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ABSTRACT
Most existing copula models for dependent censoring in the literature assume that the parameter defining
the copula is known. However, prior knowledge on this dependence parameter is often unavailable. In this
article we propose a novel model under which the copula parameter does not need to be known. The model
is based on a parametric copula model for the relation between the survival time (T) and the censoring time
(C), whereas the marginal distributions of T and C follow a semiparametric Cox proportional hazards model
and a parametric model, respectively. We show that this model is identified, and propose estimators of the
nonparametric cumulative hazard and the finite-dimensional parameters. It is shown that the estimators of
the model parameters and the cumulative hazard function are consistent and asymptotically normal. We
also investigate the performance of the proposed method using finite-sample simulations. Finally, we apply
our model and estimation procedure to a follicular cell lymphoma dataset. Supplementary materials for this
article are available online.
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1. Introduction

When studying the effect of some covariates X on a survival
time T, a popular model in the literature is a semiparametric
proportional hazards model (or Cox model), which is defined
by the following conditional survival function:

ST|X(t|x) = exp{−�(t)ex�β}, (1.1)

where β is a vector of regression parameters and � belongs
to a space G of cumulative hazard functions; we refer to the
seminal paper by Cox (1972) for details. In the presence of
random right censoring, the latter paper proposed an elegant
estimation procedure provided that the survival time T and the
(right) censoring time C are stochastically independent given
covariates. This assumption holds in many situations, mainly
when censoring occurs at the end of the study (administrative
censoring). However, there are also numerous contexts where
the independent censoring assumption does not hold. For exam-
ple, in medical studies, patients may withdraw from treatment
when their prognosis is poor, and hence the reason for with-
drawal may be linked to the expected event of interest, which
induces dependent censoring; see Deresa and Van Keilegom
(2021) for more examples. In the case where the independence
assumption is doubtful, the event time analysis based on the Cox
model may lead to serious estimation bias (Huang and Zhang
2008).

A convenient way to deal with dependent censoring is to
use a copula model for the joint distribution of T and C.
However, since the copula between T and C is not identifiable
in a fully nonparametric setting (Tsiatis 1975), some authors
work with a known copula model, which completely specifies
the association between the two variables. The first paper in that
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Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

line was Zheng and Klein (1995), who proposed a consistent
nonparametric estimator for the marginal distributions of T
and C. This estimator generalizes the Kaplan and Meier (1958)
estimator to the case of dependent censoring. Rivest and Wells
(2001) further studied the proposal of Zheng and Klein (1995)
for the particular case of an Archimedean copula. For the
case with covariates, Huang and Zhang (2008) modeled the
marginal distributions of both T and C using the Cox model
under a known copula and demonstrated the nice performance
of their model through simulations. Later on, Chen (2010)
extended this copula approach to semiparametric transfor-
mation models, which include the Cox model as a special
case.

A known copula approach has the advantage of not mak-
ing strict model assumptions about the marginal distributions,
but it has the disadvantage of assuming that the dependence
structure is known. Supposing the copula to be known is often
an unrealistic assumption, but as shown in Crowder (1991),
identification is impossible if the copula is entirely unknown.
It is therefore essential to check identifiability within certain
parametric copulas, where the copula structure is specified up
to a finite-dimensional parameter.

Other approaches not based on copulas have also been pro-
posed to handle dependent censoring. In this regard, the inverse
probability of censoring weighted (IPCW) method (see, Robins
and Finkelstein 2000; Scharfstein and Robins 2002; Collett 2015,
among others), where the weight is obtained from a censoring
time model using the auxiliary variables as covariates, and the
multiple imputation method of Jackson et al. (2014), where
the censored times are imputed under user-specified devia-
tions from independent censoring, are also helpful to adjust for
dependent censoring in the Cox model. These methods either

© 2022 American Statistical Association
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assume the availability of auxiliary variables to reduce bias due to
dependent censoring or they impose nonidentifiable parameters
concerning the dependence between survival and censoring
times for which it is required to conduct a sensitivity analysis.

In contrast, our approach does not require a sensitivity analy-
sis on the dependence parameter because we will be able to iden-
tify and estimate this parameter along with all other parameters
from the observed survival data. In addition, we do not need to
assume the existence of auxiliary variables in order to deal with
dependent censoring.

In this article we propose a semiparametric copula approach
for survival data subject to dependent censoring. The proposed
method is based on the Cox model for the marginal distribution
of T, as in model (1.1), whereas the marginal distribution of
C can be defined within any parametric model provided that
certain regularity conditions are satisfied. Then, their depen-
dence structure is modeled by a parametric copula. We will
show that this model is identifiable based on the distribution
of the observed survival data. In particular, we will identify the
association between T and C even though we observe either one
of them, but never both of them. The identifiability is shown
only based on the distribution of the observed data without
imposing further restrictive assumptions on the dependence
parameter. Our approach is more flexible than a parametric
copula approach recently proposed in Czado and Van Keilegom
(2023) and Deresa et al. (2022) in the sense that we do not need
to impose a parametric restriction on the marginal distribution
of T. We also propose a method to estimate this nonparametric
function using martingale ideas when T and C are dependent
given a set of covariates. Moreover, under certain regularity
conditions, we prove the consistency and asymptotic normality
of the parameter estimators and the estimator of the nonpara-
metric function. The performance of the proposed method is
also assessed through finite-sample simulations. Interestingly,
our method is not sensitive to the type of parametric copula
family we assume between survival and dependent censoring
times.

The remainder of the article is organized as follows. In the
next section we state the model and derive the distribution of the
observed quantities. The identifiability of our model is studied
in Section 3. Section 4 describes how to estimate the model
parameters and the cumulative hazard function. The asymptotic
properties of the parameter and nonparametric estimators are
established in Section 5, whereas their proofs are deferred to
the supplementary material. Section 6 presents a simulation
study to illustrate the finite-sample performance of the proposed
method. An application to a real data example is given in Sec-
tion 7, and Section 8 contains some conclusions and discussion.

2. Model Specification

In this article we will assume that in addition to the survival time
T and the dependent censoring time C, there is an independent
censoring time A. The variable A can for instance represent the
time until the end of the study, which is usually independent
of T. Due to the presence of right censoring, we observe Z =
min(T, C, A) and the censoring indicators (�1, �2) given by
�1 = I(Z = T) and �2 = I(Z = C), where I(·) is the indicator

function. Let X (of dimension p) be the covariates related to
T, and let W (of dimension q) be the covariates that influence
C. The vectors X and W can have some or all of the variables
in common, but they can also be completely distinct. We allow
for dependence between T and C, even after conditioning out
the effect of covariates, and will model this dependence using a
copula model. The variable A is assumed to be independent of
(T, C), given (X, W).

The marginal model for T is given by the following Cox
model:

FT|X(t|x) = Pr(T ≤ t|X = x) = 1 − exp{−�(t)ex�β}, (2.1)

where β is a vector of regression coefficients and � is an
unknown increasing and differentiable cumulative baseline
hazard function of unspecified form with �(0) = 0. We
assume that T is absolutely continuous. The corresponding
baseline hazard function is denoted by λ, which is defined
as λ(t) = d�(t)/dt. Moreover, we assume that X�β does
not contain an intercept for identification reasons. Under the
independent censoring assumption, Cox (1972) proposed a
procedure to estimate the regression parameter β based on
the concept of partial likelihood, in which the baseline hazard
function is canceled out from the likelihood, and he obtained
likelihood-type asymptotic theory for the parameter estimator.
Our inference procedure will not follow the partial likelihood
approach because we allow for the case where T and C are
dependent given the covariates. We therefore rely on a pseudo-
likelihood approach as detailed in Section 4.

We also need a model for the marginal distribution of C. It is
assumed that the margin of C follows a parametric model:

FC|W ∈ {FC|W,η : η ∈ H}, (2.2)

for some parameter space H, where FC|W(c|w) = Pr(C ≤
c|W = w). The corresponding density is assumed to exist and is
denoted by fC|W(c|w).

We now propose a joint model through a bivariate copula in
order to take the association between T and C into account for
given X and W. A bivariate copula is a distribution function
C defined over the unit square [0, 1]2 with uniform margins;
see Nelsen (2006) for details on copulas. Hence, the conditional
distribution function of T and C can be modeled, for all t, c > 0,
by

Pr(T ≤ t, C ≤ c|X = x, W = w) = C{FT|X(t|x), FC|W(c|w)},
(2.3)

for some copula C, whereas the distribution of A is left entirely
unspecified. The conditional distributions are assumed to be
continuous, so that the copula is unique (Sklar 1959). Through-
out the article we assume that the copula C is parametric, that
is,

C ∈ {Cγ : γ ∈ �}
for some parameter space �.

For what follows we require the following notations for 0 ≤
u, v ≤ 1:

hT|C(u|v) = ∂
∂vC(u, v), and hC|T(v|u) = ∂

∂uC(u, v).
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It can be shown that

Pr(T ≤ t|C = c, X = x, W = w) = hT|C(FT|X(t|x)|FC|W(c|w))

Pr(C ≤ c|T = t, X = x, W = w) = hC|T(FC|W(c|w)|FT|X(t|x)).

The proof is given in Deresa et al. (2022). We shall assume that

(C1) (T, C) and A are independent given (X, W).
(C2) A and (X, W) are independent. In addition, we assume that

the matrices var(X) and var(W) have full rank, and the
vectors X and W contain at least one continuous variable.

(C3) The probabilities Pr(Z = T|X, W) and Pr(Z = C|X, W)

are strictly positive for almost all (X, W).
(C4) The censoring by A is noninformative for (T, C), that is,

the distribution of A does not depend on any of the model
parameters.

Based on the distribution of (Z, �1, �2) given (X, W), we will
study identifiability of models (2.1)–(2.3) in the next section. Let
us now derive the formulas needed in this identifiability proof
and for the estimation of our model. Let G(z, δ1, δ2|x, w) denote
the sub-distribution function of the triplet (Z, �1, �2) given X
and W, that is,

G(z, δ1, δ2|x, w) = Pr(Z ≤ z, �1 = δ1, �2 = δ2|X = x, W = w)

(2.4)

and let g(z, δ1, δ2|x, w) be the corresponding sub-density. Then,
we can show that

g(z, 1, 0|x, w) = λ(z)ex�β exp{−�(z)ex�β}
×{

1−hC|T(FC|W(z|w)|FT|X(z|x))
} {1−FA(z)}

g(z, 0, 1|x, w) = fC|W(z|w)
{

1 − hT|C(FT|X(z|x)|FC|W(z|w))
}

× {1 − FA(z)}
g(z, 0, 0|x, w) = S(z|x, w) fA(z), (2.5)

where

S(z|x, w) = C̃
(
FT|X(z|x), FC|W(z|w)

)
with

C̃(u, v) = 1 − u − v + C(u, v),

for 0 ≤ u, v ≤ 1, FA(z) = Pr(A ≤ z) and fA(z) = (d/dz)FA(z).
We can add parameters to these functions to emphasize their
dependency on the finite- and/or infinite-dimensional parame-
ters, for instance Sα(z|x, w) with α = (γ , β , �, η) ∈ � × R

p ×
G × H. Finally,

G(z|x, w) : =
∑

δ1+δ2≤1
G(z, δ1, δ2|x, w)

= 1 − S(z|x, w){1 − FA(z)}. (2.6)

The proofs of (2.5) and (2.6) are provided in the supplementary
material.

3. Model Identification

In this section we study in detail the identifiability of our
model based on the distribution of the observed vector
(Z, �1, �2, X, W). Under general regularity conditions on
the marginal distributions and on the copula, we will show
that the model parameters (γ , β , η) and the function � are

identifiable, in the sense that any two different sets of parameters
give different joint distributions of (Z, �1, �2, X, W). Studying
identifiability under dependent censoring is far from trivial,
especially for the dependence parameter γ . This is because the
right censoring mechanism hinders us from observing the pair
(T, C) simultaneously, and hence the relation between T and
C cannot be directly seen from the observed data. Compared
to the identifiability proof under a fully parametric model in
Czado and Van Keilegom (2023) and Deresa et al. (2022), the
nonparametric component in the marginal model for T poses
an additional challenge to show identifiability.

We need to make some assumptions on the joint model in
order to show identifiability. The first assumption is about the
marginal density of C (given the covariates):

(C5) For all η1, η2 ∈ H, we have:

limt→0
fC|W,η1 (t|w)

fC|W,η2 (t|w)
= 1 for all w ⇐⇒ η1 = η2.

Condition (C5) is satisfied for many parametric families of
densities, like for example, the families of Weibull, log-normal
and log-logistic densities; see Czado and Van Keilegom (2023)
and Deresa et al. (2022) for more details. For the marginal
distribution of T, note that we do not need to impose any further
assumptions other than those mentioned in Section 2.

In addition to (C5), we need the following conditions on the
dependence structure, which is also required to identify the joint
model:

(C6) (i) For all (γ , β , �, η) ∈ � × R
p × G × H,

lim
t→0

hT|C,γ (FT|X,ζ (t|x)|FC|W,η(t|w)) = 0 for all (x, w),

where ζ = (β , �). The same holds true for hC|T,γ (FC|W,η
(t|w)|FT|X,ζ (t|x)).
(ii) For all γk, ζk = (β , �k), η (k = 1, 2) that are such that
limt→0 λ1(t)/λ2(t) = 1, we have

lim
t→0

cγ1(FT|X,ζ1(t|x), FC|W,η(t|w))

cγ2(FT|X,ζ2(t|x), FC|W,η(t|w))
= 1

for all (x, w) ⇐⇒ γ1 = γ2,

where cγ denotes the copula density.

We will verify condition (C6) for two popular classes of
copulas, specifically Archimedean copulas and Gaussian copu-
las. Here are some examples of commonly used Archimedean
copulas, including the Frank copula (Frank 1979; Genest 1987),
given by

Cγ (u, v) = − 1
γ

log
{

1 + (e−γ u−1)(e−γ v−1)
e−γ −1

}
, γ �= 0,

the Gumbel copula (Gumbel 1960), given by

Cγ (u, v) = exp
{ − [

(− log u)γ + (− log v)γ
]1/γ }

, γ ≥ 1,

and the Clayton copula (Clayton 1978), given by

Cγ (u, v) = (u−γ + v−γ − 1)−1/γ , γ > 0.

The most commonly used member of the family of elliptical
copulas is the Gaussian copula, given by

Cγ (u, v) = γ

(
−1(u), −1(v)

)
,
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where −1 < γ < 1, γ is the cumulative distribution function
of a standard bivariate normal distribution with correlation
parameter γ , and −1 is the quantile function of a standard
normal variable. Note that the dependence parameter γ has a
one-to-one relation with Kendall’s τ parameter for these com-
mon copula families, which is easier to interpret than γ because
it determines the strength of the association that is universal for
all copula families; see Nelsen (2006) for details.

In the next lemma we show how condition (C6) can be
validated for the above families of common copulas. The proof
of Lemma 3.1 (a) is similar to that of Theorem 3.3 in Czado and
Van Keilegom (2023), and thus it is not shown here, whereas the
proof of Lemma 3.1 (b) is given in the supplementary material.
Note that the Clayton copula is not included in this lemma, as
the identifiability cannot be proved the same way as for the other
common copulas. We refer to the latter paper for more details,
and focus on the other copulas in what follows.

Lemma 3.1.

(a) Assumption (C6) (i) is satisfied by

1. the Frank copula, independently of the marginal distri-
butions;

2. the Gumbel copula if limt→0 log FT|X,ζ (t|x)/ log FC|W,η
(t|w) ∈ (0, ∞) for all (x, w) and all (ζ , η);

3. the Gaussian copula if limt→0 Jα(t|x, w) = −∞ and
limt→0 Lα(t|x, w) = −∞ for all (x, w, α), where
Jα(t|x, w) = −1(FT|X,ζ (t|x)) − γ−1(FC|W,η(t|w))

and Lα(t|x, w)=−1(FC|W,η(t|w))−γ−1(FT|X,ζ (t|x)).

(b) Assumption (C6) (ii) is satisfied for the Frank, Gumbel and
Gaussian copulas.

We refer to Czado and Van Keilegom (2023) and Deresa et al.
(2022) for more details regarding the required conditions for
the Gumbel and Gaussian copula. We are now ready to give our
identifiability result in the following theorem. The proof is given
in the supplementary material.

Theorem 3.1. Assume that conditions (C1)–(C6) hold true.
Then, model (2.1)–(2.3) is identifiable. This means that if for
k = 1, 2, the pair (Tk, Ck, Ak) satisfies model (2.1)–(2.3) with
parameter vector αk = (γk, βk, �k, ηk) ∈ � ×R

p × G × H, and
if (Z1, �11, �21) given (X, W) and (Z2, �12, �22) given (X, W)

have the same distribution, then

γ1 = γ2, β1 = β2, �1 = �2, η1 = η2,

where Zk = min(Tk, Ck, Ak), �1k = I(Zk = Tk) and �2k =
I(Zk = Ck).

4. Estimation

We will now discuss an estimation procedure for models
(2.1)–(2.3). Assume that the data consist of n iid replications
(Zi, �1i, �2i, Xi, Wi) (i = 1, . . . , n) of (Z, �1, �2, X, W), and
let θ = (γ , β , η). Then, the joint likelihood function is derived
from (2.5) by

L(θ , �) =
n∏

i=1
gθ ,�(Zi, �1i, �2i|Xi, Wi) (4.1)

=
n∏

i=1

[
λ(Zi)eX�

i β exp{−�(Zi)eX�
i β}

×{
1 − hC|T,γ (FC|W,η(Zi|Wi)|FT|X,ζ (Zi|Xi))

}]�1i

×
[

fC|W,η(Zi|Wi)
{

1 − hT|C,γ (FT|X,ζ (Zi|Xi)

|FC|W,η(Zi|Wi))
}]�2i

×
[
C̃γ

{
FT|X,ζ (Zi|Xi), FC|W,η(Zi|Wi)

}](1−�1i)(1−�2i)

since assumption (C4) implies that the density and distribution
of A can be omitted from the likelihood function.

The direct maximization of this likelihood can be challenging
since it involves the unknown function �. The idea is now to
estimate θ by replacing the unknown function in the above
likelihood with a nonparametric estimator for a fixed value of θ .
The parameter θ is then estimated by solving the score equation
derived from the pseudolikelihood function, L(θ , �) with �

replaced by its estimated value.
Let us first construct our nonparametric estimator for � by

forming an estimating equation when T and C are dependent
given the set of covariates. This will be done based on martingale
ideas. Let Ni(z) = I(Zi ≤ z, �1i = 1) and Yi(z) = I(Zi ≥
z) for all i ∈ {1, . . . , n}. Using Theorem 1.3.1 in Fleming and
Harrington (1991), it follows that

Mi(z) = Ni(z) −
∫ z

0
Yi(s)λ#(s|Xi, Wi)ds

is a martingale with respect to the filtration F i
z = σ {Yi(s),

Ni(s), Xi, Wi; 0 ≤ s ≤ z ≤ τ }, where λ#(z|X, W), the
conditional crude hazard rate, is given by

λ#(z|X, W) =
− ∂

∂u
Pr(T ≥ u, C ≥ z|X, W)|u=z

Pr(T ≥ z, C ≥ z|X, W)
,

and τ0 is a finite maximum follow-up time. We refer to Rivest
and Wells (2001) for a similar martingale construction under
dependent censoring. Next, define the following functions:

Aα(t|x, w) = hC|T,γ (FC|W,η(t|w)|FT|X,ζ (t|x)),
Bα(t|x, w) = hT|C,γ (FT|X,ζ (t|x)|FC|W,η(t|w)).

Under the general parametric copula model given in (2.3), we
have that

Mi(z) = Ni(z) −
∫ z

0
Yi(s) exp(ψi(s, θ0, �0))d�0(s), (4.2)

where

ψi(z, θ0, �0) = X�
i β0 − �0(z) exp(X�

i β0)

+ log(1 − Aα0(z|Xi, Wi)) − log(Sα0(z|Xi, Wi)),

where θ0 = (γ0, β0, η0) and �0 are the true values of θ and �,
respectively, and α0 = (θ0, �0). Therefore, motivated by the fact
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that Mi(z) is a martingale process, we estimate � for a given θ

by solving the following estimating equation:

n∑
i=1

{dNi(z) − Yi(z) exp(ψi(z, θ , �))d�(z)} = 0

(0 ≤ z ≤ τ0), (4.3)

with � satisfying �(0) = 0. It is easily seen that the estimator
of � is a nondecreasing step function with jumps only at the
observed survival times, denoted by z1 < · · · < zK < ∞.

However, we will not use (4.3) directly to estimate the cumu-
lative hazard since it involves a complex iterative optimization
process. Instead, we propose an alternative version of (4.3) that
is simple for computational purposes. For a given value of θ , we
estimate � as a step function with jumps at the ordered observed
survival times z1, . . . , zK , using the following equation:

��̂(zk, θ) =
∑n

i=1 dNi(zk)∑n
i=1 Yi(zk) exp{ψi(zk−1, θ , �̂)} , (4.4)

with �̂(z1−, θ) = 0 and ��̂(zk, θ) = �̂(zk, θ) − �̂(zk−1, θ).
Note that the estimator of the kth jump depends on �̂ up to
and including time zk−1. This technique avoids the iterative
optimization scheme for estimating the cumulative hazard.

We now estimate θ by substituting �̂(z, θ) for �(z) in (4.1)
and setting the derivative of the resulting pseudo-likelihood
function with respect to θ to zero. This gives the following
estimating equation:

Un(θ , �̂) = n−1
n∑

i=1
U(Zi, �1i, �2i, θ , �̂(·, θ)) = 0, (4.5)

where

U(Zi, �1i, �2i, θ , �) = ∂

∂θ
log gθ ,�(Zi, �1i, �2i|Xi, Wi).

Finally, θ̂ is defined as a solution of this score equation. Note that
� can be estimated without performing an iterative optimiza-
tion, but we need to estimate θ using an optimization algorithm.
The details of our estimation algorithm can be found in the
supplementary material.

Remark 1. In the particular case where the independence copula
Cγ (u, v) = uv is specified, the estimator of � cancels out from
the formula of ψi(zk−1, θ , �̂). Consequently, our nonparametric
estimator of � in (4.4) reduces to the standard Breslow estimator
for the cumulative hazard function in the Cox model (Breslow
1974). However, when Cγ is different from the independence
copula, the quantity ψi(zk−1, θ , �̂) in (4.4) involves �̂(zk−1),
contrary to the denominator of the Breslow estimator. In this
respect, our estimator is similar to that of Zucker (2005). Hence,
we will show the consistency of �̂ in the next section using sim-
ilar arguments as in Zucker’s consistency proof for the estimated
cumulative hazard function.

5. Asymptotic Properties

This section gives the consistency and the asymptotic normality
of θ̂ and �̂ and the set of assumptions needed to prove these
results. For the Cox model (and for some variants thereof),
the partial likelihood function does not involve infinite-
dimensional parameters, and hence it is relatively easy to estab-
lish an asymptotic theory. However, for the proposed approach,
the estimating equations unavoidably involve both finite and
infinite-dimensional parameters. Hence, the derivation of the
asymptotic theory is much more demanding. We will show this
in several steps. Let us first introduce the following quantities:

μ1(v|u) = h10
C|T,γ (v|u)

1 − hC|T,γ (v|u)
μ2(v|u) = h01

C|T,γ (v|u)

1 − hC|T,γ (v|u)

μ3(v|u) = ḣC|T,γ (v|u)

1 − hC|T,γ (v|u)
ν1(t|x, w) = 1 − Aα(t|x, w)

Sα(t|x, w)

ν2(t|x, w) = 1 − Bα(t|x, w)

Sα(t|x, w)
ν3(t|x, w) = ∂Sα(t|x, w)/∂γ

Sα(t|x, w)

B(z) = E[Yi(z) exp(ψi(z, θ0, �0))],
B1(z) = E[Yi(z)ψ̇i(z, θ0, �0) exp(ψi(z, θ0, �0))],

A(z) = exp
( ∫ z

0
B1(s)
B(s)

d�0(s)
)

,

where h10
C|T,γ (v|u) = ∂hC|T,γ (v|u)/∂u, h01

C|T,γ (v|u) = ∂hC|T,γ

(v|u)/∂v, ḣC|T,γ (v|u) = ∂hC|T,γ (v|u)/∂γ , ψ̇i(z, θ0, �0) =
∂ψi(z, θ0, ξ)

∂ξ

∣∣∣
ξ=�0(z)

. We further define

�1 = E
[ ∂U(Z, �1, �2, θ0, �0)

∂θ�
]

+ E
[ ∂U(Z, �1, �2, θ0, ξ)

∂ξ

∣∣∣
ξ=�0(Z)

1
A1(Z)

∫ Z

0

A1(s)
B(s)

dD(s)
]

,

and

�2 = E
[{

U(Zi, �1i, �2i, θ0, �0) −
∫ τ0

0
C(s)dMi(s)

}⊗2]
,

where e⊗2 = ee� for any vector e,

C(z) = E
[

∂U(Z,�1,�2,θ0,ξ)
∂ξ

∣∣∣
ξ=�0(Z)

I(z≤Z)
A(Z)

]
A(z)
B(z) ,

D(z) = E
( ∫ z

0

[
Yi(s)

{
(1 − �0(s) exp(X�

i β0))
∂X�

i β0

∂θ�
− μ2(FC|W,η0(s|Wi)|FT|X,ζ0(s|Xi))

× ∂FC|W,η0(s|Wi)

∂θ� − μ3(FC|W,η0(s|Wi)|FT|X,ζ (s|Xi))
∂γ0
∂θ�

+ ν2(s|Xi, Wi)
∂FC|W,η0(s|Wi)

∂θ�

− ν3(s|Xi, Wi)
∂γ0
∂θ� −

(
μ1(FC|W,η0(s|Wi)|FT|X,ζ0(s|Xi))

− ν1(s|Xi, Wi)
)
�0(s)
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× exp(X�
i β0 − �0(s)eX�

i β0)
∂X�

i β0

∂θ�
}

× exp(ψi(s, θ0, �0(s)))d�0(s)
])

,

and

A1(z) = exp
{ ∫ z

0

B2(s)
B(s)

d�0(s)
}

,

where

B2(z) = E
[

Yi(z)
{
μ1(FC|W,η0(z|Wi)|FT|X,ζ0(z|Xi))

−ν1(z|Xi, Wi)
}

exp(X�
i β0 − �0(z)eX�

i β0

+ψi(z, θ0, �0(z))
]

.

In addition to assumptions (C1)–(C6), we need the following
regularity conditions to establish asymptotic properties of our
estimators (‖ · ‖ denotes the Euclidean norm of a vector). Let
�0(z, θ) be the solution of the expected value of (4.3).

(D1) The parameter vector θ lies in a compact set, say �, that
contains an open neighborhood of the true parameter
vector θ0.

(D2) The covariate vectors X and W have bounded support.
(D3) The function �0(t) is monotone increasing and differen-

tiable with derivative λ0(t). In addition, λ0(t) is bounded
by some constant λmax for t ∈ [0, τ0].

(D4) There is a finite maximum follow-up time τ0 > 0, with
y∗ = Pr(Yi(τ0) = 1) > 0.

(D5) We have that Pr(T > τ0, C > τ0|X = x, W = w) > 0 and
Pr(A > τ0) > 0 for all x and w.

(D6) Aθ ,�(t|x, w), Bθ ,�(t|x, w) and C̃γ

{
FT|X,ζ (t|x), FC|W,η(t|w)

}
exist and are twice continuously differentiable with respect
to the components of θ . In addition, all derivatives of order
two are bounded, uniformly in �, t, x and w.

(D7) �1 is a finite and nonsingular matrix.
(D8) For all δ > 0, there exists ε > 0 such that inf‖θ−θ0‖>δ

‖E[U(Z, �1, �2, θ , �0(·, θ))]‖ > ε.

Assumptions (D1)–(D4) are similar to those in Zucker (2005)
for showing the asymptotic properties of a pseudo-partial like-
lihood estimator. Assumption (D5) is a technical assumption
required to ensure that the denominator of our nonparametric
estimator and that denominator in various expansions used
in the proofs are nonzero. Finally, assumptions (D6)–(D8) are
needed for the application of Theorems 1 and 2 in Chen et al.
(2003).

Before we state the asymptotic properties of the estimators,
we need some preliminary results stated in the lemma below,
which will be needed in the proof of the main theorem. All
proofs are given in the supplementary material.

Lemma 5.1. Assume that conditions (D1)–(D8) hold true, and
that assumptions (C1)–(C6) are satisfied. Then,

(i) Boundedness of �̂(·, θ): There exists some n′ such that for
all z ∈ [0, τ0] and θ ∈ �,

�̂(z, θ) ≤ 1.01/(y∗φmin) for all n ≥ n′,

where φmin is a lower bound on exp(ψi(z, θ , �)).

(ii) Consistency and rate of convergence of �̂(·, θ):

sup
θ∈�,0≤z≤τ0

|�̂(z, θ) − �0(z, θ)| = Op(n−1/2).

(iii) Iid representation of �̂(·, θ0) − �0(·):

�̂(z, θ0) − �0(z)

= 1
A(z)

1
n

n∑
i=1

∫ z

0

A(s)
B(s)

dMi(s) + Rn(z), (5.1)

where sup0≤z≤τ0 |Rn(z)| = op(n−1/2).
(iv) Consistency of (∂/∂θ)�̂(·, θ0): For every z ∈ [0, τ0],

∂�̂(z, θ)

∂θ

∣∣∣∣∣
θ=θ0

= 1
A1(z)

∫ z

0

A1(s)
B(s)

dD(s) + op(1). (5.2)

For any �, let

‖�‖G = sup
0≤z≤τ0,θ∈�

|�(z, θ)|.

Also, note that E[U(Z, �1, �2, θ0, �0)] = 0 and Un(θ̂ , �̂(·, θ̂ )) =
0. We will show the asymptotic properties of θ̂ using the results
in Chen et al. (2003). The latter paper gives sufficient conditions
for the consistency and asymptotic normality of a class of
semiparametric Z-estimators. We present in the following
theorem the consistency and the asymptotic distribution of θ̂ .
The proof is deferred to the supplementary material.

Theorem 5.1. Assume that conditions (D1)–(D8) hold true, and
that assumptions (C1)–(C6) are satisfied. Then,

(i) Consistency of θ̂ : θ̂ P−→ θ0.
(ii) Asymptotic normality of θ̂ :

n1/2(θ̂ − θ0) � N {0, �−1
1 �2(�

−1
1 )�},

in distribution.

The proof of Theorem 5.1 (i) is done by verifying the con-
ditions of Theorem 1 in Chen et al. (2003). The important
requirement to apply the results in the latter paper is a uni-
form consistency of the estimator of the infinite-dimensional
parameter obtained in Lemma 5.1 (ii). Moreover, Theorem 5.1
(ii) reports the limiting distribution of θ̂ , for which the cru-
cial requirement is now a linear representation of the infinite-
dimensional parameter, which is shown in Lemma 5.1 (iii).

Given that the asymptotic variance derived in Theorem 5.1
has a complicated expression involving integrals, we rely on a
nonparametric bootstrap approach for drawing inference. This
approach consists in drawing resamples (Z∗

i , �∗
1i, �

∗
2i, X∗

i , W∗
i )

(i = 1, . . . , n) randomly with replacement from the original
sample (Zi, �1i, �2i, Xi, Wi) (i = 1, . . . , n). For the bootstrap
sample, the parameter estimates θ̂∗ and �̂∗ are obtained follow-
ing the same procedure as in Section 4. Then the asymptotic
variance of θ̂ can be approximated by the empirical variance
of θ̂∗.
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Table 1. Bias, empirical standard deviation (ESD), and root mean squared error (RMSE) for samples of size n = 500 using the Frank and independence copulas.

τ = 0.2 τ = 0.4 τ = 0.8

Bias ESD RMSE Bias ESD RMSE Bias ESD RMSE

Frank copula

β1 –0.010 0.134 0.134 –0.014 0.131 0.131 –0.024 0.126 0.129
β2 –0.003 0.098 0.098 –0.004 0.099 0.099 –0.013 0.102 0.103
η0 –0.005 0.139 0.139 –0.006 0.123 0.123 –0.022 0.113 0.115
η1 0.001 0.136 0.136 0.004 0.125 0.125 0.013 0.110 0.111
η2 –0.002 0.118 0.118 –0.002 0.109 0.109 –0.012 0.099 0.100
σ –0.002 0.052 0.052 –0.001 0.052 0.052 0.003 0.051 0.051
τ 0.012 0.112 0.112 0.010 0.090 0.090 0.008 0.037 0.038

Independence copula

β1 0.024 0.135 0.137 0.058 0.137 0.149 0.124 0.141 0.188
β2 0.081 0.085 0.118 0.167 0.087 0.188 0.327 0.092 0.340
η0 0.165 0.111 0.199 0.314 0.109 0.333 0.520 0.110 0.532
η1 0.052 0.140 0.150 0.100 0.137 0.170 0.169 0.133 0.215
η2 0.129 0.095 0.160 0.248 0.095 0.265 0.415 0.101 0.427
σ 0.001 0.055 0.055 –0.013 0.055 0.057 –0.082 0.053 0.098

6. Simulation Study

In this section we study the finite-sample performance of the
proposed estimators. First, we investigate the effect of not con-
sidering the dependence between T and C in models (2.1)–(2.3).
We will do this by comparing our method with the method that
assumes independent censoring. Second, we assess the perfor-
mance of the proposed method when the copula structure is
misspecified. Finally, we evaluate the convergence of the param-
eter estimators to a normal limit for finite-sample sizes. The sim-
ulation study is summarized using the following three scenarios.
We refer to the supplementary material for additional simulation
examples.

Scenario 1. Under this scenario, we will compare our model
with the model that assumes that T and C are independent. We
consider the following data generating model:

Pr(T ≤ z, C ≤ z|X = x, W = x) = Cγ {FT|X(z|x), FC|W(z|x)},

where the copula Cγ is a Frank copula with association parame-
ter γ specified to give a Kendall’s τ of 0.2, 0.4 or 0.8. We specified
the margin of T by the Cox proportional hazards model:

FT|X(z|x) = 1 − exp
(

− �(z)eβ1x1+β2x2
)

and the margin of C by the Weibull model:

FC|W(z|x) = 1 − exp
(

− exp
( log(z) − μ(x)

σ

))
,

where x = (x1, x2)
�, μ(x) = η0+η1x1+η2x2, �(z) = 0.25z3/4,

W = X = (X1, X2)
�, X1 ∼ Bern(0.5), X2 ∼ N (0, 1), and

X1 and X2 are independent. The regression parameters are set
as follows: β1 = 0.45, β2 = 1, η0 = 1.35, η1 = 0.3, η2 =
1, σ = 1. In addition, the administrative censoring variable A is
generated from a uniform distribution on [0, 15] independent of
all other variables. Under this scenario, the average proportion
of observations in the simulated data is approximately 45% T,
40% C, and 15% A.

We created a total of 1000 datasets with a sample size of
n = 500. For each of them, the model parameters are estimated

Figure 1. The average of the estimated cumulative hazard functions based on
the Frank copula (dashed gray line) and independence copula (dashed black line)
overlaid with the true cumulative hazard function �(z) = 0.25z3/4 (solid line).

under the Frank copula and the independence copula model
corresponding to τ = 0. Note that for the marginal distribution
of C, we work with the Weibull model. In Table 1 we present
the bias, the Empirical Standard Deviation (ESD), and the root
mean squared error (RMSE) of the parameter estimates based
on the 500 replications. The table shows that the Frank copula
model performs better than the model assuming independence,
even when there is a weak dependence between T and C (see
the case τ = 0.2 in the table). While the estimates for the
model parameters are unbiased under the Frank copula, they are
biased when the censoring mechanism is wrongly assumed to be
independent, especially when τ = 0.4 and 0.8. Also, as expected,
the biases and RMSE for the independence copula increase as we
increase τ .

Moreover, we investigate the performance of the proposed
method by estimating the cumulative hazard function �(z) =
0.25z3/4 of the survival time T. The average of the 500 estimated
cumulative hazard functions based on the Frank and indepen-
dence copulas for the case τ = 0.8 is shown in Figure 1. It
can be observed that the average of the estimated functions
�̂(z, θ̂ ) based on the Frank copula model is very close to the
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Table 2. Results for bias, empirical standard deviation (ESD), and root mean squared error (RMSE) based on Gumbel and Gaussian copulas when the data are generated
from a Frank copula.

τ = 0.2 τ = 0.4 τ = 0.8

Bias ESD RMSE Bias ESD RMSE Bias ESD RMSE

Gumbel copula

β1 –0.009 0.139 0.140 –0.021 0.138 0.139 –0.019 0.126 0.128
β2 0.006 0.104 0.104 –0.003 0.108 0.108 –0.012 0.099 0.100
η0 –0.005 0.158 0.158 –0.022 0.141 0.142 –0.026 0.112 0.115
η1 0.002 0.139 0.139 0.000 0.129 0.129 0.006 0.112 0.112
η2 –0.004 0.135 0.135 –0.018 0.124 0.125 –0.019 0.100 0.102
σ –0.014 0.052 0.054 –0.014 0.052 0.053 0.006 0.051 0.052
τ –0.001 0.130 0.130 0.013 0.109 0.110 0.000 0.036 0.036

Gaussian copula

β1 –0.013 0.135 0.135 –0.018 0.132 0.133 –0.008 0.124 0.125
β2 –0.011 0.107 0.107 –0.016 0.105 0.106 –0.000 0.098 0.098
η0 –0.018 0.159 0.160 –0.021 0.132 0.133 –0.001 0.107 0.107
η1 –0.002 0.139 0.139 –0.000 0.127 0.127 0.012 0.112 0.113
η2 –0.010 0.133 0.133 –0.012 0.117 0.117 0.007 0.097 0.097
σ 0.004 0.053 0.054 0.012 0.053 0.054 0.020 0.053 0.056
τ 0.022 0.140 0.142 0.014 0.096 0.097 –0.047 0.043 0.064

true cumulative hazard function �(z), which suggests that the
proposed estimation method gives acceptable estimates of the
true cumulative hazard function. However, under the false inde-
pendence assumption, the average of the estimated cumulative
hazard functions is far from the truth.

Scenario 2. Here, we would like to know whether the estimated
model parameters are sensitive to the misspecification of the
copula structure. In order to study this, we analyze the data
simulated above under Scenario 1 using the correct marginal
distributions but with a misspecified copula. Table 2 displays
the bias, ESD and RMSE of the parameter estimates based on
Gumbel and Gaussian copulas when the data are generated from
a Frank copula model. It is seen that the misspecification in
the copula structure has little to no influence on the proposed
method under the considered setting. We also show the average
of the estimated cumulative hazard functions for the case τ =
0.8 in Figure 3 of the supplementary material. The figure shows
that the average of the estimated cumulative hazard functions
based on the Gumbel and Gaussian copulas are very close to the
true cumulative hazard function. This result is somewhat similar
to the results obtained in Huang and Zhang (2008) and Chen
(2010), who showed that the bias due to misspecification of the
copula structure is usually moderate.

Scenario 3. In this scenario, we examine how close is the sam-
pling distribution of θ̂ to a normal distribution for samples of
size n = 500. We simulate data based on a Gaussian copula
with γ = 0.75, corresponding to a Kendall’s τ of 0.54. The
marginal distribution of T follows the same Cox model as under
Scenario 1, except that �(z) = 0.25z1/2, and the margin of C
follows a lognormal distribution, specified by

FC|W(z|x) = 
( log(z) − μ(x)

σ

)
,

where μ(x), X1 and X2 are defined in Scenario 1. The other
model parameters are set as β1 = 0.45, β2 = 1, η0 = 1, η1 =
0.5, η2 = 0.75 and σ = 1.5. The censoring variable A is

generated from a U [0, 25] distribution independently of every-
thing else. We estimate the model parameters under a Gaussian
copula model using the proposed method. Figure 2 provides
the quantile-quantile plots for the estimated parameters based
on 500 generated samples, and it can be observed that the
distribution of the parameter estimators is close to a normal
limit. However, for τ̂ , there is a slight deviation from the straight
line in the left tail. After applying Fisher’s Z transformation, the
distribution appears to be more symmetric (see the plot for ω̂ in
Figure 2), where ω̂ is Fisher’s Z transformation of τ̂ .

Table 3 presents the bias, ESD, bootstrap standard error
(BSE), RMSE, and 95% coverage rate (CR) using the above
model. The bootstrap standard errors are computed from 150
bootstrap resamples for each of 500 samples, and the coverage
rate is calculated using the normal approximation with boot-
strap standard error. To get the confidence interval for τ , we
first apply Fisher’s Z transformation and the Delta method to
construct the confidence interval on the transformed scale and
then transform the confidence interval limits to the original
scale. It is clear from the table that the bootstrap standard
errors are very close to the corresponding empirical standard
deviations, which suggests that the bootstrap method works well
in practice. The coverage rates are close to the 95% nominal level,
which also indicates that the asymptotic normality of our esti-
mators is approximately satisfied. Moreover, the average of the
estimated cumulative hazard functions based on the Gaussian
copula is close to the true hazard function; see Figure 3 in the
supplementary material.

We also conducted a simulation study to examine the sen-
sitivity of the proposed method to the misspecification of the
censoring model or to the misspecification of the copula struc-
ture and censoring model. From Table 6 of the supplementary
material, we see that the parameter estimators for the survival
model still behave well when the censoring model or when
both the censoring model and copula structure are misspecified.
However, compared to the results in Table 3 (when there is no
misspecification), we notice a larger bias for model parameters
and a decrease in coverage rate for Kendall’s τ . The details can be
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Figure 2. Normal quantile-quantile plot for the estimates (β̂1, β̂2, η̂0, η̂1, η̂2, σ̂ , τ̂ , ω̂) based on 500 simulated data.

found in Scenario 4 of the supplementary material. To assist the
user of our model in evaluating the quality of the fitted model,
we proposed a formal goodness-of-fit test in the supplementary
material. The test is based on the L2 distance between a model-
based estimator and a model-free estimator of the distribution
function of the minimum of T and C. In the simulations, this test
shows reasonable control of the Type I error rate and exhibits
a good power in rejecting a misspecified censoring model. We
refer to Scenario 5 of the supplementary material for details.

7. Data Application

We now apply the proposed model and estimation method to
a follicular cell lymphoma dataset, given in the book of Pintilie
(2006) and collected at the Princess Margaret Hospital, Toronto,
where patients entered the database as they registered for treat-
ment. The data given in Pintilie (2006) consist of 541 patients
with early disease stage (I or II) and treated with Radiation Alone
(RT) or with Radiation and Chemotherapy (CMT). In this study
the endpoints of interest are what comes first: relapse of the

Table 3. Bias, empirical standard deviation (ESD), bootstrap standard error (BSE),
root mean squared error (RMSE) and coverage rate (CR) based on the Gaussian
copula model.

Par. Bias ESD BSE RMSE CR

β1 –0.006 0.130 0.136 0.130 0.959
β2 0.002 0.100 0.104 0.100 0.958
η0 –0.021 0.160 0.172 0.161 0.968
η1 –0.011 0.178 0.173 0.179 0.950
η2 –0.024 0.148 0.156 0.150 0.948
σ 0.008 0.076 0.078 0.077 0.958
τ 0.019 0.084 0.085 0.086 0.928

disease or death in remission. We are mainly interested in the
marginal distribution of the time to relapse, so death in remis-
sion is considered as a (dependent) censoring event, whereas
censoring at the end of the study is considered as independent
censoring.

Among the 541 patients, 272 (50.3%) of them experienced
disease relapse, another 76 (14.0%) patients died in remission,
and the remaining 193 (35.7%) patients were censored at the end
of the study. We use the following four covariates in our analysis:
Treatment is the binary treatment covariate (0 for RT, 1 for
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Table 4. Results for the follicular cell lymphoma dataset: parameter estimates (Est.),
bootstrap standard errors (BSE) and p-values, using the Gumbel copula with Cox–
Weibull and Cox-Lognormal margins.

Cox–Weibull Cox-Lognormal

Est. BSE p-value Est. BSE p-value

Disease relapse

Treatment –0.350 0.165 0.034 –0.336 0.172 0.050
Age 0.398 0.081 0.000 0.431 0.075 0.000
Hgb 0.038 0.061 0.535 0.063 0.067 0.345
Clinstg –0.660 0.150 0.000 –0.617 0.141 0.000

Death in remission

Intercept 2.497 0.279 0.000 1.774 0.325 0.000
Treatment 0.185 0.179 0.304 0.304 0.205 0.138
Age –0.654 0.071 0.000 –0.681 0.076 0.000
Hgb –0.026 0.068 0.701 –0.039 0.084 0.639
Clinstg 0.532 0.178 0.003 0.682 0.180 0.000
σ 0.697 0.135 0.000 1.101 0.078 0.000

τ 0.579 0.165 0.000 0.767 0.159 0.000

CMT); Age is the age of the patient at diagnosis (in years); Hgb
is the hemoglobin level in g/l; and Clinstg is the clinical stage of
the disease at the time of diagnosis (1 for stage I, 0 for stage II).
The data are available in the R package randomForestSRC.
Our objective is to study the effect of treatment on relapse of
the disease after adjusting for other covariate information. The
knowledge of a specific group of patients with a higher risk of
disease relapse would inform policymakers on the treatment
strategies and type of follow-up foreseen.

We model the time of interest (time to disease relapse) jointly
with the dependent censoring time (time to death in remission).
We apply the proposed estimation procedure to fit models (2.1)–
(2.3) to this dataset. The copula in (2.3) is assumed to be the
Gumbel, Frank or Gaussian copula, where the two marginal
regressions for the disease relapse and death in remission are
specified by a Cox proportional hazards and a Weibull or log-
normal model, respectively.

In Table 4 we display the parameter estimates, bootstrap
standard errors and p-values based on the Gumbel copula. The
results for the Frank and Gaussian copulas are similar, and
hence are not reported. This is supported by our simulations
in Section 6 (see Scenario 2). The p-values are calculated based
on a Wald statistic using bootstrap standard errors, which are
obtained from 200 resamples of the observed data. It can be seen
that three covariates, namely treatment, age and clinical stage
of the disease, have significant effects on the time to the dis-
ease relapse based on Cox and Weibull (Cox–Weibull) margins.
The same set of covariates are found to be significant for the
time to disease relapse when we model the margins using the
Cox and lognormal (Cox-Lognormal) models, except that the
treatment effect is now borderline significant at 5% level. It can
be concluded that the CMT group has a lower risk of disease
relapse compared to the RT group. In contrast, two covariates
are significantly related to the time to death in remission based
on the two models, namely age and clinical stage of the disease.
Concerning the treatment effect, there is no difference between
those who are treated with RT and those who are treated with
CMT in reducing the risk of death in remission. As measured by
Kendall’s τ̂ , the two endpoints, time to disease relapse and death,
are significantly correlated even after adjusting for covariates.

Table 5. Parameter estimates (Est.), bootstrap standard errors (BSE) and p-values,
using the independence copula with Cox–Weibull and Cox-Lognormal margins.

Cox–Weibull Cox-Lognormal

Est. BSE p-value Est. BSE p-value

Disease relapse

Treatment –0.370 0.162 0.026 –0.370 0.162 0.026
Age 0.329 0.069 0.000 0.329 0.069 0.000
Hgb 0.041 0.064 0.518 0.041 0.064 0.518
Clinstg –0.652 0.136 0.000 –0.652 0.136 0.000

Death in remission

Intercept 3.208 0.145 0.000 3.155 0.193 0.000
Treatment 0.127 0.209 0.545 0.154 0.259 0.553
Age –0.703 0.088 0.000 –0.762 0.097 0.000
Hgb –0.029 0.091 0.749 –0.036 0.105 0.732
Clinstg 0.333 0.161 0.039 0.351 0.210 0.094
σ 0.608 0.051 0.000 1.125 0.091 0.000

We therefore present in Table 5 the parameter estimates
under the independence copula model for purposes of compar-
ison. The parameter estimates for the time to disease relapse are
the same under the Cox–Weibull and Cox-Lognormal models,
which is not surprising given that the Cox model is used in
both models and that the two endpoints are independent under
the independence copula model. Comparing results in Table 5
with those in Table 4, we see that the parameter estimates are
somewhat different for the Gumbel copula and the indepen-
dence copula models, which shows that the association between
the two endpoints affects the parameter estimates. We observe
that the same variables are significant and insignificant under
the Cox–Weibull model. However, under the Cox-Lognormal
model, the clinical stage of the disease is relevant for the time
to death in remission when the copula is the Gumbel copula,
but it ceases to be significant at the 5% level in the indepen-
dence copula model. Moreover, the estimated cumulative hazard
function under the independence copula deviates much from
the one under the Gumbel copula, as shown in Figure 5 of the
supplementary material.

Finally, the goodness-of-fit p-value proposed in the supple-
mentary material is computed based on 200 bootstrap samples
for the fitted models. From Table 8 of the supplementary mate-
rial, we see that the p-values for the Gumbel copula with Cox–
Weibull and Cox-Lognormal margins are larger those for the
corresponding independence copula. Hence, there is a prefer-
ence for the models taking the dependence between time to
disease relapse and death into account. From the fitted semipara-
metric copula models, the model combination of the Gumbel
copula with Cox-Lognormal margins has the largest p-value of
0.56 among all fitted models.

8. Discussion

This article proposed a copula-based semiparametric model
and a corresponding estimation strategy for survival data with
dependent censoring. We gave sufficient conditions under which
the proposed model is identifiable and illustrated that these
conditions are satisfied for many models. Most importantly,
our method allows the estimation of the association parameter
based on the observed survival data instead of assuming this
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dependence parameter to be known. We also developed a non-
parametric estimator for the cumulative hazard function under
dependent censoring.

The proposed method has been assessed both in an asymp-
totic way and via finite-sample simulations. We proved that the
parameter estimators are consistent and asymptotically normal
as the sample size tends to infinity. In addition, we showed
that the estimator of the cumulative hazard function converges
uniformly to the true hazard function. The numerical study also
demonstrated the good performance of the proposed method,
even when the copula structure or the margin for the censoring
model are misspecified. Furthermore, the coverage rate for the
finite-dimensional parameters is quite close to the 95% nominal
level, suggesting that the asymptotic normality is approximately
satisfied even in finite samples.

As a topic of future research, one could extend the cur-
rent model to semiparametric or nonparametric regression
functions, using splines, orthogonal series or kernel methods.
Another potential topic for future research is the use of Cox
models for the marginal distribution of both the survival time
and the censoring time, whereas their dependence structure
is modeled using a parametric copula. A crucial issue is then
showing the identifiability of this flexible model.

Supplementary Materials

The supplementary material contains all the proofs in this article, estimation
algorithm, goodness-of-fit test, additional simulation examples, and addi-
tional analysis results for the follicular cell lymphoma dataset.
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