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I. Introduction

Value creation in the active fund industry is an important theme in financial economics. The

ability of funds to generate value from their investment skills is a necessary condition for improving

price informativeness—a mechanism through which they contribute to the efficient allocation of

resources in the economy (e.g., Bond, Edmans, and Goldstein, 2012). Understanding how investors

allocate capital across funds is equally important for assessing whether they capture part of the

value created. This question provides a natural setting for analyzing how economic agents make

high-stakes financial decisions (e.g., Campbell and Ramadorai, 2025; Shiller, 2005). Finally, the

analysis of value creation informs whether the multi-trillion-dollar size of the fund industry is

consistent with equilibrium models, thereby contributing to the broader debate on the optimal size

of the financial sector (e.g., Cochrane, 2013; Greenwood and Scharfstein, 2013).

The study of value creation is pioneered by Berk and van Binsbergen (2015) who measure it

using the value-added vai = E[αi,twi,t], where αi,t denotes the fund gross alpha relative to the

benchmark assets available to investors, and wi,t is the fund capital. Intuitively, vai parallels the

concept of net present value (NPV)—a fund with a positive value-added creates value for investors,

just as an investment project with a positive NPV creates value for shareholders. Whereas an

emerging literature focuses on mutual funds, much less is known about how hedge funds create

value—and how that value is shared with investors.1

The sophistication of the hedge fund industry offers unique insights into value creation. Hedge

fund managers take long and short positions, use leverage, and deploy complex trading algorithms

to exploit information and provide liquidity—features that set them apart from mutual fund man-

agers. Ex ante, these capabilities suggest that hedge funds create more value, both by identifying

more profitable opportunities and by scaling them more effectively. Likewise, the institutional

clients of hedge funds are widely regarded as more sophisticated than the retail investors who

populate the mutual fund industry. They therefore plausibly possess both the bargaining power to

capture part of the value created and the learning ability to reallocate capital efficiently over time.

Ultimately, the sophistication of the hedge fund industry makes it an ideal laboratory for testing

rational models of active management (e.g., Berk and Green, 2004; Pástor and Stambaugh, 2012).

1Studies on mutual fund value-added include Barras, Gagliardini, and Scaillet (2022), Berk and van Binsbergen
(2015), and Zhu (2018). A notable exception in the hedge fund literature is Ling, Satchell, and Yao (2023), who focus
on the persistence of value-added and do not explore the broader dimensions analyzed in this paper.
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To address these issues, we develop a novel methodology with two key ingredients. First, we

specify the value-added as vai = aiE[wi,t]− biE[w2
i,t] with αi,t = ai − biwi,t. This expression for-

malizes the intuition that the value created by a fund depends on (i) its skill at identifying profitable

strategies—captured by the first-dollar alpha ai—and (ii) its scalability constraints—captured by

the scale coefficient bi. Although our expression is always numerically equivalent to the non-

parametric estimator of Berk and van Binsbergen (2015), it offers sharper insight into multiple

dimensions of value creation. In particular, it allows us to decompose the value-added into its skill

and scale components and derive its optimal level for the normative analysis. Second, we take a

fund-level approach and examine the entire distribution of value-added across funds. Hedge funds

differ widely in their skill and scalability reflected in the fund-specific coefficients ai and bi. Be-

cause of this heterogeneity, simple averages provide limited information about hedge fund value

creation. For example, it is silent on the unique characteristics of the most valuable funds or the

proportion of funds that charge excessive fees to investors.

Our approach is specifically tailored to hedge funds and therefore departs from that of Barras,

Gagliardini, and Scaillet (2022, BGS) for mutual funds. A key distinction is that we address the

benchmarking challenge posed by hedge funds as they pursue alternative strategies that investors

cannot easily replicate (e.g., Cochrane, 2013). We show theoretically that these non-replicable

strategies not only contribute to the value-added but also generate cross-fund dependencies that

amplify estimation noise. Our approach also allows for hedge fund leverage—a variable typically

unreported in standard databases. Introducing fund-specific coefficients ai and bi allows us to

capture the unobserved heterogeneity in leverage across funds.

We measure value creation across 2,517 hedge funds in three categories (equity, macro, arbi-

trage). We merge four major databases and correct for backfill, selection, and survivorship biases.

The main inputs for our analysis are the fund-specific coefficients ai and bi obtained from time-

series regressions of monthly gross returns on lagged capital and factor returns. In our main speci-

fication, we benchmark funds against five factors—market, size, value, carry, and time-series (TS)

momentum.2 This choice reflects both relevance and replicability—these factors capture common

hedge fund strategies that can be implemented by investors (Ardia et al., 2024; Jorion, 2021).

2The market, size, and value factors are constructed by Cremers, Petajisto, and Zitzewitz (2012) using the S&P
500 and Russell indices. The carry and TS momentum factors follow Koijen et al. (2018) and Moskowitz et al. (2012)
for four asset classes (equities, bonds, commodities, and currencies).
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Our analysis over the period 1994–2020 shows that hedge funds create substantial economic

value. Close to 70% of funds exhibit positive value-added, with an average of $5.7 million per

year. This evidence aligns with the view that hedge fund trading contributes to price efficiency,

as recently suggested by Ha, Hu, and Tang (2024). Consistent with intuition, hedge funds create

value because they are skilled at forming profitable strategies. The first-dollar alpha is positive

for more than 86.4% of funds and is economically large, averaging 12.5% per year. At the same

time, they struggle to scale up these strategies—on average, the gross alpha declines by 1.5% per

year for every additional $10 million of capital. These scalability constraints are somewhat less

severe among arbitrage funds, which helps explain why roughly 80% of them generate positive

value-added, compared with 67% for equity funds and 51.6% for macro funds.

Our comparison with mutual funds reveals striking differences in skill and scalability. On av-

erage, the first-dollar alpha of mutual funds is only equal to 2.6% per year and their gross alpha

declines by just 0.2% per year for every additional $10 million of capital. These differences do not

stem from hedge funds having fundamentally better ideas or trading technologies. Rather, they are

largely explained by the leverage employed by hedge funds—a conclusion supported by propri-

etary leverage data from Barth, Hammond, and Monin (2020). Because of their greater scalability,

some mutual fund groups—such as small-cap, low-turnover funds—rival or even surpass segments

of the hedge fund industry in value creation. These findings challenge the notion that hedge fund

managers systematically outperform due to superior sophistication.

There is substantial heterogeneity in value creation across hedge funds. The top 10% of funds

account for at least 40% of the total value generated across the industry. This pronounced con-

centration implies that some managers possess distinctive capabilities relative to the rest of the

industry. Examining this issue, we find that the most valuable funds do not deliver the highest

first-dollar alphas. Instead, they pursue strategies that strike a balance between skill and scala-

bility. These balanced strategies maximize value because both dimensions are strongly correlated

across funds, indicating that great ideas are inherently difficult to scale. Moreover, the top funds

tend to exploit informational advantages rather than rely on mechanical, hard-to-replicate strate-

gies. Controlling for more complex factors linked to illiquidity, betting-against-beta, and variance,

we find that the value-added remains largely unchanged.
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An important question is whether hedge fund investors benefit from the value created by the

industry. On average, the net-of-fee value-added amounts to $0.5 million per year, representing

only 8.8% of the total value created. This finding has two implications. First, it departs from

the strong net alphas documented in prior studies.3 The discrepancy arises because periods of

poor performance carry greater weight in the value-added calculation as they coincide with higher

levels of capital. Therefore, the net alpha fails to measure the value actually received by investors

as it ignores both the level and time-variation of capital allocations. Second, the positive net value-

added does not support the view that hedge fund investors suffer from agency problems that lead

them to overpay for active management (e.g., Greenwood and Scharfstein, 2013). This stands

in sharp contrast with mutual fund investors who, on average, pay nearly $8 million per year in

excessive fees—a pattern widely attributed to their lower financial literacy (e.g., French, 2008).

The modest average value for hedge investors might suggest that funds extract all rents, con-

sistent with the prediction of Berk and Green (2004). However, this interpretation is misleading as

it conceals substantial heterogeneity across funds. Half of all funds generate a positive net value-

added for investors, largely driven by arbitrage funds. The complexity of arbitrage strategies likely

enhances the bargaining power of the limited pool of investors willing to allocate capital. Con-

versely, the other half of the population destroys investor wealth—mainly in the macro category.

Among these funds, 62.2% appear skilled but operate at an inefficiently large scale. Therefore,

excessive capital rather than lack of skill is the primary source of negative value-added.

The next step is to examine whether investors improve their capital allocation over time. We

find that they are able to discriminate between unskilled and skilled funds. To show this, we track

the evolution of capital over each fund’s lifecycle, dividing its full history into five subperiods.

Whereas capital in unskilled funds declines steadily over time, skilled funds attract increasing

allocations. Focusing on the latter, we show that investors progressively identify the most valuable

funds—the value created in the top decile rises from $18.5 to $24.0 million per year between the

first and last subperiods. However, they fail to address excessive capacity as nearly one third of

the funds still destroy value as they reach the last stage of their lifecycle. This mixed evidence

suggests that, despite their sophistication, hedge fund investors adjust capital only partially.

3A non-exhaustive list includes Ackermann, McEnally, and Ravenscraft (1999), Capocci and Hübner (2004), Chen,
Cliff, and Zhao (2017), Diez de los Rios and Garcia (2010), Kosowski, Naik, and Teo (2007), and Liang (1999).
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We conclude with a normative analysis of the hedge fund industry. As noted by Barth et al.

(2023), hedge funds today collectively manage more than $6 trillion, prompting the question of

whether an industry of this size is consistent with economic logic. We consider an extended version

of the rational model of Berk and Green (2004), in which investors can retain part of the value

created by funds. We show that the model matches the data reasonably well. The actual and

optimal value-added are closely aligned, with a pairwise correlation of 0.81. It also reproduces the

strong correlation between total and net value-added—a feature absent from the original Berk and

Green (2004) model in which funds extract all rents from their skill. Finally, the model implies

that investors capture only about 10% of the total value created, consistent with the positive, but

limited bargaining power observed in the data.

Quantitatively, the actual value-added amounts to roughly 40% of its optimal level. This gap

arises because hedge funds operate at excessive scale—consistent with the sizable proportion of

value-destroying funds. While the optimal fund size averages $164 million, the estimated value-

added implies an actual size of $316 million. Using the model, we quantify the two forces behind

this excess capacity. First, funds set fees too low, inducing investors to increase their capital

allocation. Second, even at prevailing fees, investors allocate too much capital relative to the level

implied by the model. Each force contributes roughly half of the total value gap.

The remainder of the paper is as follows. Section II presents our baseline specification of the

value-added. Section III describes the methodology for measuring the value-added across funds.

Section IV presents the hedge fund dataset and the benchmark model. Section V contains the

empirical analysis, and Section VI concludes. The appendix provides additional information on

the methodology, the data, and the empirical results.

II. Hedge Fund Value Creation

II.A. Definition of the Value-Added

We consider a population of n hedge funds over T periods, where we denote each fund by

the subscript i (i = 1, . . . , n) and each period by the subscript t (t = 1, . . . , T ). The variable

wi,t denotes the capital (in real terms) endowed by investors to the fund, ri,t+1 denotes the gross

excess return of the fund, and rb,i,t+1 denotes the excess return of the corresponding benchmark,

which represents the best alternative investment available to investors. The benchmark return is
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defined as rb,i,t+1 = β′
i,RfR,t+1, where fR,t+1 is the excess return vector of the trading strategies

that investors are able to replicate (R stands for replicable).4

We define the value created by each fund using the value-added proposed by Berk and van

Binsbergen (2015):

vai = E[αi,twi,t] , (1)

where the gross alpha αi,t = E[ri,t+1−rb,i,t+1|It] is the expectation of the difference between ri,t+1

and rb,i,t+1 conditional on the publicly available information set It which includes the fund capital

wi,t. Because the value-added is a dollar value that depends on the entire (benchmark-adjusted)

fund payoff αi,twi,t, the gross alpha alone is not sufficient to infer fund value—a point forcefully

made by Berk and van Binsbergen (2015).

Equation (1) measures value creation from the viewpoint of investors. It determines whether

the fund creates value relative to their best alternative opportunity (captured by fR,t+1). Building

on this insight, we can also express the value-added within the stochastic discount factor (SDF) val-

uation framework (see Cochrane, 2005). We consider hedge fund investors whose marginal utility

of consumption mt+1 is independent of wi,t and linear in their wealth, which itself depends on the

available factors fR,t+1 (e.g., Chen and Knez, 1996; Ferson, 2013). Because mt+1 prices the factors

fR,t+1 by construction, we have E[mt+1rb,i,t+1] = 0. The value investors attach to the fund can

therefore be written as vasdfi = RfE[mt+1ri,t+1wi,t] = RfE
[
mt+1

(
(ri,t+1 − rb,i,t+1)wi,t

)]
, where

Rf is one plus the riskfree rate (assumed constant for simplicity). Expanding the above expression

yields vasdfi = E[(ri,t+1−rb,i,t+1)wi,t]+Rfcov[mt+1, (ri,t+1−rb,i,t+1)wi,t]. Since ri,t+1−rb,i,t+1 is

orthogonal to mt+1, the covariance term vanishes and the SDF-based and traditional value-added

measures coincide: vasdfi = E[(ri,t+1 − rb,i,t+1)wi,t] = E[αi,twi,t] = vai.

II.B. Framework for Measuring Value-Added

II.B.1. Specification of the Gross Alpha

To derive the expressions for the value-added presented in Section II.C, we impose additional

structure on Equation (1). For each fund, we write the expected (benchmark-adjusted) revenue as

4The use of constant betas is not restrictive because fR,t+1 can include factor-timing strategies (managed portfo-
lios) based on public information. To elaborate, suppose that investors can replicate a hedge fund strategy that consists
of changing the market beta after observing a public signal zt that predicts the equity market return rm,t+1. We can
absorb the time-variation in betas by including the scaled factor ztrm,t+1 in the vector fR,t+1 (e.g., Cochrane, 2005).
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TRi,t = aiwi,t and total cost as TCi,t = biw
2
i,t. This convex cost function reflects the idea that the

active strategy cannot be scaled without eroding returns. Taking the difference between TRi,t and

TCi,t and dividing by wi,t yields a linear specification for the gross alpha:

αi,t = ai − biwi,t , (2)

where the skill and scale coefficients ai and bi are fund-specific, in contrast to the standard panel

specification that imposes constant scalability across funds (bi = b).5 To do so, we interpret

Equation (2) as a random coefficient model (e.g., Hsiao, 2003), in which ai and bi are not fixed

parameters but random realizations from their cross-sectional distributions ϕ(a) and ϕ(b). This

flexibility allows us to absorb the potentially large and unobservable set of fund characteristics that

drive the cross-sectional differences in skill and scalability.

The skill coefficient ai corresponds to the alpha on the first dollar of capital (i.e., when wi,t =

0). It therefore measures the profitability of the fund strategy before accounting for the frictions

of real-world implementation (Perold and Salomon, 1991). Hedge funds can generate a positive

ai in two ways. They can exploit superior information to pursue stock-picking or factor-timing

strategies, or rely on public information to implement alternative strategies that investors cannot

replicate.6 The scale coefficient bi measures the sensitivity of the gross alpha to changes in fund

capital. Its magnitude captures various aspects of diseconomies of scale. As the fund grows, it

may become more difficult to execute trades at low cost, while organizational growth may dilute

talent and increase delegation costs.

II.B.2. Interpretation of the Coefficients

The notions of skill and scalability captured by ai and bi should be interpreted broadly. A high

ai may reflect unique investment abilities and a low bi may result from a unique trading infrastruc-

ture. Yet both coefficients can absorb other sources of variation across funds. For instance, some

funds may exhibit higher ai because they operate in less efficient markets (e.g., Fang, Kempf, and

Trapp, 2014), whereas others may display higher bi because they invest in illiquid assets and trade

5A non-exhaustive list includes Chen et al. (2004), Fung et al. (2008), Naik, Ramadorai, and Stromqvist (2007),
Pástor, Stambaugh, and Taylor (2015), and Zhu (2018).

6This point is well summarized by Cochrane (2011): "I tried telling a hedge fund manager, ‘You don’t have alpha.
Your returns can be replicated with a value-growth, momentum, currency and term carry, and short-vol strategy.’ He
said, ‘Exotic beta is my alpha. I understand those systematic factors and know how to trade them. My clients don’t."
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more often (van Binsbergen et al., 2024; Busse et al., 2021).

A particularly relevant determinant for hedge funds is leverage, which mechanically increases

both coefficients. To see this, we denote by aasi and basi the skill and scale coefficients of an

unlevered (fully collateralized) active strategy, for which the gross asset exposure equals the fund

capital.7 If the fund applies constant leverage to this strategy, its gross asset exposure becomes

qi,t = πiwi,t, where the leverage ratio πi =
qi,t
wi,t

> 1. Rewriting total revenue and cost as TRi, t =

aasi qi, t and TCi, t = basi qi, t2 and substituting qi,t = πiwi,t, it follows that leverage scales the

coefficients as ai = aasi πi and bi = basi π2
i .

As discussed in Section III.A, we can estimate ai and bi without modeling the underlying

sources of their cross-sectional variation. This flexibility is especially valuable for hedge funds

for two reasons. First, it is practically impossible to specify all the characteristics that shape the

complex strategies these funds pursue. Second, the set of observable hedge fund characteristics is

limited. For example, leverage—a key determinant of returns—is typically unreported in hedge

fund databases.8 In our specification in Equation (2), we sidestep this issue by modeling alpha

solely as a function of equity capital (rather than debt), which implicitly absorbs unobserved lever-

age into the estimated coefficients.

II.C. The Four Measures of Value-Added

II.C.1. The Value-Added

We now use our framework to derive several expressions for the value-added. Substituting αi,t

with ai − biwi,t in Equation (1) yields the following expression for the value created by the fund:

vai = aiE[wi,t]− biE[w2
i,t]. (3)

7To illustrate, consider a fund that invests its capital in the riskfree asset and takes two self-financing long and short
positions in undervalued and overvalued securities. Denoting by ai,l and ai,s the average returns of these positions,
we obtain aasi = xi,lai,l +xi,sai,s, where xi,l +xi,s = 1 such that the gross asset exposure xi,lwi,t +xi,swi,t = wi,t.

8Some databases, such as TASS, provide cross-sectional data on the average fund leverage. However, data is self-
reported on a voluntary basis, which implies that coverage is limited and calculation methods are not consistent across
funds (see Liang and Qiu, 2019). Accounting for time variation in leverage is even more challenging, as databases
typically do not record historical leverage ratios. To our knowledge, only two papers have reliable but proprietary
access to such data. Ang, Gorovyy, and van Inwegen (2011) study leverage data obtained from one fund-of-funds,
while Barth, Hammond, and Monin (2020) work with data from the SEC on large hedge fund advisors having at least
$1.5 billion under management.
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Equation (3) formalizes the intuition that the fund value-added ultimately depends on (i) its skill at

identifying profitable investment opportunities and (ii) its constraints on scaling these opportunities

efficiently as capital increases. Similar to the other expressions derived below, the value-added in

Equation (3) is fund-specific. Since vai inherits the randomness of ai and bi, we treat it as a

random realization from the cross-sectional distribution ϕ(va), which we infer from the data. The

only required inputs are the estimated coefficients ai and bi for all funds, which also enable us to

quantify the relative contributions of skill and scalability to hedge fund value creation.

II.C.2. The Net Value-Added

Next, we determine how the value created by hedge funds is shared with investors. Previ-

ous research show that investors extract none of the value created by mutual funds (e.g., BGS;

Cooper, Halling, and Yang 2021). By contrast, hedge fund investors may possess a comparative

advantage in understanding the complexity of hedge fund strategies and supplying scarce capital.

For instance, they may leverage soft information that is difficult for funds to communicate to out-

siders (Hochberg, Ljungqvist, and Vissing-Jørgensen, 2014), or threaten to appropriate the fund’s

investment ideas (Glode and Green, 2011). For these reasons, hedge fund investors may be able to

capture a portion of the value created by the fund.

To examine this issue, we denote by feei,t+1 the fee rate defined as the sum of management and

performance fees divided by capital. The net value-added received by investors is then given by

vanet
i = E[αnet

i,twi,t], where αnet
i,t = E[rnet

i,t+1 − rb,i,t+1|It] and rnet
i,t+1 = ri,t+1 − feei,t+1. Analogous to

Equation (3), we specify αnet
i,t = anet

i − bnet
i wi,t, which yields

vanet
i = anet

i E[wi,t]− bnet
i E[w2

i,t]. (4)

The gap between ai and anet
i (bi and bnet

i ) captures the impact on fees on skill and scalability.

To illustrate, consider a simple case in which the fund charges investors a fraction fi of capital

(management fees) and a fraction pi of the benchmark-adjusted return ri,t+1−rb,i,t+1 (performance

fees).9 In this setup, anet
i = (1 − pi)ai − fi and bnet

i = (1 − pi)bi, implying that performance fees

proportionally scale both ai and bi, while management fees uniquely reduce the skill coefficient.

9In practice, the computation of performance fees is more complex because they are asymmetric and depend on
the high-water mark provision and the payment frequency. We discuss these implementation details in the Section IV.
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II.C.3. The Subperiod Value-Added

Equations (3)-(4) capture the average levels of value-added, but provide no insight into how the

value-added evolves over the fund’s lifecycle. This evolution is potentially important, as investors

require time to learn about a fund skill and scale coefficients (Berk and Green, 2004; Pástor and

Stambaugh, 2012). As they update their beliefs based on return information, they reallocate capital,

thereby altering the value created by the funds.10

To extend Equation (3) to a dynamic setting, we follow BGS and split the observations on each

fund into S subperiods of equal length. For each subperiod s (s = 1, . . . , S), we then define the

subperiod value-added as

vai(s) = aiw̄i(s)− biw̄i,2(s) (5)

where w̄i(s) and w̄i,2(s) denote the realized averages of capital and its squared value in subperiod s.

Importantly, vai(s) is computed using the coefficients ai and bi estimated over the full sample. This

specification allows us to analyze the dynamics of value creation over shorter horizons without

introducing additional estimation noise. Applying this approach to the net value-added, we obtain

vanet
i (s) = anet

i w̄i(s)− bnet
i w̄i,2(s) . (6)

II.C.4. The Optimal Value-Added

Finally, we can determine whether the value created by the hedge fund industry is consistent

with economic rationale. To conduct this normative analysis, we start with a static version of the

Berk and Green (2004) model in which funds with heterogeneous skill and scalability maximize

their total fee revenue feeiwi. Funds may employ leverage up to a maximum ratio πi reflecting reg-

ulatory and margin constraints (Ang, Gorovyy, and van Inwegen, 2011; Lhabitant, 2007; Pedersen,

2015). We then allow hedge fund investors to hold some bargaining power in the fee negotiation by

requiring a minimum benchmark-adjusted return κ per unit of capital as compensation for due dili-

gence and monitoring costs (Stein, 2009). Under this assumption, funds optimally operate at the

maximum leverage ratio πi, which is consistent with our baseline specification αi,t = ai− biwi,t.
11

10As emphasized by Pástor, Stambaugh, and Taylor (2015), investors’ learning also provides an identification mech-
anism for ai and bi, since it induces time variation in fund capital. In the limiting case where investors perfectly know
these parameters (and face no liquidity shocks), capital remains constant, preventing the estimation of ai and bi.

11Fixing the gross asset exposure at q̄i, we can express total value-added as v̄ai(q̄i) = aasi q̄i − basi q̄2i . Since equity
financing entails an additional cost κ, it is optimal for the fund to minimize the amount of equity required to support
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The fund maximizes the value-added net of the amount transferred to investors: maxwi
aiwi −

biw
2
i − κwi. The optimal level of capital is wo

i =
ai−κ
2bi

, which is achieved when the fee rate equals

feeoi =
ai−κ
2

.12 The corresponding optimal value-added measures are given by

vaoi = αi(w
o
i )w

o
i =

a2i − κ2

4bi
, (7)

vanet,o
i = κwo

i =
κ(ai − κ)

2bi
. (8)

If investors have no bargaining power (κ = 0), our framework collapses to the benchmark case

of Berk and van Binsbergen (2015). In this setting, investors extract no value and the optimal

value-added simplifies to vaoi = a
2
i

4bi
= (a

as
i )

2

4b
as
i

, which can be interpreted as the profit of a monopo-

list—namely, the markup price of its product (alpha) multiplied by the total quantity sold (capital).

Equations (7)-(8) show that the optimal value-added measures depend only on the coefficients

ai and bi as primary inputs. This tractability makes our framework a natural starting point for a

normative analysis comparing the actual and optimal values vai and vaoi (vanet
i and vanet,o

i ). At the

same time, the static model abstracts from learning dynamics. In practice, the optimal quantities

may evolve as funds revise their fees in response to changes in investors’ perceptions of skill (Berk

and Green, 2004).13 Equation (7) should therefore be interpreted as the long-run optimal value-

added once learning has occurred.

II.D. Remarks about the Specification

Our baseline framework imposes that the skill and scale coefficients are constant over time. In

particular, it assumes a constant leverage ratio, which is broadly consistent with empirical evidence

from proprietary hedge fund data.14 Nonetheless, some hedge funds may adjust their leverage

over time to protect the present value of future fees (Lan, Wang, and Yang, 2013; Stein, 2009),

q̄i—or, equivalently, to maximize the leverage ratio.
12The model is silent on the types of fees that the fund should charge. Any combination of management and

performance fees that yields the same expected dollar revenue is feasible, as discussed in a more general context by
Goetzmann, Ingersoll, and Ross (2003).

13In the short run, hedge funds may also modify the risk profile of their strategies to affect how investors learn about
their skill (Makarov and Plantin, 2015).

14Ang, Gorovyy, and van Inwegen (2011) document that gross leverage is highly persistent, with an autocorrelation
of 0.97. Similarly, Barth, Hammond, and Monin (2020) find that 89% of the variation in fund leverage in a panel
regression is explained by fund fixed effects, indicating that leverage is largely a cross-sectional, rather than time-
varying, characteristic.
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or in response to constraints imposed by their prime brokers. More generally, Equation (2) be-

comes misspecified if the gross alpha depends on additional state variables, such as business cycle

conditions or industry competition (Avramov, Barras, and Kosowski, 2013; Hoberg, Kumar, and

Prabhala, 2018; Pástor, Stambaugh, and Taylor, 2015). To elaborate, suppose that the regression

coefficients depend on a demeaned vector of state variables zt. In this case, the true alpha is given

by αi,t = ai,t − bi,twi,t = ai + a′i,zzi,t − (bi + b′i,zzi,t)wi,t, implying that Equation (2) omits the

relevant terms zi,t and zi,twi,t.

Overall, misspecification has limited impact on our analysis of value creation. In particular,

Equations (3)-(4) remain valid measures of the true value-added even if the specification of the

gross alpha is incorrect. To see this, start from the definition of true value-added vai = E[αi,twi,t]

(the same analysis applies to vanet
i = E[αnet

i,twi,t]). For any time-series variable αi,t, we can always

take its linear projection on wi,t: αi,t = proj(αi,t|wi,t)+ϵα,t, where proj(αi,t|wi,t) = ai−biwi,t. By

construction, the projection error satisfies E[ϵα,twi,t] = 0, which implies that vai = E[αi,twi,t] =

aiE[wi,t]− biE[w2
i,t] as per Equation (3).

Whereas the value-added itself remains unaffected, model misspecification does alter the nor-

mative analysis of value creation. In particular, the coefficients ai and bi lose their structural

interpretation because they become biased when zi,t or zi,twi,t are omitted. Consequently, Equa-

tions (7)–(8) need not represent the true optimal values in a time-varying environment. To gauge

the empirical importance of this concern, we follow BGS and conduct formal specification tests

for all funds in the sample. The results, summarized in Section V.A, indicate that the linear speci-

fication αi,t = ai − biwi,t provides a reasonable approximation to the gross alpha.

III. Methodology

III.A. Estimation of the Value-Added Distribution

III.A.1. Motivation for a Fund-Level Approach

We now describe the methodology used to estimate the value created by hedge funds. We adopt

a fund-level approach that allows us to infer the entire value-added distribution across funds. Fo-

cusing on the entire distribution is important because hedge funds pursue a wide range of strategies

with distinct levels of skill and scalability (captured by ai and bi). We therefore expect substantial

dispersion in value creation that cannot be summarized by a simple average. For instance, the av-
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erage conceals important distributional features, such as the value created by top-performing funds

or the share of funds that charge excessive fees to investors.

Our econometric approach builds on recent studies on estimation and inference in large cross-

sectional datasets (e.g., Gagliardini, Ossola, and Scaillet, 2016). This framework is particularly

well suited for measuring the value-added across hedge funds. Contrary to standard parametric or

Bayesian approaches (e.g., Harvey and Liu, 2018; Jones and Shanken, 2005), it does not require

specifying the shape of the true value-added distribution for which theory offers little guidance.

Our approach is also simple and fast even with thousands of hedge funds—intuitively, it boils down

to computing an histogram. It therefore departs from sophisticated and computer-intensive Gibbs

sampling and expectation maximization methods. Last but not least, it comes with a full-fledged

theory to conduct statistical inference on the estimated value-added distribution.

To save space, we focus on the estimation and inference procedure for the distribution of value-

added ϕ(va). The appendix provides the corresponding analysis for the other distributions exam-

ined in the empirical section, which share the same statistical properties described below.

III.A.2. Benchmarking and Non-Replicable Factors

The key inputs for constructing the value-added distribution are the estimated skill and scale

coefficients ai and bi obtained from the time-series regression

ri,t+1 = αi,t + rb,i,t+1 + εi,t+1 = ai − biwi,t + β′
i,RfR,t+1 + εi,t+1 . (9)

To run this regression, we must specify the appropriate benchmark portfolio rb,i,t+1 = β′
i,RfR,t+1.

Hedge funds employ a wide range of complex alternative strategies. They invest across multi-

ple countries and asset classes, and often implement sophisticated option-based and factor-timing

strategies using public information (e.g., Avramov, Barras, and Kosowski, 2013; Ferson and Schadt,

1996; Karehnke and de Roon, 2020). It is therefore highly unlikely that investors are sufficiently

sophisticated to replicate all of these mechanical strategies. To formalize this point, we write the

excess return vector of all hedge fund strategies as ft+1 = (f ′
R,t+1, f

′
NR,t+1)

′, where fR,t+1 de-

notes the subset of replicable strategies, and fNR,t+1 the subset of strategies that investors cannot

replicate (with NR standing for non-replicable).

The non-replicable factors fNR,t+1 are absorbed by the various elements of Equation (9). To
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see this point, we write the fund return as a function of the full set of factors: ri,t+1 = α∗
i,t +

β∗′
i,RfR,t+1 + β∗′

i,NRfNR,t+1 + ε∗i,t+1. We then regress fNR,t+1 on fR,t+1 to break the non-replicable

factors into three components: fNR,t+1 = αNR +ΨNR,RfR,t+1 + uNR,t+1, where αNR is the vector

of factor alphas, ΨNR,R is the matrix of slope coefficients, and uNR,t+1 is the vector of errors.

The first component αNR is absorbed into the skill coefficient: ai = a∗i + β∗′
i,NRαNR. This

expression formalizes the intuition that hedge funds generate profitable ideas in two ways: (i) by

exploiting private information signals (captured by a∗i ), and (ii) by earning the premia associated

with non-replicable strategies (captured by β′
i,NRαNR). The second component ΨNR,RfR,t+1 is

absorbed by the replicable factors fR,t+1, which yields β′
i,RfR,t+1 = (β∗′

i,R + β∗′
i,NRΨNR,R)fR,t+1.

Its magnitude depends on the ability of the replicable factors to span the non-replicable factors

(captured by ΨNR,R). Finally, the third component uNR,t+1 is absorbed into the error term:

εi,t+1 = ε∗i,t+1 + β∗′
i,NRuNR,t+1 . (10)

Equation (10) has important implications for the statistical properties of the estimated value-added

distribution. It reveals that the error terms are strongly correlated across funds because they all de-

pend on the error term of the non-replicable factors uNR,t+1. As shown in Proposition 1 below, this

correlation implies that the cross-sectional distribution of value-added is estimated with substantial

uncertainty. The intuition is straightforward—even though we observe value-added estimates for a

large number of funds (n is large), these estimates are noisy because they are driven primarily by

the common component uNR,t+1.

III.A.3. Estimation of the Distribution Characteristics

The first step of the estimation procedure is to compute the least-square the coefficient vector

in Equation (9) for each fund as γ̂i = (âi, b̂i, β̂
′
i,R)

′ = (Q̂x,i)
−1 1

Ti

∑
t Ii,txi,tri,t+1, where Ii,t is an

indicator variable equal to one if ri,t+1 is observable, Ti =
∑

t Ii,t, xi,t = (1,−wi,t, f
′
R,t+1)

′ is a

(K + 2)-vector, and Q̂x,i =
1
Ti

∑
t Ii,txi,tx

′
i,t. Replacing the estimated skill and scale coefficients

âi and b̂i in Equation (3), we compute the fund value-added as

v̂ai = âiw̄i − b̂iw̄i,2 , (11)
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where w̄i =
1
Ti

∑
t Ii,twi,t, w̄i,2 =

1
Ti

∑
t Ii,tw

2
i,t.

We then account for the unbalanced nature of the hedge fund sample. Following Gagliar-

dini, Ossola, and Scaillet (2016), we introduce a formal selection rule 1χ
i equal to one if the

following conditions are met: 1χ
i = 1

{
τi,T ≤ χ1,T ,CNi ≤ χ2,T

}
, where τi,T = T/Ti, CNi =√

eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)
is the condition number of Q̂x,i, and χ1,T , χ2,T denote the two

threshold values. The first condition τi,T ≤ χ1,T excludes funds for which the sample size is too

small. The second condition CNi ≤ χ2,T excludes funds for which the time-series regression is

subject to multicollinearity problems (e.g., Belsley, Kuh, and Welsch, 2004). Both thresholds χ1,T

and χ2,T increase with the sample size T—with more return observations, we estimate the fund

coefficients with greater accuracy, which allows for a less stringent selection rule. Applying this

selection rule, we work with a population size equal to nχ =
∑n

i=1 1
χ
i .

Finally, we summarize the shape of the value-added distribution using the following charac-

teristics: (i) the cross-sectional mean M , (ii) the proportion of funds with a value-added below

a given value a, denoted by P (a), and (iii) the quantile at a given percentile level u, denoted by

Q(u) = (P )−1(u). We estimate these characteristics using as only inputs the estimated vector

(v̂a1, ..., v̂anχ
)′ obtained from Equation (11). The estimated mean, proportion, and quantile are

given by

M̂ =
1

nχ

∑
i

1χ
i v̂ai , (12)

P̂ (a) =
1

nχ

∑
i

1χ
i 1{v̂ai ≤ a} , (13)

Q̂(u) = (P̂ )−1(u) . (14)

III.B. Properties of the Estimated Value-Added Distribution

III.B.1. Asymptotic Distribution of the Estimated Characteristics

We now examine the statistical properties of the value-added distribution. In the following

proposition, we derive the asymptotic distributions of the estimated characteristics M̂ , P̂ (a), and

Q̂(u) as the numbers of funds n and observations T grow large (simultaneous double asymptotics

with n, T → ∞). To capture the large cross-sectional dimension of the hedge fund population

observed in the data, we require that n is larger than T .
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Proposition 1. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
estimated characteristics of the cross-sectional distribution of the value-added vai:

√
T
(
M̂ −M

)
→d N(0, V [M ]) , (15)

√
T
(
P̂ (a)− P (a)

)
→d N(0, V [P (a)]) , (16)

√
T
(
Q̂(u)−Q(u)

)
→d N(0, V [Q(u)]) , (17)

where →d denotes convergence in distribution. The variance terms are given by

V [M ] = E
[
η′M1

]
ΩuxE

[
ηM1

]
+ E

[
η′M2

]
ΩwE

[
ηM2

]
, (18)

V [P (a)] = E
[
η′P1

]
ΩuxE

[
ηP1

]
+ E

[
η′P2

]
ΩwE

[
ηP2

]
, (19)

V [Q(u)] = V [P (Q(u))]/ϕva(Q(u))2 , (20)

where ηM1
= (β∗′

i,NR ⊗ ζ ′iQ
−1
x,iBi)

′, ηM2
= (aibi,w,−bibi,w)

′, ηP1
= E[ηM1

|vai = a]ϕva(a),
ηP2

= E[ηM2
|vai = a]ϕva(a), ζi = E1E[wi,t] − E2E[w2

i,t], E1 and E2 are (K + 2) vectors
with zeros everywhere except on the first and second positions, Qx,i = E[xi,tx

′
i,t], Bi is the

(K+2)× (K+2) matrix of coefficients of the regression of the (K+2) vector xi,t on the (K+2)
vector xt+1 = [1, wt, fR,t+1]

′ whose second row is given by (bi,0, bi,w, 0, ..., 0), wt =
∑

i Ii,twi,t,

Ωux = lim
T→∞

V

[
1√
T

∑
t

uNR,t ⊗ xt

]
, Ωw = lim

T→∞
V

[
1√
T

∑
t

ew,t

]
, ew,t = [uw,t, uw,2,t]

′, uw,t =

(wt −E[wt]), uw,2,t = (w2
t −E[w2

t ]), β
∗
i,NR and uNR,t+1 denote the vectors of betas and residuals

associated with the non-replicable factors fNR,t+1, and ϕva(a) is the value-added density evalu-
ated at a.

Proof. See the appendix.

Proposition 1 establishes two key properties of the estimated distribution characteristics. First,

they converge to their true values. Hence, we can estimate them without applying any error-in-

variables (EIV) bias adjustment, even though the inputs are noisy measures of value-added (i.e.,

we use v̂ai instead of vai). Second, the estimates are noisy since the rate of convergence is only

1/
√
T . This result may appear counterintuitive as these characteristics are computed by averaging

across funds rather than across time.

Both properties arise from the influence of the non-replicable hedge fund factors fNR,t+1. From

Equation (10), the estimated fund value-added v̂ai depends on ε̄i = ε̄∗i + β∗′
i,NRūNR, where ε̄i, ε̄

∗
i ,

and ūNR denote the time-series averages of the residuals. The key driver is the common error term

ūNR, which affects all funds and converges to zero only at the rate 1/
√
T . This slow convergence

(i) reduces the overall convergence rate of the estimated characteristics to 1/
√
T , and (ii) dominates

the error-in-variables (EIV) bias, making any explicit bias correction unnecessary.15

15As shown by BGS, the EIV bias is of order 1/T , which is asymptotically negligible relative to the variance term
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To apply Proposition 1 and conduct statistical inference, we need a consistent estimator of each

variance term V . This term depends on the error term uNR,t+1 and betas β∗
i,NR associated with all

non-replicable factors, which are unknown to the econometrician. However, we can still derive a

consistent variance estimator V̂ [Ĉ] for each estimated characteristic Ĉ ∈ {M̂, P̂ (a), Q̂(u)} based

on the observed fund residuals of each model ε̂i,t+1 = ri,t+1−x′
i,t+1γ̂i (see the appendix for details).

The following proposition shows that V̂ [Ĉ] is a consistent variance estimator as the numbers of

funds n and observations T grow large.

Proposition 2. As n, T → ∞ such that T/n → 0, we have

V̂ [Ĉ] →p V [Ĉ] , (21)

where →p denotes convergence in probability.

Proof. See the appendix.

III.B.2. Formal Comparisons With Mutual Funds

We can extend Proposition 1 to enable comparison tests with mutual funds. Unlike hedge

funds, mutual funds typically do not rely on complex strategies as they load on standard factors

such as market, size, and value. Building on this observation, BGS assume that the mechanical

strategies followed by mutual funds are fully replicable (ft+1 = fR,t+1). In this case, the common

term ûNR,t+1 vanishes and the error term ε̄i = ε̄∗i becomes weakly correlated across funds. As

the characteristics of the mutual fund value-added converge at the faster rate of 1/
√
n (rather than

1/
√
T ), we can treat them as known in the comparison tests.

We compute the differences in distribution characteristics between the populations of hedge

funds and mutual funds as ∆M̂ = M̂ − M̂mf, ∆P̂ (a) = P̂ (a) − P̂mf(a), and ∆Q̂(u) = Q̂(u) −

Q̂mf(u), where M̂mf, P̂mf(a), and Q̂mf(u) denote the estimated mean, proportion, and quantile across

mutual funds. The next proposition derives the asymptotic distributions of ∆M̂ , ∆P̂ (a), and

∆Q̂(u) as the numbers of funds n and observations T grow large.

Proposition 3. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
differences between the estimated characteristics of the distributions of the value-added vai across

of order 1/
√
T in Proposition 1.
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hedge funds and mutual funds:

√
T
(
∆M̂ −∆M

)
→d N(0, V [M ]) , (22)

√
T
(
∆P̂ (a)−∆P (a)

)
→d N(0, V [P (a)]) , (23)

√
T
(
∆Q̂(u)−∆Q(u)

)
→d N(0, V [Q(u)]) , (24)

where →d denotes convergence in distribution, and the variance terms are given in Proposition 1.
Proof. See the appendix.

IV. Data Description

IV.A. Construction of the Hedge Fund Dataset

Our empirical analysis covers the period from January 1994 to December 2020. We collect

monthly data on net-of-fee returns and capital, along with cross-sectional information on invest-

ment objectives, fees, and other fund characteristics from standard hedge fund databases. In the

baseline analysis, we exclude funds-of-funds and multi-strategy funds, and take several steps to

mitigate well-known data biases. To reduce selection bias, we merge four major databases (Bar-

clayHedge, HFR, Morningstar, and TASS). To address survivorship bias, we retain both live and

dead funds. Finally, we remove the first 12 months of reported data for each fund to correct for

backfill bias. Additional details on dataset construction are provided in the appendix.

A key input for measuring the value-added is the unreported monthly gross return of each fund.

We construct this variable manually by estimating monthly management and performance fees and

adding them back to the reported net return. Unlike mutual funds, reconstructing the gross return

series for hedge funds is not trivial because it requires accounting for accrued performance fees.

To do so, we track the evolution of the high-water mark provision, which depends on the frequency

with which performance fees are paid. Since this information is typically undisclosed, we follow

Jorion and Schwarz (2014) and assume an annual payment frequency (see the appendix for com-

putational details). Another key variable in our analysis is the monthly fund capital. Following

Berk and van Binsbergen (2015), we express all reported capital values in real terms in million of

January 1, 2000 dollars.

To address the unbalanced nature of the hedge fund sample, we apply the fund selection rules

described in Section III.A. Following the thresholds used by BGS, we require a minimum of 60

return observations and a minimum condition number of 15. We also exclude micro funds whose
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capital falls below $10 million for at least one-third of the sample period. To further mitigate the

influence of outliers, we drop the 1% of funds with extreme values of âi, b̂i, or v̂ai. After applying

these filters, our final sample consists of 2,517 funds over the full period (nχ = 2, 517).

While the original sample includes all dead funds, the selection rules described above may

introduce survivorship bias. If value-destroying funds disappear early, the value-added distribu-

tion will be biased upward. However, two offsetting effects may mitigate this concern. First,

value-creating funds may also disappear early following unexpectedly poor realized returns—a

phenomenon known as reverse-survivorship bias (Linnainmaa, 2013). Second, many top funds

stop reporting to commercial databases once their client base is sufficiently established. Taken

together, these forces suggest that the overall magnitude of the bias is a priori unclear. Our analy-

sis in the appendix reveals that our conclusions remain largely unchanged when using a minimum

number of observations of 36 and 84.

IV.B. Construction of the Benchmark Model

To estimate the value-added, we must specify the investment opportunities available to in-

vestors as captured by fR,t+1 in Equation (9). In our baseline analysis, we extend the three-factor

model of Cremers, Petajisto, and Zitzewitz (2013) by augmenting the standard market, size, and

value factors with global carry and time-series (TS) momentum. These strategies, constructed by

Koijen et al. (2018) and Moskowitz, Ooi, and Pedersen (2012), invest in assets with high carry and

positive 12-month returns across four asset classes (equities, bonds, currencies, and commodities).

The rationale for selecting these five factors is twofold. First, they capture mechanical strate-

gies that hedge funds plausibly follow. As noted by Ardia et al. (2024), Carhart et al. (2014), and

Pedersen (2015), these factors are grounded in economic intuition and explain a sizable share of

hedge fund average returns. Second, it is reasonable to assume that hedge fund investors can take

positions in these factors. The market, size, and value factors from Cremers, Petajisto, and Zitze-

witz (2013) track the S&P 500 and Russell indices and can be replicated using passive products.

By construction, they assign zero alpha to the S&P 500 and Russell 2000—two widely used bench-

marks in the fund industry. The carry and TS momentum factors can also be traded through liquid

futures markets or alternative premia funds increasingly offered by financial institutions (Jorion,

2021). Consistent with this rationale, Ardia et al. (2024) show that hedge fund investors chase

funds with high past alphas, but do not chase funds whose past returns primarily reflect exposures
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to these five factors. This evidence suggests that investors are sufficiently sophisticated to replicate

these factor exposures on their own.16,17

In our computations of the value-added, we use the gross-of-fee returns of the five factors in

fR,t+1. Consequently, we exclude the replication services that hedge funds provide to investors

since these services can also be obtained through passive products (Berk and van Binsbergen,

2015). As shown in the appendix, all but one factor (value) earn positive premia over the sam-

ple period. Moreover, the factors are exposed to distinct sources of risk as none of the pairwise

correlations exceeds 0.5 in absolute value.

IV.C. Summary Statistics

Table I reports summary statistics for an equal-weighted portfolio of all existing funds at the

start of each month. The full hedge fund sample consists of (i) 974 equity funds (long–short and

market neutral), which rely on discretionary or quantitative analysis to detect mispriced stocks; (ii)

631 macro funds (global macro and managed futures), which take directional positions across asset

classes using broad economic and financial indicators; and (iii) 912 arbitrage funds (relative value

and event-driven), which primarily exploit mispricings in debt markets. For comparison, we also

compute the same statistics for a sample of 2,238 U.S. equity mutual funds constructed following

the procedure of BGS.

Panel A shows that the portfolio of all hedge funds delivers an average gross return of 9.9%

per year. After accounting for management fees (1.4% per year) and performance fees (1.7% per

year), the average net return declines to 6.7% per year. These results are consistent with prior

evidence on gross and net hedge fund performance (e.g., Elaut, Frömmel, and Sjödin, 2015; Jorion

and Schwarz, 2014). In terms of size, hedge funds are substantially smaller than mutual funds—

the time-series average of cross-sectional average (median) capital is $226 million ($74 million)

for hedge funds, compared with $908 million ($245 million) for mutual funds.

16We also consider alternative benchmark models in which investors have access to (i) only the market factor
(CAPM), (ii) the equity market, size, and value factors, and (iii) the equity market, size, and value factors together
with two bond factors (default and term). The last specification is particularly relevant for pension funds—major hedge
fund investors which typically hold balanced portfolios of stocks and bonds. Results for these alternative benchmarks
are reported in the online appendix.

17Our benchmark choice for measuring value creation is oriented toward factor replication and differs from that of
Ling, Satchell, and Yao (2023) who form for each fund a benchmark portfolio of six HFR-style indices. Since each
index aggregates about 500 hedge funds, this benchmark portfolio is difficult for investors to replicate.
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Panel B reports the estimated portfolio betas with respect to the five factors (market, size,

value, carry, and TS momentum). All betas of the aggregate hedge fund portfolio are positive,

consistent with the view that hedge funds take on market risk, tilt toward small-cap and value

stocks, buy high-carry assets, and exploit return trends to enhance performance (Pedersen, 2015).

Among styles, equity funds exhibit the strongest exposure to the equity market (0.46), whereas

macro funds load most heavily on TS momentum (0.34) as they rely on past returns to exploit

trends driven by behavioral biases, frictions, or slow-moving capital. Turning to model fit, the

factors explain only 42.3% of the average portfolio return and 68.8% of its time-series variation

(compared with 94.4% and 98.6% for mutual funds). Contrary to mutual funds, hedge funds pursue

strategies that are not spanned by the five factors—a result that underscores the importance of our

methodology which explicitly controls for the impact of non-replicable factors fNR,t+1.

Please insert Table I here

V. Main Empirical Results

V.A. Magnitude of the Value-Added

V.A.1. The Value-Added across Funds

We begin our empirical analysis by measuring the value created by the hedge fund industry.

Specifically, we infer the entire cross-sectional distribution of value-added using as inputs the

estimated value-added v̂ai = âiw̄i − b̂iw̄i,2. We summarize the shape of the distribution using the

mean and median, the proportions of funds with positive and negative value-added, and the 10th

and 90th quantiles. To compute the standard errors of these characteristics, we set T equal to the

average number of fund return observations (134) to account for the additional estimation noise

arising from the unbalanced structure of the hedge fund panel.

Panel A of Table II provides robust evidence of hedge fund value creation. Across the full

sample, nearly 70% of funds generate positive value-added, with an average of $5.7 million per

year. This average is statistically highly significant, despite the substantial estimation noise in-

herent in hedge fund return data. The ability of hedge funds to create value suggests that their

trading activity enhances asset price efficiency—a channel often invoked to justify their economic

importance. Improvements in price informativeness are socially valuable because they facilitate
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better decisions by capital providers, managers, employees, and regulators (Bond, Edmans, and

Goldstein, 2012). Although this mechanism is difficult to verify directly, Ha, Hu, and Tang (2024)

study the daily trades of institutional investors and provide evidence that only hedge fund trading

enhances the informational efficiency of capital markets.

Another insight from Panel A is the large heterogeneity across hedge funds. Value creation

varies markedly across investment styles. More than 80% of arbitrage funds create value, com-

pared with 67% of equity funds and 51.7% of macro funds. In addition, heterogeneity remains

large even within style groups—funds in the top decile generate a value-added more than three

times higher than the average. Motivated by these findings, we next focus on the drivers of value

creation, focusing on whether hedge funds add value by identifying profitable strategies or by

scaling them efficiently.

Please insert Table II here

V.A.2. Fund Skill and Scalability

Given the prevalence of value creation among hedge funds, we expect most of them to be

skilled at designing profitable investment strategies. To test this idea, we infer the cross-sectional

distribution of the skill coefficient ai. Panel B of Table II confirms that 86.4% of funds exhibit

a positive alpha on their first dollar of capital. More surprising is the magnitude of the skill

coefficient—on average, it is above 11% per year in all three investment categories. These high

first-dollar returns are therefore the primary engine of hedge fund value creation.

On the downside, Panel C shows that hedge funds suffer from severe scalability constraints.

A $10 million increase in capital reduces the gross alpha by 1.5% per year on average. Although

hedge funds can spread capital across multiple ideas by taking long and short positions, this flexi-

bility does not translate into high scalability. Our fund-level estimates contribute to the literature by

showing that the scale coefficient is positive not only on average (e.g., Fung et al., 2008; Naik, Ra-

madorai, and Stromqvist, 2007), but for the vast majority of funds. This evidence provides strong

support for equilibrium models of active management with diseconomies of scale (e.g., Berk and

Green, 2004; Glode and Green, 2011).

For a minority of funds, Panel C yields the counterintuitive result that scale improves returns

(bi < 0). One plausible explanation is estimation noise—the lower bound of the 95% confidence
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interval barely exceeds 7.3%. Alternatively, these cases may reflect model misspecification due to

omitted nonlinearities or relevant predictors of alpha. To assess this possibility, we follow BGS and

conduct a specification test of the null hypothesis H0,i that αi,t = ai − biwi,t is correctly specified

(see the appendix for details).

V.A.3. Impact of Leverage

Hedge fund strategies are both highly profitable and highly unscalable. In the context of hedge

funds, Equation (2) highlights a key mechanism—leverage mechanically raises both ai and bi by

simultaneously increasing the gross alpha and the trading costs associated with each dollar of

equity capital.18 Given the lack of data on hedge fund leverage, we rely on Barth, Hammond,

and Monin (2020), who report leverage statistics for their proprietary hedge fund dataset. Using

their estimates, we set the average leverage ratio π̂ equal to 2.1, 5.9, and 2.7 for equity, macro,

and arbitrage funds, and 3.3 for the entire population (see the appendix for details). We then

recover the unlevered coefficients by dividing the average skill coefficient by π̂ and the average

scale coefficient by π̂2.

Figure 1 shows that leverage is the primary driver of the high skill and scale coefficients ob-

served for hedge fund strategies. Once we remove the effect of leverage, the average skill and scale

coefficients fall to 3.8% and 0.2% per year—only 30.4% and 13.3% of their levered counterparts

reported in Table II (3.8/12.5 and 0.2/1.5, respectively). Examining the unlevered coefficients also

helps explain why arbitrage funds create more value. These funds trade remarkably efficiently. An

unlevered $10 million increase in capital reduces the gross alpha by only 0.1% per year—nearly

identical to macro funds, which operate in more liquid markets. When this low unlevered scale

coefficient is combined with a moderate leverage ratio of 2.7, the resulting scale coefficient is only

1.0% per year, roughly half the value observed for equity funds and macro funds (1.9% and 1.4%).

As emphasized by Duarte, Longstaff, and Yu (2006), arbitrage strategies rely heavily on intellec-

tual capital and sophisticated implementation techniques—inputs that appear crucial for achieving

such efficient trading at scale.

Please insert Figure 1 here

18Competitive forces also help generate a positive correlation between ai and bi. Costly strategies must deliver
sufficiently high expected returns to justify their implementation. For example, van Binsbergen et al. (2024) show that
high-turnover strategies entail substantial trading costs (high bi) and are adopted only when their profitability is high
enough to compensate for those costs (high ai).
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V.A.4. Characteristics of the Most Valuable Funds

Table II reveals that value creation in the hedge fund industry is highly concentrated. A conser-

vative estimate based on the 90th-quantile indicates that the top 10% of funds account for at least

40% of the total value created by the industry (21.7·10%
5.7

). This result implies that some hedge funds

possess special abilities that are hard to replicate. In Table III, we examine what distinguishes the

top decile of value-creating funds.

We find that these funds do not simply generate the most profitable ideas. Instead, they pursue

distinctive strategies that balance skill and scalability. To illustrate this point, we sort each fund

estimated âi and b̂i into deciles, creating a scoring system from 1 (worst) to 10 (best). The top funds

score, on average, 7 on both dimensions. Moreover, only 10% of them reach the maximum score

of 10 for skill or scalability. These balanced strategies deliver the highest value-added because

they navigate the inherent trade-off between skill and scalability highlighted earlier.

The top funds create value by exploiting superior information or by following strategies that

investors cannot replicate. To distinguish between these two channels, we augment the benchmark

model with three hard-to-replicate strategies commonly used by hedge funds: illiquidity, betting-

against-beta (BAB), and variance.19 Controlling for these factors leaves both the mean and median

value-added essentially unchanged. Panel B shows that the largest average contribution of these

strategies is 23.8% for arbitrage funds (14.0/58.7), reflecting their exposure to variance risk (see

Ardia et al., 2024). Overall, these results indicate that distinctive informational advantages—rather

than reliance on hard-to-replicate strategies—are the primary source of skill among top funds.

Please insert Table III here

V.A.5. Comparison with Mutual Funds

It is instructive to compare the drivers of value creation between hedge funds and mutual funds.

We find that the gap in skill coefficient is substantial—the first-dollar alpha of mutual funds av-

erages only 2.6% per year. At the same time, mutual fund strategies are far more scalable—a

$10 million increase in capital reduces the annual alpha by only 0.2% on average. As a result,

19Ardia et al. (2024), Carhart et al. (2014), and Pedersen (2015) provide evidence that hedge funds pursue these
strategies. The illiquidity factor of Pástor and Stambaugh (2003) captures marketwide liquidity shocks, the BAB strat-
egy of Frazzini and Pedersen (2014) exploits mispricing created by leverage-constrained investors, and the variance
strategy tracks realized S&P 500 variance.
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the implications for value creation are ambiguous. In Figure 2, we compare the average value-

added of hedge funds and mutual funds. For mutual funds, we examine the full population as well

as subgroups sorted by stock size (small- and large-cap), turnover (low- and high-turnover), and

distribution channel (direct- and broker-sold).

On average, hedge funds generate about $5.3 million more in value-added per year—a dif-

ference that is economically large and statistically significant with a p-value below 1%.20 How-

ever, this advantage is almost entirely driven by arbitrage funds. The other two hedge fund cate-

gories—equity and macro—produce a value-added that is comparable to, or even lower than, that

of several mutual fund groups (notably small-cap, low-turnover, and direct-sold funds). Overall,

these findings challenge the view that the greater sophistication of hedge fund managers allows

them to systematically outperform their mutual fund counterparts.

Please insert Figure 2 here

V.B. Sharing of the Value-Added with Investors

V.B.1. The Net Value-Added across Funds

Our earlier results show that hedge funds create substantial value. The next step is to ask how

this value is shared between funds and their investors. To address this question, we compute the

net value-added received by investors as v̂anet
i = ânet

i w̄i − b̂net
i w̄i,2, where ânet

i and b̂net
i are obtained

from the time-series regression of the fund net return: rnet
i,t+1 = ri,t+1 − feei,t+1 = anet

i − bnet
i wi,t +

β′
i,RfR,t+1 + εi,t+1. We then apply our methodology to infer the distribution of the net value-added

across all funds.

On average, hedge fund investors capture only a small fraction of the value-added. Panel A of

Table IV shows that the average net value-added amounts to $0.5 million per year, representing

only 8.8% of the $5.7 million in value created by hedge funds. Based on this result, it is tempting

to conclude that hedge fund investors have little bargaining power—consistent with the prediction

of the Berk and Green (2004) model that funds extract all rents from their skill.

This interpretation is misleading because the average masks substantial heterogeneity across

funds. We find that investors extract positive value-added from roughly half of the funds in the

20The value added by mutual funds is positive at $0.3 million but smaller than the estimates reported by BGS and
Berk and van Binsbergen (2015) because we use a different benchmark model and a shorter period (1994–2020).
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population. When positive, these amounts are economically meaningful—in the top decile, in-

vestors receive more than $10 million per year. These patterns are particularly pronounced among

arbitrage funds, where 66.2% deliver positive net value-added to investors. As noted by Duarte,

Longstaff, and Yu (2006) and Pedersen (2015), arbitrage strategies are complex, which likely in-

creases the bargaining power of the limited pool of investors willing to allocate capital.

At the same time, we find that half of the funds deliver a negative value-added net of fees. A

common explanation for such wealth destruction is the presence of unskilled funds—those whose

first-dollar alpha is too low to cover fees (anet
i < 0). As shown in Panel B, hedge fund fees have

a pronounced effect on net profitability—on average, the difference between ai and anet
i amounts

to 3.3% per year (12.5% versus 9.2%). However, only 18.2% of funds exhibit a negative anet
i ,

implying that merely 37.8% of the wealth-destroying funds are unskilled (18.2/48.1). The remain-

ing 62.2% destroy wealth by operating at an excessive scale. Put differently, capital misallocation

rather than lack of skill appears to be the primary driver of negative net value-added.

Please insert Table IV here

V.B.2. Limitations of the Net Alpha

The sizable proportion of value-destroying funds in Table IV appears at odds with the strong

hedge fund performance documented in previous studies (e.g., Ackermann, McEnally, and Raven-

scraft, 1999; Chen, Cliff, and Zhao, 2017; Liang, 1999; Kosowski, Naik, and Teo, 2007). Con-

sistent with this literature, we also find evidence of positive performance, as measured by the net

alpha αnet
i = E[αnet

i,t ] = anet
i − bnet

i E[wi,t]. Applying our methodology to the estimated values

α̂net
i = ânet

i − b̂net
i w̄i, we find that 66.4% of funds exhibit positive alpha, with an average of 1.8%

per year (see the appendix).

To reconcile both findings, consider a simple two-period example. In the first period, investors

allocate a small amount of capital such that the net alpha is positive (αnet
i,1 = anet

i − bnet
i wi,1 > 0).

In the second period, they invest a much larger amount of capital, driving the net alpha negative

(αnet
i,2 = anet

i − bnet
i wi,2 < 0). Because this period of poor performance coincides with greater capital

allocation (wi,2 > wi,1), it receives more weight in the computation of the value-added. As a result,

the fund can display a positive net alpha over the entire sample (αnet
i = (αnet

i,1 + αnet
i,2)/2 > 0), but a
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negative net value-added (vanet
i = (αnet

i,1wi,1 + αnet
i,2wi,2)/2 < 0).21

A key takeaway from our analysis is that the net alpha is a poor proxy for the value that funds

deliver to investors for two reasons. First, it ignores the average scale E[wi,t] at which the fund

operates—a limitation similar to that highlighted by Berk and van Binsbergen (2015) in the context

of the gross alpha. Second, even if we control for E[wi,t], the resulting measure αnet
i E[wi,t] does

not reflect the actual value captured by investors because it neglects their time-varying capital

allocation decisions.

V.B.3. Comparison with Mutual Funds

Previous studies suggest that hedge fund investors may suffer from agency problems that cause

them to overpay for active management. For instance, Lakonishok, Shleifer, and Vishny (1992)

argues that pension fund officers might favor hedge funds—even when fees are excessive—because

such relationships help justify their own positions. The modest yet positive average net value-

added reported in Table IV does not support this interpretation. Instead, it indicates that hedge

fund investors fare substantially better than mutual fund investors.

Figure 3 reports the average net value-added in the mutual fund industry. The value-added in

negative across all fund categories, consistent with BGS and Cooper, Halling, and Yang (2021),

who show that mutual funds systematically charge excessive fees to their clients. The gap of $7.9

million per year relative to hedge funds is both economically large and highly significant with a

p-value below 1%. This difference is consistent with the view that mutual funds primarily cater to

less sophisticated retail investors who are more likely to be unaware of underperformance (Gruber,

1996), constrained by high search costs (Roussanov, Ruan, and Wei, 2021), and willing to pay

higher fees for financial advice (Del Guercio and Reuter, 2014).

Please insert Figure 3 here

21This result is an application of Jensen’s inequality. With scalability constraints, the net value-added function
vanet(wi,t) = (anet

i − bnet
i wi,t)wi,t is concave in wi,t, which implies that vanet

i = E[vanet(wi,t)] < vanet(E[wi,t]) =

αnet
i E[wi,t]. We further have E[vanet(wi,t)] − vanet(E[wi,t]) = −bnet

i V [wi,t], where V [wi,t] denotes the variance of
capital. Hence, greater variation in capital over time increases the likelihood that the net value-added and the net alpha
differ in sign.
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V.C. The Value-Added over the Fund’s Lifecycle

V.C.1. Dynamics of Fund Capital

Our earlier findings provide evidence of capital misallocation, as half of all funds destroy value

due to either insufficient skill or excessive scale. A natural question is whether this misallocation

dissipates over time. When investors face excessive fees, they have strong incentives to withdraw

capital and reallocate it toward more profitable opportunities. Consistent with this mechanism,

prior studies show that hedge fund flows respond positively to past performance (e.g., Fung et al.,

2008; Baquero and Verbeek, 2021). More recent evidence from Agarwal, Green, and Ren (2018)

and Ardia et al. (2024) further suggests that hedge fund investors adjust for factor exposures—such

as market, carry, and time-series momentum—when evaluating performance. Motivated by this

evidence, we examine how fund capital and value-added evolve over the fund’s lifecycle.

We begin by examining how investors allocate capital between unskilled and skilled funds. For

each fund, we track the evolution of invested capital using the ratio ∆w̄i(s) = w̄i(s)/w̄i, where

w̄i(s) denotes the average capital in subperiod s and w̄i the average capital over the full sample.

The sample is divided into five subperiods (S = 5) to capture the capital adjustment as investors

learn about fund skill and scalability (Pástor and Stambaugh, 2012).22 To distinguish skilled from

unskilled funds, we group funds based on the sign of their estimated net skill coefficient ânet
i and

compute the cross-sectional average of ∆w̄i(s) for each group.

Figure 4 shows that investors are able to distinguish between unskilled and skilled funds. Cap-

ital invested in unskilled funds declines steadily over time, falling to about 65% of its average

level by the final subperiod. In contrast, investors gradually increase their allocations to skilled

funds. The capital ratio starts around 0.7 in the first subperiod and rises slightly above one by the

last subperiod. These patterns are not driven by specific investment styles, as we observe similar

trends for equity, macro, and arbitrage funds.

Another notable finding is that capital invested in skilled funds overshoots midway through

their lifecycle. In subperiods 3 and 4, it rises to more than 110% of the full-sample average. This

pattern may suggest that investors temporarily allocate more capital than is justified by the fund

skill and scalability. Such excess capacity may help explain the evidence in Table IV showing that

a substantial fraction of funds eventually deliver negative a net value-added. To further explore

22In the appendix, we also partition the sample into ten subperiods and find qualitatively similar results.
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this mechanism, we next analyze the evolution of the value-added among skilled funds.

Please insert Figure 4 here

V.C.2. Dynamics of the Value-Added

We compute the subperiod value-added measures of the skilled funds as v̂ai(s) = âiw̄i(s) −

b̂iw̄i,2(s) and v̂anet
i (s) = ânet

i w̄i(s) − b̂net
i w̄i,2(s). Applying our methodology, we then estimate the

cross-sectional distribution of each subperiod measure. The results are reported in Figures 5 and

6, where we plot the evolution of the proportions of funds with negative and positive value-added,

as well as the quantiles at 10% and 90%.

If investors form sharper estimates of skill and scalability over time, capital allocation should

improve and the subperiod value-added distribution should gradually shift to the right. Consistent

with this prediction, Panel D of Figure 5 reveals stronger value creation as funds progress through

their lifecycle. The 90th-quantile increases from $18.5 million to $24.0 million per year between

the first and last subperiods. In the arbitrage category, this improvement is even more pronounced

as the value-added rises from 24.6 to 32.3 million per year.

Please insert Figure 5 here

At the same time, we do not find that investors limit the prevalence of value-destroying funds.

As shown in Panel A of Figure 6, the share of funds with a negative net value-added rises sharply

from 30.6% to 45.2% by subperiod 4. This pattern is even more pronounced among macro funds,

where nearly 60% destroy value by subperiod 4. This increase confirms that the earlier surge

in invested capital leads to widespread overcapacity across hedge funds.23 On the positive side,

investors eventually respond to poor performance by withdrawing capital. Nevertheless, nearly

one-third of funds still destroy value in the final subperiod.

To summarize, we find that investors can distinguish between funds with positive and negative

value-added, yet the resulting capital reallocation is slow and noisy. This mixed evidence likely

reflects the interaction of opposing forces. On the one hand, hedge fund investors—primarily in-

stitutions and high-net-worth individuals—are relatively sophisticated and therefore well equipped

23The appendix further shows that most of the value destruction within the macro category comes from managed
futures funds rather than global macro funds. Excess capacity is so severe that managed futures is the only hedge fund
subcategory that generates a negative value-added even before fees.
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to extract information from past performance. On the other hand, learning about hedge funds is

inherently difficult given the complexity of their strategies and the limited length of most return

histories. In addition, investors face contractual frictions such as lockup and notice periods, which

further slow the reallocation of capital (Joenväärä, Kosowski, and Tolonen, 2019).24

Please insert Figure 6 here

V.D. Normative Analysis of the Value-Added

V.D.1. Estimation of the Model

Given the sophistication of managers and investors, the hedge fund industry offers an ideal

laboratory for testing rational models of active management. We perform a normative analysis to

determine how well such a model explains both the cross-sectional variation and the overall mag-

nitude the value-added. We consider the rational model in Section II.C, in which (i) funds with

heterogeneous skill and scalability maximize fee revenues, and (ii) investors require a compensa-

tion κ per unit of capital to cover due diligence and monitoring costs.25

To estimate the model-implied optimal quantities for each fund, we proceed as follows. When

the fund sets fees optimally at feeoi = ai−κ
2

, the optimal capital level is wo
i = ai−κ

2bi
, which yields

the following optimal measures for value creation: vaoi = aiw
o
i − bi(w

o
i )

2 = a
2
i−κ

2

4bi
and vanet,o

i =

aiw
o
i − bi(w

o
i )

2 − feeoiw
o
i = κwo

i = κ(ai−κ)
2bi

. We compute the empirical counterparts of these

quantities as v̂aoi = â
2
i−κ

2

4b̂i
and v̂anet,o

i = κ(âi−κ)

2b̂i
. We can then compare these optimal values with

the actual ones given by the estimates v̂ai and v̂anet
i .

Contrary to the estimated values âi and b̂i, which can be inferred from the data, κ is not directly

observable. In our baseline analysis, we follow Stulz (2007) and set κ equal to 1% per year.26 We

require âi > ¯feei + κ to ensure that investors optimally allocate a positive amount of capital to the

24To further explore these channels, we test whether the proportion of funds with negative net value-added is lower
in the final subperiod when investors (i) are more sophisticated (proxied by the fund’s offshore status (Aragon, Liang,
and Park, 2014), and (ii) have more time to learn (proxied by fund age). As shown in the appendix, this is indeed the
case, although the differences are modest.

25Our analysis examines whether the value created is privately optimal for funds and investors. It is therefore silent
on the social value of active management. On one hand, hedge funds enhance price efficiency, which is socially
beneficial. On the other hand, they may engage in socially wasteful rent-seeking activities that redistribute wealth at
the expense of other market participants. Quantifying the net social value of the industry thus requires assessing the
relative strength of these opposing forces (e.g., Kurlat, 2019).

26Stulz (2007) writes that a frequently heard price tag for hedge fund due diligence costs is $50,000. Assuming a
five-year investment horizon (e.g., Khorana, Servaes, and Tufano, 2009) and a typical investment size of $1 mio. (e.g.,
Burns, 2023), this corresponds to κ = 1%.
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fund at the prevailing fee level. We further restrict b̂i > 0.05% per year to guarantee a well-defined

and non-explosive optimal value-added as b̂i approaches zero. After applying these filters, our final

sample includes 1,729 funds.

V.D.2. Actual versus Optimal Value-Added

We begin our comparison analysis by computing the pairwise correlation between v̂ai and v̂aoi

(v̂anet
i and v̂anet,o

i ). This analysis provides a simple diagnostic of whether the actual and optimal

values are qualitatively aligned. The correlation for the gross value-added is high at 0.81, con-

firming that funds with higher value-added have greater potential for value creation. For the net

value-added, the correlation remains positive but is more modest at 0.46. The model also success-

fully replicates the strong empirical correlation of 0.92 between v̂ai and v̂anet
i . In the model of

Berk and Green (2004), this correlation is equal to zero as funds extract all rents from their skills.

By allowing investors to retain some bargaining power through the parameter κ, our framework

instead generates a sizable correlation of 0.87 between v̂aoi and v̂anet,o
i .

Next, we compare the magnitude of the actual and optimal value-added. Table V shows that

the model reasonably captures the extent of value creation. On average, the actual value-added

amounts to 36.3% of the optimal level of $15.4 million per year. The fit is stronger for the net

value-added, which reaches 61.8% of its optimal level of $1.6 million. The model further implies

that investors retain only a small share of the total value created—about 10% (1.6/15.4)—a figure

broadly consistent with the 17.8% observed in the data (1.0/5.6). Examining the three investment

styles, the model correctly ranks arbitrage funds as the largest value creators ($19.7 million). How-

ever, it does not capture the differences in net value-added across categories. For macro funds, the

optimal net value-added equals $1.6 million, yet investors end up paying excessive fees of $2.3

million. In contrast, hedge fund investors extract more value from arbitrage funds than the model

predicts ($3.7 versus $2.1 million).

Please insert Table V here

V.D.3. Fee Policy and Capital Misallocation

The previous analysis shows that the model captures the cross-sectional variation in value-

added but only partially its economic magnitude. We now quantify the two forces that explain this

discrepancy: (i) the fee-setting policy chosen by funds and (ii) the capital allocation chosen by
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investors. First, funds may set fees that deviate from their optimal levels. In this case, the equilib-

rium capital and value-added implied by the model differ from the optimal ones. The equilibrium

capital we
i is now determined by the condition that the net value-added to investors equals their

required compensation. Solving this condition yields we
i =

ai− ¯feei−κ
bi

, which implies the following

equilibrium value-added measures: vaei = aiw
e
i − bi(w

e
i )

2 and vanet,e
i = aiw

e
i − bi(w

e
i )

2 − ¯feeiw
e
i .

Second, investors may misallocate capital relative to the equilibrium value implied by the model.

When this occurs, the actual capital wi and the corresponding value-added measures vai and vanet
i

differ from their equilibrium counterparts.

To assess the relative importance of these two channels, we decompose the gap between the

optimal and actual value-added as

vai − vaoi = (vai − vaei ) + (vaei − vaoi ), (25)

vanet
i − vanet,o

i = (vanet
i − vanet,e

i ) + (vanet,e
i − vanet,o

i ), (26)

where the first term captures the effect of capital misallocation and the second term captures the

effect of fees. The empirical counterparts of these expressions are given by

v̂ai − v̂aoi = (v̂ai − v̂aei ) + (v̂aei − v̂aoi ), (27)

v̂anet
i − v̂anet,o

i = (v̂anet
i − v̂anet,e

i ) + (v̂anet,e
i − v̂anet,o

i ), (28)

where v̂aei = âiŵ
e
i − b̂i(ŵ

e
i )

2 and v̂anet,e
i = âiŵ

e
i − b̂i(ŵ

e
i )

2 − ¯feeiŵ
e
i with ŵe

i =
âi− ¯feei−κ

b̂i
.

Panel A of Table VI summarizes the effect of the fee policy. As predicted by the model,

funds with higher skill tend to charge higher fees—the pairwise correlation between âi and ¯feei

is 0.44. However, the optimal target fees are substantially higher than the fees actually charged.

On average, the gap amounts to 5.4% per year. Figure 7 illustrates the consequences of this fee

gap. When the fund sets fees too low, investors are incentivized to invest more capital than is

optimal (w∗
i < we

i ), causing the equilibrium value-added to fall short of its optimal level (va∗i >

vaei ).
27 At the same time, the equilibrium net value-added increases because investors must be

compensated for deploying a larger amount of capital (vanet,∗
i > vanet,e

i ). Consistent with this

27In principle, vaei could exceed va∗i if we
i coincides with the capital level that maximizes the unconstrained value-

added, that is, maxwi
vai =

a
2
i

4bi
> va∗i = (ai−κ)

2

4bi
. Empirically, no fund in our sample satisfies this condition.
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mechanism, Panel A shows that the equilibrium capital averages $245 million, compared with only

$164 million for the optimal level. Likewise, the average difference is negative for the value-added

(–$4.8 million) and positive for the net value-added ($0.8 million).28

We then assess the extent of capital misallocation in Panel B. For each fund, we infer the actual

capital ŵi as the constant level that rationalizes the actual value-added v̂ai. Consistent with earlier

findings, the hedge fund industry exhibits substantial excess capacity. On average, actual capital

is $316 million, compared with the model-implied target of $245 million. Figure 8 illustrates

the consequences of this misallocation. In contrast to the fee-setting policy shown in Figure 7,

excess capacity pushes both value-added measures below their equilibrium levels (vaei > vai and

vanet,e
i > vanet

i ). Panel B quantifies these effects, showing that the average value-added measures

decrease by $5 and $1.4 million, respectively.

Overall, the model suggests that the hedge fund industry operates at a scale that exceeds its

optimal size (316 vs. 164 million)—a conclusion consistent with the sizable share of funds ex-

hibiting negative net value-added (Table IV). This excess capacity is driven jointly by suboptimal

fees and persistent capital misallocation. Each channel depresses the total value created by the

industry by around $5.0 million on average, explaining half of the total gap between the actual and

optimal values in Table V. For the net value-added, their combined effect is ambiguous. Empiri-

cally, we find that the negative impact of capital misallocation dominates the positive impact of the

fee policy, which leads to an overall reduction in the value extracted by investors (-$0.6 million).

The extent of capital misallocation further explains the observed variation across investment

categories. For macro funds, excess capacity is so prevalent that that funds create little value ($2.5

million) and investors end up paying excessive fees (-$2.3 million). In contrast, capital misalloca-

tion is milder among arbitrage funds which, combined with low fees, implies that investors extract

more value than the optimal level implied by the model ($3.7 million versus $2.1 million).

Please insert Table VI, Figure 7, and Figure 8 here

28In the Berk and Green (2004) model, funds can set low fees without reducing the value-added because they can
costlessly index the excess capital we

i − w∗
i . By contrast, the decline in value-added in Table V suggests that hedge

funds cannot rely on this mechanism: (i) costless indexing is not available, and (ii) investors must be compensated for
the additional capital they are required to deploy at we

i .
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VI. Conclusion

In this paper, we measure the value created by hedge funds. The sophistication of this indus-

try offers distinctive insights into how value is produced and shared. Hedge fund managers take

long and short positions, employ leverage, and use complex trading techniques to exploit infor-

mation and provide liquidity. Ex ante, these capabilities suggest that hedge funds should generate

more value than mutual funds, both by uncovering more profitable opportunities and by scaling

them more effectively. Their investors—primarily institutions and high-net-worth clients—are

also viewed as more sophisticated. They may therefore possess greater bargaining power and a

stronger ability to learn from performance and reallocate capital. Taken together, these features

make hedge funds an ideal laboratory for testing rational models of active management.

We develop a novel methodology to measure hedge fund value creation. Its core is a simple

specification of the value-added vai = aiE[wi,t] − biE[w2
i,t], which formalizes the idea that value

creation depends jointly on skill and scalability (captured by ai and bi). This framework unifies the

analysis of value-added by allowing us to examine its magnitude, sharing, dynamics, and optimal-

ity within a single structure. Our fund-level approach recovers the full cross-sectional distribution

of value-added, revealing substantial heterogeneity that standard panel methods obscure. It also

incorporates unobserved leverage differences across funds and addresses the benchmarking chal-

lenge specific to hedge funds by relying on factors that investors can replicate.

Our main results can be summarized as follows. First, most hedge funds create value by form-

ing levered strategies that are highly profitable but difficult to scale. As a result, they do not

systematically create more value than mutual funds. Value creation is also highly concentrated as

a minority of hedge funds strike a unique balance between skill and scalability. Second, hedge

fund investors avoid paying excessive as mutual fund investors do. However, they extract little

value on average, which suggests that their greater sophistication does not translate into stronger

bargaining power. Third, hedge fund investors reallocate capital in an impactful but noisy way.

Whereas they are able to distinguish between unskilled and skilled funds, they tend to deploy too

much capital through the fund’s lifecycle—an excess capacity that is not fully addressed as time

passes by. Finally, we find that the value created by hedge funds is broadly aligned with the predic-

tions a rational model of active management. This model nonetheless confirms that the hedge fund

industry is too large as funds set fees too low and investors make persistent allocation mistakes.
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TABLE I. Summary Statistics
Panel A reports summary statistics for an equal-weighted portfolio of all hedge funds active at the start
of each month, as well as for three investment styles: (i) equity funds (long–short, market neutral), (ii)
macro funds (global macro, managed futures), and (iii) arbitrage funds (relative value, event driven). For
comparison, we also provide statistics for an equal-weighted portfolio of U.S. equity mutual funds. We
report the time-series mean and standard deviation of the portfolio gross and net excess returns, the time-
series mean of portfolio management and performance fees, and the time-series mean of the cross-sectional
mean (median) of the fund capital. Panel B summarizes the results from regressing the portfolio gross excess
return on the five benchmark factors. It reports the estimated portfolio betas with respect to the market, size,
value, carry, and time-series (TS) momentum factors, the relative contribution of the five factors to the
average portfolio return, and the adjusted R2. Returns and fees are expressed in percent per year. The
capital is reported in million of January 1, 2000 dollars. All statistics are computed from monthly data
spanning January 1994 to December 2020.

Panel A: Return & Capital Statistics
Gross Returns (% p.a.) Net Returns (% p.a.) Fees (% p.a.) Capital ($ million)

Mean Std Dev. Mean Std Dev. Mgmt Perf. Mean Median

All Funds 9.89 5.99 6.71 5.53 1.42 1.75 226 74

Equity 11.15 8.89 7.89 8.22 1.28 1.98 177 57
Long/Short 11.71 9.80 8.37 9.06 1.28 2.07 168 55
Market Neutral 6.73 3.44 4.09 3.10 1.32 1.34 248 94

Macro 8.94 7.89 5.75 6.94 1.67 1.50 298 85
Global Macro 9.96 8.14 6.44 7.25 1.71 1.78 329 92
Managed Futures 8.13 8.19 5.20 7.15 1.63 1.28 270 79

Arbitrage 9.16 5.52 6.07 5.17 1.40 1.69 228 94
Event Driven 9.80 6.62 6.49 6.11 1.48 1.84 205 88
Relative Value 8.56 5.03 5.64 4.77 1.35 1.57 242 98

Mutual Funds 8.97 15.58 7.75 15.58 1.22 — 908 245

Panel B: Benchmark Model
Factor Exposures Model Fit

Market Size Value Carry TS Mom. Return Contrib. R2

All Funds 0.29 0.17 0.02 0.09 0.10 42.29 68.85

Equity 0.46 0.30 -0.03 0.08 0.05 46.00 83.57
Long/Short 0.51 0.34 -0.04 0.08 0.05 47.37 84.11
Market Neutral 0.10 0.01 -0.00 0.04 0.07 28.43 25.06

Macro 0.09 0.04 0.10 0.05 0.34 52.44 28.90
Global Macro 0.15 0.07 0.08 0.03 0.30 46.88 25.23
Managed Futures 0.04 0.01 0.12 0.08 0.37 58.74 32.53

Arbitrage 0.24 0.13 0.04 0.16 -0.01 32.30 57.98
Event Driven 0.30 0.18 0.05 0.10 -0.01 32.24 63.36
Relative Value 0.19 0.09 0.04 0.21 -0.02 32.31 46.09

Mutual Funds 0.95 0.38 -0.06 0.04 0.00 94.42 98.68
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TABLE II. Cross-Sectional Distribution of the Value-Added
Panel A contains summary statistics for the cross-sectional distribution of the value-added for all funds
in the population and the three investment categories (equity, macro, and arbitrage funds). It reports the
cross-sectional mean and median, the proportions of funds with a negative and positive value-added, and
the quantiles at 10% and 90%. Panel B contains summary statistics for the cross-sectional distribution of
the skill coefficient measured as the first-dollar alpha. Panel C contains summary statistics for the cross-
sectional distribution of the scale coefficient measured as the change in the gross alpha for a $10 million
increase in capital. The value-added is expressed in million per year in terms of January 1, 2000 dollars. The
skill and scale coefficients are expressed in percentage per year. Figures in parentheses denote the standard
deviation of each estimator.

Panel A: Distribution of the Value-Added
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

All Funds 5.67 (1.46) 1.77 (0.52) 31.59 (2.63) 68.41 (2.63) -5.52 (0.63) 21.55 (0.67)

Equity 4.38 (1.70) 1.36 (0.58) 32.96 (3.77) 67.04 (3.77) -4.06 (0.77) 14.30 (1.23)
Macro 1.75 (2.09) 0.14 (0.79) 48.34 (3.33) 51.66 (3.33) -12.95 (1.84) 18.70 (1.36)
Arbitrage 9.77 (2.29) 3.85 (0.90) 18.53 (2.97) 81.47 (2.97) -2.18 (0.77) 29.24 (1.68)

Panel B: Distribution of the Skill Coefficient
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 12.50 (6.06) 10.47 (4.51) 13.63 (4.26) 86.37 (4.26) -1.54 (1.49) 28.91 (3.78)

Equity 13.20 (7.76) 11.04 (7.33) 12.83 (11.84) 87.17 (11.84) -1.36 (4.69) 30.21 (4.15)
Macro 11.45 (4.88) 9.04 (4.25) 19.02 (7.06) 80.98 (7.06) -3.82 (2.38) 28.26 (4.47)
Arbitrage 12.48 (7.76) 10.84 (5.87) 10.75 (5.12) 89.25 (5.12) -0.34 (2.41) 28.12 (6.57)

Panel C: Distribution of the Scale Coefficient
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 1.47 (0.78) 0.40 (0.22) 17.92 (5.82) 82.08 (5.82) -0.20 (0.17) 4.41 (0.36)

Equity 1.94 (1.18) 0.63 ( 0.56) 18.58 (10.26) 81.42 (10.26) -0.25 (0.43) 5.84 (0.65)
Macro 1.45 (0.45) 0.40 (0.08) 15.06 (0.41) 84.94 (0.41) -0.13 (0.52) 3.99 (0.43)
Arbitrage 0.99 (0.77) 0.26 (0.24) 19.19 (7.50) 80.81 (7.50) -0.24 (0.19) 3.23 (0.41)

39



TABLE III. Analysis of the Most Valuable Funds
This table provides summary statistics for the top decile of funds sorted on estimated value-added in the
population and the three investment categories (equity, macro, and arbitrage funds). Panel A reports the
cross-sectional mean (median) of the value-added, the average fund capital, and the corresponding skill and
scale coefficients for both the top funds and all funds. The skill coefficient is measured as the first-dollar
alpha and the scale coefficient as the change in the gross alpha associated with a $10 million increase in
capital. Figures in parentheses denote the cross-sectional mean (median) rank of the coefficients for the
top funds (1 = low, 10 = high). Panel B reports the cross-sectional mean (median) of the value-added after
controlling for the illiquidity, betting-against-beta (BAB), and variance factors, along with the difference
relative to the baseline value-added. The value-added (capital) is expressed in million per year (in million)
in terms of January 1, 2000 dollars. The skill and scale coefficients are expressed in percentage per year.

Panel A: Value-Added and Other Characteristics
Value-Added ($ mio. p.a.) Capital ($ mio.) Skill (% p.a.) Scale (% p.a.)

Top All Top All Top All Top All

Cross-Sectional Average
All Funds 46.85 5.67 714 225 17.98 (7) 12.5 0.13 (7) 1.47

Equity 35.45 4.38 546 172 15.73 (6) 13.2 0.09 (8) 1.94
Macro 42.05 1.75 805 285 17.67 (7) 11.45 0.22 (7) 1.45
Arbitrage 58.70 9.77 769 239 20.57 (7) 12.48 0.16 (7) 0.99

Cross-Sectional Median
All Funds 36.37 1.77 562 96 15.04 (7) 10.47 0.09 (8) 0.40

Equity 27.69 1.36 418 73 11.62 (6) 11.04 0.07 (8) 0.63
Macro 30.47 0.14 655 103 14.96 (7) 9.04 0.07 (8) 0.40
Arbitrage 45.45 3.85 646 120 15.90 (7) 10.84 0.09 (8) 0.26

Panel B: Impact of Non-Replicable Strategies
Value-Added ($ mio. p.a.) Difference With Base Case ($ mio. p.a.)

Liquidity BAB Variance All Liquidity BAB Variance All

Cross-Sectional Average
All Funds 46.78 42.70 38.53 38.64 0.07 4.15 8.32 8.21

Equity 35.66 31.55 29.06 29.00 -0.21 3.89 6.39 6.45
Macro 42.02 40.51 40.75 41.00 0.03 1.54 1.30 1.05
Arbitrage 58.21 52.62 44.66 44.82 0.49 6.08 14.04 13.88

Cross-Sectional Median
All Funds 36.57 33.78 30.02 30.42 -0.20 2.58 6.35 5.95

Equity 28.68 26.41 25.60 24.21 -0.99 1.28 2.09 3.48
Macro 33.71 33.04 33.64 31.22 -3.24 -2.57 -3.16 -0.75
Arbitrage 48.75 43.24 37.07 37.62 -3.30 2.22 8.38 7.83
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TABLE IV. Cross-Sectional Distribution of the Net Value-Added
Panel A contains summary statistics for the cross-sectional distribution of the net value-added to investors for
all funds in the population and the three investment categories (equity, macro, and arbitrage funds). It reports
the cross-sectional mean and median, the proportions of funds with a negative and positive value-added, and
the quantiles at 10% and 90%. Panel B contains summary statistics for the cross-sectional distribution of
the net skill coefficient measured as the first-dollar alpha. Panel C contains summary statistics for the cross-
sectional distribution of the net scale coefficient measured as the change in the net alpha for a $10 million
increase in capital. The value-added is expressed in million per year in terms of January 1, 2000 dollars. The
skill and scale coefficients are expressed in percentage per year. Figures in parentheses denote the standard
deviation of each estimator.

Panel A: Distribution of the Net Value-Added
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

All Funds 0.46 (1.32) 0.13 (0.48) 48.15 (3.09) 51.85 (3.09) -10.35 (0.79) 11.75 (0.79)

Equity 0.18 (1.50) -0.07 (0.50) 51.44 (3.92) 48.56 (3.92) -7.36 (1.17) 7.43 (0.79)
Macro -3.86 (1.84) -1.24 (0.94) 63.87 (3.96) 36.13 (3.96) -18.41 (2.17) 9.61 (1.27)
Arbitrage 3.75 (2.14) 1.15 (0.76) 33.77 (3.99) 66.23 (3.99) -5.63 (0.94) 16.67 (1.65)

Panel B: Distribution of the Net Skill Coefficient
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 9.21 (5.54) 7.45 (4.02) 18.20 (6.67) 81.80 (6.67) -3.30 (1.34) 23.36 (3.16)

Equity 9.90 (7.16) 8.02 ( 6.55) 18.17 (15.00) 81.83 (15.00) -3.12 (4.29) 24.63 (3.58)
Macro 8.21 (4.35) 6.53 (3.72) 23.77 (8.96) 76.23 (8.96) -5.39 (2.31) 22.43 (3.50)
Arbitrage 9.16 (7.20) 7.68 (5.11) 14.36 (8.01) 85.64 (8.01) -1.73 (2.31) 22.28 (5.85)

Panel C: Distribution of Net Scale Coefficient
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 1.35 (0.71) 0.36 (0.21) 17.40 (6.04) 82.60 (6.04) -0.17 (0.16) 4.07 (0.30)

Equity 1.80 (1.09) 0.57 (0.51) 17.35 (10.31) 82.65 (10.31) -0.16 (0.41) 5.24 (0.63)
Macro 1.31 (0.42) 0.38 (0.07) 14.58 (10.95) 85.42 (10.95) -0.10 (0.40) 3.44 (0.44)
Arbitrage 0.91 (0.71) 0.23 (0.21) 19.41 (7.59) 80.59 (7.59) -0.21 (0.18) 2.92 (0.39)
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TABLE V. Comparison of the Actual and Optimal Value-Added Measures
This table reports the results of the normative analysis of the value-added measures for all funds in the
population and the three investment categories (equity, macro, and arbitrage funds). It reports the cross-
sectional mean (median) of the actual and optimal values for the value-added and net value-added. It also
reports the difference and ratio of these cross-sectional statistics. All value-added measures are expressed
in million per year in January 1, 2000 terms.

Value-Added ($ mio. p.a.) Net Value-Added ($ mio. p.a.)

Actual Optimal Diff. Ratio (%) Actual Optimal Diff. Ratio (%)

Cross-Sectional Average
All Funds 5.59 15.41 -9.82 36.29 1.01 1.64 -0.63 61.84

Equity 3.84 11.20 -7.37 34.25 0.43 1.19 -0.76 36.23
Macro 2.47 15.76 -13.30 15.64 -2.32 1.63 -3.95 -142.23
Arbitrage 9.43 19.67 -10.24 47.93 3.73 2.13 1.60 175.49

Cross-Sectional Median
All Funds 1.73 6.36 -4.63 27.22 0.28 0.79 -0.50 35.83

Equity 1.36 4.88 -3.51 27.99 0.04 0.52 -0.48 7.79
Macro 0.33 5.99 -5.66 5.47 -0.76 0.76 -1.52 -100.32
Arbitrage 3.61 8.76 -5.15 41.25 1.06 1.25 -0.19 84.91
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TABLE VI. Fee Policy and Capital Misallocation
This table quantifies the effects of the fee policy and capital misallocation on the value-added measures for
all funds and the three investment categories (equity, macro, and arbitrage). Panel A examines the fee policy
by funds. It reports the cross-sectional mean (median) of the actual and optimal fee rates, along with their
differences. It then shows the implied consequences for the capital and value-added measures, reporting the
mean (median) of the equilibrium and optimal values predicted by the model and their differences. Panel B
examines the capital misallocation by investors. It reports the mean (median) of the actual and equilibrium
capital levels, together with their differences. It then shows the implied consequences for the value-added
measures reporting the mean (median) of the actual and equilibrium values. Fees are expressed in percent
per year. The value-added measures (capital) are expressed in million per year (million) of January 1, 2000
dollars.

Panel A: Fee Policy by Funds
Fee Policy (% p.a.) Implications For

Capital ($ mio.) Value-Added ($ mio. p.a.) Net Value-Added ($ mio. p.a.)

Chosen Target Diff. Equilib. Optimal Diff. Equilib. Optimal Diff. Equilib. Optimal Diff.

Cross-Sectional Average
All Funds 3.10 8.53 -5.44 245 164 81 10.59 15.41 -4.82 2.45 1.64 0.81

Equity 3.18 8.90 -5.71 173 119 54 7.66 11.20 -3.54 1.73 1.19 0.54
Macro 3.06 8.61 -5.55 246 163 83 10.78 15.76 -4.98 2.46 1.63 0.83
Arbitrage 3.02 8.10 -5.07 321 213 109 13.59 19.67 -6.08 3.21 2.13 1.09

Cross-Sectional Median
All Funds 3.11 7.01 -3.90 113 79 35 4.37 6.36 -1.99 1.13 0.79 0.35

Equity 3.22 7.62 -4.40 78 52 27 3.19 4.88 -1.69 0.78 0.52 0.27
Macro 2.93 6.81 -3.88 105 76 29 4.03 5.99 -1.96 1.05 0.76 0.29
Arbitrage 3.13 6.61 -3.48 172 125 48 6.63 8.76 -2.13 1.72 1.25 0.48

Panel B: Capital Misallocation by Funds
Capital Misallocation ($ mio.) Implications For

Value-Added ($ mio. p.a.) Net Value-Added ($ mio. p.a.)

Chosen Target Diff. Actual Equilib. Diff. Actual Equilib. Diff.

Cross-Sectional Average
All Funds 316 245 71 5.59 10.59 -5.00 1.01 2.45 -1.44

Equity 231 173 58 3.84 7.66 -3.82 0.43 1.73 -1.30
Macro 339 246 93 2.47 10.78 -8.31 -2.32 2.46 -4.78
Arbitrage 392 321 71 9.43 13.59 -4.16 3.73 3.21 0.51

Cross-Sectional Median
All Funds 158 113 45 1.73 4.37 -2.63 0.28 1.13 -0.85

Equity 106 78 27 1.36 3.19 -1.82 0.04 0.78 -0.74
Macro 159 105 54 0.33 4.03 -3.70 -0.76 1.05 -1.82
Arbitrage 240 172 68 3.61 6.63 -3.02 1.06 1.72 -0.66
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Figure 1. Impact of Leverage on the Skill and Scale Coefficients
Panel A reports the average skill coefficient and its unlevered version for all funds in the population and the
three investment categories (equity, macro, and arbitrage funds). The skill coefficient is measured as the first-
dollar alpha. Panel B reports the average scale coefficient and its unlevered version. The scale coefficient
is measured as the change in the gross alpha for a $10 million increase in capital. Both coefficients are
expressed in percentage per year.
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Figure 2. Comparison of the Value-Added With Mutual Funds
This figure compares the average value-added for hedge funds and mutual funds. The leftmost bars show
the average values for all hedge funds in the population and the three investment categories (equity, macro,
and arbitrage funds). The rightmost bars show the average values for all mutual funds in the population and
the six fund groups (small/large cap, low-/high-turnover, direct-/broker sold). The value-added is expressed
in million per year in terms of January 1, 2000 dollars.
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Figure 3. Comparison of the Net Value-Added With Mutual Funds
This figure compares the average net value-added for hedge funds and mutual funds. The leftmost bars show
the average values for all hedge funds in the population and the three investment categories (equity, macro,
and arbitrage funds). The rightmost bars show the average values for all mutual funds in the population
and the six fund groups (small/large cap, low-/high-turnover, direct-/broker sold). The net value-added is
expressed in million per year in terms of January 1, 2000 dollars.
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Figure 4. Evolution of the Subperiod Capital
This figure examines the evolution of capital over the fund’s lifecycle for all funds in the population and the
three investment categories (equity, macro, and arbitrage funds). For each fund, we split its full sample of
observations into five equal-sized subperiods and compute the ratio of average capital in each subperiod to
its full-sample average. Panel A plots the evolution of the average ratio across unskilled funds, defined as
those with a negative net-of-fee skill coefficient (âneti < 0). Panel B plots the evolution of the average ratio
across skilled funds, defined as those with a positive net-of-fee skill coefficient (âneti > 0). The subperiod
capital is expressed in million in terms of January 1, 2000 dollars.
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Figure 5. Evolution of the Subperiod Value-Added
This figure examines the evolution of the value-added over the fund’s lifecycle for all funds in the population
and the three investment categories (equity, macro, and arbitrage funds). For each fund, we split its full
sample of observations into five equal-sized subperiods and compute the value-added in each subperiod.
Panel A and B plot the evolution of the proportion of funds with negative and positive subperiod value-
added. Panels C and D plot the evolution of the quantiles at 10% and 90%. The subperiod value-added is
expressed in million per year in terms of January 1, 2000 dollars.
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Figure 6. Evolution of the Subperiod Net Value-Added
This figure examines the evolution of the net value-added over the fund’s lifecycle for all funds in the
population and the three investment categories (equity, macro, and arbitrage funds). For each fund, we split
its full sample of observations into five equal-sized subperiods and compute the net value-added in each
subperiod. Panel A and B plot the evolution of the proportion of funds with negative and positive subperiod
net value-added. Panels C and D plot the evolution of the quantiles at 10% and 90%. The subperiod net
value-added is expressed in million per year in terms of January 1, 2000 dollars.
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Figure 7. Fee Policy - Impact of Low Fees
This figure illustrates how the fee policy affects the equilibrium implied by the model. When a fund sets
fees below the optimal level, investors allocate more capital than is optimal. Consequently, the equilibrium
value-added falls below its optimal level, while the equilibrium net value-added rises above it.
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Figure 8. Capital Misallocation - Impact of Excess Capacity
This figure illustrates how capital misallocation affects the actual value-added measures. When investors
allocate more capital than the equilibrium level implied by the model, both the gross and net value-added
fall below their equilibrium levels.

51


