent is audited, allocations coincide to
the type in the two cases (solid black).

preferences and the distribution of types.

On the Value of Random Verification.— As we have explained, the optimal mechanism in the limit model

is also optimal in a model with costly state verification. The specific model in question happens to be

a special case of the model studied by Halac and Yared (2020), who analyze optimal delegation to a

biased agent with costly state verification. In particular, given our assumption that each agent’s payoff

is always increasing in his allocation, our environment corresponds to the special case of an agent with

extreme bias. In their analysis, Halac and Yared (2020) restrict attention to deterministic verification,

while suggesting: “the study of random verification could be an interesting extension of our work.” Since

our results allow to address this suggestion directly, we take this opportunity to compare the opti-

mal random-auditing mechanism we have obtained to the optimal deterministic-auditing mechanism

derived by Halac and Yared (2020).

Let us first describe the optimal deterministic-auditing mechanism. In the case of extreme bias, it

falls in the class of threshold with escape clause (TEC) mechanisms. Specifically, there is a threshold tHY ,

such that types below the threshold are never audited and receive a fixed basic allocation θHY < tHY .

Types t above the threshold are always audited and receive an allocation equal to t. Denoting ϕ the cost

of auditing, the parameters θHY and tHY are characterized by the following optimality conditions:

∫ tHY

0

∂ℓ

∂z
(t, θHY )dF (t) = 0,
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(a) Optimal auditing rule with deterministic audits
(solid, red) and with random audits (dashed, blue).
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(b) Expected allocation for each type with deter-
ministic audits (solid, red) and with random audits
(dashed, blue).

Figure 4: Comparison between the principal’s optimal deterministic mechanism and her optimal ran-
dom mechanism with loss ℓ(t, z) = z ln(z/t) − (z − t), uniformly distributed type on [0, 1], and cost of
audit ϕ = 1/2− 1/e.

ℓ(tHY , θHY )− ϕ = 0.

As attested by the optimal mechanism in the limit model we have described previously, the follow-

ing properties of the TEC mechanism are robust to allowing random auditing. First, both the auditing

rule and the allocation rule are monotonic in the agent’s type. Second, there is a cutoff type, below

which the agent is not audited and receives a constrained basic allocation. Third, after an audit has

been conducted, the allocation features no distortion relative to the principal’s ideal allocation for that

type.

However, the inability to randomize considerably restricts the principal. In fact, if possible, the

probability of auditing any type would remain bounded away from 1. Starting from the cutoff type,

the probability of audit slowly increases from 0 to a value bounded above by 1 − θ. Those random

audits are combined with allocative distortions that are fine-tuned to the agent’s type report, in case he

is not audited. We illustrate those differences in Figure 4.

For a more quantitative evaluation of the value of random auditing, we also plot in Figure 5 the

evolution of the principal’s expected loss from the two mechanisms as the cost of audits varies.

General Auditing Cost.— We end this section with a discussion of the robustness of our approach and
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Figure 5: Expected loss to the principal as a function of the audit cost with deterministic audits (solid,
red) and random audits (dashed, blue), under the same functional assumptions as for Figure 4.

results to modeling the cost of auditing via a more general function C : {0, 1, ..., n} → [0,∞], which

depends on the number of audited agents. In our main model, we assumed C(m) = 0 if m ≤ k

and C(m) = ∞ if m > k. In this section, we have also considered the case where the cost is of the

form C(m) = ϕm, for ϕ > 0, and saw that the optimal mechanism in this case is a limit of optimal

mechanisms in our main model, thus sharing most of their properties.

More generally, as long as C (i) is monotonic, and (ii) features increasing marginal differences (that

is, C(m + 1) − C(m) is monotonic), the problem can be analyzed following an approach similar to

the one we have discussed in Section 3. Specifically, Lemmata 1 and 2 apply verbatim. Furthermore,

solutions to the principal’s problem can be characterized by optimality conditions analogous to those

of Proposition 1, where the Lagrange multiplier ψ(t1, ..., tn) is to be replaced by the marginal cost of an

additional audit. Thus, the ex-post auditing rule still has the same structure, where agents are ranked

by their λi(ti) and are audited not until the capacity is exhausted but until the marginal cost of an

additional audit exceeds the marginal benefit. Moreover, the monotonicity results of Lemma 3 and

Proposition 2 remain valid.

However, the reduced-form characterization of interim auditing rules does not apply in this case.

We do not mean to suggest that the problem would necessarily remain untractable, but that the best

approach to get to an explicit solution would likely depend on the specific cost function C.

That said, the two cases of costs that we have discussed are two polar cases in the aforementioned

class of cost functions. Yet, they lead to fairly similar results. Therefore, we find it reasonable to specu-

late that any cost ‘in between’ would also lead to fairly similar results.
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6 Conclusion

This paper has explored the problem of designing optimal mechanisms for resource allocation when

auditing capacity is limited. We have laid out a tractable approach to solving the principal’s mechanism

design problem. This approach provides insights into the use of targeted random auditing and alloca-

tive distortions as complementary instruments to achieve compliance and mitigate efficiency losses

despite restricted auditing resources. Our approach applies under fairly weak assumptions and has

been demonstrated to be operational in Section 4. The simplicity of the model offers a clear benchmark

to understand the nature and sources of allocative distortions. In particular, the optimal mechanism

relies on upward distortions to reward conservative reporting and downward distortions to discipline

unverified over-reporting.

While our analysis is rooted in a stylized environment, the techniques and findings have potential

relevance for more applied contexts, including taxation, regulation, and organizational design. In these

settings, the efficient use of scarce auditing resources is often a pressing concern, and the insights

provided here may serve as a foundation for future investigations into policy design.

That said, several limitations and directions for future research warrant attention. The model ab-

stracts away from global constraints on resource allocation, focusing instead on the limited capacity

for auditing. In some applied settings, such allocation constraints as well as payoff externalities are

likely to play a significant role. Extending the framework to incorporate these elements would broaden

its applicability. Furthermore, our analysis relies on a strong form of commitment from the principal,

especially regarding severe punishments for dishonesty and distortions for unaudited agents. While

these features are essential for the mechanism’s effectiveness, they may pose practical challenges in

implementation. A valuable extension would study the mechanism design problem under partial com-

mitment.
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APPENDIX

A Omitted Proofs

A.1 Proof of Lemma 1

Let m = (q, {Qi}1≤i≤n, {xi}1≤i≤n, {yi}1≤i≤n) ∈ M. For each i, define:

θ̃i = sup
ti

[1−Qi(ti)]yi(ti).

Combining this definition with the incentive-compatibility constraints (3), we obtain that, for any ti ∈

[0, 1], it must be the case that:

Qi(ti)xi(ti) + [1−Qi(ti)]yi(ti) ≥ θ̃i ≥ [1−Qi(ti)]yi(ti). (25)

Observe that those inequalities imply that θ̃i ∈ [0,∞).

Now, for each agent i and type ti, let us define the value:

ωi(ti, θ̃i) = min
x,y≥0

Qi(ti)ℓi(ti, x) + [1−Qi(ti)]ℓi(ti, y),

subject to Qi(ti)x+ [1−Qi(ti)]y ≥ θ̃i ≥ [1−Qi(ti)]y.

Due to the inequalities established in (25), type ti of agent i’s allocations xi(ti) and yi(ti) are feasible for

this minimization problem. As a result, it must be the case that type ti of agent i’s contribution to the

principal’s expected loss satisfies:

Qi(ti)ℓi
(
ti, xi(ti)

)
+
[
1−Qi(ti)

]
ℓi
(
ti, yi(ti)

)
≥ ωi(ti, θ̃i).

Furthermore, we establish below that ωi(ti, θ̃i) ≥ ωi(ti, θi), where θi = min{θ̃i, 1} ∈ [0, 1]. As a result,

the principal would be weakly better off replacing the allocations xi(ti) and yi(ti) by solutions to the

minimization problem defining the value ωi(ti, θi). We show next that those turn out to be exactly the

allocations x∗i (ti) and y∗i (ti) implemented by mθ, thus establishing the result of the lemma.

In the remainder of this proof, we analyze the minimization problem defining ωi(ti, θ̃i) in order to
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prove those results that we promised. We consider in turn two cases.

Suppose first that θ̃i ≥ ti. For feasible x and y, the convexity of ℓi(ti, ·) implies that:

Qi(ti)ℓi(ti, x) + [1−Qi(ti)]ℓi(ti, y) ≥ ℓi

(
ti, Qi(ti)x+ [1−Qi(ti)]y

)
.

In addition, since ℓi(ti, ·) is uniquely minimized at ti and convex, it must be increasing above ti. Using

the fact that Qi(ti)x+ [1−Qi(ti)]y ≥ θ̃i ≥ ti, we obtain:

ℓi

(
ti, Qi(ti)x+ [1−Qi(ti)]y

)
≥ ℓi(ti, θ̃i).

As a result, since x = y = θ̃i is feasible for this minimization problem, it must be the solution. We

conclude that, for θ̃i ≥ ti, we have:

ωi(ti, θ̃i) = ℓi(ti, θ̃i).

In particular, as explained previously, this expression is decreasing in θ̃i on the domain θ̃i ≥ ti. It

follows that, if θ̃i > 1, since all types satisfy ti ≤ 1, then:

ωi(ti, θ̃i) ≥ ωi(ti, 1) = ωi(ti, θi).

Since the other case θ̃i ≤ 1 is trivial, this establishes that indeed, in general, ωi(ti, θ̃i) ≥ ωi(ti, θi).

Furthermore, for θi ≥ ti, we have x∗i (ti) = y∗i (ti) = θi, thus x∗i (ti) and y∗i (ti) indeed achieve the value

ωi(ti, θi).

Next, we consider the case ti > θ̃i = θi. Let us show that x∗i (ti) and y∗i (ti) constitute a solution to

the minimization problem defining ωi(ti, θi). First, note that a solution (x, y) to this problem satisfies

y ≥ θi. To see this, note that if (x, y) is feasible with y < θi, then (x, θi) remains feasible. Furthermore,

since ℓi(ti, ·) is uniquely minimized at ti and convex, it must be decreasing below ti. Using the fact that

y < θi < ti, we conclude that, in addition to being feasible, (x, θi) also achieves a lower value than

(x, y). From now on, we restrict attention to those (x, y) that are feasible with y ≥ θi. In particular, for

any such y, observe that x∗i (ti) = ti > θi satisfies: Qi(ti)x
∗
i (ti) + [1−Qi(ti)]y ≥ θi. That is, it is feasible

to set x = x∗i (ti), where ℓi(ti, x) is minimized. Finally, consider the optimal choice of y. If feasible, the

solution must be at y = ti. Feasibility is satisfied if [1 − Qi(ti)]ti ≤ θi, that is exactly when y∗i (ti) = ti.
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Otherwise, y must be chosen such that y ≤ θi/[1 − Qi(ti)] < ti. As explained previously, ℓi(ti, y) is

decreasing in y below ti. As a result, it is optimal to set y = θi/[1 − Qi(ti)], which corresponds again

to y∗i (ti) in this case. Thus, in any case, we find that it is indeed optimal to use allocations x∗i (ti) and

y∗i (ti).

A.2 Proof of Proposition 1

The result follows from standard arguments. We refer to Luenberger (1997), chapters 8 and 9 for details.

The principal’s choice set M̃ is a subset of the normed vector spaceX = R×BF([0, 1]
n)×

∏n
i=1 BFi([0, 1])

equipped with the sup norm, where BF([0, 1]
n) refers to the set of bounded and (F1, ..., Fn)-measurable

functions on [0, 1]n and, for each i, BFi([0, 1]) is the set of bounded and Fi-measurable functions on [0, 1].

All constraints are linear and define a convex subset of X . Note also that an immediate consequence of

Lemma 5 in Appendix A.5 is that the principal’s objective function is convex.

To guarantee that the Slater condition is satisfied, we relax constraints (5). We verify later that it is

satisfied by a solution to conditions (7)-(14).

The dual variables associated to the constraints θi ≥ 0 and θi ≤ 1, for all i, can be identified with

non-negative real numbers, denoted γi and δi in the statement of the proposition. The dual variables

associated to the auditing capacity constraint (1), as well as qi(t1, ..., tn) ≥ 0 and qi(t1, ..., tn) ≤ 1, for all i

and (t1, .., tn), are measures that are absolutely continuous with respect to (F1, ..., Fn). In the statement

of the proposition, we formulate optimality conditions immediately in terms of their Radon-Nikodym

derivatives ψ, αi, and βi respectively. Similarly, for each i, λi is the Radon-Nikodym derivative of the

signed measure which acts as a Lagrange multiplier associated to constraint (2).

For necessity, conditions (7)-(9) are valid by Assumption 3. Condition (10) can be taken as a point-

wise definition of λi. Then, conditions (11) - (14) are required to hold (F1, ..., Fn)-almost surely. How-

ever, we can always select representatives for ψ, αi, and βi such that they are valid point-wise. Suffi-

ciency can be established equally well in either case.

It remains to verify that a solution to conditions (7)-(14) satisfies:

∀i∀ti, Qi(ti) ≤ max{0, 1− θi/ti}.

For some i and ti > 0, suppose that Qi(ti) > 1 − θi/ti, that is θi/[1 − Qi(ti)] > ti. With reference to
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condition (10), we have:

λi(ti) = ℓi

(
ti,

θi
1−Qi(ti)

)
+

[
ti −

θi
1−Qi(ti)

]
∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
− ti

∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
< ℓi

(
ti,

θi
1−Qi(ti)

)
+

[
ti −

θi
1−Qi(ti)

]
∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
,

where the inequality follows from the fact that ℓi(ti, ·) is single-dipped at ti, with θi/[1−Qi(ti)] > ti, so

(∂ℓi/∂zi) (ti, θi/[1−Qi(ti)]) > 0. Observe that on the right-hand side of the inequality is the expression

of a tangent to ℓi(ti, ·) evaluated at ti. By convexity, we have:

ℓi

(
ti,

θi
1−Qi(ti)

)
+

[
ti −

θi
1−Qi(ti)

]
∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
≤ ℓi(ti, ti) = 0,

implying that λi(ti) < 0. Now, with reference to condition (11), since for any t−i, µ(ti, t−i) ≥ 0, it

must be the case that αi(ti, t−i) > 0, which implies, by complementary slackness, that qi(ti, t−i) = 0.

Integrating this result, it follows that Qi(ti) = 0. In other words, we have shown that:

Qi(ti) > 1− θi/ti ⇒ Qi(ti) = 0,

which is equivalent to:

Qi(ti) ≤ max{0, 1− θi/ti}.

For ti = 0, note that the same reasoning implies that λi(ti) ≤ 0. IfQi(ti) > 0, we can define q̂i(0, t−i) = 0

for all t−i, and q̂i = qi on the rest of the domain. Similarly, let Q̂i(0) = 0 and Q̂i = Qi on (0, 1]. Note

that (θ, q̂, {Q̂i}i) satisfy the optimality conditions (7)-(14). Applying this construction for all i yields the

result.

A.3 Proof of Lemma 3

The proof relies on the fact that, the higher λi, the more likely it is that agent i gets audited, as explained

in the paragraph preceding the statement of the Lemma.

To establish monotonicity above θi, let us suppose, by contradiction, that t′i > ti ≥ θi with λi(t′i) <

λi(ti). Then, type ti must be more likely to get audited than type t′i. As a result, it must be the case that

Qi(ti) ≥ Qi(t
′
i), thus ti ≥ θi/[1−Qi(ti)] ≥ θi/[1−Qi(t

′
i)] ≥ 0. Using condition (10) and the convexity of
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ℓi(ti, ·), we write:

λi(ti) = ℓi

(
ti,

θi
1−Qi(ti)

)
+

[
θi

1−Qi(t′i)
− θi

1−Qi(ti)

]
∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
− θi

1−Qi(t′i)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
≤ ℓi

(
ti,

θi
1−Qi(t′i)

)
− θi

1−Qi(t′i)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
≤ ℓi

(
ti,

θi
1−Qi(t′i)

)
− θi

1−Qi(t′i)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(t′i)

)
,

where the first inequality uses the fact that ℓi(ti, ·) remains above its tangents, and the second the fact

that (∂ℓi/∂zi)(ti, ·) is non-decreasing, both consequences of convexity. Next, we use Assumption 4 to

show that the term on the right-hand side of the last inequality is bounded above by λi(t
′
i), thereby

establishing a contradiction. Indeed, by Assumption 4, it must be that:

− ∂

∂zi

(
ℓi(t̃i, zi)

zi

)
=

1

z2i

[
ℓi(t̃i, zi)− zi

∂ℓi
∂zi

(
t̃i, zi

)]

is non-decreasing in t̃i. Applying this fact to zi = θi/[1−Qi(t
′
i)], with t′i > ti, we obtain:

ℓi

(
ti,

θi
1−Qi(t′i)

)
− θi

1−Qi(t′i)
· ∂ℓi
∂zi

(
ti,

θi
1−Qi(t′i)

)
≤ ℓi

(
t′i,

θi
1−Qi(t′i)

)
− θi

1−Qi(t′i)
· ∂ℓi
∂zi

(
t′i,

θi
1−Qi(t′i)

)
.

Recognizing on the right-hand side the value of λi(t′i), from condition (10), we conclude that λi(ti) ≤

λi(t
′
i), the desired contradiction.

A.4 Proof of Proposition 2

Consider a solution (θ, q, {Qi}i) to problem (6). If, for some i, there exist t′i > ti with Qi(ti) > Qi(t
′
i),

we will show that we can construct another solution (θ, q̂, {Q̂j}j) such that Q̂i(ti) ≤ Q̂i(t
′
i), and, for all

t̃i ̸= ti, Q̂i(t̃i) = Qi(t̃i), as well as, for all j ̸= i and all tj , Q̂j(tj) = Qj(tj). Applying this construction to

any such pair (ti, t′i) yields a solution with a monotonic interim auditing rule.

As a solution to problem (6), (θ, q, {Qi}i) satisfies the optimality conditions of Proposition 1, with

appropriately defined Lagrange multipliers. In particular, for each i, types with a strictly higher λi are
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more likely to be audited. Thus, if Qi(ti) > Qi(t
′
i), it must be the case that λi(ti) ≥ λi(t

′
i). However, if

in addition t′i > ti, then, by Lemma 3, we have λi(t′i) = λi(ti). As a result, with reference to Appendix

A.3, the chain of inequalities obtained in the proof of Lemma 3 is a chain of equalities. It follows that

ℓi(ti, ·) must be linear on [θi/[1−Qi(t
′
i)], θi/[1−Qi(ti)]].

Given this linearity, we will be able to establish the optimality of a mechanism (θ, q̂, {Q̂j}j) which

differs from (θ, q, {Qj}j) only in terms of the probability of auditing type ti of agent i. Specifically, set

Q̂i(ti) = Qi(t
′
i). This can be implemented at the ex-post stage by setting:

q̂i(ti, t−i) =
Qi(t

′
i)

Qi(ti)
qi(ti, t−i),

for all t−i. Note that the auditing capacity constraint is then relaxed, so this transformation does not

jeopardize feasibility.

Optimality follows from verifying that all the conditions of Proposition 1 are satisfied. With respect

to the Lagrange multipliers, the only required changes are:

α̂i(ti, t−i) = αi(t
′
i, t−i), β̂i(ti, t−i) = βi(t

′
i, t−i), ψ̂(ti, t−i) = ψ(t′i, t−i).

Due to the aforementioned linearity, condition (7) holds with:

∂ℓi
∂zi

(
ti,

θi
1−Qi(ti)

)
=
∂ℓi
∂zi

(
ti,

θi

1− Q̂i(ti)

)
.

Conditions (8) and (9) are clearly unaffected. Since λi(ti) = λi(t
′
i), condition (10) remains unchanged.

Finally, the Lagrange multipliers have been appropriately modified to guarantee that conditions (11)-

(14) continue to hold.

A.5 Additional Results

Lemma 5. Let f : (0,∞) → R convex. Then g : (0,∞) × (0,∞) → R, defined by g(x, y) = xf(y/x), is also

convex.
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Proof. Let x, x̂, y, ŷ all in (0,∞), and λ ∈ [0, 1]. Observe that:

λy + (1− λ)ŷ

λx+ (1− λ)x̂
=

λx

λx+ (1− λ)x̂
· y
x
+

(1− λ)x̂

λx+ (1− λ)x̂
· ŷ
x̂
,

with λx/[λx+ (1− λ)x̂] ∈ [0, 1]. As a result, given that f is convex, we have:

[λx+ (1− λ)x̂]f

(
λy + (1− λ)ŷ

λx+ (1− λ)x̂

)
≤ λxf

(y
x

)
+ (1− λ)x̂f

(
ŷ

x̂

)
.

In other words:

g(λx+ (1− λ)x̂, λy + (1− λ)ŷ) ≤ λg(x, y) + (1− λ)g(x̂, ŷ),

establishing the result.

B Examples of Loss Functions

In this appendix, we verify that the examples listed in Section 2 satisfy Assumptions 1, 2, 3, and 4.

(i) Suppose that, for all i, ℓi(ti, zi) = ci(ti − zi), where ci is convex, uniquely minimized at 0, with

ci(0) = 0. Assumptions 1 and 2 are obviously satisfied. Assumption 3 follows from noting that

(∂ℓi/∂zi)(ti, zi) = −c′i(ti − zi), which is monotonically decreasing in ti, and bounded for ti ∈ [0, 1].

Let us verify Assumption 4. To that end, let (ti, zi) ∈ D and (t̂i, ẑi) ∈ D. Without loss, suppose that

t̂i ≥ ti. It is sufficient to verify that, if ẑi < zi, then:

ℓi(ti, zi)

zi
+
ℓi(t̂i, ẑi)

ẑi
≥ ℓi(ti, ẑi)

ẑi
+
ℓi(t̂i, zi)

zi
,

that is:
ci(ti − zi)

zi
+
ci(t̂i − ẑi)

ẑi
≥ ci(ti − ẑi)

ẑi
+
ci(t̂i − zi)

zi
.

Observe that, in this case, we can write:

ti − ẑi =
zi − ẑi

t̂i − ti + zi − ẑi
(t̂i − ẑi) +

t̂i − ti

t̂i − ti + zi − ẑi
(ti − zi),
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where (zi − ẑi)/(t̂i − ti + zi − ẑi) ∈ [0, 1], and similarly:

t̂i − zi =
zi − ẑi

t̂i − ti + zi − ẑi
(ti − zi) +

t̂i − ti

t̂i − ti + zi − ẑi
(t̂i − ẑi).

Therefore, using the convexity of ci, we have:

ci(ti − ẑi) ≤
zi − ẑi

t̂i − ti + zi − ẑi
ci(t̂i − ẑi) +

t̂i − ti

t̂i − ti + zi − ẑi
ci(ti − zi),

ci(t̂i − zi) ≤
zi − ẑi

t̂i − ti + zi − ẑi
ci(ti − zi) +

t̂i − ti

t̂i − ti + zi − ẑi
ci(t̂i − ẑi).

Those two inequalities, together with simple algebraic manipulations imply:

ci(ti − zi)

zi
+
ci(t̂i − ẑi)

ẑi
− ci(ti − ẑi)

ẑi
− ci(t̂i − zi)

zi
≥ (t̂i − ti)(zi − ẑi)

ziẑi(t̂i − ti + zi − ẑi)
[ci(t̂i − ẑi)− ci(ti − zi)].

Furthermore, by assumption t̂i ≥ ti > zi > ẑi, with ci increasing on [0,∞) (since it is convex and

uniquely minimized at 0). It follows that:

ci(ti − zi)

zi
+
ci(t̂i − ẑi)

ẑi
− ci(ti − ẑi)

ẑi
− ci(t̂i − zi)

zi
≥ 0,

which is what we wanted to show.

(ii) Suppose that, for all i, ℓi(ti, zi) = ci(zi)− ci(ti)− (zi − ti)c
′
i(ti), where ci is a differentiable convex

function. Assumptions 1 and 3 are easy to verify given ci’s convexity, which implies that c′i(ti) is

monotonic in ti. Assumption 2 is obviously satisfied. To verify Assumption 4, note that ℓi(ti, zi) is

differentiable in zi, thus so is the average loss, with:

∂

∂zi

(
ℓi(ti, zi)

zi

)
=

[zic
′
i(zi)− ci(zi)]− [tic

′
i(ti)− ci(ti)]

z2i
.

It is sufficient to show that this expression is non-increasing in ti, which implies Assumption 3. Thus,

consider ti < t̂i. By convexity:

ci(ti) ≥ ci(t̂i) + (ti − t̂i)c
′
i(t̂i),
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which can be rearranged as:

t̂ic
′
i(t̂i)− ci(t̂i) ≥ tic

′
i(ti)− ci(ti) + ti[c

′
i(t̂i)− c′i(ti)],

which, by monotonicity of c′i implies:

t̂ic
′
i(t̂i)− ci(t̂i) ≥ tic

′
i(ti)− ci(ti),

which implies the result.

C Marginal Representation of Auditing Rules

This Appendix explains why it is sufficient to represent ex-post auditing rules by the marginal proba-

bility of auditing each agent.

The set of all subsets of {1, ..., n} of size k is denoted Pk(n), while P≤k(n) denotes the set of all

subsets of size at most k. For any finite set S, the set of probability distributions on S is denoted ∆S.

If p ∈ ∆P≤k(n) and i ∈ {1, ..., n}, we can define:

qi =
∑

S∈P≤k(n)

1(i ∈ S)pS .

Then, q ∈ [0, 1]n and:
n∑

i=1

qi ≤ k.

Reciprocally, if q ∈ [0, 1]n with
∑n

i=1 qi ≤ k, we will show below that there exists p ∈ ∆P≤k(n) such

that:

∀i, qi =
∑

S∈P≤k(n)

1(i ∈ S)pS .

For all n and k ≤ n, we denote [k, n] the claim:

∀q ∈ [0, 1]n,

n∑
i=1

qi = k ⇒ ∃p ∈ ∆Pk(n), ∀i, qi =
∑

S∈Pk(n)

1(i ∈ S)pS .

Note that it is sufficient to prove the claim [k, n] for all k and n. To see this, observe that, if k − 1 <
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∑n
i=1 qi < k, we can define qn+1 = k −

∑n
i=1 qi ∈ (0, 1) and apply [k, n + 1]. Subsets of size k of

{1, ..., n+ 1} have size at most k if we remove the fictitious agent n+ 1.

Next, we will prove [k, n] by induction. Observe that it is sufficient to prove the result for k ≤ n/2.

Indeed, defining q̃i = 1− qi, it is easy to see that [k, n] is implied by [n− k, n].

k = 0.— For k = 0, we must have q1 = q2 = ... = qn = 0, which is consistent with a probability

distribution placing mass 1 on the empty subset of {1, ..., n}. So [0, n] holds for all n.

Inductive step.— Fix q satisfying the premise. Without loss, assume that 0 < q1 ≤ q2 ≤ ... ≤ qn < 1.25

As a consequence q1 ≤ k/n. If q1 = k/n, then qi = k/n for all i. In this case, we can choose p the

uniform distribution on Pk(n). In what follows, assume 0 < q1 < k/n. As a result, it is also the case

that k/n < qn < 1. We consider two cases.

Case 1: (n− k)q1 + kqn ≤ k. Let a, b ∈ [0, 1]n such that:

∀i, ai = k/n, bi =
qi − q1

1− q1n/k
.

It is clear that ai ∈ [0, 1] and bi ≥ 0. To verify that bi ≤ 1, note that bi is non-decreasing in i, so it is

sufficient to verify that bn ≤ 1. Using the assumption (n− k)q1 + kqn ≤ k, observe that:

bn ≤ 1− q1(n− k)/k − q1
1− q1n/k

= 1.

In addition, it is easy to verify that:
n∑

i=1

ai =
n∑

i=1

bi = k.

Finally, note that:

q = (n/k)q1a+ (1− q1n/k)b,

with 0 < q1n/k < 1. a can be implemented by a uniform distribution on Pk(n). b1 = 0, so b can be

implemented by a solution to [k, n− 1]. By mixing between the two, we can implement q.

25We can always re-order the agents. If q1 = 0 we easily get back to the case [k, n − 1]. If qn = 1 we easily get back to the
case [k − 1, n− 1].
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Case 2: (n− k)q1 + kqn ≥ k. The argument is similar. Define a the same way. Let:

ci =
(1− k/n)qi − (1− qn)k/n

qn − k/n
.

We have cn = 1. Similar arguments as in Case 1 establish that c can be implemented by a solution to

[k − 1, n− 1], and q is a convex combination between a and c.

D Details on the Figures of Section 5

Figures 3, 4, and 5 present explicit solutions in the case where the principal’s loss takes the form ℓ(t, z) =

z ln(z/t) − (z − t) and types are uniformly distributed on [0, 1]. Let us explain how the solutions are

obtained in this case.

First, for Figure 3, we apply the optimality conditions for those functional forms. We have yµ1
(t) =

t−µ1, which is continuous, so we immediately obtain t1 = θ+µ1. The other two optimality conditions

are: ∫ 1

θ+µ1

(
1− θ

t− µ1

)
dt = κ,

∫ θ+µ1

0
ln

(
θ

t

)
dt+

∫ 1

θ+µ1

ln

(
t− µ1
t

)
dt = 0.

With κ = 1/2 and simple algebra, the system simplifies to:

1− (θ + µ1)− θ ln

(
1− µ1
θ

)
=

1

2
,

µ1 ln(θ) + (1− µ1) ln(1− µ1) + (θ + µ1) = 0.

The system possesses a unique solution which can be evaluated numerically. We obtain θ ≈ 0.1489 and

µ1 ≈ 0.0799.

For Figure 4, we first solve for the parameters of the optimal deterministic mechanism. The opti-

mality conditions are: ∫ tHY

0
ln

(
θHY

t

)
dt = 0,

θHY ln(θHY /tHY )− (θHY − tHY )− ϕ = 0.
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The unique solution is given by θHY = ϕ/(e− 2) and tHY = ϕe/(e− 2), for ϕ ≤ (e− 2)/e. The optimal

random mechanism corresponds to the limit mechanism as n → ∞ we have characterized previously,

with marginal cost of audits exogenously fixed to µ1 = ϕ. Therefore, we have t = θ + ϕ, where θ is the

unique solution to:

ϕ ln(θ) + (1− ϕ) ln(1− ϕ) + (θ + ϕ) = 0,

for ϕ ≤ (e−1)/e. For the figure, we use ϕ = 1/2−1/e, so tHY = 1/2, θHY = 1/(2e), while the parameters

of the optimal random mechanism can be evaluated numerically as θ ≈ 0.2021 and t ≈ 0.3342.

For Figure 5, we evaluate the principal’s expected loss from the two mechanisms as a function of

the cost of audits ϕ. In both cases, this loss can be expressed as:

L(ϕ) =

∫ 1

0

[
(1−Q(t)) ℓ

(
t,

θ

1−Q(t)

)
+Q(t)ϕ

]
dt.

The deterministic mechanism has QHY (t) = 1(t ≥ tHY ). For ϕ ≤ (e− 2)/e, simple algebra yields:

LHY (ϕ) = ϕ(1− ϕe/[2(e− 2)]).

For ϕ > (e− 2)/e, tHY = 1, so the mechanism becomes constant as no type is ever audited. In that case,

LHY (ϕ) = (e− 2)/(2e). Similarly, for the optimal random mechanism, we can compute the principal’s

expected loss in terms of the parameters of the mechanism and obtain:

L(ϕ) = ϕ− t2/2,

or equivalently, using the optimality conditions characterizing those parameters, L(ϕ) is solution to:

ϕ ln
(√

2[ϕ− L(ϕ)]− ϕ
)
+ (1− ϕ) ln(1− ϕ) +

√
2[ϕ− L(ϕ)] = 0,

valid for ϕ ≤ (e − 1)/e. For ϕ > (e − 1)/e, the mechanism again becomes constant and no type is

audited. In this case, L(ϕ) = (e− 2)/(2e).
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