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Abstract

As platforms collect more user data, they can tailor algorithms to better match
users. At the same time, on matching platforms, users pay to be matched by the
platform, while the platform makes money as long as it does not match them.
This paper analyzes the matching rule of a profit-maximizing monopoly platform
when the incentives between users and the platform are misaligned. I demonstrate
that frequently studied matching rules, such as random matching and PAM, can
be suboptimal for the platform. Contrary to the intuition that more data about
users might improve matching efficiency and speed, I show that more data allows
the platform to design a matching rule that strategically lowers match quality to
increase search time and thus profits, leading to unnecessary delays and potentially
inefficient matches. Finally, I provide explanations for why platforms induces search
for users: complexity-constraint pricing, targeted advertising or the presence of

overconfident users.
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1. INTRODUCTION

The emergence of digital matchmakers has revolutionized the way people meet and inter-
act. By reducing search frictions, these platforms have the potential to more efficiently
match users. With the help of algorithms based on detailed user data, they promise to
facilitate the search for suitable partners in many areas of life. In fact, online dating
has become the most common way to meet potential partners in recent years, and for
more than a decade, job searches have been conducted predominantly through such on-
line platforms (Rosenfeld et al., 2019; Kircher, 2022). This paper investigates the impact
of a platform with detailed user data on the resulting speed and assortativity of match-
ing in the society. It highlights a novel source of mismatching: profit-driven, purposeful
mismatching of platforms.

To do so, I study the matching rule of a profit-maximizing platform on which users
search for a suitable match. Focusing on the most prominent business models, the plat-
form commits to either an amount of advertising or a payment per period in which the
user is active. In either case, spending their time searching is costly for users. To at-
tract and keep users’ attention, the platform recommends users a match in each period.
First, I show that the two predominant search protocols used to study centralized and
decentralized matching markets — the positive assortative matching (PAM) rule and the
random matching rule — can both be suboptimal. Random matching is generically sub-
optimal. PAM is suboptimal when the platform engages in advertising or is constrained
in charging high search fees. Instead, the platform uses its knowledge about users to
strategically lower the quality of recommended matches. This induces agents to search
longer and thereby increases the payments the platform can collect. Besides prolonging
search, the resulting matching outcomes can be drastically different from the socially
optimal, positive assortative matching outcome and induce a substantial welfare loss.

Why do platforms then rely on business models that induce misaligned incentives?
I provide three plausible explanations. First, if the platform is constrained in its price
setting, the platform chargers a lower fee and uses its knowledge about users to strate-
gically lower the quality of recommended matches. This induces agents to search longer
and thereby increases the payments the platform can collect. Besides prolonging search,
the resulting matching outcomes can be drastically different from the socially optimal
(positive assortative matching) and induce a substantial welfare loss. Second, when, as
in many online markets, users are reluctant to make monetary payments but are willing to

consume ads,! offering an ad-based model can be more profitable. Third, when users have

I Advertising-based models play a key role in online markets, including both fully ad-supported and
“freemium” business models. Freemium refers to business models, where users can use a basic service
for free in exchange for consuming ads, but need to pay a fee to use the premium service (without ads).



arguably well-documented misperceptions such as being overconfident regarding their de-
sirability, they underestimate their expected search duration and hence payments to the
platforms for existing pay-per-month schemes.

After discussing the related literature in Section 2, Section 3 presents the model. A
monopoly platform organizes a two-sided matching market in which users search for a
partner on the opposite side. The platform commits to a matching rule that determines
the probability that two users, each characterized by a vertical type, will meet. Addition-
ally, the platform commits to a per-period cost that it collects from active users, which
are either an amount of advertising or a search fee per period. After active users have
paid the per-period cost, they receive a recommendation from the platform. Upon meet-
ing, users simultaneously decide whether to accept or reject the proposed match. After
rejecting, a user can continue to search. The analysis focuses on steady states; in these
the inflow of new agents must equal the outflow under the platform’s matching rule.

Section 4 starts by characterizing the users’ search behavior. Then, fixing search
costs, the platform’s problem is to choose matching probabilities conditional on each
users’ type subject to participation constraints regarding the users’ decision to join the
platform, incentive constraints on the users acceptance decisions, feasibility constraints
on the matching mechanism as well as steady-state constraints. This original problem is
highly non-linear. Instead of analyzing the original problem, I make use of an auxiliary
problem. This auxiliary problem is a linear programming problem in which the platform
chooses masses of recommended and matched pairs using the facts that: (i) the objective
function is linear in steady-state masses, and (ii) the constraints are linear in the mass
of recommended and matched pairs by using appropriate transformations. The profit-
maximizing solution to this auxiliary problem is then transformed back to the solution of
the original problem. Given the profit-maximizing matching rule, the platform chooses
its advertising level or search fee. In the most general setting for any given finite set
of users’ types, I prove that an optimal solution to the platform’s profit-maximization
problem exists using the auxiliary problem. Based on the reformulation, I show that the
widely analyzed matching rules can be suboptimal. Random matching is (generically)
suboptimal, when at least two types on each side of the market participate. Moreover,
whenever both market sides are fully symmetric I show that the positive assortative
matching rule (PAM), where each user meets only users of their own type, is suboptimal

under advertising or when the platform faces constraints on charging high search fees.

2Qverconfidence has been widely documented in experiments, e.g., Burks et al. (2013) and Dubra
(2015), and with respect to one’s own attractiveness (Greitemeyer, 2020). Psychologists argue that such
overconfidence determines how individuals look and compete for potential partners (Murphy et al., 2015).
In labor markets, Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed overestimate
how quickly they will find a job and beliefs are not revised (sufficiently) downward after remaining
unemployed suggesting that job seekers are persistently overconfident about their desirability to firms.



Considering the special case with two types on each side of the market and symmetric
inflows, Section 4.2 illustrates the main insight of the model — the platform’s incentive
to recommend and foster mismatches if it is unable to charge high type-dependent search
fees. Suppose the platform can only charge a uniform search fee, then to induce users
to search, the platform frequently recommends mismatches to users, i.e., a high type
meets a low relatively more often than a high type. The platform’s matching creates two
intertwined inefficiencies: it distorts matching outcomes by inducing mismatches that
deviate from the socially optimal outcome, and it increases users’ search time, leading
to higher search costs than necessary. Both inefficiencies have implications for real-world
markets such as dating and labor markets. Finally, Section 4.2 turns to the question of
why platforms rely on business models in which the incentives between the platform and
the users are misaligned. For example, a simple potential business model for platforms
would be to collect high personalized search fees from each type and provide them with
the socially optimal match in the first period. In principle, this business model extracts
the entire surplus from users. Under the realistic assumption that users are reluctant
to pay upfront but are willing to consume ads, however, I show that an ad-based model
can outperform the former business model if targeted advertising is sufficiently efficient.
Alternatively, if users are overconfident about their desirability, this belief leads users
to underestimate their search time when incentivized to search. Therefore, under the
pay-as-you-search business model they spend a higher amount ex post than anticipated
ex ante. This, in turn, favors the prevailing business model.

Section 5 concludes and highlights that the tension arising from the misalignment of
incentives becomes more important as the platform collects more data and develops more

predictive algorithms.

2. RELATED LITERATURE

This article contributes to two central strands of literature, matching-and-search the-
ory and platform markets. In contrast to the existing literature, I consider the profit-
maximizing incentives of a (digital) matchmaker when agents are vertically differentiated
and characterize the matching rule and resulting matching outcome.

The vast literature on search-and-matching models, see for instance Burdett and Coles
(1999), Eeckhout (1999), Bloch and Ryder (2000), and Smith (2006), provides insights
into the functioning of decentralized markets in which agents meet at “random”.? These

matching models with heterogeneous agents build the foundation to investigate sorting

3The aforementioned literature assumes that agents have non-transferable utility. Search-and-
matching models with transferable utility have been analyzed, for example, by Becker (1973, 1974)
and Shimer and Smith (2000).



and mismatch in markets such as labor and marriage markets when search frictions
are present; for a recent overview see Lauermann and Noldeke (2025). In line with
these models, agents in my model have vertical preferences that result in a unique stable
matching. I follow Lauermann and Noldeke (2014) and suppose that types are finite. The
model at hand crucially departs from the literature on decentralized matching, which
assumes that agents meet according to a random matching technology, by explicitly
accounting for the design of the matching rule. With increasing access to user data
about preferences and machine-learning tools, matching platforms can design their own
recommendation and matching algorithms to maximize profits. While many platforms do
not disclose the specifics of their matching algorithms, it is evident that their algorithms
are far more sophisticated than random matching.* The question of how to design the
matching rule is related to the literature on centralized matching as pioneered by Gale
and Shapley (1962) and Roth and Sotomayor (1992), which studies match quality and
implementation of efficient matching rules in two-sided markets. The principal considers
properties such as stability, strategy-proofness and Pareto efficiency of the matching
rule. In contrast, I characterize the profit-maximizing solution for different given business
models. Finally, my paper is related to papers investigating biased beliefs of agents in
matching and search markets. Closely related in a dating market, Antler and Bachi
(2022) show that agents’ coarse reasoning leads to overoptimism about their prospects in
the market and induces them to search inefficiently long. In labor markets, Spinnewijn
(2015) and Mueller et al. (2021) document that job seekers often hold overoptimistic
beliefs and thereby underestimate their time to find a job. I contribute to this literature
by showing how current platform business models exploit overconfident types.

The second strand is the literature that studies platforms and two-sided markets. Cen-
tral to that literature is the presence of network effects and how these shape the incentives
and price setting of a platform that enables the interaction between two groups (Caillaud
and Jullien, 2003; Rochet and Tirole, 2003, 2006). As a result, in most models agents
are assumed to care only about the number of matches instead of match quality. With
the emergence of digital matchmakers, the literature extended to analyzing (customized)
matching on platforms with a focus on the interaction between pricing and matching
efficiency (Damiano and Li, 2007; Damiano and Hao, 2008), price discrimination (Gomes
and Pavan, 2016, 2024), and auctions (Johnson, 2013; Fershtman and Pavan, 2022), all
abstracting from search frictions and dynamics. In my model, the platform designs the

matching rule in its online marketplace, but in contrast to the aforementioned articles,

4Dating platforms such as Tinder or bumble provide a general description of their algorithm, see for ex-
ample https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-
Method-Behind-0Our-Matching, whereas the dating platform “Hinge” claims to use the Gale-Shapley
algorithm designed to find stable matchings.


https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-Method-Behind-Our-Matching
https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-Method-Behind-Our-Matching

the platform has an incentive to not implement the socially optimal matching rule.
Within the analysis of digital matchmakers, Halaburda et al. (2018) and Antler et
al. (2023, 2024) also focus on applications to dating platforms. Most closely related is
Antler et al. (2024) who study a matchmaker’s incentives in a model with horizontally
differentiated types, which determine the fit of agents. The platform charges a single
“upfront” fee in the second period after agents have joined and received their first match
for free. The authors draw a similar conclusion: the platform has an incentive to invest
into a technology that increases the speed of search but not into improving match quality.
The main difference lies in modeling the matching technology. The authors restrict
attention to a truncated random matching technology under which agents meet at random
above a threshold and do not meet if their fit is below the threshold; in contrast, I solve
for the optimal matching rule. Within the platform literature, models on a (monopoly)
platform intermediating consumer search are closely related (Hagiu and Jullien, 2011;
Eliaz and Spiegler, 2016; Nocke and Rey, 2024). Hagiu and Jullien (2011) provide a
rationale for intermediaries to divert search of their consumers away from preferred stores.
Although the insight is closely related to the mismatching incentive in my model, the (one-
sided) market in Hagiu and Jullien (2011) does not include the strategic component on
the other side as stores would never reject a consumer willing to buy. Hence, there is no
analogue to my finding that the platform prolongs search of lower types by recommending
them to higher types knowing that they will reject those lower types. Additionally, there
is no equivalent to overconfident users in their model. Finally, my model of a two-sided
matching market offers insights into the allocative inefficiency and the length of search

for labor and dating markets intermediated by matching platforms.

3. MODEL

A monopolist platform organizes a matching market in which a continuum of agents from
two sides, k = A, B, search for a partner from the opposite side. The market operates in
discrete time with an infinite horizon. I focus on steady state analysis. In slight abuse of

notation, I therefore suppress time indices whenever it does not lead to confusion.

Agents An agent of each side is characterized by a type 0F € ©F, with ©F = {0}, 065, ..., 0%}
finite. At the beginning of each period, an agent 6% decides whether to enter the market
or to exit and take outside option w¥. An agent that participates in the market becomes

inactive with an exogenous probability 6 > 0 and also leaves the search process. The
k

platform charges an active agent of type 6% a search cost s¥. Then, each active agent
receives a single recommendation from the platform. After receiving a recommendation,

two agents who meet observe each other’s type and simultaneously decide whether to ac-



cept or reject the other agent. The following payoffs are realized based on their actions in
the current period: (i) mutual acceptance yields a match utility of u (6%, 0]”“) = 95’9;’“, and
(i) (one-sided) rejection yields a utility of zero in the current period. After a rejection,
an agent can continue searching in the next period.

Agents are assumed to use time- and history-independent strategies. A pair of func-
tions o, : OF x ©°F — [0,1] and o_; : ©F x ©% — [0,1] describe the acceptance
strategies, where 0 < oy,(6%, 6’;’“) < 1 is the probability that an agent of type 65 on side
k accepts a match with type 6;* on the other side. The function n¥ : (6%, wF) — [0, 1]
k

describes the participation strategy of an agent of type 6% with outside option w?. In
other words, without loss of generality, I focus on strategies where identical agents, ac-
tive on the same side of the market and of the same type, use the same acceptance and
participation strategy. Then,

(0%, 07) = 0,(0F,67F) - o_i (0%, 607F)

RR] R R

denotes the probability of a mutual acceptance by type 0¥ and Gj’k.

Matching A matching mechanism M := {¢*(-)},—a,p consists of (potentially stochas-
tic) matching rules ¢¥(-). Let ©F be the set of participating types from side k = A, B.
For 08 € ©F, ¢F(-|0%) € A(OF Uwk), which is a probability measure over ©~% U wk.
Intuitively, this describes the probability of meeting the various types of the opposing
side as well as the outside option. Any 0F € ©%\ ©" who does not participate is assumed
to be meet their outside option with probability one, ¢(wF|6%) = 1. Denote the mass of
agents of type 0¥ on side k by f(6F). Matching mechanism M induces a distribution of
matched pairs M

£67) F0r7%) OO, 07"%) - D(0F,05%)
FOx))  \FO:5) O(Ohs, 07") - D(Ohas O3

An entry of matrix M is the mass of agents that are recommended to each other under

matching mechanism M and is given by
(07, 0;%) = F(07)0(0;*10F) = £(0;7)b(0F167"),

where the masses are symmetric, i.e. the mass of agents of type 6% on side k being
matched to agents of type 0]7’“ on side —Fk is equal to the mass of agents of type 9;’“ on

side —k being matched to type 6F on side k: ®(6F,0;%) = ®(6;*,0F). Under matching

mechanism M, the mass of agents of type 0F that are unmatched, i.e. do not receive a



recommendation in a given period, is

OO W) = F(6) — Y ®(O.6;7").

—k _k
0;"€0

To capture the idea that the platform can only generate revenue by keeping users’ at-
tention and, hence, wants to match as many agents as possible, I impose the following

assumption.

Assumption 1. Let k be the short side of the market. For each agent on side l%,
P(wfloF) = 0.

Under Assumption 1, feasibility of the matching rule can be expressed in terms of the

masses of matched pairs.

Definition 1. A matching mechanism M is feasible if

> B8, 0,) + 1, (0, wf) = f(6F), V0] € ©F k= A B. (1)

117]
0 eo—k

Timing and Population Dynamics At the beginning of a period ¢, agents who did

not find a match in the last period arrive and a (time-invariant) inflow of new agents

k=A,B
7

of type 0F given by the mass {3F} enters the platform. Agents decide whether
to participate on the platforms. Those who decide to participate become inactive with
probability &, while active agents are matched according to matching mechanism M
resulting in matrix M;. Based on their recommended match, agents make their acceptance
decision resulting in mutual acceptance probabilities {cy (6%, Qj_k)}w At the end of the
period, agents that mutually accepted each other exit in pairs. The total outflow of
agents is then given by pairs that exit together in a match, agents that become inactive

with probability 0 and agents that decided not to participate.

Platform The platform commits to a matching mechanism M := {¢*(-)}. To capture
the two most prominent business models, I suppose that the platform either commits to
an extent of advertising or a given payment per period. Formally, this choice induces the
type-dependent search cost s¥ while generating revenue per search of type 6% of v(s¥).

In case of payments, v(s¥) is the identity function. In case of advertisements, v(s¥) is an

(2
increasing and strictly concave function of the search costs, which for example captures
the intuition that the agents’ disutility of advertising is convex in the number of ads
shown while the platform’s profit is constant per ad. Let s¥ € [0,%], where @ is the

maximum match utility that the highest type can achieve on the platform. The platform



discounts future profits according to p and thus maximizes

DD e ]

k=A,B gF ek

Equilibrium Concept The model focuses on a steady state analysis in which the
market is balanced: that is, the inflow of agents is equal to the outflow of agents under

matching mechanism M. Formally:

Definition 2. (Steady State) For given matching mechanism M, a steady state is a tuple
(f(OF), (6% G’k),nf)fj that satisfies

R

BF = fO) |(L=n) +nf [0+ (1 —=0) Y af,6;")(6;"16F) | | - (2)

—k —k
0;"€o

for all ¥ € ©% k = A, B. The left-hand side describes the inflow of agents of type 0F,
where the right-hand side is the outflow. The outflow is the mass of type 6F agents times
the probability that agents do not participate plus the probability of becoming inactive

or exiting in a match.
A steady state is an equilibrium if the following is satisfied.

Definition 3. (Equilibrium) A steady state is an equilibrium if — given that agents
anticipate other agents’ strategies correctly — the profile of stationary strategies (o,7)

satisfies:

1. Agents accept a match if and only if the match yields a higher payoff than the

expected utility from continuing to search.

2. Agents participate if and only if the expected utility from participating yields a
higher payoff than their outside option.

Under the usual Nash assumption of correctly anticipating other players’ strategies,
the definition captures that agents maximize expected utility with respect to their ac-
ceptance strategy implicitly ruling out the case that a valuable pair is rejected because
everyone is certain that their partner rejects.> The third part captures that agents max-

imize expected utility when deciding to participate on the platform.

5This allows the current match partner to tremble with small probability. Alternatively, acceptance
decisions could be made sequential in which case agents would have to accept a valuable match.



3.1 DISCUSSION OF ASSUMPTIONS

I now turn to the key assumptions of the model. The model assumes that the platform
is a monopolist in the matching market. In two-sided markets, platforms often have
large market power, because joining a new platform is worthwhile only if others join. My
monopoly setup is a simple setting capturing such market power.°

Search frictions are modeled by introducing the exogenous exit probability 6. Fol-
lowing a literal interpretation, ¢ is the probability with which agents become inactive,
i.e. the probability that an agent finds a job or a partner offline through other means.
More generally, 6 can be thought of as modeling the force that leads agents to discount
the future, which makes delayed matching more costly. Additionally, agents incur ad-
ditive search costs s¥ in each period, which are designed by the platform. They either
represent the nuisance costs from advertising as, for example, in Anderson and Coate
(2005), which are positively related to the advertising intensity, or the search fee that the
platform charges periodically.

The model examines two prevalent business models: (targeted) advertising and search
fees. Many platforms adopt the former by monetizing user attention through selling ad-
vertising slots to firms. In return for users’ attention, the platform provides its matching
service for free. In this setup, keeping user attention is crucial for the platform’s revenue.
An advertising-based stream of revenues continues to be a prominent part of platform
business models, especially with transaction costs. Platforms have transaction costs when
setting up a payment system, while many users are reluctant to give their credit card
data to platforms. Overall, privacy concerns, risk aversion and uncertainty about new
products (platforms) can play a role why users (initially) prefer to use the matching ser-
vice for “free” while watching advertisement over signing up to a subscription plan or
paying a participation fee. Alternatively, platforms can collect search fees from active
users, e.g., “pay-per-click/pay-per-contact” fees, or monthly subscription plans. These
fees are typically low, distinguishing them significantly from participation fees, which are
far less common but used by some selective matching platforms.

The key assumption of the matching rule, Assumption 1, is that each agent receives a

recommended match in every period whenever feasible.” As many online platforms take

6For example, the dating market is highly concentrated, with Match Group Inc. owning many of the
most popular platforms: Tinder, Hinge, PlentyofFish, Match, OkCupid, etc. (see https://www.bamsec.
com/filing/891103230001147cik=891103). For simplicity, I assume the dominant owner operates only
one platform. Competing platforms are often highly differentiated, catering to niche groups (e.g., religious
users), and recent evidence from Dertwinkel-Kalt et al. (2024) shows that even close competitors like
Tinder and Bumble are perceived by users as nearly independent rather than substitutes.

"In search-and-matching models, time is often modeled as continuous, with matching opportunities
arriving at a constant rate. For example, Antler et al. (2023, 2024) make this assumption in the context
of a matchmaking platform.

10
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on a dual role as attention intermediaries and need to attract consumers’ attention to sell
to advertisers, providing a constant stream of potential matches aims at grabbing and
keeping consumers’ attention.® In reality, the attention grabbing component is supported

by push notifications or emails preying on the users’ fear of missing out.”

4. ANALYSIS

To analyze the equilibrium, I need to characterize the agents’ behavior and the platform’s
optimization problem. The agents’ search process is characterized by a set of participation
and incentive constraints that determine whether an agent is willing to incur the search
costs as well as accepts or rejects a recommended match.

Consider the strategy of agent 65 being active in the matching market. Upon meeting
an agent 9]-_1“, the agent decides whether to accept or reject the recommended match.
Mutual acceptance results in a match and both agents leave the market as a pair. If
at least one of the agents rejects the match, agent 6% continues to search.Due to the
stationarity of the environment, the continuation value of agent 6%, V¢(6¥), is defined by

the following recursive equation

VEOr) =6wk + (1 —6) | st +Z FL0R)o(0;F |00k 0"

L= al6r,6;%)e(6;,1165))VE (85| -

J

The first term represents the case in which agent 6% will become inactive with probability

§ and gets its outside option w¥.

If the agent remains active with probability 1 — 4, it
incurs the search cost s¥. The expected utility from leaving in a match is given by the
utility from a match with type 6 * which is equal to the product of both types, and the
probability of meeting and mutually accepting type (9]-_"” . With the counterprobability,
the match was not mutually accepted and agent 6% continues to search. The continuation
value then characterizes the payoff of an agent who rejects a match and returns to the
search process, whereas the match payoff 9?0;'“ characterizes the payoff of an agent who
accepts a match with type 6’}“ (and is accepted by them). By Definition 3, if the match

value 076" is smaller (larger) than the continuation value V(6¥), agent-0 will reject

8Aridor (Forthcoming) shows in a recent experiment that when users face time constraints on a
specific platform, they reallocate attention across product categories and to offline activities, suggesting
that competition for attention spans multiple markets.

9In a recent lawsuit against the MatchGroup Inc. (Oksayan v. MatchGroup Inc., N.D. Cal., N
3:24-¢v-00888, 2/14/24) the plaintiff alleges that the company monopolizes user attention, claiming
that “Push Notifications prey on users’ fear of missing out on any potential matches with a strategic
notification system designed to capture and retain attention throughout the day”.

11



(accept) a recommended match with agent—ej_k . The optimal strategy of an agent who

uses a time-and history-independent strategy satisfies:

0 if 0¥0% < VC(6F)
o(05,0;%) =< ref0,1] if oF0;F =VE(OF) | for k= A, B. (3)
1 if 0567 > VC(6F)

If the match value with a type éj_k is larger than the continuation value, agent 6F will
accept a recommended match with agent GAJ_’“ and all agents of types higher than é]_k The
optimality of this strategy follows directly from the supermodularity of the match payoff.
Lastly, an agent participates if the continuation value is larger than the agent’s outside
option. Due to the stationarity and history-independence of strategies, if an agent decides
to participate in the matching market, they will not exit during the search process and

search until they exit in a match or become inactive with probability 0.

Remark. The strategy of an agent of type 0¥ is increasing in its second argument
ak(Qfﬁ]}’ik) > on(0F,057 ) > -+ > 03(0%,07F), but may be neither in- nor decreas-
ing in its first argument.

The fact that the agent’s strategy is increasing in its second argument follows directly
from Equation 3. If the agent’s outside options are weakly increasing in type, for matching
rules such as random or positive assortative matching rules ak(ﬁf,ﬁj’k) is additionally
decreasing in its first argument: ak(H?Vk,Qj_k) < < ak(Q’f,Qj_k). A random matching
rule yields the same meeting probabilities for all types. Due to the supermodularity of the
payoff function, higher types will reject (weakly) higher types than lower types do. With
positive assortative matching, the matching probabilities conditional on being a higher
type first-order stochastically dominates the matching probabilities conditional on being
a lower type. Hence, higher types will reject strictly higher types than lower types do. In
contrast, a negative assortative matching rule, which recommends (almost exclusively)
higher types to lower types, and vice versa, can cause lower types to reject lower types
while higher types are willing to accept them.

Given the agent’s strategy in Equation 3, the acceptance probabilities satisfy

(6.6 = { 0 if 6:6; < VO(O¥) or 6,6, < VE(6;%) n

7 1 if 6:0;, > VE(6F) and 0,60, > VE(0;%)

Equation 4 establishes the relationship between acceptance probabilities and matching
outcomes. Mutual acceptance requires that whenever two types of agents meet, both

must find it optimal to stop searching.

12



4.1 MULTIPLE TYPES

Consider the case with N* types of agents such that ©F = {6}, ...,0%,} on side k = A, B,
where 6%, > ... > 0}. The following section provides general results on the existence of

an equilibrium, optimal solution and its properties. Let s¥ be exogenous.

Lemma 1. For a given feasible matching mechanism, a steady-state equilibrium exists if

and only if Equation 2 and 4 are satisfied.

Suppose for a feasible matching mechanism, an equilibrium exists. Then, it must give
rise to (i) a steady state and (ii) optimal strategies of agents, i.e. satisfy Definition 2 and
Definition 3. Hence, by (i) Equation 2 (balance condition) must hold, and (ii) implies
Equation 4 (optimal mutual acceptance) must hold. Conversely, if Equation 2 is violated
the steady state (balance) condition fails and if Equation 4 is violated at least some agent
behaves suboptimal. Thus, a feasible matching rule gives rise to an equilibrium if and

only if Equation 2 and 4 hold.
Lemma 2. There exists a feasible matching rule that gives rise to an equilibrium.

In the most simple case consider the matching rule ¢(wF|0F) = 1 for all types 6% € ©F
on side k = A, B. Given that agents are matched with their outside option, no agent
is willing to incur search costs. With no agent participating in the steady state, the
matching rule is feasible and gives rise to a steady state equilibrium.

Next, to determine the profit-maximizing matching rule M, it is useful to define
the matching outcome. Intuitively, the matching outcome is defined as the matrix that
describes the distribution of pairs under matching rule M that exit in a match. Recall
that matrix M describes the masses of recommended pairs under matching rule M and

let A denote the matrix of agents’ mutual acceptance probabilities

a(0h,07%) - a(0h,034)
A= : :
O{(eiﬂc79;k> ct e O[(e?cvk,e&lik>

Formally, the matching outcome is defined as the componentwise multiplication (Hadamard

product) of matrix A and M:

Definition 4. The matching outcome is defined by the matrix

a0, 07F)R0F,07%) o a0k, 0. )P(0F, 0% ,)
AOM= : =0(-).
a0, OF) (0%, 07%) - a0, 055) @0k, 035,)
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Matching outcomes are (i) assortative if O(-) has positive entries only along the main
diagonal, (ii) weakly assortative if O(-) has positive entries along the main diagonal and
to the right if and only if all entries below are also positive, and (iii) non-assortative

otherwise.

If a matching outcome is assortative, this implies that lower types are matched with
strictly lower types than higher types while the definition of weakly assortative implies
that lower types can be matched with the same types as higher types. The definition
is weak in the sense that it does not require that lower types accept with a higher
probability than higher types. Other matching outcomes are called non-assortative and
entail negative assortative outcomes where higher types are matched with strictly lower
types than lower types.

Denote by m(6F, QJ_k) = a(6F, Qj_k)(I)(Qf, 0;’“) an entry of matrix O(M). Each entry
is therefore the mass of matched pairs that exit the market together in every period. For
a given matching rule, an equilibrium induces at most one matching outcome since the
mutual acceptance probabilities and steady state masses are pinned down in equilibrium.

To find the profit-maximizing matching rule and the associated matching outcome,
I proceed in two steps. First, I fix a matrix of acceptance probabilities and determine
the optimal feasible matching rule that implements the mutual acceptance probabilities.
Second, supposing the optimal matching rule from step one is used to implement any
chosen matrix of acceptance probabilities, I choose the matrix that yields the highest
platform profits. Note that the platform finds it optimal to induce either full participation

of a type or no participation.
Lemma 3. [t is without loss of generality to consider nf € {0,1}.

Suppose the platform charges type-dependent search fees, and type 6%, who is indiffer-
ent between participating and not participating, participates with probability less than
one. Then, the platform makes the same profit if type 6F participates with probability
one, the platform sometimes matches them to their outside option, and reduces their
search fee such that they make the same payments in expectation. If the platform uses
an advertising-based business model, the platform will strictly increase its profit by this
procedure due to the concavity of advertising. Therefore, from now on I will focus on
nF € {0,1}, which allows to focus on the set of participating types. Then, suppose the
platform induces a set OF for k= A, B to participate.

In the following, I will transform the platform’s profit-maximization problem into

a linear program. For given search cost s¥, recall that the platform’s objective is to
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maximize

maxz Z (1-9 f(68,

k=A,B gkegk

i.e., the platform maximizes the steady state mass of active agents with weight s¥. Note
that the platform does not earn revenue from agents that are inactive or do not participate
in the market in the first place. The maximization problem underlies a set of constraints.
First, the matching rule must implement a steady state. The steady state condition
(Equation 2) implies that the inflow of agents 6F is equal to the mass of agents that
become inactive in a period with probability ¢ and the mass of active agents that exit in

matched pairs. In the steady state, the mass of agents of type 0F can be restated as

1
k k k p—
05 =< (51. —(1—6)Y_m(6},0; )) : (Steady-State Mass)
J
and therefore, depends positively on the inflow, 4¥, and negatively on the mass of matched
pairs that include type 6¥. Second, the matching rule determines whether agents partic-
ipate in the market and whether agents search according to the platform’s recommenda-
tions. For participating agents, it must hold that the agent prefers participating in the

market to accepting the outside option, i.e.

0wl + (1= 8) (=sk -+ 32, a0k, 0,)0(0; 10)0%0, ")
5+ (1= 0) (2, (0k, ;)00 4105 )

wk<

[ —

= Vo).

Since the match payoffs are supermodular, there exists a critical lowest type that an agent
6% is willing to accept (Equation 3). Agent 6% rejects (accepts) all types below (above) the
critical lowest type. The incentive constraint for agent #¥ to follow the recommendation

of the platform to (weakly) reject an agent Qj_k reads'’
kK C(pk

By using the steady state condition, the participation and incentive constraints can be
reformulated. Note that the denominator of the continuation value is equal to the prob-

ability that an agent exists, which is equal to 8/f¢¥) by Equation 2. Inserting into the

10Tn mechanism design, this is often referred to as an obedience constraint because there is no private
information throughout the model.
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continuation value and rearranging yields

Brw < OFO)wf — (1= 0)f(0))s + (1= 0) Y al0F,0;)(0;*|65)050; ", (PC)

J
FOROST < OF(OF)wr — (L= 0)f(O1)st + (1= 0) D al6F, 6, )2(0; M 161)050; ", (IC)

J
where a(6F, 9}’“)@(9}’“ |05) = m(6F, Qj_k ). Lastly, the platform’s matching rule must satisfy
the feasibility constraints. Without loss of generality, let side B be of smaller or same
size as side A. Then on side A, the sum over the mass of each recommended pair that
includes type 64 must be equal to the steady state mass of 2. On side B, the sum over
the mass of each recommended pair that includes type 67 and the mass of agents of type

6P that are unmatched must be equal to the steady state mass of type 67

D B8, 0,") + Lea® (6, wf) = f(6F),k = A, B. (Feasibility)

—k _k
6;"€0

As stated above, for given matrix A the above constraints and the objective function are
all linear functions of the steady state masses, matched pairs, and recommended pairs.
The steady-state mass in turn is also a linear functions of the mass of matched pairs.
To complete the reformulation as linear program, it remains to include the indifference
constraints for agents who mix when accepting type from the other market side, which
implies that the respective incentive constraint must hold with equality. Appendix A.1

formally does so, leading to:

Lemma 4. The platform’s problem can be restated as a linear programming problem in
the mass of matched and recommended pairs: {m(0F, Qj’k)}, {D(6F, Gj’k)}w

Note that by Lemma 1, the solution to the linear program is an equilibrium as it
fulfills Equation 2 and 4. Given a solution of the linear program, the optimal matching

rule to the original problem results from

d(OF,6:7)

R

G

Next, I show that the auxiliary problem has an optimal solution. I say that a matrix A of

P(07416F) =

mutual acceptance probabilities can be implemented if there exists a matching mechanism
M such that ((f(ef))mce@k, A, 77) is an equilibrium. Let A be the set of matrices A that

can be implemented. By Proposition 2, A is non-empty. For every A" € A, construct a
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matrix A” such that
o’ (0F,077) = o/ (0F,0:F) if o/ (0F,6;%) € {0,1},

o’ (07,6;7") = ay; otherwise,

where «;; can take on any value in [0, 1]. I use a;; € [0, 1] whenever an agent is indifferent,
which implies that the same constraints in the auxiliary program must hold. Denote
the resulting set of matrices as A* and note that A* is finite. Now, I can solve the
linear program over the mass of matched and recommended pairs (ignoring acceptance
probabilities). Solving this for all (finite) possible combinations of constraints yields a
set of candidate solutions among which I choose the one that maximizes the platform’s
profit. To find the corresponding acceptance probabilities a;; € [0,1] when the agent is

indifferent, divide the matched pairs through the recommended ones

m(0F,0:7)

R

T B(0r, 07

R

Oéij

Formally, as A* is finite, only a finite number of linear problems must be solved. FEach
linear program returns a set of candidate solutions and a value of the objective function.
Fixing A € A*, the linear program returns a value II(A), i.e., the profit level, and let
G = Useca-II(A) be the set of profit levels for all linear programs with A € A* that

implement an equilibrium.

Lemma 5. The set G is non-empty and finite with TI(A) < oo for all A € A* and
—o0 < II(A) for at least one A € A*.

Key to the proof is to show that the linear program for any given matrix A € A is (i)
not unbounded and (ii) not infeasible, i.e. the feasible region is non-empty. Given that
both (i) and (ii) are satisfied, an optimal solution to the linear program exists and the

linear program attains a finite optimal value (Dantzig, 1963).'!
Theorem 1. There exists an optimal solution.

I proceed by showing that an optimal solution exists for any exogenous search costs
sk for all 0F € ©F k = A, B. By Lemma 5, the maximum over set G is well-defined as
G is finite and bounded such that an optimal solution exists. Next, I show that there
exists an optimal solution if the platform chooses search costs s¥ for all 6f € ©F, k =

A, B. Through a series of Lemmas, I prove that the set G is compact-valued and upper

HExistence follows from the fact that the constraint set is a convex polyhedron. Because the objective
is linear and the constraint set is convex, any local extremum will be the global extremum. As the
objective is linear, the extremum will be obtained at one of the extreme points of the constraint set, i.e.,
at the vertices of the polyhedron.
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hemicontinuous in the vector of search costs. This implies that the set max G is upper
semicontinous in the vector of search costs. Therefore, by an extension of the Weierstrass
theorem a maximum exists.

To identify properties of the optimal solution, first consider two prominently studied
matching rules. As discussed in Section 2, in decentralized matching-and-search markets
agents are often assumed to meet according to a random matching technology. A natural
question to consider is whether a platform that has access to extensive user data would

commit to a random meeting technology as well.

Proposition 1. Suppose N¥ - N=% > 1. Random matching is generically suboptimal for
exogenous search costs as well as endogenous search fees. Consider the class of functions:
v(sk) = k(s with k € RT and o € (0,1). Random matching is generically suboptimal

within this class of functions.

The proposition shows that random matching is generically suboptimal for the plat-
form if search costs are exogenous or type-dependent search fees are endogenously cho-
sen.!? For analytical convenience, I consider the class of concave revenue functions in
the proof to determine a knife-edge solution. Consider the nontrivial case in which there
are different types to be matched. Under random matching, the conditional probability
of meeting a type 0F on side k is the same for all types Hj_k € ©7% on side —k and
corresponds to the proportion of type 6% in the population. As shown in Appendix C.1,
the probability of meeting a type 6% is a function of the inflow, 8F, and the probability
of exit, . In contrast, for given search costs, the optimal solution of the linear program
is a function of these and internalizes changes in the search cost. Therefore, random
matching is generically suboptimal for given search costs, although it may coincide with
the optimal solution for knife-edge s¥, 0%, §, and 3¥. Consider next the case in which the
platform chooses a (linear) search fee. The platform does not choose random matching,
but chooses a positive assortative matching rule that maximizes the agents match surplus
and extracts all surplus via the search fee.

Proposition 1 highlights that a platform, which has increasing access to user data,
generically does not commit to a random matching technology. Proposition 1 immediately

implies that the platform values user data as access to data increases the platform’s profit.

Corollary 1. Suppose a platform has access to data about user types. Generically, the
platform makes higher profits by using the data to discriminate users by conditioning the

matching rule on user types instead of refraining from using user data.

12Consider the following definition for generically suboptimal. The probability of the case in which
random matching is optimal occurs with probability zero when the model parameters are randomly
drawn from continuous intervals as defined in the proof.
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Second, consider the positive assortative matching rule (PAM) under the assumption
that both sides are symmetric with respect to the inflow of new agents: 5 = 32, their
type space ©F = O, and outside options. Under symmetry, PAM matches agents if
and only if they are of the same type on both sides of the market. In this particular
case, PAM is of special interest in the literature as it maximizes total match surplus
when the match utility is supermodular, where an agent’s individual match surplus is
defined as the difference between the expected match utility on the platform and the
agent’s outside option. Furthermore, the resulting matching outcome, i.e., the positive
assortative matching outcome, is equivalent to the set of stable matchings (Roth and
Sotomayor, 1992). That is, matches are individually rational, i.e., yield a utility greater
than their outside option, and are pairwise stable, i.e., there exists no blocking pair of
agents that would prefer to be matched to each other instead of the equilibrium matching.
The next proposition shows under which circumstances the positive assortative matching

rule (PAM) is not profit-maximizing under type-dependent search fees and advertising.
Proposition 2. Suppose both market sides are symmetric.

(i) PAM is profit-mazimizing if the platform can charge arbitrary high type-dependent
search fees. Conversely, for every type 6; € ©\ {01} there exists a threshold s; such
that if s; < 3;, PAM 1is suboptimal.

(ii) There exists a threshold § such that if 6 < 0 and v(-) is concave, PAM is suboptimal.

When the platform commits to a (time-constant) deterministic matching rule such
as PAM, agents will accept the recommended match in the first period. Therefore, all
agents search for exactly one period, which results in a steady state population equal to
the inflow for each type.

First, PAM is indeed profit-maximizing if the platform has pricing power. By charging
(high) type-dependent fees, the platform can extract the full surplus from agents, i.e.,
the expected match value of an assortative match over the agent’s outside option. In
this case, the “search fee” is paid once, since agents search for only one period. The
proposition, however, shows that if the platform cannot commit to high search fees, for
example due to a (binding) price ceiling s, then PAM is no longer optimal. Let s be such
that s; violates the condition in Proposition 2 for at least one type ; € ©\ {6;}. Then the
platform can no longer extract the full surplus from an agent of type ;. Then, PAM is not
profit-maximizing, as the platform has an incentive to deviate to a matching rule under
which type 0; and the lowest type ¢; meet with mass . The price ceiling s is such that
whenever type 6; and type 60, 0; (weakly) rejects 6; under the new matching rule. This

implies that type 6; searches longer than one period such that the platform earns more
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from type 6;. For example, fees for in-app purchases in Apple’s App store are capped
at 999.99%, whereas the estimated lifetime utility from a match and hence, potential
willingness to pay for a partner could be well above 999.99$.13 Alternatively, users may
be reluctant to spend large sums online in one payment, such that the platform’s pricing
power can be limited by that as well.

Second, suppose the platform follows an advertising-based business model. If the
return to advertising is concave and § < 6, then PAM is suboptimal. Under PAM agents
search for only one period. Thus, a profit-maximizing platform would need to impose
the highest feasible search cost per agent. With concave advertising returns, however,
it becomes more profitable to reduce search costs and increase the mass of participating
agents. In other words, users switch their attention if the platform advertises too much,
as is well known from other contexts. Thus, doubling the amount of advertisement does
not double the revenue. Since o > 0 implies a loss in profits due to exogenous attrition
that increases with longer search times, a high § reduces the platform’s willingness to
trade off longer search durations for lower costs.

Proposition 2 raises the question of why we, as users, do not observe high search fees
online, and why matching appears to be (anecdotally) worsening rather than improving.
If the platform has pricing power and can perfectly identify users’ types, Proposition 2
implies that the platform induces only one period of search and employs PAM to extract
the full surplus from users. This raises the question: under what conditions does the plat-
form have an incentive to induce more search and implement a matching rule different
from PAM? In Section 4.2, I examine three different reasons: pricing under complexity
constraints, the use of (targeted) advertising, and overconfidence in an example with two
user types and symmetric markets. First, I limit the platform to setting a single price,
and show that under these conditions, the platform prefers not to use PAM. Then, I
demonstrate that even when the platform has full pricing power and can implement com-
plex pricing schemes, it does not use PAM and instead relies on advertising——provided
it is sufficiently efficient. Furthermore, when users are overconfident, I show that the

platform has an incentive to induce search by lowering fees for high types.

4.2 BINARY TYPES

Suppose now that market sides are symmetric. There are two types on each side of the
market with a strictly positive inflow. With slight abuse of notation denote the type set
by © = {0, 0,} with 6, > 0,. Each type has an outside option of zero.!

13Indeed, traditional matchmakers charge over ten times the amount; see https://www.nytimes.
com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.
VUO.XqAb.q2iJT-pObHz1&smid=nytcore-ios-share&referringSource=articleShare

14The analysis is qualitatively unaffected as long as the outside options are w; < 912 and wy, < 0,0;.
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4.2.1 Complexity-Constrained Pricing

This section examines the case in which the platform is constrained in setting agents’
search costs. In reality, a platform serves many types of users, which would require
complex pricing schemes to extract each agent’s surplus. I therefore consider a setting in
which both types of agents face the same search cost designed by the platform, s, = s; =
s. One possible interpretation is that both types use the basic service of a (freemium)
platform. In this case, the platform is assumed to determine the amount of advertising
shown to each agent using the basic service. Alternatively, if payments are involved,
agents may choose among (discrete) pricing tiers, with all agents on the same tier paying
the same amount as is common on dating platforms. On job platforms, for example,
firms often pay the same price per click when advertising a job in a given submarket. To
determine how the matching outcome is affected by the platform-chosen matching rule,
the analysis fully characterizes all possible matching outcomes in this example.

As in Section 4.1, I proceed in two steps. First, I characterize the optimal matching
rule that implements the mutual acceptance probability matrices that are consistent
with Equation 4. Given the first step, I find the optimal matrix of mutual acceptance
probabilities that maximize the platform’s profit. To identify the optimal matching rule
for the platform, suppose for now that s is exogenous. With two types, the mutual

acceptance matrix takes the following form

| Oh, 0n)  (On, 0)
a0 0) a(,6)]’

where the mutual acceptance probability of the assortative matches are along the diagonal
and the mutual acceptance probability of mismatches are off the diagonal. Trivially with
one type, the mutual acceptance matrix consists only of one entry. With two types, only

three possible matrices can be implemented as part of an equilibrium
10

Apan =
PAM [ 01

Given the platform’s matching rule, high type agents can either accept only other high

!

A B 1 Qg
s Awpam = | "
aj 1 o 0

ij

1 o
>ANAM - [ ”] 705;]'70‘;/]’ € [07 1]‘

types, or accept low types with positive probability. This results in three possible con-
stellations of mutual acceptance probabilities and thus matching outcomes. If high types
only accept high types, low types will always accept high and types, resulting in a positive
assortative matching outcome (Apay). Depending on the matching rule if high types
accept low types with positive probability, low types may accept low types, resulting in a
weakly assortative matching outcome (Aw pans). Alternatively, low types may reject low

types, resulting in a non-assortative matching outcome in which high types accept low
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types, but low types do not (Ayan).

For each of the three possible acceptance matrices, there exists an optimal matching
rule that can implement the corresponding outcome over a range of parameter values.!®
Given the existence of an optimal matching rule, which matrix A maximizes the platform’s

profit for fix search costs? The next proposition summarizes the results.'

Proposition 3. (Ezogenous Search Cost)
(i) Let 0 < s < 62. The platform implements Apan and the matching outcome, Opayr,

18 positive assortative if

B _ B\ _ (1—0)(07 — 5)(s + 8(63 — 5))
V=5 = (_) " (040 —0) — 5 —6(07 — ) (s + 067 — 5))’

B

or if

(@)“” _ (=9  _ b
ﬁl _Gh(ﬁh—el)—8+(5(6ﬁ—s) o ﬁl.

The platform implements Aw pan and the matching outcome, Owpan, is weakly positive

(@)(a)<@< (@)(b)
By BT\ B '

(1i) Let 02 < s < 0,0,. If By > B, the platform implements Awpan and the matching

outcome s either weakly assortative, Owpan, or non-assortative for large enough s,

assortative if

Onam- If B, < 51, the platform implements Awpan and the matching outcome is weakly
assortative, Oy pan, or only high types participate if s is large enough.
(iii) Lastly, if 0,0; < s < 602, low types do not participate on the platform. The mutual

acceptance matriz and matching outcome s positive assortative.

First, consider the maximum rent that the platform can extract when the positive
assortative matrix, Apays, is implemented. A high type agent is willing to search the
longest for a match with another high type. In this case, the maximum rent the platform
can extract from a high type agent is proportional to 6, (6, — 6;), which is the value of
its own type times the match premium. The match premium is the gain from being in a
match with a high type instead of leaving with a low type. If the platform were to extract
more rent, high types would start accepting low types as well, and thus only search for
one period. Conversely, if high types always reject low types, the maximum rent the

platform can extract from low types is proportional to 67.

15Existence follows from Theorem 1. The optimal matching rules are in Appendix C.3, Lemma 11.
16The proof is a straightforward application of the linear program detailed in Appendix A.1, adapted
to the two-type setting and accounting for the possible acceptance matrices described above.
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Due to feasibility constraints, the platform is constrained by the ratio of high to low
types when choosing the matching rule. The platform can extract the rent from both

types as described above if

(&)(‘" A=) = 5)(s+ (0~ 5) 5
51 (Qh(éh—él) —S—5(9%—S))(8+(5(912—S))7

At this ratio, high types are just indifferent between accepting and rejecting low types,

while low types are just indifferent between participating or not, which results in

s + 5(9h91 — 8)
(1—10)0,(0n, —6))

3(6,16,) = —

P(O0n|0n) = =

Due to feasibility constraints, however, other than in this knife-edge case the incentive
and participation constraints cannot bind at the same time while implementing Apap;.
As the ratio increases, more high types enter compared to low types. In this case, the
platforms makes the participation constraint binding for low types. The probability of
a high type meeting a high type must increase such that high types are left with a rent
greater than 0,60,. As the ratio decreases, fewer high types enter compared to low types.
The platform makes the incentive constraint binding for high types, leaving a positive
rent for low types as the probability of a low type meeting a low type must increase. In
both cases, the platform potentially forgoes a significant amount of rent when moving
away from the “optimal” ratio.

Second, consider the maximum rent that the platform can extract when Ay pay is
implemented. Suppose the ratio of high to low types is greater than in Equation 5. Then,
the platform can commit to a matching rule in which high types randomize over accepting
and rejecting low types, while low types remain indifferent between participating and their
outside option. The expected match utility of high types decreases, while the expected
match utility of low types increases. For a ratio of high to low types greater than in
Equation 5, implementing Ay paas yields a higher profit than Ap4y,. When implementing
Apanr, the platform must increase the meeting probability of assortative pairs as the ratio
Brn/B, increases, otherwise low types will no longer be willing to participate. This implies,
however, that the platform forgoes rent from high types. Inducing high types to accept
mismatches with positive probability, a(6,6;) > 0, on contrast leads to a longer search
of low types as they receive a higher expected match utility. Extending the search of low
types, implies that there are more low types on the platform, so the platform can also
extend the search time of high types.

Third, consider the maximum rent that the platform can extract when Anap is
implemented. High types accept both types with positive probability, while low types

reject low types and only enter in (mis-)matches with high types. The rent extracted
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from low types is at maximum equal to 6,(6, — 6;). The platform, however, never finds
it profitable to implement Ay4ps when it can implement Ay pay as the platform can
extract all rent from low types in the latter case, whereas it can only extract the rent
premium in the former case. Lastly, if search costs are large, the platform matches low
types only to high types if feasible. This in turn results in a non-assortative matching

outcome albeit mutual acceptance would be weakly assortative.

Corollary 2. For a range of search costs, the platform strategically lowers the quality
of (recommended) matches. The platform’s optimal matching can create two economic

inefficiencies: delayed matching and mismatched pairs.

In other words, the platform recommends mismatches to agents when feasible, i.e.,
the platform fosters mismeetings to delay agent’s matches. By delaying matches, the
platform increases the payments that it collects from agents per period. In addition to
mismeetings, the platform also fosters actual mismatches by inducing users to leave in
mismatched (inefficient) pairs.

Now, I turn to the case where the search cost is endogenous and v(s) = s, i.e. sis a
uniform search fee. Given the preferred outcomes in Proposition 3, the platform chooses
s to maximize profits. The next result follows directly from Proposition 3 and provides

an explanation for why the platform does not employ PAM.

Corollary 3. (Endogenous Search Fee) Under complexity-constraint pricing with two

types, PAM is never implemented when the platform finds it profitable to serve both types.

Since the platform never finds it optimal to implement PAM, where the same types
meet with probability one, when search costs are exogenous, it also does not do so when
it can choose a uniform search fee. If, however, there are too many high types in the
market, the platform maximizes profit by exclusively catering to high types and charging

high fees to extract all surplus from them.

4.2.2 Advertisement

Advertisement plays a key role in the digital economy. More specifically, in the light of
the application to dating and job search platforms, a substantial share of these platforms
rely on advertisement as a source of revenue. In the following example, I highlight
that a (partly) advertising-based business model can outperform profits generated by
personalized prices. If the platform charges s, = 67 and s; = 67 and implements PAM,

the platform’s profit is

M = %(&92 + Bi67).
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Now, consider the concave function v(s) = ks® for a = % and £ > 0. Furthermore,
assume that 5, < [, and let the value of a high type, 6, = 2, be twice as large as the
value of a low type, §; = 1. Denote the ratio 1-9/1—p = 7.

For ), < (3, the platform either implements Apys or Awpanr. To maximize adver-
tising profits, the platform chooses s4 € [0,6?] to solve Equation 5. Furthermore recall
that if Equation 5 is satisfied, the agents’ search time is maximized as low types are
indifferent between participating or not and high types are indifferent between accepting
and rejecting low types (and rejecting with probability one). The platform’s advertising

profit is

BrOn(0n, — 6;) 5,67
4 = 2vkVsA .
TRY'S (SA+5(9}2L—SA) + sh+0(07 — s4)

A

For the chosen parameters, s* is equal to 67 = 1 if 3, = 0 and strictly larger than zero

for B, approaching ;. The profits for £, = 0 are

48, =0) = 7“\/97251 = vKB,
7P (B, = 0) = vB8i07 = B,

which coincide for kK = 1. Thus, for kK > £ = 1, advertising profits are larger than the

profits of the optimal contract for some 3, > 0. Now, let (), approach f3;, the profits are

Ag — ) = Bnbn(On — 01) 567
(8, = 0) = 2y sA (SA Ty + AT SA)) ’

7P (B, — B1) = 4v5(0; + 67).

Then, there exists a k > & such that advertising profits are larger than the profits of the
optimal contract for all g, € [0, 5;). For the values in this example, & ~ 3/2.

For general revenue functions v(s), an advertisement-based business model generates
higher profits than charging personalized prices if advertisement revenue is sufficiently

efficient compared to its nuisance:

V(S) > ﬁhﬁi + ﬁﬁf
s — s(TOn)+T())

where the numerator is the full surplus that can be extracted from agents under PAM with
personalized fees and the denominator is the total amount of search cost that agent’s pay
during the time spent on the platform 7(-). If the market is extremely unbalanced, i.e.

if only high types are in the market, advertising is less profitable as long as »(¢7)/e2 < 1.
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4.2.3 Overconfidence

Up to this point, the model has assumed that agents behave rationally and have a cor-
rect expectation about their own type. In the following, I will introduce a fraction of
overconfident agents, i.e., agents who perceive themselves to be of a higher type than
they actually are. In the simplest example, an overconfident low type perceives itself as a
high type. Overconfidence is a widely documented bias in the psychology and behavioral
economics literature.!”

Especially in dating markets and labor markets overconfidence is thought to be preva-
lent for example, when it comes to a person’s own attractiveness or ability. In dating
markets, both women and men prefer attractive over unattractive profiles regardless of
their own attractiveness (Egebark et al., 2021). Bruch and Newman (2018, 2019) analyze
the structure of online dating markets in US cities and provide suggestive evidence for
the fact that the majority of users contacts a partner who is more desirable than they are
instead of contacting a partner who is as desirable than they are. One possible explana-
tion is documented by Greitemeyer (2020), that is, more unattractive people are unaware
of their (un-)attractiveness from a psychological perspective. Similarly in labor markets,
Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed overestimate how
quickly they will find a job and are persistently overconfident about their desirability to
firms. In line with the empirical evidence, Dargnies et al. (2019) document in a labo-
ratory experiment that agents who are overconfident are less likely to accept earlier job
offers in a matching market.

Following this evidence, consider the following simple extension to the model in Sec-
tion 4.2. There exists a symmetric share of A overconfident users on each side of the
market. An overconfident user has type 6;, but persistently believes to have type 6y,
i.e. is stubborn and does not learn their true type. Denote the overconfident type by 6.
Other agents correctly identify overconfident types as low types. Following Definition 3,
an overconfident type chooses their strategy confidently believing in their misperceived
type. As a result of overestimating their own type, they, however, are overoptimistic
about the likelihood of being accepted by others. As before, users incur search costs and
become inactive with probability §.18

As overconfidence has been identified in empirical and experimental setting, I suppose

17 Ample evidence suggests that on average agents overestimate their ability, traits and prospects. Such
overconfidence has been documented in laboratory experiments by Burks et al. (2013); Dubra (2015);
Charness et al. (2018). Additionally, there is empirical evidence that consumers are overoptimistic re-
garding future self-control when signing up for a gym membership (DellaVigna and Malmendier, 2006),
workers overpredict their own productivity (Hoffman and Burks, 2020), and some CEOs are overopti-
mistic regarding their firm’s performance (Malmendier and Tate, 2005, 2008).

8Note that in the presence of overconfident users, § can also be interpreted as the probability that an
agent leaves the platform due to growing dissatisfaction after failing to match.
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that the platform can perfectly identify overconfident users as well. The platform chooses
matching rule M, which consists of ¢(-|0;) for 6; € {6;,05,0,}, and search costs (s, 5;).
As a benchmark, suppose the platform induces only one period of search by charging
(sp, = 62,5, = 6?) and choosing the positive assortative matching rule in which high types
only meet each other and (true) low types, which includes overconfident types, only meet
each other. The platform then earns s;, from high and overconfident types, as well as s,
from low types. To show that the platform can improve on this, let the platform induce
search through high types rejecting low types. The matching rule and search costs must

satisfy the participation constraint of low types and the incentive constraint of high types

(1=0)(—s+ ¢(9h|9h)92)

O s (U= 8)6(0l6n) B (1C-6n)
(1 8)(—s + 6(61]6,)6%)

R e (R P AT I (PC-6)

Given both constraints are satisfied, the participation constraint of high types and the
incentive constraint of low types (to reject low types) are satisfied as well. Next, consider
the acceptance behavior of an overconfident type. Given their perception of the game,
rejecting low types is perceived optimal if IC-6) holds, as the incentive constraint of high
types and overconfident types coincide. Similarly, they face the same perceived partici-
pation constraint. The actual payoff from participation, however, is negative, —s/s < 0,
because overconfident users reject low types, but high types never accept overconfident
types. This implies that overconfident users search too intensively and search until they

exogenously exit with probability 9.

Proposition 4. (Overconfidence) Let \* = %(1_6‘5)90%. For A < X\*, the platform
h

mazimizes profits by setting (s, = 03,8 = 07) and inducing only one period of search.

For A > X\*, the platform mazimizes profits by setting (s, = 0,(0, —0;) —/1-50,0;, s; = 0F)

and inducing search from overconfident users.

Anecdotes from Dating Apps, such as Tinder, provide evidence for the fact that less
than 10% of users account for a disproportional amount of revenue.'® On Tinder, an
average user spends around 30$ in in-app purchases and subscriptions, whereas “heavy”
users would spend 10 times the amount. For low values of 4, a relatively small percentage
of overconfident users is necessary to substantially increase the platforms profit. Note

that ¢ is inversely related to the stopping time of overconfident users. More generally,

Bn

5 increases, i.e. there are more high

A* increases in ¢ and %—*; Intuitively, if the ratio

19Gee https://uxdesign.cc/how-tinder-drives-over-1-6-billion-in-revenue-8006e718e761
and the referenced podcast therein, https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?
s5i=UB1pCunARLW8jPfNNYK4dw.
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types than low types in the market, the platform needs to rely more on overconfident
users. The reason is that given the platform lowers the search fee for high types to exploit

overconfident users, high types become less profitable.

5. CONCLUSION

On matching platforms, the misalignment of incentives between users and the platform
becomes more problematic as platforms collect more data and develop more predictive
algorithms. This paper presents a model in which a platform has perfect information
about its users’ types and matches them to its advantage. In contrast, random matching
corresponds to the case where the platform has no information about its users’ types. I
discuss how the platform benefits and uses more information about its users’ types to
improve on random matching. To do so, I highlight conditions under which the platform
wants to mismatch users, i.e. where additional information leads to worse matching
recommendations and outcomes alike.

Both sorting and search time have implications for real-world markets. The plat-
form’s algorithm can support the socially optimal matching. But even absent exogenous
search costs and search frictions, the algorithm can also foster matching outcomes in fully
symmetric markets that result in mismatch. Additionally, it increases users’ search time
by recommending unsuitable matches, where for example time spent unemployed or in
a mismatched job has high economic and social costs (e.g., unemployment insurance).
While mismatch has a negative impact on productivity and long-term unemployment
in labor markets (Sahin et al., 2014; McGowan and Andrews, 2015), assortative mating
in marriage markets is a driver of household inequality (Pestel, 2017; Eika et al., 2019;
Almar et al., 2023). Therefore, if policies aim to reduce mismatch — as in labor markets
— policymakers should be concerned about matching platforms that employ the business
models described above. Rather than relying on platforms to reduce search frictions, the
platform’s algorithm is a potential source of additional mismatch. In contrast, dating
apps can make a positive contribution to reducing household inequality.

Empirical evidence on matching platforms is mixed. For example, in dating markets
Hitsch et al. (2010) show that matches are approximately efficient and stable. The au-
thors, however, rely on data before the advent of large dating apps. In contrast, more
recent evidence, such as Sharabi and Dorrance-Hall (2024), finds that people who meet
online are less satisfied in their marriages. In labor markets, Kroft and Pope (2014) show
that Craigslist has no effect on the unemployment rate. Similarly, Giirtzgen et al. (2021)
provide evidence that online searches do not affect employment stability or wage out-

comes, but instead increase the proportion of unsuitable candidates in job applications.
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A. APPENDIX

A.1 LINEAR PROGRAMMING FORMULATION

The linear programming formulation of the platform’s problem in Lemma 4 is given

in the following. For a(@f,@;k) € {0, 1}, the platform’s optimization problem can be

represented by the following (mixed integer) linear program:

w3 50U (L= 8w gy, (6)

{8OmO¥; 1235 gk con

subject to participation constraints V0¥ € % k = A, B,

BEwl < f(0F) (0wl — (1= 6)sf) + (1 — Zm ROrOE (7)

incentive constraints V¥ € ©F k= A, B,

10RO ra(BF, 6;7) (— 5100 ") < F(67)(0wf — (1= 8)sf) + (1 —38) ) m(8F,6;%)656;"

J

k
< (Totot - stotet) (1 - ateh. o) + slofert )

feasibility and steady state constraints

D 005, 07%) + Lmp® (6, wF) = f(6F),V0F € ©F, k= A, B, (9)

1777
_k —k
6;7€o

B — (1= 6) 3, m(0F,6;")
)

F(0F) = V0! € ©F, k= A,B, (10)

and the following constraints on the matched and recommended pairs V(6F, 0]_ ) € OF x

©~F. First, the mass of recommended and matched pairs must be non-negative and the

mass of matched pairs cannot be greater than the mass of recommended pairs

(0, 677) > 0,m(6F,6;%) > 0, (11)
m(0%,0;%) < ©(6F,0;%). (12)

Second, the mass of matched pairs must be smaller than the largest possible mass of the
agents, i.e. the mass that arises when agents only exit upon becoming inactive 8:'/s times

the acceptance probability, and larger than the mass of recommended pairs minus the
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largest possible mass times the probability of a rejection

st o4 < 2O 5T gr v, (13)
(s, 074) > a6k, 67 - LA 0 gor v, (14

This ensures that the mass of matched pairs must be smaller than the mass of recom-
mended pairs and that for a(6F, 0]_ ) = 0 the mass of matched pairs cannot be greater
than zero. To accommodate for mixed acceptance probabilities of agents, consider an
agent of type 6% that is indifferent between accepting and rejecting a type 6;*. Hence, 0¥,
could randomize over the acceptance probability towards type 0;%: a4 (6%, 67%) € (0,1).
Conceptually, this imposes indifference or equality on some constraints rather than in-
equalities in the original formulation above. For any pair (6% ,6;%) € ©F x ©7* for which

m?”s

a0k 0;%) € (0,1), the adjusted incentive constraints are

kgl gk — £(08 ) 6wk — (1 —68)sk)+(1—0 z£:7n kL0805 0, for OF (15)

BROE 0 > F(OT) (0wt — (1= 8)sTF) +(1—0 meWQkam (16)

where 6% is indifferent between accepting and rejecting 6% and ;% (weakly) accepts 6 .

The constraints on the mass of recommended and matched pairs are

(el 0,%) < VBT gor g ) a7
it 67%) < 9(05,0.4), for (85,07) (1)

The linear program can be summarized in the subsequent lemma.

Lemma 6 (Linear Program). Fiz any mutual acceptance matrizx A. The platform’s
mazimization problem yields the same profit as linear programming problem with objective
function in Equation 6 subject to constraints Equation 7 through 11 for any o(6F, (9;]“)

{0,1}; and if o (0,1) for any pair (0, 0;7%) € ©F x ©7F, then for 0% replace
Equation 8 by Equation 15 and for 6% replace Equation 8 by Equation 16 as well as replace
Equations 13 to 14 by Equations 17 to 18 for (0% 07F

m’ s )'

TTL’S)

Note on Standard Form of a Linear Program To abbreviate future arguments, I
relate the linear program by the standard form of a linear program. The matrix notation
is max xc! subject to Hx < b,z > 0, where ¢ € R™. The variable vector z € X C R"
consists of n variables, i.e., the mass of recommended and matched pairs, and is an

element of the compact set X as each mass takes a value in [0, #i/s]. The m inequalities
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are given by matrix H € R™*". Equalities, such as the feasibility constraints, can be
expressed as two opposite inequalities. Vector b € R™ captures the right-hand side of
the inequalities. P = {z € R"|Hxz < b} is the feasible region given by the inequality

constraints.

B. APPENDIX: OMITTED PROOFS

Proof of Lemma 1 and 2 in the text.

Proof of Lemma 3. If ¥ < 1 and ®(6%,wF) > 0 are optimal for any ¥ € ©F, then
nF =1 and @' (6%, wk,) are also optimal such that

DOF,0:7) = D' (0F, 07, (19)

R R

(1= nf)f(0F) + (07, wi) = (07, wy), (20)

for all 0% € ©% and 9;’“ € ©7%. For given ¥ < 1 and matching rule M, Equation 19 and
20 determine the new matching rules for nf = 1.

Now consider the participation for type 6%. In equilibrium, the participation constraint
must be binding for agents to find it optimal to randomize in their participation decision.

Suppose the participation constraint is binding, then it can be rewritten as
(1—0)sk = (1=0) > a(6F,0;%)0(0;%16F) (056, — wF).
J
As the masses are the same by Equation 19, the total surplus extracted by the platform

remains the same as optimality requires that the participation constraint continues to

bind. Multiplying with the total mass of agents of type 6% if n¥ < 1 yields
(1 =8t f(OF)sF = (1 — Za FL0)D(07F|0F) (050 — wF) .

Similarly, when multiplying with the total mass of agents of type 6F if n¥ = 1 yields

ky K k p—k —k|gky (gkp—Fk k
(L—=0)f(07)s; = (1—9) Za(9i79j )(I)(Qj [29) (ei ej - %‘) .
J
Therefore, the total surplus extracted is the same in both cases by construction. Thus,
if the platform charges a search fee both cases yield the same surplus. In the case of
advertising note that f’(A¥) must increase if nF increases, i.e. the steady-state mass

increases if more agents participate everything else equal. Rewrite equation 19 as
i f(O7)o(077107) = f/(67)¢ (677167)
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Therefore, to fulfill the equality in Equation 19 ¢/ (Hj_kwf) must decrease to decrease the
right-hand side. This implies that sf’/ < s and therefore, the platform profit increases

in the advertising case due to the concavity of v(s¥). O

Proof of Lemma 5 As defined in the Section 4.1, the set G is the set of profit levels
following from all linear programs with A € A*. I show that the set G is (a) non-empty
with II(A) < oo for all A € A* and —oo < [I(A) for at least one A € A* and (b) finite.

To define set G, recall the following definitions from the text. (i) Define a subset
A* € A, where A are the mutual acceptance matrices that can be implemented by
a matching mechanism M. Construct A* through the following procedure: For every
A’ € A, construct a matrix A” such that

o/(@f,@;k’) = o/’(@f,@;k) if o/ (67, 9;’6) € {0,1},

o/ (0F,0:%) = ay; otherwise,

where «;; is a variable in [0,1]. (ii) For each A € A*, the linear program is given by
Lemma 6. The value of the objective is given by II(A). Then, (iii) G = [J e 4 H(A).
(a) G is non-empty. I will show that for any A € A*, there exists an optimal value
II(A) < oo to the linear program. To do so, fix A € A* and consider the linear program
as defined in Lemma 6 in Appendix A.1. To prove that an optimal solution exists, I
show that: (i) the objective of the linear program is bounded, i.e., the linear program
is not unbounded, and (ii) the feasible region of the variable vector, P, is non-empty
for a range of parameters. From both it follows that there exists an optimal solution by
Dantzig (1963); Bertsimas and Tsitsiklis (1997).

(i) For fix A € A*, the maximization problem is bounded if there exists a constant
C' € R such that for all feasible € R" ¢’z < C holds. The objective is bounded as

k k 3k
> ¥ ke < ¥ Y = 21
k=A,B 9?6@’“ k=A,B gi,ce@k
This implies that II(A) < oo for all A € A*.
(ii) The feasible region is defined by the set P = {x € R* : Hz < b}. For any
A € A*, there exists a matching rule under which the constraints are not inconsistent
for a range of parameters. This follows from the fact that A* C A and the definition of
A implies that A € A if and only if there exists an exogenous matching rule for which
an equilibrium with mutual acceptance matrix A exists. By Lemma 2 there exists at
least one equilibrium that can be implemented by a matching mechanism, hence, A* is
non-empty. Therefore, the feasible region is non-empty for a range of parameters for each
linear program for fix A € A*. Then, by strong duality (Dantzig, 1963), it follows that
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the linear program attains an optimal solution for any A € A*. The optimal value to the
linear program, I1(A), is finite and G is non-empty.

(b) G is finite. As G = (J, 4. II(A) and A" is finite by construction, G is also finite
as the profit level of a given linear program is a singleton. As each linear program for
fix A € A* is bounded, the profit level takes on either a (finite) optimal value if an
optimal solution exists or the value is undefined if the linear program is infeasible for

given parameters. [J

Auxiliary Results for Theorem 1 To establish Theorem 1, I proceed through a
sequence of intermediate lemmas, which are stated and proved below. Theorem 1 then
follows as a direct consequence. Recall that s¥ € [0,u] = S and denote the vector of

K y=AB =

search costs by (s¥, ..., sk S.

Lemma 7. Let's be given. There exists an optimal solution with II* = max G(s).

Proof. By Lemma 5, the set G is finite and non-empty for any given vector s. Hence,
G has a maximum element and [I* = max G is well-defined and has a finite value. O
Let the platform choose the vector of search costs s. To conclude the proof of Theorem
1, I show that there exists an optimal solution II** = maxg II*(s).

Recall that G(s) is the set of profit levels induced through all linear programs that
have a feasible solution for given s.2 In slight abuse of notation, define G(s) as a corre-

spondence from s to such profit levels II(s)
G(s) : SIO° IO = R

which assigns to each point s of SI©*1XI®7"I g finite subset G(s) of Rf. The correspondence
is compact-valued as G(s) is a compact (finite) subset of R{" for all s € SI€°1X1®7" In the
following, I will show that the correspondence is upper hemicontinuous in s on & |©FIx|eF,
To do so, recall the matrix notation of the linear program in Appendix A.1:

max zc’ = I14(s), st.Hyx < by, x> 0.
zeX

Denote by subscript A, the profit level and constraint set of the linear program for given
matrix A € A*. In Lemma 5, I have shown that a linear program for a fixed A € A*

. k —k
has a solution for some s € SI€"x107",

Additionally, whenever the linear program has
a solution, it has an optimal solution. The value of the linear program, I14(s), is thus

finite on a set J4 = {s € SI®"XI97*| — 00 < TI4(s) < oo}, where J4 C SIO1XI®7" The

201f sf exceeds the maximal utility that type Hf can achieve on the platform, they will not participate.
Hence, if s¥ exceeds the maximal utility V6% € ©F and k = A, B, the equilibrium profit is zero.
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set is compact.?!

Lemma 8. The value of the objective I14(s) of a linear program for given matriz A € A*

18 upper hemicontinuous in s on Ja.

Proof. Fix A € A*, and consider the associated linear program from Lemma 6. For
k

given A € A* s changes vector ¢ continuously, as each entry, v(s?) or 0, is continuous in
s¥. Furthermore s changes matrix H, continuously as s¥ linearly enters as a coefficient
in the incentive and participation constraints. The optimal value of the linear program
is given by
I1a(s) = sup{c(s)z[Ha(s)z < ba,z > 0},
zERn

which is finite on J4. In slight abuse of notation, denote the correspondence from s to
the optimal value of the linear program by II4(s) : SI®**1®7*l = R Next, consider the
set of primal feasible solutions of the linear program, Py4(s), that defines objective II.
This is given by the correspondence s — Pa(s) = {x|Ha(s)z < b,z > 0}.

First, I show that the set of (primal) feasible solutions of the linear program is upper
hemicontinuous in s. Consider the following definition: Py4(s) is upper hemicontinuous
at son Jy4 if

s = lim s, x, € Pa(s,), and z = lim z,,
n—oo n—o0

implies that @ € P4(s).?> To see that P4(s) is upper hemicontinuous, suppose that
{sp}n € Ja and s = lim,, ,s,. Let {x,}, be a sequence such that for all n, x, €
Pa(s): Ha(sp)xy, < ba, and x = lim, o, = x,. Since by the continuity of H,4(-) and

independence of by in s
1Ha(sn) — Ha(s)|| = 0, [|lzn — || = 0, and |[ba — ba|| =0,

it follows that Haz < by and & > 0, which yields € P4(s). This implies that P4(s) is in
fact upper hemicontinuous in s on J4. Next, I show that this implies that I14(s) = ¢(s)x
is upper hemicontinuous in s on J4. Suppose that {s,}, € Ja and s = lim,,,o. s,. Let
{Il,,},, be a sequence such that for all n, II,, € II4(s), and II = lim,,_, II,. Since by

21The set J4 contains all s € S 1©%1x1©7*| for which the value of the linear program is finite. In other
words, the linear program must be bounded and feasible for those s. By Lemma 5, the linear program is
bounded. The linear program is feasible for some s if all constraints can be met, i.e. the feasible region
‘P is non-empty. Suppose for contradiction that J4 is not compact. Now, take any sequence s,, — s, for
which the feasible region is non-empty for all s,,. For the limit point s not to be in set Ja, the feasible
region must be empty for s, and hence, at least one inequality must be violated strictly. But then, as
the linear constraints are continuous in s, the constraints must also be violated for s,, close enough to s,
a contradiction.

22This definition follows Wets (1985). Furthermore, let ||H|| = sup,c x ||Hz||
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the continuity of ¢(-), ||e(sn) — ¢(s)|| — 0, and the upper hemicontinuity of P4(s) on
Ja, ||zn — z|| = 0, it follows that IT € I14(s). This implies that IT4(s) is in fact upper

hemicontinuous in s on Jy. [
Lemma 9. G(s) is upper hemicontinuous in s on SI®1<1€7"1,

Proof. Recall that G(s) = (Jc4- Ha(s) is the finite union over the equilibrium
profit levels of each linear program. For each IT4(s) the value II4(s) is finite on J4 and
empty on § %I |o7*| \ Ja. I prove the lemma by induction over the equilibria associated
with the finite set A*. Let there be K equilibria, which can be implemented by the linear
programs and consider the correspondence Gx (s) = Uy 4, 4,y ILa(s) that includes K out
of K equilibria. By induction, I will consider G to include increasingly more equilibria.
Base case: Let G; be the correspondence that includes only the trivial equilibrium
from Lemma 2 with A; € A*. Note that SleFIxle7F — Ja, as the trivial equilibrium
is a solution to the corresponding linear program for each s € S %I |67"| Hence, the
statement follows from Lemma 8.

Induction step: The induction hypothesis states: G (s) = U4, 4, [a(s) is upper

|©F|x|0~*]

hemicontinuous on S Note that by the induction step, K includes the trivial

equilibrium. It remains to show that Gx(s) UIl4,,,(s) is upper hemicontinuous in s on
SI9*IXI87"I Recall that the correspondence Gy (s) U Ia,,,(s) is upper hemicontinuous at
so € SI9*IXI87" if for any open set V C R with G (so) UIl4,., (s0) €V, there exists an
open neighborhood U(sg) C S19"1X1€7" such that if s € U(sp), then Gk (s)Ully,,,(s) C V.

Let so € SI9IX1®7" and V be an open set with Gx (so) UIl4, ., (s0) € V. Suppose first
that I14,,, is empty at sg. Since G (so) UIl4, ., (so) € V, it follows that Gx(so) € V
and Il4, , (so) € V by assumption (where V' is the union of an open set and the empty
set). By the upper hemicontinuity of G (s), there exists a neighborhood Uk of sy such
that Gg(sg) C V for all s € Ug. Additionally, there exists a neighborhood Uy, of
so such that 14, (sg) =0 C V for all s € Ugyy (by the compactness of Jyu, . Let
U = Ug N Uk41. Then, for any s € U, both Gx(s) € V and Il4, ., (s) € V such that
Gk (s) Ully,,,(s) C V.

Let both G (s) and I14,,,(s) be non-empty at so. Since G (so) UIla,,, (so) €V, it
follows that G (so) € V and 4, (o) € V. As both Gx(sy) and Il4,,,(so) are upper
hemicontinuous for sy, it holds that: There exists a neighborhood Ug of sy such that
Gk (so) €V for all s € Ug and Uk, of sy such that II4,  (sg) € V for all s € Ugyy.
Then, for any s € U, both G (s) € V and Il 4, (s) € V such that Gx(s)UIl4, ., (s) C V.

Therefore, G(s) is upper hemicontinuous in s on SleFIxie~* g

Lemma 10. The function 11*(s) is upper semi-continuous in s on SIOf1x1e7H,
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Proof. The function IT* is upper-semicontinuous if for every point s € Slefx1eF|

II(s) > limsupIl(s,) for every sequence {s,}, C Sle*Ixie*] satisfying lim,, oo S, = s.

Let lim,, 0 8, = 8, and define IT¥ = max G(s,), so that II € G(s,) for all n. Since for
each s, G(-) is finite by Lemma 5 and the sequence {II’ } is bounded, it has a convergent
subsequence by the Bolzano-Weierstrass theorem: II; — II' for some II' € Ry. Then,
as I, € G(Sn,), Sn, — 8, and II; — II', the upper hemiconituity of G(s) implies that
any limit point of II; belongs to G(s), i.e. II' € G(s). Therefore, II' < maxG(s). Since
I, — II', this implies:

lim supIl, = lim supmax§(s,) < max§(s). O
n—oo n—oo

Proof of Theorem 1 By Lemma 10, max G = II*(s) is upper semi-continuous in s and
compact-valued. Thus, there exists a maximum by Weierstrass extreme value theorem

on the compact set SI®*Ix1®7" O

Proof of Proposition 1 The proof proceeds by considering the cases where search
costs are exogenous and where search costs are chosen as search fee or advertising.
Case 1: Exogenous Search Cost First, suppose search costs are exogenously given.
Let the parameters be drawn uniformly from the following sets: 6% € ©% = [9,0] C R,
Bk e [0,8], 6 € (0,1], wF € Q = [0,w], and s¥ € [0,u]. An outcome is said to be
generically suboptimal if the set of parameter values for which it is optimal has measure
zero in the relevant parameter space.

For given A € A* an optimal solution is a matching rule for which the objective
function of the linear program in Appendix A.1 attains its maximum value. The platform
solves the linear program in Lemma 6. Both feasibility (Equation 9) and steady-state
constraints (Equation 10) must be binding in the optimal solution. Additionally, at least
one participation (Equation 7) or incentive constraint (Equation 8) must be binding in
the optimal solution. Suppose otherwise, then the platform can decrease at least one

m(0F,0"), hence increase f(0¥), such that one constraint is binding and thereby increase

R}
its profits.

Following Lauermann and Noldeke (2014), {mBM (0¥, Qj_k) ¥, is the vector of masses
of matched pairs under random matching. Then, m/ (6%,0-%) = 0 if (6%, 6;") = 0 and

M (g gk a(0F,077) BEu(0F, wk) B (07, wi ™)
S (S B0k, eh)) - (S 870 w7 "))

if a(0F,0-%) € (0,1] (see Appendix C.1 for the extended analysis). This is a function of

19077
the inflow vector (Y, ..., 8%, )k, 0 and the probability of 6 being matched to their outside
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option w¥ (uu(0%,wk)). Observe that for given A € A*, mfM (0¥ 6-*) is independent of

i1 Y
s¥. Fix A € A*. Given {m®M (0% 67")}F, the participation and incentive constraints are

generically non-binding. Rearranging and using the steady state condition yields

Bk kpk (1-9) 4 RM (pk p— kn—k o, (1=0) 4
AR, <§ KO-k _ o "
13 99 —|— 5 s; | < (91,03) 910] .+ 5 sty (22)

J

s <ZmRM ko )(eke F— +@s?)- (23)

Suppose 3F, wk, 0F, 0 ¥ and ¢ are drawn uniformly from their continuous intervals. Note

that each constraint for a type 6% is a linear equation in s. Hence, for given {m®M (6%, 6%}k,
there exists at most one si per participation or incentive constraint of type Gf such that
the constraint is binding. This implies that if s¥ is drawn uniformly from a continu-
ous interval, the set of parameters for which the constraint is binding has measure zero.
Therefore integrating over the cases for which at least one constraint is binding, the
corresponding set of parameters has measure zero as well. Hence, for each A € A*, the
constraints are generically non-binding. Lastly, since A* is finite, this concludes the proof
for exogenously given search costs.

Case 2: Endogenous Search Cost (Search Fee) With endogenous search fees and
v(s¥) = sF, the optimization problem is equivalent to a linear assignment problem that
maximizes total match output over all possible pairings subject to feasibility constraints
that ensure each agent can match at most once. Since the matching technology is super-
modular, the solution is positive assortative matching (instead of random matching). For

PAM(‘gk 9— ) k

more details, see Appendix C.1. Given the solution to this problem, {m i 057) Y

the platform sets s¥ to fully extract each type’s surplus:

5k( —9 st =(1=20)) m"M(6k,0;%) (efegk —wf + a-9 ; ) s;?) .

J
Case 3: Endogenous Search Cost (Advertising) Now consider the case in which the
platform earns a revenue of v(s¥) when charging search costs s¥. Fix A € A* and let the
random matching vector be given {m®M(6¥, 6-%)}%. Using the steady-state conditions
to substitute for ffM(9F), the platform’s objective under random matching becomes the

following maximization problem:

maxz Z el )%m (“;>. (24)

k=A,B gkcok A ~~ d
=R (6F)

subject to the participation and incentive constraints in Equation 22 and 23.
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To maximize profit with respect to s, observe first that /(s¥) > 0 as v(sF) is strictly
increasing in s¥. This implies that the platform has an incentive to increase the search
costs as much as possible given the constraints. Therefore for A € A*, the optimal solution
is to choose s¥ such that for each type 0¥ € ©F k = A, B either the participation or the
relevant incentive constraint induced by A is binding. Note that the random matching
vector satisfies the feasibility condition, and as random matching is independent of s¥
feasibility remains to be satisfied.

Next, I show that the platform has an incentive to deviate from the above solution.
First, suppose A" € A* consists only of entries equal to one. Incentive constraints are
slack, and the platform chooses s to make participation constraints binding. Under
random matching, the platform can at most charge the expected value of a match. By

deviating to PAM the platform can raise search costs and profits, since v(sF) is strictly
k

increasing in s;'.

Second, consider any matrix in A” € A*\ {A'}, i.e., at least one type rejects another
type with positive probability. Due to supermodularity, this implies that at least one type
is willing to reject the lowest type. Consider the pair of types (6}, H}Ek) for which type
05" € O~ is willing to reject the lowest type 6 on the other market side (a (6%, 05%) = 0).
Recall that each type must be accepted by at least one other type on the opposite market
side to be willing to participate, thus consider pairs (6%,6,%) and (0%,0;%) for which
(0, 6,%) = 1 and a(0%,05F) = 1. For fix A” € A*\ {A'}, I will show that the platform’s
profit can be improved by changing the matching rules for types 6%, 6% 6’;’“ and 91_{’“ as
well as adjusting their search costs. The platform will choose the mass of recommended
pairs ®'(0F, 05%), @' (0%, 6,%), ¥'(0%,05F), @' (6%,60,%), and the mass of matched pairs
m'(-,-) = a(-,)P'(+,-) as detailed below. For all other types, the platform chooses the
mass of recommended pairs such that they equal the mass of recommended pairs under
random matching: &’ (6%, (93_’“) = ORM (g 6;’“) Without loss of generality, suppose that
the total mass of all types on market side A is smaller or equal than side B. Then, for
market side A, the platform chooses the mass of types that are recommended to their
outside option such that ®'(64,w) = ®EM(9A wA) for all 61 € ©4\ {0},04}. The
mass of recommended pairs and the mutual acceptance probabilities remain the same as
under random matching. Therefore, the participation, incentive constraints, feasibility
constraints (Equation 9) and steady-state constraints (Equation 10) for all other types
continue to hold.

For ¢ € [~ min{B;—m™ (-, )}, min{mM (-, -)}], the platform chooses m" (6%, 0*)—
m' (0F,0,%) = ¢ and mPM (0%, 0.F) — m/(0%,0,F) = ¢, ie. the platform changes the
mass of the two matched pairs by . Substituting the change into the steady state

condition (Equation 10) for type 6% and type 0}_%’“ increases the steady state mass by 1%;55
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for € > 0, and decreases otherwise. Substituting ®M (6% 07%) — @'(0%,0,F) = ¢ and
OEM gk 0-F) — @'(0%,0,%) = ¢ into the feasibility constraints (Equation 9) of type 6F
and type 03" implies that ®'(6%,05%) — @M (6%, 0,%) = 5% + ¢ = /5. It remains to
determine &’ (0%, 0,F) — ®EM (%, 6,%) and m/ (0%, 07%) —m M (0%, 6,*). To do so, consider
two cases: either a(6%,07%) = 0 or a(0%,0,%) = 1.

In the first case, a(6%,60,%) = 0, I can exchange 0% for 0¥ and 0" for 6;*. Then,
it follows that @' (6%,0,%) — ®#M(0% 6,%) = ¢/s and m’'(6%,0,") = 0. In the second
case, a(0%,0,F) = 1, the platform can set ®'(6%,0,%) — ®EM (9% 6,%) = m/(0%,6,%) —
mPM (9% 6,%) = e. Since the platform decreases (increases) the mass of the matched pair
(0%,05%) but increases (decreases) the mass of the matched pair (8%,6,*) by the same
amount, this implies that the steady state mass of type 6% is unchanged compared to
the steady state masses under random matching. Additionally, feasibility continues to be
satisfied as the platform shift mass € from one recommended pair to the other. Similarly,
the steady state mass of type sz is the same as under random matching and the steady
state constraint as well as feasibility constraint remain satisfied.

Next determine the change in search costs for types 6%, 6%, 6;’“ and (9;2’“. Note that for
the newly chosen mass of recommended and matched pairs (®'(-,-), m/(+,)), the originally
binding participation or incentive constraint is no longer binding. Since, however, the
right-hand side of the participation or incentive constraints (see Equation 22 and 23) are
linearly increasing in m(-, -) and the left-hand side of the constraints are ordered due to the
supermodularity of the match utility, the platform can choose a new search cost s¥ such
that the constraint becomes binding again. Let the platform choose 5%, 5%, 5;{“ , 52’“ such
that originally binding participation or incentive constraint of each type is binding again.
Using Equations 22 and 23 and m®M (0%, 0F) — m/(0%,0,%) = ¢ and m"™M (6%, 0.%) —

m'(0%,05%) = ¢, the difference between s§ — 3¢ and s;* — 3. can be directly obtained.

k ~k
> 55" for

From there, it follows that 5% must be smaller than s} for ¢ > 0 and s
e > 0. Next, if a(f%,0,") = 0, the difference between the search costs for types 6%
and 0,* can be derived as above and again, it holds that s% > &% and s,* > 3,* for
e > 0. If a(0%,0,%) = 1, recall that the platform sets: m™ (05 6.%) — m/(6%,0,%) = ¢
mIM (0 05F) —m! (0%, 05%) = ¢ and mPM (0%, 0,%) —m/(0%,60,%) = —. Using Equations
22 and 23, the difference of s;* — 5" can be obtained and s3,* < 5" for ¢ > 0. Similarly,
the difference of s% — 5% can be calculated.

To determine whether the deviation is profitable, consider the difference in profits be-
tween the deviation profits and random matching profits (Equation 24). In the first case,
when a(0%,60,F) = 0, the steady state mass of all four types (6%, 60%, 05", 0,%) increases
(decreases) by (1=9)¢/s while their search costs decrease (increase). Taking the difference
k

7

in profits and differentiating with respect to €7, and evaluating the condition at ¢ = 0,
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yields:

Y @l e e e

oke{0k,05.05".0,"}

For analytical convenience, consider the class of concave functions v(s¥) = k(s¥)® for
k € RT and o € (0, 1) from now on. Substituting v(s¥) = k(s¥), V/(s¥) = ka(sF)*~1, and
the total derivatives of the differences in search costs into Equation 25 yields expression D
(see Appendix C.2). For the deviation to be profitable, the expression must be non-zero
when being evaluated at € = 0. Then, since the function D is continuous in «, D > 0 for
a =0, and D is increasing in « for a@ < o and decreasing for a > «o”, it follows that D
has at most one root. In the second case, when (6%, 6,*) = 1, the steady state mass of

(- 5)5 while the steady state mass of types 6% and

types (0%, 05") increases (decreases) by <
GAT’“ remains unchanged. Repeating the same steps as above yields expression Dy, which
again has at most one root.

Now, suppose (¥, wF, OF 0 ¥ and § are drawn uniformly from their continuous inter-
vals. Then, there exists at most one o for which D = 0 (or Dy = 0). Let o be drawn
uniformly from (0, 1), then random matching is generically suboptimal as such « is drawn

with measure zero. [

Proof of Proposition 2 Since market sides are fully symmetric, for brevity I drop the
superscript k. PAM is defined as ¢(6;|0;) = 1 iff i = j and results in f(6;) = 5, V 6, € ©.
Case 1: Search Fee. (a) “If” direction: PAM is optimal if the platform sets s; = 67 —w;
for all #; € ©. As shown in Appendix C.1, PAM maximizes total match surplus across
all agents. By choosing s; = 07 — w;, the platform can extract each agent’s match surplus
as no agent is willing to pay more, thereby maximizing the platform’s profit.

(b) “Only if” direction: Suppose, for contradiction, that PAM is profit-maximizing even
if s; < 5; for some 0; € ©\ {#;} and 5; = min {6? — w;, 67 — 0, ‘91 5“’1} Observe that if
the platform uses PAM with probability one in the next period and s; < S;, then type 0;

would reject the lowest type 6; in the (zero-probability) event they meet, since
max{@iel,wi} < 5(&11’ + (1 — 5)(93 — Si). (26)

Consider a deviation from PAM in which all types other than 6; and 6; continue to
only meet each other (®(6;,60;) = f3;), but 6; and 6; meet each other with mass e €
(0, min{B1.8:}/s] (®P(6;,0,) = €). Simultaneously, reduce the search fee of type 6; from
s1 = 0% —w; to some s}, which T will specify below. Then, I will show that there exists an
e > 0 and a corresponding s} such that the resulting matching rule is feasible, incentive

compatible, and strictly improves the platform’s profit. To check feasibility, substitute
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the steady state conditions in Equation 10 into the feasibility constraints in Equation 9

and solve for the new (conditional) matching probabilities under the deviation, ¢”:

Bi — €d 51—65

S CAl2 = 2 (1_5)¢ MCAl —_——— 27
For any min{1.8:}/5 > ¢ > 0,1 > ¢P(-) > 0. Set s} = Bil%%(&z wi). To verify that type

f; continues to reject type 67, note that under PAM, if s; < 5;, the inequality in Equation
8 is slack. Since matching probabilities are continuous in €, there exists a small € > 0
such that the incentive condition remains non-binding or becomes just binding. Thus,
search behavior does not change for sufficiently small e. Now consider the PC of type
0, (Equation 7). Under PAM, it is binding if s; = 6? — w;. Since §; now meets type 0;
with positive probability, continuing to charge s; = 67 — w; would violate the constraint.
By lowering the search fee to s} as defined above, the constraint remains binding. The

platform’s profit given the new matching rule and search fee is

b — 21-9) ((51 €)s; <Bl+€)(61 9%—W1)+ Zﬁj@?_%‘)>'

1—p 1+ (1— 5)6 fory

The deviation is profitable if II” — II7AM > 0, that is if s; —

small enough.

W(QQ wi) >0 for e
Case 2: Advertisement. Given PAM, the platform maximizes profits by setting search
costs to s; = 0; — w;. Consider a deviation as in Case 1, in which all types other than
type 6; and some type #; continue to meet only each other. For type #; and 6; choose
the mass of recommended and matched pairs (denoted by a superscript prime) such
that 5 — ®'(01,6,) = Bym'(01,60,) = ¢ and B; — (6;,0;) = B; — m/(0;,0;) = € for € €
(0, min{p, B;}]. The new matching rule must satisfy the feasibility constraints (Equation
9) and steady state conditions (Equation 10). It follows that ®'(6;,6;) = $. To ensure
that type 0; rejects type ¢, under the new matching rule (so that m’(6;,0;) = 0), while

type 0 participates, the platform chooses (8, §;) such that

5; (maX{O 0:0; — w;} + (1;5)51») =(1-0)(B8; —2) (Qf—wi—i— (155)51»)},

b1 ((155)51) =(1-6)(BL—e) (0% —wy + (155)51)}'

For (s; = 6% — wy,s; = 0? — w;), the deviation is profitable if II” — IIPAM > 0, or

7

57; c {Sz €R+

S1 € {51 €R+

equivalently

)6 =0, where § or £
1)) + (V(§1) + y(@))g - 5’ h 0 € (Ov 1) f >0. O

YAl

S BT T T A
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C. ONLINE APPENDIX

C.1 BENCHMARKS

This section analyzes two polar cases, in which the intermediary has full information
about agent’s types and is able to extract the full rent from the matching output or the

intermediary has no information about agent’s types and must match agents at random.

Socially-Optimal Matching The first benchmark constitutes the case in which the in-
termediary (or a social planner) provides the socially-optimal matching under the premise
that agent’s types can be identified perfectly. The intermediary or social planner max-
imizes the sum of total matching outputs given that agents only search for one period.
The matching output function is supermodular, i.e. types of both sides are complements.

The socially-optimal matching is the solution to the linear program

max S0 D O —whm(er, 6% (28)

k= AB9— cO- kgke@k

subject to feasibility

> m(0F,0;%) < B V0F € OF (29)
9;’“69—’“

> m(0F,07F) < B Vo e ©7F, (30)
okcok

m(6F,0:%) > 0,v(6F,60;%) € ©F x ©7F. (31)

The linear program follows the optimal assignment problem by Koopmans and Beckmann
(1957) and Shapley and Shubik (1971). Both agents that form the match (6%, 9; ) receive
the output 6% - 9]-_'“.

The optimal matching rule that maximizes total match surplus follows the procedure:
Starting with the highest possible type on side k, each agent is matched to the highest
possible type on side —k. If there are not enough high types remaining on side —k, the
algorithm proceeds in descending order of type on side —k until all agents of the highest
possible type on side k are matched. The process continues in descending order with the
next highest type on side k, each time matching to the next available remaining types on
side —k. Once all agents on —k have been matched, any remaining agents on side k are

assigned to their outside option.

Remark. If markets are fully symmetric, the socially optimal matching is m(6¥, 9]_’“ ) =

B if 0F = Qj’k . The outcome is said to exhibit positive assortative matching.



If market sides are fully symmetric, 34 = B2, the solution to the linear program is
attained with m(6%,0;%) € {0, 8F}, that is a pair is either matched with probability one
or not matched. Although the linear program permits partial or fractional matching of
agents, Dantzig (1963) showed that the maximum value of the objective is attained with
probabilities in {0, 1}.

For symmetric populations of agents, optimality requires that no individual remains
unmatched, such that the feasibility constraints must hold with equality. Otherwise,
the social planner can increase welfare by assigning an unmatched agent to another
unmatched agent as the value of their match is greater than zero. The objective is
maximized if m(6F, 9;’“ ) = BF when 6f = Hj_k by applying the rearrangement inequality.
Random Matching The second benchmark is a random matching market. For ex-
ample, if an intermediary has no information (data) about agents’ types, and thus can-
not condition on any observables, the intermediary’s matching rule incorporates random
meetings between agents. A random matching market may also reflect offline meetings
between agents that are not intermediated by any platform.

A random matching market is a tuple (%, f(0F))s—45 with parameters (s¥,§).The
analysis builds on the model of Lauermann and Noldeke (2014).%

. . Tk .
The total mass of agents on side k is [ = Y i gr f(0F). Since each agent can meet

i . . L . <A =B
at most one agent per unit of time, the total mass of meetings is given by min{f", f* }.
Given that meetings are random, the fraction of meetings that involve type 6% on side k

and type 9]7’“ on side —k is then

FO5) £67%) min{ ", T
7o '

If Tk > 7_k, then the mass of agents on side k that meet their outside option is ® (65, w?) =
e

! },{ . The probability to meet type Qj_k on side —k conditional on being an agent of

any type on side k is

0-%) min 7t
gty = LG Jmintf S}
f f

where the probability that type 6F on side k exits the search process in a match with

2In contrast to Lauermann and Noldeke (2014), agents may face explicit search cost s¥ in addition to

J.



type 9]-_]“ is

05.07%) = - (1—6)a(0f,0;" )Wi_k) _
! +(1 - )Ze ka(z’ f )¢(9j )

where p(0F, wk) =1— Ze—k u(F, Hj_k ) is the probability that type 6 remains unmatched.
Let (f(6F),a(0F,0:" )zj)k:A,B be a steady state. Then M with entries given by

i

o007 (61) £ (67 ) min{ 7" )

r

is the unique matching outcome induced by the steady state under random matching.

m(6F,07%) = (32)

Vice versa, if M is a steady state matching outcome then f(6%), a(6F, 9; ) is given by
N k

k ——k

If
09 F(0; %) min{F*, 7"}

where a(0F,6;%) < 1 for all (6%,6;%) € ©F x % and m(#* w¥) is the probability of

ending up with one’s outside option. Matching M is an equilibrium matching if

a0, 0;) = m(67,6;") (34)

(6.6 0 if 0¥0F < VE(6F) or OF, 677 < VE(6;7)
f" Q_ = k “ky .k 5=k
i FO) (07 ") min{7" 7"}

! o if 0567% > VC(6F) and 6F6* > VO(0:F)

holds for all (0%,07%) € OF x ©*.
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C.2 PROOF OF PROPOSITION 1: ADVERTISING

This addition to the proof of Proposition 1 provides the detailed mathematical steps
required for completing the proof of the third case: advertisement.

Consider pairs (6%,6,%) and (0%, 0z") for which a(0%,0,%) = 1 and a(6%,05%) = 1.
I show that the platform’s profit can be improved by changing the matching rules for
types 0%, 0, ng and 9;3’“ as well as adjusting their search costs. The platform will choose
the mass of recommended pairs @ (6%, 0:F), &' (0%, 0%), @' (0%, 05"), '(6%,60), and the
mass of matched pairs m/(-,) = a(-,-)®'(-,) as detailed below. For all other types,
the platform chooses the mass of recommended pairs such that they equal the mass of
recommended pairs under random matching: ®'(6%,6;%) = @FM (9 6").

For £ € [~ min{B3;—m® (-, )}, min{m/M(-,-)}], the platform chooses m™ (6% 6,*)—
m' (08, 07%) = ¢ and m®™M (0%, 0.F) — m/(0%,05%) = ¢, i.e. the platform changes the mass
of the two matched pairs by €. Substituting the change into the steady state condition
(Equation 10) for type 8% and type 63" yields

(51_(1_ <_5+ZmRM 15 J_k>)7
FEM(0:F) + 17_55 :% (5};’6 —(1-9) (—5 + Z m™M(oF, 0;’6))) .
Ok

Therefore, by decreasing (increasing) the mass of the two matched pairs, increases (de-

1—

SEM(OF) +

creases) the steady state mass by 177555 compared to the steady state mass under random
matching. Substituting ®7M (68, 07%)—&' (0%, 0,%) = ¢ and @M (0%, 0,F)—d' (0%, 05F) = ¢
into the feasibility constraints of type 6% and type 0;3’“ yields

1—46
FEM (6% + ——f= (08, 05F) — e + Lma®™M (0F, )+ > M (0F, 0%,
o-k\{05"}
(35)
RM (n—k 1_5 1k pn—k RM (n—k —k RM (nk p—k
PO + —5—e = (07, 05") — € + Lea® (07" ") + > MG, 055,
or\{ot}
(36)
which implies that @ (6%, 05%) — @M (0%, 0,,%) = =2¢ 4+ ¢ = ¢/s. It remains to determine

(0%, 0,7) — OFM (0% 0F) and m/ (0%, 0,F) —mRM(HA, 01%). To do so, consider two cases:
either a(6%,07%) = 0 or a(0%,0,%) = 1.

In the first case, a(6%, 0,") = 0, I can exchange 0% for 6% and 6,* for 0" in Equation 35
and 36 above. Then, it follows that ®' (6%, 0,%) — ®FM (9% 6,%) = </s and m/ (6%, 0,%) = 0.



In the second case, (6%, 0,%) = 1, the platform can set ®'(6%, ;%) — &M (0% 6,%) =
m' (0%, 0,%) —mP M (0%, 0,%) = e. Since the platform decreases (increases) the mass of the
matched pair (0%, 65") but increases (decreases) the mass of the matched pair (6%,6,%)
by the same amount, this implies that the steady state mass of type 6% is unchanged
compared to the steady state masses under random matching. Additionally, feasibility
continues to be satisfied as the platform shift mass € from one recommended pair to the
other. Similarly, the steady state mass of type sz is the same as under random matching
and the steady state constraint as well as feasibility constraint remain satisfied.

Next determine the change in search costs for types 6%, 6%, 6;’“ and 9;2’“. Note that for
the newly chosen mass of recommended and matched pairs (®'(-, ), m/(+,-)), the originally
binding participation or incentive constraint is no longer binding. Since, however, the
right-hand side of the participation or incentive constraints (see Equation 22 and 23) are
linearly increasing in m(-, -) and the left-hand side of the constraints are ordered due to the
supermodularity of the match utility, the platform can choose a new search cost 5% such
that the constraint becomes binding again. Let the platform choose &%, 5%, 5;%’“ , 5;’“ such
that originally binding participation or incentive constraint of each type is binding again.
Using Equations 22 and 23 and m®M (9% 0%) — m/(0%,0,%) = ¢ and m"™M (6%, 0.%) —

m'(0%,05%) = ¢, the difference between s¥ — 3% and s3* — 35" is given by

B — (1= 8) 32, m ™M (0, 07%) 1—0,

(1-0) ; S (s - 8 =010yt — Wt + ——F). (37)

Observe that the right-hand side is positive for £ > 0 as 686" — w¥ > 0 due to the fact
that both types mutually accept each other. Then, it follows that 5% must be smaller
than s} for ¢ > 0. Additionally, by the steady state constraint, the factor on the left-hand

side is equal to (1 — &) ™M (%), Similarly, using m® (0%, 05F) — m/(6%,605") = ¢ and

k k

taking the difference, s;," — 55" is given by

(1= ) f™M(05") (55" — 85") = e(0405" — wi" + ——=55"). (38)

Observe that the right-hand side is again positive, so that sgk > 5;{“ for ¢ > 0. Next,
if a(0%,0,%) = 0, the difference between the search costs for types 6% and 6;* can be

derived as above

(1= 8P (05 (5 — ) = (00" — o + =), (30)
(1= 8P 0 (53" — 535 = (0803 — i + T 5057Y) (40)

Again, it holds that s% > 3% and s;* > ;" for ¢ > 0. If a(6%,6,") = 1, recall that

the platform sets: mfM (08, 0.%) — m/(0F,0,7%) = ¢ mBM (0%, 05F) — m/(0%,05%) = ¢ and

1971



mEM (0% 6,%) —m/(0%,0,") = —¢. Using Equations 22 and 23, the difference of s;* — 5"
is given by

1—

(1= 0)f ™ (O3") (53" — 55%) = e(070," —wi® + §4°) =046, —wi + ——31").

Since 0% > 0, the right-hand side is negative, so that szk < 5;1]’“ for € > 0. Similarly, the

difference of s¥ — 5% is given by

(1= 0) ™M (03) (s — 54) = e(0405" — 0404"), (42)

where the right-hand side is non-negative if 9§k > sz.

To determine whether the deviation is profitable, consider the difference in profits
between the deviation profits and random matching profits (Equation 24). In the first
case, when a(#%,0,%) = 0, the steady state mass of all four types (9’1“,01’31,(9];'“,0;’9) in-
creases (decreases) by (1=9)</s while their search costs decrease (increase). The difference

in profits is therefore

S o - + v

956{9’;,0@,9;’“,9;’“}

Differentiating with respect to £, and evaluating the condition at e = 0, yields:

L o3k 1-6 .
> v (Sf)|g§:s§§|s:ofRM(9f) + T’/(Sf) sk (43)

956{9’16,9’;;,91;k,a;k}

Totally differentiating Equations 37, 38, 39, and 40 and evaluating the derivative at € = 0

yields:
| 050 — Wi+ s I U R
Oz | (1- )fRM( 0 9= |- (1—08)fRM(05)
e _ 040 P wgt + st 05, _ 0104 b wy +T5
O |.—g (1—8)fRM(05%) d= |.—g (1 —0)fRM(6,%)

For analytical convenience, consider the class of concave functions v(s¥) = r(sF)e for

k € RT and a € (0,1) from now on. Substituting v(s¥) = k(s V/(sF) = ka(sF)o?

)



and the partial derivatives above into Equation 25 yields

050" — b + 52K\ 14
DEa(Slf)a—l (_ 14 — W s 51 . (leg)a

=d1(05")

For the deviation to be profitable, the expression must be non-zero when being evaluated
at ¢ = 0. I will argue that D has at most one root in . To do so, examine the term for

0%, Differentiating with respect to « results in

! g 55? ln(sf)> .

Now, observe that (s¥)®~1 is strictly increasing in «, whereas the expression in brackets

. . e : Ry ad, (6%
changes sign at most once since it is linear in «. This implies that %

Oa

changes sign at
most once, in which case it is positive for some o < o and negative for o > /. Similarly,
this holds for the equivalent expressions, d;(-), for each type 6%, 0;1’“, 0}_2]“. Then, since the
function D is continuous in «, D > 0 for o = 0, and D is increasing in « for a < o and
decreasing for o > o, it follows that D has at most one root.

In the second case, when a(#%,0,%) = 1, the steady state mass of types (67,05
increases (decreases) by % while the steady state mass of types 0% and 63" remains

unchanged. The difference in profits is therefore

2. [<v<§§>—u(sf»fRM(ef)w(gf)lgés]+ > (WG — s D).

oke{ok,05"} oFe{0%,05%1



Differentiating with respect to ¢ and evaluating the condition at € = 0, yields
sk 1-46
> [l G o™ 0+ 5| (44
T K2 8 1 k2
oke{ok05"}
o3t

b [ o™l )

0Fc{0%.,0,"}

Again, the expression must be non-zero for the deviation to be profitable. Again, I totally
differentiate Equations 41 and 42:

054 05(04" — 05")

o = 95"
D =0 (1 —0)fRM(6Y)

>0ﬁ@k>@h7r¢ﬂ:
£

0,"(0% — o)
(1—8)fRM (0,7

> 0.

Substituting v(s¥) = k(sF)*, V/(s¥) = ka(sF)*™, and the partial derivatives above into

Equation 45 yields

kip-k _ p—k —kipk _ pk
Da = a(0) + as) (AT ) e (A a0,

[

da (9%) 263"
Examining the two new terms shows that da(0,%) is strictly increasing in o, and dy(6%)
is strictly increasing in « if 92"3 > 91}’“, and decreasing otherwise. Again, this implies that
D5 has at most one root.
Now, suppose (¥, wk, 0F, 0]7’“ and ¢ are drawn uniformly from their continuous inter-
vals. Then, there exists at most one « for which D = 0 (or Dy = 0). Let « be drawn
uniformly from (0, 1), then random matching is generically suboptimal as such « is drawn

with measure zero. [



C.3 OMITTED PROOFS: BINARY TYPES

Lemma 11. For § — 0, the optimal matching rule that implements

(a) APAM 18

[ 04 (0r—0) 1 = 5@ ] if Br 07 — s (46)
_ Br (0 (6 —01)—s) Bn (01 (0, —60;)—s) ) = _ o
L = 5, 6r 00T =85 Bifr (0r—00T (Gri—B)s B~ On(0,—6) — s

or otherwise,

Bns _ Bhns
B107+(Br—B1)s 1 B0 +(Br—B1)s ﬁh HZQ - S (47)
1- % = ﬂz_eh(eh—el)—s
l l
where at equality both matrices coincide. O(Apan) is positive assortative.
(b) AWPAM 18
=D BRRCED]
[1 (BB nOn 0D —5)s (6103 —5)—Bn (00 (90— 0)—5))s o (48)
01(0n—01) (Br(On(0n—01)—5)+B1(0nti—s))  01(0n—01)(Br(0n(0n—01)—35)+B1(0n01—5))
. (67 — s) B (67 — s) . .
if < = < , and O(Awpan) is weakly assortative.
Gh(é’h — 9[) — S) 5 (Qh - 91) — 8) ( )
Awpanm 18
B 1 — Brn—51 ﬁh . ﬁl
Pn B, if B > By and 0n(0n, — 0,) < s < 0,0, (49)
1 0 Bh
or
0 1
R N , if B < By and s < G707 + Brbi(6h — 601). (50)
l

O(Awpan) is non-assortative.

(C) ANAM 18
Bn—"08 Bn—08
[ At 1- &t ] gi< B - On(0n — 0) (51)
500 L aw B = On(On— ) — s
or
s 1 s
0n(0n—01) 0 (0n—0))
L_ B02—07=5) B On(On—00)—5)  Fu(62—07—s) 5 (0n(6n—01)—s) | - (52)
(0r—01)0:61 (0n—61)0,6
0,00, — 0 02 — 07 —
if n(On — 01) ﬁh < o and O(Ananr) is non-assortative.

9h(9h - 91) - S 51 9h(9h - 91)



Proof of Lemma 11 The proof proceeds as follows. Fixing each matrix of mutual
acceptance probabilities, I solve for the optimal matching rule by using the auxiliary

problem from Appendix A.1. The linear program in the binary case is given by

max L2 (160, + £(60),

subject to feasibility and steady state conditions

f(Or) = ®(0h,0n) + ©(0h,01), (53)
f(61) = ©(61,61) + (6, 0), (54)
5h = [(0r) + (1 — 6) (O, 0)2(On, On) + (O, 61)P(On, 01)), (55)
= f(0,)0 + (1 —6)(c(;,0,)P(0,,0,) + (O, 0,)P(0,0,)), (56)

as well as the respective participation and incentive constraints.

(a) Apam:
Apap induces the following constraints: A high type must be willing to continue
searching after meeting a low type and the low type must be willing to participate. The

transformed incentive and participation constraints take the following form

Br(00h01 + (1 = 8)s) < (1 — 0)®(On]04) (36}, + (1 — 0)s), (57)
Bi(L—0)s < (1= 0)®(6:]6:)(36; + (1 —d)s). (58)

By Theorem 1 an optimal solution exists. In the binary case, the optimal solution can
easily be checked. As the platform maximizes the steady state mass, it chooses ® (6, 6)
and ®(6;,6;) to be as small as possible without violating the constraints. Here, ®(6,,6)
and ®(0;,0,) are minimal when Equation 57 and Equation 58 bind resulting in

Br((1 —6)s +0,6,)
(1—=8)((1—8)s+462)
Bis
(1—10)s+ 6%

D (6,,0,) =

dD (6, 0,) =

Both the incentive and participation constraint, however, can only bind at the same time

whenever

(@)@_ (1—0)(67 — 5)(s + 3(03 — 9))
61 (Qh(eh_0l> —8—6(02—8))(84—5(9?—8))’

due to the feasibility constraints, Equation 53 and 54.

10



The steady state mass can be calculated by inserting ®@(6,, 6),) and ®(®(6;,6,) into

Brn— (1 =06)®(0n,0)
6 )
fi— (1 -0)2(0:,6)
1)

f(On) =
f(0) =

2t for i = h, 1.
If ’8 Lo (ﬁﬁh) , only the partlclpatlon constraint can be bmdlng such that ®(6;,6,) =
(61, 9,). Inserting ®(6;,6;) = ®@ (6, 0;) into the feasibility constraint of the low types

yields ®(0y,0,), which in turn determines ®(0p,60;,) by inserting it into the feasibility

The optimal matching rule is then given by ¢(6;]6;) =

constraint of the high type. If % < (%—’Z)(“), only the incentive constraint of the high type
can be binding such that ®(8),0,) = ®(6y,0,) and the steps above can be repeated

respectively.

(b) Awpam:
(b.1) Awpan induces the following constraints: A high type must be indifferent

between searching and accepting low types
Br(00n01 + (1 = 8)s) = (1 — ) (P(04]64) (865 + (1 = 8)s) + (Gn, 01)P(6n, ) (3616; + (1 — )s)) .

which holds for ¢(0]0,) = m%. Additionally, low types must be willing to

participate
ﬁl(l — (S)S < (1 — (5) (q)(@l, 91)((5912 + (1 — (5)5) + Oé(Qh, 91)@(9}“ 91)((59h91 + (1 — (5)5)) .

From ¢(0,,105) = M it follows

(1—8)65 (05,
01, 00) = 9(04100) -
P T 6 (U= 0)(06u16n) + a0, 6) (1= 6(04164))),
=f(6n)

B Br((1 = 6)s + 60,6;)
B (1 — 5)(0&(8}“ 81)(9h(9h — 91) — (50}% — ( - 5)8) + (59%(1 - 5)5)

Then, ®®)(6,,,6;) follows by inserting ®®(8},,6,) in Equation 53, i.e.,

ﬁh (Qhel — (1 — (5)6% + (1 — (S)S)
(1= 0)((Bh, 6,) (062 — 65 — 62 + 0,6, + 5) — 0602 + 65 — 5)

Furthermore, ®®)(6;,6;) follows from feasibility of the low type by inserting ®®)(6,, ;)
into Equation 54.

11



The low type is indifferent between participating and not participating if

OéWPAM =

{a(0h,0)) : Brs = D (0,,0,) (67 + (1 — 8)s) + (O, 0) 2O (61, 0,) (60,0, + (1 — 5)s) } .

For 0 — 0, I get

o WPAM _ s (Bn(On(On — 6,) — s) — 55(912 —3)) (59)
(0n(0n, — 61) — s) (Br01(0n — 0,) + Bi0F + (Br, — Bi)s)

The mutual acceptance probability is then given by the above. For § — 0, to ensure that
oV PAM < 1 and ¢(6;]6;) > 0, the conditions in the lemma must hold.

(b.2) Additionally for 5, > ;, the platform can implement Ay pays by always match-

ing low types with high types, i.e. ¢(6,|60;) = 1. This implies that low types search for
only one period, such that f(6;) = ®(0,6;) = ;. The high types’ incentive constraint
for a(0y,0,) =1 is

Br(8640, + (1 — 6)s) > (1 — &) (B(64]04) (562 + (1 — 8)s) + B(6h, 6,) (5646, + (1 — 6)s)) ,

and from the feasibility constraint (Equation 53), it follows that ® (6, 6,) = S — ;. The

incentive constraint of high types is satisfied if

Br— (1 —=0)B J
5> W‘gh(eh - 91) - (1 _ 5)

The participation constraint of low types is satisfied if s < 6,6;:

0,

Bi(1—0d)s < (1 —0)B3i(60,0; + (1 = 9)s).

Lastly for 8, < f;, the platform can implement Ay pays by always matching high types
to low types, i.e. ¢(6;/65) = 1. This implies that high types search for only one period,
such that f(6,) = ®(0y,0,) = B. Low types must be willing to participate

Bi(1 = 6)s < (1= 6) (D(61,6,)(662 + (1 — 6)s) + Bu(5646, + (1 — 6)s)) .

If the participation constraint is satisfied, low types also search for only one period, such
that f(0,) = 5,. Therefore, ®(0,,0,) = 5, — Bn. Thus, the participation constraint is
satisfied if

s < BP0} + Bubi(6, — 6)),

12



and low types do not reject low types if

0601 (Br(1 — 6)0, — Bi)
(L=8)(B— (1 =0)Bn)’

s >

which equals zero for § — 0.

(C) ANAM:
(c.1) Axan can be implemented if

ﬁh(( )8 + (59;19[) Z ( 5)®<9h|9h)(<1 — 6)8 + 5‘9}%) + (1 - 5)@(«91—“ 9[)((1 — 5)8 + 59}1‘9[)7
Bi((1 = 8)s +607) < (1= 6)@(6h6:)((1 — 6)s + 5040,).

As high types accept both high and low types and search for only one period, the
steady state mass of high types is equal to their inflow: f(0,) = . The platform’s profit
from high types is, therefore, independent of the matching rule. To maximize profits, the

platform minimizes ®(6,, 6;) such that

Bi((1—6)s + 667)
(1 — 5)((1 — (5)8 + (59}191)7

S0, 0,) =

and the incentive constraint of the low type binds. ®(0y,0,) = 5, — f; follows from the
feasibility constraints (Equation 53), where ®(6y,, 6,) and ® (6}, 6;) must be such that the
incentive constraint of the high type is fulfilled, which is true if

ﬁh ((1 — 5)8 + (59?) Gh(eh — 6[)
o ﬁl (Gh(ﬁh — (9[) — (1 — 5)5 — (5(9,%) ((1 — (5)8 + 59h9l) ’

For 6 — 0 this results in

1< ﬁh < 9h(9h—9z)
ﬁl 9h(9h - 91) —s

(c.2) Ayan can be implemented if a high type is indifferent between accepting and
rejecting a low type, while a low type is willing to reject low types. Again as in part
(b), ¢(04]6r) = % must hold to ensure the indifference constraint of high types.
Then for a(6y,0;) € [0,1], (0, 0,) = Y (6,,0;,) and ) (0,,0,) = d®)(6,,0,). Insert-

ing into the incentive constraint of the low type, the low type rejects low types if
Bi((1 = 6)s 4+ 662) < (1 —8)a(Bn, 6;) D (01, 0,) (1 — 8)s + 56,6,),

which holds with equality for

NAM __ bys
~ (Br = B)(0n(6r, — ) — s) (60)

«

13



if § — 0. It holds that a™V4™ > ( generally, and o4 < 1 if %—’; > %. Addition-

ally, ¢(0,10,) = w, which is larger than zero if 5, > [, and smaller than one

b2 g2 B10:(0n—01)
¢ Bn 2—07—s
it 5 < go—oy—- U

Proof of Proposition 3 Next, I determine the platform’s preferred outcome. First,
let s < 672,

(a)
(i) For BB—’; < (%—’;) , the profit when implementing Apay (Equation 46) is

e 2v(s)(1 —9) (25h9h(9h —0)) + (B — Br) (s + (6} — s))>
- 1-0p s+6(02 —s) '

(a)
For ’%—’Z > (’%—’Z) , the platform can either implement Apay (Equation 47) or Awpan

(Equation 48). The profits are

wzy  2v(s)(1 =0) (28,07 + (Bn — Bi)(s + (67 — 5))
S ( ST o7 =) )

and

oD _ 2v(s)(1 = 0) (2810500 — (Br — B1) (267 — 5 = Ohs) — 0(Bn — B1) (O — 01) (s + 6u0)))
1—p (9h+01)(s+5(9h9l_3)) 7

where the difference is positive

(1-6)67 —s
6’h(o9h—9l)—s+5(9,21—s

(a)
Bn Bn
Thus for (6?) < 6}; <

¢ Bn (1—5)92—5
if 5 2 O (On—01)—s5-+0(02—5) "

It remains to compare the profit in equilibrium (b) when implementing Ay paps against

] the platform implements Ay pan and Apans

the profit from equilibrium (c) when implementing Ay ;. Note that for s < 62, the profit
when implementing Ay pay is maximized in (b.1) as agents in both equilibria in (b.2)

only search for one period. The profit in (c) is

1) 2v(s)(1—9) ( B101(0n, — 0;) >
= 1—p ﬁ+3+5(0h9l—3)

2v(s)(1 —9)
L=p
(5(@1 — B1)0n(0, — 6) + s8101(0n — 0;) + 6(Br0n(0r, — 0,) (016, — 5) + Bi(6n — 0,)2(s + 9h91)>
(s4 (07 — 5))(s+ 6(0n0, — 5)) )

H(c.2) _
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Then, it holds that II®) > I1(¢:D) T1(¢:2),

(i) Let 67 < s < 6,0, Then, the platform can only implement Ay pay or Axan.
Alternatively, the platform can exclude low types from participating. Recall that IT(1)
and 1“2 are strictly dominated by II®V. Therefore, the platform implements either
Awpan in Equation 48, 49, or 50. If 8, > [, the platform can either implement Ay pays
in Equation 48 or 50. If 5, < f3;, the platform can either implement Ay pajys in Equation
48 or 49. In this case, however, for too large s no low type is willing to participate such
that the platform excludes low types. Note that at s = 6,60;, the matching outcome is
non-assortative if £, > [;, whereas only high types participate if 8, < f;.

(iii) Let 6,6, < s < 67. If search costs are larger than 6),6;, low types are no longer willing

to participate. To maximize surplus from high types, the platform sets ¢(6,|0,) = 1. O

Proof of Proposition 4 To characterize the profit-maximizing solution with overconfi-
dent users, note first that it is optimal for the platform to have all three types participate.
Otherwise, the platform can always increase profits by including the formerly excludes
type by charging a positive fee and matching them to each other. Consider the feasible

mutual acceptance matrices of the form

As overconfident users perceive to have the same continuation value as high types, V¢ (6,),
they follow the same acceptance strategy. That is, overconfident users accept high types
with probability one and low types with probability a € [0,1] if and only if high types
do. Furthermore, overconfident users are accepted by high (low) types with positive
probability if and only if high (low) types accept low types with positive probability.

The feasible mutual acceptance matrices are

1 11 1 00 1 o o 1 o o
A1 =11 11 ,Az =101 0 ,A3: O/ 1 O/ ,A4: Oé” 0 0 5
111 000 o o (o)? a0 ()

for o/ € (0,1] and o’ € (0,1]. The profit from implementing A; is given by
2(1 -9
4, = ﬁ(ﬁhei + BN} + Bi(1 = N)67).
Observe that implementing A, — A, can induce search for more than one period for

at least one type. To implement As—A4, the incentive constraint ensuring that high
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types reject low types with positive probability must hold. The platform then maximizes
revenue from both high and low types by maximizing match surplus and extracting it
through the search fee conditional on leaving a rent of 6,6, to high types. From Appendix
C.1, match surplus is maximized under positive assortative matching—that is, when the
platform implements A,. Moreover, agents must search for only one period; otherwise,
surplus is lost due to 6 > 0.

Revenue from overconfident agents is maximized under A; — A4 when they search for
% periods, i.e., no one they match with accepts them, and s, is maximized. Under A,,
this is exactly the case: overconfident types are rejected, they search for + 5 pberiods, and
the platform captures the match surplus from high types through s, i.e. sj is maximal.

Thus, it follows that the relevant constraints are given by

s + ¢(0,10,)67)

0,0, < (1—9)

- )
51 (1= 0)0(0nl0n) (1C-61)
(10 + o000 :
e S TR AT (PIC-6)
< —)(-s + 01000
R NG ST (PC-6)

From the steady state constraints, Equation 10, the platform’s profit maximization prob-
lem can be written as

Brsh 51(1 - )\) + @
O+ (1=0)p(0nl0r) o+ (1L—0)p(0il6) o~

subject to feasibility constraints, Equation 9, and the three incentive and participation
constraints above. It can easily be verified that s; = 67 and s, = 0,(0), — 6;) — 4/1-50,,0,
and ¢(0,,]0,) = 1, $(6,0,) = 1 and ¢(6,0,) = 1 maximize the platform’s profit and satisfy
all constraints with equality. The platform’s profit is The platform’s profit is

@M@@f@%ﬁ%%@)
5 .

2(1 — 0)

b}
Ty, = e (5h(9h(9h —0,) — - 50;195) + 611 = N6} +

A" is derived by setting 114, = I14, and solving for A\. [

Results on Welfare with Exogenous Search Cost Consider the inefficiencies mea-
sured as (i) the amount of mismatch compared to the socially optimal matching and (ii)

the length of search for agents. Let the (welfare) loss from mismatch be given by

W= a6:,6,)0(0;,06;)(0:0; — 67),

(ei,ej)e@XQ
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i.e., the sum over the mass of mismatches times the difference in match utilities between
the mismatches and the assortative matches. The expected usage time of an agent is

given by their stopping time

T(6;) = (5 +(1=106) Y alb; ej)¢(ej\ei)>

j=h,l

such that the total length of search is T = T (6,) + T (6,).

Proposition 5. (i) If the platform implements Apay together with matching outcome
Opan, mismatch is Wpay = 0 and T (6;) is decreasing in s and §.

(i) If the platform implements Awpans together with matching outcome Owpan, mis-
match is Wy pan s tncreasing in s if 5 > [y, and in- or decreasing in s otherwise as well
as decreasing in & for s < 07 and in- or decreasing in § otherwise. T (6;) is decreasing in
s and J.

(#i) If the platform implements Awpanr together with matching outcome Opnanr, mis-
match is Wy an = — 510 — 0;)* and T(6;) = 1.

By definition, welfare loss is zero under positive assortative matching, as it maximizes
total surplus. As search cost or friction ¢ increases—both of which lower agents’ contin-
uation values—the platform must raise assortativity of proposed matches and decrease
agents’ search time to keep low types participating and high types rejecting low types.
In the weakly assortative case, assortativity rises with §, reducing mismatches as long as
s < (9[2. Since the mass of assortative matches varies with s, the mass of mismatches may
increase or decrease depending on whether (5, or (; is larger. In contrast, welfare loss of
matches in the non-assortative case is unaffected by search cost or §, and the platform

induces only one period of search.

Proof of Proposition 5 (i) The platform implements Apa4y; together with the match-
ing rule as in Lemma 11 (a). As the positive assortative matching outcome maximizes

(a)
match productivity, the welfare loss from mismatch is zero. For &: < (6—’1> , agents’

B — \ B
expected search time is

T = se-ifze,z_fl)s)’
T(0) = Br (01 (0 — 61) + (B — Br)s + 0(Br — Bn) (07 — 3)'

(s +6(0; — s))

17



Observe that T () is decreasing in s and §. Differentiating 7 (#;) with respect to s and

0 yields
oT(0)  Bu(1—0)0n(0n — 0)
_ <0,
ds Bi(s +0(67 — s))?
oT (6)) _ _Bheh(eh —0)(0; — s) <0
a5 Buls+0(6r—s)
T (01,) is decreasing in s and ¢ as well.
For %—h > 7 (ehilej)é_)zatsieg —» agents’ expected search time is

5107 + (Bn — Bi) (s + 0(6} — 5))
T0n) = Br(s + (6% — s) l
T = s+ (5(9512 —s)

Y

Observe that T (6;) is decreasing in s and §. Differentiating 7 (6,) with respect to s and

0 yields
oT () B0 - 5)0? ~0
0s  Bu(s+6(0% — )2 '
OTO) AR
a5 Puls+ §(0% — 5))? ’

i.e. T(0y) is decreasing in s and ¢ as well.
(ii) The platform implements Ay pays together with the matching rule as in Lemma

1 (b.1). The welfare loss from mismatches is

Ww pam = aWPAMCI)(b) (eh, el)(eh - 91)2,

and agents’ expected search time is
Br — (1= 6)(®P (040r) + awpanr®®) (01, 61))

T(6)) = 5,0 ,
T(0) = Bi— (1= 86)(®P(0.0)) + awpan®® (1, 91))’
Bid
where
(b) Bty — (Bp — B) (1 — 0)(67 — s)
O = T-o@G-®
) Bt — (Bn — B)(1 = 6)(0; — s)
P08 = S —

which are both increasing (decreasing) in s if 5, > §; (6, < ;) and increasing in 6. Note
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that ®©®(6),,6;) followed from feasibility (see proof of Lemma 11) and ayypays is set to
fulfill the low types’ participation constraint. Using the implicit function theorem and

differentiating the participation constraint with respect to s yields

B — (1= 6)(awpane®® (01, 0,) + @Y (0,,6,)) =
o0 (6,,0)) Oayy parr®® (0, 0))
0s 0s

(607 4+ (1 — 6)s) + (607 + (1 —9)s),

where the left-hand side corresponds to 6 f(6;) > 0 and ®®)(6;,6,) is increasing in s if 8, >
B, and decreasing otherwise. Thus, it follows that cuy pay @@ (01, 0;) must be increasing in
s if B, > B, and either in-or decreasing for §; < (), (depending on the parameter values).
Using the implicit function theorem and differentiating the participation constraint with

respect to ¢ yields

0:%(59%( —0)s) + Y (6,,6,)(6? — 5)

n Oaw parr®® (0, 0))
00

(662 + (1 — 6)s) + awpanr®® (61, 60,) (0,6, — 5),

As ®®)(6,,0,) is increasing in &, awparr®? (0y,0;) must be decreasing in § for s < 6.
For § for s > 67, awpay PO (Qh 0,) can be either in- or decreasing in .

It follows that Wy paas is increasing in s if §; > [, and either in-or decreasing for
b1 < B (depending on the parameter values). Furthermore, Wy, pays is decreasing in ¢
for s < 67 and either in- or decreasing for s > 67.

Differentiating 7 (-) with respect to s and ¢ yields
OT (0n) (L= 8)0n0 (B ((On — 01)0 + 61) + (6 — 01)(1 — ) ) —0

s (010, — 5)0 + 5)° Bu(6h + 6)) ’
OT(0) _ (1= 0)0n0 (Bu(6h — 0)(1 = 6) + 5 (0 — 03+ 61) _

s (010, — 5)0 + 5)° (01, + 6)) ’
o7 (6y) _ _efﬁz (Brb1(0n — 6,) + Bi1(67 — ) <0

85 (59h9l + S(l — 5))25h(9h + 91) ’
0T (01) _ 0300 (Bubu(0n — 01) + Bu(0F — 5)) <0

20 (00,6 + 51 —0)2(0, 1 0)

That is, 7 (-) is decreasing in s and 9.
(iii) The platform implements Ay pap by the matching rule as in Lemma 11 (b.2).

The matching outcome is non-assortative. The welfare loss from mismatch is

Wian = =280, — 6,)?,

and agents search for one period only. [
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Optimal Choice of a Uniform Search Fee For a range of parameters, the platform

chooses

(i) s to maximize II(Apar) s.t. s € [0,62] : B/3 < (81/5,)'™ and implements Op ;.

(i) s to maximize I(Awpan) st. s € [0,5] : (8/5)” < Bu/g < (Bn/5)" and imple-

ments Owpan.-
(iii) s = 0,0, and implements On ans.

(iv) ) s = 67 and excludes low types from participating.

The proof follows the structure of Proposition 3. Note all matching outcomes in Propo-

sition 3 are implemented when choosing the search fee except the positive assortative

(b)
matching outcome for %—’; > (%—?) .

(a)
(i) Suppose the platform implements Ap4y, for % < (%) . Recall that for s = 67,

(a)
<%> = 0 and thus Apsy; can never be implemented if there is a positive inflow of

both types. The platform maximizes its profit with respect to s under the constraint

(@)
that s € [0,67) and the condition 2 < (%) is still fulfilled.

(a)
(ii) Suppose the platform implements Ay paps for (ﬁ—h>

IN

b < (5—h>(b). There exists
Bi B — \ B

an 0,,(0;, — 6;) > 5 > 67 such that if s > 5 Ay pay can never be implemented if there is a
positive inflow of both types. The platform maximizes its profit with respect to s under
the constraint that s € [0, and the condition <%)(a) < g—’l < (%>(b) is still fulfilled.
(iii) Suppose the platform implements Ayaps for 5, > ;. Then, agents only search for
one period. Therefore, the platform increases the search fee as much as possible. By
Proposition 3, the upper limit is given by s = 6,0;.
(iv) Lastly, the platform can exclude low types from participating. To maximize profits,
the platform extract the surplus from high types by setting s = 2. The platform does

so for sufficiently high % The platform does not implement the positive assortative

(b)
matching outcome for % > (%) . Recall that profits are

2(1 — (5) ( 2ﬂ19l28
(

1—p 1—5)s+6ef+(5’"“_5l)8)‘

Both terms are strictly increasing in s. The platform chooses s = 67 resulting in

2(1—9)

1 (B} + 5:67) -

As Anapy can be implemented for 3, > 5; with s = 6,6,, the profit from Ay is always

(b)
strictly larger than the profit from Ap4y, for % > (%)
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