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Abstract

As platforms collect more user data, they can tailor algorithms to better match

users. At the same time, on matching platforms, users pay to be matched by the

platform, while the platform makes money as long as it does not match them.

This paper analyzes the matching rule of a profit-maximizing monopoly platform

when the incentives between users and the platform are misaligned. I demonstrate

that frequently studied matching rules, such as random matching and PAM, can

be suboptimal for the platform. Contrary to the intuition that more data about

users might improve matching efficiency and speed, I show that more data allows

the platform to design a matching rule that strategically lowers match quality to

increase search time and thus profits, leading to unnecessary delays and potentially

inefficient matches. Finally, I provide explanations for why platforms induces search

for users: complexity-constraint pricing, targeted advertising or the presence of

overconfident users.
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1. INTRODUCTION

The emergence of digital matchmakers has revolutionized the way people meet and inter-

act. By reducing search frictions, these platforms have the potential to more efficiently

match users. With the help of algorithms based on detailed user data, they promise to

facilitate the search for suitable partners in many areas of life. In fact, online dating

has become the most common way to meet potential partners in recent years, and for

more than a decade, job searches have been conducted predominantly through such on-

line platforms (Rosenfeld et al., 2019; Kircher, 2022). This paper investigates the impact

of a platform with detailed user data on the resulting speed and assortativity of match-

ing in the society. It highlights a novel source of mismatching: profit-driven, purposeful

mismatching of platforms.

To do so, I study the matching rule of a profit-maximizing platform on which users

search for a suitable match. Focusing on the most prominent business models, the plat-

form commits to either an amount of advertising or a payment per period in which the

user is active. In either case, spending their time searching is costly for users. To at-

tract and keep users’ attention, the platform recommends users a match in each period.

First, I show that the two predominant search protocols used to study centralized and

decentralized matching markets — the positive assortative matching (PAM) rule and the

random matching rule — can both be suboptimal. Random matching is generically sub-

optimal. PAM is suboptimal when the platform engages in advertising or is constrained

in charging high search fees. Instead, the platform uses its knowledge about users to

strategically lower the quality of recommended matches. This induces agents to search

longer and thereby increases the payments the platform can collect. Besides prolonging

search, the resulting matching outcomes can be drastically different from the socially

optimal, positive assortative matching outcome and induce a substantial welfare loss.

Why do platforms then rely on business models that induce misaligned incentives?

I provide three plausible explanations. First, if the platform is constrained in its price

setting, the platform chargers a lower fee and uses its knowledge about users to strate-

gically lower the quality of recommended matches. This induces agents to search longer

and thereby increases the payments the platform can collect. Besides prolonging search,

the resulting matching outcomes can be drastically different from the socially optimal

(positive assortative matching) and induce a substantial welfare loss. Second, when, as

in many online markets, users are reluctant to make monetary payments but are willing to

consume ads,1 offering an ad-based model can be more profitable. Third, when users have

1Advertising-based models play a key role in online markets, including both fully ad-supported and
“freemium” business models. Freemium refers to business models, where users can use a basic service
for free in exchange for consuming ads, but need to pay a fee to use the premium service (without ads).
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arguably well-documented misperceptions such as being overconfident regarding their de-

sirability,2 they underestimate their expected search duration and hence payments to the

platforms for existing pay-per-month schemes.

After discussing the related literature in Section 2, Section 3 presents the model. A

monopoly platform organizes a two-sided matching market in which users search for a

partner on the opposite side. The platform commits to a matching rule that determines

the probability that two users, each characterized by a vertical type, will meet. Addition-

ally, the platform commits to a per-period cost that it collects from active users, which

are either an amount of advertising or a search fee per period. After active users have

paid the per-period cost, they receive a recommendation from the platform. Upon meet-

ing, users simultaneously decide whether to accept or reject the proposed match. After

rejecting, a user can continue to search. The analysis focuses on steady states; in these

the inflow of new agents must equal the outflow under the platform’s matching rule.

Section 4 starts by characterizing the users’ search behavior. Then, fixing search

costs, the platform’s problem is to choose matching probabilities conditional on each

users’ type subject to participation constraints regarding the users’ decision to join the

platform, incentive constraints on the users acceptance decisions, feasibility constraints

on the matching mechanism as well as steady-state constraints. This original problem is

highly non-linear. Instead of analyzing the original problem, I make use of an auxiliary

problem. This auxiliary problem is a linear programming problem in which the platform

chooses masses of recommended and matched pairs using the facts that: (i) the objective

function is linear in steady-state masses, and (ii) the constraints are linear in the mass

of recommended and matched pairs by using appropriate transformations. The profit-

maximizing solution to this auxiliary problem is then transformed back to the solution of

the original problem. Given the profit-maximizing matching rule, the platform chooses

its advertising level or search fee. In the most general setting for any given finite set

of users’ types, I prove that an optimal solution to the platform’s profit-maximization

problem exists using the auxiliary problem. Based on the reformulation, I show that the

widely analyzed matching rules can be suboptimal. Random matching is (generically)

suboptimal, when at least two types on each side of the market participate. Moreover,

whenever both market sides are fully symmetric I show that the positive assortative

matching rule (PAM), where each user meets only users of their own type, is suboptimal

under advertising or when the platform faces constraints on charging high search fees.

2Overconfidence has been widely documented in experiments, e.g., Burks et al. (2013) and Dubra
(2015), and with respect to one’s own attractiveness (Greitemeyer, 2020). Psychologists argue that such
overconfidence determines how individuals look and compete for potential partners (Murphy et al., 2015).
In labor markets, Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed overestimate
how quickly they will find a job and beliefs are not revised (sufficiently) downward after remaining
unemployed suggesting that job seekers are persistently overconfident about their desirability to firms.
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Considering the special case with two types on each side of the market and symmetric

inflows, Section 4.2 illustrates the main insight of the model — the platform’s incentive

to recommend and foster mismatches if it is unable to charge high type-dependent search

fees. Suppose the platform can only charge a uniform search fee, then to induce users

to search, the platform frequently recommends mismatches to users, i.e., a high type

meets a low relatively more often than a high type. The platform’s matching creates two

intertwined inefficiencies: it distorts matching outcomes by inducing mismatches that

deviate from the socially optimal outcome, and it increases users’ search time, leading

to higher search costs than necessary. Both inefficiencies have implications for real-world

markets such as dating and labor markets. Finally, Section 4.2 turns to the question of

why platforms rely on business models in which the incentives between the platform and

the users are misaligned. For example, a simple potential business model for platforms

would be to collect high personalized search fees from each type and provide them with

the socially optimal match in the first period. In principle, this business model extracts

the entire surplus from users. Under the realistic assumption that users are reluctant

to pay upfront but are willing to consume ads, however, I show that an ad-based model

can outperform the former business model if targeted advertising is sufficiently efficient.

Alternatively, if users are overconfident about their desirability, this belief leads users

to underestimate their search time when incentivized to search. Therefore, under the

pay-as-you-search business model they spend a higher amount ex post than anticipated

ex ante. This, in turn, favors the prevailing business model.

Section 5 concludes and highlights that the tension arising from the misalignment of

incentives becomes more important as the platform collects more data and develops more

predictive algorithms.

2. RELATED LITERATURE

This article contributes to two central strands of literature, matching-and-search the-

ory and platform markets. In contrast to the existing literature, I consider the profit-

maximizing incentives of a (digital) matchmaker when agents are vertically differentiated

and characterize the matching rule and resulting matching outcome.

The vast literature on search-and-matching models, see for instance Burdett and Coles

(1999), Eeckhout (1999), Bloch and Ryder (2000), and Smith (2006), provides insights

into the functioning of decentralized markets in which agents meet at “random”.3 These

matching models with heterogeneous agents build the foundation to investigate sorting

3The aforementioned literature assumes that agents have non-transferable utility. Search-and-
matching models with transferable utility have been analyzed, for example, by Becker (1973, 1974)
and Shimer and Smith (2000).
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and mismatch in markets such as labor and marriage markets when search frictions

are present; for a recent overview see Lauermann and Nöldeke (2025). In line with

these models, agents in my model have vertical preferences that result in a unique stable

matching. I follow Lauermann and Nöldeke (2014) and suppose that types are finite. The

model at hand crucially departs from the literature on decentralized matching, which

assumes that agents meet according to a random matching technology, by explicitly

accounting for the design of the matching rule. With increasing access to user data

about preferences and machine-learning tools, matching platforms can design their own

recommendation and matching algorithms to maximize profits. While many platforms do

not disclose the specifics of their matching algorithms, it is evident that their algorithms

are far more sophisticated than random matching.4 The question of how to design the

matching rule is related to the literature on centralized matching as pioneered by Gale

and Shapley (1962) and Roth and Sotomayor (1992), which studies match quality and

implementation of efficient matching rules in two-sided markets. The principal considers

properties such as stability, strategy-proofness and Pareto efficiency of the matching

rule. In contrast, I characterize the profit-maximizing solution for different given business

models. Finally, my paper is related to papers investigating biased beliefs of agents in

matching and search markets. Closely related in a dating market, Antler and Bachi

(2022) show that agents’ coarse reasoning leads to overoptimism about their prospects in

the market and induces them to search inefficiently long. In labor markets, Spinnewijn

(2015) and Mueller et al. (2021) document that job seekers often hold overoptimistic

beliefs and thereby underestimate their time to find a job. I contribute to this literature

by showing how current platform business models exploit overconfident types.

The second strand is the literature that studies platforms and two-sided markets. Cen-

tral to that literature is the presence of network effects and how these shape the incentives

and price setting of a platform that enables the interaction between two groups (Caillaud

and Jullien, 2003; Rochet and Tirole, 2003, 2006). As a result, in most models agents

are assumed to care only about the number of matches instead of match quality. With

the emergence of digital matchmakers, the literature extended to analyzing (customized)

matching on platforms with a focus on the interaction between pricing and matching

efficiency (Damiano and Li, 2007; Damiano and Hao, 2008), price discrimination (Gomes

and Pavan, 2016, 2024), and auctions (Johnson, 2013; Fershtman and Pavan, 2022), all

abstracting from search frictions and dynamics. In my model, the platform designs the

matching rule in its online marketplace, but in contrast to the aforementioned articles,

4Dating platforms such as Tinder or bumble provide a general description of their algorithm, see for ex-
ample https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-

Method-Behind-Our-Matching, whereas the dating platform “Hinge” claims to use the Gale-Shapley
algorithm designed to find stable matchings.
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the platform has an incentive to not implement the socially optimal matching rule.

Within the analysis of digital matchmakers, Halaburda et al. (2018) and Antler et

al. (2023, 2024) also focus on applications to dating platforms. Most closely related is

Antler et al. (2024) who study a matchmaker’s incentives in a model with horizontally

differentiated types, which determine the fit of agents. The platform charges a single

“upfront” fee in the second period after agents have joined and received their first match

for free. The authors draw a similar conclusion: the platform has an incentive to invest

into a technology that increases the speed of search but not into improving match quality.

The main difference lies in modeling the matching technology. The authors restrict

attention to a truncated random matching technology under which agents meet at random

above a threshold and do not meet if their fit is below the threshold; in contrast, I solve

for the optimal matching rule. Within the platform literature, models on a (monopoly)

platform intermediating consumer search are closely related (Hagiu and Jullien, 2011;

Eliaz and Spiegler, 2016; Nocke and Rey, 2024). Hagiu and Jullien (2011) provide a

rationale for intermediaries to divert search of their consumers away from preferred stores.

Although the insight is closely related to the mismatching incentive in my model, the (one-

sided) market in Hagiu and Jullien (2011) does not include the strategic component on

the other side as stores would never reject a consumer willing to buy. Hence, there is no

analogue to my finding that the platform prolongs search of lower types by recommending

them to higher types knowing that they will reject those lower types. Additionally, there

is no equivalent to overconfident users in their model. Finally, my model of a two-sided

matching market offers insights into the allocative inefficiency and the length of search

for labor and dating markets intermediated by matching platforms.

3. MODEL

A monopolist platform organizes a matching market in which a continuum of agents from

two sides, k = A,B, search for a partner from the opposite side. The market operates in

discrete time with an infinite horizon. I focus on steady state analysis. In slight abuse of

notation, I therefore suppress time indices whenever it does not lead to confusion.

Agents An agent of each side is characterized by a type θki ∈ Θk, with Θk = {θk1 , θk2 , ..., θkNk}
finite. At the beginning of each period, an agent θki decides whether to enter the market

or to exit and take outside option ωk
i . An agent that participates in the market becomes

inactive with an exogenous probability δ > 0 and also leaves the search process. The

platform charges an active agent of type θki a search cost ski . Then, each active agent

receives a single recommendation from the platform. After receiving a recommendation,

two agents who meet observe each other’s type and simultaneously decide whether to ac-
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cept or reject the other agent. The following payoffs are realized based on their actions in

the current period: (i) mutual acceptance yields a match utility of u(θki , θ
−k
j ) = θki θ

−k
j , and

(ii) (one-sided) rejection yields a utility of zero in the current period. After a rejection,

an agent can continue searching in the next period.

Agents are assumed to use time- and history-independent strategies. A pair of func-

tions σk : Θk × Θ−k → [0, 1] and σ−k : Θk × Θ−k → [0, 1] describe the acceptance

strategies, where 0 ≤ σk(θ
k
i , θ

−k
j ) ≤ 1 is the probability that an agent of type θki on side

k accepts a match with type θ−k
j on the other side. The function ηki : (θki , ω

k
i ) → [0, 1]

describes the participation strategy of an agent of type θki with outside option ωk
i . In

other words, without loss of generality, I focus on strategies where identical agents, ac-

tive on the same side of the market and of the same type, use the same acceptance and

participation strategy. Then,

α(θki , θ
−k
j ) = σk(θ

k
i , θ

−k
j ) · σ−k(θ

k
i , θ

−k
j )

denotes the probability of a mutual acceptance by type θki and θ−k
j .

Matching A matching mechanism M := {ϕk(·)}k=A,B consists of (potentially stochas-

tic) matching rules ϕk(·). Let Θ̂k be the set of participating types from side k = A,B.

For θki ∈ Θ̂k, ϕk(·|θki ) ∈ ∆(Θ̂−k ∪ ωk
i ), which is a probability measure over Θ̂−k ∪ ωk

i .

Intuitively, this describes the probability of meeting the various types of the opposing

side as well as the outside option. Any θki ∈ Θk \ Θ̂k who does not participate is assumed

to be meet their outside option with probability one, ϕ(ωk
i |θki ) = 1. Denote the mass of

agents of type θki on side k by f(θki ). Matching mechanism M induces a distribution of

matched pairs M


f(θk1)
...

f(θk
Nk)

 ,


f(θ−k

1 )
...

f(θ−k
N−k)


 7→


Φ(θk1 , θ

−k
1 ) · · · Φ(θk1 , θ

−k
N−k)

...
...

Φ(θk
Nk , θ

−k
1 ) · · · Φ(θk

Nk , θ
−k
N−k)

 ≡ M.

An entry of matrix M is the mass of agents that are recommended to each other under

matching mechanism M and is given by

Φ(θki , θ
−k
j ) = f(θki )ϕ(θ

−k
j |θki ) = f(θ−k

j )ϕ(θki |θ−k
j ),

where the masses are symmetric, i.e. the mass of agents of type θki on side k being

matched to agents of type θ−k
j on side −k is equal to the mass of agents of type θ−k

j on

side −k being matched to type θki on side k: Φ(θki , θ
−k
j ) = Φ(θ−k

j , θki ). Under matching

mechanism M, the mass of agents of type θki that are unmatched, i.e. do not receive a
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recommendation in a given period, is

Φ(θki , ω
k
i ) = f(θki )−

∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ).

To capture the idea that the platform can only generate revenue by keeping users’ at-

tention and, hence, wants to match as many agents as possible, I impose the following

assumption.

Assumption 1. Let k̂ be the short side of the market. For each agent on side k̂,

ϕ(ωk
i |θk̂i ) = 0.

Under Assumption 1, feasibility of the matching rule can be expressed in terms of the

masses of matched pairs.

Definition 1. A matching mechanism M is feasible if∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=k̂Φ(θ

k
i , ω

k
i ) = ηki f(θ

k
i ),∀θki ∈ Θk, k = A,B. (1)

Timing and Population Dynamics At the beginning of a period t, agents who did

not find a match in the last period arrive and a (time-invariant) inflow of new agents

of type θki given by the mass {βk
i }

k=A,B
i enters the platform. Agents decide whether

to participate on the platforms. Those who decide to participate become inactive with

probability δ, while active agents are matched according to matching mechanism M
resulting in matrixMt. Based on their recommended match, agents make their acceptance

decision resulting in mutual acceptance probabilities {αt(θ
k
i , θ

−k
j )}ij. At the end of the

period, agents that mutually accepted each other exit in pairs. The total outflow of

agents is then given by pairs that exit together in a match, agents that become inactive

with probability δ and agents that decided not to participate.

Platform The platform commits to a matching mechanism M := {ϕk(·)}k. To capture

the two most prominent business models, I suppose that the platform either commits to

an extent of advertising or a given payment per period. Formally, this choice induces the

type-dependent search cost ski while generating revenue per search of type θki of ν(ski ).

In case of payments, ν(ski ) is the identity function. In case of advertisements, ν(ski ) is an

increasing and strictly concave function of the search costs, which for example captures

the intuition that the agents’ disutility of advertising is convex in the number of ads

shown while the platform’s profit is constant per ad. Let ski ∈ [0, u], where u is the

maximum match utility that the highest type can achieve on the platform. The platform
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discounts future profits according to ρ and thus maximizes

Π =
∑

k=A,B

∑
θki ∈Θk

(1− δ)ηki
1− ρ

ν(ski )f(θ
k
i ).

Equilibrium Concept The model focuses on a steady state analysis in which the

market is balanced: that is, the inflow of agents is equal to the outflow of agents under

matching mechanism M. Formally:

Definition 2. (Steady State) For given matching mechanism M, a steady state is a tuple

(f(θki ), α(θ
k
i , θ

−k
j ), ηki )

k
ij that satisfies

βk
i = f(θki )

(1− ηki ) + ηki

δ + (1− δ)
∑

θ−k
j ∈Θ−k

α(θki , θ
−k
j )ϕ(θ−k

j |θki )


 , (2)

for all θki ∈ Θk, k = A,B. The left-hand side describes the inflow of agents of type θki ,

where the right-hand side is the outflow. The outflow is the mass of type θki agents times

the probability that agents do not participate plus the probability of becoming inactive

or exiting in a match.

A steady state is an equilibrium if the following is satisfied.

Definition 3. (Equilibrium) A steady state is an equilibrium if — given that agents

anticipate other agents’ strategies correctly — the profile of stationary strategies (σ, η)

satisfies:

1. Agents accept a match if and only if the match yields a higher payoff than the

expected utility from continuing to search.

2. Agents participate if and only if the expected utility from participating yields a

higher payoff than their outside option.

Under the usual Nash assumption of correctly anticipating other players’ strategies,

the definition captures that agents maximize expected utility with respect to their ac-

ceptance strategy implicitly ruling out the case that a valuable pair is rejected because

everyone is certain that their partner rejects.5 The third part captures that agents max-

imize expected utility when deciding to participate on the platform.

5This allows the current match partner to tremble with small probability. Alternatively, acceptance
decisions could be made sequential in which case agents would have to accept a valuable match.
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3.1 DISCUSSION OF ASSUMPTIONS

I now turn to the key assumptions of the model. The model assumes that the platform

is a monopolist in the matching market. In two-sided markets, platforms often have

large market power, because joining a new platform is worthwhile only if others join. My

monopoly setup is a simple setting capturing such market power.6

Search frictions are modeled by introducing the exogenous exit probability δ. Fol-

lowing a literal interpretation, δ is the probability with which agents become inactive,

i.e. the probability that an agent finds a job or a partner offline through other means.

More generally, δ can be thought of as modeling the force that leads agents to discount

the future, which makes delayed matching more costly. Additionally, agents incur ad-

ditive search costs ski in each period, which are designed by the platform. They either

represent the nuisance costs from advertising as, for example, in Anderson and Coate

(2005), which are positively related to the advertising intensity, or the search fee that the

platform charges periodically.

The model examines two prevalent business models: (targeted) advertising and search

fees. Many platforms adopt the former by monetizing user attention through selling ad-

vertising slots to firms. In return for users’ attention, the platform provides its matching

service for free. In this setup, keeping user attention is crucial for the platform’s revenue.

An advertising-based stream of revenues continues to be a prominent part of platform

business models, especially with transaction costs. Platforms have transaction costs when

setting up a payment system, while many users are reluctant to give their credit card

data to platforms. Overall, privacy concerns, risk aversion and uncertainty about new

products (platforms) can play a role why users (initially) prefer to use the matching ser-

vice for “free” while watching advertisement over signing up to a subscription plan or

paying a participation fee. Alternatively, platforms can collect search fees from active

users, e.g., “pay-per-click/pay-per-contact” fees, or monthly subscription plans. These

fees are typically low, distinguishing them significantly from participation fees, which are

far less common but used by some selective matching platforms.

The key assumption of the matching rule, Assumption 1, is that each agent receives a

recommended match in every period whenever feasible.7 As many online platforms take

6For example, the dating market is highly concentrated, with Match Group Inc. owning many of the
most popular platforms: Tinder, Hinge, PlentyofFish, Match, OkCupid, etc. (see https://www.bamsec.
com/filing/89110323000114?cik=891103). For simplicity, I assume the dominant owner operates only
one platform. Competing platforms are often highly differentiated, catering to niche groups (e.g., religious
users), and recent evidence from Dertwinkel-Kalt et al. (2024) shows that even close competitors like
Tinder and Bumble are perceived by users as nearly independent rather than substitutes.

7In search-and-matching models, time is often modeled as continuous, with matching opportunities
arriving at a constant rate. For example, Antler et al. (2023, 2024) make this assumption in the context
of a matchmaking platform.
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on a dual role as attention intermediaries and need to attract consumers’ attention to sell

to advertisers, providing a constant stream of potential matches aims at grabbing and

keeping consumers’ attention.8 In reality, the attention grabbing component is supported

by push notifications or emails preying on the users’ fear of missing out.9

4. ANALYSIS

To analyze the equilibrium, I need to characterize the agents’ behavior and the platform’s

optimization problem. The agents’ search process is characterized by a set of participation

and incentive constraints that determine whether an agent is willing to incur the search

costs as well as accepts or rejects a recommended match.

Consider the strategy of agent θki being active in the matching market. Upon meeting

an agent θ−k
j , the agent decides whether to accept or reject the recommended match.

Mutual acceptance results in a match and both agents leave the market as a pair. If

at least one of the agents rejects the match, agent θki continues to search.Due to the

stationarity of the environment, the continuation value of agent θki , V
C(θki ), is defined by

the following recursive equation

V C(θki ) =δωk
i + (1− δ)

[
−ski +

∑
j

α(θki , θ
−k
j )ϕ(θ−k

j |θki )θki θ−k
j

+ (1−
∑
j

α(θki , θ
−k
j )ϕ(θ−k

j |θki ))V C(θki )

]
.

The first term represents the case in which agent θki will become inactive with probability

δ and gets its outside option ωk
i . If the agent remains active with probability 1 − δ, it

incurs the search cost ski . The expected utility from leaving in a match is given by the

utility from a match with type θ−k
j , which is equal to the product of both types, and the

probability of meeting and mutually accepting type θ−k
j . With the counterprobability,

the match was not mutually accepted and agent θki continues to search. The continuation

value then characterizes the payoff of an agent who rejects a match and returns to the

search process, whereas the match payoff θki θ
−k
j characterizes the payoff of an agent who

accepts a match with type θkj (and is accepted by them). By Definition 3, if the match

value θki θ
−k
j is smaller (larger) than the continuation value V C(θki ), agent-θ

k
i will reject

8Aridor (Forthcoming) shows in a recent experiment that when users face time constraints on a
specific platform, they reallocate attention across product categories and to offline activities, suggesting
that competition for attention spans multiple markets.

9In a recent lawsuit against the MatchGroup Inc. (Oksayan v. MatchGroup Inc., N.D. Cal., No.
3:24-cv-00888, 2/14/24) the plaintiff alleges that the company monopolizes user attention, claiming
that “Push Notifications prey on users’ fear of missing out on any potential matches with a strategic
notification system designed to capture and retain attention throughout the day”.

11



(accept) a recommended match with agent-θ−k
j . The optimal strategy of an agent who

uses a time-and history-independent strategy satisfies:

σk(θ
k
i , θ

−k
j ) =


0 if θki θ

−k
j < V C(θki )

r ∈ [0, 1] if θki θ
−k
j = V C(θki )

1 if θki θ
−k
j > V C(θki )

, for k = A,B. (3)

If the match value with a type θ̂−k
j is larger than the continuation value, agent θki will

accept a recommended match with agent θ̂−k
j and all agents of types higher than θ̂−k

j . The

optimality of this strategy follows directly from the supermodularity of the match payoff.

Lastly, an agent participates if the continuation value is larger than the agent’s outside

option. Due to the stationarity and history-independence of strategies, if an agent decides

to participate in the matching market, they will not exit during the search process and

search until they exit in a match or become inactive with probability δ.

Remark. The strategy of an agent of type θki is increasing in its second argument

σk(θ
k
i , θ

−k
N−k) ≥ σk(θ

k
i , θ

−k
N−1) ≥ · · · ≥ σk(θ

k
i , θ

−k
1 ), but may be neither in- nor decreas-

ing in its first argument.

The fact that the agent’s strategy is increasing in its second argument follows directly

from Equation 3. If the agent’s outside options are weakly increasing in type, for matching

rules such as random or positive assortative matching rules σk(θ
k
i , θ

−k
j ) is additionally

decreasing in its first argument: σk(θ
k
Nk , θ

−k
j ) ≤ · · · ≤ σk(θ

k
1 , θ

−k
j ). A random matching

rule yields the same meeting probabilities for all types. Due to the supermodularity of the

payoff function, higher types will reject (weakly) higher types than lower types do. With

positive assortative matching, the matching probabilities conditional on being a higher

type first-order stochastically dominates the matching probabilities conditional on being

a lower type. Hence, higher types will reject strictly higher types than lower types do. In

contrast, a negative assortative matching rule, which recommends (almost exclusively)

higher types to lower types, and vice versa, can cause lower types to reject lower types

while higher types are willing to accept them.

Given the agent’s strategy in Equation 3, the acceptance probabilities satisfy

α(θki , θ
−k
j ) =

{
0 if θiθj < V C(θki ) or θiθj < V C(θ−k

j )

1 if θiθj > V C(θki ) and θiθj > V C(θ−k
j )

. (4)

Equation 4 establishes the relationship between acceptance probabilities and matching

outcomes. Mutual acceptance requires that whenever two types of agents meet, both

must find it optimal to stop searching.
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4.1 MULTIPLE TYPES

Consider the case with Nk types of agents such that Θk = {θk1 , ..., θkNk} on side k = A,B,

where θk
Nk > ... > θk1 . The following section provides general results on the existence of

an equilibrium, optimal solution and its properties. Let ski be exogenous.

Lemma 1. For a given feasible matching mechanism, a steady-state equilibrium exists if

and only if Equation 2 and 4 are satisfied.

Suppose for a feasible matching mechanism, an equilibrium exists. Then, it must give

rise to (i) a steady state and (ii) optimal strategies of agents, i.e. satisfy Definition 2 and

Definition 3. Hence, by (i) Equation 2 (balance condition) must hold, and (ii) implies

Equation 4 (optimal mutual acceptance) must hold. Conversely, if Equation 2 is violated

the steady state (balance) condition fails and if Equation 4 is violated at least some agent

behaves suboptimal. Thus, a feasible matching rule gives rise to an equilibrium if and

only if Equation 2 and 4 hold.

Lemma 2. There exists a feasible matching rule that gives rise to an equilibrium.

In the most simple case consider the matching rule ϕ(ωk
i |θki ) = 1 for all types θki ∈ Θk

on side k = A,B. Given that agents are matched with their outside option, no agent

is willing to incur search costs. With no agent participating in the steady state, the

matching rule is feasible and gives rise to a steady state equilibrium.

Next, to determine the profit-maximizing matching rule M, it is useful to define

the matching outcome. Intuitively, the matching outcome is defined as the matrix that

describes the distribution of pairs under matching rule M that exit in a match. Recall

that matrix M describes the masses of recommended pairs under matching rule M and

let A denote the matrix of agents’ mutual acceptance probabilities

A ≡


α(θk1 , θ

−k
1 ) · · · α(θk1 , θ

−k
N−k)

...
...

α(θk
Nk , θ

−k
1 ) · · · α(θk

Nk , θ
−k
N−k)

 .

Formally, the matching outcome is defined as the componentwise multiplication (Hadamard

product) of matrix A and M :

Definition 4. The matching outcome is defined by the matrix

A⊙M =


α(θk1 , θ

−k
1 )Φ(θk1 , θ

−k
1 ) · · · α(θk1 , θ

−k
N−k)Φ(θ

k
1 , θ

−k
N−k)

...

α(θk
Nk , θ

k
1)Φ(θ

k
Nk , θ

−k
1 ) · · · α(θk

Nk , θ
−k
N−k)Φ(θ

k
Nk , θ

−k
N−k)

 ≡ O(·).
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Matching outcomes are (i) assortative if O(·) has positive entries only along the main

diagonal, (ii) weakly assortative if O(·) has positive entries along the main diagonal and

to the right if and only if all entries below are also positive, and (iii) non-assortative

otherwise.

If a matching outcome is assortative, this implies that lower types are matched with

strictly lower types than higher types while the definition of weakly assortative implies

that lower types can be matched with the same types as higher types. The definition

is weak in the sense that it does not require that lower types accept with a higher

probability than higher types. Other matching outcomes are called non-assortative and

entail negative assortative outcomes where higher types are matched with strictly lower

types than lower types.

Denote by m(θki , θ
−k
j ) = α(θki , θ

−k
j )Φ(θki , θ

−k
j ) an entry of matrix O(M). Each entry

is therefore the mass of matched pairs that exit the market together in every period. For

a given matching rule, an equilibrium induces at most one matching outcome since the

mutual acceptance probabilities and steady state masses are pinned down in equilibrium.

To find the profit-maximizing matching rule and the associated matching outcome,

I proceed in two steps. First, I fix a matrix of acceptance probabilities and determine

the optimal feasible matching rule that implements the mutual acceptance probabilities.

Second, supposing the optimal matching rule from step one is used to implement any

chosen matrix of acceptance probabilities, I choose the matrix that yields the highest

platform profits. Note that the platform finds it optimal to induce either full participation

of a type or no participation.

Lemma 3. It is without loss of generality to consider ηki ∈ {0, 1}.

Suppose the platform charges type-dependent search fees, and type θki , who is indiffer-

ent between participating and not participating, participates with probability less than

one. Then, the platform makes the same profit if type θki participates with probability

one, the platform sometimes matches them to their outside option, and reduces their

search fee such that they make the same payments in expectation. If the platform uses

an advertising-based business model, the platform will strictly increase its profit by this

procedure due to the concavity of advertising. Therefore, from now on I will focus on

ηki ∈ {0, 1}, which allows to focus on the set of participating types. Then, suppose the

platform induces a set Θ̂k for k = A,B to participate.

In the following, I will transform the platform’s profit-maximization problem into

a linear program. For given search cost ski , recall that the platform’s objective is to

14



maximize

max
M

∑
k=A,B

∑
θki ∈Θ̂k

(1− δ)ski
1− ρ

f(θki ),

i.e., the platform maximizes the steady state mass of active agents with weight ski . Note

that the platform does not earn revenue from agents that are inactive or do not participate

in the market in the first place. The maximization problem underlies a set of constraints.

First, the matching rule must implement a steady state. The steady state condition

(Equation 2) implies that the inflow of agents θki is equal to the mass of agents that

become inactive in a period with probability δ and the mass of active agents that exit in

matched pairs. In the steady state, the mass of agents of type θki can be restated as

f(θki ) =
1

δ

(
βk
i − (1− δ)

∑
j

m(θki , θ
−k
j )

)
, (Steady-State Mass)

and therefore, depends positively on the inflow, βk
i , and negatively on the mass of matched

pairs that include type θki . Second, the matching rule determines whether agents partic-

ipate in the market and whether agents search according to the platform’s recommenda-

tions. For participating agents, it must hold that the agent prefers participating in the

market to accepting the outside option, i.e.

ωk
i ≤

δωk
i + (1− δ)

(
−ski +

∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )θki θ−k
j

)
δ + (1− δ)

(∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )
) = V C(θki ).

Since the match payoffs are supermodular, there exists a critical lowest type that an agent

θki is willing to accept (Equation 3). Agent θki rejects (accepts) all types below (above) the

critical lowest type. The incentive constraint for agent θki to follow the recommendation

of the platform to (weakly) reject an agent θ−k
j reads10

θki θ
−k
j ≤ V C(θki ).

By using the steady state condition, the participation and incentive constraints can be

reformulated. Note that the denominator of the continuation value is equal to the prob-

ability that an agent exists, which is equal to βk
i/f(θki ) by Equation 2. Inserting into the

10In mechanism design, this is often referred to as an obedience constraint because there is no private
information throughout the model.
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continuation value and rearranging yields

βk
i ω

k
i ≤ δf(θki )ω

k
i − (1− δ)f(θki )s

k
i + (1− δ)

∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )θki θ−k
j , (PC)

βk
i θ

k
i θ

−k
j ≤ δf(θki )ω

k
i − (1− δ)f(θki )s

k
i + (1− δ)

∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )θki θ−k
j , (IC)

where α(θki , θ
−k
j )Φ(θ−k

j |θki ) = m(θki , θ
−k
j ). Lastly, the platform’s matching rule must satisfy

the feasibility constraints. Without loss of generality, let side B be of smaller or same

size as side A. Then on side A, the sum over the mass of each recommended pair that

includes type θAi must be equal to the steady state mass of θAi . On side B, the sum over

the mass of each recommended pair that includes type θBi and the mass of agents of type

θBi that are unmatched must be equal to the steady state mass of type θBi∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=AΦ(θ

k
i , ω

k
i ) = f(θki ), k = A,B. (Feasibility)

As stated above, for given matrix A the above constraints and the objective function are

all linear functions of the steady state masses, matched pairs, and recommended pairs.

The steady-state mass in turn is also a linear functions of the mass of matched pairs.

To complete the reformulation as linear program, it remains to include the indifference

constraints for agents who mix when accepting type from the other market side, which

implies that the respective incentive constraint must hold with equality. Appendix A.1

formally does so, leading to:

Lemma 4. The platform’s problem can be restated as a linear programming problem in

the mass of matched and recommended pairs: {m(θki , θ
−k
j )}, {Φ(θki , θ−k

j )}ij.

Note that by Lemma 1, the solution to the linear program is an equilibrium as it

fulfills Equation 2 and 4. Given a solution of the linear program, the optimal matching

rule to the original problem results from

ϕ(θ−k
j |θki ) =

Φ(θki , θ
−k
j )

f(θki )
.

Next, I show that the auxiliary problem has an optimal solution. I say that a matrix A of

mutual acceptance probabilities can be implemented if there exists a matching mechanism

M such that
(
(f(θki ))θki ∈Θk , A, η

)
is an equilibrium. Let A be the set of matrices A that

can be implemented. By Proposition 2, A is non-empty. For every A′ ∈ A, construct a
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matrix A′′ such that

α′′(θki , θ
−k
j ) = α′(θki , θ

−k
j ) if α′(θki , θ

−k
j ) ∈ {0, 1},

α′′(θki , θ
−k
j ) = αij otherwise,

where αij can take on any value in [0, 1]. I use αij ∈ [0, 1] whenever an agent is indifferent,

which implies that the same constraints in the auxiliary program must hold. Denote

the resulting set of matrices as A∗ and note that A∗ is finite. Now, I can solve the

linear program over the mass of matched and recommended pairs (ignoring acceptance

probabilities). Solving this for all (finite) possible combinations of constraints yields a

set of candidate solutions among which I choose the one that maximizes the platform’s

profit. To find the corresponding acceptance probabilities αij ∈ [0, 1] when the agent is

indifferent, divide the matched pairs through the recommended ones

αij =
m(θki , θ

−k
j )

Φ(θki , θ
−k
j )

.

Formally, as A∗ is finite, only a finite number of linear problems must be solved. Each

linear program returns a set of candidate solutions and a value of the objective function.

Fixing A ∈ A∗, the linear program returns a value Π(A), i.e., the profit level, and let

G =
⋃

A∈A∗ Π(A) be the set of profit levels for all linear programs with A ∈ A∗ that

implement an equilibrium.

Lemma 5. The set G is non-empty and finite with Π(A) < ∞ for all A ∈ A∗ and

−∞ < Π(A) for at least one A ∈ A∗.

Key to the proof is to show that the linear program for any given matrix A ∈ A is (i)

not unbounded and (ii) not infeasible, i.e. the feasible region is non-empty. Given that

both (i) and (ii) are satisfied, an optimal solution to the linear program exists and the

linear program attains a finite optimal value (Dantzig, 1963).11

Theorem 1. There exists an optimal solution.

I proceed by showing that an optimal solution exists for any exogenous search costs

ski for all θki ∈ Θk, k = A,B. By Lemma 5, the maximum over set G is well-defined as

G is finite and bounded such that an optimal solution exists. Next, I show that there

exists an optimal solution if the platform chooses search costs ski for all θki ∈ Θk, k =

A,B. Through a series of Lemmas, I prove that the set G is compact-valued and upper

11Existence follows from the fact that the constraint set is a convex polyhedron. Because the objective
is linear and the constraint set is convex, any local extremum will be the global extremum. As the
objective is linear, the extremum will be obtained at one of the extreme points of the constraint set, i.e.,
at the vertices of the polyhedron.
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hemicontinuous in the vector of search costs. This implies that the set maxG is upper

semicontinous in the vector of search costs. Therefore, by an extension of the Weierstrass

theorem a maximum exists.

To identify properties of the optimal solution, first consider two prominently studied

matching rules. As discussed in Section 2, in decentralized matching-and-search markets

agents are often assumed to meet according to a random matching technology. A natural

question to consider is whether a platform that has access to extensive user data would

commit to a random meeting technology as well.

Proposition 1. Suppose Nk ·N−k > 1. Random matching is generically suboptimal for

exogenous search costs as well as endogenous search fees. Consider the class of functions:

ν(ski ) = κ(ski )
α with κ ∈ R+ and α ∈ (0, 1). Random matching is generically suboptimal

within this class of functions.

The proposition shows that random matching is generically suboptimal for the plat-

form if search costs are exogenous or type-dependent search fees are endogenously cho-

sen.12 For analytical convenience, I consider the class of concave revenue functions in

the proof to determine a knife-edge solution. Consider the nontrivial case in which there

are different types to be matched. Under random matching, the conditional probability

of meeting a type θki on side k is the same for all types θ−k
j ∈ Θ−k on side −k and

corresponds to the proportion of type θki in the population. As shown in Appendix C.1,

the probability of meeting a type θki is a function of the inflow, βk
i , and the probability

of exit, δ. In contrast, for given search costs, the optimal solution of the linear program

is a function of these and internalizes changes in the search cost. Therefore, random

matching is generically suboptimal for given search costs, although it may coincide with

the optimal solution for knife-edge ski , θ
k
i , δ, and βk

i . Consider next the case in which the

platform chooses a (linear) search fee. The platform does not choose random matching,

but chooses a positive assortative matching rule that maximizes the agents match surplus

and extracts all surplus via the search fee.

Proposition 1 highlights that a platform, which has increasing access to user data,

generically does not commit to a random matching technology. Proposition 1 immediately

implies that the platform values user data as access to data increases the platform’s profit.

Corollary 1. Suppose a platform has access to data about user types. Generically, the

platform makes higher profits by using the data to discriminate users by conditioning the

matching rule on user types instead of refraining from using user data.

12Consider the following definition for generically suboptimal. The probability of the case in which
random matching is optimal occurs with probability zero when the model parameters are randomly
drawn from continuous intervals as defined in the proof.
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Second, consider the positive assortative matching rule (PAM) under the assumption

that both sides are symmetric with respect to the inflow of new agents: βA
i = βB

i , their

type space Θk = Θ, and outside options. Under symmetry, PAM matches agents if

and only if they are of the same type on both sides of the market. In this particular

case, PAM is of special interest in the literature as it maximizes total match surplus

when the match utility is supermodular, where an agent’s individual match surplus is

defined as the difference between the expected match utility on the platform and the

agent’s outside option. Furthermore, the resulting matching outcome, i.e., the positive

assortative matching outcome, is equivalent to the set of stable matchings (Roth and

Sotomayor, 1992). That is, matches are individually rational, i.e., yield a utility greater

than their outside option, and are pairwise stable, i.e., there exists no blocking pair of

agents that would prefer to be matched to each other instead of the equilibrium matching.

The next proposition shows under which circumstances the positive assortative matching

rule (PAM) is not profit-maximizing under type-dependent search fees and advertising.

Proposition 2. Suppose both market sides are symmetric.

(i) PAM is profit-maximizing if the platform can charge arbitrary high type-dependent

search fees. Conversely, for every type θi ∈ Θ \ {θ1} there exists a threshold si such

that if si < si, PAM is suboptimal.

(ii) There exists a threshold δ such that if δ ≤ δ and ν(·) is concave, PAM is suboptimal.

When the platform commits to a (time-constant) deterministic matching rule such

as PAM, agents will accept the recommended match in the first period. Therefore, all

agents search for exactly one period, which results in a steady state population equal to

the inflow for each type.

First, PAM is indeed profit-maximizing if the platform has pricing power. By charging

(high) type-dependent fees, the platform can extract the full surplus from agents, i.e.,

the expected match value of an assortative match over the agent’s outside option. In

this case, the “search fee” is paid once, since agents search for only one period. The

proposition, however, shows that if the platform cannot commit to high search fees, for

example due to a (binding) price ceiling s, then PAM is no longer optimal. Let s be such

that si violates the condition in Proposition 2 for at least one type θi ∈ Θ\{θ1}. Then the

platform can no longer extract the full surplus from an agent of type θi. Then, PAM is not

profit-maximizing, as the platform has an incentive to deviate to a matching rule under

which type θi and the lowest type θ1 meet with mass ε. The price ceiling s is such that

whenever type θi and type θ1, θi (weakly) rejects θ1 under the new matching rule. This

implies that type θi searches longer than one period such that the platform earns more
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from type θi. For example, fees for in-app purchases in Apple’s App store are capped

at 999.99$, whereas the estimated lifetime utility from a match and hence, potential

willingness to pay for a partner could be well above 999.99$.13 Alternatively, users may

be reluctant to spend large sums online in one payment, such that the platform’s pricing

power can be limited by that as well.

Second, suppose the platform follows an advertising-based business model. If the

return to advertising is concave and δ ≤ δ, then PAM is suboptimal. Under PAM agents

search for only one period. Thus, a profit-maximizing platform would need to impose

the highest feasible search cost per agent. With concave advertising returns, however,

it becomes more profitable to reduce search costs and increase the mass of participating

agents. In other words, users switch their attention if the platform advertises too much,

as is well known from other contexts. Thus, doubling the amount of advertisement does

not double the revenue. Since δ > 0 implies a loss in profits due to exogenous attrition

that increases with longer search times, a high δ reduces the platform’s willingness to

trade off longer search durations for lower costs.

Proposition 2 raises the question of why we, as users, do not observe high search fees

online, and why matching appears to be (anecdotally) worsening rather than improving.

If the platform has pricing power and can perfectly identify users’ types, Proposition 2

implies that the platform induces only one period of search and employs PAM to extract

the full surplus from users. This raises the question: under what conditions does the plat-

form have an incentive to induce more search and implement a matching rule different

from PAM? In Section 4.2, I examine three different reasons: pricing under complexity

constraints, the use of (targeted) advertising, and overconfidence in an example with two

user types and symmetric markets. First, I limit the platform to setting a single price,

and show that under these conditions, the platform prefers not to use PAM. Then, I

demonstrate that even when the platform has full pricing power and can implement com-

plex pricing schemes, it does not use PAM and instead relies on advertising—–provided

it is sufficiently efficient. Furthermore, when users are overconfident, I show that the

platform has an incentive to induce search by lowering fees for high types.

4.2 BINARY TYPES

Suppose now that market sides are symmetric. There are two types on each side of the

market with a strictly positive inflow. With slight abuse of notation denote the type set

by Θ = {θh, θl} with θh > θl. Each type has an outside option of zero.14

13Indeed, traditional matchmakers charge over ten times the amount; see https://www.nytimes.

com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.

VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
14The analysis is qualitatively unaffected as long as the outside options are ωl < θ2l and ωh < θhθl.
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4.2.1 Complexity-Constrained Pricing

This section examines the case in which the platform is constrained in setting agents’

search costs. In reality, a platform serves many types of users, which would require

complex pricing schemes to extract each agent’s surplus. I therefore consider a setting in

which both types of agents face the same search cost designed by the platform, sh = sl =

s. One possible interpretation is that both types use the basic service of a (freemium)

platform. In this case, the platform is assumed to determine the amount of advertising

shown to each agent using the basic service. Alternatively, if payments are involved,

agents may choose among (discrete) pricing tiers, with all agents on the same tier paying

the same amount as is common on dating platforms. On job platforms, for example,

firms often pay the same price per click when advertising a job in a given submarket. To

determine how the matching outcome is affected by the platform-chosen matching rule,

the analysis fully characterizes all possible matching outcomes in this example.

As in Section 4.1, I proceed in two steps. First, I characterize the optimal matching

rule that implements the mutual acceptance probability matrices that are consistent

with Equation 4. Given the first step, I find the optimal matrix of mutual acceptance

probabilities that maximize the platform’s profit. To identify the optimal matching rule

for the platform, suppose for now that s is exogenous. With two types, the mutual

acceptance matrix takes the following form

A =

[
α(θh, θh) α(θh, θl)

α(θh, θl) α(θl, θl)

]
,

where the mutual acceptance probability of the assortative matches are along the diagonal

and the mutual acceptance probability of mismatches are off the diagonal. Trivially with

one type, the mutual acceptance matrix consists only of one entry. With two types, only

three possible matrices can be implemented as part of an equilibrium

APAM =

[
1 0

0 1

]
, AWPAM =

[
1 α′

ij

α′
ij 1

]
, ANAM =

[
1 α′′

ij

α′′
ij 0

]
, α′

ij, α
′′
ij ∈ [0, 1].

Given the platform’s matching rule, high type agents can either accept only other high

types, or accept low types with positive probability. This results in three possible con-

stellations of mutual acceptance probabilities and thus matching outcomes. If high types

only accept high types, low types will always accept high and types, resulting in a positive

assortative matching outcome (APAM). Depending on the matching rule if high types

accept low types with positive probability, low types may accept low types, resulting in a

weakly assortative matching outcome (AWPAM). Alternatively, low types may reject low

types, resulting in a non-assortative matching outcome in which high types accept low
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types, but low types do not (ANAM).

For each of the three possible acceptance matrices, there exists an optimal matching

rule that can implement the corresponding outcome over a range of parameter values.15

Given the existence of an optimal matching rule, which matrix Amaximizes the platform’s

profit for fix search costs? The next proposition summarizes the results.16

Proposition 3. (Exogenous Search Cost)

(i) Let 0 ≤ s ≤ θ2l . The platform implements APAM and the matching outcome, OPAM ,

is positive assortative if

0 ≤ βh

βl

≤
(
βh

βl

)(a)

≡ (1− δ)(θ2l − s)(s+ δ(θ2h − s))

(θh(θh − θl)− s− δ(θ2h − s))(s+ δ(θ2l − s))
,

or if (
βh

βl

)(b)

≡ (1− δ)(θ2h − s)

θh(θh − θl)− s+ δ(θ2h − s)
≤ βh

βl

.

The platform implements AWPAM and the matching outcome, OWPAM , is weakly positive

assortative if (
βh

βl

)(a)

≤ βh

βl

≤
(
βh

βl

)(b)

.

(ii) Let θ2l ≤ s ≤ θhθl. If βh ≥ βl, the platform implements AWPAM and the matching

outcome is either weakly assortative, OWPAM , or non-assortative for large enough s,

ONAM . If βh < βl, the platform implements AWPAM and the matching outcome is weakly

assortative, OWPAM , or only high types participate if s is large enough.

(iii) Lastly, if θhθl ≤ s ≤ θ2h, low types do not participate on the platform. The mutual

acceptance matrix and matching outcome is positive assortative.

First, consider the maximum rent that the platform can extract when the positive

assortative matrix, APAM , is implemented. A high type agent is willing to search the

longest for a match with another high type. In this case, the maximum rent the platform

can extract from a high type agent is proportional to θh(θh − θl), which is the value of

its own type times the match premium. The match premium is the gain from being in a

match with a high type instead of leaving with a low type. If the platform were to extract

more rent, high types would start accepting low types as well, and thus only search for

one period. Conversely, if high types always reject low types, the maximum rent the

platform can extract from low types is proportional to θ2l .

15Existence follows from Theorem 1. The optimal matching rules are in Appendix C.3, Lemma 11.
16The proof is a straightforward application of the linear program detailed in Appendix A.1, adapted

to the two-type setting and accounting for the possible acceptance matrices described above.
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Due to feasibility constraints, the platform is constrained by the ratio of high to low

types when choosing the matching rule. The platform can extract the rent from both

types as described above if(
βh

βl

)(a)

=
(1− δ)(θ2l − s)(s+ δ(θ2h − s))

(θh(θh − θl)− s− δ(θ2h − s))(s+ δ(θ2l − s))
, (5)

At this ratio, high types are just indifferent between accepting and rejecting low types,

while low types are just indifferent between participating or not, which results in

ϕ(θh|θh) =
s+ δ(θhθl − s)

(1− δ)θh(θh − θl)
, ϕ(θl|θl) =

s

θ2l
.

Due to feasibility constraints, however, other than in this knife-edge case the incentive

and participation constraints cannot bind at the same time while implementing APAM .

As the ratio increases, more high types enter compared to low types. In this case, the

platforms makes the participation constraint binding for low types. The probability of

a high type meeting a high type must increase such that high types are left with a rent

greater than θhθl. As the ratio decreases, fewer high types enter compared to low types.

The platform makes the incentive constraint binding for high types, leaving a positive

rent for low types as the probability of a low type meeting a low type must increase. In

both cases, the platform potentially forgoes a significant amount of rent when moving

away from the “optimal” ratio.

Second, consider the maximum rent that the platform can extract when AWPAM is

implemented. Suppose the ratio of high to low types is greater than in Equation 5. Then,

the platform can commit to a matching rule in which high types randomize over accepting

and rejecting low types, while low types remain indifferent between participating and their

outside option. The expected match utility of high types decreases, while the expected

match utility of low types increases. For a ratio of high to low types greater than in

Equation 5, implementing AWPAM yields a higher profit than APAM . When implementing

APAM , the platform must increase the meeting probability of assortative pairs as the ratio

βh/βl increases, otherwise low types will no longer be willing to participate. This implies,

however, that the platform forgoes rent from high types. Inducing high types to accept

mismatches with positive probability, α(θh, θl) > 0, on contrast leads to a longer search

of low types as they receive a higher expected match utility. Extending the search of low

types, implies that there are more low types on the platform, so the platform can also

extend the search time of high types.

Third, consider the maximum rent that the platform can extract when ANAM is

implemented. High types accept both types with positive probability, while low types

reject low types and only enter in (mis-)matches with high types. The rent extracted

23



from low types is at maximum equal to θl(θh − θl). The platform, however, never finds

it profitable to implement ANAM when it can implement AWPAM as the platform can

extract all rent from low types in the latter case, whereas it can only extract the rent

premium in the former case. Lastly, if search costs are large, the platform matches low

types only to high types if feasible. This in turn results in a non-assortative matching

outcome albeit mutual acceptance would be weakly assortative.

Corollary 2. For a range of search costs, the platform strategically lowers the quality

of (recommended) matches. The platform’s optimal matching can create two economic

inefficiencies: delayed matching and mismatched pairs.

In other words, the platform recommends mismatches to agents when feasible, i.e.,

the platform fosters mismeetings to delay agent’s matches. By delaying matches, the

platform increases the payments that it collects from agents per period. In addition to

mismeetings, the platform also fosters actual mismatches by inducing users to leave in

mismatched (inefficient) pairs.

Now, I turn to the case where the search cost is endogenous and ν(s) = s, i.e. s is a

uniform search fee. Given the preferred outcomes in Proposition 3, the platform chooses

s to maximize profits. The next result follows directly from Proposition 3 and provides

an explanation for why the platform does not employ PAM.

Corollary 3. (Endogenous Search Fee) Under complexity-constraint pricing with two

types, PAM is never implemented when the platform finds it profitable to serve both types.

Since the platform never finds it optimal to implement PAM, where the same types

meet with probability one, when search costs are exogenous, it also does not do so when

it can choose a uniform search fee. If, however, there are too many high types in the

market, the platform maximizes profit by exclusively catering to high types and charging

high fees to extract all surplus from them.

4.2.2 Advertisement

Advertisement plays a key role in the digital economy. More specifically, in the light of

the application to dating and job search platforms, a substantial share of these platforms

rely on advertisement as a source of revenue. In the following example, I highlight

that a (partly) advertising-based business model can outperform profits generated by

personalized prices. If the platform charges sh = θ2h and sl = θ2l and implements PAM,

the platform’s profit is

ΠPAM =
2(1− δ)

(1− ρ)
(βhθ

2
h + βlθ

2
l ).
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Now, consider the concave function ν(s) = κsα for α = 1
2
and κ > 0. Furthermore,

assume that βh < βl and let the value of a high type, θh = 2, be twice as large as the

value of a low type, θl = 1. Denote the ratio 1−δ/1−ρ = γ.

For βh < βl, the platform either implements APAM or AWPAM . To maximize adver-

tising profits, the platform chooses sA ∈ [0, θ2l ] to solve Equation 5. Furthermore recall

that if Equation 5 is satisfied, the agents’ search time is maximized as low types are

indifferent between participating or not and high types are indifferent between accepting

and rejecting low types (and rejecting with probability one). The platform’s advertising

profit is

ΠA = 2γκ
√
sA
(

βhθh(θh − θl)

sA + δ(θ2h − sA)
+

βlθ
2
l

sA + δ(θ2l − sA)

)
.

For the chosen parameters, sA is equal to θ2l = 1 if βh = 0 and strictly larger than zero

for βh approaching βl. The profits for βh = 0 are

ΠA(βh = 0) = γκ
√

θ2l βl = γκβl,

ΠPD(βh = 0) = γβlθ
2
l = γβl,

which coincide for κ = 1. Thus, for κ > κ = 1, advertising profits are larger than the

profits of the optimal contract for some βl > 0. Now, let βh approach βl, the profits are

ΠA(βh = 0) = 2γκ
√
sA
(

βhθh(θh − θl)

sA + δ(θ2h − sA)
+

βlθ
2
l

sA + δ(θ2l − sA)

)
,

ΠPD(βh → βl) = 4γβl(θ
2
h + θ2l ).

Then, there exists a κ > κ such that advertising profits are larger than the profits of the

optimal contract for all βh ∈ [0, βl). For the values in this example, κ ≈ 3/2.

For general revenue functions ν(s), an advertisement-based business model generates

higher profits than charging personalized prices if advertisement revenue is sufficiently

efficient compared to its nuisance:

ν(s)

s
≥ βhθ

2
h + βlθ

2
l

s(T (θh) + T (θl))
,

where the numerator is the full surplus that can be extracted from agents under PAM with

personalized fees and the denominator is the total amount of search cost that agent’s pay

during the time spent on the platform T (·). If the market is extremely unbalanced, i.e.

if only high types are in the market, advertising is less profitable as long as ν(θ2h)/θ2h ≤ 1.
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4.2.3 Overconfidence

Up to this point, the model has assumed that agents behave rationally and have a cor-

rect expectation about their own type. In the following, I will introduce a fraction of

overconfident agents, i.e., agents who perceive themselves to be of a higher type than

they actually are. In the simplest example, an overconfident low type perceives itself as a

high type. Overconfidence is a widely documented bias in the psychology and behavioral

economics literature.17

Especially in dating markets and labor markets overconfidence is thought to be preva-

lent for example, when it comes to a person’s own attractiveness or ability. In dating

markets, both women and men prefer attractive over unattractive profiles regardless of

their own attractiveness (Egebark et al., 2021). Bruch and Newman (2018, 2019) analyze

the structure of online dating markets in US cities and provide suggestive evidence for

the fact that the majority of users contacts a partner who is more desirable than they are

instead of contacting a partner who is as desirable than they are. One possible explana-

tion is documented by Greitemeyer (2020), that is, more unattractive people are unaware

of their (un-)attractiveness from a psychological perspective. Similarly in labor markets,

Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed overestimate how

quickly they will find a job and are persistently overconfident about their desirability to

firms. In line with the empirical evidence, Dargnies et al. (2019) document in a labo-

ratory experiment that agents who are overconfident are less likely to accept earlier job

offers in a matching market.

Following this evidence, consider the following simple extension to the model in Sec-

tion 4.2. There exists a symmetric share of λ overconfident users on each side of the

market. An overconfident user has type θl, but persistently believes to have type θh,

i.e. is stubborn and does not learn their true type. Denote the overconfident type by θ̂l.

Other agents correctly identify overconfident types as low types. Following Definition 3,

an overconfident type chooses their strategy confidently believing in their misperceived

type. As a result of overestimating their own type, they, however, are overoptimistic

about the likelihood of being accepted by others. As before, users incur search costs and

become inactive with probability δ.18

As overconfidence has been identified in empirical and experimental setting, I suppose

17Ample evidence suggests that on average agents overestimate their ability, traits and prospects. Such
overconfidence has been documented in laboratory experiments by Burks et al. (2013); Dubra (2015);
Charness et al. (2018). Additionally, there is empirical evidence that consumers are overoptimistic re-
garding future self-control when signing up for a gym membership (DellaVigna and Malmendier, 2006),
workers overpredict their own productivity (Hoffman and Burks, 2020), and some CEOs are overopti-
mistic regarding their firm’s performance (Malmendier and Tate, 2005, 2008).

18Note that in the presence of overconfident users, δ can also be interpreted as the probability that an
agent leaves the platform due to growing dissatisfaction after failing to match.

26



that the platform can perfectly identify overconfident users as well. The platform chooses

matching rule M, which consists of ϕ(·|θi) for θi ∈ {θl, θh, θ̂l}, and search costs (sh, sl).

As a benchmark, suppose the platform induces only one period of search by charging

(sh = θ2h, sl = θ2l ) and choosing the positive assortative matching rule in which high types

only meet each other and (true) low types, which includes overconfident types, only meet

each other. The platform then earns sh from high and overconfident types, as well as sl

from low types. To show that the platform can improve on this, let the platform induce

search through high types rejecting low types. The matching rule and search costs must

satisfy the participation constraint of low types and the incentive constraint of high types

θhθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ2h)

δ + (1− δ)ϕ(θh|θh)
, (IC-θh)

0 ≤ (1− δ)(−s+ ϕ(θl|θl)θ2l )
δ + (1− δ)ϕ(θl|θl)

. (PC-θl)

Given both constraints are satisfied, the participation constraint of high types and the

incentive constraint of low types (to reject low types) are satisfied as well. Next, consider

the acceptance behavior of an overconfident type. Given their perception of the game,

rejecting low types is perceived optimal if IC-θh holds, as the incentive constraint of high

types and overconfident types coincide. Similarly, they face the same perceived partici-

pation constraint. The actual payoff from participation, however, is negative, −s/δ < 0,

because overconfident users reject low types, but high types never accept overconfident

types. This implies that overconfident users search too intensively and search until they

exogenously exit with probability δ.

Proposition 4. (Overconfidence) Let λ∗ ≡ βh

βl

δθhθl
(1−δ)θ2h−θhθl

. For λ < λ∗, the platform

maximizes profits by setting (sh = θ2h, sl = θ2l ) and inducing only one period of search.

For λ ≥ λ∗, the platform maximizes profits by setting (sh = θh(θh−θl)− δ/1−δθhθl, sl = θ2l )

and inducing search from overconfident users.

Anecdotes from Dating Apps, such as Tinder, provide evidence for the fact that less

than 10% of users account for a disproportional amount of revenue.19 On Tinder, an

average user spends around 30$ in in-app purchases and subscriptions, whereas “heavy”

users would spend 10 times the amount. For low values of δ, a relatively small percentage

of overconfident users is necessary to substantially increase the platforms profit. Note

that δ is inversely related to the stopping time of overconfident users. More generally,

λ∗ increases in δ and βh

βl
. Intuitively, if the ratio βh

βl
increases, i.e. there are more high

19See https://uxdesign.cc/how-tinder-drives-over-1-6-billion-in-revenue-8006e718e761

and the referenced podcast therein, https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?
si=UBlpCunARLW8jPfNNYK4dw.
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types than low types in the market, the platform needs to rely more on overconfident

users. The reason is that given the platform lowers the search fee for high types to exploit

overconfident users, high types become less profitable.

5. CONCLUSION

On matching platforms, the misalignment of incentives between users and the platform

becomes more problematic as platforms collect more data and develop more predictive

algorithms. This paper presents a model in which a platform has perfect information

about its users’ types and matches them to its advantage. In contrast, random matching

corresponds to the case where the platform has no information about its users’ types. I

discuss how the platform benefits and uses more information about its users’ types to

improve on random matching. To do so, I highlight conditions under which the platform

wants to mismatch users, i.e. where additional information leads to worse matching

recommendations and outcomes alike.

Both sorting and search time have implications for real-world markets. The plat-

form’s algorithm can support the socially optimal matching. But even absent exogenous

search costs and search frictions, the algorithm can also foster matching outcomes in fully

symmetric markets that result in mismatch. Additionally, it increases users’ search time

by recommending unsuitable matches, where for example time spent unemployed or in

a mismatched job has high economic and social costs (e.g., unemployment insurance).

While mismatch has a negative impact on productivity and long-term unemployment

in labor markets (Şahin et al., 2014; McGowan and Andrews, 2015), assortative mating

in marriage markets is a driver of household inequality (Pestel, 2017; Eika et al., 2019;

Almar et al., 2023). Therefore, if policies aim to reduce mismatch — as in labor markets

— policymakers should be concerned about matching platforms that employ the business

models described above. Rather than relying on platforms to reduce search frictions, the

platform’s algorithm is a potential source of additional mismatch. In contrast, dating

apps can make a positive contribution to reducing household inequality.

Empirical evidence on matching platforms is mixed. For example, in dating markets

Hitsch et al. (2010) show that matches are approximately efficient and stable. The au-

thors, however, rely on data before the advent of large dating apps. In contrast, more

recent evidence, such as Sharabi and Dorrance-Hall (2024), finds that people who meet

online are less satisfied in their marriages. In labor markets, Kroft and Pope (2014) show

that Craigslist has no effect on the unemployment rate. Similarly, Gürtzgen et al. (2021)

provide evidence that online searches do not affect employment stability or wage out-

comes, but instead increase the proportion of unsuitable candidates in job applications.
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Gürtzgen, Nicole, Benjamin Lochner, Laura Pohlan, and Gerard J. van den
Berg, “Does Online Search Improve the Match Quality of New Hires?,” Labour Eco-
nomics, 2021, 70, 101981.

Hagiu, Andrei and Bruno Jullien, “Why Do Intermediaries Divert Search?,” The
RAND Journal of Economics, 2011, 42 (2), 337–362.

Halaburda, Hanna, Miko laj Jan Piskorski, and Pınar Yıldırım, “Competing by
Restricting Choice: The Case of Matching Platforms,” Management Science, 2018, 64
(8), 3574–3594.
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A. APPENDIX

A.1 LINEAR PROGRAMMING FORMULATION

The linear programming formulation of the platform’s problem in Lemma 4 is given

in the following. For α(θki , θ
−k
j ) ∈ {0, 1}, the platform’s optimization problem can be

represented by the following (mixed integer) linear program:

max
{Φ(·),m(·)}kij

∑
k=A,B

∑
θki ∈Θk

(1− δ)ν(ski )

1− ρ
f(θki ), (6)

subject to participation constraints ∀θki ∈ Θk, k = A,B,

βk
i ω

k
i ≤ f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j , (7)

incentive constraints ∀θki ∈ Θk, k = A,B,

βk
i θ

k
i θ

−k
j +α(θki , θ

−k
j )(−βk

i θ
k
i θ

−k
j ) ≤ f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j

≤
(
βk
i

δ
θki θ

−k
j − βk

i θ
k
i θ

−k
j

)
(1− α(θki , θ

−k
j )) + βk

i θ
k
i θ

−k
j , (8)

feasibility and steady state constraints∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=BΦ(θ

k
i , ω

k
i ) = f(θki ),∀θki ∈ Θk, k = A,B, (9)

f(θki ) =
βk
i − (1− δ)

∑
j m(θki , θ

−k
j )

δ
,∀θki ∈ Θk, k = A,B, (10)

and the following constraints on the matched and recommended pairs ∀(θki , θ−k
j ) ∈ Θk ×

Θ−k. First, the mass of recommended and matched pairs must be non-negative and the

mass of matched pairs cannot be greater than the mass of recommended pairs

Φ(θki , θ
−k
j ) ≥ 0,m(θki , θ

−k
j ) ≥ 0, (11)

m(θki , θ
−k
j ) ≤ Φ(θki , θ

−k
j ). (12)

Second, the mass of matched pairs must be smaller than the largest possible mass of the

agents, i.e. the mass that arises when agents only exit upon becoming inactive βk
i/δ times

the acceptance probability, and larger than the mass of recommended pairs minus the
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largest possible mass times the probability of a rejection

m(θki , θ
−k
j ) ≤

min{βk
i , β

−k
j }

δ
α(θki , θ

−k
j ), (13)

m(θki , θ
−k
j ) ≥ Φ(θki , θ

−k
j )−

min{βk
i , β

−k
j }

δ
(1− α(θki , θ

−k
j )). (14)

This ensures that the mass of matched pairs must be smaller than the mass of recom-

mended pairs and that for α(θki , θ
−k
j ) = 0 the mass of matched pairs cannot be greater

than zero. To accommodate for mixed acceptance probabilities of agents, consider an

agent of type θkm that is indifferent between accepting and rejecting a type θ−k
s . Hence, θkm

could randomize over the acceptance probability towards type θ−k
s : σk(θ

k
m, θ

−k
s ) ∈ (0, 1).

Conceptually, this imposes indifference or equality on some constraints rather than in-

equalities in the original formulation above. For any pair (θkm, θ
−k
s ) ∈ Θk ×Θ−k for which

α(θkm, θ
−k
s ) ∈ (0, 1), the adjusted incentive constraints are

βk
mθ

k
mθ

−k
s = f(θkm)(δω

k
m − (1− δ)skm) + (1− δ)

∑
j

m(θkm, θ
−k
j )θkmθ

−k
j , for θkm, (15)

β−k
s θkmθ

−k
s ≥ f(θ−k

s )(δω−k
s − (1− δ)s−k

s ) + (1− δ)
∑
j

m(θkm, θ
−k
j )θkmθ

−k
j , for θks , (16)

where θkm is indifferent between accepting and rejecting θ−k
s and θ−k

s (weakly) accepts θkm.

The constraints on the mass of recommended and matched pairs are

m(θkm, θ
−k
s ) ≤ min{βk

m, β
−k
s }

δ
, for (θkm, θ

−k
s ), (17)

m(θkm, θ
−k
j ) ≤ Φ(θkm, θ

−k
s ), for (θkm, θ

−k
s ). (18)

The linear program can be summarized in the subsequent lemma.

Lemma 6 (Linear Program). Fix any mutual acceptance matrix A. The platform’s

maximization problem yields the same profit as linear programming problem with objective

function in Equation 6 subject to constraints Equation 7 through 11 for any α(θki , θ
−k
j ) ∈

{0, 1}; and if α(θkm, θ
−k
s ) ∈ (0, 1) for any pair (θkm, θ

−k
s ) ∈ Θk × Θ−k, then for θkm replace

Equation 8 by Equation 15 and for θks replace Equation 8 by Equation 16 as well as replace

Equations 13 to 14 by Equations 17 to 18 for (θkm, θ
−k
s ).

Note on Standard Form of a Linear Program To abbreviate future arguments, I

relate the linear program by the standard form of a linear program. The matrix notation

is maxxcT subject to Hx ≤ b, x ≥ 0, where c ∈ Rn. The variable vector x ∈ X ⊂ Rn

consists of n variables, i.e., the mass of recommended and matched pairs, and is an

element of the compact set X as each mass takes a value in [0, βi/δ]. The m inequalities
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are given by matrix H ∈ Rm×n. Equalities, such as the feasibility constraints, can be

expressed as two opposite inequalities. Vector b ∈ Rm captures the right-hand side of

the inequalities. P ≡ {x ∈ Rn|Hx ≤ b} is the feasible region given by the inequality

constraints.

B. APPENDIX: OMITTED PROOFS

Proof of Lemma 1 and 2 in the text.

Proof of Lemma 3. If ηki < 1 and Φ(θki , ω
k
i ) ≥ 0 are optimal for any θki ∈ Θk, then

ηki = 1 and Φ′(θki , ω
k
i , ) are also optimal such that

Φ(θki , θ
−k
j ) = Φ′(θki , θ

−k
j ), (19)

(1− ηki )f(θ
k
i ) + Φ(θki , ω

k
i ) = Φ′(θki , ω

k
i ), (20)

for all θki ∈ Θk and θ−k
j ∈ Θ−k. For given ηki < 1 and matching rule M, Equation 19 and

20 determine the new matching rules for ηki = 1.

Now consider the participation for type θki . In equilibrium, the participation constraint

must be binding for agents to find it optimal to randomize in their participation decision.

Suppose the participation constraint is binding, then it can be rewritten as

(1− δ)ski = (1− δ)
∑
j

α(θki , θ
−k
j )ϕ(θ−k

j |θki )
(
θki θ

−k
j − ωk

i

)
.

As the masses are the same by Equation 19, the total surplus extracted by the platform

remains the same as optimality requires that the participation constraint continues to

bind. Multiplying with the total mass of agents of type θki if ηki < 1 yields

(1− δ)ηki f(θ
k
i )s

k
i = (1− δ)

∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )
(
θki θ

−k
j − ωk

i

)
.

Similarly, when multiplying with the total mass of agents of type θki if ηki = 1 yields

(1− δ)f ′(θki )s
k,′

i = (1− δ)
∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )
(
θki θ

−k
j − ωk

i

)
.

Therefore, the total surplus extracted is the same in both cases by construction. Thus,

if the platform charges a search fee both cases yield the same surplus. In the case of

advertising note that f ′(θki ) must increase if ηki increases, i.e. the steady-state mass

increases if more agents participate everything else equal. Rewrite equation 19 as

ηki f(θ
k
i )ϕ(θ

−k
j |θki ) = f ′(θki )ϕ

′(θ−k
j |θki )
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Therefore, to fulfill the equality in Equation 19 ϕ′(θ−k
j |θki ) must decrease to decrease the

right-hand side. This implies that sk,
′

i < ski and therefore, the platform profit increases

in the advertising case due to the concavity of ν(ski ).

Proof of Lemma 5 As defined in the Section 4.1, the set G is the set of profit levels

following from all linear programs with A ∈ A∗. I show that the set G is (a) non-empty

with Π(A) < ∞ for all A ∈ A∗ and −∞ < Π(A) for at least one A ∈ A∗ and (b) finite.

To define set G, recall the following definitions from the text. (i) Define a subset

A∗ ⊂ A, where A are the mutual acceptance matrices that can be implemented by

a matching mechanism M. Construct A∗ through the following procedure: For every

A′ ∈ A, construct a matrix A′′ such that

α′(θki , θ
−k
j ) = α′′(θki , θ

−k
j ) if α′(θki , θ

−k
j ) ∈ {0, 1},

α′(θki , θ
−k
j ) = αij otherwise,

where αij is a variable in [0, 1]. (ii) For each A ∈ A∗, the linear program is given by

Lemma 6. The value of the objective is given by Π(A). Then, (iii) G =
⋃

A∈A∗ Π(A).

(a) G is non-empty. I will show that for any A ∈ A∗, there exists an optimal value

Π(A) < ∞ to the linear program. To do so, fix A ∈ A∗ and consider the linear program

as defined in Lemma 6 in Appendix A.1. To prove that an optimal solution exists, I

show that: (i) the objective of the linear program is bounded, i.e., the linear program

is not unbounded, and (ii) the feasible region of the variable vector, P , is non-empty

for a range of parameters. From both it follows that there exists an optimal solution by

Dantzig (1963); Bertsimas and Tsitsiklis (1997).

(i) For fix A ∈ A∗, the maximization problem is bounded if there exists a constant

C ∈ R such that for all feasible x ∈ Rn cTx ≤ C holds. The objective is bounded as∑
k=A,B

∑
θki ∈Θk

(1− δ)ski
(1− ρ)

f(θki ) <
∑

k=A,B

∑
θki ∈Θk

(1− δ)ski
(1− ρ)

βk
i

δ
≡ C. (21)

This implies that Π(A) < ∞ for all A ∈ A∗.

(ii) The feasible region is defined by the set P = {x ∈ Rn : Hx ≤ b}. For any

A ∈ A∗, there exists a matching rule under which the constraints are not inconsistent

for a range of parameters. This follows from the fact that A∗ ⊂ A and the definition of

A implies that A ∈ A if and only if there exists an exogenous matching rule for which

an equilibrium with mutual acceptance matrix A exists. By Lemma 2 there exists at

least one equilibrium that can be implemented by a matching mechanism, hence, A∗ is

non-empty. Therefore, the feasible region is non-empty for a range of parameters for each

linear program for fix A ∈ A∗. Then, by strong duality (Dantzig, 1963), it follows that
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the linear program attains an optimal solution for any A ∈ A∗. The optimal value to the

linear program, Π(A), is finite and G is non-empty.

(b) G is finite. As G =
⋃

A∈A∗ Π(A) and A∗ is finite by construction, G is also finite

as the profit level of a given linear program is a singleton. As each linear program for

fix A ∈ A∗ is bounded, the profit level takes on either a (finite) optimal value if an

optimal solution exists or the value is undefined if the linear program is infeasible for

given parameters.

Auxiliary Results for Theorem 1 To establish Theorem 1, I proceed through a

sequence of intermediate lemmas, which are stated and proved below. Theorem 1 then

follows as a direct consequence. Recall that ski ∈ [0, u] ≡ S and denote the vector of

search costs by (sk1, ..., s
k
N)

k=A,B ≡ s.

Lemma 7. Let s be given. There exists an optimal solution with Π∗ ≡ maxG(s).

Proof. By Lemma 5, the set G is finite and non-empty for any given vector s. Hence,

G has a maximum element and Π∗ = maxG is well-defined and has a finite value.

Let the platform choose the vector of search costs s. To conclude the proof of Theorem

1, I show that there exists an optimal solution Π∗,s ≡ maxs Π
∗(s).

Recall that G(s) is the set of profit levels induced through all linear programs that

have a feasible solution for given s.20 In slight abuse of notation, define G(s) as a corre-

spondence from s to such profit levels Π(s)

G(s) : S |Θk|×|Θ−k| ⇒ R+
0 .

which assigns to each point s of S |Θk|×|Θ−k| a finite subset G(s) of R+
0 . The correspondence

is compact-valued as G(s) is a compact (finite) subset of R+
0 for all s ∈ S |Θk|×|Θ−k

. In the

following, I will show that the correspondence is upper hemicontinuous in s on S |Θk|×|Θ−k
.

To do so, recall the matrix notation of the linear program in Appendix A.1:

max
x∈X

xcT ≡ ΠA(s), s.t.HAx ≤ bA, x ≥ 0.

Denote by subscript A, the profit level and constraint set of the linear program for given

matrix A ∈ A∗. In Lemma 5, I have shown that a linear program for a fixed A ∈ A∗

has a solution for some s ∈ S |Θk|×|Θ−k
. Additionally, whenever the linear program has

a solution, it has an optimal solution. The value of the linear program, ΠA(s), is thus

finite on a set JA ≡ {s ∈ S |Θk|×|Θ−k|| − ∞ < ΠA(s) < ∞}, where JA ⊆ S |Θk|×|Θ−k
. The

20If ski exceeds the maximal utility that type θki can achieve on the platform, they will not participate.
Hence, if ski exceeds the maximal utility ∀θki ∈ Θk and k = A,B, the equilibrium profit is zero.
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set is compact.21

Lemma 8. The value of the objective ΠA(s) of a linear program for given matrix A ∈ A∗

is upper hemicontinuous in s on JA.

Proof. Fix A ∈ A∗, and consider the associated linear program from Lemma 6. For

given A ∈ A∗, s changes vector c continuously, as each entry, ν(ski ) or 0, is continuous in

ski . Furthermore s changes matrix HA continuously as ski linearly enters as a coefficient

in the incentive and participation constraints. The optimal value of the linear program

is given by

ΠA(s) ≡ sup
x∈Rn

{c(s)x|HA(s)x ≤ bA, x ≥ 0},

which is finite on JA. In slight abuse of notation, denote the correspondence from s to

the optimal value of the linear program by ΠA(s) : S |Θk|×|Θ−k| ⇒ R+
0 . Next, consider the

set of primal feasible solutions of the linear program, PA(s), that defines objective Π.

This is given by the correspondence s → PA(s) ≡ {x|HA(s)x ≤ b, x ≥ 0}.
First, I show that the set of (primal) feasible solutions of the linear program is upper

hemicontinuous in s. Consider the following definition: PA(s) is upper hemicontinuous

at s on JA if

s = lim
n→∞

sn, xn ∈ PA(sn), and x = lim
n→∞

xn,

implies that x ∈ PA(s).
22 To see that PA(s) is upper hemicontinuous, suppose that

{sn}n ∈ JA and s = limn→∞ sn. Let {xn}n be a sequence such that for all n, xn ∈
PA(s): HA(sn)xn ≤ bA, and x = limn→∞ = xn. Since by the continuity of HA(·) and

independence of bA in s

||HA(sn)−HA(s)|| → 0, ||xn − x|| → 0, and ||bA − bA|| = 0,

it follows that HAx ≤ bA and x ≥ 0, which yields x ∈ PA(s). This implies that PA(s) is in

fact upper hemicontinuous in s on JA. Next, I show that this implies that ΠA(s) = c(s)x

is upper hemicontinuous in s on JA. Suppose that {sn}n ∈ JA and s = limn→∞ sn. Let

{Πn}n be a sequence such that for all n, Πn ∈ ΠA(s), and Π = limn→∞ Πn. Since by

21The set JA contains all s ∈ S |Θk|×|Θ−k| for which the value of the linear program is finite. In other
words, the linear program must be bounded and feasible for those s. By Lemma 5, the linear program is
bounded. The linear program is feasible for some s if all constraints can be met, i.e. the feasible region
P is non-empty. Suppose for contradiction that JA is not compact. Now, take any sequence sn → s, for
which the feasible region is non-empty for all sn. For the limit point s not to be in set JA, the feasible
region must be empty for s, and hence, at least one inequality must be violated strictly. But then, as
the linear constraints are continuous in s, the constraints must also be violated for sn close enough to s,
a contradiction.

22This definition follows Wets (1985). Furthermore, let ||H|| = supx∈X ||Hx||
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the continuity of c(·), ||c(sn) − c(s)|| → 0, and the upper hemicontinuity of PA(s) on

JA, ||xn − x|| → 0, it follows that Π ∈ ΠA(s). This implies that ΠA(s) is in fact upper

hemicontinuous in s on JA.

Lemma 9. G(s) is upper hemicontinuous in s on S |Θk|×|Θ−k|.

Proof. Recall that G(s) =
⋃

A∈A∗ ΠA(s) is the finite union over the equilibrium

profit levels of each linear program. For each ΠA(s) the value ΠA(s) is finite on JA and

empty on S |Θk|×|Θ−k| \ JA. I prove the lemma by induction over the equilibria associated

with the finite set A∗. Let there be K equilibria, which can be implemented by the linear

programs and consider the correspondence GK(s) =
⋃

{A1,...,AK}ΠA(s) that includes K out

of K equilibria. By induction, I will consider GK to include increasingly more equilibria.

Base case: Let G1 be the correspondence that includes only the trivial equilibrium

from Lemma 2 with A1 ∈ A∗. Note that S |Θk|×|Θ−k| = JA1 as the trivial equilibrium

is a solution to the corresponding linear program for each s ∈ S |Θk|×|Θ−k|. Hence, the

statement follows from Lemma 8.

Induction step: The induction hypothesis states: GK(s) =
⋃

{A1,...,AK}ΠA(s) is upper

hemicontinuous on S |Θk|×|Θ−k|. Note that by the induction step, K includes the trivial

equilibrium. It remains to show that GK(s) ∪ ΠAK+1
(s) is upper hemicontinuous in s on

S |Θk|×|Θ−k|. Recall that the correspondence GK(s)∪ΠAK+1
(s) is upper hemicontinuous at

s0 ∈ S |Θk|×|Θ−k|, if for any open set V ⊆ R+
0 with GK(s0)∪ΠAK+1

(s0) ⊆ V , there exists an

open neighborhood U(s0) ⊆ S |Θk|×|Θ−k| such that if s ∈ U(s0), then GK(s)∪ΠAK+1
(s) ⊆ V .

Let s0 ∈ S |Θk|×|Θ−k| and V be an open set with GK(s0)∪ΠAK+1
(s0) ⊆ V . Suppose first

that ΠAK+1
is empty at s0. Since GK(s0) ∪ ΠAK+1

(s0) ⊆ V , it follows that GK(s0) ⊆ V

and ΠAK+1
(s0) ⊆ V by assumption (where V is the union of an open set and the empty

set). By the upper hemicontinuity of GK(s), there exists a neighborhood UK of s0 such

that GK(s0) ⊆ V for all s ∈ UK . Additionally, there exists a neighborhood UK+1 of

s0 such that ΠAK+1
(s0) = ∅ ⊆ V for all s ∈ UK+1 (by the compactness of JAK+1

. Let

U = UK ∩ UK+1. Then, for any s ∈ U , both GK(s) ⊆ V and ΠAK+1
(s) ⊆ V such that

GK(s) ∪ ΠAK+1
(s) ⊆ V .

Let both GK(s) and ΠAK+1
(s) be non-empty at s0. Since GK(s0) ∪ ΠAK+1

(s0) ⊆ V , it

follows that GK(s0) ⊆ V and ΠAK+1
(s0) ⊆ V . As both GK(s0) and ΠAK+1

(s0) are upper

hemicontinuous for s0, it holds that: There exists a neighborhood UK of s0 such that

GK(s0) ⊆ V for all s ∈ UK and UK+1 of s0 such that ΠAK+1
(s0) ⊆ V for all s ∈ UK+1.

Then, for any s ∈ U , both GK(s) ⊆ V and ΠAK+1
(s) ⊆ V such that GK(s)∪ΠAK+1

(s) ⊆ V .

Therefore, G(s) is upper hemicontinuous in s on S |Θk|×|Θ−k|.

Lemma 10. The function Π∗(s) is upper semi-continuous in s on S |Θk|×|Θ−k|.
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Proof. The function Π∗ is upper-semicontinuous if for every point s ∈ S |Θk|×|Θ−k|,

Π(s) ≥ lim supΠ(sn) for every sequence {sn}n ⊂ S |Θk|×|Θ−k| satisfying limn→∞ sn = s.

Let limn→∞ sn = s, and define Π∗
n = maxG(sn), so that Π∗

n ∈ G(sn) for all n. Since for
each sn G(·) is finite by Lemma 5 and the sequence {Π∗

n} is bounded, it has a convergent

subsequence by the Bolzano-Weierstrass theorem: Π∗
nk

→ Π′ for some Π′ ∈ R+
0 . Then,

as Π∗
nk

∈ G(snk
), snk

→ s, and Π∗
nk

→ Π′, the upper hemiconituity of G(s) implies that

any limit point of Π∗
nk

belongs to G(s), i.e. Π′ ∈ G(s). Therefore, Π′ ≤ maxG(s). Since

Π∗
nk

→ Π′, this implies:

lim
n→∞

supΠn = lim
n→∞

supmaxG(sn) ≤ maxG(s).

Proof of Theorem 1 By Lemma 10, maxG = Π∗(s) is upper semi-continuous in s and

compact-valued. Thus, there exists a maximum by Weierstrass extreme value theorem

on the compact set S |Θk|×|Θ−k|.

Proof of Proposition 1 The proof proceeds by considering the cases where search

costs are exogenous and where search costs are chosen as search fee or advertising.

Case 1: Exogenous Search Cost First, suppose search costs are exogenously given.

Let the parameters be drawn uniformly from the following sets: θki ∈ Θk = [θ, θ] ⊆ R+,

βk
i ∈ [0, β], δ ∈ (0, 1], ωk

i ∈ Ω = [0, ω], and ski ∈ [0, u]. An outcome is said to be

generically suboptimal if the set of parameter values for which it is optimal has measure

zero in the relevant parameter space.

For given A ∈ A∗, an optimal solution is a matching rule for which the objective

function of the linear program in Appendix A.1 attains its maximum value. The platform

solves the linear program in Lemma 6. Both feasibility (Equation 9) and steady-state

constraints (Equation 10) must be binding in the optimal solution. Additionally, at least

one participation (Equation 7) or incentive constraint (Equation 8) must be binding in

the optimal solution. Suppose otherwise, then the platform can decrease at least one

m(θki , θ
−k
j ), hence increase f(θki ), such that one constraint is binding and thereby increase

its profits.

Following Lauermann and Nöldeke (2014), {mRM(θki , θ
−k
j )}kij is the vector of masses

of matched pairs under random matching. Then, mRM(θki , θ
−k
j ) = 0 if α(θki , θ

−k
j ) = 0 and

mRM(θki , θ
−k
j ) =

α(θki , θ
−k
j )βk

i µ(θ
k
i , ω

k
i )β

−k
j µ(θ−k

j , ω−k
j )(∑

θki
βk
i µ(θ

k
i , ω

k
i )
)
·
(∑

θ−k
j

β−k
j µ(θ−k

j , ω−k
j )
)

if α(θki , θ
−k
j ) ∈ (0, 1] (see Appendix C.1 for the extended analysis). This is a function of

the inflow vector (βk
1 , ..., β

k
Nk)k, δ and the probability of θki being matched to their outside
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option ωk
i (µ(θki , ω

k
i )). Observe that for given A ∈ A∗, mRM(θki , θ

−k
j ) is independent of

ski . Fix A ∈ A∗. Given {mRM(θki , θ
−k
j )}kij, the participation and incentive constraints are

generically non-binding. Rearranging and using the steady state condition yields

βk
i

1− δ

(
θki θ

k
j − ωk

i +
(1− δ)

δ
ski

)
≤
∑
j

mRM(θki , θ
−k
j )

(
θki θ

−k
j − ωk

i +
(1− δ)

δ
ski

)
, (22)

βk
i

ski
δ

≤
∑
j

mRM(θki , θ
−k
j )

(
θki θ

−k
j − ωk

i +
(1− δ)

δ
ski

)
. (23)

Suppose βk
i , ω

k
i , θ

k
i , θ

−k
j and δ are drawn uniformly from their continuous intervals. Note

that each constraint for a type θki is a linear equation in ski . Hence, for given {mRM(θki , θ
−k
j )}kij,

there exists at most one ski per participation or incentive constraint of type θki such that

the constraint is binding. This implies that if ski is drawn uniformly from a continu-

ous interval, the set of parameters for which the constraint is binding has measure zero.

Therefore integrating over the cases for which at least one constraint is binding, the

corresponding set of parameters has measure zero as well. Hence, for each A ∈ A∗, the

constraints are generically non-binding. Lastly, since A∗ is finite, this concludes the proof

for exogenously given search costs.

Case 2: Endogenous Search Cost (Search Fee) With endogenous search fees and

ν(ski ) = ski , the optimization problem is equivalent to a linear assignment problem that

maximizes total match output over all possible pairings subject to feasibility constraints

that ensure each agent can match at most once. Since the matching technology is super-

modular, the solution is positive assortative matching (instead of random matching). For

more details, see Appendix C.1. Given the solution to this problem, {mPAM(θki , θ
−k
j )}kij,

the platform sets ski to fully extract each type’s surplus:

βk
i

(1− δ)

δ
ski = (1− δ)

∑
j

mPAM(θki , θ
−k
j )

(
θki θ

−k
j − ωk

i +
(1− δ)

δ
ski

)
.

Case 3: Endogenous Search Cost (Advertising) Now consider the case in which the

platform earns a revenue of ν(ski ) when charging search costs ski . Fix A ∈ A∗ and let the

random matching vector be given {mRM(θki , θ
−k
j )}kij. Using the steady-state conditions

to substitute for fRM(θki ), the platform’s objective under random matching becomes the

following maximization problem:

max
s

∑
k=A,B

∑
θki ∈Θk

(1− δ)ν(ski )

1− ρ

βk
i − (1− δ)

∑
j m

RM(θki , θ
−k
j )

δ︸ ︷︷ ︸
=fRM (θki )

. (24)

subject to the participation and incentive constraints in Equation 22 and 23.
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To maximize profit with respect to s, observe first that ν ′(ski ) > 0 as ν(ski ) is strictly

increasing in ski . This implies that the platform has an incentive to increase the search

costs as much as possible given the constraints. Therefore forA ∈ A∗, the optimal solution

is to choose ski such that for each type θki ∈ Θk, k = A,B either the participation or the

relevant incentive constraint induced by A is binding. Note that the random matching

vector satisfies the feasibility condition, and as random matching is independent of ski

feasibility remains to be satisfied.

Next, I show that the platform has an incentive to deviate from the above solution.

First, suppose A′ ∈ A∗ consists only of entries equal to one. Incentive constraints are

slack, and the platform chooses s to make participation constraints binding. Under

random matching, the platform can at most charge the expected value of a match. By

deviating to PAM the platform can raise search costs and profits, since ν(ski ) is strictly

increasing in ski .

Second, consider any matrix in A′′ ∈ A∗ \ {A′}, i.e., at least one type rejects another

type with positive probability. Due to supermodularity, this implies that at least one type

is willing to reject the lowest type. Consider the pair of types (θk1 , θ
−k
R ) for which type

θ−k
R ∈ Θ−k is willing to reject the lowest type θk1 on the other market side (α(θk1 , θ

−k
R ) = 0).

Recall that each type must be accepted by at least one other type on the opposite market

side to be willing to participate, thus consider pairs (θk1 , θ
−k
A ) and (θkA, θ

−k
R ) for which

α(θk1 , θ
−k
A ) = 1 and α(θkA, θ

−k
R ) = 1. For fix A′′ ∈ A∗ \{A′}, I will show that the platform’s

profit can be improved by changing the matching rules for types θk1 , θ
k
A, θ

−k
A and θ−k

R as

well as adjusting their search costs. The platform will choose the mass of recommended

pairs Φ′(θk1 , θ
−k
R ), Φ′(θk1 , θ

−k
A ), Φ′(θkA, θ

−k
R ), Φ′(θkA, θ

−k
A ), and the mass of matched pairs

m′(·, ·) = α(·, ·)Φ′(·, ·) as detailed below. For all other types, the platform chooses the

mass of recommended pairs such that they equal the mass of recommended pairs under

random matching: Φ′(θki , θ
−k
j ) = ΦRM(θki , θ

−k
j ). Without loss of generality, suppose that

the total mass of all types on market side A is smaller or equal than side B. Then, for

market side A, the platform chooses the mass of types that are recommended to their

outside option such that Φ′(θAi , ω
A
i ) = ΦRM(θAi , ω

A
i ) for all θAi ∈ ΘA \ {θA1 , θAA}. The

mass of recommended pairs and the mutual acceptance probabilities remain the same as

under random matching. Therefore, the participation, incentive constraints, feasibility

constraints (Equation 9) and steady-state constraints (Equation 10) for all other types

continue to hold.

For ε ∈ [−min{βi−mRM(·, ·)},min{mRM(·, ·)}], the platform chooses mRM(θk1 , θ
−k
A )−

m′(θk1 , θ
−k
A ) = ε and mRM(θkA, θ

−k
R ) − m′(θkA, θ

−k
R ) = ε, i.e. the platform changes the

mass of the two matched pairs by ε. Substituting the change into the steady state

condition (Equation 10) for type θk1 and type θ−k
R increases the steady state mass by 1−δ

δ
ε
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for ε > 0, and decreases otherwise. Substituting ΦRM(θk1 , θ
−k
A ) − Φ′(θk1 , θ

−k
A ) = ε and

ΦRM(θkA, θ
−k
R ) − Φ′(θkA, θ

−k
R ) = ε into the feasibility constraints (Equation 9) of type θk1

and type θ−k
R implies that Φ′(θk1 , θ

−k
R ) − ΦRM(θk1 , θ

−k
R ) = 1−δ

δ
ε + ε = ε/δ. It remains to

determine Φ′(θkA, θ
−k
A )−ΦRM(θkA, θ

−k
A ) and m′(θkA, θ

−k
A )−mRM(θkA, θ

−k
A ). To do so, consider

two cases: either α(θkA, θ
−k
A ) = 0 or α(θkA, θ

−k
A ) = 1.

In the first case, α(θkA, θ
−k
A ) = 0, I can exchange θkA for θk1 and θ−k

A for θ−k
R . Then,

it follows that Φ′(θkA, θ
−k
A ) − ΦRM(θkA, θ

−k
A ) = ε/δ and m′(θkA, θ

−k
A ) = 0. In the second

case, α(θkA, θ
−k
A ) = 1, the platform can set Φ′(θkA, θ

−k
A ) − ΦRM(θkA, θ

−k
A ) = m′(θkA, θ

−k
A ) −

mRM(θkA, θ
−k
A ) = ε. Since the platform decreases (increases) the mass of the matched pair

(θkA, θ
−k
R ) but increases (decreases) the mass of the matched pair (θkA, θ

−k
A ) by the same

amount, this implies that the steady state mass of type θkA is unchanged compared to

the steady state masses under random matching. Additionally, feasibility continues to be

satisfied as the platform shift mass ε from one recommended pair to the other. Similarly,

the steady state mass of type θ−k
A is the same as under random matching and the steady

state constraint as well as feasibility constraint remain satisfied.

Next determine the change in search costs for types θk1 , θ
k
A, θ

−k
A and θ−k

R . Note that for

the newly chosen mass of recommended and matched pairs (Φ′(·, ·),m′(·, ·)), the originally
binding participation or incentive constraint is no longer binding. Since, however, the

right-hand side of the participation or incentive constraints (see Equation 22 and 23) are

linearly increasing inm(·, ·) and the left-hand side of the constraints are ordered due to the

supermodularity of the match utility, the platform can choose a new search cost s̃ki such

that the constraint becomes binding again. Let the platform choose s̃k1, s̃
k
A, s̃

−k
R , s̃−k

A such

that originally binding participation or incentive constraint of each type is binding again.

Using Equations 22 and 23 and mRM(θk1 , θ
−k
A ) − m′(θk1 , θ

−k
A ) = ε and mRM(θkA, θ

−k
R ) −

m′(θkA, θ
−k
R ) = ε, the difference between sk1 − s̃k1 and s−k

R − s̃−k
R can be directly obtained.

From there, it follows that s̃k1 must be smaller than sk1 for ε > 0 and s−k
R > s̃−k

R for

ε > 0. Next, if α(θkA, θ
−k
A ) = 0, the difference between the search costs for types θkA

and θ−k
A can be derived as above and again, it holds that skA > s̃kA and s−k

A > s̃−k
A for

ε > 0. If α(θkA, θ
−k
A ) = 1, recall that the platform sets: mRM(θk1 , θ

−k
A ) − m′(θki , θ

−k
i ) = ε

mRM(θkA, θ
−k
R )−m′(θkA, θ

−k
R ) = ε and mRM(θkA, θ

−k
A )−m′(θkA, θ

−k
A ) = −ε. Using Equations

22 and 23, the difference of s−k
A − s̃−k

A can be obtained and s−k
A < s̃−k

A for ε > 0. Similarly,

the difference of skA − s̃kA can be calculated.

To determine whether the deviation is profitable, consider the difference in profits be-

tween the deviation profits and random matching profits (Equation 24). In the first case,

when α(θkA, θ
−k
A ) = 0, the steady state mass of all four types (θk1 , θ

k
A, θ

−k
R , θ−k

A ) increases

(decreases) by (1−δ)ε/δ while their search costs decrease (increase). Taking the difference

in profits and differentiating with respect to εki , and evaluating the condition at ε = 0,
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yields: ∑
θki ∈{θk1 ,θkA,θ−k

R ,θ−k
A }

ν ′(s̃ki )|s̃ki =ski

∂s̃ki
∂ε

|ε=0f
RM(θki ) +

1− δ

δ
ν(s̃ki )|s̃ki =ski

. (25)

For analytical convenience, consider the class of concave functions ν(ski ) = κ(ski )
α for

κ ∈ R+ and α ∈ (0, 1) from now on. Substituting ν(ski ) = κ(ski )
α, ν ′(ski ) = κα(ski )

α−1, and

the total derivatives of the differences in search costs into Equation 25 yields expression D

(see Appendix C.2). For the deviation to be profitable, the expression must be non-zero

when being evaluated at ε = 0. Then, since the function D is continuous in α, D > 0 for

α = 0, and D is increasing in α for α < α′′ and decreasing for α > α′′, it follows that D

has at most one root. In the second case, when α(θkA, θ
−k
A ) = 1, the steady state mass of

types (θk1 , θ
−k
R ) increases (decreases) by (1−δ)ε

δ
while the steady state mass of types θkA and

θ−k
A remains unchanged. Repeating the same steps as above yields expression D2, which

again has at most one root.

Now, suppose βk
i , ω

k
i , θ

k
i , θ

−k
j and δ are drawn uniformly from their continuous inter-

vals. Then, there exists at most one α for which D = 0 (or D2 = 0). Let α be drawn

uniformly from (0, 1), then random matching is generically suboptimal as such α is drawn

with measure zero.

Proof of Proposition 2 Since market sides are fully symmetric, for brevity I drop the

superscript k. PAM is defined as ϕ(θi|θj) = 1 iff i = j and results in f(θi) = βi ∀ θi ∈ Θ.

Case 1: Search Fee. (a) “If” direction: PAM is optimal if the platform sets si = θ2i −ωi

for all θi ∈ Θ. As shown in Appendix C.1, PAM maximizes total match surplus across

all agents. By choosing si = θ2i −ωi, the platform can extract each agent’s match surplus

as no agent is willing to pay more, thereby maximizing the platform’s profit.

(b) “Only if” direction: Suppose, for contradiction, that PAM is profit-maximizing even

if si < si for some θi ∈ Θ \ {θ1} and si = min
{
θ2i − ωi, θ

2
i − θiθ1−δωi

1−δ

}
. Observe that if

the platform uses PAM with probability one in the next period and si < si, then type θi

would reject the lowest type θ1 in the (zero-probability) event they meet, since

max{θiθ1, ωi} < δωi + (1− δ)(θ2i − si). (26)

Consider a deviation from PAM in which all types other than θ1 and θi continue to

only meet each other (ΦD(θj, θj) = βj), but θ1 and θi meet each other with mass ϵ ∈
(0,min{β1,βi}/δ] (ΦD(θi, θ1) = ϵ). Simultaneously, reduce the search fee of type θ1 from

s1 = θ21−ω1 to some s′1, which I will specify below. Then, I will show that there exists an

ϵ > 0 and a corresponding s′1 such that the resulting matching rule is feasible, incentive

compatible, and strictly improves the platform’s profit. To check feasibility, substitute
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the steady state conditions in Equation 10 into the feasibility constraints in Equation 9

and solve for the new (conditional) matching probabilities under the deviation, ϕD:

ϕD(θi|θi) =
βi − ϵδ

βi + (1− δ)ϵ
, ϕD(θ1|θ1) =

β1 − ϵδ

β1 + (1− δ)ϵ
. (27)

For any min{β1,βi}/δ > ϵ > 0, 1 > ϕD(·) > 0. Set s′1 =
β1−ϵδ

β1+(1−δ)ϵ
(θ21−ω1). To verify that type

θi continues to reject type θ1, note that under PAM, if si < si, the inequality in Equation

8 is slack. Since matching probabilities are continuous in ϵ, there exists a small ϵ > 0

such that the incentive condition remains non-binding or becomes just binding. Thus,

search behavior does not change for sufficiently small ϵ. Now consider the PC of type

θ1 (Equation 7). Under PAM, it is binding if s1 = θ21 − ω1. Since θ1 now meets type θi

with positive probability, continuing to charge s1 = θ21 − ω1 would violate the constraint.

By lowering the search fee to s′1 as defined above, the constraint remains binding. The

platform’s profit given the new matching rule and search fee is

ΠD =
2(1− δ)

1− ρ

(
(βi + ϵ)si +

(β1 + ϵ)(β1 − ϵδ)

β1 + (1− δ)ϵ
(θ21 − ω1) +

∑
j ̸=1,i

βj(θ
2
j − ωj)

)
.

The deviation is profitable if ΠD − ΠPAM > 0, that is if si − εδ
β1+(1−δ)ε

(θ21 − ω1) > 0 for ε

small enough.

Case 2: Advertisement. Given PAM, the platform maximizes profits by setting search

costs to si = θi − ωi. Consider a deviation as in Case 1, in which all types other than

type θ1 and some type θi continue to meet only each other. For type θ1 and θi choose

the mass of recommended and matched pairs (denoted by a superscript prime) such

that β1 − Φ′(θ1, θ1) = β1m
′(θ1, θ1) = ε and βi − Φ′(θi, θi) = βi − m′(θi, θi) = ε for ε ∈

(0,min{β1, βi}]. The new matching rule must satisfy the feasibility constraints (Equation

9) and steady state conditions (Equation 10). It follows that Φ′(θ1, θi) =
ε
δ
. To ensure

that type θi rejects type θ1 under the new matching rule (so that m′(θ1, θi) = 0), while

type θ1 participates, the platform chooses (s̃1, s̃i) such that

s̃i ∈
{
s̃i ∈ R+

∣∣∣∣βi

(
max{0, θiθ1 − ωi}+

(1− δ)

δ
s̃i

)
= (1− δ)(βi − ε)

(
θ2i − ωi +

(1− δ)

δ
s̃i

)}
,

s̃1 ∈
{
s̃1 ∈ R+

∣∣∣∣β1

(
(1− δ)

δ
s̃1

)
= (1− δ)(β1 − ε)

(
θ21 − ω1 +

(1− δ)

δ
s̃1

)}
.

For (s1 = θ21 − ω1, si = θ2i − ωi), the deviation is profitable if ΠD − ΠPAM > 0, or

equivalently

δ ≤ (ν(s̃1) + ν(s̃i))ε

β1(ν(s1)− ν(s̃1)) + βi(ν(si)− ν(s̃i)) + (ν(s̃1) + ν(s̃i))ε
≡ δ, where δ ∈ (0, 1) for ε > 0.
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C. ONLINE APPENDIX

C.1 BENCHMARKS

This section analyzes two polar cases, in which the intermediary has full information

about agent’s types and is able to extract the full rent from the matching output or the

intermediary has no information about agent’s types and must match agents at random.

Socially-Optimal Matching The first benchmark constitutes the case in which the in-

termediary (or a social planner) provides the socially-optimal matching under the premise

that agent’s types can be identified perfectly. The intermediary or social planner max-

imizes the sum of total matching outputs given that agents only search for one period.

The matching output function is supermodular, i.e. types of both sides are complements.

The socially-optimal matching is the solution to the linear program

max
M

∑
k=A,B

∑
θ−k
j ∈Θ−k

∑
θki ∈Θk

(θki θ
−k
j − ωk

i )m(θki , θ
−k
j ) (28)

subject to feasibility ∑
θ−k
j ∈Θ−k

m(θki , θ
−k
j ) ≤ βk

i ,∀θki ∈ Θk, (29)

∑
θki ∈Θk

m(θki , θ
−k
j ) ≤ β−k

j ,∀θ−k
j ∈ Θ−k, (30)

m(θki , θ
−k
j ) ≥ 0,∀(θki , θ−k

j ) ∈ Θk ×Θ−k. (31)

The linear program follows the optimal assignment problem by Koopmans and Beckmann

(1957) and Shapley and Shubik (1971). Both agents that form the match (θki , θ
−k
j ) receive

the output θki · θ−k
j .

The optimal matching rule that maximizes total match surplus follows the procedure:

Starting with the highest possible type on side k, each agent is matched to the highest

possible type on side −k. If there are not enough high types remaining on side −k, the

algorithm proceeds in descending order of type on side −k until all agents of the highest

possible type on side k are matched. The process continues in descending order with the

next highest type on side k, each time matching to the next available remaining types on

side −k. Once all agents on −k have been matched, any remaining agents on side k are

assigned to their outside option.

Remark. If markets are fully symmetric, the socially optimal matching is m(θki , θ
−k
j ) =

βk
i if θki = θ−k

j . The outcome is said to exhibit positive assortative matching.
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If market sides are fully symmetric, βA
i = βB

i , the solution to the linear program is

attained with m(θki , θ
−k
j ) ∈ {0, βk

i }, that is a pair is either matched with probability one

or not matched. Although the linear program permits partial or fractional matching of

agents, Dantzig (1963) showed that the maximum value of the objective is attained with

probabilities in {0, 1}.
For symmetric populations of agents, optimality requires that no individual remains

unmatched, such that the feasibility constraints must hold with equality. Otherwise,

the social planner can increase welfare by assigning an unmatched agent to another

unmatched agent as the value of their match is greater than zero. The objective is

maximized if m(θki , θ
−k
j ) = βk

i when θki = θ−k
j by applying the rearrangement inequality.

Random Matching The second benchmark is a random matching market. For ex-

ample, if an intermediary has no information (data) about agents’ types, and thus can-

not condition on any observables, the intermediary’s matching rule incorporates random

meetings between agents. A random matching market may also reflect offline meetings

between agents that are not intermediated by any platform.

A random matching market is a tuple (Θ̂k, f(θki ))k=A,B with parameters (ski , δ).The

analysis builds on the model of Lauermann and Nöldeke (2014).23

The total mass of agents on side k is f
k
=
∑

θki ∈Θk f(θki ). Since each agent can meet

at most one agent per unit of time, the total mass of meetings is given by min{fA
, f

B}.
Given that meetings are random, the fraction of meetings that involve type θki on side k

and type θ−k
j on side −k is then

f(θki )f(θ
−k
j )min{fk

, f
−k}

f
k · f−k

.

If f
k
> f

−k
, then the mass of agents on side k that meet their outside option is Φ(θki , ω

k
i ) =

f
k−f

−k

f
k . The probability to meet type θ−k

j on side −k conditional on being an agent of

any type on side k is

ϕ(θ−k
j ) =

f(θ−k
j )

f
−k

min{fk
, f

−k}
f
k

,

where the probability that type θki on side k exits the search process in a match with

23In contrast to Lauermann and Nöldeke (2014), agents may face explicit search cost ski in addition to
δ.
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type θ−k
j is

µ(θki , θ
−k
j ) =

(1− δ)α(θki , θ
−k
j )ϕ(θ−k

j )

δ + (1− δ)
∑

θ−k
j

α(θki , θ
−k
j )ϕ(θ−k

j )
,

where µ(θki , ω
k
i ) = 1−

∑
θ−k
j

µ(θki , θ
−k
j ) is the probability that type θki remains unmatched.

Let (f(θki ), α(θ
k
i , θ

−k
j )ij)k=A,B be a steady state. Then M with entries given by

m(θki , θ
−k
j ) =

α(θki , θ
−k
j )f(θki )f(θ

−k
j )min{fk

, f
−k}

f
k · f−k

. (32)

is the unique matching outcome induced by the steady state under random matching.

Vice versa, if M is a steady state matching outcome then f(θki ), α(θ
k
i , θ

−k
j ) is given by

f(θki ) =
βk
i

δ
µ(θki , ω

k
i ), (33)

α(θi, θj) = m(θki , θ
−k
j )

f
k · f−k

f(θki )f(θ
−k
j )min{fk

, f
−k}

, (34)

where α(θki , θ
−k
j ) ≤ 1 for all (θki , θ

−k
j ) ∈ Θ̂k × Θ̂−k and m(θki , ω

k
i ) is the probability of

ending up with one’s outside option. Matching M is an equilibrium matching if

m(θki , θ
−k
j ) =

 0 if θki θ
−k
j < V C(θki ) or θ

k
i , θ

−k
j < V C(θ−k

j )
f(θki )f(θ

−k
j )min{fk

,f
−k}

f
k·f−k if θki θ

−k
j > V C(θki ) and θki θ

−k
j > V C(θ−k

j )

holds for all (θki , θ
−k
j ) ∈ Θ̂k × Θ̂−k.
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C.2 PROOF OF PROPOSITION 1: ADVERTISING

This addition to the proof of Proposition 1 provides the detailed mathematical steps

required for completing the proof of the third case: advertisement.

Consider pairs (θk1 , θ
−k
A ) and (θkA, θ

−k
R ) for which α(θk1 , θ

−k
A ) = 1 and α(θkA, θ

−k
R ) = 1.

I show that the platform’s profit can be improved by changing the matching rules for

types θk1 , θ
k
A, θ

−k
A and θ−k

R as well as adjusting their search costs. The platform will choose

the mass of recommended pairs Φ′(θk1 , θ
−k
R ), Φ′(θk1 , θ

−k
A ), Φ′(θkA, θ

−k
R ), Φ′(θkA, θ

−k
A ), and the

mass of matched pairs m′(·, ·) = α(·, ·)Φ′(·, ·) as detailed below. For all other types,

the platform chooses the mass of recommended pairs such that they equal the mass of

recommended pairs under random matching: Φ′(θki , θ
−k
j ) = ΦRM(θki , θ

−k
j ).

For ε ∈ [−min{βi−mRM(·, ·)},min{mRM(·, ·)}], the platform chooses mRM(θk1 , θ
−k
A )−

m′(θk1 , θ
−k
A ) = ε and mRM(θkA, θ

−k
R )−m′(θkA, θ

−k
R ) = ε, i.e. the platform changes the mass

of the two matched pairs by ε. Substituting the change into the steady state condition

(Equation 10) for type θk1 and type θ−k
R yields

fRM(θk1) +
1− δ

δ
ε =

1

δ

(
βk
1 − (1− δ)

(
−ε+

∑
Θ−k

mRM(θk1 , θ
−k
j )

))
,

fRM(θ−k
R ) +

1− δ

δ
ε =

1

δ

(
β−k
R − (1− δ)

(
−ε+

∑
Θk

mRM(θki , θ
−k
R )

))
.

Therefore, by decreasing (increasing) the mass of the two matched pairs, increases (de-

creases) the steady state mass by 1−δ
δ
ε compared to the steady state mass under random

matching. Substituting ΦRM(θk1 , θ
−k
A )−Φ′(θk1 , θ

−k
A ) = ε and ΦRM(θkA, θ

−k
R )−Φ′(θkA, θ

−k
R ) = ε

into the feasibility constraints of type θk1 and type θ−k
R yields

fRM(θk1) +
1− δ

δ
ε = Φ′(θk1 , θ

−k
R )− ε+ 1k=AΦ

RM(θk1 , ω
k
1) +

∑
Θ−k\{θ−k

R }
ΦRM(θk1 , θ

−k
j ),

(35)

fRM(θ−k
R ) +

1− δ

δ
ε = Φ′(θk1 , θ

−k
R )− ε+ 1k=AΦ

RM(θ−k
R , ω−k

R ) +
∑

Θk\{θk1}
ΦRM(θki , θ

−k
R ),

(36)

which implies that Φ′(θk1 , θ
−k
R )− ΦRM(θk1 , θ

−k
R ) = 1−δ

δ
ε+ ε = ε/δ. It remains to determine

Φ′(θkA, θ
−k
A )−ΦRM(θkA, θ

−k
A ) and m′(θkA, θ

−k
A )−mRM(θkA, θ

−k
A ). To do so, consider two cases:

either α(θkA, θ
−k
A ) = 0 or α(θkA, θ

−k
A ) = 1.

In the first case, α(θkA, θ
−k
A ) = 0, I can exchange θkA for θk1 and θ−k

A for θ−k
R in Equation 35

and 36 above. Then, it follows that Φ′(θkA, θ
−k
A )−ΦRM(θkA, θ

−k
A ) = ε/δ and m′(θkA, θ

−k
A ) = 0.
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In the second case, α(θkA, θ
−k
A ) = 1, the platform can set Φ′(θkA, θ

−k
A )−ΦRM(θkA, θ

−k
A ) =

m′(θkA, θ
−k
A )−mRM(θkA, θ

−k
A ) = ε. Since the platform decreases (increases) the mass of the

matched pair (θkA, θ
−k
R ) but increases (decreases) the mass of the matched pair (θkA, θ

−k
A )

by the same amount, this implies that the steady state mass of type θkA is unchanged

compared to the steady state masses under random matching. Additionally, feasibility

continues to be satisfied as the platform shift mass ε from one recommended pair to the

other. Similarly, the steady state mass of type θ−k
A is the same as under random matching

and the steady state constraint as well as feasibility constraint remain satisfied.

Next determine the change in search costs for types θk1 , θ
k
A, θ

−k
A and θ−k

R . Note that for

the newly chosen mass of recommended and matched pairs (Φ′(·, ·),m′(·, ·)), the originally
binding participation or incentive constraint is no longer binding. Since, however, the

right-hand side of the participation or incentive constraints (see Equation 22 and 23) are

linearly increasing inm(·, ·) and the left-hand side of the constraints are ordered due to the

supermodularity of the match utility, the platform can choose a new search cost s̃ki such

that the constraint becomes binding again. Let the platform choose s̃k1, s̃
k
A, s̃

−k
R , s̃−k

A such

that originally binding participation or incentive constraint of each type is binding again.

Using Equations 22 and 23 and mRM(θk1 , θ
−k
A ) − m′(θk1 , θ

−k
A ) = ε and mRM(θkA, θ

−k
R ) −

m′(θkA, θ
−k
R ) = ε, the difference between sk1 − s̃k1 and s−k

R − s̃−k
R is given by

(1− δ)
βk
1 − (1− δ)

∑
j m

RM(θk1 , θ
−k
j )

δ
(sk1 − s̃k1) = ε(θk1θ

−k
A − ωk

1 +
1− δ

δ
s̃k1). (37)

Observe that the right-hand side is positive for ε > 0 as θk1θ
−k
A − ωk

1 > 0 due to the fact

that both types mutually accept each other. Then, it follows that s̃k1 must be smaller

than sk1 for ε > 0. Additionally, by the steady state constraint, the factor on the left-hand

side is equal to (1 − δ)fRM(θk1). Similarly, using mRM(θkA, θ
−k
R ) − m′(θkA, θ

−k
R ) = ε and

taking the difference, s−k
R − s̃−k

R is given by

(1− δ)fRM(θ−k
R )(s−k

R − s̃−k
R ) = ε(θkAθ

−k
R − ω−k

R +
1− δ

δ
s̃−k
R ). (38)

Observe that the right-hand side is again positive, so that s−k
R > s̃−k

R for ε > 0. Next,

if α(θkA, θ
−k
A ) = 0, the difference between the search costs for types θkA and θ−k

A can be

derived as above

(1− δ)fRM(θkA)(s
k
A − s̃kA) = ε(θkAθ

−k
R − ωk

A +
1− δ

δ
s̃kA), (39)

(1− δ)fRM(θ−k
A )(s−k

A − s̃−k
A ) = ε(θk1θ

−k
A − ω−k

A +
1− δ

δ
s̃−k
A ). (40)

Again, it holds that skA > s̃kA and s−k
A > s̃−k

A for ε > 0. If α(θkA, θ
−k
A ) = 1, recall that

the platform sets: mRM(θk1 , θ
−k
A ) −m′(θki , θ

−k
i ) = ε mRM(θkA, θ

−k
R ) −m′(θkA, θ

−k
R ) = ε and
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mRM(θkA, θ
−k
A )−m′(θkA, θ

−k
A ) = −ε. Using Equations 22 and 23, the difference of s−k

A − s̃−k
A

is given by

(1− δ)fRM(θ−k
A )(s−k

A − s̃−k
A ) = ε(θk1θ

−k
A − ω−k

A +
1− δ

δ
s̃−k
A )− ε(θkAθ

−k
A − ω−k

A +
1− δ

δ
s̃−k
A ).

(41)

Since θkA > θk1 , the right-hand side is negative, so that s−k
A < s̃−k

A for ε > 0. Similarly, the

difference of skA − s̃kA is given by

(1− δ)fRM(θkA)(s
k
A − s̃kA) = ε(θkAθ

−k
R − θkAθ

−k
A ), (42)

where the right-hand side is non-negative if θ−k
R ≥ θ−k

A .

To determine whether the deviation is profitable, consider the difference in profits

between the deviation profits and random matching profits (Equation 24). In the first

case, when α(θkA, θ
−k
A ) = 0, the steady state mass of all four types (θk1 , θ

k
A, θ

−k
R , θ−k

A ) in-

creases (decreases) by (1−δ)ε/δ while their search costs decrease (increase). The difference

in profits is therefore∑
θki ∈{θk1 ,θkA,θ−k

R ,θ−k
A }

[
(ν(s̃ki )− ν(ski ))f

RM(θki ) + ν(s̃ki )
(1− δ)ε

δ

]
.

Differentiating with respect to εki , and evaluating the condition at ε = 0, yields:

∑
θki ∈{θk1 ,θkA,θ−k

R ,θ−k
A }

ν ′(s̃ki )|s̃ki =ski

∂s̃ki
∂ε

|ε=0f
RM(θki ) +

1− δ

δ
ν(s̃ki )|s̃ki =ski

. (43)

Totally differentiating Equations 37, 38, 39, and 40 and evaluating the derivative at ε = 0

yields:

∂s̃k1
∂ε

∣∣∣∣
ε=0

= −
θk1θ

−k
A − ωk

1 +
1−δ
δ
sk1

(1− δ)fRM(θk1)
,

∂s̃kA
∂ε

∣∣∣∣
ε=0

= −
θkAθ

−k
R − ωk

A + 1−δ
δ
skA

(1− δ)fRM(θkA)
,

∂s̃−k
R

∂ε

∣∣∣∣
ε=0

= −
θkAθ

−k
R − ω−k

R + 1−δ
δ
s−k
R

(1− δ)fRM(θ−k
R )

,
∂s̃−k

A

∂ε

∣∣∣∣
ε=0

= −
θk1θ

−k
A − ω−k

A + 1−δ
δ
s−k
A

(1− δ)fRM(θ−k
A )

.

For analytical convenience, consider the class of concave functions ν(ski ) = κ(ski )
α for

κ ∈ R+ and α ∈ (0, 1) from now on. Substituting ν(ski ) = κ(ski )
α, ν ′(ski ) = κα(ski )

α−1,
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and the partial derivatives above into Equation 25 yields

D ≡ α(sk1)
α−1

(
−
θk1θ

−k
A − ωk

1 +
1−δ
δ
sk1

1− δ

)
+

1− δ

δ
(sk1)

α

︸ ︷︷ ︸
=d1(θk1 )

+ α(skA)
α−1

(
−
θkAθ

−k
R − ωk

A + 1−δ
δ
skA

1− δ

)
+

1− δ

δ
(skA)

α

︸ ︷︷ ︸
=d1(θkA)

+ α(s−k
A )α−1

(
−
θk1θ

−k
A − ω−k

A + 1−δ
δ
s−k
A

1− δ

)
+

1− δ

δ
(s−k

A )α︸ ︷︷ ︸
=d1(θ

−k
A )

+ α(s−k
R )α−1

(
−
θkAθ

−k
R − ω−k

R + 1−δ
δ
s−k
R

1− δ

)
+

1− δ

δ
(s−k

R )α︸ ︷︷ ︸
=d1(θ

−k
R )

.

For the deviation to be profitable, the expression must be non-zero when being evaluated

at ε = 0. I will argue that D has at most one root in α. To do so, examine the term for

θk1 . Differentiating with respect to α results in

∂d1(θ
k
1)

∂α
= (sk1)

α−1

(
−
θk1θ

−k
A − ωk

1 +
1−δ
δ
sk1

(1− δ)
(1 + α ln(sk1)) +

1− δ

δ
ski ln(s

k
i )

)
.

Now, observe that (sk1)
α−1 is strictly increasing in α, whereas the expression in brackets

changes sign at most once since it is linear in α. This implies that
∂d1(θk1 )

∂α
changes sign at

most once, in which case it is positive for some α < α′ and negative for α > α′. Similarly,

this holds for the equivalent expressions, d1(·), for each type θkA, θ
−k
A , θ−k

R . Then, since the

function D is continuous in α, D > 0 for α = 0, and D is increasing in α for α < α′′ and

decreasing for α > α′′, it follows that D has at most one root.

In the second case, when α(θkA, θ
−k
A ) = 1, the steady state mass of types (θk1 , θ

−k
R )

increases (decreases) by (1−δ)ε
δ

while the steady state mass of types θkA and θ−k
A remains

unchanged. The difference in profits is therefore∑
θki ∈{θk1 ,θ−k

R }

[
(ν(s̃ki )− ν(ski ))f

RM(θki ) + ν(s̃ki )
1− δ

δ
ε

]
+

∑
θki ∈{θkA,θ−k

A }

[
(ν(s̃ki )− ν(ski ))f

RM(θki )
]
.
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Differentiating with respect to ε and evaluating the condition at ε = 0, yields∑
θki ∈{θk1 ,θ−k

R }

[
ν ′(s̃ki )|s̃ki =ski

∂s̃ki
∂ε

|ε=0f
RM(θki ) +

1− δ

δ
ν(s̃ki )|s̃ki =ski

]
(44)

+
∑

θki ∈{θkA,θ−k
A }

[
ν ′(s̃ki )|s̃ki =ski

∂s̃ki
∂ε

|ε=0f
RM(θki )

]
. (45)

Again, the expression must be non-zero for the deviation to be profitable. Again, I totally

differentiate Equations 41 and 42:

∂s̃kA
∂ε

|ε=0 =
θkA(θ

−k
A − θ−k

R )

(1− δ)fRM(θkA)
> 0 if θ−k

A > θ−k
R ,

∂s̃−k
A

∂ε
|ε=0 =

θ−k
A (θkA − θk1)

(1− δ)fRM(θ−k
A )

> 0.

Substituting ν(ski ) = κ(ski )
α, ν ′(ski ) = κα(ski )

α−1, and the partial derivatives above into

Equation 45 yields

D2 ≡ d1(θ
k
1) + α(skA)

α−1

(
θkA(θ

−k
A − θ−k

R )

(1− δ)

)
︸ ︷︷ ︸

d2(θkA)

+α(s−k
A )α−1

(
θ−k
A (θkA − θk1)

(1− δ)

)
︸ ︷︷ ︸

=d2(θ
−k
A )

+d1(θ
−k
R ).

Examining the two new terms shows that d2(θ
−k
A ) is strictly increasing in α, and d2(θ

k
A)

is strictly increasing in α if θ−k
A > θ−k

R , and decreasing otherwise. Again, this implies that

D2 has at most one root.

Now, suppose βk
i , ω

k
i , θ

k
i , θ

−k
j and δ are drawn uniformly from their continuous inter-

vals. Then, there exists at most one α for which D = 0 (or D2 = 0). Let α be drawn

uniformly from (0, 1), then random matching is generically suboptimal as such α is drawn

with measure zero.
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C.3 OMITTED PROOFS: BINARY TYPES

Lemma 11. For δ → 0, the optimal matching rule that implements

(a) APAM is[
s

θh(θh−θl)
1− s

θh(θh−θl)

1− βh(θh(θh−θl)−s)
βhθh(θh−θl)+(βl−βh)s

βh(θh(θh−θl)−s)
βhθh(θh−θl)+(βl−βh)s

]
, if

βh

βl

≤ θ2l − s

θh(θh − θl)− s
, (46)

or otherwise, [
βhs

βlθ
2
l +(βh−βl)s

1− βhs
βlθ

2
l +(βh−βl)s

1− s
θ2l

s
θ2l

]
, if

βh

βl

≥ θ2l − s

θh(θh − θl)− s
, (47)

where at equality both matrices coincide. O(APAM) is positive assortative.

(b) AWPAM is[
s

θh(θh−θl)
1− s

θh(θh−θl)

1− (βl(θ
2
h−s)−βh(θh(θh−θl)−s))s

θl(θh−θl)(βh(θh(θh−θl)−s)+βl(θhθl−s))

(βl(θ
2
h−s)−βh(θh(θh−θl)−s))s

θl(θh−θl)(βh(θh(θh−θl)−s)+βl(θhθl−s))

]
, (48)

if
(θ2l − s)

θh(θh − θl)− s)
≤ βh

βl

≤ (θ2h − s)

θh(θh − θl)− s)
, and O(AWPAM) is weakly assortative.

AWPAM is [
βh−βl

βh
1− βh−βl

βh

1 0

]
, if βh ≥ βl and

βh − βl

βh

θh(θh − θl) ≤ s ≤ θhθl, (49)

or [
0 1

1− βh−βl

βl

βh−βl

βl

]
, if βh ≤ βl and s ≤ β2

l θ
2
l + βhθl(θh − θl). (50)

O(AWPAM) is non-assortative.

(c) ANAM is [
βh−βl

βh
1− βh−βl

βh

s
θl(θh−θl)

1− s
θl(θh−θl)

]
, if 1 ≤ βh

βl

≤ θh(θh − θl)

θh(θh − θl)− s
, (51)

or [
s

θh(θh−θl)
1− s

θh(θh−θl)

1− βl(θ
2
h−θ2l −s)−βh(θh(θh−θl)−s)

(θh−θl)θlβl

βl(θ
2
h−θ2l −s)−βh(θh(θh−θl)−s)

(θh−θl)θlβl

]
, (52)

if
θh(θh − θl)

θh(θh − θl)− s
≤ βh

βl

≤ θ2h − θ2l − s

θh(θh − θl)− s
, and O(ANAM) is non-assortative.
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Proof of Lemma 11 The proof proceeds as follows. Fixing each matrix of mutual

acceptance probabilities, I solve for the optimal matching rule by using the auxiliary

problem from Appendix A.1. The linear program in the binary case is given by

max
2(1− δ)s

1− ρ
(f(θh) + f(θl)) ,

subject to feasibility and steady state conditions

f(θh) = Φ(θh, θh) + Φ(θh, θl), (53)

f(θl) = Φ(θl, θl) + Φ(θh, θl), (54)

βh = f(θh)δ + (1− δ)(α(θh, θh)Φ(θh, θh) + α(θh, θl)Φ(θh, θl)), (55)

βl = f(θl)δ + (1− δ)(α(θl, θl)Φ(θl, θl) + α(θh, θl)Φ(θh, θl)), (56)

as well as the respective participation and incentive constraints.

(a) APAM :

APAM induces the following constraints: A high type must be willing to continue

searching after meeting a low type and the low type must be willing to participate. The

transformed incentive and participation constraints take the following form

βh(δθhθl + (1− δ)s) ≤ (1− δ)Φ(θh|θh)(δθ2h + (1− δ)s), (57)

βl(1− δ)s ≤ (1− δ)Φ(θl|θl)(δθ2l + (1− δ)s). (58)

By Theorem 1 an optimal solution exists. In the binary case, the optimal solution can

easily be checked. As the platform maximizes the steady state mass, it chooses Φ(θh, θh)

and Φ(θl, θl) to be as small as possible without violating the constraints. Here, Φ(θh, θh)

and Φ(θl, θl) are minimal when Equation 57 and Equation 58 bind resulting in

Φ(a)(θh, θh) =
βh((1− δ)s+ δθhθl)

(1− δ)((1− δ)s+ δθ2h)
,

Φ(a)(θl, θl) =
βls

(1− δ)s+ δθ2l
.

Both the incentive and participation constraint, however, can only bind at the same time

whenever (
βh

βl

)(a)

=
(1− δ)(θ2l − s)(s+ δ(θ2h − s))

(θh(θh − θl)− s− δ(θ2h − s))(s+ δ(θ2l − s))
,

due to the feasibility constraints, Equation 53 and 54.
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The steady state mass can be calculated by inserting Φ(a)(θh, θh) and Φ(a)(θl, θl) into

f(θh) =
βh − (1− δ)Φ(θh, θh)

δ
,

f(θl) =
βl − (1− δ)Φ(θl, θl)

δ
.

The optimal matching rule is then given by ϕ(θi|θi) = Φ(θi,θi)
f(θi)

for i = h, l.

If βh

βl
> (βh

βl
)(a), only the participation constraint can be binding such that Φ(θl, θl) =

Φ(a)(θl, θl). Inserting Φ(θl, θl) = Φ(a)(θl, θl) into the feasibility constraint of the low types

yields Φ(θh, θl), which in turn determines Φ(θh, θh) by inserting it into the feasibility

constraint of the high type. If βh

βl
< (βh

βl
)(a), only the incentive constraint of the high type

can be binding such that Φ(θh, θh) = Φ(θh, θh)
(a) and the steps above can be repeated

respectively.

(b) AWPAM :

(b.1) AWPAM induces the following constraints: A high type must be indifferent

between searching and accepting low types

βh(δθhθl + (1− δ)s) = (1− δ)
(
Φ(θh|θh)(δθ2h + (1− δ)s) + α(θh, θl)Φ(θh, θl)(δθhθl + (1− δ)s)

)
.

which holds for ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

. Additionally, low types must be willing to

participate

βl(1− δ)s ≤ (1− δ)
(
Φ(θl, θl)(δθ

2
l + (1− δ)s) + α(θh, θl)Φ(θh, θl)(δθhθl + (1− δ)s)

)
.

From ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

it follows

Φ(b)(θh, θh) = ϕ(θh|θh)
βh

δ + (1− δ)(ϕ(θh|θh) + α(θh, θl)(1− ϕ(θh|θh)))︸ ︷︷ ︸
=f(θh)

=
βh((1− δ)s+ δθhθl)

(1− δ)(α(θh, θl)(θh(θh − θl)− δθ2h − (1− δ)s) + δθ2h(1− δ)s)

Then, Φ(b)(θh, θl) follows by inserting Φ(b)(θh, θh) in Equation 53, i.e.,

βh (θhθl − (1− δ)θ2h + (1− δ)s)

(1− δ)(α(θh, θl)(δθ2h − δs− θ2h + θhθl + s)− δθ2h + δs− s)
.

Furthermore, Φ(b)(θl, θl) follows from feasibility of the low type by inserting Φ(b)(θh, θl)

into Equation 54.
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The low type is indifferent between participating and not participating if

αWPAM ≡{
α(θh, θl) : βls = Φ(b)(θl, θl)(δθ

2
l + (1− δ)s) + α(θh, θl)Φ

(b)(θh, θl)(δθhθl + (1− δ)s)
}
.

For δ → 0, I get

αWPAM =
s (βh(θh(θh − θl)− s)− βl(θ

2
l − s))

(θh(θh − θl)− s) (βhθl(θh − θl) + βlθ2l + (βh − βl)s)
. (59)

The mutual acceptance probability is then given by the above. For δ → 0, to ensure that

αWPAM ≤ 1 and ϕ(θl|θl) ≥ 0, the conditions in the lemma must hold.

(b.2) Additionally for βh ≥ βl, the platform can implement AWPAM by always match-

ing low types with high types, i.e. ϕ(θh|θl) = 1. This implies that low types search for

only one period, such that f(θl) = Φ(θh, θl) = βl. The high types’ incentive constraint

for α(θh, θl) = 1 is

βh(δθhθl + (1− δ)s) ≥ (1− δ)
(
Φ(θh|θh)(δθ2h + (1− δ)s) + Φ(θh, θl)(δθhθl + (1− δ)s)

)
,

and from the feasibility constraint (Equation 53), it follows that Φ(θh, θh) = βh−βl. The

incentive constraint of high types is satisfied if

s ≥ βh − (1− δ)βl

(1− δ)βh

θh(θh − θl)−
δ

(1− δ)
θ2h

The participation constraint of low types is satisfied if s ≤ θhθl:

βl(1− δ)s ≤ (1− δ)βl(δθhθl + (1− δ)s).

Lastly for βh ≤ βl, the platform can implement AWPAM by always matching high types

to low types, i.e. ϕ(θl|θh) = 1. This implies that high types search for only one period,

such that f(θh) = Φ(θh, θl) = βh. Low types must be willing to participate

βl(1− δ)s ≤ (1− δ)
(
Φ(θl, θl)(δθ

2
l + (1− δ)s) + βh(δθhθl + (1− δ)s)

)
.

If the participation constraint is satisfied, low types also search for only one period, such

that f(θl) = βl. Therefore, Φ(θl, θl) = βl − βh. Thus, the participation constraint is

satisfied if

s ≤ β2
l θ

2
l + βhθl(θh − θl),
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and low types do not reject low types if

s ≥ δθl(βh(1− δ)θh − βlθl)

(1− δ)(βl − (1− δ)βh)
,

which equals zero for δ → 0.

(c) ANAM :

(c.1) ANAM can be implemented if

βh((1− δ)s+ δθhθl) ≥ (1− δ)Φ(θh|θh)((1− δ)s+ δθ2h) + (1− δ)Φ(θh, θl)((1− δ)s+ δθhθl),

βl((1− δ)s+ δθ2l ) ≤ (1− δ)Φ(θh|θl)((1− δ)s+ δθhθl).

As high types accept both high and low types and search for only one period, the

steady state mass of high types is equal to their inflow: f(θh) = βh. The platform’s profit

from high types is, therefore, independent of the matching rule. To maximize profits, the

platform minimizes Φ(θh, θl) such that

Φ(θh, θl) =
βl((1− δ)s+ δθ2l )

(1− δ)((1− δ)s+ δθhθl)
,

and the incentive constraint of the low type binds. Φ(θh, θh) = βh − βl follows from the

feasibility constraints (Equation 53), where Φ(θh, θh) and Φ(θh, θl) must be such that the

incentive constraint of the high type is fulfilled, which is true if

1 ≤ βh

βl

≤ ((1− δ)s+ δθ2l ) θh(θh − θl)

(θh(θh − θl)− (1− δ)s− δθ2h) ((1− δ)s+ δθhθl)
.

For δ → 0 this results in

1 ≤ βh

βl

≤ θh(θh − θl)

θh(θh − θl)− s
.

(c.2) ANAM can be implemented if a high type is indifferent between accepting and

rejecting a low type, while a low type is willing to reject low types. Again as in part

(b), ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

must hold to ensure the indifference constraint of high types.

Then for α(θh, θl) ∈ [0, 1], Φ(c)(θh, θh) = Φ(b)(θh, θh) and Φ(c)(θh, θl) = Φ(b)(θh, θl). Insert-

ing into the incentive constraint of the low type, the low type rejects low types if

βl((1− δ)s+ δθ2l ) ≤ (1− δ)α(θh, θl)Φ
(c)(θh, θl)((1− δ)s+ δθhθl),

which holds with equality for

αNAM =
βls

(βh − βl)(θh(θh − θl)− s)
(60)

13



if δ → 0. It holds that αNAM > 0 generally, and αNAM ≤ 1 if βh

βl
≥ θh(θh−θl)

θh(θh−θl)−s
. Addition-

ally, ϕ(θh|θl) =
(βh−βl)(θ

2
h−θ2l −s)

βlθl(θh−θl)
, which is larger than zero if βh ≥ βl and smaller than one

if βh

βl
≤ θ2h−θ2l −s

θh(θh−θl)−s
.

Proof of Proposition 3 Next, I determine the platform’s preferred outcome. First,

let s ≤ θ2l .

(i) For βh

βl
≤
(

βh

βl

)(a)
, the profit when implementing APAM (Equation 46) is

Π(a.1) =
2ν(s)(1− δ)

1− ρ

(
2βhθh(θh − θl) + (βl − βh)(s+ δ(θ2h − s))

s+ δ(θ2h − s)

)
.

For βh

βl
≥
(

βh

βl

)(a)
, the platform can either implement APAM (Equation 47) or AWPAM

(Equation 48). The profits are

Π(a.2) =
2ν(s)(1− δ)

1− ρ

(
2βlθ

2
l + (βh − βl)(s+ δ(θ2l − s))

s+ δ(θ2l − s)

)
and

Π(b.1) =
2ν(s)(1− δ)

1− ρ

(2βhθ
2
hθl − (βh − βl)(2θ

2
l − s− θls)− δ(βh − βl)(θh − θl)(s+ θhθl))

(θh + θl)(s+ δ(θhθl − s))
,

where the difference is positive

Π(b.1) − Π(a.1) ≥ 0.

Thus for
(

βh

βl

)(a)
≤ βh

βl
≤ (1−δ)θ2h−s

θh(θh−θl)−s+δ(θ2h−s)
the platform implements AWPAM and APAM

if βh

βl
≥ (1−δ)θ2h−s

θh(θh−θl)−s+δ(θ2h−s)
.

It remains to compare the profit in equilibrium (b) when implementingAWPAM against

the profit from equilibrium (c) when implementing ANAM . Note that for s ≤ θ2l , the profit

when implementing AWPAM is maximized in (b.1) as agents in both equilibria in (b.2)

only search for one period. The profit in (c) is

Π(c.1) =
2ν(s)(1− δ)

1− ρ

(
βh +

βlθl(θh − θl)

s+ δ(θhθl − s)

)
or

Π(c.2) =
2ν(s)(1− δ)

1− ρ(
s(βh − βl)θh(θh − θl) + sβlθl(θh − θl) + δ(βhθh(θh − θl)(θhθl − s) + βl(θh − θl)

2(s+ θhθl)

(s+ δ(θ2h − s))(s+ δ(θhθl − s))

)
.

14



Then, it holds that Π(b) ≥ Π(c.1),Π(c.2).

(ii) Let θ2l ≤ s ≤ θhθl. Then, the platform can only implement AWPAM or ANAM .

Alternatively, the platform can exclude low types from participating. Recall that Π(c.1)

and Π(c.2) are strictly dominated by Π(b.1). Therefore, the platform implements either

AWPAM in Equation 48, 49, or 50. If βh ≥ βl, the platform can either implement AWPAM

in Equation 48 or 50. If βh < βl, the platform can either implement AWPAM in Equation

48 or 49. In this case, however, for too large s no low type is willing to participate such

that the platform excludes low types. Note that at s = θhθl, the matching outcome is

non-assortative if βh ≥ βl, whereas only high types participate if βh < βl.

(iii) Let θhθl ≤ s ≤ θ2h. If search costs are larger than θhθl, low types are no longer willing

to participate. To maximize surplus from high types, the platform sets ϕ(θh|θh) = 1.

Proof of Proposition 4 To characterize the profit-maximizing solution with overconfi-

dent users, note first that it is optimal for the platform to have all three types participate.

Otherwise, the platform can always increase profits by including the formerly excludes

type by charging a positive fee and matching them to each other. Consider the feasible

mutual acceptance matrices of the formα(θh, θh) α(θh, θl) α(θh, θ̂l)

α(θl, θh) α(θl, θl) α(θl, θ̂l)

α(θ̂l, θh) α(θ̂l, θl) α(θ̂l, θ̂l).


As overconfident users perceive to have the same continuation value as high types, V C(θh),

they follow the same acceptance strategy. That is, overconfident users accept high types

with probability one and low types with probability α ∈ [0, 1] if and only if high types

do. Furthermore, overconfident users are accepted by high (low) types with positive

probability if and only if high (low) types accept low types with positive probability.

The feasible mutual acceptance matrices are

A1 =

1 1 1

1 1 1

1 1 1

 , A2 =

1 0 0

0 1 0

0 0 0

 , A3 =

 1 α′ α′

α′ 1 α′

α′ α′ (α′)2

 , A4 =

 1 α′′ α′′

α′′ 0 0

α′′ 0 (α′′)2

 ,

for α′ ∈ (0, 1] and α′′ ∈ (0, 1]. The profit from implementing A1 is given by

ΠA1 =
2(1− δ)

(1− ρ)
(βhθ

2
h + βlλθ

2
h + βl(1− λ)θ2l ).

Observe that implementing A2 − A4 can induce search for more than one period for

at least one type. To implement A2–A4, the incentive constraint ensuring that high
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types reject low types with positive probability must hold. The platform then maximizes

revenue from both high and low types by maximizing match surplus and extracting it

through the search fee conditional on leaving a rent of θhθl to high types. From Appendix

C.1, match surplus is maximized under positive assortative matching—that is, when the

platform implements A2. Moreover, agents must search for only one period; otherwise,

surplus is lost due to δ > 0.

Revenue from overconfident agents is maximized under A2 −A4 when they search for
1
δ
periods, i.e., no one they match with accepts them, and sh is maximized. Under A2,

this is exactly the case: overconfident types are rejected, they search for 1
δ
periods, and

the platform captures the match surplus from high types through sh, i.e. sh is maximal.

Thus, it follows that the relevant constraints are given by

θhθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ2h)

δ + (1− δ)ϕ(θh|θh)
, (IC-θh)

θhθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ2h)

δ + (1− δ)ϕ(θh|θh)
, (PIC-θ̂l)

0 ≤ (1− δ)(−s+ ϕ(θl|θl)θ2l )
δ + (1− δ)ϕ(θl|θl)

. (PC-θl)

From the steady state constraints, Equation 10, the platform’s profit maximization prob-

lem can be written as

βhsh
δ + (1− δ)ϕ(θh|θh)

+
βl(1− λ)

δ + (1− δ)ϕ(θl|θl)
+

βlλ

δ
,

subject to feasibility constraints, Equation 9, and the three incentive and participation

constraints above. It can easily be verified that sl = θ2l and sh = θh(θh − θl) − d/1−δθhθl

and ϕ(θh|θh) = 1, ϕ(θl|θl) = 1 and ϕ(θ̂l|θ̂l) = 1 maximize the platform’s profit and satisfy

all constraints with equality. The platform’s profit is The platform’s profit is

ΠA2 =
2(1− δ)

1− ρ

(
βh(θh(θh − θl)−

δ

1− δ
θhθl) + βl(1− λ)θ2l +

βlλ(θh(θh − θl)− δ
1−δ

θhθl)

δ

)
.

λ∗ is derived by setting ΠA2 = ΠA1 and solving for λ.

Results on Welfare with Exogenous Search Cost Consider the inefficiencies mea-

sured as (i) the amount of mismatch compared to the socially optimal matching and (ii)

the length of search for agents. Let the (welfare) loss from mismatch be given by

W =
∑

(θi,θj)∈Θ×Θ

α(θi, θj)Φ(θi, θj)(θiθj − θ2i ),
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i.e., the sum over the mass of mismatches times the difference in match utilities between

the mismatches and the assortative matches. The expected usage time of an agent is

given by their stopping time

T (θi) =

(
δ + (1− δ)

∑
j=h,l

α(θi, θj)ϕ(θj|θi)

)−1

such that the total length of search is T = T (θh) + T (θl).

Proposition 5. (i) If the platform implements APAM together with matching outcome

OPAM , mismatch is WPAM = 0 and T (θi) is decreasing in s and δ.

(ii) If the platform implements AWPAM together with matching outcome OWPAM , mis-

match is WWPAM is increasing in s if βl > βh and in- or decreasing in s otherwise as well

as decreasing in δ for s ≤ θ2l and in- or decreasing in δ otherwise. T (θi) is decreasing in

s and δ.

(iii) If the platform implements AWPAM together with matching outcome ONAM , mis-

match is WNAM = −βl(θh − θl)
2 and T (θi) = 1.

By definition, welfare loss is zero under positive assortative matching, as it maximizes

total surplus. As search cost or friction δ increases—–both of which lower agents’ contin-

uation values—–the platform must raise assortativity of proposed matches and decrease

agents’ search time to keep low types participating and high types rejecting low types.

In the weakly assortative case, assortativity rises with δ, reducing mismatches as long as

s ≤ θ2l . Since the mass of assortative matches varies with s, the mass of mismatches may

increase or decrease depending on whether βh or βl is larger. In contrast, welfare loss of

matches in the non-assortative case is unaffected by search cost or δ, and the platform

induces only one period of search.

Proof of Proposition 5 (i) The platform implements APAM together with the match-

ing rule as in Lemma 11 (a). As the positive assortative matching outcome maximizes

match productivity, the welfare loss from mismatch is zero. For βh

βl
≤
(

βh

βl

)(a)
, agents’

expected search time is

T (θh) =
θh(θh − θl)

s+ δ(θ2h − s)
,

T (θl) =
βh(θh(θh − θl) + (βl − βh)s+ δ(βl − βh)(θ

2
h − s)

βl(s+ δ(θ2h − s))
.
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Observe that T (θh) is decreasing in s and δ. Differentiating T (θl) with respect to s and

δ yields

∂T (θl)

∂s
= −βh(1− δ)θh(θh − θl)

βl(s+ δ(θ2h − s))2
< 0,

∂T (θl)

∂δ
= −βhθh(θh − θl)(θ

2
h − s)

βl(s+ δ(θ2h − s))2
< 0,

i.e. T (θh) is decreasing in s and δ as well.

For βh

βl
≥ (1−δ)θ2h−s

θh(θh−θl)−s+δ(θ2h−s)
, agents’ expected search time is

T (θh) =
βlθ

2
l + (βh − βl)(s+ δ(θ2l − s))

βh(s+ δ(θ2l − s)
,

T (θl) =
θ2l

s+ δ(θ2l − s)
.

Observe that T (θl) is decreasing in s and δ. Differentiating T (θh) with respect to s and

δ yields

∂T (θh)

∂s
= − βl(1− δ)θ2l

βh(s+ δ(θ2l − s))2
< 0,

∂T (θh)

∂δ
= − βl(θ

2
l − s)θ2l

βh(s+ δ(θ2l − s))2
< 0,

i.e. T (θh) is decreasing in s and δ as well.

(ii) The platform implements AWPAM together with the matching rule as in Lemma

11 (b.1). The welfare loss from mismatches is

WWPAM = αWPAMΦ(b)(θh, θl)(θh − θl)
2,

and agents’ expected search time is

T (θh) =
βh − (1− δ)(Φ(b)(θhθh) + αWPAMΦ(b)(θh, θl))

βhδ
,

T (θl) =
βl − (1− δ)(Φ(b)(θlθl) + αWPAMΦ(b)(θh, θl))

βlδ
,

where

Φ(b)(θh, θh) =
βhθhθl − (βh − βl)(1− δ)(θ2l − s)

(1− δ)(θ2h − θ2l )
,

Φ(b)(θl, θl) =
βhθhθl − (βh − βl)(1− δ)(θ2h − s)

(1− δ)(θ2h − θ2l )
,

which are both increasing (decreasing) in s if βh > βl (βh < βl) and increasing in δ. Note
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that Φ(b)(θh, θl) followed from feasibility (see proof of Lemma 11) and αWPAM is set to

fulfill the low types’ participation constraint. Using the implicit function theorem and

differentiating the participation constraint with respect to s yields

βl − (1− δ)(αWPAMΦ(b)(θh, θl) + Φ(b)(θl, θl)) =

∂Φ(b)(θl, θl)

∂s
(δθ2l + (1− δ)s) +

∂αWPAMΦ(b)(θh, θl)

∂s
(δθ2h + (1− δ)s),

where the left-hand side corresponds to δf(θl) > 0 and Φ(b)(θl, θl) is increasing in s if βh >

βl and decreasing otherwise. Thus, it follows that αWPAMΦ(b)(θh, θl) must be increasing in

s if βl > βh and either in-or decreasing for βl < βh (depending on the parameter values).

Using the implicit function theorem and differentiating the participation constraint with

respect to δ yields

0 =
∂Φ(b)(θl, θl)

∂δ
(δθ2l + (1− δ)s) + Φ(b)(θl, θl)(θ

2
l − s)

+
∂αWPAMΦ(b)(θh, θl)

∂δ
(δθ2h + (1− δ)s) + αWPAMΦ(b)(θh, θl)(θhθl − s),

As Φ(b)(θl, θl) is increasing in δ, αWPAMΦ(b)(θh, θl) must be decreasing in δ for s ≤ θ2l .

For δ for s > θ2l , αWPAMΦ(b)(θh, θl) can be either in- or decreasing in δ.

It follows that WWPAM is increasing in s if βl > βh and either in-or decreasing for

βl < βh (depending on the parameter values). Furthermore, WWPAM is decreasing in δ

for s ≤ θ2l and either in- or decreasing for s > θ2l .

Differentiating T (·) with respect to s and δ yields

∂T (θh)

∂s
= −(1− δ)θhθl (βl ((θh − θl)δ + θl) + (θh − θl)(1− δ)βh)

((θhθl − s)δ + s)2 βh(θh + θl)
< 0,

∂T (θl)

∂s
= −(1− δ)θhθl (βh(θh − θl)(1− δ) + βl ((θh − θl)δ + θl))

((θhθl − s)δ + s)2 (θh + θl)
< 0,

∂T (θh)

∂δ
= −θ2hθl (βhθl(θh − θl) + βl(θ

2
l − s))

(δθhθl + s(1− δ))2βh(θh + θl)
< 0,

∂T (θl)

∂δ
= −θ2hθl (βhθl(θh − θl) + βl(θ

2
l − s))

(δθhθl + s(1− δ))2(θh + θl)
< 0.

That is, T (·) is decreasing in s and δ.

(iii) The platform implements AWPAM by the matching rule as in Lemma 11 (b.2).

The matching outcome is non-assortative. The welfare loss from mismatch is

WNAM = −2βl(θh − θl)
2,

and agents search for one period only.
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Optimal Choice of a Uniform Search Fee For a range of parameters, the platform

chooses

(i) s to maximize Π(APAM) s.t. s ∈ [0, θ2l ] : βh/βl ≤ (βh/βl)
(a) and implements OPAM .

(ii) s to maximize Π(AWPAM) s.t. s ∈ [0, s] : (βh/βl)
(a) ≤ βh/βl ≤ (βh/βl)

(b) and imple-

ments OWPAM .

(iii) s = θhθl and implements ONAM .

(iv) ) s = θ2h and excludes low types from participating.

The proof follows the structure of Proposition 3. Note all matching outcomes in Propo-

sition 3 are implemented when choosing the search fee except the positive assortative

matching outcome for βh

βl
≥
(

βh

βl

)(b)
.

(i) Suppose the platform implements APAM for βh

βl
≤
(

βh

βl

)(a)
. Recall that for s = θ2l ,(

βh

βl

)(a)
= 0 and thus APAM can never be implemented if there is a positive inflow of

both types. The platform maximizes its profit with respect to s under the constraint

that s ∈ [0, θ2l ] and the condition βh

βl
≤
(

βh

βl

)(a)
is still fulfilled.

(ii) Suppose the platform implements AWPAM for
(

βh

βl

)(a)
≤ βh

βl
≤
(

βh

βl

)(b)
. There exists

an θh(θh − θl) > s > θ2l such that if s > s AWPAM can never be implemented if there is a

positive inflow of both types. The platform maximizes its profit with respect to s under

the constraint that s ∈ [0, s] and the condition
(

βh

βl

)(a)
≤ βh

βl
≤
(

βh

βl

)(b)
is still fulfilled.

(iii) Suppose the platform implements ANAM for βh > βl. Then, agents only search for

one period. Therefore, the platform increases the search fee as much as possible. By

Proposition 3, the upper limit is given by s = θhθl.

(iv) Lastly, the platform can exclude low types from participating. To maximize profits,

the platform extract the surplus from high types by setting s = θ2h. The platform does

so for sufficiently high βh

βl
. The platform does not implement the positive assortative

matching outcome for βh

βl
≥
(

βh

βl

)(b)
. Recall that profits are

2(1− δ)

1− ρ

(
2βlθ

2
l s

(1− δ)s+ δθ2l
+ (βh − βl)s

)
.

Both terms are strictly increasing in s. The platform chooses s = θ2l resulting in

2(1− δ)

1− ρ

(
βhθ

2
l + βlθ

2
l

)
.

As ANAM can be implemented for βh > βl with s = θhθl, the profit from ANAM is always

strictly larger than the profit from APAM for βh

βl
≥
(

βh

βl

)(b)
.
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