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Abstract

Using comprehensive new contract level data (EMIR) for the period 2019-2023, we

explore how the FX derivative trading by European funds compares to a feasible theo-

retical benchmark of optimal hedging. We find that hedging behavior by all fund types

is often partial, unitary (i.e., with a single currency focus), and sub-optimal. Overall,

the observed FX derivative trading does not significantly reduce the return risk of the

average European investment funds, even though optimal hedging strategies could do

so without incurring substantial trading costs.
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1 Introduction

Foreign investment funds have significantly increased their holdings of dollar-denominated assets,

leading to a growing demand for foreign exchange (FX) derivatives to hedge the associated currency

risk.1 Yet, because of lack of fund-level derivative data, there is limited understanding of the extent

to which institutional investors hedge their currency risk, what factors influence their actual hedging

decisions, and how funds’ hedging policies contribute to investment performance. Our paper fills

this gap and contributes to the literature in three dimensions.

First, financial theory characterizes the optimal use of FX derivative contracts for a multi-

currency investment strategy more than 50 years ago, e.g. Anderson and Danthine (1981) and

Jorion (1994). But surprisingly little is known about whether theoretical solutions inform actual

investment behavior. Do most international investment funds hold FX derivatives close to the

theoretical benchmark? So far fund-level reporting on OTC derivative use has been too incomplete

to address this question. Our paper uses comprehensive regulatory (EMIR) data and matches fund-

level data for a large cross-section of 4, 124 European investment funds with OTC derivative data.

Approximately 2, 806 (or 68%) of our sample of European investment funds use FX forward and FX

swap contracts at least sporadically during the five-year period 2019-23.2 We track their monthly

equity and bond market investments in the seven most important currencies to characterize their

underlying currency and investment risk. This allows us to predict their optimal hedging portfolio

and compare the theoretical benchmark to the observed FX hedging positions.

Second, the previous empirical literature has highlighted the forward premium puzzle, whereby

average realized exchange rate movements do not match interest rate differentials (Burnside et al.

(2009); Boudoukh et al. (2016)). Recent research suggests that FX derivative contracts can be

used to exploit pricing inefficiencies between spot and forward rates for speculative purposes (Opie

and Riddiough (2020)). Our accurate data on fund derivative holding allows us to explore which

factors influence institutional derivative use and return seeking through derivatives. In particu-

lar, we examine how institutional holdings of FX derivatives depend on the time-varying forward

1For example, Du and Huber (2024) document that non-US mutual funds more than doubled their USD portfolio
share since 2005, reaching 6% and 43% in 2020 for equity funds and fixed-income funds, respectively. They also show
that aggregate foreign holdings of USD-denominated assets amounts to 33.4 USD trillion by mid-2021, of which 4
USD trillion (or 12%) is held by mutual funds.

2We note that 68% reflects a lower bound as we cannot exclude that some of the remaining 32% of funds also use
derivatives, but report their derivative positions through their parent company.
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premium, namely the difference between the forward rate and the spot rate. We can also discern

if FX derivative investments generate any systematic FX return premium and if trading costs in

derivatives matter for funds.

Third, research on fund performance for a large cross-section of institutional investors has

been very influential and has popularized the view that market efficiency is a good benchmark in

competitive equity markets Malkiel (1995). Yet, how derivative trading by institutional investors

influences fund performance is a largely unexplored question. Our data allows us to isolate the

performance contribution of derivative contracts on average monthly returns and their standard

deviations relative to a passive strategy that does not engage in FX risk hedging. We also entertain

the counterfactual assumption that European investment funds engage in optimal multi-currency

hedging contingent on their observed multi-currency equity and fixed income risk and evaluate the

respective performance shortfall (after transaction costs) due to sub-optimal derivative use.

We summarize the main findings of our analysis as follows:

1. A minority of approximately 44% of European bond funds with discretionary FX hedging

policies hold derivative positions that are close to those predicted by mean-variance opti-

mization. The derivative positions of mixed funds and equity funds are generally even further

removed from any optimal hedge and are uncorrelated with optimal hedging positions in an

economic, though not a statistical, sense.

2. Even funds that implement hedging strategies that reduce FX exposure of their real interna-

tional investment generally do not engage in cross-currency hedging as predicted by mean-

variance optimization. They do not use all available forward rates to hedge the FX exposure

in a particular currency and do not account for the correlation of each hedging instruments

with the entire asset portfolio. Instead, funds engage in unitary hedging where the currency

exposure in each currency is managed in isolation from the other exposures or hedging oppor-

tunities. In other words, there is no evidence for a portfolio approach to hedging conditional

on the existing real investment portfolio.

3. We find that FX derivative trading by investment funds depends on the forward premium,

which captures the expected return on the Euro long position if exchange rates follow a
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random walk. Such a forward premium tilt is particularly pronounced among bond funds.

We can interpret this as a price elastic hedging demand that decreases if the forward rate

becomes more unfavorable relative to the existing spot rate.

4. Mean-variance optimization (under exogenous trading costs) predicts that funds should tilt

their derivative positions toward positions with similar hedging benefits, but lower (or even

negative) costs. This is generally not observed in the data, where larger derivative weights

correlate with higher transaction costs. Funds therefore face higher trading costs for derivative

positions also sought by other funds. The strong positive correlation between the expense

ratio of a funds and its trading costs is indicative of adverse selection risk that dealer banks

could face in their trading against funds specializing in FX trading.3

5. With respect to the fund performance contribution of FX derivative trading, we examine

various counterfactual (partial equilibrium) scenarios that compare the observed FX trading

strategies to alternative strategies. We find that the observed FX derivative trading behavior

of European funds (including bond funds) during the period 20219-23 on average achieves no

statistically or economically significant risk reduction (relative to a scenario where all funds

abstained from any derivative trading).

6. Mean-variance optimal FX derivative trading could have reduced the portfolio risk of the

average bond (equity) funds by 0.61% (1.47%) relative to the observed annualized risk of

5.94% (14.95%), which amounts to a 10% (10%) risk reduction and considerably improves on

the performance of a unity hedge. Such reduction of FX exposure by funds comes with the

possibility that the hedging strategy is loss-making whenever the Euro depreciates persistently

against other currencies.

Our empirical analysis has a number of limitations upon which future research can improve upon.

These mostly concern measurement issues. First, we observe fund asset holdings only at a monthly

frequency so that our holding-based fund return inference is imprecise and does not exactly match

the reported performance. Second, we also measure the existing FX derivative positions in the six

3The 20% of funds with largest foreign currency investment share feature a profitable correlation between their
derivative position and spot rate changes in the following month, as illustrated in Figure 7. See in particular Burnside
et al. (2009) on adverse selection risk in FX trading.
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most important currencies only at month end to match the structure of the equity and bond data.

We make the implicit assumption that all hedging decisions are taken at the end of each month

and are maintained for one month.4 Similarly, we estimate the transaction costs (relative to the

interbank midprice) for one-monthly maturities. Again, any non-synchronicity can affect the cost

and hedge returns. As a robustness check, we repeat the analysis only for a 50% subsample of funds

for which the holding-imputed returns best match the reported return over the five-year period of

our sample. Third, we note that our comparison of observed and optimal hedging depends on the

estimation of two covariance matrices, namely the covariance matrix of exchange rate returns and

the covariance matrix of exchange rates returns with bond and equity returns. We use two different

methods of predicting these matrices for the month ahead: Realized covariance based on the last

six (or three) months and two multivariate GARCH (MGARCH) models with a varying number

of parameters. We only stress results that are robust across all methods. Notwithstanding these

measurement problems, we think that our analysis is novel, as no previous paper has been able to

analyze and evaluate the hedging behavior of the European fund investment industry at the asset

holding level in the comprehensive manner in which we do.

We stress that a better understanding of funds’ derivative trading and the implied currency risk

is valuable for market and bank supervisors. The large increase of Europe’s net investment position

vis-à-vis the US and other countries (particularly in bond markets) has created a structural demand

imbalance for Euro long positions in FX forward markets, which is mostly met by the largest dealer

banks and their synthetic hedging. Aggregate net demand imbalances with respect to FX forward

and swap contracts can have important repercussions of exchange rate determination as recently

highlighted by Bräuer and Hau (2023). But in this paper, we take a partial equilibrium perspective

that treats asset and exchange rate returns as exogenous and focuses on a fund’s best response to

its exogenous stochastic environment.

4There is trade clustering toward the end of each month. Investment funds in our sample change FX derivative
holdings on average nine times per month, where 56% (41%) of their trades occur after day 20 (25) until the end of
month.
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2 Related Literature

We build on a long-standing literature on the theory of optimal currency hedging (Anderson and

Danthine (1981); Jorion (1994); Glen and Jorion (1993)). These papers derive optimal hedging

decisions by including derivative positions within a mean-variance framework of portfolio choice.

Financial theory predicts that the optimal hedge portfolio features a pure hedging component

(referred to as benchmark portfolio) and a speculative component related to currency return ex-

pectations and trading costs. The latter tilts the optimal hedge portfolio toward positions that

increase the expected return. In spite of these rather sound theoretical foundations, empirical

testing of the theory could not advance because of the absence of granular data on FX derivative

positions. Accordingly, we still do not dispose of any evidence on the relative importance of the

pure hedging motive relative to the speculative motive for the FX derivative demand of various

types of investment funds.

While the existing theoretical solutions are readily available, they suffer from two major short-

comings that are of empirical relevance. First, most expositions of the multi-currency hedging

problem consider only short positions in any foreign currency as an available hedge. This implies

that the globally optimal hedging solution may not be available under this constraint. We do

not want to impose this restriction in our analysis even though it is convenient: It guarantees a

unique global optimal hedging policy even under transaction costs linear in position size. Second,

transaction costs are usually discarded from the analysis of optimal hedging because they make

the product of (cost-adjusted) expected returns and hedge portfolio weights a non-affine function.

As a consequence, the global convexity property of the maximization problem is lost. While it is

still possible to derive necessary conditions for the global optimum, these are no longer sufficient

and do not guarantee uniqueness. However, we can still test these necessary first-order conditions,

which is preferable to imposing invalid restrictions on the optimization domain. To our knowledge,

the influence of transaction costs on optimal derivative positions has not been analyzed before.5

Previous financial research has discussed the benefits of holding currency forwards to the per-

formance of a global bond and equity portfolio. For example, Campbell et al. (2010) argue that the

risk-minimizing currency strategy for a global bond portfolio is close to a full hedge of its foreign

5Appendix A.1 discusses the optimal (conditional) hedge portfolio for the case of non-affine transaction costs
(i.e., for a bid-ask spread).
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currency positions. Our main contribution is to advance from such a normative prediction to a

descriptive analysis of the actual investment behavior. Our analysis also marks a step forward

toward the measurement of transaction costs associated with hedging. The previous research was

unable to characterize the OTC trading costs with any precision, which renders normative portfolio

recommendations somewhat fragile. The EMIR transaction data allows trade-by-trade calculation

of transaction costs (relative to the interbank benchmark price) and enables us to infer fund-specific

transaction costs. A comprehensive analysis of transaction costs in FX forward and swap trans-

actions is available for corporate clients in Hau et al. (2021). In this paper we extend their cost

analysis to derivative transactions between investment funds and dealer banks.6

Empirical research on currency hedging by funds has been scarce in the literature. An early

exception is Levich et al. (1999), who surveys approximately 300 US institutional investors and

documents that equity funds generally do not hedge their currency exposure. But with the grad-

ual improvement of the electronic and regulatory infrastructure, more data becomes available for

empirical work. A first comprehensive study of hedging practices by Du and Huber (2024) finds

that mutual funds hedge on average only 21% of their foreign currency holdings. They also study

hedging positions in the mean-variance framework based on aggregate positions averaged across

investor groups at the currency-level. The authors emphasize the importance of the speculative

motive proxied by currency return expectations and the cross-currency basis for the aggregate hedg-

ing demand over and above the risk-minimizing benchmark hedge. Our paper further develops this

line of research by undertaking a disaggregated analysis at the fund level. Recent work by Kubitza

et al. (2024) highlights the role of the cross-currency basis for international bond and derivative

flows as well as US bond prices. The relation between aggregate currency hedging positions and

exchange rate movements is documented by Bräuer and Hau (2023) based on FX derivative data

from the US multi-currency settlement system CLS. The analysis here documents that institutional

net hedging of currency risk strongly correlates with exchange rate movements.

Two other studies also document hedging behavior at the fund-level, namely Sialm and Zhu

(2023) and Opie and Riddiough (2023). Sialm and Zhu (2023) document a hedge ratio of 18%

for 400 US bond funds. Opie and Riddiough (2023) find that only 37% of funds hedge at all and

6Other relevant work based on EMIR data includes Abbassi and Bräuning (2021); Ferrara et al. (2022); Cenedese
et al. (2021) for FX trading and Bahaj et al. (2023) on inflation swaps.
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that among those only 14% hedge a significant portion of exchange rate risk. None of the previous

empirical work interprets fund-level hedge ratios in the light of the existing theory or seeks to

develop a benchmark for optimal hedging against which any hedging shortfall can be measured.

We also note that the average hedge ratio on individual currencies is not a very meaningful measure

of hedging shortfall once a fund operates in a multi-currency setting in which currency returns are

correlated. This becomes clear in the following section where we develop our model framework.

3 Optimal Hedging Decisions

The following section characterizes optimal hedging decisions for a risk averse (European) invest-

ment funds with a predetermined global investment portfolio. Following Anderson and Danthine

(1981), Glen and Jorion (1993) and Jorion (1994), we assume that the fund holds an international

asset portfolio characterized by a (N +1)×1 vector of portfolio weights wx with w′
x1 = 1, where N

denotes the number of foreign countries with distinct currencies c = 1, 2, 3, ..., N , and corresponding

asset markets. The last weight in row N +1 is the home (Euro) investment currency for which the

fund does not face any nominal exchange rate risk. For each currency, we model only one asset,

which can itself be a portfolio of fixed income and equity investments. It is straightforward to

extend the model to multiple distinct assets in each currency, but any empirical implementations

then faces a curse of dimensionality.7

3.1 A Mean-Variance Model

The hedging problem of a European fund consists in the choice of a (N × 1) vector of optimal

net foreign (non-Euro) currency short positions wf in the N foreign currencies ordered like the

corresponding real asset weights wx in N foreign currencies. We define N spot exchange rates Sc,t

and forward rates Fc,t between the quote currency c and the Euro as the base currency (for example

EUR/USD) and express the (log) return on a long hedging position in foreign currency c (i.e., a

Euro short position) as rf,c,t+1 =
Sc,t+1−Fc,t

Sc,t
≈ sc,t+1 − fc,t, where we denote the end-of-month t

log spot rate as sc,t+1 = ln(Sc,t+1) and the one-month log forward rate at the beginning of month

t as fc,t = ln(Fc,t), respectively. An increase in the spot rate Sc,t+1 corresponds to an depreciation

7To maintain empirical tractability, we group the assets of each fund into fixed income and equity investments
and assume that the asset risk in each currency is a linear combination of a currency-specific bond and equity index.
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of Euro against foreign currency c and generates a positive return rf,c,t+1wf,c,t > 0 on the long

position wf,c,t > 0 in foreign currency c. We denote the expected return vector on long positions

in foreign currency as E[rf,t+1] = µf and the covariance matrix of exchange rate returns as Σff .

The expected return vector (in Euros) on a fund’s real asset positions in N + 1 currencies is µx,

the corresponding covariance matrix Σxx, and the covariance of asset and hedging returns Σfx.

For simplicity, we assume mean-variance preferences for the fund with a risk tolerance parameter

γ. The optimization problem takes on the form

max
wf

w′µ− 1

2γ
w′Σw, (1)

where the covariance matrix, the portfolio weights, and the expected returns can be written as

Σ =

 Σxx Σxf

Σfx Σff

 , w =

 wx

wf

 , µ =

 µx

µf + τ

 ,

respectively. We assume that the non-negative real portfolio weights wx ≥ 0 are exogenous (or

predetermined) and that the optimal hedging problem consists in finding the optimal weights wf

conditional on wx. The vector τ represents transaction costs linear in the portfolio weights.8

3.2 Solution and Interpretation

If transaction costs τ are zero, and the covariance matrix Σff of exchange rate returns is a positive

definite, there exists a unique global optimum given by

Σffw
∗
f = γµf − Σfxwx. (2)

Optimal derivative weights w∗
f can generally involve Euro long (w∗

f,c < 0) and/or Euro short

positions (w∗
f,c > 0) in any currency c depending on expected exchange rate returns µf and the

matrix Σfx.
9

8Non-zero transaction costs complicate the analysis considerably and are therefore excluded from many expositions
of the optimal hedging problem. We provide a detailed discussion of the general solution with non-zero transaction
costs in Appendix A.2

9We refer to Euro long positions in derivatives as positions in FX swaps or forwards that promise Euro at maturity
against a foreign currency with an additional (initial) reverse cash flow in the case of FX swaps.
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Institutional risk management considerations can prevent some European funds from acquiring

short Euro positions (with wf,c > 0) as such trades are often deemed speculative. Theoretical

expositions of the optimal hedging problem often impose a non-positivity constraint wf,c ≤ 0.

This assumption then allows easy incorporation of constant (linear) transaction costs τ into the

optimization problem.10 The first-order condition of the (constrained) maximization problem in

Eq. (1) follows as

Σffwf = γ (µf + τ − λ)− Σfxwx, (3)

where λ represents an N × 1 vector of Lagrange multipliers related to the non-positivity constraint

wf ≤ 0. The complementary slackness condition is λ ≥ 0 and λwf = 0. If the net cost of hedging

exceeds the net benefit from the risk reduction, i.e., (µf,c + τc) > 1
γ (Σfx)c•wx, the fund chooses

the corner solution of no hedging with λc > 0 and wf,c = 0 in currency c. If the hedging costs are

smaller than the benefits from hedging and the fund opts for hedging, we have an interior solution

with λc = 0 and wf,c < 0.

In the case where transaction costs are not binding (λ = 0), the optimal hedging position follows

as

w∗
f = γΣ−1

ff (µf + τ)︸ ︷︷ ︸
Speculative Term

− [Σ−1
ffΣfx]wx︸ ︷︷ ︸

Benchmark Hedge

= γΣ−1
ff (µf + τ)︸ ︷︷ ︸

Speculative Term

− [Σ−1
ffΣfx − I+0]wx︸ ︷︷ ︸

Cross-Currency Hedge

− wx︸ ︷︷ ︸
Unitary Hedge

,

(4)

where the speculative term characterizes the shift of the hedging position due to transaction costs

and return expectation on forward contracts, and the benchmark hedge seeks to minimize the

portfolio risk. Positive return expectations for foreign currencies, long positions (i.e., µf > 0) as

well as higher transaction (τ > 0) imply less hedging as indicated by the speculative term. A higher

risk tolerance γ increases the role of the speculative term. The benchmark hedge depends on the

real investment positions wx in the N +1 currencies multiplied by the matrix product Σ−1
ffΣfx. In

other words, the benchmark hedge generally depends both on the covariance structure of currency

returns and the covariance of currency returns with real asset returns.

We can further decompose the benchmark hedge into a cross-currency hedge and a so-called

10Transaction costs τ measured by a spread flip their sign at wf,c = 0. This makes (µf −τ)wf a non-affine function
for wf ∈ RN , but an affine function in the negative subdomain.
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unitary hedge, where the matrix I+0 denotes an N × N identify matrix with a column vector of

zeros added in column N + 1. The unitary hedge matches each (long) real investment position wx

with a similar foreign currency short position in FX forward contracts. Optimal hedging generally

deviates from unitary hedging by the cross-currency hedge term, which involves all the off-diagonal

elements of the matrix Σ−1
ffΣfx.

It is insightful to consider a special case. First, we assume that the home asset return is not

correlated with any of the currency returns. Then, the last column in matrix Σfx is zero and we

can write the remaining N columns as ΣN
fx, which implies Σfxwx=ΣN

fxw
N
x . Second, we assume that

the fund’s foreign assets are risk-less bonds and their Euro denominated returns are therefore only

subject to currency risk. It follows that ΣN
fx = Σff and the optimal hedging weights simplify to

wf = γΣ−1
ff (µf + τ)︸ ︷︷ ︸

Speculative Term

− wN
x︸ ︷︷ ︸

Unitary Hedge

. (5)

The cross-currency hedging term is zero in this special case. Under zero hedging cost with τ = 0 and

a zero return premium on forward positions with µf = 0, the speculative term in Eq. (5) disappears

as well. The optimal hedging policy then consists only of the unitary hedge wf = −wN
x ≤ 0. In this

special case, the optimal hedging policy consists in hedging each currency exposure individually

and fully (Jorion (1994)).

3.3 Transaction Costs, Corner Solutions, and Positive Hedging Weights

Positive transaction costs can make it optimal not to hedge and the best hedging position in any

currency can become zero. In this case the Lagrange multiplier element takes on a non-zero value

and testing the validity of the first order condition in Eq. (2) becomes more complicated. Such

corner solutions are more likely if the initial asset position in any currency is small (or zero), if the

fund’s risk tolerance is large, or if transaction costs are large. In these cases, the marginal benefit

of hedging does not exceed the transaction cost and the unobserved vector of Lagrange multipliers

has non-zero elements. We can circumvent this problem by focusing only on strictly (non-zero)

hedging positions for which the Lagrange multiplier element is zero under the null hypothesis of

optimal hedging, namely the rows for which wf,c ̸= 0.

In the case of high hedging costs and a zero-hedging position in a particular currency, the first-
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order condition degenerates to an equality featuring the non-zero Lagrange parameter in the vector

λ. Without loss of generality, we can order currencies so that the first n currencies feature strictly

negative hedging positions and a zero Lagrange parameter, while the remaining N − n currencies

and corresponding rows in Eq. (2) can be discarded. This reduces Eq. (2) to

Σn
ffw

n
f = γ

(
µn
f + τn

)
− Σn

fxw
n
x , (6)

where we denote the first n components of the respective vectors and matrices with the superscript

n. The Lagrange vector λn = 0 now disappears. In the following text, we suppress the superscript

n even though we reduce the first-order condition for each fund and month to the n dimensions

with non-zero FX forward positions (wf,c,t ̸= 0). Under the constrains wf,c ≤ 0 for c = 1, 2, 3, ..., N ,

Eq. (6) characterizes a unique global maximum.

A more general approach to the optimal hedging problem is to drop the non-positivity con-

straints and allow that European funds can also acquire Euro short positions (wf,c > 0). We show

in Appendix A.2 that for an extended domain wf ∈ RN , Eq. (6) still represents a necessary con-

dition for any global maximum. But the first-order condition is no longer a sufficient condition for

the global maximum nor is uniqueness of the maximum assured. This is due to the non-convexity

that bid-ask spreads introduce into the optimization problem and their non-affine nature. Finding

the globally optimal hedge then involves a numerical approach that ranks potential global optima

within each subspace of RN for which the transaction costs are affine (i.e., proportional in wf,c).
11

3.4 Return Seeking Strategies

Next, we discuss various FX hedging strategies that seek to increase the expected return from

hedging as the latter could be time varying. It is convenient to decompose the expected return

µf,c,t+1 on any short Euro position in currency c into an expected exchange rate change and the

(ex ante observable) forward premium; hence

µf,c,t+1 = E

(
Sc,t+1 − Fc,t

Sc,t

)
= E

(
Sc,t+1

Sc,t
− 1

)
+ 1− Fc,t

Sc,t
≈ E(sc,t+1 − sc,t)− fpc,t, (7)

11Our regression analysis in Tables 3 and 4 distinguishes between the sample of all fund derivative positions and
the smaller subsample of derivative positions that fulfill the non-positivity condition.
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where sc,t = ln(Sc,t) and fc,t = ln(Fc,t) denote the (log) end-of-month t closing prices for the spot

and forward rate, respectively. The forward premium is defined as fpc,t = fc,t − sc,t.

Hedging Without Return Seeking. If funds believe that the forward rate Fc,t reflects rational

expectations about the future spot rate Sc,t+1, then the expected return µf , c, t+1 on any forward

contract is zero. Funds that operate under this assumption ignore the speculative component of the

hedging strategy and only focus on risk minimization. We refer to this as hedging without return

seeking.

Forward Premium Effect. Generally, a negative forward premium (fc,t − sc,t < 0) comes with

foreign money market rates above the corresponding Euro rate. Conditional on a choice of real

investments and a zero expected exchange rate change, E(∆sc,t) = 0, a negative (positive) forward

premium makes hedging more (less) attractive because of a positive (negative) expected hedging

return µf,c,t+1wf,i,c,t.

Exchange Rate Predictability. Private information about future currency returns implies that

the optimal hedging positions correlate positively with future currency returns. If funds receive

a private signal ζt about future currency returns sc,t+1 − sc,t, we expect their currency return

expectations to be tilted toward the realized future currency, that is

µf,c,t+1 ≈ E[sc,t+1 − sc,t | ζt] + fpc,t = κ∆sc,t+1 − fpc,t, (8)

where the coefficient 0 ≤ κ ≤ 1 depends positively on the precision of the signal and we define the

currency return vector ∆st+1 = st+1 − st.
12

Transaction Costs. As fund-specific transaction prices in forward markets generally deviate from

the benchmark (interbank) rate, funds should adjust their derivative trading to account for these

costs. We benchmark the price FT of any forward trade T against the contemporaneous (same

minute) mid-price MidT in the interbank market. For bid (sell Euro, i.e., Euro short) and ask (buy

Euro, i.e., Euro long) transactions, we define a dummy as d(T = sell) = −1 and d(T = buy) = 1,

12Private information about future currency moves could also alter the conditional covariances as perceived by a
fund, but we ignore this effect in our empirical setup.
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respectively. The transaction spread relative to the interbank mid-price then follows as

SpreadT = d(T )
FT −MidT

MidT
, (9)

where the dummy d(T ) flips signs between buy and sell transactions.

Next, we regress the spread on forward contract T on four trade characteristics,

SpreadT = θt + θc + θBuy c + θi + ηT , (10)

where θt is a month fixed effect, θc represents a currency fixed effect (for buy and sell trades) in

currency c, θBuy c is a fixed effect for all buy trades (of funds) in currency c, and θi is a fixed

effect for each fund i. The predicted transaction costs (defined as negative value) for the forward

positions wf,i,t by fund i in month t then follow as vector product τt,iwf,t,c with currency-specific

transaction costs

τc,t,i =


θt + θc + θi if wf,c,t,i < 0

0 if wf,c,t,i = 0

−(θt + θc + θBuy c + θi) if wf,c,t,i > 0,

(11)

that can differ between buy and sell trades in each month t. The dummy θBuy c captures the

differential (asymmetric) transaction costs that funds incur on average for Euro short positions

(relative to Euro long positions). Section 4.4 takes up the measurement of currency and fund

specific transaction costs with further details in Appendix A.3.

4 Data and Measurement

Three main data sources enter into our analysis. First, we use the supervisory data on FX deriva-

tives from the European Central Bank that are collected under the European Markets Infrastructure

Regulation (EMIR). Under EMIR each European legal entity is obliged to report all its trades in

derivatives, which ensures that we do not miss any contracts for European reporting entities. One

drawback of this data source is the short time span of the derivative data collection. We can use

only a five-year period from January 2019 to December 2023, but benefit from the comprehensive
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reporting for each FX Forward and Swap contract.13 Based on the EMIR data, we construct end-

of-month net FX derivative positions for any European investment fund in the six most relevant

foreign currencies against the EUR (i.e., net EUR short positions get a positive sign in wf,i,c).

In addition, we use the transaction data to infer monthly measures of transaction costs by fund,

currency, and trade direction.

Second, we match the FX derivative data with the Refinitiv Lipper Funds Holdings database

that reports monthly asset holdings with the corresponding currency denomination per fund. In

total we identify 6, 930 European funds that are relevant for our analysis of Euro hedging practices.

We consider as relevant funds those that (i) have Euro as their base currency, (ii) have more than

90% of their liabilities denominated in Euros, and (iii) have no strict mandate to hedge their equity

and bond positions in a foreign currency.14

Among the relevant European funds, we have 4, 124 funds that never report any FX derivative

positions during the period 2019-23. Such funds are presumably barred from derivative investments

or are not considered a good investment option. Table 1, Panel A, provides summary statistics on

these funds, which never hedge. We also provide a breakdown by funds type and distinguish bond,

equity, and mixed funds.

Table 1, Panel B, reports on the remaining 2, 806 European funds that acquire FX derivative

contracts at least once during the period 2019-23. We deduce that these funds have a discretionary

mandate that allows them to engage in derivative trading. They are the focus of our analysis.

These funds are on average larger and also tend to have a larger foreign investment share compared

to the funds in Panel A.

Among the funds in Panel B with a discretionary mandate, we distinguish 806 bond funds

(with no equity positions), 1, 109 equity funds (without fixed income holdings) and 891 mixed

funds. Panel C reports the monthly fund-currency positions in the six foreign currencies (expressed

in Euros) for the funds in Panel B. Appendix B provides more details on the initial fund type

selection, including the treatment of share classes, the matching of EMIR derivative data, and the

filtering of the matched fund-derivative data.

13In the EMIR dataset FX forwards and FX swaps are reported under the same identifier so that it is not possible
to distinguish between the two instruments. Accordingly, we use the term FX derivatives or FX forwards for both
FX forwards and FX swaps.

14Funds labeled “currency hedged” do not dispose of any discretionary mandate so an analysis of their derivative
trading is less interesting.
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Third, we draw on end-of-the-month closing prices for spot and forward rates obtained via

Refinitiv Eikon. Our analysis focuses on six exchange rates quoted with the Euro as the base cur-

rency: EUR/AUD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/SEK, EUR/USD. The six underlying

currencies account for 40% of the aggregate asset value of the 2, 654 funds in Panel B.

4.1 Fund Asset Holdings by Currency and Forward Positions

In our sample of 2, 806 European equity and fixed income funds in Panel B, we find the following

aggregate real investment shares by currency denomination (not reported in the table): On average

51% of all assets are invested in Euro denominated assets, followed by 29% US Dollar assets (USD),

7% in British Pounds (GBP), 6% in Japanese Yen (JPY), 4%in Swiss Francs (CHF), 3% in Swedish

Krona (SEK), and 1% in Australian Dollars (AUD). All other currency shares represent less than

9% of the aggregate investments. We exclude these less liquid currencies from our analysis as

hedging here is relatively rare due to the small contribution of exchange rate risk to fund returns.

Figure 1 characterizes the evolution of the aggregate real investments and the net outstanding

interest of FX derivative positions in the six main foreign investment destinations for the period

January 2019 to December 2023. Total aggregate asset values (in equity and fixed income in-

struments) are presented by the solid blue line (left scale) and the corresponding net outstanding

notional value in long Euro forward positions by the dashed black line (right scale). The aggregate

derivative positions track the underlying asset values, but tend to be much smaller. For example,

net long Euro derivative positions amount on average to roughly 17% of real US dollar investments

and 11% of British Pound investments.

Figure 2 provides a disaggregate picture of holding and hedging behavior at the fund level by

major foreign investment destination. Here we plot the (exposure-scaled) average foreign investment

shares of funds Σ−1
ffΣfxwx,ic referred to as “benchmark hedges” on the horizontal axis and the

corresponding long Euro forward position −wf,ic on the vertical axis. Bond funds are represented

by a blue dot, equity funds by a yellow cross, and mixed funds by a green triangle. First, large

foreign investment shares at the fund level are observed mostly for dollar assets. Many European

funds invest exclusively in dollar assets apart from Euro assets. Second, bond funds tend to feature

more hedging compared to mixed or equity funds as their blue dots are closer to the 45 degree line.

For some funds, their average long positions in Euros closely mirrors the optimal hedged portfolio
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on the vertical axis.

4.2 Fund Level Currency Exposure

Given the large number of funds and the heterogeneity of their fixed income and equity positions,

we track the investment return only of a representative fixed income and equity position in each

of the six currencies. A disaggregate analysis for the 316,000 different assets (ISINs) and their

individual daily asset returns in Euros is technically infeasible and would also run into a “curse of

dimensionality” with respect to robust covariance estimation.15

We reduce the dimensions of the covariance inference by grouping assets only by asset class

(equity or fixed income) and by currency. Then we estimate covariances between asset and FX

returns only for representative bond and equity portfolios in each currency. We proxy bond returns

with S&P Sovereign Bond index returns and proxy equity returns with MSCI equity index returns

by country.16 For example, a fund i may hold investment weights wx,i,c,t in currency c at the end

of month t, where a share ωc,t is invested in bonds and 1 − ωc,t in equity. We can represent the

covariance of a fund’s real assets returns (in Euros) with the currency returns as

Σfx,i,t+1 = Σfb,t+1D(ωi,c,t) + Σfe,t+1D(1− ωi,c,t), (12)

where Σfb,t+1 and Σfe,t+1 denotes the n× (n+1) covariance matrices between the currency returns

and the bond and equity returns in month t + 1, respectively. The (n + 1) × (n + 1) diagonal

matrices D(ωi,c,t) and D(1 − ωi,c,t) feature the relative share of bonds and equity investments of

fund i in currency c, respectively, as diagonal element c. This ensures that the analysis accounts

for the fund-specific mix of fixed income and equity instruments in each currency. The covariance

of currency return in currency c with the asset holdings of fund i then follows as [Σfx,i,t+1]c•wx,i,t,

where the index c• refers to row c of the respective matrix.

15This implies that the covariance structure of fund returns and exchange rate returns is estimated with measure-
ment error. Such measurement error translates into an attenuation bias for the inferred benchmark hedge position.

16A robustness analysis in Section 6 sorts funds based on the validity of this approximation. We compare the
inferred fund return to the reported fund return and exclude funds for which the reporting mismatch is large.
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4.3 Estimation of Currency and Asset Risk

An important input to the analysis is the determination of the currency risk captured by the

covariance matrix Σff,t+1 and the currency-asset covariance risk represented by the covariance

matrices Σfb,t+1 and Σfe,t+1 for bond and equity returns, respectively. We use two different (out-

of-sample) methods to predict future covariances.

Lagged Realized Covariance. Here we measure the realized covariance based on daily returns

for either a previous 3-month or 6-month period. This simple and direct approach assumes that the

recently observed realized covariance structure is a good predictor of the covariance structure in the

coming month t+ 1. We use a triangular kernel which gives more weight to the most recent daily

return observations. The estimated realized covariance matrices Σff,t+1 are all positive definite,

which ensures a unique optimal hedging portfolio if transaction costs are ignored.17

MGARCH Models. Alternatively, we estimate two multivariante GARCH models using a dy-

namic conditional correlation (DCC) specification. An unconstrained MGARCH(5,1) uses five daily

ARCH innovations (L1-L5) and one GARCH term (L6). The first model (MGARCH1) estimates a

total of 2+6×(2N+1) = 80 parameters to capture the dynamics of the covariance structure of the

N + 1 asset and N currency returns. A more parsimonious specification restricts the coefficients

of the five ARCH terms for each currency or asset to be identical. This reduces the number of

free parameters to be only 2 + 2× (2N + 1) = 28 (MGARCH2). Both GARCH models implicitly

use covariance shrinkage by constraining the off-diagonal covariance elements to a time-invariant

correlation.

We estate the all four covariances based on daily returns data. For the MGARCH models the

data starts five years prior to the month of prediction. Appendix A.4 provides details about the

predicted covariance matrices obtained from the MGARCH specifications. We find again that the

monthly predicted covariance matrix Σff,t+1 is positive definite so that convexity of the optimization

problem is guaranteed for the entire five-year sample period.

We provide in Figure 3 a graphical illustration of the average covariance structure observed

(in-sample) for the full five-year period 2019-23. Graph A shows the estimated covariance of

17For quantitatively small transaction costs, we can assume that this unique hedge portfolio is at least close to
the optimal hedge under transaction costs.
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daily realized currency returns (Σff ), Graph B shows the covariance of currency returns with

equity returns (Σfx,e), and Graph C the corresponding covariance with bond returns by investment

destination (Σfx,b). The intensity of the green color implies large positive covariance and the red

color large negative covariance terms. The average covariance matrix Σff is also positive definite

similar to the monthly predicted covariances.

Figure 4 depicts by currency the time-varying variance of currency returns (black dashed line),

the covariance of currency and equity returns (yellow line with crosses) and between currency and

foreign bond returns (blue line with dots). The FX volatility and covariances with real asset spike

for most countries around the outbreak of Covid-19 and the Russian-Ukrainian war at the beginning

of 2022. The figure highlights that the covariance between currency returns and equity returns can

be larger than with bond returns and often spikes when FX volatility is also high.

In the Appendix, we compare in Figure D.2 the time variation of the diagonal elements of the

FX covariance matrix according to the four different inference methods, namely lagged realized

variances for a 3-month and 6-month period, respectively, and the corresponding unconstrained

and constrained MGARCH estimates, respectively. The overall correlation between different (one-

month-ahead) predictions of all covariance elements is provided in Appendix Table D.1 and varies

between 0.63 for the correlation between MGARCH1 and LRC 3-month and 0.96 for the correlation

between MGARCH1 and MGARCH2. Different inference methods generate different covariance

estimates, which in turn imply different optimal hedge portfolios. Our main analysis therefore

shows results for different inference methods for the covariance matrices and stress results that are

robust across these different methods.

4.4 What Explains Transaction Costs?

Next, we explore transaction costs in the forward market. For the period 2019-23, the EMIR data

provides roughly 2, 268, 283 transactions between funds and dealer banks. We select all transactions

involving the 2,806 funds in our sample and search for a contemporaneous interbank trade in the

same minute, with the same (one month) maturity in the same currency pair. In total we identify

74, 344 transaction prices FT that can be benchmarked against synchronous interbank trades MidT

for the calculation of the effective spread as defined in Eq. 9.

We regress the spreads (in basis points) measured for these 74, 344 forward trades on a time
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(day) fixed effect, a currency fixed effect, a fixed effect marking only buy trades in a foreign currency

c (i.e., Euro short positions), and fund fixed effect for funds. The 74, 344 trades feature a total

of 1, 120 different funds. For 1, 685 funds in our sample we do not have trades because their

transactions occurred in a currency or with a maturity or at a time when no synchronous interbank

trade is available to provide a suitable benchmark for the spread measurement. For these funds we

rely on their fund characteristics rather than fund fixed effects for the prediction of the fund-specific

transaction costs.

Appendix Table C.2 presents the regression results and Figure 5 plots the average transaction

costs for buy and sell transactions in each of the six currency pairs deduced from Column (1). A

positive coefficient θUSD = 1.641 implies a cost of 1.641 basis points for each Euro of notional in

a forward USD sell trade (Euro long position). If a fund applies a unitary (full) hedge to a real

USD dollar (c = USD) investment of wx,c = 10% of fund assets, these transaction costs reduce the

monthly portfolio return by ∆r = −τcwf,c = −0.0001641× 0.1% or 12× 0.1×−0.01641% annually.

Hedging a USD exposure fully thus implies (unconditionally) average annual costs of 0.197% or

roughly 20 basis points.

While hedging USD and GBP exposures through Euro long positions has moderate costs, selling

the Euro for the USD and aqcuiring Euro short positions generates negative transaction costs. In

other words, interdealer transactions occur on average at a lower forward price than the fund-dealer

Euro sell transactions (i.e., MidT < FT , d(T ) = −1). As shown in Appendix A.3 and Figure C.2,

this data feature is related to a strongly negative currency basis for the USD, which makes the

acquisition of Euro short positions very desirable because of the relatively higher dollar interest

rates in our sample period.

For the fund characteristics, we find that funds with a higher Expense Ratio also face higher

transaction costs and that equity funds have lower average transaction costs. Funds with higher

expenses might invest in FX research particularly if their foreign investment share is large. Their

higher trading costs indicate that dealer banks quote these funds at less favourable prices because

of the adverse selection risk (Burnside et al. (2009)). The overall explanatory power of the various

fixed effects and fund characteristics in Columns (3)-(4) is modest at an overall R2 of 2.3%. In-

cluding fund fixed effects in Column (5) does not increases the regression fit, which suggests that

there is no evidence for fund-specific price discrimination. This contrasts with evidence of strong
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discriminatory pricing found for corporate clients in the same OTC market (Hau et al. (2021)).

5 Empirical Analysis

5.1 Observed versus Optimal Hedge Positions

In this section, we compare the observed FX derivative positions of European investment funds

with discretionary hedging policies to the optimal benchmark hedge derived under mean-variance

optimization. The optimal hedging position of each fund depends on the funds’ mix of equity and

bond positions in each of the seven currencies summarized in the asset weights wx,i,t. These real

investments determine a fund’s currency exposure in month t+1 captured by the covariance matrix

Σfx,i,t+1 that follows from Eq. (12).

To test the first order condition in Eq. (6), we regress a fund’s FX derivative positions wf,i,c,t

on the expected returns effect Σ−1
ff,t+1µf,c,t+1 and the benchmark hedge Σ−1

ff,t+1Σfx,i,t+1wx,i,c,t. To

simplify notation, we suppress the superscript n in Eq. (6) even though covariance matrices have

fund-specific dimensions given by the number of non-zero hedging positions wf,i,c,t.

Table 3 reports our baseline results for two different estimation procedures for the covariance

matrices. Panel A uses Lagged Realized Covariances (for the last six months) and uses this es-

timation as the predicted covariances for month t+1. The results in Panel B are based on the

MGARCH1 model described in Appendix A.4. We also report analogous results for two additional

estimation methods in Appendix Table F.2. Our discussion focuses on coefficients that are robust

across different estimation procedures. We consider the derivative positions of bond, equity, and

mixed funds separately and distinguish for each fund type the sample of all positions in Columns

(1)-(3) and the subsample of only Euro long positions in Columns (4)-(6).

Speculative Terms in the Optimal Hedge. The positive coefficient for Σ−1
ff,t+1∆st+1 indicates

that Euro long positions are more frequent under Euro appreciations (i.e., a decrease of st+1), but

statistical significance is modest. Bond funds in Panel A and B show statistical significance at the

5% and 10% level, respectively. Mixed funds also show some weak evidence for FX predictability in

Table 3, Column (6) where only Euro long positions are taken into account. No statistical evidence

20



of systematic FX predictability can be discerned among equity funds.18

Under the random walk assumption for exchange rate movements, a positive forward premium

in currency c amounts to a lower price on the long Euro position and a positive expected return

−w′
f,i,tfpt > 0. This should tilt the optimal hedge portfolio wf,i,t toward more hedging (i.e., make

the vector more negative) and generate a negative coefficient for the regression coefficient. This is

what we observe for the realized covariance in Panel A in Columns (1)-(6). The same coefficients are

statistically insignificant and even positive for mixed funds in Panel B where we infer covariance

risk from the MGARCH model. The evidence for the forward premium tilt is thus fragile and

depends on the estimation method for covariance risk. Du and Huber (2024) forego the estimation

of a time-varying covariance matrix and find that the interest rate differential, which we proxy with

the forward premium, can by itself significantly explain investors’ hedging positions.

The forward premium closely correlates with deviations from covered-interest rate parity (CIP),

commonly referred to as the cross-currency basis.19 The latter is often interpreted as the cost

of hedging. We find that replacing the forward premium with the cross-currency basis yields

qualitatively very similar results, implying that higher hedging costs correlate with reduced hedging

positions. The results also suggest that bond and mixed funds are more cost-sensitive than equity

funds in their hedging behavior.

The adjustment of the optimal hedge portfolio to (exogenous) transaction costs is captured

by the coefficient on Σ−1
ff,t+1τi,t. Positive transaction costs τi,t > 0 from a positive spread should

generally tilt the optimal hedge portfolio toward smaller notional positions and imply a positive

coefficient. However, all of the measured coefficients in Panels A and B for the sample of all

derivative positions in Columns (1)-(3) are negative and statistically significant. This implies that

the average portfolio tilt is toward derivative positions with higher transaction costs rather than

lower ones, which is surprising.

Average transaction costs across all funds are generally low and do not exceed 20 basis point per

year for a full dollar investment position. This could explains why funds might consider hedging

18We find additional evidence that funds with high expense ratios (i.e., in the upper quintile of the expense ratio)
make speculative profits in their FX derivative trading before transaction costs. The coefficient of the predictability
term is 0.012 with a t-statistics of 1.973. However, these funds also face higher trading costs as shown in Appendix
Table C.4 as dealer banks increase their spread in protection against adverse selection risk.

19CIP deviations are mostly driven by the forward premium rather than the interest rate differential. For example,
in our period 2019-23 the forward premium is correlated with the cross-currency basis at 53% for the EURUSD.
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costs as negligible, potentially leading to a statistically insignificant coefficient. But a statistically

significant negative coefficient requires a different explanation and points to an endogenous cost

effects: The higher the net aggregate FX derivative demand in any currency, the more adverse the

price response and the higher the transaction costs charged by dealer banks. A price elastic currency

supply features both in theoretical and empirical work on the FX market (Gabaix and Maggiori

(2015); Hau and Rey (2006); Hau et al. (2010)) and can rationalize the negative coefficients for the

transaction cost effect for all fund types in Table 3, Columns (1)-(3).

Benchmark Hedge Component. The coefficient for the optimal benchmark hedge portfolio in

Table 3 is of the greatest interest. Tracking of the benchmark hedge implies that a fund implements

mean-variance optimization with covariance estimates close to ours. A coefficient of −1 implies a

perfect fit with theory for all funds. A zero coefficient suggests that the derivative positions of

the average funds do not achieve any risk reduction and that the funds engages in exchange rate

speculation only. Unlike the return-seeking components, the magnitude of the expected coefficient

does not depend on the risk tolerance of the respective fund.

The overall coefficient for bond funds in Column (1) is −0.426 and −0.588 in Panels A and B,

respectively. In the sample with only Euro long positions, this coefficient is even larger at −0.691

and −0.942, respectively. This means that the benchmark portfolio is a reasonable proxy for bond

funds without Euro short positions. By contrast, the same coefficient is close to zero in the sample

of equity funds in Column(2) and also low for mixed funds in Column (3), respectively. In other

words, European equity funds and mixed funds generally do not hedge their exchange rate exposure.

In Appendix Table F.2, Panels A and B, we replace the covariance matrices with a 3-month

lagged realized covariance matrix and a covariance matrix based on the MGARCH2 model with

fewer free parameters, respectively. The results do not change significantly for these two different

covariance estimation techniques. In Appendix Table F.3 we add fund×currency fixed effects to

the regression and find a smaller coefficient for the benchmark effect. This is not surprising, as

funds’ real asset positions can be relatively stable and the fund fixed effects can capture some of

the explanatory power of the benchmark hedge if the latter does not change much over time. More

noteworthy is that the evidence for the forward premium effect for bond and mixed funds in Table

F.3, Panel A, Columns (1) and (3) are robust to fund fixed effects.
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5.2 Unitary versus Cross-Currency Hedge Positions

Table 4 repeats the regression in Table 3 with the addition that the benchmark hedge is decomposed

into the unitary hedge and the cross-currency hedge as described in Eq. (4). The speculative terms

have very similar coefficients as in Table 3. The interesting observation is that the cross-currency

hedging term [Σ−1
ff,t+1Σxf,i,t+1− I+0]wx,i,t is statistically insignificant even for bond funds although

theory predicts a value of −1. Only the unitary hedge component of the optimal benchmark

portfolio has a coefficient close to −1 at −0.910 and −0.914 in Column (4) of Panels A and B,

respectively. The predominance of unitary hedging suggests that bond funds rarely engage in

cross-currency hedging where they consider the entire cross-section of available forward rates to

simultaneous hedge a cross-section of exposures. Instead, they hedge each currency exposure in

isolation with a one-to-one hedge wf,i,c,t = −wx,i,c,t in each currency c.

An advantage of the unitary hedge is that it is easy to determine and does not depend on the

estimation of any covariance, unlike the benchmark hedge. But from a theoretical perspective,

unitary hedging is clearly second-best for two reasons. First, it ignores the marginal hedging

benefits of forward positions in other currencies if the same-currency hedge itself is imperfectly

correlated with real asset risk. Second, it fails to account for the correlation between the domestic

asset position and hedging instruments.

Lastly, we comment on the overall regression fit in Table 4. Mean variance optimization explains

25% of all variation in hedging weights for bond funds in both Panels A and B. The share rises to

68% if we consider only Euro long positions of bond funds. This explanatory power drops below

5% if we consider all derivative positions of equity funds. Thus, the derivative trading policies of

equity funds are not well explained by an FX hedging motive.

5.3 Heterogeneity in Hedging by Fund Type

We can replace the pooled regressions for all funds in Tables 3 and 4 by fund-specific regressions

that estimate the respective coefficients for each fund separately. In light of the evidence in favor

of unitary hedging among bond funds in Table 4, we estimate the respective coefficient for the 805

bond funds with at least 60 monthly positions. Figure 6 provides the distribution of the coefficients

in Panel A. For comparison, we plot the corresponding distribution for all equity funds and mixed
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funds in Panels B and C, respectively.

For our sample of European bond funds with discretionary FX derivative trading, we find

that roughly 44% feature a coefficient estimate in the range [−1.5,−.5], which means that their

average hedge shows less than a 50% deviation from the unitary hedge with wf,i,c = −wx,i,c.

Such a large coefficient interval should account generously for various types of measurement error.

The corresponding percentages are only 7% and 28% for equity and mixed funds, respectively. The

disaggregate evidence confirms the previous conclusion that active currency hedging is concentrated

in bond funds. But even among bond funds with a discretionary mandate, a large percentage of

funds deviate from a derivative position that can provide a meaningful FX risk reduction. Bond

funds in the right tail of the distribution systematically increase their FX risk exposure through

derivative trades and these are not rare cases. Approximately 12% of bonds funds hold derivative

positions that increase their FX risk exposure by more than 50%.

5.4 Heterogeneity in Derivative Trading by Fund Characteristics

This section further explores fund-level heterogeneity in derivative trading by fund characteristics.

We report not only the coefficient distribution for the unitary hedge, as in Figure 6, but also for the

exchange rate predictability effect, the forward premium effect, and the transaction cost effect. To

characterize fund heterogeneity in a simple manner, we sort all funds along different characteristics

into quintiles and only report the quintile average with a standard error bar around the mean. The

fund characteristics considered are (i) the number of currencies a fund invests in (ranging from 1 to

6), (ii) the fund size measures as assets under management, (iii) the turnover ratio, (iv) the expense

ratio, and (v) the portfolio share of foreign currency (real) asset. As expense ratios are fund type

dependent, we rank bond, equity, and mixed funds separately, and take a constant share of each

fund type into the respective quintile.

Figure 7 presents the mean coefficient of all funds-level regression after funds are sorted into

quintiles according to their characteristics. Column (1) suggests that profitable speculative deriva-

tive positions tend to be concentrated in larger funds (quintiles 4 and 5), higher expense ratios

(quintiles 3 and 4), and a high share of assets invested in foreign currency (quintile 5). Column

(2) of Figure 7 describes the average tilt of the derivative holdings toward capturing the forward

premium. Such speculative gains are sought mostly by funds that hold assets in only one or two
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currencies (quintiles 1 and 2), that have a large asset turnover (quintile 5), and feature a large share

of assets in foreign currency (quintile 5). Column (3) characterizes the sensitivity of the derivative

portfolio toward transaction costs. A portfolio tilt toward lower costs is observed for funds with a

larger number of investment currencies and for funds of larger size across all quintiles. However,

a larger expense ratio and a larger foreign investment share both imply on average more negative

fund coefficients for the transaction cost effect. No particular fund type pattern emerges in Column

(4) for the mean fund coefficient for unitary hedging.

The heterogeneity analysis shows that the 20% of funds with the highest share of foreign cur-

rency investment use FX derivatives most actively in pursuit of higher investment returns. They

also face roughly six times greater transaction costs compared to funds in the lowest quintile. This

supports a model of discriminatory derivative pricing where market makers face adverse selection

risk, as in Burnside et al. (2009).

5.5 Ex-Post Fund Performance by Trading Strategy

The previous sections suggest that observed derivative trading behavior in the European invest-

ment industry substantially deviates from what a mean-variance model predicts. In particular we

find that derivative positions by investment funds are very heterogeneous with respect to the for-

ward premium and transaction costs, and generally ignore cross-currency hedging benefits in their

trading policies. In this section we explore how different hedging policies influence long-run fund

performance in four different scenarios.

First, we infer their baseline performance using their (end-of-month) observed equity and fixed

income shares in the seven different currencies and their (end-of-month) observed hedging positions.

This performance benchmark is necessarily coarse as it calculates fund returns based on asset returns

at the currency-asset class level rather than the level of the individual stock or bond. Furthermore,

it ignores portfolio adjustments that occur within any month. However, we can compare the inferred

fund returns to the self-reported fund returns over the five-year period and eliminate all funds for

which this approximation is not within a certain range of tolerable error. Such a robustness check

is undertaken as a last step in Section 6.

Second, we define four different alternative hedging scenarios to check if such alternative deriva-

tive trading policies (for fixed real investments) improve the average performance of European
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investment funds. We focus on four different performance measures, namely the in-sample (i) im-

plied mean fund return over the five year sample period (Mean), (ii) its standard deviation (St.D.),

(iii) the so-called certainty equivalence (CEQ), and (iv) the total (annualized) transaction costs

incurred through FX derivative trades. The CEQ calculates the value of the objective function

and represents the equivalent mean return without risk that makes the funds indifferent to the any

risky outcome. Formally,

CEQ = µ− 1

2γ
σ2, (13)

where µ and σ2 are the average realized monthly excess return (relative to the EONIA rate) and

variance, respectively. The value of the CEQ depends on the risk tolerance of the fund and we

consider two different values in our performance simulations. We chose a risk tolerance parameter

γ = 0.2 as a plausible parameter value. Equity funds feature an annualized standard deviation for

monthly returns of 14.6%. The parameter γ = 0.2 then implies an annualized equity premium of

1
2γ (0.146)

2 = 5.3%.20

Baseline: Fund Returns for Observed Derivative Trading. This benchmark case calculates

the fund returns under the observed (end-of-month) asset and derivative holding and includes

transaction costs for the derivative portfolio. We can decompose the (7×1) vector portfolio weights

wx,i,t = wb,i,t + we,i,t of fund i at the end of month t into bond weights wb,i,t and equity weights

we,i,t, respectively. Let re,t+1 and rb,t+1 represent the corresponding (7× 1) vectors of asset returns

in month t+ 1 expressed in Euros. We define observed monthly fund returns as

rObserved
i,t+1 = w′

b,i,trb,t+1 + w′
e,i,tre,t+1 + w′

f,i,t(st+1 − ft + τi,t), (14)

where st+1 = ln(St+1) represents the log spot rate vector at the end of month t+1 and ft = ln(Ft)

the one month log forward rate at the end of month t.21 The vector of (derivative) transactions

costs τi,c is calculated as stated in Eq. (11) and generally differs between short and long Euro

positions.

Scenario 1: Fund Returns without FX Derivatives. Here we simply ignore the contribution

20Our parameter choice is also close to γ = 1/3 picked by Opie and Riddiough (2020).
21We measure prices at the end of each month t as the last available closing prices in month t and use the mid-price

in the interdealer market.
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of the hedging return to a fund’s portfolio return in any given month. Formally, fund returns are

rNohedge
i,t+1 = w′

b,i,trb,t+1 + w′
e,i,tre,t+1. (15)

Scenario 2: Unitary Hedge without Return Seeking. An interesting scenario is unitary

hedging because it is prevalent among bond funds. This hedging policy ignores the covariance

structure of FX and asset returns and matches any foreign currency exposure from real investments

with an equally large forward short position currency by currency (i.e., wf,i,t = −wx,i,t). We exclude

any return seeking behavior, but account for transaction costs so that returns follow as

rUnitary
i,t+1 = w′

b,i,trb,t+1 + w′
e,i,tre,t+1 − w′

x,i,t(st+1 − ft + τi,t). (16)

Scenarios 3: Optimal Hedge without Return Seeking. This hedging policy follows from

mean-variance optimization characterized in Eq. (4) and includes cross-currency hedging. Formally,

rOptimal
i,t+1 = w′

b,i,trb,t+1 + w′
e,i,tre,t+1 + w∗′

f,i,t(st+1 − ft + τi,t). (17)

Scenarios 4: Optimal Hedge with Return Seeking. The benchmark hedge is the same as

in Scenario 3, but the policy includes additional speculative terms, which tilts the hedge portfolio

toward long Euro positions in currencies with a positive forward premium and low (or even negative)

transaction costs.

Table 5 reports performance statistics for the observed benchmark hedge and the four hedge

scenarios for the period 2019-23. Columns (1)-(3) provide (i) the (annualized) average return of all

bond, equity, and mixed funds, respectively, (ii) the (annualized) average standard deviation (St.D.)

of the monthly returns by fund type, (iii) the average of the certainty equivalent (CEQ) by fund

type for a risk tolerance parameter of τ = 0.2, and (iv) the average (annualized) transaction costs

in basis points. Columns (4)-(6) report the performance improvements of each scenario relative

to the observed baseline, where we measure a reduced standard deviation and smaller transaction

cost as positive improvements.

The baseline case in Table 5 states that bond funds had (ex-post) a disappointing annualized
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mean performance of −3.316% (in Euros) during the period 2019-23 relative to 6.905% for equity

funds. The average annualized transaction costs are relatively small for equity funds of one basis

point compared to equity and mixed funds, which incur three times larger transaction costs.

For the different alternative scenarios, we focus on Columns (4)-(6), which state the changes in

fund outcomes relative to the baseline case. Scenario 1 considers the (counterfactual) case of no

derivative trading by any fund. Column (4) shows that this would have improved the (annualized)

mean return of bond funds by 0.339% without changing the average standard deviation of bond

fund returns. Interestingly, derivative trading did not change the average return risk of bonds

funds or mixed funds either. We therefore summarize that the observed derivative trading behavior

did not achieve any economically or statistically significant reduction in the FX exposure for the

average European investment fund. Only the annualized average bond fund performance would

have increased by 34 basis points (ex-post) if no derivative trading had taken place. Derivative

transaction costs do not explain this difference as they account for only three basis points in

annualized returns. Instead, we can point to the average dollar appreciation over the period 2019-

23 which generated negative returns on the average Euro long position held by European bond

funds.

Unitary hedging in Scenario 2 reduces the standard deviation of portfolio risk for bond funds by

0.277% relative to the baseline risk of 5.935%, which represents only a very modest risk reduction

of 4.6%. A risk increase is observed for equity funds, while there is no change for mixed funds.

Hence, unitary hedging is disappointing in its reduction of FX exposure. The unitary hedging

strategy involves only slightly higher average costs of 0.6 basis points annualized compared to the

observed benchmark. This means that unitary hedging does not involve absolutely larger derivative

positions, but derivative trades that better match the fund’s FX exposure currency by currency.

Scenarios 3 and 4 consider mean-variance optimal hedging strategies without and with return

seeking, respectively. The return seeking strategies differ by their portfolio tilt toward low-cost

hedging and toward currencies with a negative forward premium, but implement the same bench-

mark hedge with the same cross-currency term. We find that optimal hedging provides a more

significant improvement in terms of risk reduction. The standard deviation of portfolio returns for

bond funds decreases by an annualized 0.61% under both strategies, which amounts to a 10% risk

reduction. An even larger absolute risk reduction could have been achieved by equity and mixed
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funds of 1.47% and 1.025%, respectively, if they had implemented the benchmark hedge for their

foreign asset position. The associated costs are again very small at two basis points and 0.5 basis

points of annualized fund performance, respectively. In fact, optimal hedging is slightly cheaper

than unitary hedging and provides an average absolute risk reduction of the monthly standard

deviation of fund returns, which is twice as large.

We find that the return seeking element in Scenario 4, which tilts the optimal benchmark

portfolio toward lower transaction costs and the forward premium, makes no difference to the

average fund performance. The latter is negative and almost identical for both Scenarios 3 and

4 across all fund types. Ex-post the fund returns would have been lower by 1.25%, 1.17%, and

1.17% basis points for bond, equity, and mixed funds, respectively. These lower ex-post returns

should not be confused with negative expected returns. But it is also clear that optimal hedging

can generate a significant relative performance risk against similar funds that do not hedge; it thus

relies on investors able to distinguish expected returns from ex-post realized returns.

6 Robustness

A shortcoming of our analysis consists in the imperfect measurement of a fund’s asset returns. We

replace the actual returns by inferred returns that map the bond and equity positions dispersed

over roughly 300,000 individual assets into only 12 asset classes, namely one representative bond

and equity portfolio for each of the six currencies. How critical is this simplification of the hedging

problem to our results?

If the true asset returns in foreign currency deviate from the return of the reference asset

only by an idiosyncratic error ϵc,i,t+1 = rtruex,c,t+1 − rx,c,t+1 that is independent of vector of currency

returns ∆st, then the benchmark hedge Σff,i,t+1Σfx,i,twx,i,t+1 remains unchanged. In other words,

foreign asset return deviations from our representative asset class return that are orthogonal to

the currency returns do not matter for the optimal hedging policy. Such orthogonal errors imply

an inference error for a fund’s mean return and also its SD and certainty equivalence. However,

the improvement of the mean return stated in Table 5, Columns (4) is again unaffected for all

alternative hedge scenarios as they depend only on the return of the invariant optimal hedging

policy.
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But the measurement errors in funds’ local asset returns may not always be orthogonal to the

currency returns. In this case, it is important for our inference that the true asset return in any of

the 12 asset classes is well approximated by the representative asset class (or index) return. The

more diversified a fund invests in any of the 12 asset classes, the better the respective index return

approximates a fund’s return history. Table F.4 in Appendix A.5 tabulates the absolute value of

the average monthly difference between our inferred monthly portfolio returns (i.e., the baseline

case in Table 5) and the monthly return that funds report. A total of 25% of funds feature an

average monthly difference of more than 1.9%. As a robustness exercise, we identify these 25%

(non-representative) funds and exclude them from our analysis.

Table F.5 repeats the analysis in Table 3 for the 75% of funds for which the holding-inferred

and reported fund returns coincide best. The results are very similar to the baseline regression

results. The coefficient for the benchmark hedge is on average slightly larger in absolute terms and

increases for the regression with the best fit in Column (4) of Panel B from −0.94 to −0.95.

Table F.6 reproduces the scenario analysis in Table 5 for the 75% of funds with the least absolute

deviation of holding-inferred and reported returns. Again, the results do not change significantly. A

marginally lower risk for equity funds in the optimal hedging portfolio (Scenarios 3 and 4) compared

to full sample regression in Table 5 is the most noticeable difference.

7 Conclusion

The decentralized over-the-counter (OTC) structure of the global FX derivative market left this

market largely out of the scope of empirical research so that little was known about the derivative

trading at the institutional investor level. Following the 2007-8 financial crisis, new financial reg-

ulation (EMIR) has increased the reporting requirements for all European counterparties in this

market. As these data become more readily available to researchers at regulatory institutions, it is

possible to confront the established theory of optimal FX hedging (in the mean-variance framework)

with contract-level microdata reported by institutional investors.

We find that 68% of our sample of European investment funds use FX forward and FX swap con-

tracts at least sporadically during the five-year period 2019-23. Yet, their trading in FX derivatives

generally does not correspond to the theoretical predictions implied by mean-variance optimization.
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Even among fixed income funds, only a minority of 44% of bond funds hold derivative positions

that are broadly consistent with a hedging behavior designed to reduce the FX exposure of portfolio

return variance in Euro terms. This share is even lower for equity and mixed funds at 7% and 28%,

respectively.

Most of the observed hedging behavior does not involve a comprehensive portfolio approach that

seeks to hedge all foreign currency exposures simultaneously with all available derivative contracts.

Instead, we find evidence for unitary hedging (mostly by bond funds) that reduces each exchange

rate exposure separately on a currency by currency base. We show that such an approach deprives

European investment funds of half of their risk reduction opportunities that a more comprehensive

approach would permit at similar or even lower trading costs.

Overall, the observed derivative trading does not function as an important tool for the reduction

of currency risk in foreign asset holdings of European funds with a discretionary hedging mandate.

In the counterfactual scenario without any FX derivative trading, the average European investment

fund would hold an economically indistinguishable overall return risk. This finding contrasts with a

feasible (partial equilibrium) scenario of optimal hedging, which suggests that the overall investment

risk of both bond and equity funds could be reduced through FX derivatives by approximately 10%

without incurring significantly higher transaction costs. But we also note that such absolute risk

reduction can easily be costly in terms of relative underperformance with respect to non-hedging

funds if the Euro depreciates relative to foreign currencies and Euro long positions incur losses.

Our findings suggest that international risk trading through FX derivative markets is incomplete

if US-based funds with the inverse FX exposure show a similar shortfall in FX risk hedging as

European funds. In this case a considerable amount of FX risk is maintained in the investment

portfolios even though this risk could be jointly eliminated through FX derivative trading. Such

trading (as opposed to market) incompleteness is consistent with a previous macro literature that

fails to find evidence of international risk-sharing in aggregate consumption data (Lewis (1996)).

But imperfect international risk trading at the fund level is a much starker finding and in many

ways a stronger challenge to financial theory as it occurs for financially sophisticated fund managers

with access to cheap risk trading instruments.
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Figure 1: Aggregate Asset Value and Notional Value of Net Forward Positions by Currency
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Notes: We plot the aggregate value of real investment asset positions (in Euros, solid line, left axis) and the notional
value of net forward positions (i.e., long positions in Euros, dashed line, right scale) for the sample of 2,806 European
investment funds by currency.
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Figure 2: Optimal Benchmark Hedge and Observed FX Derivative Holdings by Currency
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Notes: We plot the optimal fund-level (time-average) benchmark hedging weights in Euro long positions (as implied by
mean-variance optimization) on the horizontal axis against the corresponding observed (time-averaged) FX derivative
weights in Euro long positions (i.e., outstanding interest relative to total real investment value) on the vertical axis
for bond funds (blue dot), equity funds (yellow cross) and mixed funds (green triangle). For confidentiality reasons
we group funds together that have similar x and y values and plot the average of the group. We have at least four
funds per group and do not plot groups that do not pass the confidentiality requirements. The number of funds with
investment positions in currency c are 2,516 (USD), 2,253 (GBP), 936 (AUD), 1,080 (JPY), 1,403 (SEK), and 1,593
(CHF), respectively.
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Figure 3: Average Covariance Matrices
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Figure 4: Time-varying Covariance Matrices
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Figure 5: Average Transaction Costs of Forward Contracts
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Figure 6: Prevalence of (Unitary) Hedging by Fund Type
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Notes: We undertake the regression in Table 4, Panel A, for each fund and record the regression coefficient for the
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of −1. Panel A shows that 44% of bond funds feature a coefficient in the interval [−1.5,−0.5]. This share is only 7%
for equity funds and 28% for mixed funds in Panels B and C, respectively. The plotted distribution for bond funds
ignores extreme coefficients below −2.5 and above 1, which represents roughly 7% of bond funds.



Figure 7: Heterogeneity in Fund Hedging
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Notes: We undertake funds-level hedging regressions and report the mean of the coefficient distribution for the FX
Predictability Effect in Column (1), the Forward Premium Effect in Column (2), the Transaction Cost Effect in
Column (3), and the Unitary Hedge in Column (4) by fund characteristics. The coefficients are winsorized at the
1% level. The black bar indicates the standard errors of the mean, i.e., the standard deviation divided by the square
root of the number of observations. We sort funds by the number of currencies invested, and quintiles for fund size,
for the turnover ratio, for the expense ratio, and for the portfolio share invested in foreign currency.
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Table 1: European Fund Sample and Foreign Investment Positions

We report summary statistics on monthly asset positions, the foreign (non-Euro) investment share, and

foreign currency positions for European investment funds by fund type for the period 2019-23. Panel A

reports the asset statistics for 7, 133 funds that do not report any (end-of-month) FX derivative positions in

the entire sample period, whereas Panel B presents the same asset statistics for 2, 521 funds that report at

least one FX derivative position during the same period. In Panel C, we report the pooled foreign investment

positions in six different currencies (USD, GBP, AUD, JPY, SEK, CHF) for all fund-months in Panel B. The

hedge ratio −wf,i,c,t/wx,i,c,t provides the weight on Euro long positions relative to the foreign asset weight

in currency c in month t by fund i. The fund data are from Lipper and the derivative positions come from

regulatory EMIR data at the European Systematic Risk Board.

Panel A: European Funds without FX Derivative Positions, Monthly Observation 2019-23

Fund Assets (mil) Foreign Investment Share (%)

No. Funds Obs. Mean St.D. Q25 Q50 Q75 Mean St.D. Q25 Q50 Q75

Bond 630 44, 763 279.2 622 35 92.9 246.4 16.8 24.7 2.7 6.4 18.4

Equity 2, 233 354, 417 186.6 538.4 18 57.1 159.8 44 33.5 9.5 40.8 76.6

Mixed Assets 1, 261 193, 451 132.8 428.2 12.9 32.4 90.6 28.5 23.7 9.1 22.9 42.7

All Funds 4, 124 592, 631 184.3 523.6 17.1 50.6 152.9 36.8 31.3 7.4 29.4 61.2

Panel B: European Funds with FX Derivative Positions, Monthly Observation 2019-23

Fund Assets (mil) Foreign Investment Share (%)

No. Funds Obs. Mean St.D. Q25 Q50 Q75 Mean St.D. Q25 Q50 Q75

Bond 806 118, 328 441.6 819.6 81.7 195.2 467.6 28.3 28.6 4.6 18 46.1

Equity 1, 109 230, 844 406.4 815.4 45.7 149.2 437.7 50.9 29.1 30.2 46.8 77.5

Mixed Assets 891 174, 080 317.7 798.6 38.9 113.5 279.5 35.1 21.9 17.1 32.6 52.1

All Funds 2, 806 523, 252 388.4 812.6 51.3 146.6 399.7 39.4 28.6 14.4 36.2 61.3

Panel C: Foreign Currency Position for European Funds with FX Derivative Positions

Foreign Currency Asset Value (mil) Hedge Ratio −wf,i,c,t/wx,i,c,t (%)

No. Funds Obs. Mean St.D. Q25 Q50 Q75 Mean St.D. Q25 Q50 Q75

Bond 795 66,503 122.6 384.7 8 32.3 98.6 51.4 49.6 9.4 63 95.2

Equity 1, 109 173,911 249.5 636 17.4 66.9 234.9 4.4 19.3 −0.3 0 0.9

Mixed Assets 884 121,240 117.4 464 9.7 30.9 92.1 25.1 35.8 0 9.2 43.7

All Funds 2, 788 361,654 171.4 524.6 11.2 40.8 138.4 24.4 40.3 0 2.4 49.8
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Table 2: Summary Statistics

We report summary statistics of predicted monthly components of optimal hedging weights in six foreign

currencies of 2, 806 European investment funds with at least one FX forward position in the period 2019-23.

Panel A provides the hedging and investment weights of fund i in currency c in month t denoted by wf,i,c,t

and wx,i,c,t, respectively. Panel B reports the same statistic for Euro long positions only (wf,i,c,t < 0).

Panel C states the components for the optimal hedging weights. For the construction of the matrices Σff,t

and Σfx,t, we alternatively calculate the (i) Lagged Realized Covariances (LRC 6-month) over the previous

6-month period or (ii) or the predicted MGARCH1 covariance as explained in Appendix C. The subscript

Xc• refers to row c of the matrix X and a superscript X−1 denotes the inverse of matrix X. The (6 × 1)

vector ∆st+1 denotes the (log) currency return for the next month t+ 1 and fpt = fc,t − sc,t the vector of

forward premia at the end of month t.

Obs Mean St.D. Q10 Q25 Q50 Q75 Q90

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Hedging and Investment Weights

wf,i,c,t ×100 402, 171 −2.93 13.91 −7.49 −0.52 0.00 0.00 0.27

wx,i,c,t ×100 402, 171 12.99 20.44 0.35 1.30 4.20 14.06 41.56

Panel B: Hedging and Investment Weights for Euro Long Positions only (wf,i,c,t < 0)

wf,i,c,t ×100 121, 511 −11.89 21.6 −35.32 −12.12 −3.25 −0.94 −0.19

wx,i,c,t ×100 121, 511 16.37 23.27 0.32 1.53 5.43 21.17 51.78

Panel C: Explanatory Components

FX Predictability Effects

[Σ−1
ff,t+1]c•∆st+1 LRC 6-month ×0.01 402, 171 1.07 15.1 −15.61 −8.07 0.59 8.94 20.16

[Σ−1
ff,t+1]c•∆st+1 MGARCH1 ×0.01 402, 171 0.41 10.95 −13.25 −7.12 0.74 7.53 14.78

Forward Premium Effects

[Σ−1
ff,t+1]c•fpt LRC 6-month ×0.01 402, 171 −0.31 1.2 −1.35 −0.67 −0.3 0.07 0.84

[Σ−1
ff,t+1]c•fpt MGARCH1 ×0.01 402, 171 −0.12 0.75 −1.05 −0.47 −0.16 0.1 0.74

Transaction Cost Effects

[Σ−1
ff,t+1]c•τi,t LRC 6-month ×0.01 402, 171 0.02 0.3 −0.07 −0.00 0.00 0.04 0.15

[Σ−1
ff,t+1]c•τi,t GARCH1 ×0.01 402, 171 0.01 0.18 −0.06 −0.00 0.00 0.03 0.11

Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t LRC 6-month ×100 402, 171 16.62 49.37 −34.05 −2.18 14.35 38.47 72.74

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t MGARCH1 ×100 402, 171 18.92 37.94 −32.38 −0.77 15.83 43.42 69.82

Panel D: Transaction Data on One-Month FX Forward Contracts

Spread ×10, 000 74, 473 0.69 7.65 −4.89 −0.26 0.12 2.36 6.22

Log Assets Under Mgmt 74, 473 19.39 1.64 17.41 18.45 19.59 20.41 21.33

Turnover Ratio 74, 473 0.12 0.23 0.02 0.03 0.07 0.12 0.21

Expense Ratio 74, 473 1.35 0.85 0.25 0.62 1.34 1.87 2.72
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Table 3: Comparing Observed and Optimal Mean-Variance Hedging

We regress the currency derivative positions wf,ict of European investment funds labeled i, in currency c, and

in month t (measured as share of total assets invested) on future exchange rate changes (FX predictability

effect), the optimal forward premium tilt, the optimal transaction cost tilt, and the optimal benchmark hedge.

We report in Columns (1)-(3) and Columns (4)-(6) the results for all derivative positions and only (dollar)

short positions, respectively. For the the calculation of the (time-varying) covariances Σff,t+1 and Σfx,t+1,

we use in Panels A and B the (in-sample) lagged realized covariance (estimated for daily returns over the

previous 6 months) and the predicted covariance based on the MGARCH1 model, respectively. We include

currency fixed effects in all regressions. We double cluster standard errors at the time- and fund-currency

level and mark statistical significance at the 10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗, respectively.

Dep. Variable: wf,i,c,t

Sample: All Derivative Positions Euro Long Positions Only (wf,i,c,t < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel A: Lagged Realized Covariances (6-Month Period)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.042∗∗ 0.002 0.010 0.083∗∗ 0.012 0.029∗∗

(0.021) (0.002) (0.006) (0.034) (0.009) (0.012)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.649∗∗∗ −0.139 −0.490∗∗ −1.329∗∗∗ −0.232 −0.581∗

(0.441) (0.094) (0.198) (0.505) (0.381) (0.338)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −1.520∗∗ −1.978∗∗∗ −2.081∗∗∗ −0.102 0.243 0.924∗

(0.659) (0.749) (0.752) (0.366) (0.410) (0.493)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.426∗∗∗ −0.011∗∗∗ −0.040∗∗∗ −0.691∗∗∗ −0.058∗∗∗ −0.137∗∗∗

(0.040) (0.003) (0.009) (0.039) (0.015) (0.024)

Adj. R2 0.192 0.006 0.014 0.467 0.020 0.062
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1109 891 728 809 705

Panel B: Predicted Covariances based on MGARCH1 Model (DCC, 80 Parameters)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.032∗ 0.004 0.007 0.049∗ 0.017 0.028∗

(0.019) (0.003) (0.009) (0.027) (0.011) (0.015)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −0.313 0.141 0.736∗∗ 1.018 0.760 1.341∗∗∗

(0.701) (0.156) (0.295) (0.827) (0.720) (0.487)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −2.863∗∗ −3.747∗∗∗ −4.766∗∗∗ 0.211 0.733 1.607∗

(1.230) (1.315) (1.500) (0.396) (0.850) (0.891)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.588∗∗∗ −0.037∗∗∗ −0.082∗∗∗ −0.942∗∗∗ −0.174∗∗∗ −0.268∗∗∗

(0.049) (0.008) (0.018) (0.036) (0.033) (0.039)

Adj. R2 0.262 0.015 0.023 0.639 0.065 0.113
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705
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Table 4: Cross-Currency versus Unitary Hedging

We regress the currency derivative positions wf,i,c,t of European investment funds labeled i, in currency c,

and in month t (measured as share of total assets invested) on future exchange rate changes (FX predictability

effect) and the optimal forward premium tilt as in Table 3, but decompose the optimal benchmark hedge

into a cross-currency hedge and the unitary hedge. In Panels A and B, we use lagged realized covariances

and predicted covariance based on the MGARCH1 model, respectively. We double cluster standard errors

at the time- and fund-currency level and mark statistical significance at the 10%, 5%, and 1% level by ∗, ∗∗,

and ∗∗∗, respectively.

Dep. Variable: wf,i,c,t

Sample: All Derivative Positions Euro Long Positions Only (wf,i,c,t < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel A: Lagged Realized Covariances (6-Month Period)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.008 0.001 0.005 0.010∗∗ 0.001 0.015∗∗∗

(0.009) (0.001) (0.004) (0.005) (0.006) (0.005)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.197∗∗∗ −0.100 −0.352∗∗ −0.638∗∗∗ 0.219 −0.259

(0.323) (0.074) (0.143) (0.219) (0.300) (0.180)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −1.452∗∗ −1.929∗∗∗ −1.915∗∗∗ 0.203 0.180 0.780∗∗

(0.625) (0.720) (0.689) (0.210) (0.380) (0.366)
Cross-Currency Hedge

[Σ−1
ff,t+1Σfx,t+1 − I+0]c•wx,i,t −0.011 0.004∗∗ 0.004 −0.022∗ 0.015∗ 0.003

(0.015) (0.002) (0.003) (0.012) (0.009) (0.007)
Unitary Hedge
wx,i,c,t −0.571∗∗∗ −0.095∗∗∗ −0.353∗∗∗ −0.910∗∗∗ −0.315∗∗∗ −0.634∗∗∗

(0.047) (0.017) (0.044) (0.035) (0.050) (0.059)

Adj. R2 0.283 0.040 0.114 0.682 0.138 0.300
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705

Panel B: Predicted Covariances based on MGARCH1 Model (DCC, 80 Parameters)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.011 −0.000 0.002 0.014∗∗ 0.000 0.013∗∗

(0.009) (0.000) (0.004) (0.006) (0.005) (0.005)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.508∗∗∗ −0.034 0.052 −0.919∗∗ −0.152 −0.360

(0.523) (0.144) (0.206) (0.398) (0.690) (0.356)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −2.842∗∗ −3.708∗∗∗ −4.313∗∗∗ 0.367 0.410 1.451∗∗

(1.255) (1.271) (1.355) (0.383) (0.836) (0.671)
Cross-Currency Hedge

[Σ−1
ff,t+1Σfx,t+1 − I+0]c•wx,i,t −0.039 0.012∗∗∗ 0.035∗∗∗ −0.068∗ 0.026 0.044∗∗∗

(0.047) (0.004) (0.007) (0.038) (0.021) (0.012)
Unitary Hedge
wx,i,c,t −0.574∗∗∗ −0.093∗∗∗ −0.350∗∗∗ −0.914∗∗∗ −0.313∗∗∗ −0.632∗∗∗

(0.048) (0.017) (0.044) (0.035) (0.050) (0.060)

Adj. R2 0.282 0.041 0.118 0.682 0.137 0.302
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705



Table 5: Fund Performance by Hedging Strategy

We report summary statistics on European fund returns, namely the mean return (Mean), the standard de-

viation of the return (St.D.), and the certainty equivalent (CEQ) under different hedging scenarios. Columns

(1)-(3) report the sample averages of the three performance statistics separately for bond, equity, and mixed

funds, respectively. Columns (4)-(6) state the corresponding improvements of the sample averages under

four different scenarios relative to the baseline case given by the fund returns on the observed hedge. We

test for the equality of means between the baseline case and the scenario performance and mark the rejection

of equality (null hypothesis) at the 10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗. We exclude funds that fall

within the lowest tenth percentile of observation counts to ensure that our standard deviation estimates are

reliable.

Sample Average Improvement (Relative to Baseline)

Fund Type Bond Equity Mixed Bond Equity Mixed
(1) (2) (3) (4) (5) (6)

Baseline: Fund Returns on Observed Derivative Trading

Mean (% annualized) −3.316 6.905 1.689
St.D. (% annualized) 5.935 14.944 9.857
CEQ Ratio −4.837 0.314 −1.917
Transaction Costs (bp annualized) 2.989 0.874 2.728

Scenario 1: Fund Returns without Derivative Trading

Mean (% annualized) −2.977 6.949 1.898 0.339∗∗∗ 0.044 0.209
St.D. (% annualized) 5.865 14.848 9.596 0.070 0.096 0.261
CEQ Ratio −4.468 0.430 −1.574 0.369∗∗∗ 0.116 0.343∗∗

Transaction Costs (bp annualized) 2.989∗∗∗ 0.874∗∗∗ 2.728∗∗∗

Scenario 2: Fund Returns for Unitary Hedge without Return Seeking Seeking

Mean (% annualized) −3.627 6.255 1.315 −0.311∗∗∗ −0.650∗∗∗ −0.374∗

St.D. (% annualized) 5.658 15.331 10.098 0.277∗∗∗ −0.387∗∗ −0.241
CEQ Ratio −5.064 −0.629 −2.434 −0.227 −0.943∗∗∗ −0.517∗∗∗

Transaction Costs (bp annualized) 3.596 2.580 3.799 −0.607 −1.706∗∗∗ −1.071∗∗∗

Scenario 3: Optimal Hedge without Return Seeking Seeking

Mean (% annualized) −4.566 5.733 0.518 −1.250∗∗∗ −1.172∗∗∗ −1.171∗∗∗

St.D. (% annualized) 5.328 13.474 8.832 0.607∗∗∗ 1.470∗∗∗ 1.025∗∗∗

CEQ Ratio −5.914 0.216 −2.581 −1.077∗∗∗ −0.098 −0.664∗∗∗

Transaction Costs (bp annualized) 3.373 2.865 3.230 −0.384 −1.991∗∗∗ −0.502

Scenario 4: Optimal Hedge with Return Seeking (for risk tolerance γ = 0.2)

Mean (% annualized) −4.572 5.732 0.518 −1.256∗∗∗ −1.173∗∗∗ −1.171∗∗∗

St.D. (% annualized) 5.328 13.476 8.834 0.607∗∗∗ 1.468∗∗∗ 1.023∗∗∗

CEQ Ratio −5.920 0.214 −2.583 −1.083∗∗∗ −0.100 −0.666∗∗∗

Transaction Costs (bp annualized) 3.400 2.877 3.260 −0.411 −2.003∗∗∗ −0.532

No. Funds 660 1, 038 796
Observations 80, 966 183, 505 136, 291
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A Optimal Hedge Portfolios

A.1 Conditional Quadratic Optimization

Let Σ be a symmetric n × n covariance matrix of real and currency returns, vectors w, µ ∈ Rn

denote portfolio weights and expected returns, and γ a positive scalar for the risk tolerance. For

any positive definite matrix Σ, the quadratic function

U(w) = w′µ− 1
2γw

′Σw (A.1)

has a unique global maximum w∗ characterized by 1
γΣw

∗ = µ.

We can partition the matrix Σ and the vectors w, µ as follows

Σ =

 Σxx Σxf

Σfx Σff

 , w =

 wx

wf

 , µ =

 µx

µf

 , (A.2)

where wx represents the portfolio weights in N + 1 real assets (N foreign and 1 home asset) and

wf the corresponding portfolio weights in N FX forward contracts.

Next, we make the assumption that the real asset portfolio wx is already determined, i.e.,

wx = wx ≥ 0. The quadratic function in Eq. (A.1) can then be reformulated as

UC(wf ) = w′
fµ

C
f − 1

2γw
′
fΣffwf + k, (A.3)

with a constant term k = w′
xµx − 1

2γwxΣxxwx irrelevant to the maximization and a modified

(constant) vector µC
f = µf − 1

2γ [Σfxwx + (w′
xΣxf )

′] = µf − 1
γΣfxwx. The conditional function

U c(wf ) is defined for the wf ∈ RN with N = (n− 1)/2. If Σff is positive definite, a unique global

maximum w∗
f is characterized by the condition

1
γΣffw

∗
f = µC

f − 1
γΣfxwx ⇔ w∗

f = γΣ−1
ff µf − Σ−1

ffΣfxwx. (A.4)

We note that the approximations µf ≃ 0 and Σff ≃ Σfx imply a strictly negative solution w∗
f =

−wx < 0 with all components negative if the real portfolio weights are strictly positive, wx > 0.
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A.2 Optimal Hedging with Bid and Ask Spreads

Generally, any asymmetric bid-ask spread implies a non-linearity in the transaction costs at wf = 0.

As a consequence it is more difficult to characterize the optimal hedge portfolio. Let c denote one

of the N currency components of the vectors wf and µf . We define transaction costs (linear in

portfolio weights) in currency c as a bid and ask spread

τc(wf ) =


τAc if wf < 0

0 if wf = 0

τBc if wf > 0

, (A.5)

where τAc , τBc ∈ R are arbitrary (non-zero) values and the expected return changes to

µm
f = µf + τ(wf ). (A.6)

As transaction costs can take on three different values in each of the N currencies, we have 3N

different combinations that correspond to 3N different partitions of the domain RN according to

the values for wf . For example, given only three currencies (N = 3), a transaction cost vector

τ ′ = (0, τAc , τBc ) corresponds to a domain for the hedge wf ∈ R3 with wf,1 = 0, wf,2 < 0, and

wf,3 > 0.

For N = 6, we obtain M = 36 = 729 cases or subdomains for wf . We number these (non-

intersecting) convex subdomains for wf by m = 1, 2, 3, ...,M and denote them by Rm. Formally,

R1 ∪ R2 ∪ ... ∪ RM = RN . A special subdomain containing a single point corresponds to the null

vector τ ′ = (0, 0, ..., 0) of transaction costs for which we need wf,c = 0 for all c. This means no

hedging occurs in any currency. This special case is also a potential solution and defines a lower

bound for the global optimum given by

UC(wf = 0) = k = w′
xµx −

1

2γ
wxΣxxwx. (A.7)

The solution algorithm for the global maximum proceeds in three steps:

1. We find candidate solutions wm
f ∈ RN for all 3N combinations of transaction costs τm. If a

transaction cost vector m has j < N currencies for which the transaction costs are assumed
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to be zero (τc = 0), we impose the constraint wf,c = 0, which is the only value compatible

with τc = 0. Thus, we reduce the number of dimensions of the optimization problem to a

vector wf ∈ RN−j in the remaining N − j currencies c with τc ̸= 0. The matrix Σff becomes

(N − j)× (N − j) and is still positive definite, which would guarantees a unique maximum if

µm and τm were constant for all wf ∈ RN . The candidate solution follows as

wm
f,c =

 0 for c with τc = 0

γ
[
Σ−1
ff

]
c•
µm
f −

[
Σ−1
ffΣfx

]
c•
wx for c with τc ̸= 0.

, (A.8)

where the subscript c• denotes row c of a matrix.

2. We discard all candidate solutions wm
f that are incompatible with the assumed transaction

costs, that is wm
f /∈ Rm. We define the set of transaction costs consistent (local) maxima as

S = {wm
f | wm

f ∈ Rm}. (A.9)

3. We select the global optimum as the vector that maximizes UC(wm
f ) with wm

f ∈ S :

wm∗
f = arg max

wm
f ∈S

UC(wm
f ). (A.10)

It is possible that multiple local optima produce the same value UC(wm1
f ) = UC(wm2

f ) for

wm1
f ̸= wm2

f . Uniqueness of the global maximum cannot be guaranteed. Moreover, every global

optimum fulfills the necessary condition that

wm∗
f = γ

[
Σ−1
ff

]
c•
(µf + τ)−

[
Σ−1
ffΣfx

]
c•
wx if wf,c ̸= 0, (A.11)

where the vector elements τc = τc(wf ) depend on the sign of wf,c as assumed in Eq. (A.5).
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B Fund Holding Data

B.1 Selection of the Fund Universe

Our source for the bond and equity positions of European investment funds is the Refinitiv Lipper

dataset. As funds can have multiple fund shares that can differ in characteristics such as base

currency or expense ratios, we focus only on the fund share class with the largest asset value.22 We

select funds that (i) have EUR as their base currency, (ii) have more than 90% of their liabilities

denominated in EUR, (iii) have no mandate to hedge (recognizable by the term “hedged” in the

fund name), (iv) hold on average more than 90% of their portfolio in equity and bond type securities,

(v) are based in the Euro-area, and (vi) report at least 10% of the maximum number of monthly

observations.

These six filters generate a universe of 7, 029 European funds, of which 10% hold no assets

denominated in foreign currencies. In this universe of European international funds, we find that

2, 806 (or 40%) engage in a least one FX forward trade and hold at least one asset denominated in

a foreign (non-Euro) currency in the period 2019-23 in our six currencies under consideration. For

our final dataset we also trim our dataset based on the upper and lower 0.1% of the distribution of

forward net long EUR positions (i.e., wf,i,c,t).

The Refinitiv Lipper dataset reports asset holdings of funds on a monthly or quarterly basis.

For funds that report quarterly, which represent 25% of all funds, we forward fill the asset holdings

with the previous values.

We group all reported real investments by funds into either equity or fixed income (debt)

instruments. Table B.1 states which assets are assigned to the equity and debt security bucket,

respectively. Our analysis assumes that different equity and debt instruments in the same currency

feature identical covariances estimated by the representative return process, which are the equity

index for equity-like assets and the government bond price index for all debt-like assets in each

currency.

22For August 2023, we dispose of a detailed breakdown of all share classes of European funds. The largest fund
share class by value accounts for an average of 85% of the total net asset value of a fund and the median is 100%.
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Table B.1: Asset Categories

The table shows how we categorized different types of assets as Bond, Equity, Derivatives, and Other.

Category Asset Types

Bond CORP, Commercial Paper, Mortgages, Corporate Medium Term Notes, Sovereign Bond, Certifi-

cate of Deposit, Agencies, Credit Card Receivables, CMO Whole Loan, Commercial Mortgage-

Backed Security, Fixed Income, MUNI, CMOs, Home Equity Loan, Certificates, Global Bonds,

Bank Debt, Auto/Installment Loans, ABSY, Mortgage Pools, Student Loan, Convertible Bond,

Treasury Bills, Agency Notes/Bonds, Convertible, Auto Lease Loans, Asset Backed Tranches,

Loan Participation Note, Equipment Backed Loan, Linked Notes and Deposits, Corporate In-

termediate and Long Term Debt, Manufactured Housing Loan, Collateralized Debt Obliga-

tion, Aircraft Lease, Auto Floorplan/Wholesale Loans, Small Business Administration, Trea-

sury STRIPS, Collateralized Loan Obligation, Eurobonds, CMO Tranches, Mortgage Pass-Thru

Generics, Collateralized Bond Obligation, Motorcycle Lease, Bankers Acceptance, Marine Loans,

Agency Medium Term Notes, Recreational Vehicle Loan, CMO Agricultural MBS, Muni Other

Equity Common Shares, Depository Receipts, Preferred Stock, Equity, Cumulative Preferred

Derivative Equity Option, Cash Options, Futures, Commodity Future Option, Interest Rate Swap, Credit

Default Swap, OTC Derivatives, Listed Derivatives, Commodity Future, Futures - Financial,

Swap Contract for Differences, Forward Other, FX Forward, Swap Other

Other Warrant, Cash Equivalent, Structured Other, Rights, Supranational, Unit, Unknown, REITs,

Commodity, Closed End Funds, Convertible Preference, Participation, Index, ETF, Collective

Investments, Swaption, Cash, Insurance Funds, Net Interest Margin Securities, Fund, Hedge

Funds

B.2 FX Derivative Holdings at Month End

The European Central Bank collects derivative positions from residents in the Euro Area under

the European Markets Infrastructure Regulation (EMIR). We obtain data access under the 2022

Alberto Giovannini Programme for Data Science by the ESRB.

For the period 2019-23, we retrieve daily net foreign currency short positions in FX forward and

swaps for 13, 381 funds. The matching of FX derivative trades to individual funds is undertaken
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based on the Legal Entity Identifier (LEI), which features both in the Refinitiv Lipper fund and

transaction data. All daily derivative transactions are aggregated to daily net new positions and

based on their maturity date to the aggregate outstanding net FX derivative position by fund,

currency, and day.

From the daily net foreign currency short positions we remove net short foreign currency posi-

tions that fall outside the 1st and 99th percentiles for each currency on each day. We also remove

days that fall on a weekend or a bank holiday. As the Refinitiv fund holdings in real assets are

reported for each end of the month, we synchronize the derivative positions and retain only the

last observation of each month.
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C Transaction Costs

This section describes how transaction costs are calculated using EMIR price data. We report the

filtering process for the transaction in Section C.1, the calculation of the effective spread in Section

C.2, and determination of fund-specific transaction costs in Section C.5. Lastly, we relate average

transaction costs to covered interest rate parity (CIP) deviations in Section C.6.

C.1 Filtering

For the calculation of transaction costs, we filter the reported derivative contracts as follows. First,

we consider all new transactions in a month with a notional value above 1,000 EUR. Second, we

retain only one observation if a trade is reported twice by the buyer and the seller in the case

that both entities are reporting. In case of double reporting, we check that the forward rate and

the notional value match up to a rounding error. Third, we drop transactions with extremely

large notional values above the 99% quantile. Fourth, we filter price outliers by requiring that the

forward rate occurs within a 3% difference of the daily forward (benchmark) rate available from

Refinitiv. Fifth, we we retain in each currency only transactions with a spread relative to the

Refinitiv benchmark between the 1% and 99% quantile. For some of the analysis, we focus on FX

derivative contracts with a monthly maturity. Accordingly, only transactions with a maturity of

20 to 25 business days are retained.

C.2 Effective Spreads Using Interdealer Transactions

The transaction costs are computed using EMIR price data of fund-to-dealer transactions and

of dealer-to-dealer transactions.23 Specifically, we compute spreads for fund i as the difference

between the transaction price FT for buying (selling) the Euro against the foreign currency and the

median price in the same minute for the same maturity for a dealer-to-dealer transaction, MidT .
24

We define a dummy dT = 1 for an ask side (buy) transaction T and dT = −1 for a bid side

(sell) transaction for a forward currency contract that goes long EUR against a foreign currency.

23For each trade, we identify the European System of Accounts (ESA) sector of both the reporting counterparty
and the other counterparty.

24Dealer banks are in the best position to undertake arbitrage and therefore their between transaction price can
be regarded as a good competitive benchmark. In contrast, relying on quotes has the drawback of using prices that
are often not executed.
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Formally,

SpreadT = d(T )
FT −MidT

MidT
, (C.1)

All exchange rates are expressed with the EUR as the base currency. This construction of the

spread is used in the main paper.

C.3 Effective Spreads Using Refinitive Quotes

As interdealer transactions in 1-month forwards can be sparse in rates other than the EURUSD

rate, we also propose an alternative method of spread calculation based on (indicative) Refinitive

quote data available at the one minute interval. Yet, Refinitiv tick data provides an indicative

interbank quote for 1-month forwards at the one-minute interval. Moreover, the EMIR data does

not distinguish between outright forwards and forward swaps. Generally, forward swaps have

narrower bid-ask spreads as they are mechanically collateralized due to the currency exchange at

the near leg of the contract. We adjust the Refinitiv quote price MidqT by adding the median daily

difference between the interdealer mid price and the Refinitiv quote reported at the same minute.

Formally,

SpreadadjT = d(T )
FT −MidadjT

MidadjT

with MidadjT = MidqT +∆T , (C.2)

where MidadjT denotes the adjusted interdealer price, and ∆T = MidT±x −MidqT±x the adjustment

term for transaction T calculated as the average daily deviation of all interbank transactions (in

the same currency) from the synchronous quoted interbank midprice. Eqs. (C.2) and (C.1) yield

the same spread if an average interbank transaction price and the average corresponding quoted

midprice are the same so that ∆T = 0. However, funds trade on average (over all days) at a 2.5%

lower ask price and a 0.6% higher bid price relative to Refinitiv quotes. The advantage of the

spread definition in Eq. (C.2) over Eq. (C.1) is that it allows us to construct spreads even if a

benchmark interbank trade (MIDT ) is not readily available.
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C.4 Summary Statistics on Effective Spreads

Table C.1 reports summary statistics for both spread definitions, SpreadT and SpreadadjT , and the

subsample of spread SpreadFund
T involving fund-dealer transaction by one of the 2,806 funds used

in our main analysis.

Figure C.1 plots a histogram of all spreads using the spread definition in Eq. (C.2) for all six

currency pairs, in blue for trades that involve buying the EUR (Euro long positions) and in brown

for trades that involve selling the EUR (Euro short positions) against the foreign currency. Three

observations stand out. First, the EUR/USD and EUR/GBP rates feature more Euro long positions

than short positions, illustrated by the area of the blue and brown histograms, respectively. Second,

spreads for individual trades are very dispersed in all currency pairs and can be positive or negative

relative to the interbank benchmark. Third, average transaction prices in the FX derivative market

relative to the interbank price depend on the direction of the trade for the EUR against foreign

currencies. To illustrate this, we can observe that buying the EUR in typical high-yield currencies

such as the USD, GBP, AUD is more expensive relative to the interbank price than selling the

EUR. For low-yield currencies such as the CHF or JPY the spreads for selling the EUR are more

positive than buying the EUR. For the SEK we do not see a significant difference between the

spreads of buying and selling. The average spread is 0.47, −0.33, 1.30 basis points for buying the

EUR against USD, GBP, AUD compared to −3.35, −3.23, −3.25 basis points when selling the EUR

against USD, GBP, AUD, respectively. In contrast, the average spread is −2.08, 0.45 basis points

for buying the EUR against CHF and JPY compared to −0.81, 0.45 basis points when selling the

EUR against CHF and JPY, respectively.
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Table C.1: Summary Statistics for Transaction Costs

We report summary statistics for fund-dealer FX forward and swap transaction cost spreads. SpreadT is

defined as in Eq. (C.1) and computes the spread for all EMIR funds whenever a close interbank transactions

is available, SpreadadjT is defined as in Eq. (C.2) and computes the spread relative to Refinitiv tick-data for

all fund-dealer trades, and SpreadFunds
T computes the spread as in Eq. (C.1) for a subsample of transactions

involving one of the 2,806 funds used in the main analysis.

Obs Mean St.D. Q10 Q25 Q50 Q75 Q90

(1) (2) (3) (4) (5) (6) (7) (8)

SpreadT ×10, 000 973, 588 0.41 8.1 −6.08 −0.81 0.00 2.06 7.03

SpreadadjT ×10, 000 1, 514, 494 0.58 5.38 −6.54 −2.71 0.51 3.89 7.71

SpreadFunds
T ×10, 000 74, 344 0.69 7.65 −4.89 −0.26 0.12 2.36 6.22
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Figure C.1: Histograms of Ask and Bid Spreads per Currency
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Notes: We plot FX transaction costs in 2, 360, 400 FX forward and swap contracts in which funds buy the EUR
(grey) or sell the EUR (red) at maturity involving six currencies c ∈{USD, GBP, AUD, JPY, SEK, CHF} relative
to the Euro (c/EUR). We define the spread in each trade relative to the price of an interbank quote reported by
Refinitiv and defined in Eq. (C.2).
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C.5 Determinants of Transaction Costs

Next we estimate Eq. (10), where we regress the spread on forward contract T on several trade

characteristics. Columns (1)-(5) reports the regressions for transactions involving sample funds

from the main analysis, while Column (6) reports the result for all fund-dealer transactions.

Column (1) reports the average transaction costs for Euro buy (i.e., foreign sell) transactions

as fixed effects θc where c ∈ {USD, GBP, AUD, SEK, JPY, CHF} denotes the currency that is

shortened. All Euro long trades feature positive average spreads. The fixed effects θBuy c capture

the average differential costs of Euro short transactions with respect to currency c. Euro sell

trades (i.e., Euro short positions) have negative average transaction costs in the three high yield

currencies USD, GBP, and AUD. Columns (3) and (4) suggest that funds with a high expense

ratio face considerably higher transactions. Generally, hedge funds with FX research feature higher

expense ratios and dealer banks may discriminate against “sophisticated clients” out of adverse

selection concerns.

We use the regression specifications in Columns (4) and (5) to predict the fund-specific hedging

costs by fund, currency, trade direction, and month. We can only compute the spread for funds in

our sample for which we find a suitable benchmark interbank transaction in the same minute, for the

same maturity (number of days) and the same currency pair. Out of our sample of 2, 806 funds we

can compute a spread for 1, 120 funds. For these funds we predict the transaction costs using fund

fixed effects as in Column (5); for the rest of the sample we rely on their fund characteristics reported

in Column (4) rather than fund fixed effects for the prediction of the fund-specific transaction costs

by trade direction and currency. In Column (6) we use a much larger sample including all trades in

which the reporting entity is considered as a fund according to the European System of Accounts

(ESA) classification.
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Table C.2: Transaction Cost Regression

We report determinants of transaction costs in 74, 344 FX forward and swap contracts involving six currencies

c ∈{USD, GBP, AUD, JPY, SEK, CHF} relative to the Euro as the base currency (EUR/c). We define the

spread in each trade relative to the corresponding interbank price and regress the spread on currency fixed

effects θc, currency fixed effects θBuy c specific to buy trades in currency c, month fixed effects θt, fund fixed

effects θi, dummies for trades involving equity and mixed funds, respectively, and other fund characteristics.

Column (6) reports the same specification as Column (5) for a larger sample of all fund-dealer transactions,

where the spread is defined as SpreadadjT .

Dep. Variable: SpreadT
(1) (2) (3) (4) (5) (6)

θUSD 1.641∗∗∗ 1.613∗∗∗ 1.132∗∗ 1.116∗∗ 1.624∗∗∗ 1.414∗∗∗

(0.153) (0.141) (0.551) (0.552) (0.144) (0.083)
θGBP 1.658∗∗∗ 1.649∗∗∗ 1.190∗∗ 1.179∗∗ 1.664∗∗∗ 1.108∗∗∗

(0.168) (0.170) (0.560) (0.558) (0.265) (0.141)
θAUD 1.122∗∗∗ 1.182∗∗∗ 0.695 0.671 1.317∗∗∗ 1.232∗∗∗

(0.164) (0.175) (0.553) (0.548) (0.223) (0.176)
θJPY 1.364∗∗∗ 1.195∗∗∗ 0.600 0.593 1.039∗∗∗ 0.237

(0.312) (0.172) (0.547) (0.544) (0.199) (0.258)
θSEK 0.561∗∗∗ 0.637∗∗∗ 0.210 0.255 0.874∗∗∗ 0.658∗∗∗

(0.111) (0.147) (0.550) (0.545) (0.178) (0.140)
θCHF 0.775∗∗∗ 0.731∗∗∗ 0.212 0.257 0.738∗∗∗ 0.357∗∗∗

(0.119) (0.146) (0.553) (0.550) (0.234) (0.098)
θBuy USD −2.433∗∗∗ −2.339∗∗∗ −2.356∗∗∗ −2.344∗∗∗ −2.400∗∗∗ −2.443∗∗∗

(0.286) (0.294) (0.293) (0.292) (0.323) (0.192)
θBuy GBP −1.230∗∗∗ −1.272∗∗∗ −1.236∗∗∗ −1.216∗∗∗ −1.151∗ −1.115∗∗∗

(0.325) (0.335) (0.331) (0.330) (0.654) (0.307)
θBuy AUD −0.689∗∗ −0.841∗∗∗ −0.857∗∗∗ −0.837∗∗∗ −0.778∗ −1.593∗∗∗

(0.322) (0.316) (0.309) (0.310) (0.399) (0.300)
θBuy JPY 0.353 0.406 0.379 0.365 0.367 0.562

(0.393) (0.286) (0.284) (0.285) (0.261) (0.366)
θBuy SEK 0.087 0.102 0.196 0.166 0.080 −0.488∗∗

(0.296) (0.325) (0.321) (0.324) (0.409) (0.196)
θBuy CHF 0.180 0.241 0.331 0.283 0.276 0.166

(0.197) (0.219) (0.217) (0.219) (0.301) (0.126)

Log Asset Under Management −0.009 −0.009
(0.027) (0.027)

Turnover Ratio 0.002 −0.096
(0.236) (0.248)

Expense Ratio 0.496∗∗∗ 0.565∗∗∗

(0.070) (0.076)
DEquity Fund −0.264∗∗

(0.134)
DMixed Fund 0.034

(0.157)
DTurnoverR Missing −1.472 −1.303

(1.140) (1.144)
DExpenseR Missing 0.372 0.456

(0.284) (0.281)

Time FEs No Yes Yes Yes Yes Yes
Fund FEs No No No No Yes Yes
Adj. R2 0.019 0.019 0.023 0.023 0.019 0.016
Obs. 74, 344 74, 344 74, 344 74, 344 74, 344 973, 588
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C.6 Transaction Costs and Covered Interest Rate Parity Deviations

This section shows how the asymmetry of buy and sell transaction costs relative to the interdealer

quotes in each currency is systematically related to contemporaneous deviations from covered in-

terest rate parity (CIP).

Covered interest rate parity postulates that one should not earn risk-free profit by borrowing in

one currency and lending in another, while hedging the FX risk. The recent literature shows that

this parity condition does not hold any longer and that the cross-currency basis widened up after

the Great Financial Crisis in 2008. The literature usually takes the USD as the reference currency

against which CIP deviations are computed. But CIP deviations also exist in currency pairs that

do not involve the USD. As we focus on EUR derivatives, we define CIP deviations in terms of

forward and spot rates expressed in Euros per unit of foreign currency. Formally, we define the

cross-currency basis as

Basisc,t = iEUR
c,t − (fc,t − sc,t)− i∗c,t , (C.3)

where iEUR
c,t is the log EUR interest rate in the cash market, i∗c,t the log foreign currency interest

rate, fc,t the log forward rate and sc,t the log spot rate defined in Euros per foreign currency unit.

As the default interest rates we take the overnight index swap rate, which is the rate for overnight

lending between banks. The CIP deviations change only marginally if we use, for example, the

LIBOR rates, the commercial paper rate, or the short-term government bond rate.

Figure C.2 plots the average effective spread relative to interdealer prices for EUR buy and sell

trades as a function of the (negative) cross-currency basis for all six currency pairs. A negative

cross-currency basis for a foreign currency (represented by values to the right on the x-axis) implies

that the direct foreign interest rate is higher than the synthetic foreign interest rate, which is the

case for the USD against the EUR. Banks find it expensive to supply Euro long positions in this

case as they synthetically hedge any net supply, which results in a higher interbank price the EUR

buy trades and a lower EUR buy spread. The reverse is true for EUR sell trades, which are cheap

to supply under a negative cross-currency base. For funds, only the forward rate itself is decision

relevant if hedging decisions occur based on existing real investments. 25

25We note that the same pattern emerges if we compute average spreads SpreadadjT based on the Refinitiv quote
data.
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Figure C.2: Average Ask and Bid Spreads and CIP Deviations by Currency
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Notes: We plot the average covered interest rate parity (CIP) deviations in basis points on the horizontal axis and
the average bid (red) and ask (grey) spreads defined in Eq. (C.1) on the vertical axis for six currencies against the
EUR. Ask (bid) spreads are defined as spreads from a forward transaction that involves buying (selling) the EUR at
maturity against a foreign currency. The sample consists of 731, 395 (USD), 98, 307 (GBP), 16, 875 (AUD), 33, 070
(JPY), 36, 559 (SEK), 57, 382 (CHF) FX forward and swap transactions.

To test the relationship between transactions costs and the cross-currency basis at the contract

level we regress the spread of transaction T by fund i and with dealer bank d on a buy dummy

variable that is θBuy EUR
T = 1 for an ask (buy) side transaction T that buys EUR, and zero

for a bid side (sell) transaction that sells EUR at maturity, a sell dummy that is θSell EUR
T = 1

for any bid (sell) side transaction T that sells EUR, and zero for an ask side (buy) transaction
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that buys EUR at maturity, and on the interaction term between the two dummy variables and

the contemporaneous cross-currency basis, Basisc,t. We also include contract specific ControlsT

and fund-dealer fixed effects, αi,d, to capture arbitrary spread variation across fund-dealer trading

relationship.26 Formally,

SpreadT = β1θ
Buy EUR
T + β2θ

Sell EUR
T + β3(θ

Buy EUR
T ×Basisc,t) + β4(θ

Sell EUR
T ×Basisc,t)

+ ControlsT + αi,d + αt + ϵT . (C.4)

In Table C.3, Panel A, we reports the results using the interbank EMIR transactions for com-

puting spreads as in Eq. (C.1) and in Panel B the results using Refinitiv quote data for the

spread computation as defined in Eq. (C.2). On average, buying the EUR is one basis point

(= 1.332 − 0.329) more expensive than selling the EUR against the foreign currency as shown in

Column (1) of Panel A, which is robust to including fund-dealer fixed effects in Column (2). Column

(3) documents that CIP deviations measured by Basisc,t correlates positively with the spread for

buy side transactions. For example, an average basis of 40 basis points (as for the USD) yields an

average transaction cost spread of 1.538 (= 1.098+0.011× 40) basis points when buying the EUR.

Controlling for cross-dealer and cross-fund fixed effects as in Column (4) does not significantly

change the results. Panel B shows that the results are even statistically stronger when constructing

the spreads relative to Refinitiv quote data. This shows that OTC transaction costs for funds in

FX forward contracts are systematically related to CIP deviations.

26We include fund-dealer dummies only if there are at least 20 trade observations available for a fund-dealer pair.
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Table C.3: Transaction Costs and CIP Deviations

We reports results of the panel regressions in Eq. (C.4), which includes a dummy θBuy EUR
T = 1 for any

ask (buy) side transaction and a dummy θSell EUR
T = 1 for an bid (sell) side transaction and their respective

interaction terms with the contemporaneous cross-currency basis, Basisc,t. Panel A reports the results for

spreads benchmarked against synchronous interbank trades as defined in Eq. (C.1) and Panel B reports the

results using Refinitiv quote data for the spread computation as defined in Eq. (C.2). The control variable

CustomizationT measures deviations from standard maturity dates as in Hau et al. (2021). Standard errors

are clustered at the fund-bank and time (day) level and shown in parentheses. Time fixed effects are day

fixed effects. We denote by *, ** and *** the significance levels at the 10%, 5% and 1%, respectively.

Panel A: Spreads Benchmarked Against Synchronous Interbank Trades

Dep. Variable: SpreadT
(1) (2) (3) (4)

θBuy EUR
T 1.252∗∗∗ 0.943∗∗∗ 1.042∗∗∗ 0.763∗∗∗

(0.148) (0.169) (0.163) (0.175)
θSell EUR
T 0.250 −0.122 0.647∗∗∗ 0.266

(0.169) (0.192) (0.182) (0.207)

θBuy EUR
T ×Basisc,t 0.013∗∗∗ 0.013∗∗∗

(0.003) (0.003)
θSell EUR
T ×Basisc,t −0.009∗∗ −0.008∗

(0.004) (0.004)
LogNotionalT −0.028∗∗∗ −0.002 −0.041∗∗∗ −0.017

(0.011) (0.013) (0.011) (0.014)
CustomizationT 0.071∗∗∗ 0.058∗∗ 0.015 0.023

(0.025) (0.026) (0.017) (0.016)

Time FEs Yes Yes No No
Fund × Dealer FEs No Yes No Yes
Adj. R2 0.004 0.004 0.005 0.005
Obs. 510, 653 510, 653 510, 653 510, 653

Panel B: Speads Benchmarked Against Refinitiv Quoted Midprices

Dep. Variable: SpreadadjT

(1) (2) (3) (4)

θBuyEUR
T 1.159∗∗∗ 0.937∗∗∗ 0.907∗∗∗ 0.704∗∗∗

(0.087) (0.100) (0.094) (0.102)
θSellEUR
T −0.138 −0.339∗∗∗ 0.275∗∗ 0.045

(0.114) (0.130) (0.119) (0.134)

θBuyEUR
T ×Basisc,t 0.014∗∗∗ 0.014∗∗∗

(0.002) (0.002)
θSellEUR
T ×Basisc,t −0.013∗∗∗ −0.012∗∗∗

(0.003) (0.003)
LogNotionalT 0.002 0.019∗∗ −0.005 0.010

(0.006) (0.008) (0.007) (0.008)
CustomizationT 0.002 −0.010 −0.002 0.003

(0.014) (0.013) (0.010) (0.010)

Time FEs Yes Yes No No
Fund × Dealer FEs No Yes No Yes
Adj. R2 0.014 0.012 0.018 0.016
Obs. 1, 282, 806 1, 282, 806 1, 282, 806 1, 282, 806

17



D Covariance Estimation

Here we describe the estimation procedure for the various covariances used in the analysis. We

denote with t the calendar month for which a covariance matrix is estimated. Let d(t) be the first

day of the month and d(t)− 1 the last trading day of the previous month, and n(t) the number of

trading days in month t. The 6 × 1 vector ∆sd denotes the log currency returns in the six Euro

exchange rates between end of day d − 1 and end of day d and the 7 × 1 vector rd represents the

fund returns for assets in the seven currencies all expressed in Euros.

Lagged Realized Covariance (LRC). These is an (out-of sample) covariance estimate for month

t based on realized covariances for the previous 6 months (or 3-months) period prior to month t

and defined as

ΣLRC
ff,t =

N(t)−1∑
j=0

wj

(
∆sd(t)−j −∆s

)
(∆sd(t)−j −∆s)′

ΣLRC
fx,t =

N(t)−1∑
j=0

wj

(
∆sd(t)−j −∆s

)
(rd(t)−j − r)′,

with means defined as

∆s =

N(t)−1∑
j=0

wj∆sd(t)−j and r =

N(t)−1∑
j=0

wjrd(t)−j ,

and where N(t) =
∑6 (3)

k=1 n(t − k) denotes the number of trading days in the last 6 month (3

months). The triangular weights of the kernel put more weight on the most recent observations,

that is wj =
2

N(t)

(
1− j

N(t)

)
.

MGARCH Covariance Estimation. Here we estimate a dynamic conditional correlation (DCC)

multivariate generalized autoregressive conditionally heteroskedastic model to predict the covari-

ance for month (t). Daily currency and bond (or equity) returns are alternatively stacked into

a 2N + 1 vector to estimate a (time-varying) matrix Σ in Eq. (1) for equity and bond returns

separately. The unconstrained version of the model (MGARCH1) involves five ARCH innovations

(with lags L1 to L5) and one GARCH term (L6) that govern the variance dynamics of the exchange

rates and the asset returns. We use the STATA mgarch ddc procedure to implement the rolling
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estimation of the covariance in month t. Following the notation in STATA, we define the 13 × 1

vector yt = [∆st, rt]’ of exchange rate and equity (or bond) returns, which is characterized by the

stochastic process

yt = y + ϵt = y +H
1/2
t νt

Ht = D
1/2
t RtD

1/2
t

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Qt = (1− λ1 − λ2)R+ λ1ϵ̃t−1ϵ̃
′
t−1 + λ2Qt−6,

where H
1/2
t is the Cholesky factor of the time-varying conditional covariance matrix Ht, νt is a

13 × 1 vector of normal, independent, and identically distributed innovations, Dt is a diagonal

matrix of conditional variances, Rt is a matrix of conditional quasicorrelations, ϵ̃t−1 is a 13 × 1

vector of standardized residuals, Dt is a diagonal matrix of conditional variances, and λ1 and

λ2 are parameters that govern the dynamics of conditional quasicorrelations. Each conditional

variance element σ2
i,t of the diagonal matrix Dt follows a univariate GARCH(5,1) process given by

σ2
i,t =

5∑
j=1

αi,jϵ
2
i,t−j + βiσi,t−6. (D.1)

The unconstrained model features 2+(6×13) = 80 free parameters and is estimated separately for

a vector yt of currency and equity returns and of currency and bond returns, respectively. We also

estimate a constrained version of the model (MGARCH2) for which we assume that αi,j = αi for

j = 1, 2, 3.., 5. This reduces the number of free parameters to 2 + (2× 13) = 28. We estimate both

the constrained and unconstrained model for 60 months of daily return data prior to month t. The

predicted covariances Σff,t+1, Σfb,t+1, and Σfe,t+1 are the cumulative expected daily variance for

all trading days in month t+ 1.
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Average In-Sample Covariance. Let j = 1, 2, 3, ...N denote the N trading days for the entire

five-year sample. We define the insample covariance as

Σff =
N∑
j=1

wj (∆sj −∆s) (∆sj −∆s)′

Σfx =
N∑
j=1

wj (∆sj −∆s) (rj − r)′

with empirical means

∆s =

N∑
j=1

wj∆sj and ∆r =

N∑
j=1

wjrj

and an equal-weighted kernel given by wj =
1
N .

Comparison of Variances Estimates. The correlation between the different covariances matri-

ces is reported in Table D.1, or in greater detail in Figure D.1. Figure D.2 plots for each currency

the variances component of the Lagged Realized 6-month (black solid line), Lagged Realized 3-

month (black dashed line), MGARCH1 unconstrained (orange solid line), MGARCH2 constrained

(orange dashed line) covariance matrices.

Table D.1: Average Correlation between Covariance Terms

We report the average correlations between all monthly covariance terms obtained by four different estimation

methods: Lagged Realized 6-month, Lagged Realized 3-month, MGARCH1 unconstrained, MGARCH2

constrained covariance matrices.

LRC 6-month LRC 3-month MGARCH1 MGARCH2

LRC 6-month 1 0.841 0.692 0.712

LRC 3-month 1 0.638 0.682

MGARCH1 1 0.969

MGARCH2 1
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Figure D.1: Correlation of Covariance Terms by Matrix Element
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Figure D.2: Predicted Time-Varying Covariance Matrices Covariance
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(black solid line), Lagged Realized 3-month (black dashed line), MGARCH1 unconstrained (orange solid line),
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returns and are multiplied by a factor of 1e4.
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E Additional Figures

Figure E.1: Monthly Spot and Forward Rates by Currency
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Notes: We show by currency the monthly spot rates for our sample period from January 2019 to December 2023.
The exchange rate is defined in terms of Euros per unit of foreign currency c (i.e., EUR/c), such that an increase in
St corresponds to an depreciation of EUR against foreign currency c.

23



Figure E.2: Daily Forward Rates of EMIR and Refinitiv by Currency
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Notes: We show by currency the daily median 1-month forward rates obtained from EMIR and Refinitiv tick-data
for our sample period from January 2019 to December 2023. The exchange rate is defined in terms of Euros per unit
of foreign currency, such that an increase in St corresponds to an depreciation of EUR against foreign currency c.
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Figure E.3: Forward Premium and CIP Deviations by Currency
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Notes: We show by currency the annualized forward premium fpc,t = fc,t − sc,t (blue, solid line) and the negative
cross-currency basis (also termed CIP deviations) −Basisc,t = −(iEUR

c,t − (fc,t − sc,t) + i∗c,t). The exchange rate is
defined as in terms of Euros per unit of foreign currency, such that an increase in St corresponds to an depreciation
of EUR against foreign currency c. The monthly data are expressed in basis points.
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F Additional Tables

Table F.1: Summary Statistics for Transaction Costs

We report summary statistics for spot exchange rate changes, ∆st+1 and the forward premium ft − st per

currency pair. We define all exchange rates in terms of Euros per unit of foreign currency, such that an

increase in st corresponds to an appreciation of the foreign currency against the EUR.

Obs Mean St.D. Q10 Q25 Q50 Q75 Q90

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: USD

∆st+1 ×100 60 0.06 2.09 −0.02 −1.55 0.17 1.41 0.03

ft − st ×100 60 −0.15 0.07 −0.00 −0.21 −0.14 −0.07 −0.00

Panel B: GBP

∆st+1 ×100 60 0.06 1.53 −0.02 −0.96 0.22 1.07 0.02

ft − st ×100 60 −0.09 0.04 −0.00 −0.12 −0.1 −0.05 −0.00

Panel C: AUD

∆st+1 ×100 60 0.01 2.26 −0.03 −1.49 −0.17 1.51 0.03

ft − st ×100 60 −0.09 0.05 −0.00 −0.13 −0.07 −0.05 −0.00

Panel D: JPY

∆st+1 ×100 60 −0.36 2.06 −0.02 −1.64 −0.56 1.19 0.02

ft − st ×100 60 0.06 0.15 −0.00 −0.03 −0.02 0.09 0.00

Panel E: SEK

∆st+1 ×100 60 −0.16 1.68 −0.02 −1.57 −0.37 0.99 0.02

ft − st ×100 60 −0.03 0.02 −0.00 −0.04 −0.03 −0.02 −0.00

Panel F: CHF

∆st+1 ×100 60 0.32 1.17 −0.01 −0.38 0.33 1.04 0.02

ft − st ×100 60 0.06 0.07 0.00 0.02 0.03 0.07 0.00
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Table F.2: Robustness of Table 3 to Different Covariance Matrices

We repeat the baseline regression in Table 3 with different covariance matrices. In Panel A we use the 3-month

lagged realized covariance matrix, in Panel B the covariance matrix based on the MGARCH2 model, and in

Panel C and average in-sample covariance matrix, respectively. We regress the currency derivative positions

wf,ict of European investment funds labeled i, in currency c, and in month t (measured as share of total

assets invested) on future exchange rate changes (FX predictability effect), the optimal forward premium

tilt, the optimal transaction cost tilt, and the optimal benchmark hedge. We double cluster standard errors

at the time- and fund-currency level and mark statistical significance at the 10%, 5%, and 1% level by ∗, ∗∗,

and ∗∗∗, respectively.

Dep. Variable: wf,ict

Sample: All Derivative Positions Euro Long Positions Only (wf,ict < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel A: Lagged Realized Covariances (3-Month Period)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.032∗ 0.002 0.008∗ 0.062∗∗ 0.009 0.025∗∗∗

(0.018) (0.002) (0.005) (0.030) (0.007) (0.009)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.199∗∗∗ −0.101 −0.368∗∗ −0.885∗ −0.158 −0.366

(0.370) (0.071) (0.148) (0.469) (0.293) (0.245)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τ −1.326∗∗ −1.935∗∗∗ −1.979∗∗∗ 0.186 0.219 1.032∗∗

(0.560) (0.570) (0.587) (0.380) (0.405) (0.428)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,it −0.366∗∗∗ −0.008∗∗∗ −0.029∗∗∗ −0.604∗∗∗ −0.041∗∗∗ −0.101∗∗∗

(0.037) (0.002) (0.007) (0.041) (0.011) (0.020)

Adj. R2 0.164 0.005 0.011 0.409 0.014 0.045
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705

Panel B: Predicted Covariances based on MGARCH2 Model (DCC, 28 parameters constrained)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.034∗ 0.004 0.008 0.053∗ 0.018∗ 0.029∗

(0.020) (0.003) (0.009) (0.028) (0.011) (0.015)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −0.983 0.056 0.517∗ 0.117 0.460 0.944∗

(0.755) (0.156) (0.297) (0.867) (0.704) (0.483)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τ −2.748∗∗ −3.358∗∗∗ −4.342∗∗∗ 0.279 0.713 1.508∗

(1.148) (1.227) (1.445) (0.398) (0.749) (0.842)
Benchmark Effect

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.572∗∗∗ −0.035∗∗∗ −0.078∗∗∗ −0.923∗∗∗ −0.168∗∗∗ −0.259∗∗∗

(0.048) (0.008) (0.017) (0.035) (0.032) (0.038)

Adj. R2 0.260 0.015 0.022 0.639 0.063 0.111
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705

27



Table F.2 continued.

Dep. Variable: wf,ict

Sample: All Derivative Positions Euro Long Positions Only (wf,ict < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel C: Average In-Sample Covariance Matrix

FX Predictability Effect

[Σ
−1
ff,t+1]c•∆st+1 0.001 0.001∗∗ 0.004 −0.003 0.007∗ 0.015∗∗∗

(0.009) (0.001) (0.006) (0.007) (0.004) (0.005)
Forward Premium Effect

[Σ
−1
ff,t+1]c•fpt −0.292 −0.065 0.539∗∗ 1.026∗∗ −0.842 0.113

(0.488) (0.155) (0.239) (0.420) (0.794) (0.423)
Transaction Cost Effect

[Σ
−1
ff,t+1]c•τ −2.719∗∗ −4.128∗∗∗ −5.154∗∗∗ −0.044 −0.105 0.720

(1.193) (1.450) (1.593) (0.372) (0.809) (0.761)
Benchmark Effect

[Σ
−1
ff,t+1Σfx,t+1]c•wx,it −0.595∗∗∗ −0.047∗∗∗ −0.124∗∗∗ −0.960∗∗∗ −0.189∗∗∗ −0.328∗∗∗

(0.050) (0.011) (0.021) (0.036) (0.045) (0.043)

Adj. R2 0.270 0.018 0.045 0.662 0.058 0.153
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705
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Table F.3: Cross-Sectional Hedging Patterns with Fund-Currency FEs

We repeat the baseline regression in Table 3, but add fund × currency fixed effects. We regress the currency

derivative positions wf,ict of European investment funds labeled i, in currency c, and in month t (measured

as share of total assets invested) on future exchange rate changes (FX predictability effect), the optimal

forward premium tilt, the optimal transaction cost tilt, and the optimal benchmark hedge. All regressions

include fund × currency fixed effects. We double cluster standard errors at the time- and fund-currency level

and mark statistical significance at the 10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗, respectively.

Dep. Variable: wf,ict

Sample: All Derivative Positions Euro Long Positions Only (wf,ict < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel A: Lagged Realized Covariances (6-Month Period)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.011 0.001 0.002 0.013∗∗ 0.002 0.008∗∗

(0.009) (0.001) (0.003) (0.006) (0.003) (0.004)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.163∗∗∗ −0.038 −0.405∗∗∗ −0.229 0.015 −0.455∗∗∗

(0.329) (0.053) (0.133) (0.202) (0.157) (0.170)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τ −0.764∗ −0.672∗∗ −0.813∗∗ −0.031 0.130 0.324∗

(0.434) (0.291) (0.327) (0.161) (0.177) (0.182)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.044∗∗∗ 0.000 −0.000 −0.087∗∗∗ 0.003 −0.016∗

(0.013) (0.001) (0.003) (0.019) (0.003) (0.009)

Adj. R2 0.010 0.001 0.004 0.016 0.000 0.004

Panel B: Predicted Covariances based on MGARCH1 Model (DCC, 80 Parameters)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.020 0.001 0.004 0.025∗∗ 0.005 0.014∗

(0.013) (0.001) (0.004) (0.013) (0.004) (0.008)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −0.856 0.064 −0.072 0.483 0.306 0.195

(0.587) (0.086) (0.187) (0.493) (0.331) (0.298)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τ −1.515∗ −1.615∗∗ −2.257∗∗∗ −0.039 0.105 0.488

(0.813) (0.638) (0.796) (0.267) (0.223) (0.310)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.223∗∗∗ 0.000 −0.018 −0.407∗∗∗ −0.015 −0.102∗∗∗

(0.041) (0.004) (0.011) (0.055) (0.013) (0.029)

Adj. R2 0.017 0.002 0.004 0.079 0.001 0.014
No. Observations: 82, 822 182, 568 136, 781 48, 300 28, 242 44, 969
No. Funds: 805 1, 109 891 728 809 705
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Table F.4: Difference between Inferred and Reported Monthly Returns

We report the distribution of the time averaged absolute differences between the reported and inferred returns

for bond, equity, and mixed funds. The sample covers the period January 2019 to December 2023.

Absolut Return Difference (in %)

Obs Mean St.D. Q10 Q25 Q50 Q75 Q90
(1) (2) (3) (4) (5) (6) (7) (8)

Bond Funds 797 1.590 1.933 0.181 0.468 0.954 2.077 3.620
Equity Funds 1, 097 1.495 1.692 0.169 0.443 0.993 1.938 3.349
Mixed Funds 881 1.425 1.705 0.140 0.355 0.955 1.820 3.395
All Funds 2, 775 1.500 1.769 0.163 0.420 0.969 1.952 3.472
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Table F.5: Robustness of Table 3 for Fund Sample with Low Return Mismatch

We regress the currency derivative positions wf,ict of European investment funds labeled i, in currency c, and

in month t (measured as share of total assets invested) on future exchange rate changes (FX predictability

effect), the optimal forward premium tilt, the optimal transaction cost tilt, and the optimal benchmark

hedge. We report in Columns (1)-(3) and Columns (4)-(6) the results for all derivative positions and only

(USD) short positions, respectively. For the the calculation of the (time-varying) covariances Σff,t+1 and

Σfx,t+1, we use in Panels A and B the (in-sample) lagged realized covariance (estimated for daily returns

over the previous 6 months) and the predicted covariance based on the MGARCH1 model, respectively. We

double cluster standard errors at the time- and fund-currency level and mark statistical significance at the

10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗, respectively.

Dep. Variable: wf,i,c,t

Sample: All Derivative Positions Euro Long Positions Only (wf,i,c,t < 0)

Fund Type: Bonds Equity Mixed Bonds Equity Mixed
(1) (2) (3) (4) (5) (6)

Panel A: Lagged Realized Covariances (6-Month Period)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.042∗∗ 0.003 0.009 0.086∗∗ 0.019∗∗ 0.033∗∗

(0.021) (0.002) (0.006) (0.034) (0.009) (0.014)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −1.815∗∗∗ −0.236∗∗ −0.576∗∗∗ −1.252∗∗ −0.656 −0.791∗∗

(0.478) (0.107) (0.199) (0.532) (0.417) (0.366)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −2.155∗∗∗ −1.887∗∗∗ −2.226∗∗∗ −0.004 0.551 0.830∗

(0.646) (0.679) (0.779) (0.525) (0.492) (0.485)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.435∗∗∗ −0.011∗∗∗ −0.038∗∗∗ −0.703∗∗∗ −0.048∗∗∗ −0.141∗∗∗

(0.048) (0.003) (0.009) (0.045) (0.016) (0.026)

Adj. R2 0.194 0.007 0.014 0.470 0.017 0.066
No. Observations: 60, 732 127, 566 120, 655 34, 603 19, 923 38, 402
No. Funds: 585 730 766 532 536 606

Panel B: Predicted Covariances based on MGARCH1 Model (DCC, 80 Parameters)

FX Predictability Effect

[Σ−1
ff,t+1]c•∆st+1 0.032 0.003 0.007 0.049∗ 0.018 0.033∗

(0.020) (0.004) (0.009) (0.026) (0.012) (0.018)
Forward Premium Effect

[Σ−1
ff,t+1]c•fpt −0.592 −0.001 0.602∗ 0.944 0.319 1.251∗∗

(0.782) (0.184) (0.307) (0.868) (0.833) (0.540)
Transaction Cost Effect

[Σ−1
ff,t+1]c•τi,t −4.377∗∗∗ −3.738∗∗∗ −4.994∗∗∗ 0.267 1.025 1.496∗

(1.233) (1.282) (1.547) (0.673) (1.017) (0.893)
Benchmark Hedge

[Σ−1
ff,t+1Σfx,t+1]c•wx,i,t −0.604∗∗∗ −0.033∗∗∗ −0.080∗∗∗ −0.953∗∗∗ −0.141∗∗∗ −0.284∗∗∗

(0.059) (0.009) (0.018) (0.046) (0.035) (0.042)

Adj. R2 0.267 0.015 0.024 0.641 0.052 0.129
No. Observations: 60, 732 127, 566 120, 655 34, 603 19, 923 38, 402
No. Funds: 585 730 766 532 536 606
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Table F.6: Robustness of Table 5 for Fund Sample with Low Return Mismatch

We report summary statistics on European fund returns, namely the mean return (Mean), the standard de-

viation of the return (St.D.), and the certainty equivalent (CEQ) under different hedging scenarios. Columns

(1)-(3) report the sample averages of the three performance statistics separately for bond, equity, and mixed

funds, respectively. Columns (4)-(6) state the corresponding improvements of the sample averages under

four different scenarios relative to the baseline case given by the fund returns on the observed hedge. We test

for the equality of means between the baseline case and the scenario performance and mark the rejection of

equality (null hypothesis) at the 10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗. We exclude funds that fall within

the lowest 10th percentile of observation counts to ensure that our standard deviation estimates are reliable.

Sample Average Improvement (Relative to Baseline)

Fund Type Bond Equity Mixed Bond Equity Mixed
(1) (2) (3) (4) (5) (6)

Baseline: Fund Returns on Observed Derivative Trading

Mean (% annualized) −3.282 7.122 1.777
St.D. (% annualized) 5.875 15.328 9.834
CEQ Ratio −4.764 0.345 −1.797
Transaction Costs (bp annualized) 3.229 0.883 2.746

Scenario 1: Fund Returns without Derivative Trading

Mean (% annualized) −2.921 7.174 1.966 0.361∗∗∗ 0.052 0.189
St.D. (% annualized) 5.798 15.242 9.575 0.077 0.086 0.259
CEQ Ratio −4.371 0.465 −1.474 0.393∗∗ 0.120 0.323∗

Transaction Costs (bp annualized) 3.229∗∗∗ 0.883∗∗∗ 2.746∗∗∗

Scenario 2: Fund Returns for Unitary Hedge without Return Seeking

Mean (% annualized) −3.592 6.482 1.373 −0.310∗∗ −0.640∗∗∗ −0.404∗∗

St.D. (% annualized) 5.582 15.756 10.080 0.293∗∗∗ −0.428∗∗ −0.246
CEQ Ratio −4.986 −0.628 −2.346 −0.222 −0.973∗∗∗ −0.549∗∗∗

Transaction Costs (bp annualized) 3.627 2.598 3.872 −0.398 −1.715∗∗∗ −1.126∗∗∗

Scenario 3: Optimal Hedge without Return Seeking

Mean (% annualized) −4.532 5.836 0.531 −1.250∗∗∗ −1.286∗∗∗ −1.246∗∗∗

St.D. (% annualized) 5.266 13.829 8.825 0.609∗∗∗ 1.499∗∗∗ 1.009∗∗∗

CEQ Ratio −5.843 0.162 −2.543 −1.079∗∗∗ −0.183 −0.746∗∗∗

Transaction Costs (bp annualized) 3.414 2.941 3.303 −0.185 −2.058∗∗∗ −0.557

Scenario 4: Optimal Hedge with Return Seeking (for risk tolerance γ = 0.2)

Mean (% annualized) −4.539 5.834 0.531 −1.257∗∗∗ −1.288∗∗∗ −1.246∗∗∗

St.D. (% annualized) 5.266 13.831 8.828 0.609∗∗∗ 1.497∗∗∗ 1.006∗∗∗

CEQ Ratio −5.850 0.159 −2.544 −1.086∗∗∗ −0.186 −0.747∗∗∗

Transaction Costs (bp annualized) 3.442 2.953 3.334 −0.213 −2.070∗∗∗ −0.588

No. Funds 482 696 691
Observations 59, 174 127, 372 119, 653
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Table F.7: Fund Performance Comparison for Funds with High Foreign Investment Share

We repeat Table 5 for the 20% of funds with the highest foreign investment share for each fund type. We test

for the equality of means between the baseline case and the scenario performance and mark the rejection of

equality (null hypothesis) at the 10%, 5%, and 1% level by ∗, ∗∗, and ∗∗∗. We exclude funds that fall within

the lowest 10th percentile of observation counts to ensure that our standard deviation estimates are reliable.

Sample Average Improvement (Relative to Baseline)

Fund Type Bond Equity Mixed Bond Equity Mixed
(1) (2) (3) (4) (5) (6)

Baseline: Fund Returns on Observed Hedge

Mean (% annualized) −3.129 8.492 3.455
St.D. (% annualized) 6.207 15.274 11.083
CEQ Ratio −4.836 1.875 −0.726
Transaction Costs (bp annualized) 7.958 2.380 4.522

Scenario 1: Fund Returns without Hedge

Mean (% annualized) −2.203 8.592 3.751 0.926∗∗∗ 0.100 0.296
St.D. (% annualized) 6.169 15.092 10.767 0.038 0.182 0.316
CEQ Ratio −3.869 2.128 −0.254 0.967∗∗∗ 0.253 0.472
Transaction Costs (bp annualized) 7.958∗∗∗ 2.380∗∗∗ 4.522∗∗∗

Scenario 2: Fund Returns for Unitary Hedge without Return Seeking

Mean (% annualized) −3.906 7.526 2.587 −0.777∗∗∗ −0.966∗∗∗ −0.868∗

St.D. (% annualized) 5.471 16.285 11.572 0.736∗∗∗ −1.011∗∗∗ −0.489
CEQ Ratio −5.370 0.073 −1.950 −0.534∗ −1.802∗∗∗ −1.224∗∗∗

Transaction Costs (bp annualized) 9.446 6.063 6.648 −1.488 −3.683∗∗∗ −2.126∗∗

Scenario 3: Optimal Hedge without Return Seeking

Mean (% annualized) −4.844 6.936 1.896 −1.715∗∗∗ −1.556∗∗∗ −1.559∗∗∗

St.D. (% annualized) 5.151 15.177 10.386 1.056∗∗∗ 0.097 0.697
CEQ Ratio −6.222 0.333 −1.947 −1.386∗∗∗ −1.542∗∗∗ −1.221∗∗∗

Transaction Costs (bp annualized) 8.464 4.405 5.163 −0.506 −2.025∗∗∗ −0.641

Scenario 4: Optimal Hedge and Return Seeking (for risk tolerance γ = 0.2)

Mean (% annualized) −4.851 6.932 1.893 −1.722∗∗∗ −1.560∗∗∗ −1.562∗∗∗

St.D. (% annualized) 5.152 15.180 10.389 1.055∗∗∗ 0.094 0.694
CEQ Ratio −6.229 0.326 −1.952 −1.393∗∗∗ −1.549∗∗∗ −1.226∗∗∗

Transaction Costs (bp annualized) 8.491 4.419 5.191 −0.533 −2.039∗∗∗ −0.669

No. Funds 143 204 155
Observations 11, 860 22, 143 20, 907
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