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Abstract. In this paper we consider a SEIRD epidemic model for a population
composed by two groups of individuals with asymmetric interaction. Given an
approximate solution for the two-group model, we estimate the error of this
approximation to the unknown solution to the second group based on the known
error that the approximation has with respect to the solution to the first group.
We also study the final size of the epidemic for each group. We illustrate our
results with the spread of the coronavirus disease 2019 (COVID-19) pandemic in
the New York County (USA) for the initial stage of the contamination, and in
the cities of Petrolina and Juazeiro (Brazil).

1. Introduction

The models for outbreak and spread of diseases have a long history of studies and
analysis since the pioneering work of John Graunt, who made a statistical approach to
understand public health and causes of deaths in England ([16]), and Daniel Bernoulli,
who proposed the first mathematical model describing an infectious disease ([8]) and
the impact of inoculation for the smallpox control ([9]). The models we use nowadays
(SIR models and extensions) originated in the works of Sir Ronald Ross ([32]), who
formulated a system of differential equations after his studies on the spread of malaria,
and later, refined by William Kermack and Anderson McKendrick, who generalized
the approach and established the condition for an epidemic to occur ([19]), which is
now known as the basic reproduction number. Many related models and approaches
have been studied since then ([11, 18, 26, 29]), and were specially used recently to
analyze the spread and to forecast the number of cases of COVID-19 epidemic ([10,
15, 17, 23, 24, 30, 31, 36, 37] and many others).

In this paper we study the case of a two-group epidemic model, where the infectious
individuals of each group transmit the disease to the susceptible individuals of both
groups according to an asymmetric interaction. The division in groups may happen
for biological, geographic or even socioeconomic reasons. For instance, in [6] an
age structured SIRS model was applied to study seasonal evolution of Respiratory
Syncytial Virus (RSV) in Valencia, Spain. Infection by RSV tends to be more severe in
babies under one year old. On the other hand, COVID-19 affects elderly people more
aggressively ([33, 4]). A disease may also spread differently between locations. In [12]
the authors study the spread of sleeping sickness by using a differential equation model
where both human and vector populations are divided into two patches according to
location: plantation and village. Finally, socioeconomic inequality might play an
important role in the spread of diseases such as COVID-19 as shown in [13] and [27].

After a susceptible individual becomes infected by interacting with an infectious
one, there is a period of time before he can transmit the disease himself. This period
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of latency or exposure may or may not be relevant for the dynamics of a disease,
depending on how long it may be compared to the total duration of the infectious
period. In the case of COVID-19, the latency period is on average 3-5 days ([21, 38])
up to 14 days, which is 1-2 days less than the incubation period, i.e., the period
needed for the symptoms onset, which is on average 5-6 days, also up to 14 days
([4]). Therefore, since the infectious period may vary between 5 days (mild cases) up
to 6 weeks (severe or critical cases) ([4, 22]), this exposure period is relevant to the
progression of the epidemic. That is why in this work we have chosen to study the
two group SEIRD model, which includes the exposure period.

In this article, we study the system of equations for the two-group SEIRD model.
The system considered here is the following:

(1)


S′(t) = −diag(S(t))BI(t)
E′(t) = diag(S(t))BI(t)−AE(t)
I ′(t) = AE(t)− (Γ +M)I(t)
R′(t) = ΓI(t)
D′(t) =MI(t)

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, D(0) = D0 ∈ R2
+,

where the vectorial functions S(t), E(t), I(t), R(t) and D(t) represent the classes of
susceptible, exposed, infectious, recovered and deceased individuals, respectively, for
groups 1 and 2 as

S(t)=

(
S1(t)
S2(t)

)
, E(t)=

(
E1(t)
E2(t)

)
, I(t)=

(
I1(t)
I2(t)

)
, R(t)=

(
R1(t)
R2(t)

)
, D(t)=

(
D1(t)
D2(t)

)
.

Note that, if N = (N1, N2) is the number of individuals at each group at time
t = 0, by the system of equations (1) we have

(2) S(t) + E(t) + I(t) +R(t) +D(t) = N , for all t > 0.

The transmission of the disease is given by the interaction of the infectious
individuals with the susceptible ones and expressed by the infection matrix, composed
by the infection rates βij of the susceptible individuals Si by the infectious individuals
Ij

B =

(
β11 β12
β21 β22

)
.

Once infected, each individual becomes an asymptomatic noninfectious individual in
class E. The exit of the exposed class is given by the latency matrix

A =

(
α1 0
0 α2

)
,

where α1, α2 > 0. This means that each newly infected individual takes the average
time of 1/αi (according to the group) to become infectious, i.e, to be in the class I
and contribute with the communicability of the disease. The dynamics of individuals
leaving the class I is governed by the recovering rate matrix Γ and the death rate
matrixM given by

Γ =

(
γ1 0
0 γ2

)
, M =

(
µ1 0
0 µ2

)
.

Thus the exit flux of infectious individuals in each group is composed by γiIi, which
represents those who recovered from the disease and become immune (per time unit),
and µiIi which gives the rate of deaths caused by the disease per unit of time. Hence
the average time of infectiousness in each group is 1/(γi + µi).
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The flux of individuals for system (1) is shown in Figure 1.
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Figure 1. Flow diagram of individuals in system (3). The solid arrows represents the
flux of individuals and the dashed arrows represent the interaction of infectious classes
I1 and I2.

Therefore the system (1) can be explicitly rewritten as

(3)


S′1 = −(β11I1 + β12I2)S1 , S′2 = −(β21I1 + β22I2)S2

E′1 = (β11I1 + β12I2)S1 − α1E1 , E′2 = (β21I1 + β22I2)S2 − α2E2

I ′1 = α1E1 − (γ1 + µ1)I1 , I ′2 = α2E2 − (γ2 + µ2)I2
R′1 = γ1I1 , R′2 = γ2I2
D′1 = µ1I1 , D′2 = µ2I2

The present work deals with two different problems concerning the two-group
SEIRD model. The first problem is estimating the final size of the epidemic. The
study of the final size SIR models with multi-group population was made in [7] and
[25], for example. We discuss it in Section 2 and prove that for both groups the
number of individuals who escape the epidemic is always positive. We also present a
way of calculating these limit values in Theorem 2.8.

For the second problem, consider two sets of parameters, Ã, B̃, Γ̃, M̃ and A,B,
Γ, M, for the system (1) with the same initial conditions, and let S̃, Ẽ, Ĩ, R̃, D̃
and S,E, I,R,D be their respective sets of solutions. We would like to obtain
estimates for the distance between the solutions to second group, i.e., for the quantities
‖S̃2 − S2‖[0,T ], ‖Ẽ2 − E2‖[0,T ], ‖Ĩ2 − I2‖[0,T ], ‖R̃2 − R2‖[0,T ] and ‖D̃2 − D2‖[0,T ],
based on the respective distances between the solutions to first group. In other
words, if the respective solutions to the first group are close to each other, than
we would like to know how close the respective solutions to the second group are.
We can also think of this problem as follows: suppose that the parameters Ã, B̃,
Γ̃, M̃ and the solutions to the second group S̃2, Ẽ2, Ĩ2, R̃2, D̃2 are unknown, but the
solutions to the first group are known. Also, suppose that the parameters A,B,
Γ, M and the respective solutions for both groups are known. Then, from the
error ‖(S̃1, Ẽ1, Ĩ1, R̃1, D̃1) − (S1, E1, I1, R1, D1)‖[0,T ], we would like to estimate the
respective error for the solutions to the second group, i.e., we would like to specify
a range around the solutions S2, E2, I2, R2, D2 where the unknown S̃2, Ẽ2, Ĩ2, R̃2, D̃2

must be. Unfortunately, we were not able to provide such estimates in this full
generality. However, in Section 3, we present a way to solve this problem under
the additional hypothesis that the distance ‖D̃2 − D2‖[0,T ] of number of deaths in
group 2 is known. Thus, in Theorem 3.4 we present these estimates under this extra
information on group 2 and with some hypotheses on the parameters of the system.

Finally, in Section 4 we illustrate these results with the evolution of COVID-
19 epidemic in two two-group populations: New York County and its neighboring
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counties in USA in Subsection 4.1, and the neighboring cities of Petrolina and Juazeiro
in Brazil, in Subsection 4.2. In the first example, we are able to estimate the evolution
of infectious cases in New York County only using its data of deaths and the evolution
of cases and deaths in the neighboring counties. On the other hand, the same method
applied to the second example of the cities in Brazil, suggests that the cases in Juazeiro
may be under-reported, based on the evolution of cases and deaths in Petrolina and
on the deaths in Juazeiro.

Estimating the distance for the solutions in the second group as mentioned above
might be useful in situations where reporting on part of the cases of infection is
compromised. This could happen, for instance, to an unprivileged minority or to poor
people who might have no proper access to the health system, or even a structural
feature of the health system, where a relative under-development of the health system
in one group could lead to a lower number of reported cases.

It is worth mentioning that we are assuming that infections by infected individuals
from group j are proportional to Ij/Nj , since the rate in which individuals in group
i become infected, as presented in (3), can be rewritten as βijIj = βijNj(Ij/Nj).
For many infections that can cause deaths, this is not a realistic assumption since
it does not take into account the change in number of alive individuals. A more
accurate model should exclude the total number Dj of deceased individuals from
the infecting process and thereby suppose that the force of infection is proportional
Ij/(Nj −Dj). For many applications, this is not a significant change if the number of
deceased individuals is small relatively to the population size, as it is at the beginning
of an epidemic for example. But in a long-time analysis, these two models may be
considerably different, specially in cases where the mortality rates µi are large. In the
following section we present results on the final size analysis not considering the effects
that the change in alive population size has on the infectious rates, and the results
presented does not seem adaptable to that case. Although this is a very interesting
problem, the authors are not aware of any final size analysis that includes deaths
apart from [14].

We are also assuming with model (3) that individuals from different groups interact
freely in a homogeneous space, as studied in [7] and [25]. The probability of an
infected individual from group i entering into contact with individuals from group j
is proportional to the group size. For a much more general approach that takes into
account different population nodes and the flux of individuals between them, see for
example [10] and [15].

Finally, another limitation of model (1) that we would like to mention is that it
considers 1/(γi + µi) as the average time of infection for each group, whether it ends
up with death or recovery. A more precise model should take into account different
periods of time for infection depending on the severity and the outcome of the cases,
since, as we mentioned before, it may vary from 5 days to 6 weeks in the case of the
COVID-19 disease. In [35], the authors present a more accurate model that considers
extra compartments that covers different age of infection depending on the severity
and also on the outcome of the disease.

2. Final Size

In this section we analyze the final size of the epidemic for the two-group model.
We prove that the number of exposed and infectious individuals always goes to zero
as time goes to infinity, and that there is always a positive number of individuals who
escape the epidemic. We remark that our results for the final size of the two-group
SEIRD model and the respective proof are very similar to the results given in [25] for



FINAL SIZE AND PARTIAL DISTANCE ESTIMATE FOR THE SEIRD MODEL 5

the SIR model, since the models are close. Therefore, our proof is adapted from the
one given by the authors in that reference. The main difference here is the inclusion of
the class of exposed individuals, which affects the time in which an individual starts
to contribute to the spread of the disease.

For the results in this section, we will need the following definition:

Definition 2.1. The n × n matrix A is irreducible when A cannot be transformed
into block upper-triangular form by simultaneous row-column permutations, i.e, when
there is no permutation matrix P such that PAP−1 is block upper-triangular.

Note that, if n = 2, A is irreducible if and only if A12, A21 6= 0.

We will assume the following hypotheses on the matrices B and Γ +M:

Hypothesis 2.2. B is a nonnegative irreducible matrix. By Definition 2.1, this is
equivalent to assuming that β12, β21 > 0.

Hypothesis 2.3. α1, α2 > 0 , γ1, γ2, µ1, µ2 ≥ 0 and γ1 + µ1 > 0 and γ2 + µ2 > 0

We start with the following representation formulas for the solutions Ei and Ii of
the exposed and infectious individuals, respectively, of each group:

Lemma 2.4. For each i = 1, 2, let Si, Ei and Ii be the components of the solution
to the system (3). Then

Ei(t) = −Si(t) + αie
−αit

∫ t

0

Si(s)e
αis ds+ (Si(0) + Ei(0))e−αit,(4)

Ii(t) = Ii(0)e−(γi+µi)t + αie
−(γi+µi)t

∫ t

0

e(γi+µi)sEi(s) ds.(5)

Proof. Firstly, adding the equations for S and E, we obtain

S′(t) + E′(t) = −AE(t).

Componentwise, it holds for each i = 1, 2 that

(6) E′i(t) + αiEi(t) = −S′i(t).

Thus, multiplying by eαit we can rewrite it as
d

dt

(
eαitE(t)

)
= −eαitS′i(t).

Finally, an integration by parts leads to the result.
The expression for Ii follows straight from the I-equation. �

With Lemma 2.4 above, we can obtain the asymptotic values for the solutions E
and I:

Lemma 2.5. For any initial conditions, there exist the limits

S∞ = lim
t→+∞

S(t) , E∞ = lim
t→+∞

E(t) , I∞ = lim
t→+∞

I(t) ,

R∞ = lim
t→+∞

R(t) and D∞ = lim
t→+∞

D(t).

Furthermore, by Lemma 2.4, it follows that E∞ = 0 and I∞ = 0.

Proof. Since βi,j > 0, γi > 0 and µi > 0 for all i, j ∈ {1, 2}, it follows from the system
(1) that Si(t), Ri(t) and Di(t) are monotone. Furthermore, by the restriction (2), it
follows that these functions are also bounded in [0,∞). Therefore, there exists the
limits S∞i , R∞i and D∞i for all i = 1, 2.
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For the functions Ei and Ii, i = 1, 2, we use the representation given by Lemma
2.4. Then applying L’Hôpital’s Rule, we obtain that E∞i , I

∞
i = 0 for i = 1, 2. �

Remark 2.6. Another way to see that E∞ = 0 is estimating

αie
−αit

∫ t

0

Si(s)e
αis ds = αie

−αit

∫ t/2

0

Si(s)e
αis ds+ αie

−αit

∫ t

t/2

Si(s)e
αis ds

≤ Si(0)e−αit(eαit/2 − 1) + Si(t/2)e−αit(eαit − eαit/2)

= (Si(0)− Si(t/2)) e−αit/2 + Si(0)e−αit + Si (t/2) .

Therefore

0 ≤ Ei(t) ≤ Si(t/2)− Si(t) + (Si(0)− Si(t/2)) e−αit/2 + Ei(0)e−αit

and the result follows. This also shows that S(t)→ S∞ no faster than E(t)→ 0.

In the rest of this section we show that the asymptotic values S∞1 and S∞2 are
always positive in the two-group model and we will obtain a formula to estimate
these values.

Let us begin with the equation for S(t) in (1). Since S1(0), S2(0) > 0, by continuity
we can take lnS(t) at least for t sufficiently small. Thus, we have that

d

dt
(lnS(t)) = −BI(t)

where the logarithm is taken componentwise. By adding the first three equations we
obtain

d

dt
(S(t) + E(t) + I(t)) = −(Γ +M)I(t).

Therefore,
d

dt

(
B(Γ +M)−1(S(t) + E(t) + I(t))− lnS(t)

)
= 0.

Thus, we obtain that the function F defined by

(7) F(t) := B(Γ +M)−1(S(t) + E(t) + I(t))− lnS(t)

must be constant equal to F(0). By continuity, the logarithm above can be taken
for all values of t, and the fact that S∞ is finite implies that we can take the limit
t → +∞ and conclude that S∞1 , S∞2 > 0. Taking the limit t → ∞ we also have the
relation

(8) B(Γ +M)−1S∞ − lnS∞ = B(Γ +M)−1(S0 + E0 + I0)− lnS0,

since I∞ = 0 = E∞. Denoting X0 := S0 + E0 + I0, we can write

B(Γ +M)−1S∞ − lnS∞ = B(Γ +M)−1X0 − lnS0

lnS∞ = lnS0 + B(Γ +M)−1(S∞ −X0)

S∞ = S0 exp
(
B(Γ +M)−1(S∞ −X0)

)
,(9)

where the exponential is taken componentwise. Equation (9) shows that S∞ is a fixed
point of the map T : R2 → R2 defined by

(10) T (X) = S0 exp
(
B(Γ +M)−1(X −X0)

)
or, denoting X = (x, y) and T (X) = (T1(x, y), T2(x, y)),

T1(x, y) = S1(0) exp

(
β11

γ1 + µ1
(x− x0) +

β12
γ2 + µ2

(y − y0)

)
,(11)

T2(x, y) = S2(0) exp

(
β21

γ1 + µ1
(x− x0) +

β22
γ2 + µ2

(y − y0)

)
,(12)
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with x0 = S1(0) + E1(0) + I1(0) and y0 = S2(0) + E2(0) + I2(0). Before we continue
with the analysis of the epidemic final size, let us define the following notation for
partial ordering of vectors in R2: given X = (X1, X2), Y = (Y1, Y2) ∈ R2, se say that

X ≤ Y ⇐⇒ Xi ≤ Yi for all i = 1, 2 ,
X < Y ⇐⇒ X ≤ Y and Xi < Yi for some i = 1, 2 ,
X � Y ⇐⇒ Xi < Yi for all i = 1, 2 .

Theorem 2.7. Let T : R2 → R2 be the map defined in (10) with X0 = S0 + I0 +E0.
Then, under the hypotheses 2.2 and 2.3, we have

a) T is componentwise increasing
b) T (S0) = S0 ⇔ E0 = 0 = I0
c) E0 + I0 > 0⇔ 0� T (0)� T (S0)� S0

d) The derivative of T is componentwise increasing and given by

(13) DT (x, y) =


β11

γ1 + µ1
T1(x, y)

β12
γ2 + µ2

T1(x, y)

β21
γ1 + µ1

T2(x, y)
β22

γ2 + µ2
T2(x, y)

 .

Proof. The point a) follows from hypotheses 2.2 and 2.3.
For point b), note that T (S0) = S0 is equivalent to

βi1
γ1 + µ1

(E1(0) + I1(0)) +
βi2

γ2 + µ2
(E2(0) + I2(0)) = 0 i = 1, 2.

Again by hypotheses 2.2 and 2.3, this is true only when E(0) = 0 = I(0), since these
functions are nonnegative.

Point c) follows from points a) and b), and point d) follows from the definition of
T .

�

It follows from the points (a) and (c) in the theorem above that, for every n ∈ N

0� T (0)� · · · � Tn(0)� · · · � Tn(S0)� · · · � T (S0)� S0.

Therefore, there exist the limits

S− = lim
n→∞

Tn(0), S+ = lim
n→∞

Tn(S0),

they satisfy S− ≤ S+ and are fixed points of T on [0, S1(0)] × [0, S2(0)], since T is
continuous. Note that, due to the monotonicity of T , there is no other fixed points of
T in [0, S1(0)]× [0, S2(0)]\[S−1 , S

+
1 ]× [S−2 , S

+
2 ]. Thus, the limit value S∞ must satisfy

S− ≤ S∞ ≤ S+.

Theorem 2.8 (Final size). Let us assume that (2.2) and (2.3) hold. If S0 � 0 and
E0 + I0 > 0, then the final state of the epidemic model is

i) 0 6= S∞ = lim
n→∞

Tn(0)

ii) I∞ = 0 = E∞

iii) R∞ +D∞ = N − S∞
iv) R∞ = Γ(Γ +M)−1(N − S∞ −R0 −D0) +R0

v) D∞ =M(Γ +M)−1(N − S∞ −R0 −D0) +D0

Proof. For item i), let us show that under Hypotheses 2.2 and 2.3, we have S− = S+,
i.e., the map T has only one fixed point.
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Let us suppose that S− < S+. Then, by the Taylor’s Theorem we can write

S+ − S− = T (S+)− T (S−) =

∫ 1

0

DT (S− + τ(S+ − S−))(S+ − S−) dτ.

From (13), we see that DT is componentwise increasing by the monotonicity of T .
It follows that DT (S− + τ(S+ − S−)) ≤ DT (S+) componentwise for all τ ∈ [0, 1].
Therefore, we obtain

S+ − S− ≤ DT (S+)(S+ − S−).(14)

Since DT (S+) = diag(S+)B(Γ +M)−1, we have from Hypothesis 2.2 and 2.3 that
DT (S+) is nonnegative irreducible. Hence, by the Perron-Frobenius Theorem, let
λ > 0 be the dominant eigenvalue and W � 0 an associated left eigenvector. From
(14) we have

WT (S+ − S−) ≤WTDT (S+)(S+ − S−) = λWT (S+ − S−),(15)

and thus, λ > 1. By the definition of S+, we have S0 > S
+ and then DT (S+ +τ(S0−

S+)) > DT (S+) componentwise for all τ > 0. Therefore,

T (S0)− S+ = T (S0)− T (S+) =

∫ 1

0

DT (S+ + τ(S0 − S+))(S0 − S+) dτ

> DT (S+)(S0 − S+).

Multiplying the inequality above by WT ,

WT (T (S0)− S+) > WTDT (S+))(S0 − S+) = λWT (S0 − S+)

> WT (S0 − S+)

and, since W � 0 this implies that T (S0) > S0, which cannot happen if E0 + I0 > 0
by item (c) of Theorem 2.7.

The item ii) was already proved.
Item iii) follows from item ii) and (2).
For the item iv), we can use the equations for R and D in (1) and obtain

R′ +D′ = (Γ +M)I = (Γ +M)Γ−1ΓI = (Γ +M)Γ−1R′,

which implies that

R(t) +D(t)−R0 −D0 = (Γ +M)Γ−1(R(t)−R0), ∀ t > 0.

Therefore, as t→ +∞ we conclude that

R∞ +D∞ −R0 −D0 = (Γ +M)Γ−1(R∞ −R0).

Using item iii), we can write

N − S∞ −R0 −D0 = (Γ +M)Γ−1(R∞ −R0)

and thus
R∞ = Γ(Γ +M)−1(N − S∞ −R0 −D0) +R0.

Finally, item v) follows from items iii) and iv). �

Remark 2.9. It follows from items c) and d) that the final size of recovered and
deceased classes are R∞i =

γi
γi + µi

(Ni − S∞i − Ri(0) − Di(0)) + Ri(0) and D∞i =

µi
γi + µi

(Ni − S∞i −Ri(0)−Di(0)) +Di(0) for each group i.

Remark 2.10. It follows from item i) that the final size S∞ can also be estimated
by using only the map T , instead of solving numerically the system (1).
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3. Distance estimates for the second group

In this section we study the following problem: given two sets of parameters, Ã, B̃,
Γ̃, M̃ and A,B, Γ,M, for the system (1), let S̃, Ẽ, Ĩ, R̃, D̃ and S,E, I,R,D be their
respective set of solutions, we want to estimate the distance related to the solutions
to second group ‖(S̃2, Ẽ2, Ĩ2, R̃2) − (S2, E2, I2, R2)‖[0,T ] based on the the distance
‖(S̃1, Ẽ1, Ĩ1, R̃1, D̃1, D̃2) − (S1, E1, I1, R1, D1, D2)‖[0,T ], i.e., based on the distances
between solutions of the first group plus on the distance between the evolution of
deaths in group 2 too.

We start with the following lemma on the ratio of susceptible class:

Lemma 3.1. The solutions S1(t) and S2(t) of susceptible individuals satisfy

S1(t)

S2(t)
=
S1(0)

S2(0)
exp

{∫ t

0

((β21 − β11) I1(s) + (β22 − β12) I2(s)) ds

}
.

Proof. From the equations for S1 and S2 in (3), we have[
S1

S2

]′
=

(β21I1 + β22I2)S1S2 − (β11I1 + β12I2)S1S2

S2
2

=
(

(β21 − β11) I1 + (β22 − β12) I2
)S1

S2
.

and thus, the result follows. �

The following two elementary results will be useful for the estimates in Theorem
3.4, therefore we include them with proofs.

Remark 3.2. Let a, b > 0 and f : [0,+∞)→ R defined by

f(ε) = (1− bε)e−aε.

Then, the Mean Value Theorem implies that, for every ε > 0, there holds∣∣1− (1− bε)e−aε
∣∣ ≤ max

ξ∈[0,ε]
|f ′(ξ)|ε = |f ′(0)|ε = (a+ b)ε.

Lemma 3.3. Let a, b > 0 and g : [0, T ]→ R defined by

g(s) = aea(s−T ) − beb(s−T ).

Then there exists at most one τ ∈ [0, T ) such that g(τ) = 0. Also, if h : [0, T ]→ R+

is nonincreasing, then
(16)∫ T

0

g(s)h(s) ds ≤

 h(0)(e−bT − e−aT ), if 0 < b < a

h(0)(e−bT − e−aT ) + (h(0)− h(T )) ln

(
b

a

)
, if 0 < a < b

.

Proof. To see this, note that g(τ) = 0 if and only if τ = T − 1

a− b
ln
(a
b

)
∈ [0, T ),

so it changes sign only once. If 0 < b < a, we have g(T ) = a − b > 0 and then g
nonnegative on [0, T ] or it changes sign at s = τ . In this case, for any h nonincreasing
nonnegative function we can write∫ T

0

g(s)h(s)ds =

∫ τ

0

g(s)h(s) ds+

∫ T

τ

g(s)h(s) ds ≤ h(τ)

∫ τ

0

g(s) ds+ h(τ)

∫ T

τ

g(s) ds

and the estimate follows. In the case where g is nonnegative, the estimate is
immediate.
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If 0 < a < b, we have g(T ) = a− b < 0 and then∫ T

0

g(s)h(s) ds =

∫ τ

0

g(s)h(s) ds+

∫ T

τ

g(s)h(s) ds

≤ h(0)
(
ea(τ−T ) − e−aT − eb(τ−T ) + e−bT

)
+h(T )

(
eb(τ−T )−ea(τ−T )

)
= h(0)

(
e−bT − e−aT

)
+ (h(0)− h(T ))

(
ea(τ−T ) − eb(τ−T )

)
.

By the Mean Value Theorem, there exists a a < ξ < b satisfying

ea(τ−T ) − eb(τ−T ) = (T − τ)(b− a)eξ(τ−T ) ≤ (T − τ)(b− a)ea(τ−T )

= ln

(
b

a

)(a
b

) a
b−a ≤ ln

(
b

a

)
,

where for the last equality we used that T − τ =
1

a− b
ln
(a
b

)
. �

For the main result of this section, we will denote the norm L∞(0, T ) by ‖ . ‖[0,T ].

Theorem 3.4. Let (S̃, Ẽ, Ĩ, R̃, D̃) and (S,E, I,R,D) be two solutions for (1) corre-
sponding to two sets of parameters Ã, B̃, Γ̃, M̃ and A,B, Γ,M respectively, with the
same initial conditions. If

(17) ‖(S̃1, Ẽ1, Ĩ1, R̃1, D̃1)− (S1, E1, I1, R1, D1)‖[0,T ] ≤ ε

and

i)
β̃2i − β̃1i

µ̃i
=
β2i − β1i

µi
, for i = 1, 2;

ii)
α̃1

α̃2
=
α1

α2
;

iii) γ̃1 − γ̃2 = γ1 − γ2;
iv) µ̃1 − µ̃2 = µ1 − µ2;

v) ‖D2 − D̃2‖[0,T ] < ε

then
‖(S̃2, Ẽ2, Ĩ2, R̃2)− (S2, E2, I2, R2)‖[0,T ] < K(ε)ε,

where K(ε) is bounded as ε → 0. Moreover, if β̃22 − β̃12 = β22 − β12, then the
hypothesis (v) is not necessary.

Proof. For simplicity let us define Vi =
β̃2i − β̃1i

µ̃i
=
β2i − β1i

µi
, for i = 1, 2.

Step 1: For the susceptible part, by Lemma 3.1 and the equation for D1 and D2 we
have

S̃2

S2
=
S̃1

S1
exp{V1(D1(t)− D̃1(t)) + V2(D2(t)− D̃2(t))}.

Firstly, let us assume that for a given t > 0 we have S̃2(t) ≤ S2(t). Since |S1(t) −
S̃1(t)| < ε by hypothesis, we obtain

0 ≤ S2(t)− S̃2(t) ≤ S2(t)

(
1− S̃2(t)

S2(t)

)

= S2(t)

(
1− S̃1(t)

S1(t)
eV1(D1(t)−D̃1(t))+V2(D2(t)−D̃2(t))

)

≤ S2(t)

(
1−

(
1− ε

S1(t)

)
eV1(D1(t)−D̃1(t))+V2(D2(t)−D̃2(t))

)
.(18)
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Since |Di(t)− D̃i(t)| ≤ ε, we can write

0 ≤ S2(t)− S̃2(t) ≤ S2(t)

(
1−

(
1− ε

S1(t)

)
e−(|V1|+|V2|)ε

)
≤ S2(t)

(
|V1|+ |V2|+

1

S1(t)

)
ε,(19)

where, for the last inequality, we used the Remark 3.2 for a = |V1| + |V2| and b =
1/S1(t).

In the case where S2(t) ≤ S̃2(t) for a given t > 0, we proceed analogously and
obtain

0 ≤ S̃2(t)− S2(t) ≤ S̃2(t)

(
1− S1(t)

S̃1(t)
e−V1(D1(t)−D̃1(t))−V2(D2(t)−D̃2(t))

)

≤ S̃2(t)

(
1− S1(t)

S1(t) + ε
e−(|V1|+|V2|)ε

)
≤ S2(0)

(
1−

(
1− ε

S1(t) + ε

)
e−(|V1|+|V2|)ε

)
,(20)

since the initial condition is the same for S2 and S̃2. Thus, for every fixed T > 0, we
can apply (20) and (19) to each t ∈ [0, T ] and obtain that

(21) ‖S̃2 − S2‖[0,T ] ≤ KSε,

where KS = S2(0)

(
|V1|+ |V2|+

1

S1(T )

)
.

Step 2: Suppose that E2(t) ≥ Ẽ2(t). Note that

S2(t) = S2(t)e−α2t + α2

∫ t

0

S(t)eα2(s−t)

and then, by Lemma 3.1 and Lemma 2.4 we have

E2(t)− Ẽ2(t) = −S2(t) + α2

∫ t

0

eα2(s−t)S2(s)ds+ (S2(0) + E2(0))e−α2t

+S̃2(t)− α̃2

∫ t

0

eα̃2(s−t)S̃2(s)ds− (S2(0) + E2(0))e−α̃2t

= α2

∫ t

0

eα2(s−t)(S2(s)− S2(t))ds+ (S2(0) + E2(0)− S2(t))e−α2t

−α̃2

∫ t

0

eα̃2(s−t)(S̃2(s)− S̃2(t))ds− (S2(0) + E2(0)− S̃2(t))e−α̃2t

≤ α2

∫ t

0

eα2(s−t)(S2(s)− S2(t))ds+ (S2(0) + E2(0)− S2(t))e−α2t

−α̃2

∫ t

0

eα̃2(s−t)(S2(s)− S2(t)− 2KSε)ds

−(S2(0) + E2(0)− S2(t)−KSε)e
−α̃2t

≤
∫ t

0

(
α2e

α2(s−t) − α̃2e
α̃2(s−t)

)
(S2(s)− S2(t))ds+KSεe

−α̃2t

+(S2(0) + E2(0)− S2(t))
(
e−α2t − e−α̃2t

)
+ 2α̃2KSε(1− e−α̃2t).
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Now, supposing that α̃2 < α2, by the Lemma 3.3 for a = α2, b = α̃2 and h(s) =
S2(s)− S2(t), we can estimate

E2(t)−Ẽ2(t) ≤ (S2(0)−S2(t))
(
e−α̃2t−e−α2t

)
+(S2(0)+E2(0)−S2(t))

(
e−α2t−e−α̃2t

)
+2α̃2KSε+ (1− 2α̃2)KSεe

−α̃2t

= −E2(0)
(
e−α̃2t − e−α2t

)
+
(

2α̃2 + (1− 2α̃2)e−α̃2t
)
KSε

≤ −E2(0)(α2 − α̃2)te−α2t +KSε

and, if α̃2 > α2 the Lemma 3.3 implies that

E2(t)− Ẽ2(t) ≤ (S2(0)− S2(t))
(
e−α̃2t − e−α2t

)
+ (S2(0)− S2(t)) ln

(
α̃2

α2

)
+(S2(0) + E2(0)− S2(t))

(
e−α2t − e−α̃2t

)
+KSε

= −E2(0)
(
e−α̃2t − e−α2t

)
+ (S2(0)− S2(t)) ln

(
α̃2

α2

)
+KSε

= E2(0)(α̃2 − α2)te−α2t + (S2(0)− S2(t)) ln

(
α̃2

α2

)
+KSε.

It remains to show that the parameters α̃2 and α2 are near each other under the
hypothesis of the Theorem. To see this, we can integrate (6) for i = 1 and obtain

(22) α1

∫ t

0

E1(s) ds = S1(0)− S1(t) + E1(0)− E1(t).

Thus, using the same argument for the parameter α̃1 and the hypothesis (ii) and
supposing without loss of generality that α̃2 > α2, we have for every t > 0 that

1 ≤ α̃2

α2
=

α̃1

α1
=

(
S1(0)− S̃1(t) + E1(0)− Ẽ1(t)

S1(0)− S1(t) + E1(0)− E1(t)

)(∫ t
0
E1ds∫ t

0
Ẽ1ds

)

≤
(

1 +
2ε

S1(0)− S1(t) + E1(0)− E1(t)

)(
1 +

εt∫ t
0
Ẽ1ds

)
.

Therefore, using for example t = 1, there exists constants C1, C2 > 0 such that

1 ≤ α̃2

α2
≤ 1 + C1ε+ C2ε

2

and thus 0 < α̃2 − α2 ≤ α2C1ε+ α2C2ε
2 .

Therefore, we conclude that, for α̃2 < α2, there holds

E2(t)− Ẽ2(t) ≤ −E2(0)(α2 − α̃2)te−α2t +KSε

and, for α̃2 > α2 we have

E2(t)− Ẽ2(t) ≤
(
α2E2(0)te−α2t + S2(0)− S2(t)

)
(C1 + C2ε)ε+KSε.

Therefore,

(23) ‖E2 − Ẽ2‖[0,T ] ≤ KE(ε)ε,

where

KE(ε) =

(
E2(0)

e
+ S2(0)− S2(T )

)
(C1 + C2ε) +KS ,

since for every λ > 0, the function g(t) := te−λt satisfies g(t) ≤ 1

λe
.
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Step 3: For the functions I2 and Ĩ2(t), we can use (5) and write

I2(t)− Ĩ2(t) = I2(0)
(
e−(γ2+µ2)t − e−(γ̃2+µ̃2)t

)
+

∫ t

0

(
α2e

(γ2+µ2)(s−t)E2(s)− α2e
(γ̃2+µ̃2)(s−t)Ẽ2(s)

)
ds

=: J1(t) + J2(t),(24)

where J1(t) and J2(t) are defined by the first and second term on the right-hand side
of the first equality. Firstly we can use the Mean Value Theorem to obtain

|J1(t)| = |I2(0)|
∣∣∣e−(γ2+µ2)t − e−(γ̃2+µ̃2)t

∣∣∣ ≤ |I2(0)||γ2 + µ2 − γ̃2 − µ̃2|te−min{γ2+µ2,γ̃2+µ̃2}t.

In order to prove that the first term on the right-hand side of the inequality is bounded
by ε, note that the equations for R1(t) and D1(t) imply

R′1(t) +D′1(t) = (γ1 + µ1)I1(t)

and therefore, supposing w.l.g. γ1 + µ1 < γ̃1 + µ̃1,

1 <
γ̃1 + µ̃1

γ1 + µ1
=

R̃1(t) + D̃1(t)−R1(0)−D1(0)

R1(t) +D1(t)−R1(0)−D1(0)

∫ t
0
I1(s) ds∫ t

0
Ĩ1(s) ds

≤
(

1 +
2ε

R1(t) +D1(t)−R1(0)−D1(0)

)(
1 +

εt∫ t
0
Ĩ1(s) ds

)

=

(
1 +

2ε

R1(t) +D1(t)−R1(0)−D1(0)

)(
1 +

εµ̃1t

D̃1(t)− D̃1(0)

)
,

where the last equality comes from the equation for D̃1(t).
Since the inequality above holds for every t > 0, there exist constants C3 and C4

such that
γ̃1 + µ̃1

γ1 + µ1
≤ 1 + C3ε+ C4ε

2

and then

0 ≤ γ̃1 + µ̃1 − γ1 − µ1 ≤ (γ1 + µ1)
(
C3ε+ C4ε

2
)
.

Since by hypotheses (iii) and (iv) we have γ̃2 + µ̃2 − γ2 − µ2 = γ̃1 + µ̃1 − γ1 − µ1, we
conclude that

|J1(t)| ≤ |I2(0)|te−min{γ2+µ2,γ̃2+µ̃2}t(γ1 + µ1)
(
C3ε+ C4ε

2
)
.(25)

Now for the term J2(t), we can decompose it as

J2(t) = H1(t) +H2(t) +H3(t)(26)

where

H1(t) := (α2 − α̃2)

∫ t

0

e(γ2+µ2)(s−t)E2(s) ds,

H2(t) := α̃2

∫ t

0

(
e(γ2+µ2)(s−t) − e(γ̃2+µ̃2)(s−t)

)
E2(s) ds,

H3(t) := α̃2

∫ t

0

e(γ̃2+µ̃2)(s−t)
(
E2(s)− Ẽ2(s)

)
ds.

For the H1(t), we can use (22) and obtain

|H1(t)| ≤ |α2 − α̃2|
S2(0)− S2(t) + E2(0)− E2(t)

α2

≤ (S2(0)− S2(t) + E2(0)− E2(t)) (C1 + C2ε)ε.(27)
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For the H2(t), we can use a similar argument as the one used for J1(t) and H1(t):

|H2(t)| ≤ α̃2|γ2 + µ2 − γ̃2 − µ̃2|
∫ t

0

(t− s)emin{γ2+µ2,γ̃2+µ̃2}(s−t)E2(s) ds

≤ α̃2
|γ2 + µ2 − γ̃2 − µ̃2|

min{γ2 + µ2, γ̃2 + µ̃2}e

∫ t

0

E2(s) ds

≤ α̃2

α2

|γ2 + µ2 − γ̃2 − µ̃2|
min{γ2 + µ2, γ̃2 + µ̃2}e

(S2(0)− S2(t) + E2(0)− E2(t))

≤ α̃2

α2

S2(0)− S2(t) + E2(0)− E2(t)

min{γ2 + µ2, γ̃2 + µ̃2}e
(γ1 + µ1)

(
C3ε+ C4ε

2
)
.(28)

Finally, we use (23) to estimate H3(t) as

|H3(t)| ≤ α̃2

γ̃2 − µ̃2
(1− e−(γ̃2+µ̃2)t)KEε(29)

and, from (24), (25), (26), (27), (28) and (29), we obtain∣∣∣I2(t)− Ĩ2(t)
∣∣∣ ≤ |I2(0)|te−min{γ2+µ2,γ̃2+µ̃2}t(γ1 + µ1)

(
C3ε+ C4ε

2
)

+ (S2(0)− S2(t) + E2(0)− E2(t)) (C1 + C2ε)ε

+
α̃2

α2

S2(0)− S2(t) + E2(0)− E2(t)

min{γ2 + µ2, γ̃2 + µ̃2}e
(γ1 + µ1)

(
C3ε+ C4ε

2
)

+
α̃2

γ̃2 − µ̃2
(1− e−(γ̃2+µ̃2)t)KEε.

Therefore, we have ‖I2 − Ĩ‖[0,T ] ≤ KI(ε)ε where

KI(ε) =

(
|I2(0)|+ α̃2

α2
((S2(0)− S2(T ) + E2(0))

)
(γ1 + µ1) (C3 + C4ε)

min{γ2 + µ2, γ̃2 + µ̃2}e

+ (S2(0)− S2(T ) + E2(0)) (C1 + C2ε) +
α̃2

γ̃2 − µ̃2
KE .

Step 4: For the solutions R2 and R̃2, we use (2)

S2 + E2 + I2 +R2 +D2 = N2 = S̃2 + Ẽ2 + Ĩ2 + R̃2 + D̃2

and thus
‖R2 − R̃2‖[0,T ] ≤ (KS +KE +KI + 1) ε.

�

Remark 3.5. In many cases the hypothesis ii-iv can be retrieved from clinical data
under the assumption that some of the parameters are equal for both populations.
Hence, in general, condition i seems to be the most difficult to verify for practical
applications.

Remark 3.6. Note that, given a fixed model with parameters Ã, B̃, Γ̃, M̃, the
conclusion of the theorem holds only for all the solutions S2, E2, I2, R2, D2 to models
whose parameters A,B, Γ,M satisfy (i)-(iv) with respect to the fixed ones.

Remark 3.7. Instead of using the equation for D2 in Step 1, we could use the equation

for R2. Then, the estimates would depend on
β2i − β1i

γi
instead of

β2i − β1i
µi

. In this

case, hypotheses (i) and (v) would change. We choose to base our estimates on death
rates because data on number of deaths are more reliable for applications.
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Remark 3.8. Alternatively, if B(Γ +M)−1 = B̃(Γ̃ + M̃)−1, i.e., if

βij
γj + µj

=
β̃ij

γ̃j + µ̃j
for i, j = 1, 2 ,

we can prove the estimates in Step 3 by using (7) and then
β11

γ1 + µ1
(S1(t) + E1(t) + I1(t)) +

β12
γ2 + µ2

(S2(t) + E2(t) + I2(t)) = P1,

β̃11
γ̃1 + µ̃1

(S̃1(t) + Ẽ1(t) + Ĩ1(t)) +
β̃12

γ̃2 + µ̃2
(S̃2(t) + Ẽ2(t) + Ĩ2(t)) = P̃1,

where P1 and P̃1 are constants depending on the matrices B(Γ +M)−1 and B̃(Γ̃ +

M̃)−1, and on the initial conditions. By hypothesis, P1 = P̃1. Then, from these two
identities, we obtain

I2(t)− Ĩ2(t) =
γ2 + µ2

β12
ln

(
S1(t)

S̃1(t)

)
− S2(t) + S̃2(t)− E2(t) + Ẽ2(t)

−γ2 + µ2

γ1 + µ1

β11
β12

(
S1(t)− S̃1(t) + E1(t)− Ẽ1(t) + I1(t)− Ĩ1(t)

)
,

and we can estimate∣∣∣I2(t)− Ĩ2(t)
∣∣∣ =

(
γ2 + µ2

β12

1

S̃1(t)
+ 3

γ2 + µ2

γ1 + µ1

β11
β12

+KS +KE

)
ε.

Remark 3.9. Although the argument in Step 4 is enough for the proof of the theorem,
the estimate is not very good since it considers each of the previous classes separately.
One can improve the the estimate by noticing from the R and D equations in (3) that

R′2(t) = γ2I2(t) =
γ2
µ2
D′2(t)

and therefore
R2(t)−R2(0) =

γ2
µ2

(D2(t)−D2(0)) , ∀t ≥ 0.

Thus, using the same argument for R̃2(t), we obtain

(30)
∣∣∣R2(t)− R̃2(t)

∣∣∣ ≤ ∣∣∣∣ γ2µ2
− γ̃2
µ̃2

∣∣∣∣ |D2(t)−D2(0)|+ γ̃2
µ̃2

∣∣∣D2(t)− D̃2(t)
∣∣∣ ,

and thus using the hypotheses (iii), (iv) and (v), we obtain the estimate.

Remark 3.10. We could obtain better estimate for the distances between solutions
for the second group by considering separate distances on the first group. For example,
defining

(31)
εS := ‖S1 − S̃1‖[0,T ] , εE := ‖E1 − Ẽ1‖[0,T ] , εI := ‖I1 − Ĩ1‖[0,T ],

εR := ‖R1 − R̃1‖[0,T ] , εD1
:= ‖D1 − D̃1‖[0,T ], εD2

:= ‖D2 − D̃2‖[0,T ],

we can rewrite the estimate for the susceptible class in the second group as ‖S2 −
S̃2‖[0,T ] ≤ KS(T ) where

(32) KS(T ) := S2(T )

(
1−

(
1− εS

S1(T )

)
e−(|V1|εD1

+|V2|εD2)
)
.

Analogously, we have ‖E2 − Ẽ2‖[0,T ] ≤ KE(T ) and ‖I2 − Ĩ2‖[0,T ] ≤ KI(T ) where

KE(T ) = E2(0)|α̃2 − α2|te−α2t(33)

+(S2(0)− S2(T )) max

{
0, ln

(
α̃2

α2

)}
+KS(T )
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and

(34)
KI(T ) =

|γ2 + µ2 − γ̃2 − µ̃2|
min{γ2 + µ2, γ̃2 + µ̃2}e

(
I2(0) +

α̃2

α2
(S2(0)− S2(T ) + E2(0))

)
+

∣∣∣∣1− α̃2

α2

∣∣∣∣ (S2(0)− S2(T ) + E2(0))
α̃2

γ̃2 − µ̃2
‖E2 − Ẽ2‖[0,T ].

Note that, by the proof of the Theorem 3.4, the difference |α̃2 − α2| is controlled by
εS and εE. And the difference |γ2 + µ2 − γ̃2 − µ̃2| is controlled by εR and εD.

Finally, for the class of recovered individuals, ‖R2 − R̃2‖[0,T ], we can use Remark
3.9 to obtain

(35) ‖R2 − R̃2‖[0,T ] ≤ KR(T ) :=

∣∣∣∣ γ2µ2
D2(T )− γ̃2

µ̃2
D̃2(T ) +

(
γ̃2
µ̃2
− γ2
µ2

)
D2(0)

∣∣∣∣ .
Remark 3.11. Consider the cumulative number of infectious individuals in both
groups for the first set of parameters

(36) C1(t) := I1(t) +R1(t) +D1(t) and C2(t) := I2(t) +R2(t) +D2(t).

and the respective functions for the second set of parameters

(37) C̃1(t) = Ĩ1(t) + R̃1(t) + D̃1(t) and C̃2(t) := Ĩ2(t) + R̃2(t) + D̃2(t).

Estimating the difference (S2 +E2)(t)− (S̃2 + Ẽ2)(t) as we did in Step 2 of the proof
of Theorem 3.4, and using (2), we obtain

(38) ‖C2 − C̃2‖[0,T ] = ‖S2 + E2 − S̃2 − Ẽ2‖[0,T ] ≤ KE(T ).

Notice that hypothesis (i) is related to social interaction between the two groups,
since it involves βij . On the other hand the hypotheses (ii), (iii) and (iv) are on the
parameters αi, γi and µi, which depend on biological features of the disease, and also
on how each group deals with the infected individuals, such as access to the health
system and access to medicines.Thus, these conditions may play a role whether the
definition of groups 1 and 2 refer to social or biological features.

4. Examples with the COVID-19

In this section we propose a method for applying the theoretical results presented
in Section 3. The method is developed in the Subsection 4.1 and applied to New York
State early epidemics of COVID-19 for validation of its predictions, since in this case
data is fully known. In Subsection 4.2 we apply the same method to the COVID-19
epidemics in the cities of Juazeiro and Petrolina, which are neighboring cities in the
northeast of Brazil that face different health policies. Our goal with this example
is to detect a potential problem in the number of reported cases, since the city of
Juazeiro is under a different health system and applied proportionally much less tests
for detecting infected individuals compared to the city of Petrolina.

4.1. New York County. In this subsection, we show a numerical simulation of
the results obtained in Section 3 based on data for the early stage of the COVID-
19 epidemic in the New York County and neighboring counties. We will illustrate
the estimates in Theorem 3.4 using data for the number of cases and deaths in the
neighboring counties and deaths in the New York County to estimate the curve of
infection in the New York County population and an error range for this estimation.
The choice of these populations was made only by geographic proximity.

We consider as Group 1 the inhabitants of the following counties: Richmond, Kings,
Queens, Bronx, Monmouth, Hudson and Bergen. And as Group 2 the inhabitants of
New York County. Due to the restrictions imposed by the “New York State on Pause”
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Executive Order, which affected social distancing and economic activities from late
March 2020 onwards, and thus changed the interaction rates between groups, we
restrict the analysis to the first 30 days of the outbreak of the disease: from March
5 (first day with registered cases in both groups) till April 3. Therefore, we will use
the data presented in Table 1.

Day (Mar) 02 03 04 05 06 07 08 09 10 11 12 13
Cases Group 1 0 0 0 2 2 5 7 14 17 17 46 66
Cases Group 2 1 1 1 3 4 8 8 11 17 18 39 48
Deaths Group 1 0 0 0 0 0 0 0 1 1 1 1 1
Deaths Group 2 0 0 0 0 0 0 0 0 0 0 0 0

Day (Mar) 14 15 16 17 18 19 20 21 22 23 24 25
Cases Group 1 109 151 246 475 1017 1833 2449 3887 4877 6497 7925 11364
Cases Group 2 71 72 111 277 590 1038 1314 1863 2072 2572 2887 3616
Deaths Group 1 1 2 4 4 4 6 7 10 46 81 125 173
Deaths Group 2 0 0 0 0 0 0 0 0 10 19 35 43
Day (Mar-Apr) 26 27 28 29 30 31 01 02 03 04 05 06
Cases Group 1 13764 15613 18986 21014 24526 27382 30575 34036 39407 43801 47325 51323
Cases Group 2 4046 4478 5237 5582 6060 6539 7022 7398 8452 9300 9898 10440
Deaths Group 1 229 287 418 491 570 712 935 1123 1310 1573 1775 2012
Deaths Group 2 55 65 93 103 119 129 165 178 215 264 390 436

Table 1. Cumulative daily reported cases and deaths confirmed by testing from March
3, 2020 to April 5, 2020, for New York County (Group 2), and Richmond, Kings, Queens,
Bronx, Monmouth, Hudson and Bergen counties (Group 1) according to [5].

In order to illustrate Theorem 3.4, we are assuming that data in Table 1 comes
from a model (1) (possibly with noises) for some unknown set of parameters. This
set of unknown parameters will be used as the first set mentioned in Theorem 3.4 and
will be represented as Ã, B̃, Γ̃, M̃. Also, the respective solutions to the model will
be indicated by tilde. Therefore, from the data we will obtain the (assumed) model
solutions D̃1 and D̃2, and the cumulative function C̃1 := S̃1 + Ẽ1 + Ĩ1 (we give more
details later). The compartments S̃1, Ẽ1 and R̃1 will be extrapolated from these two.
The solutions S̃2, Ẽ2, Ĩ2 and R̃2 are assumed to be unknown. We can think of it as if
the data for group 2 is full of measurement errors and thus unreliable for the number
of cases, but reliable for number of deaths. Thus, we will use the data on the evolution
of cases of infection and deaths in Group 1 and also the evolution of deaths in Group
2 to estimate the parameters for the model. These estimated parameters will be used
as the second set of parameters mentioned in Theorem 3.4 and will be represented
as A,B, Γ, M, without tilde, with the respective solutions represented also without
the tilde. For the group 1, we will have the solutions obtained from the data (with
the tilde), since the parameters are unknown, and the solutions obtained from the
model with estimated parameters (without the tilde), and thus we can measure the
distances between them, as presented in (17). For the group 2, the same can be
done, only for the compartment D, since the only reliable data for group 2 are the
number of deaths, and thus will be measured as in (v) of Theorem 3.4. Therefore,
we will use Theorem 3.4 to estimate the distance between the solutions for the other
compartments of group 2. Thus, we will be able to measure how far the solutions for
the estimated model (without the tilde) are from the unknown solutions (with tilde).
The theorem gives a measure on how the curves obtained by plotting the solutions of
the estimated model accurately depict the evolution of the cases in Group 2, since it
gives us an error estimate where the actual curve must be.

The hypotheses of Theorem 3.4 are imposed in the fitting process as follows. Firstly,
for the hypothesis (ii) we will suppose that the latency rate is the same for both groups,
i.e. α1 = α2 = α, since this is a parameter related exclusively to the disease itself.
Furthermore, by the same reason, after fitting this parameter to the dataset, we will
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consider only solutions with this same latency. This means that we will consider also
α̃1 = α̃2 = α. We will make the same assumption with respect to the hypothesis
iii. Therefore we will consider that γ̃1 = γ̃2 = γ = γ1 = γ2. We will not impose
µ1 = µ2 because the mortality rates may not depend only on the disease itself, but
be influenced by the quality of medical treatment and access to it in each group.

Let us clarify how the data from Table 1 will be used. Let C̃1 and D̃1 be the
7 days centered moving average of the cumulative number of cases and cumulative
number of deaths in Group 1, respectively, as given in Table 1. And C̃2 and D̃2 be
the 7 days centered moving average of the cumulative number of cases and cumulative
number of deaths in Group 2, respectively as given in Table 1. Thus, in order to fit
the parameters for the SEIRD model, we will use the values of C̃1, D̃1 and D̃2 only.
After fitting them, we will use the solution of the fitted SEIRD model for the number
of cases in Group 2 and Theorem 3.4 to estimate C̃2.

From the functions defined above, we can define the approximated number of
susceptible individuals in each group by

(39) S̃i(t) = Ni −
C̃i(t+ 1)− C̃i(t)

α
− C̃i(t), i = 1, 2

since the second term on the right-hand side approximates the number of exposed
individuals.

For the hypothesis (i), we will estimate the constants V1 = (β̃21 − β̃11)/µ̃1 and
V2 = (β̃22 − β̃12)/µ̃2 as follows: from Lemma 3.1, we have

S̃1(t)

S̃1(0)
=
S̃2(t)

S̃2(0)
exp

{∫ t

0

((
β̃21 − β̃11

)
Ĩ1(s) +

(
β̃22 − β̃12

)
Ĩ2(s)

)
ds

}
.

Since we are not using the data on the cases of infection in Group 2, we need to
estimate S̃2(t)/S̃2(0). Note that for small t we have S̃2(t)/S̃2(0) ≈ 1, by continuity.
Therefore, using the equations for S̃1 and S̃2, for small t we have

(40)
S̃1(t)

S̃1(0)
≈ exp

{
V1(D̃1(t)− D̃1(0)) + V2(D̃2(t)− D̃2(0)) ds

}
.

For a pair of time values t = t1 and t = t2, the equation (40) generates the linear
system, that has solutions:

V1 ≈
D̃2(t2) ln

(
S̃1(t1)

S̃1(0)

)
− D̃2(t1) ln

(
S̃1(t2)

S̃1(0)

)
D̃1(t1)D̃2(t2)− D̃1(t2)D̃2(t1)

;(41)

V2 ≈
D̃1(t1) ln

(
S̃1(t2)

S̃1(0)

)
− D̃1(t2) ln

(
S̃1(t1)

S̃1(0)

)
D̃1(t1)D̃2(t2)− D̃1(t2)D̃2(t1)

,(42)

as long as D̃1(t1)D̃2(t2) − D̃1(t2)D̃2(t1) 6= 0. The quotients S̃1(tj)/S̃1(0), j = 1, 2,
can be approximated from the data using (39).

Therefore, one can calculate V1 and V2 for any pair of time values t = t1 and t = t2.
We took the average of the respective absolute values of V1 and V2 for all pairs of
integer times t between t = 1 and t = 30 days and then set the signs such that V1 < 0
and V2 > 0. Thus we obtain V1 = −3.023433×10−7 and V2 = 1.991887×10−5. These
values are used to fix the relation between the transmission rates βij and the mortality
rates, due to hypothesis (i). Hence, given βi1 and µi, the corresponding value for βi2
is given by βi2 = βi1−µiVi. We observed that taking the average of (41)-(42) directly
led to unrealistic values of Vi. Furthermore, using the absolute values to estimate V1



FINAL SIZE AND PARTIAL DISTANCE ESTIMATE FOR THE SEIRD MODEL 19

and V2 and setting them to have opposite signs gave best adjustments to the data.
That is compatible with the fact that the local transmissions are stronger than the
infection between individuals of different groups.

We consider the following set of parameters: β11, β12, β21, β22, α, γ1, γ2, µ1, µ2,
E1(0), E2(0). We are considering the initial conditions as a parameter too because it
is not clear from the dataset how to obtain a good approximation for the evolution of
the exposed class. Thus, we will use the initial conditions for the number of susceptible
individuals in each group as S1(0) = N1−I1(0)−E1(0) and S2(0) = N2−I2(0)−E2(0),
where N1 = 0.84N and N2 = 0.16N , with N = 10.5× 106 being the total population
of Group 1 and 2 together (see [1]).

Under the above conditions, we fitted all the parameters mentioned above together
using the Weighted Root Mean Square Error (WRMSE). The weights were used to
compensate for the fact that the first group is much bigger. Therefore, we used weight
1 for the cases in Group 1, and weights 40 and 240 for deaths in Group 1 and Group 2,
respectively. The numeric calculations were made by the software R-CRAN, using the
packages deSolve ([34]) and DEoptim ([28]) for solving the ODEs and optimizing all
the parameters together, respectively. In order to reduce overfitting, we have already
set α1 = α2 = α, γ1 = γ2, and fixed the relation between β1i, β2i and µi through Vi,
i = 1, 2, but we also impose α = 0.3 (value chosen from the range observed in [4])
and a restriction to the optimizing process by considering only parameters satisfying
βi,j ∈ (0, 10/N), i, j = 1, 2, and γ ∈ (1/14, 1/4). These bounds are based on the
observed values in [4, 21, 22, 38]. The Table 2 presents the fitted parameters for the
SEIRD system (3).

Parameters
Symbol Value Symbol Value Symbol Value
β11 5.817× 10−8 µ1 0.010349 E1(0) 94.64
β12 5.609× 10−8 µ2 0.006640 E2(0) 81.69
β21 5.504× 10−8 γ 0.192012
β22 1.883× 10−7 α 0.3

Table 2. Fitted parameters for the system (3) for the data of reported cases and deaths
in Group 1 and reported deaths in Group 2 as presented in Table 1. The measurement
units of the parameters are: βij is in (individuals ·days)−1, µi, γ and α are in (days)−1,
and Ei(0) are in individuals, for all i, j ∈ {1, 2}.

Let S1, S2, E1, E2, I1, I2, R1, R2, D1 andD2 the solutions to (1) with the parameters
showed in Table 2. Then the function of cumulative number of infections individuals
for both groups is

(43) C1(t) := I1(t) +R1(t) +D1(t) and C2(t) := I2(t) +R2(t) +D2(t).

The Figure 2 shows the graphs of C1(t), C2(t), D1(t) and D2(t) with the respective
cumulative number of reported cases and deaths obtained from the dataset.

In order to obtain the estimate in Theorem 3.4, let us define for every t = 1, ..., 30
the distances

εD1
(t) = max

s=1,...,t
|D1(s)− D̃1(s)| , εD2

(t) = max
s=1,...,t

|D2(s)− D̃2(s)|

and
εS1

(t) = max
s=1,...,t

|S1(s)− S̃1(s)| ,

where D̃1, D̃2 and S̃1 are the functions defined at the beginning of this example.
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(a) Infectious cases in Group 1 (b) Deaths in Group 1

(c) Infectious cases in Group 2 (d) Deaths in Group 2

Figure 2. Fit of the SEIRD system (3) to the reported data. In (a) we plot the
cumulative number of reported infectious cases (black dots) and the function C1(t)
(blue solid line) for the Group 1 (neighboring counties). In (b), the reported deaths
(black dots) and the function D1(t) (red solid line) for the Group 1. In (c) we plot the
cumulative number of reported infectious cases (black dots) and the function C2(t) (blue
solid line) for the Group 2 (New York County). In figure (d), the reported deaths (black
dots) and the function D2(t) (red solid line) for the Group 2.

Therefore, from Remarks 3.10 and 3.11, we obtain that C̃2 must satisfy

max
s=1,...,t

|C2(s)− C̃2(s)| ≤ KC(t)

where

KC(t) := max
s=1,...,t

{
S2(s)

(
1−

(
1− εS1(s)

S1(s)

)
e−(|V1|εD1

(s)+|V2|εD2
(s))
)}

.

The Figure 3 presents the functions C1(t) and C2(t), the reported cases functions
C̃1(t) and C̃2(t) and the range of estimated distance KC(t).

For the last day of the period, t = 30, the values of the estimated distances for the
cumulative function of infectious individuals is KC(30) = 1713.09, which represents
20.78% of C2(30). In comparison, the fitted curve C1(t) has an accumulated error
from the reported data by 2890.93 cases, which represents 9.96% of C1(30).

It is important to note that although the black square markers (Group 2 data on
number of infectious cases) in Figure 3 were not used in the fitting process for the
curves, they lie within the estimated interval predicted by the Theorem 3.4. Indeed,
since the reported number of infectious cases in Group 2 fall into the estimated
distance from C2(t), this suggests that the evolution of cases follows a two group
SEIRD model and the values in (i)-(iv) were well approximated.
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Figure 3. In this figure we plot the functions cumulative number of infectious cases
C1(t) (light blue solid line) and C2(t) (dark blue solid line), the reported number of
infectious cases for Group 1 (circle markers) and for Group 2 (square markers), and the
estimated distance range function KC(t) (blue area).

4.2. Petrolina and Juazeiro Cities. Petrolina and Juazeiro are two neighboring
cities in the northeast of Brazil, with the first one located in the state of Pernambuco,
and the latter located in the state of Bahia. Although the two populations interact
freely, their public health systems are under different administrations, which caused
Petrolina to have performed twice as much testing for COVID-19 proportionally as
Juazeiro, by May 13 2021, the last date we consider in our estimations.

In this example, we use the data on COVID-19 spread in Petrolina and the deaths
caused by the disease in Juazeiro to estimate the number of cumulative infectious cases
in Juazeiro. This estimate and the range of error given by Theorem 3.4 indicates that
Juazeiro’s cases might be under-reported. It is worth mentioning that our estimations
are made under assumptions (i)-(iv) in Theorem 3.4 on the parameters and therefore,
our conclusions here should not be taken as a precise portrait of the real situation for
the considered population. Our aim in this example is to indicate a possible way of
estimating under-reporting.

We consider the data of reported cases and deaths for the period of 90 days from
February 13 to May 13 of 2021 with Group 1 as the inhabitants of Petrolina, and
Group 2 as the inhabitants of Juazeiro. The number of individuals in each group is
N1 = 353800 and N2 = 226200, respectively, with total population given by N =
580000. The reader can find this dataset on Petrolina’s and Juazeiro’s city halls
websites, respectively [3] and [2]. To generate the fitted SEIRD model, we proceeded
as in the former example and, for the calculated values V1 = −1.052314 × 10−6 and
V2 = 3.731528× 10−6 the fitted parameters for the model (3) can be seen in Table 3.

Parameters
Symbol Value Symbol Value Symbol Value
β11 3.364642× 10−7 µ1 0.003744 E1(0) 296.46
β12 3.174329× 10−7 µ2 0.002563 E2(0) 296.03
β21 3.325242× 10−7 γ 0.157060
β22 3.269971× 10−7 α 0.3

Table 3. Fitted parameters for the system (3) for the data of reported cases and deaths
in Group 1, presented in [3], and reported deaths in Group 2, presented in [2].
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The Figure 4 shows the functions C1(t), C2(t), D1(t) and D2(t) from the system
(3) for the set of parameters in Table 3 subjected to the initial conditions

S1(0) = 337822.5, I1(0) = 207, R1(0) = 15284, D1(0) = 190,
S2(0) = 217047, I2(0) = 143, R2(0) = 8554, D2(0) = 160,

and the 7-days moving average functions of the total number of reported cases and
deaths for each group.

As shown in Figure 5, the cumulative number of reported cases for Group 2 (square
markers) stays far below the correspondent curve C2(t) and out of the estimated
distance range given by the blue area. In fact, on the last day of the period t = 90
(May 13), the model indicates that Group 2 should have a total of 15770 infectious
cases, with an error of 3.26% (KC(90) = 513.67), while only 14111 were reported.
This suggests that the reported data for Group 2 are under-reported, or that the
hypothesis of the theorem may not be satisfied in this example, in the sense that the
estimated values in (i)-(iv) were not well approximated.

(a) Infectious cases in Group 1 (b) Deaths in Group 1

(c) Infectious cases in Group 2 (d) Deaths in Group 2

Figure 4. Fit of the SEIRD system (3) to the reported data. In (a) we plot the
cumulative number of reported infectious cases (black dots) and the function C1(t) (blue
solid line) for the Group 1 (Petrolina). In (b) we plot the reported deaths (black dots)
and the function D1(t) (red solid line) for the Group 1. In (c) we plot the cumulative
number of reported infectious cases (black dots) and the function C2(t) (blue solid line)
for the Group 2 (Juazeiro). In figure (d), the reported deaths (black dots) and the
function D2(t) (red solid line) for the Group 2.
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Figure 5. In this figure we plot the function cumulative number of infectious cases
C1(t) (light blue solid line) and the reported number of infectious cases (black circle
markers) for Group 1, the function cumulative number of infectious cases C2(t) (dark
blue solid line) and reported number of infectious cases (black square markers) for Group
2, and the estimated distance range function KC(t) (blue area).

5. Conclusions and comments

In the Section 2 we proved that the final size of the susceptible individuals is always
positive for both groups. The result also shows that these values can be obtained by
a fixed-point problem in R2.

The results and discussions presented in Section 3 and 4 show that it is possible to
use the two group SEIRD model to estimate the dynamics of an epidemics when the
number of cases in one of the groups is not known or may be unreliable.

In Section 4 we illustrate the results of Theorem 3.4 with two examples of the spread
of COVID-19 disease. The first example was used as a verification case, in order to
indicate that the method of estimating the number of cases is consistent. Since the
data from the New York State is more reliable, it was expected that the number of
reported cases in the New York County would fall into the range of error given by the
Theorem with respect to the calculated function of cumulative cases. The parameters
obtained for the model SEIRD led to this result and it may be seen in Figure 3.
The second application concerns to two neighboring Brazilian cities, Petrolina and
Juazeiro, which are under different health policies with Petrolina submitting more
inhabitants to testing for COVID-19 than Juazeiro. Therefore, in this example we
were interested in checking if the proportionally low number of reported cases in
the city of Juazeiro is a potential situation of under-reporting. The implementation
of the method for fitting the parameters of the SEIRD model and the range error
estimation given by Theorem 3.4 and showed in Figure 5, suggests that the number
of infectious cases in Juazeiro may be indeed greater than the ones reported by the
health system and present an interval were the number of cases might actually be. It
worth mentioning that we are assuming that reported data from group 1 is reliable
and comes from a SEIRD model, possibly with noise, even though it is well known
that under-reporting occurred worldwide ([20]) and that the data for group 1 may
not be accurate, specially in the Petrolina-Juazeiro case.

Since the full dataset is not available, it is not possible to be sure of the results
of the method in general. However, combined with other tools, the method might
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be useful to guide public health polices, for instance when reliable data is lacking for
part of the considered population.

In Section 4 the definition of the groups is based only on geographic aspects, but
one could apply it in situations where the groups are defined by socioeconomic classes,
gender or age.

It is worth mentioning that in both examples, we are supposing that the data
follows a SEIRD model (possibly with noises) for an unknown set of parameters. We
then fitted model presented in each case with parameters which satisfy the hypotheses
of Theorem 3.4 with respect to the unknown parameters. In particular, from the
available dataset we estimate V1 = (β̃21 − β̃11)/µ̃1, i = 1, 2, and therefore in the
parameter fitting process we only consider the class parameters for (3) that satisfy
these values of Vi. I.e., the light blue areas of the Figures 3 and 5 contain all solutions
to models whose parameters satisfy these values of Vi.

We emphasize that these estimations are here only to illustrate the application
of our theoretical results. Additional arguments would be needed to validate our as-
sumptions before making assertive statements on the actual scenario of the considered
populations.
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