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Abstract

We study optimal monetary policy in a tractable Small Open Economy Heterogeneous-Agent

New Keynesian (SOE-HANK) model in which households face uninsured idiosyncratic risk and

unequal bond market access. We derive conditions under which optimal policy in our SOE-

HANK economy entails domestic producer price stability, extending the “open-economy divine

coincidence” result of Gaĺı and Monacelli (2005) beyond the Representative-Agent benchmark

(SOE-RANK). Away from those conditions, inefficient fluctuations in consumption inequality

generate new monetary policy tradeoffs. Under plausible calibrations for the trade elasticities,

the elasticity of intertemporal substitution, and the cyclicality of income risk, the central bank

stabilizes output and the exchange rate more than in SOE-RANK.
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1 Introduction

How do aggregate shocks affect domestic inequality in a small open economy, and what should the

central bank do about it? In this paper, we answer this question by constructing a Small-Open

Economy Heterogeneous-Agent New Keynesian (“SOE-HANK”) model with rich cross-sectional

heterogeneity. Following the recent SOE-HANK literature (De Ferra et al., 2020; Auclert et al.,

2021b; Druedahl et al., 2022; Guo et al., 2023), our baseline augments the workhorse model of

Gaĺı and Monacelli (2005) with incomplete markets. In particular, our model features households

who face (i) uninsurable idiosyncratic income risk à la Aiyagari (1994) and (ii) unequal access to

financial markets, leading to hand-to-mouth behavior by some households. Relative to the Small-

Open Economy Representative-Agent New Keynesian (“SOE-RANK”) benchmark, uninsurable

risk results in time-varying precautionary savings, while hand-to-mouth behavior and heteroge-

neous marginal propensities to consume (MPCs) imply that households are differentially exposed

to changes in national income. While the SOE-HANK literature has thus far focused on how these

sources of household heterogeneity may alter the positive predictions of the SOE-RANK bench-

mark regarding the propagation of aggregate shocks, we take a normative perspective: our goal

is to understand how uninsured risk and hand-to-mouth behavior affect optimal monetary policy

relative to SOE-RANK.

Our critical insight is that, in SOE-HANK, aggregate shocks trigger potentially inefficient fluc-

tuations in consumption inequality across households, which a benevolent Ramsey planner would

want to stabilize. In our model, these fluctuations arise for two reasons. First, unequal access

to bond markets generates fluctuations in between-group consumption inequality since the income

and consumption of unconstrained and hand-to-mouth households respond differently to aggregate

shocks. Second, uninsurable idiosyncratic risk generates fluctuations in within-group consumption

inequality driven by the time-varying distribution of labor earnings. How much the planner effec-

tively leans against such variations in consumption inequality ultimately depends on how strongly

this objective conflicts with the traditional objectives of monetary policy in the absence of house-

hold heterogeneity. As is now well understood (and synthesised in Gaĺı, 2015), in the basic closed-

economy New Keynesian model, the central bank should pursue domestic price stability and ensure

productive efficiency by stabilizing the output gap. In the open economy, an additional motive

arises, namely the efficient manipulation of the terms of trade – made possible by the fact that the

central bank exerts market power over the supply of domestically-produced goods. The concern

for stabilizing consumption inequality in our SOE-HANK economy further complicates matters

since stabilizing inequality may require departing from price stability, productive efficiency, and

efficient terms-of-trade management – at least temporarily. Our analysis uncovers when and why

such departures occur.

To understand the trade-offs introduced by the additional objective of stabilizing inequality

as clearly and transparently as possible, we articulate our analysis around a benchmark scenario

wherein consumption inequality is present but does not alter optimal monetary policy relative to

the SOE-RANK benchmark. Quite sensibly, this scenario arises when monetary policy cannot affect
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fluctuations in inequality. In this situation, the best the central bank can do is focus on its other

objectives and disregard inequality altogether, even though inequality is welfare-reducing. This

property is similar in spirit to the open-economy divine-coincidence result of Gaĺı and Monacelli

(2005), who show that under the Cole and Obstfeld (1991) parameterization (when the elasticities

of substitution between exported goods, between imported goods, and intertemporal, are all equal

to one), optimal policy in SOE-RANK mimics that in the closed-economy benchmark in response

to aggregate productivity shocks. Our paper shows that the same open-economy divine coinci-

dence holds in SOE-HANK when, in addition to the Cole and Obstfeld (1991) parameterization,

idiosyncratic income risk is acyclical.

This result is best understood in relation to the conditions for the optimality of domestic

producer price stability under complete markets, as derived by Gaĺı and Monacelli (2005). In

their model, under the Cole and Obstfeld (1991) parameterization and aggregate productivity

shocks, (i) there is no conflict between implementing stable domestic prices and closing the output

gap in the corresponding closed economy, (ii) the exchange rate adjusts in the open economy

in a way that renders movements in the terms of trade optimal. As it turns out, even with

incomplete markets with respect to aggregate productivity shocks, under the Cole and Obstfeld

(1991) parameterization, balanced trade is optimal, i.e., interest-rate and exchange-rate movements

imply that unconstrained households as a whole optimally choose not to save or dis-save – even

though it remains feasible. Consequently, the average consumption of unconstrained households

is symmetric to that of hand-to-mouth households, eliminating time variations in between-group

inequalities. Furthermore, under incomplete markets against idiosyncratic income shocks, constant

income risk implies that within-group consumption inequality is also time-invariant. Thus, under

Cole-Obstfeld elasticities and acyclical idiosyncratic income risk, neither between- nor within-group

inequalities can be manipulated by the central bank, making it optimal to operate “as if” under

complete markets.1

Any departure from this benchmark scenario generates new tradeoffs for the central bank. To

isolate the specific role that consumption risk and inequality play in those tradeoffs, the first de-

parture from the conditions of the SOE-HANK divine coincidence we consider is by making the

empirically relevant assumption that idiosyncratic income risk is countercyclical, rather than acycli-

cal. This feature leads the central bank to depart from price stability, even though price stability

remains feasible. For example, after a contraction in aggregate productivity, the central bank sup-

ports aggregate demand more than it would in SOE-RANK – else, consumption inequality would

increase too much, bringing excess welfare losses –, which mitigates the recession and associated

real appreciation but generates inflation – and the other way around in a productivity-driven expan-

sion. Overall, the optimal policy implements significantly less output and exchange-rate volatility

in SOE-HANK than in SOE-RANK after aggregate productivity shocks. This property remains

true in our preferred calibration, where we also move away from the Cole and Obstfeld (1991)

1This “as-if” property echoes the result in Werning (2015) that under some conditions, the aggregated Euler
equation of an incomplete-market economy is the same as under complete markets, as well as the generalisation by
Auclert et al. (2021b) of this property to the open economy under Cole-Obstfeld elasticities.
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elasticities towards more realistic elasticities of trade and intertemporal substitution.

Next, we turn to the monetary policy response to capital-flow shocks, triggered by exogenous

changes in the world interest rate.2 In contrast to aggregate productivity shocks, the optimal

response to such shocks implies departures from domestic producer price stability even in SOE-

RANK. For example, in our SOE-RANK benchmark, a capital inflow triggered by a fall in the world

interest rate would generate a real appreciation and an output contraction (driven by expenditure

switching) if the real interest rate at home remained unchanged. The central bank optimally

responds to the shock by cutting interest rates at home to mitigate the real appreciation – but does

not entirely undo it. This is because cutting rates so much as to match the world interest rate and

fully stabilize the exchange rate would be inflationary, and the SOE-RANK central bank trades off

a lower inflation gap against a lower output gap. Against this backdrop, we show that two forces

tend to make exchange-rate stability relatively more desirable in SOE-HANK than in SOE-RANK.

First, even in the absence of idiosyncratic risk, incomplete markets against aggregate shocks imply

that the consumption of hand-to-mouth households is heavily exposed to exchange-rate fluctuations.

This is because the exchange rate determines the relative price of home-produced goods and, hence,

current national income (at a given output level), which hand-to-mouth households cannot smooth

away via borrowing and lending. Second, in the presence of cyclical consumption risk, exchange-rate

fluctuations and expenditure switching contribute to generating inefficient volatility in output and

consumption risk. In our preferred calibration, the central bank implements a smoother exchange-

rate response to capital flow shocks in SOE-HANK than in SOE-RANK.

In summary, the broad lesson from our analysis is that when we move away from the (implau-

sible) conditions for SOE-HANK divine coincidence and towards more realistic calibrations for the

trade elasticity, the elasticity of intertemporal substitution and the cyclicality of income risk, then

the central bank optimally stabilizes output and the exchange rate more in SOE-HANK than in

SOE-RANK. Moreover, this conclusion holds regardless of the exact size of average income risk

and the share of hand-to-mouth households in the economy (though those parameters may affect

the quantitative differences between SOE-HANK and SOE-RANK.)

1.1 Literature review

Our paper bridges three strands of the literature: (i) one that analyzes the propagation of aggregate

shocks in open-economy HANK models from a positive (rather than normative) perspective; (ii)

one studying optimal monetary policy in closed-economy HANK models (rather than in the open

economy); (iii) and the literature studying optimal monetary policy in SOE or two-country RANK

models (rather than HANK).

De Ferra et al. (2020) and Auclert et al. (2021b) pioneered the positive literature on SOE-HANK

models, focusing on how capital-flow shocks affect output and national income when a subset of

the households have high marginal propensities to consume (MPCs). The central theme of these

2Capital flow shocks have motivated the development of SOE-HANK models in the first place, as epitomized in
the work of De Ferra et al. (2020) and Auclert et al. (2021b).
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papers is the contractionary Keynesian multiplier effects that are set off by a currency depreciation

when the latter hits household income – due to currency mismatch in De Ferra et al. (2020) or the

collapse in the relative price of home-produced goods in Auclert et al. (2021b). Other contributions

following their lead include Druedahl et al. (2022), who study the propagation of foreign demand

shocks, as well as Guo et al. (2023) and Oskolkov (2023), who study how international integration

and exchange-rate regimes shape the propagation of aggregate shocks to domestic inequalities.

Acharya and Pesenti (2024) study monetary policy spillovers in a two country HANK setting and

show that while the real-income channel cannot change the sign of spillovers relative to RANK,

cyclical risk can flip the sign of spillovers. Bayer et al. (2023) study international spillovers in a

monetary union HANK model. None of these papers, however, study optimal monetary policy.

Related to this line of work stand the contributions of Iyer (2016) and Chen et al. (2023), who

study monetary transmission and optimality in an SOE and Two-country model, respectively, in

the presence of hand-to-mouth households (“SOE-TANK”). We nest some of their results when we

shut down idiosyncratic risk,3 while bringing ex-post (in addition to ex-ante) heterogeneity into the

analysis of optimal policy.

The present paper naturally extends to the open economy the analysis of Ramsey-optimal mon-

etary policy in closed-economy HANK models, as undertaken by Bhandari et al. (2021), Le Grand

et al. (2022), McKay and Wolf (2022), Acharya et al. (2023) and Dávila and Schaab (2023). In

contrast to the first three papers, which numerically solve for optimal policy, we here follow the

approach of Acharya et al. (2023), who rely on the joint assumption of Constant Absolute Risk

Aversion (CARA) utility for consumption and conditionally normally distributed income risk to

achieve traceability. In the present paper, this analytical approach allows for the formal derivation

of the SOE-HANK divine coincidence result, and also greatly facilitates the exploration of optimal

policy away from the conditions of divine coincidence.

Last but not least, our paper is a continuation of the traditional literature that examines

optimal monetary and exchange-rate policy in various versions of the open-economy RANK model.

As discussed above, the starting point of our analysis is the open-economy divine coincidence

result of Gaĺı and Monacelli (2005) – which we generalise to incomplete markets (with respect

to both aggregate and idiosyncratic shocks) and hand-to-mouth behavior. Related to Gaĺı and

Monacelli (2005), Clarida et al. (2001, 2002); Corsetti and Pesenti (2005); Benigno and Benigno

(2003, 2006); Faia and Monacelli (2008) and De Paoli (2009a) study optimal monetary policy in

SOE or two-country models under complete markets with respect to aggregate shocks (i.e., where

the “Backus-Smith” (1993) condition relating the ratio of marginal consumption utilities to the

real exchange rate holds), abstracting from uninsurable idiosyncratic shocks. Extending this line

of work, Benigno (2009); De Paoli (2009b) and more recently Corsetti et al. (2023) and Egorov and

Mukhin (2023) have examined optimal monetary policy with imperfect risk sharing internationally

– i.e., disposing of the Backus-Smith condition – but still in the absence of idiosyncratic risk. By

3For example, we also find that the presence of hand-to-mouth households may warrant stronger exchange-rate
stabilization (as in Iyer, 2016) but does not by itself break the open-economy divine coincidence under aggregate
labor productivity shocks (Chen et al., 2023).
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and large, the main focus of this literature has been to clarify when and how the central bank’s

willingness to manipulate the terms of trade may conflict with domestic price stability. Instead, our

focus is on the monetary policy tradeoffs that uninsurable idiosyncratic risk and hand-to-mouth

behavior may bring, potentially jointly with the tradeoffs induced by terms-of-trade manipulation.

2 Environment

The model is a variant of Gaĺı and Monacelli (2005) that does not admit a representative household.

Instead, the economy comprises heterogeneous households who face uninsurable idiosyncratic in-

come risk à la Aiyagari (1994), while some households are excluded from asset markets altogether.

Time is discrete. There is no aggregate risk – only unanticipated (persistent) aggregate shocks

which occur at date zero, after which all agents in the economy have perfect foresight with re-

spect to aggregate variables. The world economy consists of a continuum of small open economies

j ∈ [0, 1], one of which “Home” and is accordingly indexed by H. We take the behavior of all other

countries as given, and start by describing the behavior of economic agents in the Home country.

2.1 Households

The demographics at Home are described by a perpetual-youth structure à la Blanchard-Yaari,

in which all households face a survival probability of ϑ < 1 at any date t. To ensure that Home

population stays constant (normalized to 1), there are 1 − ϑ “newborn” households, who replace

the equal measure of households who did not survive.4,5

Households differ in two aspects. (i) Since all households face uninsurable idiosyncratic shocks to

their labor productivity, they differ in their realization of idiosyncratic productivity. (ii) Households

also differ in their access to bond markets: at each date, a share θ of the newborn households cannot

access bod markets and must consume their income at each subsequent date as long as they survive,

i.e., they are “hand-to-mouth” and have a marginal propensity to consume (MPC) of 1. The other

1 − θ share of newborn households have access to bond markets throughout their lives. We refer

to these households as “unconstrained” since they can use asset markets to smooth the effects of

shocks to current income on current consumption. In other words, they have an MPC less than 1.

The problem of household i born at time s can then be written as:

max
{cst (i),ns

t (i)}
Es

∞∑
t=s

(βϑ)t−s [u(cst (i))− v(ns
t (i))] (1)

where β ∈ [0, 1) is the household subjective discount factor, cst (i) their consumption of the composite

consumption good (described below) and ns
t (i) their labor supply.

4The size at time t of the cohort having entered the economy at time s ≤ t is thus (1− ϑ)ϑt−s.
5We introduce this perpetual-youth structure because population turnover ensures that the model always generates

a stationary distribution of wealth.
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We set u(c) = −e−γc/γ, where γ > 0 is the coefficient of absolute risk aversion (CARA),6 and

v(n) = ρe(n−n)/ρ, where ρ > 0 denotes the Frisch elasticity and n is a constant, which scales the

dis-utility of labor. As in Acharya et al. (2023), the choice of the CARA utility alongside normally

distributed idiosyncratic risk (see below) is key for the tractability of the planning problem, for

two reasons. First, the CARA-Normal model delivers consumption functions which are linear in

wealth. This implies that the economy permits linear aggregation, allowing us to characterize the

aggregate dynamics of the economy without explicitly keeping track of the distribution of wealth.

Second, the CARA-Normal framework allows aggregating the intertemporal utilities of infinitely

many household types into a simple Social Welfare Function where the welfare cost of inequality is

summarised by a one-dimensional sufficient statistic of the time-varying wealth distribution.

2.1.1 Uncontrained households

Unconstrained households can take unrestricted positions in actuarial bonds, which pay one unit

of the Home consumption good in the next period conditional on survival. Upon “birth”, uncon-

strained households are transferred an amount of asset wealth equal to the average beginning-of-

period wealth of all surviving households (who are lump-sum taxed accordingly).7 The date-t flow

budget constraint of an unconstrained household born at date s ≤ t is given by:

cst (i, u) + (1 + τ⋆)
ϑ

Rt
ast+1(i) = (1− τat )a

s
t (i) + (1− τw)wtn

s
t (i, u)e

s
t (i, u) +Dt + Tt + Tt, (2)

where ϑ/Rt is the (pre-tax) date-t price of an actuarial bond paying off one unit of the Home

composite consumption good at time t + 1 and ast (i) is the date t wealth of household i born at

date s ≤ t. Since newborn households are transferred average beginning-of-period assets, we have

att(i) = at, where

at = (1− ϑ)
t∑

s=−∞
ϑt−s

∫
ast (i)di

is the mean (beginning-of-period) asset wealth of surviving households (where the
∫

operator

averages over households of the same cohort and the
∑

operator averages over cohorts). Next,

wt is the real wage per unit of effective labor and est (i, u) is individual productivity. Dt denotes

firms’ dividends and Tt a lump sum transfer from the government; both are distributed uniformly

to all households – hand-to-mouth and unconstrained alike.8 Finally, τ⋆ and τw are constant tax

rates; the former affects the expected returns on savings and thus distorts savings decisions, while

6Here γ > 0 is also the coefficient of prudence, and controls how strong the household’s desire to indulge in
precautionary savings is.

7These transfers eliminate the inter-cohort heterogeneity in asset holdings that the Blanchard-Yaari demographic
structure entails whenever the economy’s net foreign asset position differs from zero. These transfers ensure that,
despite the overlapping-generations structure, idiosyncratic risk and access to bond markets are the only sources of
household heterogeneity that matter, so that our economy effectively collapses to Gaĺı and Monacelli (2005) under
complete markets.

8The assumption that dividends and the lump-sum transfer are uniform is made for simplicity. Asymmetric
transfers (due to, say, unequal distribution of dividends) would generate additional sources of households’ unequal
exposure to aggregate shocks (see Bhandari et al., 2021 and Acharya et al., 2023, in the context of a closed economy).
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the latter affects post-tax labor earnings and thus distorts labor-supply decisions. As explained in

Section 4 below, both tax rates are set optimally by the fiscal authority and are necessary for the

constrained efficiency of the steady state, given the frictions plaguing the economy. τat is a time-

varying wealth tax, which will also be set optimally by the fiscal authority, as explained further in

Section 4. Tt is a lump-sum transfer received by unconstrained households only and composed of

the rebate of the savings taxes (τ⋆ϑat+1/Rt) minus the taxes raised to finance the wealth transfers

to the newborn ((1− ϑ)at):

Tt = τ⋆
ϑ

Rt
at+1 − (1− ϑ) at (3)

Individual labor productivity est (i) evolves stochastically according to the following process:

est (i, u) = 1 + σtξ
s
t (i, u), with ξst (i, u) = ξst−1(i, u) + υst (i, u) and υst (i, u)⇝ N (0, 1), (4)

which implies that the conditional variance of next-period individual productivity is equal to σ2
t ,

while the conditional mean is 1+σtξ
s
t (i). Our assumption that individual productivity shocks follow

a random-walk is made for simplicity but also follows from the empirical finding that shocks to

individual earnings are highly persistent – see, e.g., Storesletten et al. (2004). On the other hand,

allowing for time variations in σt is necessary to generate cyclical labor-earnings risk, a robust

feature of the data (Storesletten et al., 2004; Nakajima and Smirnyagin, 2019).

Because unconstrained households do not face hard borrowing constraints (only a no-Ponzi

game condition), their optimal consumption-saving choice satisfies the individual Euler equation:9

e−γcst (i,u) =

(
βRt

1 + τ⋆

)
Ete

−γcst+1(i,u) (5)

where the survival rate ϑ has dropped out by virtue of the actuarial nature of real bonds.

2.1.2 Hand-to-Mouth households

Hand-to-mouth households face idiosyncratic income risk just like unconstrained households. How-

ever, since they cannot participate in asset markets, they must consume their current income in

every period:

cst (i, h) = (1− τw)wtn
s
t (i, h)e

s
t (i, h) +Dt + Tt, (6)

where est (i, h) is the same as in (4).

9Here we have preemptively imposed the fact that τa
t is optimally set to 0 for all dates t > 0. This is simply because

in our economy, once the unanticipated aggregate shock occurs at date 0, there is perfect foresight. Consequently,
only the after tax return (1− τa

t )Rt/(1+ τ⋆) matters for household decisions. Only at date 0, does τa
0 matter because

it can lead to unanticipated redistribution (see Section 4 for details). Thus, as in Acharya et al. (2023), setting τa
t = 0

for all t > 0 is consistent with the planner’s optimality conditions. Accordingly, in all that follows, we have implicitly
set τa

t = 0 for all t > 0.
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2.1.3 labor supply

Under incomplete insurance and a frictionless labor market, households use labor supply for self-

insurance against idiosyncratic shocks, working relatively more (less) when financial assets and

consumption are low (high). As Auclert et al. (2021a) have argued, however, if preferences are

separable, this implies implausibly large wealth effects on labor supply. Accordingly, we assume

that labor supply is chosen by a continuum of unions acting on behalf of the households and

responding monopolistically to firms’ labor demand. Unions mandate that all households work

the same number of hours so that ns
t (i) = nt for all (s, i). This implies that individual hours

are independent of individual wealth and, consequently, households cannot use labor supply for

self-insurance.

We assume that nominal wages are flexible, and Appendix A shows that the optimal aggregate

labor supply condition is given by:10

Mwe
(nt−n)/ρ = (1− τw)wte

−γctΣt (7)

where Mw > 1 is the wage markup, ct is aggregate consumption (so e−γct is the marginal utility of

average consumption), and Σt is the cross-sectional dispersion in marginal utilities over the entire

population:

Σt = (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i)−ct)di (8)

Under complete markets and without hand-to-mouth households, there is no consumption dis-

persion (cst (i) = ct) and consequently Σt = 1 in equations (7)-(8). With idiosyncratic risk and

hand-to-mouth households, Jensen’s inequality implies that Σt > 1.

Given the standard deviation of idiosyncratic productivity σt, the conditional standard deviation

(as of time t− 1) of household time-t income – “time-t income risk” for short – is given by σy,t =

(1 − τw)wtntσt. While σt is not directly observable, there is substantial evidence about income

risk σy,t, both in the long run and over the business cycle. Accordingly, we let σt adjust in the

background in such a way that realised income risk satisfies:

σy,t = σye
−φŷt , (9)

where ŷt is the proportional deviation of output from steady state ((yt−y)/y) while σy (steady-state

income risk) and φ (the cyclicality of income risk) are exogenous parameters. In particular, income

risk is countercyclical (households face higher income risk during downturns) whenever φ > 0;

φ = 0 corresponds to the case where income risk is acyclical.

10We impose nominal price rather than wage rigidities here, following Gaĺı and Monacelli (2005).
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2.2 Firms

2.2.1 Home retailers

A perfectly competitive retail sector produces the consumption good consumed by domestic house-

holds, using a CES aggregator of Home- and Foreign-produced goods:

ct =


[
(1− α)

1
η c

η−1
η

H,t + α
1
η c

η−1
η

F,t

] η
η−1

for η > 0, η ̸= 1,(
cH,t

1−α

)1−α ( cF,t

α

)α
for η = 1,

(10)

where cH,t is a bundle of Home-produced varieties, cF,t is a bundle of imported, foreign-produced

varieties, and 1−α ∈ [0, 1] is the degree of home bias in consumption. The nominal home-currency

price of the consumption good ct is denoted Pt, and the Home-currency prices of the Home- and

Foreign-produced goods are denoted PH,t and PF,t, respectively. The demand system (10) implies

the standard demand curves for Home- and Foreign-produced goods:

cH,t = (1− α) p−η
H,tct and cF,t = αp−η

F,tct, (11)

where pH,t = PH,t/Pt and pF,t = PF,t/Pt are the real prices (i.e., in terms of the home consumption

good) of the Home- and Foreign-produced goods, respectively, and satisfy:

(1− α)p1−η
H,t + αp1−η

F,t = 1, (12)

with the understanding that p1−α
H,t p

α
F,t = 1 in the case where η = 1.

Under producer currency pricing (PCP), our maintained assumption throughout, we have PF,t =

EtP ∗
t , where P ∗

t denotes the price of imports expressed in foreign-currency units and Et is the

nominal exchange rate between Home and Foreign currencies. Qt = EtP ∗
t /Pt denotes the real

exchange rate. Consequently, the real price of Foreign goods can be written as pF,t = Qt, and the

real price of Home goods pH,t depends on the real exchange rate as follows:

pH(Qt) =


(
1−αQ1−η

t
1−α

) 1
1−η

for η > 0, η ̸= 1,

Q
α

α−1

t for η = 1.
(13)

The Home-produced good cH,t is itself the output of a continuum j ∈ [0, 1] of Home-produced

varieties, which are combined according to the CES aggregator

cH,t =

[∫ 1

0
cH,t(j)

ε−1
ε dj

] ε
ε−1

, ε > 1, (14)
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which yields the standard demand curves for each variety:

cH,t(j) =

(
PH,t(j)

PH,t

)−ε

cH,t, (15)

where PH,t(j) is the nominal price of this variety, and PH,t =
[∫ 1

0 P 1−ε
H,t (j)dj

] 1
1−ε

. On the other hand,

the Foreign good cF,t is an aggregate of goods produced in a continuum of countries m ∈ [0, 1], with

each country-specific basket itself aggregating a continuum of country-specific varieties j ∈ [0, 1].

Formally, we have:

cF,t =


[∫ 1

0 c
ν−1
ν

m,t dm

] ν
ν−1

for ν > 0, ν ̸= 1,

e
∫ 1
0 ln cm,tdm for ν = 1,

and cm,t =

[∫ 1

0
cm,t(j)

ε−1
ε dj

] ε
ε−1

, (16)

where ε > 1. Because all foreign prices are symmetric (equal to P ∗
t ), home retailers’ demands for

foreign varieties are symmetric across and within countries, i.e. for all (m, j) we have cm,t(j) = cF,t,

given by equation (11).

2.2.2 Foreign retailers

Foreign retailers in every country m ̸= H behave symmetrically to those in the home economy,

implying that the demand by any country m ̸= H for Home-produced variety j is given by:

c∗H,t(j) = α

(
P ∗
H,t(j)

P ∗
H,t

)−ε(
P ∗
H,t

P ∗
t

)−ν

c∗ (17)

where P ∗
H,t(j) is the foreign-currency price of variety j from country H, P ∗

H,t =
[∫ 1

0 P ∗1−ε
H,t (j)dj

] 1
1−ε

the foreign-currency price index for all goods from country H, and c∗ is world consumption. Under

PCP we have P ∗
H,t(j) = PH,t(j)/Et for all j, while Qt = EtP ∗

t /Pt. Hence, denoting Home’s total

volume of exports by c∗H,t, equation (17) can be broken down as follows:

c∗H,t(j) =

(
PH,t(j)

PH,t

)−ε

c∗H,t, where c∗H,t = α

(
pH(Qt)

Qt

)−ν

c∗, (18)

where pH(Qt) is defined in (13).

2.2.3 Home producers

Home varieties are produced by monopolists using a linear production function turning one unit

of labor into zt units of the specialised good. Prices are sticky à la Rotemberg (1982): if firm j’s

date t − 1 price was PH,t−1(j), it costs the firm Ψ
2

(
ln

PH,t(j)
PH,t−1(j)

)2
yt to change the price at date

t to PH,t(j). Ψ is a constant that scales the cost, and as is standard, the cost is assumed to be

10



proportional to Home output, yt. The output of firm j net of this cost can then be written as:

yt(j) = ztnt(j)−
Ψ

2

(
ln

PH,t(j)

PH,t−1(j)

)2

yt (19)

Firm j’s date-t real value of dividends (in terms of the home consumption basket) is given by

Dt(j) = pH(Qt)
(
PH,t(j)
PH,t

)
yt(j) − (1 − τ)wtnt(j), where τ denotes a payroll subsidy. The firm sets

its price PH,t(j) to maximize the net present-discounted value of dividends, taking as given the

demand curve

yt(j) =

(
PH,t(j)

PH,t

)−ε

(cH,t + c∗H,t) (20)

where cH,t is given by (11) and c∗Ht by (18). Imposing symmetry on the firm’s optimal pricing

decision yields the standard New Keynesian Phillips curve:

lnΠH,t = κ

[
1−

(
χ− 1

χ− 1 + α

)
pH(Qt)zt

wt

]
+ β

(
ztwt+1yt+1

zt+1wtyt

)
lnΠH,t+1, (21)

where κ = ε/Ψ is the slope of the NKPC and χ = η(1 − α) + ν is (minus) the sum of the price

elasticity of imports (−η(1 − α)) and the price elasticity of exports (−ν) – the “trade elasticity”

for short.11 Equivalently, χ is the elasticity of the demand for Home goods with respect to their

real price pH,t. Importantly, in (21), the payroll subsidy τ has been set to

1− τ =

(
1− 1

ε

)(
χ− 1 + α

χ− 1

)
, (22)

which achieves the optimal balance, in steady state, between reducing the monopolistic distortion

induced by producers’ market power and the domestic planner’s desire to exploit its market power

over the international price of Home goods (see Farhi and Werning (2012) for a derivation of the

formula).12 Intuitively, in the closed economy (α = 0), equation (22) collapses to τ = ε−1 and the

subsidy eliminates the incidence of producers’ market power, rendering the steady state optimal

from the planner’s perspective. In the open economy (α ∈ (0, 1)), the fiscal authority finds it

optimal to lower steady-state Home output relative to the closed economy in order to raise the

relative price of Home goods and, ultimately, Home national income. Therefore, the subsidy that

renders the steady state optimal from the planner’s perspective is lower than in a closed economy.

Finally, since producers behave symmetrically (so that PH,t(j) = PH,t for all j), equation (19)

implies that Home output is given by

yt =
ztnt

1 + Ψ
2 (lnΠH,t)2

(23)

11The price elasticity of imports is defined as the elasticity of cF,t with respect to its relative price pF,t/pH,t, while
the price elasticity of exports is the elasticity of c∗H,t with respect to its relative price (from the point of view of
foreigners), i.e., pH,t/pF,t under PCP.

12The assumption in Farhi and Werning (2012), which we maintain here, is that every country sets its payroll
subsidy optimally, taking as given the payroll subsidies set by the other countries. The symmetric equilibrium yields
(22), as well as a steady-state real exchange rate of Q = 1.
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The demand for home output is determined according to equations (11), (18) and (20). Imposing

symmetry, the market-clearing condition for Home goods simplifies to

yt = (1− α)
(
pH(Qt)

)−η
ct + α

(
Qt

pH(Qt)

)ν

c∗ (24)

2.2.4 Financial intermediaries

Because of imperfect international risk sharing, the Home’s net foreign asset position (“NFA”)

responds to aggregate shocks. We assume that capital flows are intermediated by a competitive fi-

nancial sector. These financial intermediaries hold positions in international bonds (paying off units

of the composite consumption goods of the various countries) while trading actuarial bonds (paying

off units of the domestic consumption basket in case of survival) with home households. In the

spirit of Schmitt-Grohé and Uribe (2003), the technology for turning domestic savings into inter-

national lending (or international borrowing into domestic consumption) involves transaction costs

that create an (arbitrarily small) wedge between the home country’s savings and its NFA, ensuring

that the Home’s NFA eventually returns to steady state after the aggregate shock dissipates.

To be more specific, at time t intermediaries issue (1 − θ)at+1 real actuarial bonds (i.e., at

per unconstrained household) at a price ϑ/Rt, which will pay one unit of the domestic composite

consumption good to the ϑ surviving households at time t + 1. Total savings (ϑ/Rt)(1 − θ)at+1

are turned into Φ
(
(1 − θ)at+1

)
(ϑ/Rt)(1 − θ)at+1 good units available for international lending,

where Φ(·) is a C2 function satisfying Φ(0) = 1,Φ′ < 0,Φ′′ > 0.13 The date-t price of a Foreign

bond (i.e., paying one unit of the Foreign consumption basket at date t + 1) is 1/R∗
t , where R∗

t is

the world interest rate, which is taken as given by the Home country. Letting AF,t+1 denote the

net quantity of Foreign bonds purchased by home intermediaries, the relation between the home

country’s savings and its NFA is given by:14

(1/R∗
t )QtAF,t+1︸ ︷︷ ︸
NFA

= Φ [(1− θ)at+1]︸ ︷︷ ︸
transaction costs

× (ϑ/Rt)(1− θ)at+1︸ ︷︷ ︸
Home savings

(25)

At time t + 1, Home intermediaries collect from their bond portfolio the amount Qt+1AF,t+1

and pay out (1− θ)ϑat+1 to domestic survivors. Since intermediaries make no profits, we have:

Qt+1AF,t+1 = (1− θ)ϑat+1 (26)

13If the country is a creditor (i.e., (at+1 > 0), then 1−Φ((1− θ)at+1) > 0 per unit of savings is sunk into intermedi-
ation services, and hence only the amount (ϑ/Rt)(1− θ)at+1 [1− (1− Φ((1− θ)at+1))] = Φ ((1− θ)at+1) (ϑ/Rt)(1−
θ)at+1 < (ϑ/Rt)(1 − θ)at+1 is effectively turned into international lending. Conversely, if the country is a debtor
(at+1 < 0), then every unit of the domestic good made available for domestic consumption over domestic output sinks
an additional quantity Φ ((1− θ)at+1)− 1 > 0 of goods, i.e., it takes (ϑ/Rt)(1− θ)at+1 [1 + (Φ ((1− θ)at+1)− 1)] =
Φ ((1− θ)at+1) (ϑ/Rt)(1 − θ)at+1 > (ϑ/Rt)(1 − θ)at+1 of international lending to make (ϑ/Rt)(1 − θ)at+1 available
to domestic consumers.

14Since foreign countries are symmetric, the bond they issue are perfect substitutes, which warrants a single foreign
bond price 1/R∗

t . Moreover, as there is no home bias in asset holdings and the home economy is vanishingly small
relative to the rest of the world, bonds denominated in the home consumption basket have negligible space in home
intermediaries’ portfolios. That is why they do not appear in equation (25).
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Combining (25) and (26) gives the following real interest rate parity equation:

Rt =
Qt+1

Qt
R∗

tΦ [(1− θ)at+1] (27)

In what follows, we assume that Φ(x) = e−Γx/(1−θ), where Γ ≥ 0 is an arbitrary constant.

Finally, aggregating household savings within and across cohorts, we show in Appendix B the

economy-wide asset accumulation equation to take the form:

(1− θ)ϑat+1 = Rt [(1− θ)ϑat + pH(Qt)yt − ct] , (28)

where (1− θ)ϑat+1 are the liabilities of financial intermediaries (see equation (26).)

2.3 Monetary and fiscal policy

We assume that Home monetary policy directly controls the path of real interest rate Rt, which

is chosen optimally. Similarly, fiscal policy sets the constant labor-income tax τw, the savings tax

τ⋆, as well as the wealth tax {τat }∞t=0. These fiscal instruments are set optimally, as we discuss in

Section 4 below. Unconstrained households enjoy the lump-sum rebate (3), while the lump sum

transfer Tt received by all households corresponds to the rebate of labor income taxes (τwwtnt)

minus the subsidies to firms (τwtnt) so that

Tt = (τw − τ)wtnt. (29)

3 Equilibrium

3.1 Unconstrained Households

As in Acharya and Dogra (2020) and Acharya et al. (2023), the CARA-Normal structure of our

model allows us to linearly aggregate the individual consumption decisions of unconstrained house-

holds into a single aggregate Euler equation for this group. As we show in Appendix C, this Euler

equation takes the following form:

∆ct+1(u) =
1

γ
ln

(
βRt

1 + τ⋆

)
+

γ

2
σ2
cu,t+1, (30)

where ct(u) is the mean consumption of unconstrained households and σcu,t+1 the conditional

standard deviation (as of time t) of next-period consumption – “consumption risk”.

The first term on the RHS of (30) reflects the fact that a higher post-tax real interest rate

incentivizes households to save more, which causes consumption growth going forward to increase.

The second term on the RHS reflects unconstrained households’ precautionary motive in the face

of consumption risk. Higher consumption risk σ2
cu,t+1 causes households to increase their desired

precautionary savings, also causing consumption growth to increase. As we also show in Appendix
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C, under our assumed risk process, consumption risk evolves according to the following joint forward

recursion:

σcu,t = µtσy,t + (1− µt)σcu,t+1 (31)

where

µ−1
t = 1 +

ϑ(1 + τ⋆)

Rt
µ−1
t+1 (32)

Consumption risk at date t depends not just on current income risk σy,t but also on how much of

it passes through to consumption risk, µt. This is captured by the first term on the right-hand side

of (31). Furthermore, since individual productivity is persistent, it is not just today’s income risk

and passthrough that matter for consumption risk; instead, it is the entire path of future expected

income risk and passthrough. This is captured by the last term on the right-hand side of (31).

Taken together, equations (30) to (32) encompass the key role of time-varying precautionary

savings in determining aggregate demand in SOE-HANK. For example, an increase in current

or future income risk tends to raise current consumption risk, urging unconstrained households

to precautionary save, which contracts aggregate demand. If income risk is countercyclical, this

precautionary savings channel magnifies the effect of aggregate shocks affecting aggregate demand.15

3.2 Hand-to-Mouth households

The individual consumption of hand-to-mouth households is given by (6). Since aggregate dividends

are Dt = pH,tyt− (1− τ)wtnt, the aggregate lump sum transfer is Tt = (τw − τ)wtnt, and given the

individual productivity process (4), we can express the consumption of a HtM household i, born

at date s, as:

cst (i, h) = pH(Qt)yt + σy,tξ
s
t (i, h) (33)

Aggregating over all HtM households, their average consumption is simply

ct(h) = pH(Qt)yt, (34)

Equations (13) and (33)–(34) show how exposed hand-to-mouth households’ consumption is

to changes in real income triggered by exchange rate movements – the “real income channel”

emphasised by Auclert et al. (2021b). At any given output level yt, a domestic currency depreciation

(say, triggered by capital outflows) leading to a fall in the relative price of home-produced goods

hits the income and consumption of hand-to-mouth households as a whole one for one. This is

in contrast to unconstrained households, which can reduce the effect of exchange-rate movements

on their current consumption via borrowing and lending. To be more specific, holding everything

else constant, by equation (34), a real exchange rate variation dQt > 0 triggers a change in ct(h)

of size dct(h) = p′H(Qt)ytdQt < 0 – since HtM households’ MPC is equal to 1. On the other

hand, unconstrained households as a whole behave like a permanent-income consumer with Euler

15See, e.g., Acharya and Dogra (2020); Challe et al. (2017); Challe (2020); Ravn and Sterk (2021) in the context
of closed-economy models.
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equation (30) and budget constraint (45) in Appendix B. Their MPC in response to a transitory

income change is thus less than 1, implying that dct(h) < dct(u) < 0 after a one-off shock dQt > 0.

3.3 Aggregate Euler equation

Ultimately, aggregate consumption ct is the weighted average of the two groups, i.e.,

ct = (1− θ)ct(u) + θct(h) (35)

Combining (30), (34) and (35), we get the following aggregate Euler equation determining aggregate

consumption growth in our economy:

∆ct+1 = (1− θ)

[
ln

(
βRt

1 + τ⋆

)
+

γ

2
σ2
cu,t+1

]
︸ ︷︷ ︸

unconstrained households

+θ (pH(Qt+1)yt+1 − pH(Qt)yt)︸ ︷︷ ︸
hand-to-mouth households

(36)

3.4 Welfare cost of consumption dispersion

While there are various measures of income and consumption inequality that one could compute,

our framework identifies a unique welfare relevant measure of inequality, the exact form of which

depends on the objective function we endow the planner with. As in Acharya et al. (2023), we

assume that the planner is utilitarian and puts equal weight on the expected discounted lifetime

utility of all households alive at date 0, and puts a Pareto weight of βt on the lifetime value of

households born at date t > 0. In this case, Appendix D shows that the planner’s objective function

can be written as W0 =
∑∞

t=0 β
tUt, where the date-t total utility flow to the planner Ut is given

by:

Ut = u(ct)Σt − v(nt), (37)

and Σt ≥ 1, given by equation (8) above, measures the social cost associated with the dispersion

in the marginal utility of consumption across the entire population. In SOE-RANK, we have

Σt = 1 and thus Ut = u(ct) − v(nt): the flow utility is simply that brought to the planner by

the Representative Agent. In contrast, in SOE-HANK, a mean-preserving increase in consumption

dispersion is costly to the planner, which is manifested in the fact that Σt > 1.16

To the extent that Σt captures consumption dispersion over the population as a whole, it

encompasses both ex-ante heterogeneity (in access to bond markets) and ex-post heterogeneity

(due to idiosyncratic shocks). We further show in Appendix D that Σt can be broken down as

follows:

Σt = (1− θ) e−γθΥtΣu,t + θeγ(1−θ)ΥtΣh,t (38)

where Υt = ct(u) − ct(h) captures consumption dispersion between groups and the Σk,ts capture

16Recall that because of our assumption that utility is of the Constant Absolute Risk Aversion type, u(c) < 0, and
so an increase in Σt lowers Ut.
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(the welfare cost of) consumption dispersion within each group:

Σk,t = (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i,k)−ct(k))di, k = u, h. (39)

Equations (38)-(39) encode how between- and within-group inequalities jointly contribute to

the overall welfare cost of inequalities. Notice that when there are between-group inequalities in

favour, say, of the unconstrained (i.e., Υt > 0), then the planner gives more weight on inequality

within the group of hand-to-mouth households (e(1−θ)Υt goes up) and less on inequality within

the group of unconstrained households (e−θΥt goes down). The opposite occurs when Υt < 0. Of

course, Σk,t = 1 whenever households are symmetric within their group, i.e., when idiosyncratic

risk is shut down. In this case, the SOE-HANK model is simply a Two-Agent (“SOE-TANK”)

model in which only between-group inequalities matter.

Within-group inequalities are driven by idiosyncratic risk, to which unconstrained and hand-

to-mouth households respond very differently. On the one hand, unconstrained households are

permanent-income consumers who can freely borrow or lend and whose individual consumption (as

a deviation from the mean consumption of this group) follows a random walk (see Appendix D.1 for

details). As a result, consumption dispersion within this group following the repeated occurrence

of idiosyncratic shocks is persistent. This in turn implies that, for this group, (the welfare cost

of) consumption dispersion Σu,t is a slow-moving variable obeying a quasi-AR(1) process driven by

consumption risk (see Appendix D.2 for the derivation):

lnΣu,t =
γ2σ2

cu,t

2
+ ln (1− ϑ+ ϑΣu,t−1) (40)

For Σu,t to be stationary, it must be that the distribution of consumption converges towards an

invariant distribution. This requires the turnover rate 1−ϑ to be sufficiently large. Intuitively, since

individual consumption is a random walk upon survival, an invariant distribution of consumption

can exist only if a sufficiently large fraction of households exit the economy at every point in time

and are replaced by households starting at the mean wealth level of this group at.
17

On the other hand, hand-to-mouth households cannot borrow or lend, which implies that their

consumption risk is equal to their income risk at every point in time, i.e., σch,t = σy,t. Aggregating

consumption dispersion across cohorts for this group, we find Σh,t to be (see Appendix D.2 for

details):

Σh,t =
1− ϑ

e−
γ2σ2

y,t
2 − ϑ

(41)

17Formally, this requires ϑ < e−(γσy)
2/2, in which case Σu,t converges towards its steady state value of Σu =

(1− ϑ)/(e−(γσy)
2/2 − ϑ) ≥ 1. When this condition is violated, the process for Σu,t is not stationary, which is

equivalent to saying that the distribution of consumption does not converge towards an invariant distribution.
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4 Optimal policy

The planner maximises W0 =
∑∞

t=0 β
tUt, where Ut is defined by (37)-(38), subject to the opti-

mal labor-supply condition (7), the New Keynesian Phillips curve (21), the output equation (23),

the market-clearing condition (24), the real interest rate parity (27), the NFA dynamics (28) the

aggregate Euler equation (36) (together with the joint recursion (31)-(32)) and the within-group

cost-of-inequality indices (40) and (41).

The Lagrangian function corresponding to this welfare maximisation problem is formulated in

Appendix E. We solve the optimisation problem in two steps. First, we compute the optimal values

of the (time-invariant) fiscal instruments τ⋆ and τw; this ensures the constrained efficiency of the

steady state of the Ramsey plan. Next, we characterise the optimal monetary policy response to ag-

gregate shocks, given optimal fiscal policy. In so doing, we set the lagged values (i.e., dated t = −1)

of the Lagrange multipliers on the forward looking constraints to their steady-state counterparts,

as is common in the New Keynesian literature.

4.1 Optimal fiscal policy

Since consumption inequality lowers average welfare, the HANK planner unambiguously prefers

lower consumption inequality, and would like to engineer some redistribution. If monetary policy

was the only policy instrument the planner had, they would use monetary policy to induce some

redistribution and reduce the average level of inequality. However, monetary policy is arguably not

the perfect tool to engineer such a redistribution, and fiscal policy is likely a better way to achieve

it. In contrast, it is commonly believed that monetary is relatively more agile compared to fiscal

policy, and can respond quickly to cyclical fluctuations.

To strike a balance between these concerns, we take the following approach. As in Acharya et

al. (2023), we limit the burden on monetary policy by assuming that the planner sets fiscal policy

optimally absent aggregate shocks. The fiscal instruments are set so that in steady state, the

benefit of lowering inequality is exactly balanced by the cost of productive inefficiency, implying

that fiscal policy achieves the constrained -efficient level of steady-state inequality. As a result,

absent any aggregate shock, it is optimal for monetary policy not to try to to reduce inequality

further, for example, by engineering a surprise interest-rate cut. Consequently, in our specification

of the optimal policy problem, fiscal policy determines the average level of consumption inequality,

leaving monetary policy to address the cyclical fluctuations of inequality around this average,

constrained-efficient level. Appendix E.2 provides formal details about how fiscal policy optimally

sets the savings tax τ⋆, labor-income τw, and the date-0 wealth tax τa0 ; we just discuss the forces

that shape these choices here.

Savings tax. Since the rest of the world is assumed to be risk-neutral while sharing the same

subjective discount factor as Home households, the steady state world interest rate is R∗ = β−1.

At that subjective discount factor and in the absence of a savings tax, domestic households, who

precautionary save against uninsured idiosyncratic risk, accumulate claims on the rest of the world
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and accordingly incur the deadweight loss generated by the transaction cost (see Section 2.2.4).

Formally, equations (27), (30) and (31) imply that e−Γa = (1+τ⋆)e−
γ2σ2

y
2 in any steady state, so that

a > 0, and hence R < R∗, at τ⋆ = 0. The optimal savings tax τ⋆ = e
γ2σ2

y
2 −1 deters those inefficient

capital outflows and eliminates the corresponding deadweight loss. Without the savings tax, the

planner would attempt to address the inefficiency of steady state capital outflows by stimulating

aggregate demand, but this would inefficiently distort production and create inflation.

labor-income tax. The planner sets a nonzero labor income tax τw, for two reasons. First, the

income tax is used to correct the labor-market distortions induced by the market power of unions

(see Section 2.1.3); its value in the absence of risk is simply τw = 1 − Mw < 0, i.e., a subsidy

prevents labor supply from falling short of its efficient level (Erceg et al., 2000). Second, to the

extent that the labor-income tax affects labor supply, it affects the steady state level of output and

hence income risk (by (9)). The optimal labor income tax (or subsidy) is that which optimally

balances those two forces in steady state. Note that if income risk is acyclical (φ = 0 in (9)),

then the second motive is moot, and the optimal income tax is the same as in the absence of

risk. However, if income risk is countercyclical (φ > 0), τw = 1−Mw is no longer optimal in our

SOE-HANK economy. Instead, at the margin, the planner would like to increase labor supply and

hence steady state output to reduce the level of income risk faced by households. In the absence of

the labor-income tax, or if the latter were constrained only to correct the labor-market distortion,

the planner would attempt to increase steady-state output in order to lower risk. It would do so

by running the economy hot, which would result in positive steady-state inflation. Just as the

savings tax allowed the planner to avoid capital outflows without overheating the economy, the

labor income tax allows the planner to achieve its desired level of steady-state output without

steady-state inflation.

Wealth tax. Rather than focusing on the redistributive role of monetary policy, we focus on how

optimal monetary policy in a SOE-HANK differs from that in SOE-RANK due to the planner’s

desire to compensate for missing insurance markets. As discussed in Acharya et al. (2023), we do so

by endowing the planner with a wealth tax at date 0, which they can use to achieve their desired level

of redistribution at date 0, leaving monetary policy unencumbered. Since we specify equal Pareto

weights on all households alive at date 0, our utilitarian planner prefers to eliminate all pre-existing

wealth inequality by setting τa0 = 1.18 As discussed in Acharya et al. (2023), without this wealth

tax, even when no aggregate shock hits the economy, the planner would implement a surprise

real interest-rate cut at date 0 to exploit the unhedged interest-rate exposure of unconstrained

households and redistribute consumption from creditors to debtors. Given the optimal time-0

wealth tax, it is without loss of generality to set τat = 0 for all t > 0, since only the post-tax real

18In Acharya et al. (2023), we also considered planners whose desired level of redistribution was less than 100%, and
showed how that affected the optimal conduct of monetary policy. In the context of that paper, we showed that while
the monetary policy response is qualitatively similar (in fact, the desire to stabilize output is further strengthened),
but quantitatively the difference between the optimal policy chosen by utilitarian planner and non-utilitarian planners
is small. Thus, we focus on the problem of the utilitarian planner in this paper.
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interest rate Rt(1− τat )/(1+ τ⋆) matters for allocations and all agents enjoy perfect foresight about

aggregate variables as of date 0.

4.2 Optimal monetary policy

Unlike optimal fiscal policy, which is set optimally absent aggregate shocks, the planner’s choice of

optimal monetary policy can be described as a sequence of real interest rates {Rt}∞t=0 conditional on

the aggregate shock that realizes at date 0. In what follows, we study the optimal monetary policy

responses to a (i) temporary aggregate productivity shock {zt} and (ii) a temporary shock to the

world interest rate {R∗
t }. Studying the optimal response to aggregate productivity shocks allows us

to compare our findings to much of the SOE literature, most notably Gaĺı and Monacelli (2005), and

to highlight how introducing uninsurable income risk and hand-to-mouth behavior affects optimal

policy. Shocks to the Foreign interest rate, on the other hand, have been a critical motivation for

the recent development of positive SOE-HANK models (De Ferra et al., 2020; Auclert et al., 2021b),

and we offer a normative perspective on how a small open economy should optimally respond to

such shocks.

Calibration. The impulse-response functions below plot the elasticities of the endogenous vari-

ables with respect to one-off, persistent changes in aggregate labor productivity or the world interest

rate. The persistence parameter for both shocks is set to 0.9. Next, we set the steady state Foreign

interest rate to R∗ = 1/β = 1.04, and we set ϑ = 0.85, following, e.g., Nisticò (2016) and Farhi and

Werning (2019). We set the Frich elasticity of the median Home household to ρ = 1/3. Regarding

the supply side, we set the elasticity of substitution between varieties to ε = 10 and the slope of

the NKPC to κ = 0.1; the inflation cost parameter Ψ = ε/κ follows. Steady-state earnings risk

is set to σy = 0.1. Further, following standard calibrations in the SOE literature, we set α = 0.4

and Γ = 0.1. Our baseline value for the share of hand-to-mouth households is θ = 0.3, also in

line with the literature. All the above parameters are held constant across the figures. We then

consider several configurations for the elasticities of substitutions (intertemporal 1/γ; and across

consumption bundles, η and ν) as well as the cyclicality of income risk φ, as we describe below.

4.2.1 Responses to domestic productivity shocks

We first characterize the optimal monetary policy response to aggregate productivity shocks. Before

showing how uninsurable risk and hand-to-mouth behavior affect the optimal conduct of monetary

policy, it is useful to highlight that merely the presence of uninsurable idiosyncratic risk or hand-

to-mouth households does not necessitate a change in optimal monetary policy relative to the

SOE-RANK benchmark. Proposition 1 below formalises this.

Proposition 1. Under the Cole and Obstfeld (1991) parameterization (γ = η = ν = 1), suppose

households face income risk (σ2
y > 0), but income risk is acyclical (φ = 0) and there is a fraction

θ ∈ [0, 1) of hand-to-mouth households. Then, despite the presence of idiosyncratic income risk and
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Figure 1: SOE-HANK (solid blue) vs. SOE-RANK (dashed red) under Cole-Obstfeld
elasticities (γ = η = ν = 1) and acyclical risk (φ = 0). Price stability is optimal in both
SOE-HANK and SOE-RANK in response to aggregate productivity shocks. The exact values of θ
(the share of hand-to-mouth households) and σy (the size of earnings risk) do not matter for this
result.

hand-to-mouth households, the optimal monetary policy in SOE-HANK in response to an aggre-

gate productivity shock is the same as in SOE-RANK: optimal policy perfectly stabilizes domestic

producer price inflation at each date. Moreover, this policy is optimal regardless of the share of

hand-to-mouth households θ or the size of earnings risk σ2
y.

Proof. See Appendix F.

Proposition 1 is similar in spirit to the main result obtained by Gaĺı and Monacelli (2005) under

complete markets and is best explained in relation to their findings. First, recall that in the closed-

economy RANKmodel, producer price stability is optimal following an aggregate productivity shock

– a result often referred to as the “divine coincidence” since Blanchard and Gaĺı (2007). In short,

the planner can implement both price stability and productive efficiency in response to aggregate

productivity shocks, because the latter do not generate a monetary policy tradeoff. In the open
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economy, there is potentially another margin that monetary policy must internalize, namely how

changes in monetary policy affect the nominal exchange rate and ultimately the terms of trade. Gaĺı

and Monacelli (2005) showed, however, that under the Cole and Obstfeld (1991) parameterization,

there is an “open-economy divine coincidence”: the very same policy of domestic producer price

stability as in the closed-economy remains optimal, as it achieves the planner’s desired movements

in the terms of trade (in addition to ensuring productive efficiency.)

The open-economy divine coincidence SOE-RANK is depicted in Figure 1 (dashed red line).

After a contraction in aggregate productivity, the optimal policy achieves zero inflation – thereby

replicating the flexible price (or “natural”) allocation. In this allocation, the supply of the Home-

produced goods decreases and its relative price rises, causing an appreciation of the domestic

consumption basket (i.e., a fall in the real exchange rate Qt). Aggregate domestic consumption

falls, and it perfectly tracks aggregate income so that the Home country’s savings remain at zero all

along the transition path. The optimal policy is implemented via a hike in the policy rate, which

also replicates the path of the natural interest rate.

According to Proposition 1 above, a similar open-economy divine coincidence holds in SOE-

HANK as long as income risk is acyclical (φ = 0), even though the planner now also must worry

about how its actions affect consumption inequality. To understand why this is the case, let us

start with the case in which there are no hand-to-mouth households (θ = 0), i.e., all households

are unconstrained. In this simple scenario, even though there is within-group inequality (due to

uninsured idiosyncratic risk), there is (trivially) no between-group inequality. To see how monetary

policy can affect (the welfare cost of) inequality, recall from equation (40) that by affecting the

level of consumption risk (σ2
cu,t) that unconstrained households face, monetary policy can affect the

evolution of Σu,t (which in this case is equal to Σt, since we have set θ = 0). Log-linearizing (9)

and (31), we observe that, to first order, consumption risk evolves as follows:

σ̂cu,t = −φŷt +
ϑ(1− τ⋆)

R
σ̂cu,t+1

When φ > 0, monetary policy can reduce consumption risk via the income risk channel: higher

aggregate output reduces the level of income and consumption risk that unconstrained households

face. However, when φ = 0, the above expression implies that σ̂cu,t = 0 for all t, and so (40)

implies that monetary policy cannot affect the evolution of the welfare cost of inequality (Σu,t = Σt

stays constant). Therefore, while the monetary authority does dislike consumption inequality, it

cannot affect it, and so the best it can do is focus on the objectives of price stability and productive

efficiency. Ultimately, divine coincidence continues to hold in SOE-HANK when risk is acyclical

are there are no hand-to-mouth households.

Perhaps surprisingly, according to Proposition 1, adding a fraction of hand-to-mouth house-

holds (θ > 0), does not change optimal policy under Cole and Obstfeld (1991) elasticities. Even

under acyclical income risk (so that within-group inequality is unaffected by monetary policy),

we could expect a policy of domestic price stability to interfere with the planner’s objective of

stabilizing between-group inequality Υt = ct(u) − ct(h). However, under the Cole and Obstfeld
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(1991) elasticities and acyclical income risk, the concern for between-group inequality does not

generate a monetary policy tradeoff either. To understand why this is the case, recall that in the

complete-market benchmark of Gaĺı and Monacelli (2005), efficient risk-sharing coupled with Cole

and Obstfeld (1991) elasticities imply that Home consumption equals the real exchange rate – a

direct implication of the Backus and Smith (1993) efficient risk-sharing condition. The exact same

property also holds under incomplete markets in response to aggregate productivity shocks, and

it implies that, under the optimal plan, the Home economy does not borrow from or lend to the

rest of the world, i.e., a SOE which starts with a zero net foreign asset position maintains that

position forever under the policy of domestic producer price stability. In other words, the uncon-

strained households in our SOE-HANK with acyclical risk do not accumulate or decumulate any

foreign assets under the optimal plan, despite the lack of international risk sharing against domestic

productivity shocks. Thus, under a policy of domestic producer price stability, even though each

individual unconstrained household may borrow or save in response to idiosyncratic income shocks,

unconstrained households as a whole do not borrow or save and on average consume their share of

national income in every period – just like hand-to-mouth households on average do, by construc-

tion (see equation (34)). Consequently, unconstrained households as a whole behave symmetrically

to hand-to-mouth households as a whole, and there is no between-group inequality, whatever the

share of hand-to-mouth households in the economy.

To summarize, in our SOE-HANK, acyclical income risk implies that the monetary authority

cannot affect within-group inequality, while Cole-Obstfeld elasticities imply that there are no fluc-

tuations in between-group inequality. Eventually, under this parameter configuration monetary

authority disregard inequality altogether (despite its potential welfare costs) and focuses on the

other objectives of producer price stability and productive efficiency. Since the latter two do not

conflict under Cole-Obstfeld elasticities, the SOE-HANK divine coincidence prevails, no matter

how large the fraction of hand-to-mouth households or the extent of idiosyncratic income risk.

Figure 1 illustrates this correspondence between optimal monetary policy in SOE-HANK with

acyclical risk and SOE-RANK.19 The solid blue curves depict the optimal response to a negative

domestic productivity shock in our SOE-HANK with acyclical risk, while the dashed-red lines

depict the optimal dynamics in response to the same shock in an SOE-RANK. As the figure shows,

both lines overlap in all panels, showing that a purely inward-looking policy focusing exclusively

on stabilizing domestic producer prices can be optimal even when markets are incomplete.

However, away from the knife-edge case just discussed, the planner’s willingness to stabilize

inequality does produce additional policy trade-offs. This implies that optimal monetary policy in

SOE-HANK is no longer the same as in SOE-RANK in empirically relevant cases. To illustrate

this point as transparently as possible, we first depart from the special case described above by

maintaining the Cole and Obstfeld (1991) elasticities, but assuming, realistically, that income risk

is countercyclical rather than acyclical (Storesletten et al., 2004; Nakajima and Smirnyagin, 2019).

Figure 2 depicts the differences between the optimal dynamics in response to a negative productivity

19To highlight how monetary policy optimally responds to aggregate shocks, all the figures plot generalised IRFs
depicting those responses minus the optimal responses absent shock.
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Figure 2: SOE-HANK (solid blue) vs. SOE-RANK (dashed red) vs. SOE-HANK under
price stability (solid black), all under Cole-Obstfeld elasticities (γ = η = ν = 1) and
countercyclical risk (φ = 5). Price stability is no longer optimal in SOE-HANK. If imposed in
that model, it creates excess volatility in output, the exchange rate, and inequalities.

shock in our SOE-HANK with countercyclical risk (solid-blue lines) and in SOE-RANK (dashed-

red lines). The income-risk cyclicality parameter is set to φ = 5 (instead of φ = 0), following

Acharya et al. (2023). Optimal policy in SOE-HANK now implements a smaller decline in output

and the real exchange rate relative to SOE-RANK (the blue lines are higher than the dashed red

lines in Panels (d) and (c)). As a result, inflation temporarily increases, i.e., it is optimal to depart

from strict producer price stability (Panel (e)). This policy is achieved by raising the interest rate

significantly less than in SOE-RANK (Panel (b)). The reason why this more accommodative policy

is optimal is that, under countercyclical risk, raising the interest rate as much as in SOE-RANK –

and consequently appreciating the domestic currency as much – would generate too large a collapse

in the demand for Home goods, hence too large an increase in inequality domestically. In contrast,

a smaller appreciation supports higher demand for Home goods. It prevents output from falling as

much as in SOE-RANK, mitigating the adverse impact on inequality in SOE-HANK. The milder
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output response in SOE-HANK comes at the cost of higher inflation on impact, which the planner

is willing to tolerate as it prevents an even larger increase in the welfare cost of inequality Σt (see

Panel (h) of Figure 2).

To further highlight the difference in optimal policy between SOE-HANK and SOE-RANK,

Figure 2 also displays the aggregate dynamics in SOE-HANK if producer price stability (i.e., the

optimal policy in SOE-RANK) were inefficiently imposed in SOE-HANK (see the solid black lines).

By virtue of the Cole-Obstfeld elasticities, between-group inequality would be unaffected (the black

and blue lines lie exactly on top of each other in Panel (i)). However, within-group inequalities

would increase by more (Panel (h)), leading to welfare losses.
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Figure 3: SOE-HANK (solid blue) vs. SOE-RANK (dashed red) under non-Cole-
Obstfeld elasticities (γ = 2, η = 1.5, ν = 4) and countercyclical risk (φ = 5). The difference
in optimal policies is qualitatively similar but quantitatively magnified relative to the Cole-Obstfeld
case.

While we have restricted our attention to the Cole-Obstfeld elasticities so far, the property

that optimal policy stabilizes output and the real exchange rate more in SOE-HANK than in

SOE-RANK after an aggregate productivity shock when idiosyncratic risk is countercyclical is
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robust across plausible trade elasticities and elasticities of intertemporal substitution. To illustrate

this, Figure 3 plots those optimal responses under the standard parameterisation adopted by, e.g.,

Egorov and Mukhin (2023), who set γ = 2, η = 1.5 and ν = 4.20 Unsurprisingly, price stability is no

longer optimal even in SOE-RANK under this parameterisation. This is because the terms-of-trade

manipulation motive now kicks in and clashes with the objectives of stabilising producer prices and

the output gap, breaking the open-economy divine coincidence. To elaborate, under Cole-Obstfeld

elasticities (χ = 2 − α), national income (to first order) is given by p̂H,t + ŷt = (1− α) ĉt + αQ̂t,

and optimal policy exactly replicates the flexible-price allocation wherein ĉt = Q̂t = p̂H,t + ŷt (see

Appendix F for details). Whenever the trade elasticity is larger (χ > 2− α), strict producer price

stability would still replicate the flexible-price allocation but, in so doing, would produce excess

expenditure-switching away from home-produced goods after a negative aggregate productivity

shock. Instead, the central bank engages in terms-of-trade manipulation and implements more

exchange-rate stability than in the flexible-price allocation. Against this backdrop, stabilising

inefficient fluctuations in inequality in SOE-HANK provides, in this calibration, an additional

motive for stabilising the real exchange rate. In fact, this motive plays out more strongly at trade

elasticities higher than Cole-Obstfeld, as can be seen by comparing the differences between the red-

dashed and blue lines of Panel (c) in Figures 2 and 3. This is because output, and eventually income

risk and consumption inequality – since income risk is countercyclical –, become more sensitive to

exchange rate fluctuations when trade elasticities are high.

Finally, one notices from Figures 2 and 3 that the dynamic impact of aggregate productivity

shocks on inequalities under countercyclical risk works primarily through within-group inequalities

(Panel (h)). In comparison, between-group inequalities (Panel (i)) move very little, even away from

Cole-Obstfeld elasticities. This is unlike what happens after a world interest rate shock, as we show

next.

4.2.2 World interest-rate shock

We may now turn to the effects of changes in the world interest rate R∗
t . Before examining opti-

mal monetary policy, let us briefly elaborate on the transmission of those shocks to the domestic

economy, holding domestic monetary policy unchanged. Consider a fall in R∗
t , whose direct effect

(holding the domestic real interest rate unchanged) is an inflow of capital into the domestic econ-

omy. This inflow causes a real appreciation (see (27)) and thereby an increase in the relative price of

home-produced goods (see (13)). In SOE-RANK, this lowers the real marginal cost of firms and is

thus deflationary (see equation (21)), urging the central bank to accommodate the shock by cutting

the domestic interest rate. Furthermore, in SOE-HANK, under plausible trade elasticities (χ > 1),

expenditure switching away from home-produced goods generates a fall in national income that

disproportionately lowers the consumption of hand-to-mouth households via the real-income chan-

nel – furthering the central bank’s incentives to cut interest rate in order to mitigate the increase

in between-group inequality. Ultimately, while the central bank cuts interest rates in response to

20While Egorov and Mukhin (2023) assume CRRA preferences, the local CRRA and CARA coefficients are identical
under our normalisation of the steady state.

25



0 2 4
-100

-90

-80

-70

-60

-50

%
 p

ts

0 2 4
-80

-60

-40

-20

0

0 2 4
-40

-30

-20

-10

0

10

0 2 4
-60

-40

-20

0

%
 p

ts

0 2 4
-1

0

1

2

3

0 2 4

0

20

40

60

80

100

0 2 4
-500

-400

-300

-200

-100

0

%
 p

ts

0 2 4

0

10

20

30

40

0 2 4

0

50

100

150

Figure 4: SOE-HANK (blue) vs. SOE-RANK (dashed red) under non-Cole-Obstfeld
elasticities (γ = 2, η = 1.5, ν = 4) and countercyclical risk (φ = 5, solid blue) or acyclical
risk (φ = 0, dotted blue). The difference in optimal policies is qualitatively similar but quanti-
tatively magnified relative to the Cole-Obstfeld case.

this shock in both SOE-RANK and in SOE-HANK, the cut is more pronounced in SOE-HANK.

That is, monetary policy in SOE-HANK optimally chooses to implement a smaller interest rate

differential, which in turn results in a smaller appreciation of the Home currency.

Figure 4 depicts the optimal dynamics graphically in the case with non-Cole-Obstfeld elasticities

and countercyclical risk. The blue lines depict dynamics in SOE-HANK with countercyclical risk,

the red dashed lines depict dynamics in SOE-RANK, and the dotted blue curves depict optimal

dynamics in SOE-HANK with acyclical risk. As with the aggregate productivity shock under

countercyclical income risk, the optimal policy in SOE-HANK prevents the exchange rate from

appreciating as much as in SOE-RANK. This policy is implemented by cutting domestic interest

rates more to reduce the interest rate differential between the domestic economy and the rest of

the world. As Panel (h) and (i) show, both within-group and between-group inequality now play

an important role in explaining the difference in the degree of exchange-rate stabilisation between
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SOE-HANK and SOE-RANK. This is in contrast with what happened after a productivity shock,

where between-group inequality played almost no role. The reason for this difference in inequality

responses across aggregate shocks is that the world interest rate shock directly hits the real exchange

rate. These changes in real exchange rates result in large fluctuations in the consumption of hand-

to-mouth households via the real-income channel.

5 Conclusion

In this paper, we have presented a tractable framework to study the additional tradeoffs faced

by the central bank in a small open economy wherein households are heterogeneous due to unin-

sured idiosyncratic risk and unequal access to bond markets. We first showed that those features

are not sufficient, by themselves, to generate differences in optimal monetary policy between the

baseline SOE-HANK model and the SOE-RANK model. In fact, under Cole-Obstfeld elasticities

and acyclical earnings risk, the optimal policy implements strict domestic producer price stability

after aggregate productivity shocks in both models. However, we also found that moving away

from those assumptions and adopting more realistic values of the elasticities of substitution and

the cyclicality of earnings risk could lead to substantial differences between SOE-RANK and SOE-

HANK in terms of optimal policy and aggregate outcomes: in those scenarios, the optimal policy

implemented significantly less exchange-rate volatility than in the SOE-RANK benchmark.
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Appendix

A labor supply

The setting is as in Auclert et al. (2023): a continuum of monopolistically competitive unions

j ∈ [0, 1] demands labor from the households and turn them into specialised labor types j sold to

competitive labor agencies. labor agencies then repackage those types into the final labor sent to

producers.

Each worker i supplies ℓst (i, j) labor hours to each union j ∈ [0, 1], so that worker i’s total labor

supply is ns
t (i) =

∫
j ℓ

s
t (i, j)dj. Each union j aggregates the effective labor supply of each household

to produce a differentiated labor type nt(j). It demands the same quantity of raw hours ℓt(j) from

all its members so that nt(j) = ℓt(j). A competitive labor agency sector re-aggregate the nt(j) into

a single composite labor type nt sold to firms:

nt =

(∫
j
nt(j)

κ−1
κ dj

) κ
κ−1

, κ > 1

Let Wt(j) be the nominal cost of labor type j sold to labor agencies and Wt the average wage

level. The demand for labor input j by labor agencies is given by

nt(j) = nt

(
Wt(j)

Wt

)−κ
= nt

(
wt(j)

wt

)−κ
(42)

Union j sets wages (or equivalently labor supply nt(j)) so as to maximise the expected utility of

all its members, giving equal welfare weight to each member. Moreover, in the absence of nominal

wage rigidities, the problem of the union is static: in every period, it maximises

Ot(j) = (1− ϑ)

t∑
s=−∞

ϑt−s

∫ [
−1

γ
e−γcst (i,j) − v (nt(j))

]
di

We can rearrange the latter expression as follows:

Ot(j) = −e−γct(j)

γ
(1− ϑ)

t∑
s=−∞

ϑt−s

∫ [
e−γ[cst (i,j)−ct(j)]

]
di︸ ︷︷ ︸

≡Σt(j)

−v (nt(j)) = −1

γ
e−γct(j)Σt(j)− v (nt(j))

where ct(j) is the average consumption of union j’s members, given by

ct(j) = (1− τw)wt(j)nt(j) + at(j) + Tt −
ϑ(1 + τ⋆)

Rt
at+1(j), (43)

while Σt(j) captures the dispersion in marginal utility among union j’s member.

Maximising Ot(j) with respect to the relative real wage wt(j)/wt and subject the union-level
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budget constraint (43) and the inverse demande curve (42) gives the first-order condition:

Σt(j)u
′ (ct(j)) (1− τw)wtnt(1− κ)

[
wt(j)

wt

]−κ
+ κv′ (nt(j))nt

[
wt(j)

wt

]−κ−1

= 0

Next, imposing symmetry (ct(j) = ct,Σt(j) = Σt, nt(j) = nt, wt(j) = wt), we eventually get

equation (7), where Mw = κ/(κ − 1).

B NFA dynamics

From equation (2), and given that all households supply the same number of hours nt, conditional

on survival, the individual wealth of unconstrained household i evolves as follows:

(1 + τ⋆)ast (i) =
Rt−1

ϑ

{
ast−1(i) + (1− τw)wt−1nt−1e

s
t−1(i, u) +Dt−1 + Tt−1 + Tt−1 − cst−1(i, u)

}
(44)

Aggregate dividends are Dt = pH,tyt − (1 − τ)wtnt, the aggregate lump sum transfer is Tt =
(τw − τ)wtnt (see equation (29)), while average labor productivity is 1. Thus, aggregating uncon-

strained households’ budget constraints over individuals of the same cohort s, we get:

(1 + τ⋆)ast =
Rt−1

ϑ

{
ast−1 + pH,t−1yt−1 + Tt−1 − cst−1(u)

}
Next, aggregating over cohorts s ≤ t:

(1 + τ⋆)at = (1− ϑ)

t∑
s=−∞

ϑt−s(1 + τ⋆)ast

= (1− ϑ) (1 + τ⋆) att︸︷︷︸
=at

+(1− ϑ)ϑ(1 + τ⋆)at−1
t + (1− ϑ)ϑ2(1 + τ⋆)at−2

t + ...

(1 + τ⋆)ϑat = (1− ϑ)ϑ
Rt−1

ϑ

[
at−1
t−1 + pH,t−1yt−1 + Tt−1 − ct−1

t−1(u)
]

+ (1− ϑ)ϑ2Rt−1

ϑ

[
at−2
t−1 + pH,t−1yt−1 + Tt−1 − ct−2

t−1(u)
]
+ ...

= Rt−1

[
pH,t−1yt−1 + Tt−1︸︷︷︸

τ⋆ϑat
Rt−1

−(1−ϑ)at−1

+(1− ϑ)

t−1∑
s=−∞

ϑt−sat−s
t−1︸ ︷︷ ︸

=at−1

− (1− ϑ)

t−1∑
s=−∞

ϑt−sct−s
t−1(u)︸ ︷︷ ︸

=ct−1(u)

]

Ultimately, we arrive at

ϑat = Rt−1[pH,t−1yt−1 + ϑat−1 − ct−1(u)] (45)

The mean consumption of HtM households is ct(h) = pH,tyt, while total consumption is ct =

(1− θ) ct (u) + θct(h). Using those expressions to substitute out ct−1(u) gives equation (28).
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C Aggregate Euler equation for unconstrained households

We conjecture and verify the existence of an individual consumption function of the following form

for unconstrained households:

cst (i, u) = ct(u) + µt [(a
s
t (i)− at) + ℓst (i, u)] (46)

where

ℓst (i, u) = Et

∞∑
τ=0

[(1 + τ⋆)ϑ]τ∏τ−1
l=0 Rt+l

σy,t+τξ
s
t+τ (i, u) (47)

Equations (46)-(47) express the deviation of individual consumption from the group mean

(cst (i, u) − ct(u)) as a linear function of the deviation of total wealth from the mean – namely,

the sum of the deviation of asset wealth from the mean (ast (i)− at) and of human wealth from the

mean (ℓst (i, u)) –, where µt is the MPC out of wealth. The expression for human wealth comes

from the fact that, from equations (2)-(4) as well as the fact that σy,t = (1 − τw)wtntσt , we can

express the deviation of current labor income from the mean as σy,tξ
s
t (i, u). Moreover, (4) also

implies that Etξ
s
t+τ (i, u) = [ξst (i, u)]

τ . Using this substitution and factorising, we can write ℓst (i, u)

as ℓst (i, u) = σℓ,tξ
s
t (i, u) and the consumption function as

cst (i, u) = ct(u) + µt [(a
s
t (i)− at)] + µtσℓ,tξ

s
t (i, u) (48)

where

σℓ,t = σy,t +
ϑ(1 + τ⋆)

Rt
σℓ,t+1 (49)

Since Vt(ξ
s
t+1(i, u)) = 1, equation (48) implies that the conditional variance of consumption is

σ2
cu,t+1 = µ2

t+1σ
2
ℓ,t+1.

The consumption function also features ats(i)−at, which we compute as follows. First, rearrange

and lead equation (44) to get:

ast+1(i) =
Rt

ϑ

{
ast (i)−

τ⋆ϑ

Rt

(
ast+1(i)− at+1

)
+ (1− τw)wtnte

s
t (i, u) +Dt + Tt + (ϑ− 1) at − cst (i, u)

}
Second, lead (45) and break down pH,tyt to write:

at+1 =
Rt

ϑ
[ϑat +Dt + Tt + (1− τw)wtnt − ct(u)]

Next, compute the difference between the two and rearrange as follows:

ast+1(i)− at+1

=
Rt

ϑ

[
ast (i)− at − τ⋆

ϑ

Rt

(
ast+1(i)− at+1

)
+ (1− τw)wtnt (e

s
t (i, u)− 1)︸ ︷︷ ︸
=σtξst (i,u)

− (cst (i, u)− ct(u))︸ ︷︷ ︸
=µt[ast (i)−at+ℓst (i,u)]

]
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or

(1 + τ⋆)
(
ast+1(i)− at+1

)
=

Rt

ϑ

[
(1− µt) (a

s
t (i)− at) + (1− τw)wtntσt︸ ︷︷ ︸

=σy,t

ξst (i, u)− µt ℓst (i, u)︸ ︷︷ ︸
=σℓ,tξ

s
t (i,u)

]

=
Rt

ϑ

[
(1− µt) (a

s
t (i)− at) + σy,tξ

s
t (i, u)− µtσℓ,t︸ ︷︷ ︸

=σcu,t

ξst (i, u)

]

ast+1(i)− at+1 =
Rt

(1 + τ⋆)ϑ
[(1− µt) (a

s
t (i)− at) + (σy,t − σcu,t) ξ

s
t (i, u)]

Next, leading the consumption function (46) one period, substituting ast+1(i)−at+1 by its value

above and rearranging, we obtain:

cst+1(i, u) = ct+1(u) + µt+1

(
ast+1(i)− at+1 + ℓst (i, u)

)
= ct+1(u) + µt+1

(
ast+1(i)− at+1

)
+ σcu,t+1ξ

s
t+1(i, u)

= ct+1(u)+

µt+1
Rt

(1 + τ⋆)ϑ
[(1− µt) (a

s
t (i)− at) + (σy,t − σcu,t) ξ

s
t (i, u)] + σcu,t+1ξ

s
t (i, u) + σcu,t+1υ

s
t+1(i, u)

= ct+1(u)+

µt+1Rt (1− µt)

ϑ (1 + τ⋆)
(ast (i)− at) +

[
µt+1Rt

ϑ (1 + τ⋆)
(σy,t − σcu,t) + σcu,t+1

]
ξst (i, u) + σcu,t+1υ

s
t+1(i, u)

This gives the following conditional moments of cst+1(i, u)− ct+1(u):

Et[c
s
t+1(i, u)] = ct+1(u) +

µt+1Rt (1− µt)

ϑ (1 + τ⋆)
(ast (i)− at) +

[
µt+1Rt

ϑ (1 + τ⋆)
(σy,t − σcu,t) + σcu,t+1

]
ξst (i, u)

and

Vt[c
s
t+1(i, u)] = σ2

cu,t+1(u)

Next, take logs on both sides of equation (5) and substitute in the above conditional moments

(on the RHS) and the individual consumption function (on the LHS):

cst (i, u) = −1

γ
ln

(
βRt

1 + τ⋆

)
+ Et[c

s
t+1(i, u)]−

γ

2
Vt[c

s
t+1(i, u)]

ct(u) + µt(a
s
t (i)− at) + σcu,tξ

s
t (i, u) = −1

γ
ln

(
βRt

1 + τ⋆

)
+ ct+1(u) +

µt+1Rt (1− µt)

ϑ (1 + τ⋆)
(ast (i)− at)

+

[
µt+1Rt

ϑ (1 + τ⋆)
(σy,t − σcu,t) + σcu,t+1

]
ξst (i, u)−

γ

2
σ2
cu,t+1

Matching coefficients in ast (i)− at gives:

µt =
µt+1Rt (1− µt)

ϑ (1 + τ⋆)
⇒ µ−1

t = 1 +
ϑ(1 + τ⋆)

Rt
µ−1
t+1
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Matching coefficients in ξst (i) gives:

σcu,t = σcu,t+1 + µt+1
Rt

ϑ(1 + τ⋆)
(σy,t − σcu,t)

= σcu,t+1 +
µt

1− µt
(σy,t − σcu,t)

= (1− µt)σcu,t+1 + µtσy,t

This gives (31) and (32). Cancelling the matched coefficients from the individual Euler condi-

tion, we are eventually left with (30).

D Consumption dispersion

D.1 Within cohorts

We start by characterising the evolution of the individual consumption of unconstrained households.

First, we note that it follows from (5) and (30) that

cst (i, u)− ct(u) = Et[c
s
t+1(i, u)− ct+1(u)]

Substituting the consumption function into the RHS and rearranging, we get

cst (i, u)− ct(u) = µt+1

(
ast+1(i)− at+1

)
+ Et[σcu,t+1ξ

s
t+1(i, u)]

= µt+1

(
ast+1(i)− at+1

)
+ σcu,t+1ξ

s
t (i, u)

= µt+1

(
ast+1(i)− at+1

)
+ σcu,t+1ξ

s
t+1(i)︸ ︷︷ ︸

=cst+1(i,u)−ct+1(u)

−σcu,t+1ξ
s
t+1(i) + σcu,t+1ξ

s
t (i, u)︸ ︷︷ ︸

=σcu,t+1υs
t+1(i,u)

Flipping and lagging one period gives:

cst (i, u)− ct(u) = cst−1(i, u)− ct−1(u) + σcu,tυ
s
t (i, u), (50)

where υst (i, u) → N(0, 1). This implies that the cross-sectional variance of consumption within

cohort s ≤ t, denoted σ2
c (s, t, u), evolves as:

σ2
c (s, t, u) = σ2

c (s, t− 1, u) + σ2
cu,t (51)

Next, turning to HtM households, from equation (33) the deviation of individual consumption

from the group mean is:

cst (i, h)− ct(h) = σy,tξ
s
t (i, h) (52)

and the corresponding cross-sectional variance of consumption (given the persistence of individual

productivity shocks in (4)) is:

σ2
c (s, t, h) = (t− s+ 1)σ2

y,t (53)
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D.2 Across cohorts

Consider the calculation of aggregate welfare from the point of view of a benevolent domestic social

planner giving equal welfare weight to all residents. First, start with the utility brought at time t

to the planner by household i from cohort s, regardless of their status (unconstrained or HtM):

Vt(s, t, i) = u(cst (i))− v(nt) = u(ct)e
−γ[cst (i)−ct] − v(nt)

where u(c) = −e−γc/γ. Aggregating over all individuals of the same cohort, we get:

Vt(s, t) = u(ct)

∫
e−γ[cst (i)−ct]di− v(nt)

Aggregating over all cohorts alive at time t, we get the total flow utility

Ut =

t∑
s=−∞

(1− ϑ)ϑt−sVt(s, t) = u(ct) (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i)−ct)di︸ ︷︷ ︸

=Σt

−v(nt)

Next, we break down Σt as follows:

Σt = (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i)−ct)di

= (1− θ) (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γ(cst (i,u)−ct)di+ θ (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i,h)−ct)di

= (1− θ) e−γ(ct(u)−ct) (1− ϑ)

t∑
s=−∞

ϑt−s

∫
e−γ(cst (i,u)−ct(u))di︸ ︷︷ ︸

≡Σu,t

+ θe−γ(ct(h)−ct) (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γ(cst (i,h)−ct(h))di︸ ︷︷ ︸

≡Σh,t

where the Σk,t, k = u, h are within-types dispersion indexes. Noting that ct = (1− θ) ct(u)+ θct(h)

and defining Υt ≡ ct(u)− ct(u), we get (38) in the body of the paper.
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Last, we use (51) and (53) to derive equation (40) and (41). We get:

Σu,t = (1− ϑ)
∞∑
k=0

ϑke
1
2
γ2σ2

c (t−k,t)

= (1− ϑ)e
1
2
γ2σ2

cu,t + ϑ(1− ϑ)
{
e

1
2
[γσc(t−1,t)]2 + ϑe

1
2
[γσc(t−2,t)]2 ...

}
= (1− ϑ)e

1
2
γ2σ2

cu,t + ϑe
1
2
γ2σ2

cu,t (1− ϑ)
{
e

1
2
[γσc(t−1,t−1)]2 + ϑe

1
2
[γσc(t−2,t−1)]2 ...

}
︸ ︷︷ ︸

=Σu,t−1

= e
1
2
γ2σ2

cu,t (1− ϑ+ ϑΣu,t−1)

and

Σh,t = (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γ(cst (i,h)−ct(h))di

= (1− ϑ)
t∑

s=−∞
ϑt−s

∫
e−γσy,tξsi,h(t)di

= (1− ϑ)

t∑
s=−∞

ϑt−se(t−s+1)
γ2σ2

y,t
2

= (1− ϑ) e
γ2σ2

y,t
2

t∑
s=−∞

(
ϑe

γ2σ2
y,t

2

)t−s

=
1− ϑ

e−
γ2σ2

y,t
2 − ϑ

E Optimal policy problem

E.1 Lagrangian

The planner’s per-period felicity function is

Ut = −1

γ
e−γctΣt − ρe

1
ρ
(nt−n)

Using (7) to substitute out the second term and then (38), we can rewrite Ut as follows:

Ut = −1

γ
(1 + γρΩwt) e

−γct
[
(1− θ) e−γθΥtΣu,t + θeγ(1−θ)ΥtΣh,t

]
,

where Ω ≡ 1−τw

Mw
. The Ramsey planner’s problem can be written as choosing the sequences

{ct, ytΥt, Qt, Rt, σcu,t, µt, at+1,Σu,t,Σh,t,ΠH,t, wt}∞t=0 to maximise the following Lagrangian:

37



L =−
∞∑
t=0

βt (1 + γρΩwt) e
−γ(ct−1)

{
(1− θ) e−γθΥt

(
Σu,t

Σ

)
+ θeγ(1−θ)Υt

(
Σh,t

Σ

)}

+
∞∑
t=0

βtm1,t

{
−γct − (1− θ) ln

(
βRt

1 + τ⋆

)
− (1− θ)

γ2

2
σ2
cu,t+1 − θγ (pH,t+1yt+1 − pH,tyt) + γct+1

}

+
∞∑
t=0

βtγm2,t

{
− (1− θ)

ϑat+1

Rt
+ (1− θ)ϑat + pH,tyt − ct

}

+
∞∑
t=0

βtγm3,t {− lnRt + lnR∗
t + lnQt+1 − lnQt − Γat+1}

+
∞∑
t=0

βtγm4,t

{
n+ ρ lnΩ + ρ lnwt + ρ lnΣt − γρct −

yt
zt

[
1 +

Ψ

2
(lnΠH,t)

2

]}

+

∞∑
t=0

βtγm5,t

{
(1− α)

ct
pηH,t

+ α

(
pH,t

Qt

)−ν

− yt

}

+
∞∑
t=0

βtγm6,t

{
κ

[
1−

(
χ− 1

χ− 1 + α

)
pH,tzt
wt

]
+ β

(
ztwt+1yt+1

zt+1wtyt

)
lnΠH,t+1 − lnΠH,t

}

+

∞∑
t=0

βtm7,t {(1− θ)Υt + pH,tyt − ct}

+
∞∑
t=0

βtγm8,t

{
σcu,t − µtσy exp

{
−φ

(
yt
y

− 1

)}
− (1− µt)σcu,t+1

}

+

∞∑
t=0

βtm9,t

{
γ2σ2

cu,t

2
+ ln [1− ϑ+ ϑΣu,t−1]− lnΣu,t

}

+
∞∑
t=0

βtm10,t

{
ln (1− ϑ)− ln

(
exp

(
−γ2

2
exp

{
−φ

(
yt
y

− 1

)})
− ϑ

)
− lnΣh,t

}

+
∞∑
t=0

βtγm11,t

{
1 +

ϑ(1 + τ⋆)

Rt
µ−1
t+1 − µ−1

t

}
,

where pH,t = pH(Qt) is given by equation (13).

E.2 Optimal fiscal policy

The tax rates τ⋆ and τw are set optimally in the absence of aggregate shocks, in a way to ensure the

constrained efficiency of the steady state of the Ramsey plan. Their value is found by computing

the FOCs of the planning problem above, evaluating those FOCs at the steady state, and solving

the corresponding system for the steady state multipliers (m1 to m11) and the two tax rates. The

optimal value of the savings tax is

1 + τ⋆ = e
γ2σ2

y
2 (54)

Intuitively, this tax rate ensures that steady state NFA remains equal to zero (its assumed initial
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value) even though unconstrained households have a precautionary motive that would otherwise

lead them to accumulate positive NFA (and incur the implied transaction costs). The procedure

for finding τw as well as the steady state multipliers other than m6 is implemented numerically,

except for the special case covered in Appendix F.

E.3 Steady state of the Ramsey plan

Under the optimal savings tax computed above, we have a = 0, which in turn implies that c(u) =

c(h) = y (from the NFA equation) and also that R = R∗ = 1/β (from the real interest rate parity

equation). Assuming that all countries are imposing the same production subsidy as the home

economy, we have Q = pH = 1 and thus, from market clearing, y = (1 − α)c + αc∗. Next, we

normalize c∗ = 1, and also n such that n = 1; this implies c(u) = c(h) = c = y = 1. Under the

optimal income tax, steady-state inflation is equal to zero so that (from the NKPC):

w =
χ− 1

χ− 1 + α

The rest of the steady state is as follows: σcu = σch = σy, µ = 1− ϑβ(1 + τ⋆), and

Σ = Σu = Σh =
1− ϑ

e−
γ2σ2

y
2 − ϑ

≥ 1 (55)

F Proof of Proposition 1

To prove that price stability is optimal under the conditions stated in Proposition 1, we show that

the optimal monetary policy implements the same allocation as in the flexible-price equilibrium

under the optimal fiscal policy. We first note that, under the conditions of Proposition 1, the trade

elasticity is χ = 2−α, consumption risk is equal to income risk (σcu,t = σch,t = σy), while Σu,t and

Σh,t are exogenous sequences (with Σh,t given by its steady-state value in (55)). Accordingly, we

can drop the constraints associated with the multipliers m8,t to m11,t in the Lagrangian of Appendix

E (those multipliers are equal to zero).

F.1 Flexible-price equilibrium

The flexible-price equilibrium is characterised by the following system, to solve for the sequences

{ct(u), ct(h), Qt, yt, at, Rt, wt, }∞t=0:
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ct(u) = ct+1(u)− lnβ − lnRt

ct(h) = Q
α

α−1

t yt

(1− θ)ϑat+1 = Rt [(1− θ)ϑat + pH,tyt − ct]

lnRt = − lnβ + lnQt+1 − lnQt − Γat+1

yt
zt

= n+ ρ lnΩ + ρ lnwt + ρ lnΣt − ρct

wt = (1− α)ztQ
α

α−1

t

yt = (1− α) ctQ
α

1−α

t + αQ
1

1−α

t

It is straightforward to verify that the solution to this system is, for all t ≥ 0:

ct (u) = ct (h) = ct = Qt, at = 0, yt = Q
1

1−α

t , and wt = (1− α)ztQ
α

α−1

t , (56)

where Qt = Q(zt,Σt) is the unique solution to:

Q
1

1−α

t

zt
= n+ ρ lnΩ + ρ ln

[
(1− α)ztQ

α
α−1

t Σt

]
− ρQt (57)

In (57), we have Σt = (1−θ)Σu,t+θΣh, where Σu,t evolves according to (40) with σy,t = σy and

Σu,−1 = 1, while Ω = (1 − τw)/Mw depends on the income tax rate. Eventually, all endogenous

variables are functions of the exogenous state (Σt, zt). To first order, and using hats to denote

proportional deviations from the steady state, we have:

ĉt = Q̂t = (1− α)ẑt +
(1− α)ρ

1 + ρ
Σ̂t, ŷt =

Q̂t

1− α
and ŵt = ẑt −

α

1− α
Q̂t (58)

where Σ̂t = (1− θ) Σ̂u,t

F.2 Lagrangian and planner’s FOCs

Given the above, under the conditions of Proposition 1 we can simplify the Lagrangian as follows:
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L = −
∞∑
t=0

βt (1 + ρΩwt) e
−(ct−1)

[
(1− θ) e−θΥt

Σu,t

Σ
+ θe(1−θ)Υt

]

+
∞∑
t=0

βtm1,t

{
−ct − (1− θ) ln

(
βRt

1 + τ∗

)
− (1− θ)

γ2

2
σ2
cu − θ

(
Q

α
α−1

t+1 yt+1 −Q
α

α−1

t yt

)
+ ct+1

}

+
∞∑
t=0

βtm2,t

{
− (1− θ)

ϑat+1

Rt
+ (1− θ)ϑat +Q

α
α−1

t yt − ct

}

+
∞∑
t=0

βtm3,t {− lnRt + lnR∗
t + lnQt+1 − lnQt − Γat+1}

+
∞∑
t=0

βtm4,t

{
n+ ρ lnΩ + ρ lnwt + ρ lnΣt − ρct −

yt
zt

[
1 +

Ψ

2
(lnΠH,t)

2

]}

+

∞∑
t=0

βtm5,t

{
(1− α) ctQ

α
1−α

t + αQ
1

1−α

t − yt

}

+
∞∑
t=0

βtm6,t

κ

1− (1− α)
Q

α
α−1

t zt
wt

+ β

(
ztwt+1yt+1

zt+1wtyt

)
lnΠH,t+1 − lnΠH,t


+

∞∑
t=0

βtm7,t

{
(1− θ)Υt +Q

α
α−1

t yt − ct

}
To verify that this problem yields domestic producer price stability as an optimal outcome, we

compute the FOCs of the problem and evaluate them at ΠH,t = 1 and the flexible-price equilibrium

computed above (where at = Υt = 0). After some rearrangements, we obtain:

• FOC wrt wt:

0 = −Ωρ
−e−ct

e−1

Σt

Σ
+m4,tρ

1

wt
+m6,tκ

1

wt

• FOC wrt Qt:

0 = −m3,t + β−1m3,t−1 +m5,t
α (2− α)

1− α
Q

1
1−α

t −
(
θm1,t − β−1θm1,t−1 +m2,t +m7,t

) α

1− α
Qt

• FOC wrt ct:

0 =
e−ct

e−1

Σt

Σ
−m1,t + β−1m1,t−1 −m2,t +m5,t (1− α)Q

α
1−α

t −m7,t

• FOC wrt yt:

0 = θm1,tQ
α

α−1

t − β−1θmt,t−1Q
α

α−1

t +m2,tQ
α

α−1

t −m4,t
1

zt
−m5,t +m7,tQ

α
α−1

t
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• FOC wrt Rt:

0 = −m1,t (1− θ)−m3,t

• FOC wrt at+1:

0 = −m2,t (1− θ)
ϑ

Rt
+m2,t+1β (1− θ)ϑ− Γm3,t

• FOC wrt Υt :

0 = (1 + ρΩwt) e
−(ct−1)

[
θ
Σu,t

Σ
− θ

]
+m7,t

F.3 Optimal fiscal policy

In the flexible-price equilibrium, we have ct = Qt and at = 0, so consistency between the steady-

state versions of the first and third constraints of the planning problem requires 1 + τ⋆ = e
γ2σ2

y
2 .

Under this tax rate, the steady-state version of the third constraint becomes redundant with the

steady-state version of the first constraint, which implies that m3 = 0. On the other hand, the

optimal labor income tax must be computed from the planner’s FOCs, evaluated at the steady

state. Doing so for the above FOCs, assuming again that the date-t − 1 values of the multipliers

on the forward-looking constraints are also at their steady-state values, gives the following system:

0 = −Ω (1− α) +m4 +
κ

ρ
m6

0 =
(
β−1 − 1

)
m3 +m5

α (2− α)

1− α
−
(
θm1 − β−1θm1 +m2 +m7

) α

1− α

0 = 1 + ρΩ (1− α)−m1 + β−1m1 −m2 − ρm4 +m5 (1− α)−m7

0 =
(
1− β−1

)
θm1 +m2 −m4 −m5 +m7

0 = −m1 (1− θ)−m3

0 = −m2
1

R
+m2β − Γ

(1− θ)ϑ
m3

0 = m7

The solution to this system is:

m1 = m3 = m6 = m7 = 0, m2 = 2− α, m4 = 1− α, m5 = 1, Ω = 1, (59)

that is, 1− τw = Mw.

F.4 Optimal monetary policy

We check that all the FOCs above hold when fiscal policy is optimised. Setting τ⋆ to the value in

(54) and 1 − τw = Mw, eliminating m3,t = − (1− θ)m1,t from the system (by the FOC wrt Rt)

and conjecturing that m6,t = 0, we can further simplify the system of FOCs as follows:
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• FOC wrt wt:

m4,t = wte
−(ct−1)Σt

Σ

• FOC Υt:

m7,t = −θ (1 + ρwt) e
−(ct−1)

(
Σu,t

Σ
− 1

)
• FOC wrt Qt:

0 = (1− θ) [m1,t−β−1m1,t−1]+m5,t
α (2− α)

1− α
Q

1
1−α

t −
[
θ(m1,t − β−1m1,t−1) +m2,t +m7,t

] α

1− α
Qt

• FOC wrt ct (using the value of m4,t above):

0 = e−(ct−1)Σt

Σ
−m1,t + β−1m1,t−1 −m2,t +m5,t (1− α)Q

α
1−α

t −m7,t

• FOC wrt yt (multiplied by Q
α

1−α

t ):

0 = θm1,t − β−1θm1,t−1 +m2,t − (1− α)
e−ct

e−1

Σt

Σ
−m5,tQ

α
1−α

t +m7,t

• FOC wrt at+1:

0 = −m2,t (1− θ)
ϑ

Rt
+m2,t+1β (1− θ)ϑ+ Γ (1− θ)m1,t

We check the replication of the flexible-price equilibrium to first order, and therefore use the

following approximation to the above FOCs:

• FOC wrt wt:

m̂4,t = ŵt − Q̂t + (1− θ) Σ̂u,t = ẑt −
1

1− α
Q̂t + (1− θ) Σ̂u,t

• FOC Υt :

m7,t = −θ (1 + ρ (1− α)) Σ̂u,t

• FOC wrt Qt:

0 = (1− α− θ)
(
m1,t − β−1m1,t−1

)
− (2− α)α2

(1− α)
Q̂t − α (2− α) m̂2,t + α (2− α) m̂5,t − αm7,t

• FOC wrt ct:

0 = − (1− α) Q̂t + (1− θ) Σu,t −m1,t + β−1m1,t−1 − (2− α) m̂2,t + (1− α) m̂5,t −m7,t
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• FOC wrt yt:

0 = θm1,t−β−1θm1,t−1+(2− α) m̂2,t+(1− α) Q̂t−(1− α) (1− θ) Σ̂u,t−m̂5,t−
α

1− α
Q̂t+m7,t

• FOC wrt at+1:

0 = Q̂t+1 − Q̂t − m̂2,t + m̂2,t+1 +
Γ

(2− α)βϑ
m1,t

In the flexible-price equilibrium Q̂t is a function of the exogenous state (see (58)), hence so are

m̂4,t and m7,t (see the FOCs wrt wt and Υt). We are left with four equations (the FOCs wrt to

Qt, ct, yt and at+1), for three unknown sequences ({m1,t, m̂2,t, m̂5}∞t=0). For a unique solution to

exist, only three of those equations must be linearly independent, and the implied dynamics of the

multipliers must be saddle-path stable.

Linear independence. Adding up the FOCs wrt to ct and to yt, we get:

m1,t − β−1m1,t−1 = − α

1− θ
m̂5,t + αΣ̂u,t −

α

(1− α) (1− θ)
Q̂t (60)

Plugging back m1,t − β−1m1,t−1 into the FOC wrt yt, we obtain:

0 = −
[

1− θ (1− α)

(2− α) (1− θ)

]
m̂5,t−

[
1− α− θ

2− α

]
Σ̂u,t+m̂2,t+

m7,t

2− α
−

[
α− (1− α)2 (1− θ)

(1− α) (1− θ) (2− α)

]
Q̂t (61)

Now, substituting m1,t − β−1m1,t−1 into the FOC wrt. Qt produces exactly the same equation

as (61). This implies that the FOC wrt. Qt is redundant and can be dropped: we are left with

three equations for three unknowns.

Saddle-path stability. Differencing (61), we get

∆m̂2,t =

[
1− θ (1− α)

(1− θ) (2− α)

]
∆m̂5,t + f.o.e.s

where “f.o.e.s” stands for “function of the exogenous state”. On the other hand, the FOC wrt at+1

can be written as:

∆m̂2,t = − Γ

(2− α)βϑ
m1,t−1 + f.o.e.s

Combining those two, we obtain:

m̂5,t = m̂5,t−1 −
Γ (1− θ)

βϑ [1− θ (1− α)]
m1,t−1 + f.o.e.s

The latter equation together with equation (60) can be rearranged to produce the following
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two-dimensional dynamic system in (m1,t, m̂5,t):[
m1,t

m̂5,t

]
= M

[
m1,t−1

m̂5,t−1

]
+ f.o.e.s

where

M =

 1
β

(
1 + αΓ

ϑ[1−θ(1−α)]

)
− α

1−θ

− Γ(1−θ)
βϑ[1−θ(1−α)] 1


The determinant and trace of M are given by:

Det(M) =
1

β
, Tr(M) = 1 +

1

β

(
1 +

αΓ

ϑ [1− θ (1− α)]

)
Since Tr(M) − 1 > Det(M) > 1, M has exactly one eigenvalue inside the unit circle and one

outside. On the other hand, the dynamic system has one predetermined variable (m1,t) and one

jump variable (m̂5,t). This confirms that the dynamics is saddle-path stable.
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