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Abstract

I use an Iterated Strict Dominance (ISD) argument to build bounds on the distribution of
outcomes of games and use them to pin down an identified set for the parameters of interest.
These bounds (ISD Bounds) are robust to equilibrium multiplicity, pure and mixed, and to
any non-equilibrium play as long as it is consistent with ISD. Furthermore, ISD Bounds apply
to games of complete or incomplete information, with discrete or continuous actions of any
dimensionality, as well as games with unobserved heterogeneity. To maximize the “bite” of the
ISD Bounds, I introduce Strategically Monotonic Supermodular Games, i.e., games of strategic
complements/substitutes where players’ payoffs are supermodular in their actions. I show that
ISD rules out large swaths of the strategy set for this type of game via an easy-to-compute
sequence of best-response iterations. Moreover, I show that for binary games the resulting
identified set is sharp. Finally, I apply ISD Bounds to an entry game for the airline industry
and use the estimates to evaluate the impact of the proposed merger between JetBlue and
Spirit. This exercise proves that ISD Bounds are informative about the parameters of interest
in practical applications.
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1 Introduction

In this paper I use an Iterated Strict Dominance (ISD) argument to build bounds on the (distribution
of) outcomes of games and use them to pin down an identified set of the parameters of interest. These
bounds (hereinafter, ISD Bounds) are extremely general in that they allow discrete, continuous, and
discrete-continuous strategies of any dimensionality, and can account for arbitrary informational
structures (i.e., complete and incomplete information). Furthermore, because they are built on
the concept of ISD, which is weaker than (Bayes) Nash equilibrium, ISD Bounds are robust to
equilibrium multiplicity, both in pure and mixed strategies, as well as various forms of non-equilibrium
play. In particular, ISD Bounds are valid as long as players choose serially undominated strategies.

To maximize the bite of ISD Bounds I introduce a class of games which I dub Strategically
Monotonic Supermodular Games (SMSGs). These are games where player’s payoff are supermodular
on their own actions, and best responses exhibit strategic monotonicity, i.e., for any pair of firms,
actions are either strategic complements or strategic substitutes.1 As I argue in the paper, SMSGs
are a natural match for ISD Bounds as in these games ISD is informative, i.e., it eliminates large
swaths of the strategy set, and it is easy to compute through a best response iteration.

To show that ISD has bite on SMSGs, I generalize a classic result from the literature of
supermodular games due to Milgrom and Roberts (1990), and generalized to incomplete information
environments by Van Zandt and Vives (2007). Assuming strategic complementarity, these papers
show that all strategy profiles that survive ISD lie between a lower and an upper bound. I generalize
this result to allow for any form of strategic monotonicity. In consequence, ISD Bounds apply to
many important strategic environments that are not covered by the standard theory of supermodular
games, such as Cournot games, entry games, and capacity investment games, all of which exhibit
strategic substitutability.2

To understand how ISD Bounds in SMSGs work, consider an incomplete information entry game
indexed by a parameter θ, where each player, f , receives an i.i.d. shock, εf , and independently
chooses a strategy σf (εf ) ∈ {0, 1}, where 0 implies no entry and 1 implies entry. If the game is an
SMSG for every θ, I show that there are strategy profiles σL and σH such that σL(ε; θ) ≤ σH(ε; θ)

for all ε, and such that all strategies that survive ISD lie between σL and σH . ISD Bounds, then,
result from the observation that for any strategy profile σ that survives ISD, and for any outcome
y:

Pr(y ≤ σL(ε; θ))︸ ︷︷ ︸
≡PL(y|θ)

≤ Pr(y ≤ σ(ε; θ)) ≤ Pr(y ≤ σH(ε; θ))︸ ︷︷ ︸
≡PH(y|θ)

The terms on the left and the right of these inequalities represent the lower and upper ISD Bounds,
1More precisely, a firm’s payoffs need to exhibit supermodularity in own actions, and either increasing differences

or decreasing differences with respect to its action and that of each its competitors.
2I should note that the comparative statics results from Milgrom and Roberts (1990) and Van Zandt and Vives

(2007) do not generalize to the case of strategic monotonicity. These results, however, are irrelevant to the problem
at hand.
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Figure 1: Identified Set Example

θ

DGP: P 0(y)

Model: PL(y|θ)

θub

Model: PH(y|θ)

θlb

ΘISD: Identified Set

Note: PH(y|θ) and PL(y|θ) are, respectively, are the upper and lower ISD bounds as functions of θ, and for a given
outcome y. If PL(y|θ) > P 0(y) of PL(y|θ) < P 0(y), θ violates the ISD Bounds and therefore cannot be the “real” θ.

respectively. These terms bound the term in the middle which represents any distribution over
outcomes consistent with players choosing serially undominated strategies.

Having built the ISD Bounds, the intuition behind the identified set lies in the idea that there
is a data generating process (DGP), P 0, which corresponds to the “real world” distribution over
outcomes.3 If firms only play serially undominated strategies, any θ such that PL(y|θ) > P 0(y) or
PH(y|θ) < P 0

f (y) cannot be part of the DGP. Hence, the ISD identified set is the set of θ’s such
that P 0 lies between PL and PH . Figure 1, depicts this intuition.

A natural question when dealing with set identification is how informative are the bounds. To
address this issue, I provide two results for the case of binary games (i.e., games with binary actions).
First, I show that under mild restrictions the ISD identified set is sharp relative to a DGP where
players choose serially undominated strategies. Roughly speaking, this means that a parameter θ
is in the ISD identified set iff there are strategies that survive ISD given θ that can match the
DGP. Sharpness of the ISD identified set implies that the ISD Bounds are using all the information
available in the ISD assumption, hence to get a smaller identified set one needs to assume a stronger
solution concept.

Second, I find necessary and sufficient conditions that guarantee that no vector of parameters
generates trivial ISD Bounds (i.e., PL(y|θ) = 0 and PH(y|θ) = 1 for all y).4 These conditions
emphasize the role that variables that uniformly shift payoffs across games play in narrowing down
the identified set. For example, a large variation in market size in an entry game guarantees that
whenever ISD Bounds are trivial in, say, a small market, ISD Bounds will be non-trivial in a large
market.

To assess the performance of ISD Bounds I perform several Monte Carlo experiments on a
standard entry game. First I focus on the case of incomplete information and I find that ISD
Bounds do a good job of narrowing down the set of possible parameters. Second, I focus on the
complete information case and compare ISD Bounds to the bounds in Ciliberto and Tamer (2009)
(CT) and the bounds in Fan and Yang (2022) (FY). In an analytical example, I show that CT

3More precisely, P 0(y) = Pr(σ0(ε) ≥ y), where σ0 is the “real world” strategy profile.
4Note that such θ lies in the identified set not because it fits the data, but because it does not rule anything out.
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Bounds are tighter than ISD Bounds, which are tighter than FY Bounds. This should not be
surprising since CT Bounds are based on a Nash equilibrium solution concept which is stronger
than ISD, while FY Bounds are built using one strict dominance round, which is weaker than full
blown ISD. In simulations, however, I find that the performance of ISD Bounds is comparable to
CT bounds, and better than FY Bounds.

Finally, to put ISD Bounds to test, I propose and estimate an entry model with price competition
for the airline industry, and use it to evaluate the proposed merger between JetBlue and Spirit which
was blocked by a federal judge on January 2024. This exercise shows the practicality of ISD Bounds
for applied research.

The rest of the paper is organized as follows. Section 1.1 reviews the relevant literature and
places the current paper within it. Section 2 presents the model, introduces SMSGs, and shows
that ISD has bite in SMSGs. Section 3 derives ISD Bounds the ISD identified set, while Section 4
explores the identifying power of ISD Bounds and pins down a source of cross-sectional variation
that guarantees that the ISD Identified Set is bounded. Section 5 analyses the performance of ISD
Bounds through Monte Carlo exercises, comparing it to other bounds proposed in the literature.
Section 6 provides some background on the industry and details on the proposed merger, while
Section 7 describes the data I use in this empirical exercise. Section 8 presents the estimation
results and counterfactual simulations. Finally, Section 9 provides some concluding remarks.

1.1 Literature Review

This paper is related to two strands that have roughly run on independent lanes. The literature on
estimation of discrete games of complete information, and the literature focusing on estimation of
discrete games of incomplete information.

1.1.1 (Mostly) Complete Information Games

The problem of model incompleteness as described by Tamer (2003), has been a common thread
throughout the literature studying estimation of discrete games of complete information. The early
examples in this literature, such as Bresnahan and Reiss (1991), Berry (1992), and Mazzeo (2002),
bypassed the problem of equilibrium multiplicity by making strong homogeneity assumptions on
firms’ payoffs that guaranteed that all equilibria could be mapped into a single outcome (e.g.,
number of firms), for which the model makes a unique prediction.

Later papers dealt with this issue using two broad approaches. The first approach consists of
completing the model with an equilibrium selection mechanism and either assuming that it is known
(e.g., Jia (2008), Li et al. (2018)) or estimating it from the data (e.g., Bajari et al. (2010)). This
strategy is attractive because it brings us back to the world where standard estimation techniques
work and point identification holds. The problem, however, is that economic theory provides little
guidance when it comes to equilibrium selection, making any assumption related to the equilibrium
selection mechanism hard to justify.
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The second approach, the one that this paper takes, gives up on point identification and rather
focuses on identifying a set for the parameters of interest. This approach was pioneered by Tamer
(2003) and Ciliberto and Tamer (2009) (CT), who build the identified set by putting bounds on
the probability of observing an outcome. In particular, the probability of observing an outcome
y must be higher than the probability that said outcome is the unique Nash equilibria, and lower
than the probability that it is a Nash equilibria. In this strand, Fan and Yang (2020) (FY) propose
building the identified set using one round ISD, and Aradillas-Lopez and Tamer (2008) study the
identification power of rationalizability as a solution concept.

Aradillas-Lopez and Tamer (2008) is perhaps the closest paper to the present one. That paper
studies identification of k-level rationality in 2× 2 games of complete and incomplete information,
while imposing no assumptions on player’s beliefs (beyond common priors and what is implied by
k-level rationality). The present paper can be seen as a generalization of these ideas to much more
flexible settings.

Relative to CT and FY bounds, ISD Bounds are neither more nor less general. CT bounds, on
the one hand, are tighter but harder to compute, specially for large games, and require the data
to be generated by equilibrium play. FY bounds, on the other hand, are wider but can be applied
to a more general class of games and are easier to compute. Relative to CT Bounds, the main
advantage of ISD Bounds is their tractability, their robustness to non-equilibrium play, and the fact
that they can be applied to imperfect information environments. Relative to FY Bounds, the main
advantages of ISD Bounds is that they are more informative while still being tractable, and that
(at least in binary games) they produce a sharp identified set.

The present paper is also similar to Aradillas-Lopez (2011) and Aradillas-López and Rosen
(2022) in using shape restrictions on payoffs, and restrictions on the action set to pin down an
identified set of the parameters of interest. By restricting their attention to ordered actions and
making appropriate concavity and increasingness assumptions, those papers are able to pin down
an identified set based on Nash equilibrium conditions. The present paper, in contrast, allows for
non-equilibrium play while making much weaker assumptions on the game’s structure that allows
me to estimate a more general class of games than the ones considered in these two papers. This
generality, however, comes at the cost of pinning down a wider identified set.

As mentioned above, I argue that ISD Bounds are particularly useful in estimating SMSGs.
Many of the static games estimated in the empirical literature are instance of SMSGs, and therefore
can be estimated using the method I advance here. The models in Bresnahan and Reiss (1990),
who estimate entry game for isolated retail and professional markets, Berry (1992), Tamer (2003),
Ciliberto and Tamer (2009) all of whom estimate entry games for the airline industry, are all
instances of SMSGs with strategic substitutes, and Ciliberto and Jäkel (2021) who estimate a
game in which firms decide whether or not become exporters, are all examples of SMSGs. More
recently, Wollmann (2018) estimates a two-stage model for the truck industry in which players
can choose which truck varieties to offer and compete in prices. Although this model cannot be
shown to be supermodular, as the payoffs depend on the reduced form variable profits in the pricing
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stage, economic intuition strongly suggest that strategic substitution should hold (i.e., the profit
gain from introducing a variety is decreasing on the varieties of my competitors). Furthermore,
supermodularity can be verified numerically from the pricing stage estimates.

A number of empirical papers explicitly exploit the theory of supermodular game to solve
(and estimate) models with large strategy sets that would be computationally infeasible otherwise.
Most prominently, Jia (2008) estimates an entry model for Wal-Mart and Kmart with spill over
effects across markets. To solve this model, she shows that the duopolistic game can be written
as a supermodular game, and proceeds with estimation assuming a known equilibrium selection
mechanism. This trick, however, applies only to two-player games, so her methodology does not
generalize to games with three or more players. Other empirical papers that exploit supermodularity
are Uetake and Watanabe (2020) who study entry and merger decisions in a supermodular matching
model, and Ackerberg and Gowrisankaran (2006) who study study technology adoption with network
externalities. Both in the banking industry.

In all these papers the underlying model can be thought of as an SMSG, and therefore can be
estimated using the approach I outline here. Furthermore, the approach I outline makes it feasible
to relax the strong assumptions these papers made on equilibrium selection, information structure,
equilibrium play.

The idea of exploiting supermodularity to estimate empirical models is not new to this paper.
Molinari and Rosen (2008) and Uetake and Watanabe (2013) both proposed using the theory of
supermodular games for set identification. However, due to its focus on SMSGs rather than only
supermodular games, this paper is able to consider the much broader class of games characterized
by strategic monotonicity. This generalization is particularly important in IO since strategic
substitutability is likely more common than complementarity in empirical research.

1.1.2 Incomplete Information Games

As opposed to the complete information case, the literature on estimation of discrete games of
incomplete information has, until recently, largely ignored the problem of model incompleteness in
estimation. The reason for this asymmetry is that, under incomplete information, the econometrician
and the players face the same uncertainty about other players’ actions. As a result, by independently
estimating the conditional choice probabilities of each player, the econometrician learns the distribution
over actions that each player is facing, and can use this to estimate each player’s payoffs as a single
agent problem using the methods developed by Hotz and Miller (1993) and Aguirregabiria and Mira
(2002) for single agent dynamic settings.

This approach, which is widely used in the literature (e.g. Seim (2006), Draganska et al.
(2009), Atal et al. (2022)), rests on the assumption that all the data available comes from the
same equilibrium, and that there is no unobserved heterogeneity. However, de Paula and Tang
(2012), for static games, and Otsu et al. (2016) and Otsu and Pesendorfer (2022), for dynamic
environments, propose statistical tests for these assumptions and find that, in commonly used
datasets, the assumptions are violated.
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The problem of model incompleteness in games of incomplete information is an area of active
research. Two prominent efforts to deal with this issue are Aguirregabiria and Mira (2019), who
study the problem of (point) identification in games with incomplete information and unobserved
heterogeneity while estimating an equilibrium selection mechanism, and Otsu and Pesendorfer
(2022) who treat equilibrium multiplicity as a market specific correlated latent variable. As in this
paper, they provide results for set identification. As compared to these papers, the current work
deals with the problem of equilibrium multiplicity in a more tractable way, by imposing bounds on
(the distribution of) outcomes, and making fewer assumptions on the distribution of private shocks.

This paper is also related to work by Grieco (2014) and Magnolfi and Roncoroni (2020) both
of whom study identification under weak informational assumptions. In particular, Grieco (2014)
derives an exclusion restriction that allows him to set identify the parameters that control the
informational structure behind two-player binary games. Magnolfi and Roncoroni (2020), on the
other hand, build upon the partial identification results of Beresteanu et al. (2011) for models with
convex predictions, and derive an identified set that is robust to any informational assumption. The
ISD Bounds I propose in this paper are closer to those in Grieco (2014) in that they hold conditional
on an informational structure. Nevertheless, ISD Bounds are more general in that they apply to
games with any number of players and more flexible action sets.

1.1.3 Moment Inequalities/Revealed Preferences

A third popular route to estimation in discrete games is due Pakes et al. (2015), and has become
known as the moment inequality approach.5 Their approach is based on the idea that, if the data
are generated by a Nash Equilibrium, then unilateral deviations from the observed actions should be
unprofitable for the deviating firm. This reasoning generates profit inequalities that lend themselves
for set identification, as any parameter vector that violates these inequalities cannot have generated
the data.

The moment inequality approach has gained traction in the empirical literature due to its
relative simplicity and tractability (e.g., Berry et al. (2016), Eizenberg (2014), Ellickson et al.
(2013), Bontemps et al. (2023), and Wollmann (2018)). Nevertheless, the probability bounds
approach has some advantages that can make it preferable. For example, as opposed to the moment
inequalities approach, identified sets based on ISD Bounds need not assume that the observed data
is generated by equilibrium play. Additionally, the revealed preference approach leaves parts of the
game largely unspecified, which makes it map the estimates back to an structural model to perform
counterfactuals with.

5This is a somewhat unfortunate name, as probability bounds like the ones proposed in this paper are basically
moment inequalities too.
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2 The Model, SMSGs, and ISD

In this section, I provide the building blocks of the model and introduce Strategically Monotonic
Supermodular Games (SMSGs). Then I show that ISD has a bite in SMSGs.

2.1 Model Set-Up

Consider a finite set of players (firms), F , indexed by f , who simultaneously choose a vector yf from
a compact action set, Yf ⊆ Rdim(Yf ), after receiving a private signal/shock, εf ∈ Ef ⊆ Rdim(Ef ).
Ex-post profits are given by:

πf (yf , y−f , εf ;x, θ, ξ)

where, as is standard, y−f = (yg)g 6=f is a vector containing f ’s competitors’ actions, and where the
vector of private shocks, ε = (εf )f∈F , follows a (possibly degenerate) joint distribution G(ε|x, θ, ξ),
which is common knowledge.

Each tuple (x, θ, ξ) indexes a different realization of the game, which I refer to as the (x, θ, ξ)-
game. Here, x ∈ X ⊆ Rdim(X ) represents a vector of observables, θ ∈ Θ ⊆ Rdim(Θ) is the vector of
parameters of interest, and ξ ∈ Ξ ⊆ Rdim(Ξ) is a vector of common-knowledge unobservables—variables
known to firms but unobservable to the econometrician. Throughout the paper, I assume that πf
is continuous in ξ. Also, for brevity, hereafter I omit dependence to (x, θ, ξ) unless it may cause
confusion.

A strategy for player f , denoted as σf , is measurable function mapping f ’s private information,
εf , to a distribution over actions, i.e., σf : Ef → ∆(Yf ) where ∆(Yf ) denotes the set of distributions
over Yf . If there is complete information, i.e., ε = ∅, then σf is simply an element of ∆(Yf ).6 Let
Σf represent the set of strategies of f . A strategy profile is a collection of strategies, one for each
player: σ = (σf )f ∈ Σ ≡ ×fΣf .

For any strategy profile adopted by f ’s competitors, represented as σ−f = (σg)g 6=f , f ’s interim
payoff is given by:

Πf (yf , σ−f , εf ) =

∫
E−f

πf (yf , σ−f (ε−f ), εf )dG(ε−f |εf ) (1)

where G(ε−f |εf ) is the conditional distribution of ε−f = (εg)g 6=f .
Following the approach by Van Zandt and Vives (2007), I employ interim payoffs, rather than

ex-ante payoffs, to define best responses. Specifically, σf is a best response to σ−f if:

Πf (σf (εf ), σ−f , εf ) ≥ Πf (σ′f (εf ), σ−f , εf ),∀εf ∈ Ef ,∀σ′f ∈ Σf (2)

Similarly, I define strict dominance in terms of interim payoffs rather than ex-ante ones. This has
6Throughout the paper, I use yf , and variations therein, to denote an arbitrary non-random element of Yf , and

treat σf (εf ) as a random variable.
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the advantage that it allows us to distinguish between strategies that are ex-ante equally attractive.
For instance, consider two strategies, σf and σ′f , equal everywhere except for a zero-measure subset
of Ef , in which σf is preferred to σ′f . Ex-ante, these two strategies would be deemed equally good.
However, in an interim evaluation, σf would be preferred to σ′f because there are values of εf for
which σf fares strictly better, even if this contingencies have zero probability.

Definition 1 (Strict Dominance and Strictly Dominated Strategies). Let Σ̃ ⊆ Σ. Strategy σf ∈ Σ̃f

strictly dominates strategy σ′f ∈ Σ̃f relative to Σ̃ if:

Πf (σf (εf ), σ−f , εf ) ≥ Πf (σ′f (εf ), σ−f , εf ), ∀εf ∈ Ef ,∀σ−f ∈ Σ̃−f

with strict inequality for at least one εf ∈ Ef .
Strategy σ′f ∈ Σ̃f is strictly dominated relative to Σ̃ if there exists another strategy σf ∈ Σ̃f that

strictly dominates it.

To close the model, rather than introducing a solution concept, I assign beliefs to each player
and assume that they behave optimally given their beliefs. This allows me to represent multiple
solution concepts—like (Bayes) Nash Equilibrium or ISD— within a unified framework.

Formally, I denote f ’s belief about g’s behavior by a strategy ρfg ∈ Σg.7 and collect f ’s beliefs
in ρf = (ρfg )g 6=f . Firm f ’s behavior is the result of implementing σρf , which is a best response to
the belief ρf as per (2). If the best response to ρf is not unique, I assume that f selects σρ from
the set of maximizers through some undetermined mechanism.

Before introducing the SMSGs, a quick comment regarding the informational structure of the
model is in order. The model can accommodate arbitrary informational structures through the
private shocks/signals, ε, and their distribution, G The complete information case, for example,
can be represented by a degenerate distribution G, i.e., ε = ∅. In this case, the randomness of
the outcomes is driven by the randomness (from the perspective of the econometrician) of the
common-knowledge unobservables, ξ.

Other informational structures can be represented by letting εf = (ε̃f , τf ) where ε̃f is the payoff
relevant shock and τf is a, payoff irrelevant, signal about other player’s private information, as in
Magnolfi and Roncoroni (2020). For example, the independent private information case corresponds
to ε̃f ⊥ ε̃−f and τf = ∅ for all f . The privileged information case, where one player is perfectly
informed and the rest only observe their private shocks, can be represented by ε̃f ⊥ ε̃−f and τf = ∅
for all f except the privileged party whose signal is τf = ε−f . Similarly, the case with independent
partially observed information corresponds to the case where εf ⊥ ε−f and τf = ε−f + ς−f , where
ς−f is noise. In this dimension, the present paper can easily accommodate many more informational
structures than previous research has allowed for.8

7We could allow f ’s belief to be a distribution over Σg. All results of the paper follow through.
8Other papers that allows for flexible information structures are Magnolfi and Roncoroni (2020), Aradillas-Lopez

(2010), and Grieco (2014).

9



2.2 Strategically Monotonic Supermodular Games and ISD

Here, I introduce a class of games termed Strategically Monotonic Supermodular Games (SMSGs)
and show that for this type of game ISD is informative, in that it rules out large swaths of the
strategy set, and practical, in that it is easy to compute. Consequently, an estimation approach
based on ISD is particularly promising for SMSGs.

The main result of this section, Theorem 1, says that in SMSGs there exist strategy profiles,
σL and σH such that any strategy σ that survives ISD lies between σL and σH in the sense that
σL(ε) ≤ σ(ε) ≤ σH(ε) for all ε, where “≤” represents the standard vector inequality.9 This result is
the main building block for the ISD Bounds I derive in Section 3. To move in this direction, let us
begin by investing in some definitions.

Definition 2 (Increasing Differences and Decreasing Difference). Let h(z1, z2) be a function mapping
from Z1 ×Z2 to R, where Zj ⊆ Rdim(Zj) for j = 1, 2.

2.a. Increasing Differences (ID): h has increasing differences in (z1, z2) if for any distinct
z′1 ≥ z1, and distinct z′2 ≥ z2:

h(z′1, z
′
2)− h(z1, z

′
2) > h(z′1, z2)− h(z1, z2)

2.b. Decreasing Differences (DD): h has decreasing differences in (z1, z2) if for any distinct
z′1 ≥ z1, and distinct z′2 ≥ z2:

h(z′1, z
′
2)− h(z1, z

′
2) < h(z′1, z2)− h(z1, z2)

Definition 3 (Complements and Substitutes). Let y−{f,g} = (yf ′)f ′∈F\{f,g}.

3.a. Complements: g is f ’s complement if πf (yf , yg, y−{f,g}, εf ) has ID in (yf , yg) for all (y−{f,g}, εf ).
The set of f ’s complements is denoted by C(f) ⊆ F .

3.b. Substitutes: g is f ’s substitute if πf (yf , yg, y−{f,g}, εf ) has DD in (yf , yg) for all (y−{f,g}, εf ).
The set of f ’s substitutes is denoted by S(f) ⊆ F .

In Definition 2, ID and DD are notions of complementarity and substitutability, respectively.
Intuitively, ID implies that the marginal return of yf is increasing in yg, hence the optimal yf is
increasing in yg. Many games exhibit ID, such as games with complementary investments. Similarly,
DD implies that the marginal return of yf is decreasing in yg, so the optimal yf is decreasing in yg.
In IO settings, DD is more common than ID. Games of entry, capacity investment, and Cournot
competition, for example, typically exhibit DD.

In Definition 3, a complement (substitute) of firm f is a firm, g, whose actions are strategic
complements (substitutes) to f ’s actions. Note that if g is f ’s complement, this does not imply

9For v, w ∈ Rn, v ≤ w if vi ≤ wi for all i = 1, . . . , n.
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that πf is in increasing in yg,10 nor does it imply that f is g’s complement (i.e., the complement
relation is not necessarily symmetric). Similarly, if g is f ’s substitute, this does not imply that πf
is decreasing in yg,11 nor does it imply that f is g’s substitute (i.e., the substitute relation is not
necessarily symmetric).

Before moving to the definition of SMSGs, let us define the concept of a lattice, which is central
to the theory of supermodular games which I exploit in this paper.

Definition 4 ((Complete) Lattice). A set Z together with a partial order, ≤, constitute a lattice if
for any z, z′ ∈ Z, sup{z, z′} ∈ Z and inf{z, z′} ∈ Z. Furthermore, the tuple (Z,≤) is a complete
lattice if for every Z ⊆ Z, inf{Z} ∈ Z and sup{Z} ∈ Z.

Definition 5 (SMSG). A game is a Strategically Monotonic Supermodular Game if:

5.a. Complete Lattice Action Set: The action set, Yf ⊆ Rdim(Yf ), together with the standard
vector inequality, “≤”, conform a complete lattice for all f ∈ F .12 Furthermore, Yf is compact
for all f ∈ F .

5.b. Order Upper Semi-Continuity The profit function, πf , is order upper semi-continuous in
yf . Formally, for any totally ordered set O ⊆ Yf :13

lim sup
yf∈O,yf↓inf(O)

πf (yf , y−f , εf , ) ≤ πf (inf(O), y−f , εf , )

lim sup
yf∈O,yf↑sup(O)

πf (yf , y−f , εf , ) ≤ πf (sup(O), y−f , εf , )

for all y−f ∈ Y−f , all εf ∈ Ef , and all f ∈ F .

5.c. Supermodularity: The profit function, πf , is supermodular in yf , i.e., for any yf , y′f ∈ Yf :

πf (sup{yf , y′f}, y−f , εf ) + πf (inf{yf , y′f}, y−f , εf ) ≥ πf (yf , y−f , εf ) + πf (y′f , y−f , εf )

for all y−f ∈ Y−f , all εf ∈ Ef , and all f ∈ F .

5.d. Strategic Monotonicity: For all f, g ∈ F , either g is f ’s complement, i.e., f ∈ C(f), or g
is f ’s substitute, i.e., g ∈ S(f).

Point 5.a. of the definition is necessary to exploit the supermodular games infrastructure
advanced by Milgrom and Roberts (1990) for games of complete information, and Van Zandt

10Say f and g produce differentiated goods, engage in Bertrand competition, and have to decide whether to adopt
a cost-saving technology or not. If g adopts the technology it makes f worse off (f is harmed by the lower cost of g).
Nevertheless, g adopting the technology may increase f ’s incentive to adopt, so that adoption decisions are strategic
complements.

11For example, in a public good financing game, πf might be increasing in yg, i.e., the more g invests in the public
good the higher the benefit for f , and πf may have DD in (yf , yg), i.e., the more g invests in the public good the
lower the marginal return for f to do so.

12Note that this definition allows Yf to include {−∞,+∞}. Naturally, for this to work payoffs need to be well
defined at infinity.

13A totally ordered (sub)set C ⊆ Yf is a subset of Yf such that for any yf , y′f ∈ C either yf ≥ y′f or yf ≤ y′f .
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and Vives (2007) for games of incomplete information. Although most empirical studies satisfy
this assumption, it is easy to construct games in which it is violated. For example, consider
an entry game with location choice as in Seim (2006). Firms have to choose between no entry,
entry in location A, or entry in location B. Letting 1 (0) represent the case where f does (does
not) enter a given location the action set is Yf = {(0, 0), (0, 1), (1, 0)}, and it is easy to see that
sup{(0, 1), (1, 0)} = (1, 1) /∈ Yf . Point 5.b. is a technical condition necessary to guarantee that
f ’s profit maximization problem has a solution. Order upper semi-continuity is satisfied if πf is
continuous or if the strategy set is discrete.

In point 5.c. of the definition, supermodularity of πf represents a notion complementarity
between the elements of yf . If yf is univariate then this condition is trivially satisfied. Otherwise,
supermodularity is likely satisfied in cases where there are positive spillover effects between the
different elements of yf . Jia (2008) provides a prominent example of an empirical game exhibiting
supermodularity. In her model, opening a Wal-Mart store in any location increases the profitability
of opening a store in neighboring locations due to economies of scope in inventory management.
Finally, point 5.d. says that there is Strategic Monotonicity meaning that each of f ’s competitors
is either f ’s substitute or f ’s complement. For g ∈ C(f) this implies that f ’s optimal behavior is
increasing in yg, whereas for g ∈ S(f) this implies that f ’s optimal behavior is decreasing in yg.
Either way, the pairwise strategic relation is monotonic.

Theorem 1. [ISD in SMSGs] Let the (x, θ, ξ)-game be an SMSG and say σ ≤ σ′ if and only if
σ(ε) ≤ σ′(ε) for all ε. Consider the following sequence:

Set up:
Σ0
ISD = Σ

σH,0f = {sup{Yf} : εf ∈ Ef}
σL,0f = {inf{Yf} : εf ∈ Ef}

Σk
ISD = {σ ∈ Σ : σL,k ≤ σ ≤ σH,k}

Ykf (εf ) = {yf ∈ Yf : σL,kf (εf ) ≤ yf ≤ σH,kf (εf )}
Best/Worst Case:

σB,k−f =
(
σH,kC(f), σ

L,k
S(f)

)
σW,k−f =

(
σL,kC(f), σ

L,k
S(f)

)
Update:

σH,kf = sup

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
B,k−1
−f , εf ) : εf ∈ Ef


σL,kf = inf

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
W,k−1
−f , εf ) : εf ∈ Ef



(3)

The following holds:

1.a. For each k = 1, 2, . . ., all σf � σk,Lf and all σf � σk,Hf are dominated relative to Σk−1
ISD.

12



1.b. The set Σk
ISD contains all strategies that survives k ISD rounds.

1.c. For k →∞, (σk,L, σk,H)→ (σL, σH) with σL ≤ σH . Furthermore, the set:

ΣISD = {σ ∈ Σ : σL ≤ σ ≤ σH}

contains all strategies that survive ISD.

1.d. If σL = σH then the game is dominance solvable, and this strategy profile is the unique (Bayes)
Nash Equilibrium.

Proof. See Appendix A.

Theorem 1 is a generalization of Theorem 5 in Milgrom and Roberts (1990) which focuses only
on increasing differences, i.e., strategic complementarity. The present generalization from strategic
complementarity to strategic monotonicity is crucial for the practical relevance of the approach to
estimation I propose in this paper, as it implies that ISD Bounds can be applied to a much broader
class of games than the classic theory of supermodular games considers. Namely, ISD Bounds can
be applied to games of strategic substitutability which are likely the norm in industrial organization.

The sequence defined in equation (3) describes a best response iteration that results in the
deletion of dominated strategies. Intuitively, the “best case” (resp. “worst case”) strategies represent
the strategies of f ’s competitors for which f ’s best response is maximal, σk,Hf (resp. minimal, σk,Lf ).
Strategic monotonicity and supermodularity guarantee that any strategy that does not lie between
σk,Lf and σk,Hf is strictly dominated. In the next subsection I give an intuition for how the proof
operates using two entry game examples.14

2.3 Two Entry-Game Examples

Here I show the implications of Theorem 1 for two archetypal entry games. The one with independent
private information, and the one with complete information.

2.3.1 Independent Private Information Entry Game

Two firms, f = 1, 2, simultaneously choose whether to enter a market (yf = 1) or not (yf = 0).
Firm f ’s profit is:

πf (yf , yg, εf ) = yf (Rf (yg) + εf )

where Rf (·) is the non-stochastic component of f ’s entry profit which I assume to be strictly
decreasing in yg.15 εf is an independently distributed, privately observed shock, i.e., ε1 ⊥ ε2.

14The adjectives “best” and “worst” are appropriate in contexts where πf is increasing in the actions of its
complements and decreasing in the actions of its substitutes. More generally, they are only meant to describe
the strategy profiles by f ’s competitors that maximize/minimize f ’s strategy.

15As usual, dependence of Rf on (x, θ, ξ) is omitted for brevity.

13



It is easy to show that this is an SMSG. To see this, note that Yf = {0, 1} is a complete
lattice, πf order upper semi-continuous and supermodular in yf (trivially so, since yf is discrete
and univariate), and πf has DD in (yf , yg). This is:

πf (1, y−f , εf )− πf (0, y−f , εf ) = Rf (yg) + εf

is decreasing in yg.
Given an entry probability for firm g, the optimal strategy for firm f takes the form of a threshold

strategy which maps one-to-one into an entry probability. So, without loss of generality, we can
think of strategies as being entry probabilities.

Figure 2 depicts the implications of Theorem 1 in the entry-probability space (P1, P2). The
left panel depicts how the first ISD iteration is conducted. Consider the worst case for firm 1,
i.e., P2 = 1. In that case, 1’s optimal entry probability is P 1,L

1 , which is the lowest possible entry
probability firm 1 can rationally choose. Theorem 1 guarantees that all P1 < P 1,L

1 are dominated.
Similarly, consider the best case for firm 1, i.e., P2 = 0. Here firm 1’s optimal entry probability is
P 1,H

1 , which is the highest possible entry probability firm 1 can rationally choose. Again, Theorem
1 guarantees that any P1 > P 1,H

1 is dominated. An analogue argument allow us to pin down P 1,L
2

and P 1,H
2 .

The panel in the middle collects the outcome of this first iteration into P 1,L = (P 1,L
1 , P 1,L

2 ) and
P 1,H = (P 1,H

1 , P 1,H
2 ), and highlights in green the set Σ1

ISD which contains all strategies that survive
one ISD round. Letting Σ1

ISD become the strategy set of a new game, with new best and worst
cases for each firm, we can conduct a another ISD round following the same process outlined above.

The panel on the right shows the result of repeating this best response iteration until convergence.
The limiting strategies PL and PH pin down the set ΣISD which contains all strategies that survive
ISD.

2.3.2 Complete Information Entry Game

Consider the same example as above only now ξf , which is publicly observed, plays the role of εf .
This is:

πf (yf , yg; ξf ) = yf (Rf (yg) + ξf )

There are three possible best response functions for firm f , depending on the realization of ξf .
One where entry is dominant which occurs when Rf (1) + ξf > 0. One where no entry is dominant
which occurs if Rf (0) + ξf < 0. And one where entry is only profitable as a monopolist, which
occurs if Rf (1) + ξf < 0 < Rf (0) + ξf .

Each realization of (ξ1, ξ2) triggers one of nine possible games, one for each combination of best
responses for each firm. Figure 3 depicts each of these combinations. For example, if Rf (1)+ξf > 0

for f = 1, 2, i.e., region 9 , then entry is a dominant strategy for both firms. If R1(0) + ξ1 < 0 and
R2(1) + ξ2 < 0 < R2(0) + ξ2, i.e., region 2 , no entry is dominant for firm 1, and firm 2 chooses

14



Figure 2: Two Player Game Best Responses in Probability Space

BR1(P2)

BR2(P1)
P 1,H
2

P 1,H
1

P 1,L
2

P 1,L
1

0
0

1

1

P1

P2

Σ1
ISD

P 1,L

P 1,H

0 1P1

PL

PH

ΣISD

0 1P1

Note: Pf represents the entry probability of firm f and BRf (P−f ) represents the best response, in probability, of
firm f to P−f . The figure shows the process of ISD iterations for a game with multiple equilibria. The left panel
shows the lowest/highest strategies associated to the first ISD round. The middle panel shows the set of strategies
that survive the first round. The right panel shows the result of repeating this iterative process until convergence.

entry only as a monopolist.
To see the implications of Theorem 1 consider ξ ∈ 2 and set σ0,L = (0, 0) and σ0,H = (1, 1).

Firm 1’s best case occurs when σ2 = σ0,L
2 = 0 and its best response is σ1,H

1 = 0. Similarly, firm 1’s
worst case occurs when σ2 = σ0,H

2 = 1 and its optimal reaction against this is σ1,L
1 = 0. Theorem 1

guarantees that all σ1 < σ1,L
1 and all σ1 > σ1,H are dominated. The same exercise for firm 2 reveals

that its best response to σ1 = σ0,L
1 = 0 is σ1,H

2 = 1, while the best response to σ1 = σ0,H
1 = 1 is

σ1,L
2 = 0. Putting these together we get σ1,L = (0, 0) and σ1,H = (0, 1).
Now we repeat the ISD iteration using σ1,L and σ1,H as starting points. We have reached

convergence for firm 1 who can only respond with no entry, so we set σ2,L
1 = σ2,H

1 = 0. For firm 2,
the best and worst cases coincide at σ1 = 0, hence we set σ2,H

1 = σ2,L
1 = 1 which is 1’s best response

to no entry. By Theorem 1 all σ2 < σ2,L
2 and all σ2 > σ2,H

2 are dominated. Collecting the updated
extreme strategies for each firm we get σ2,L = σ2,H = (0, 1), so we have reach convergence and
σL = σH = (0, 1). The game is dominance solvable, and the ISD iterations successfully identifies
the solution.

It is easy to verify that ISD iterations pin down a unique prediction for all games depicted in
Figure 3, except for ξ ∈ 5 . In this case ISD has no bite and ISD iterations are reflect this fact. Like
before, set σ0,L = (0, 0) and σ0,H = (1, 1). The best case for firm 1 is σ2 = σ0,L

2 = 0 and its best
response is σ1,H

1 = 1. Similarly, the worst case for firm 1 is σ2 = σ0,H
2 = 1 and its best response is

σ1,L
1 = 0. Clearly σ0,H

1 = σ1,H
1 and σ0,L

1 = σ1,L
1 , so ISD did not rule out any strategy. Furthermore,

the same holds for firm 2, hence σ1,L = σ0,L and σ1,H = σ1,L and we have reached convergence
after one iteration without ruling out anything.
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Figure 3: Game Matrices with Best Responses for Values of ξ

ξ1

ξ2

−R1(1)−R1(0)

−R2(0)

−R2(1)

1 σL = σH = (0, 0)

0

1

0 1

2 σL = σH = (0, 1)

0

1

0 1

3 σL = σH = (0, 1)

0

1

0 1

4 σL = σH = (1, 0)

0

1

0 1

5
σL = (0, 0)

σH = (1, 1)

0

1

0 1

6 σL = σH = (0, 1)

0

1

0 1

7 σL = σH = (1, 0)

0

1

0 1

8 σL = σH = (1, 0)

0

1

0 1

9 σL = σH = (1, 1)

0

1

0 1

Note: In each region 1 ,. . . , 9 , (ξ1, ξ2) generates a different class of games, in the sense that within each region all
values of ξ generate the same best responses for both players. The red dots represent the best response of firm 1, and
the blue dots represent the best response of firm 2. At the bottom of each region I write the corresponding values of
σL and σH .
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3 ISD Bounds and Identified Set

Here I show that ISD implies bounds on the distribution of outcomes generated by the model, and
use these bounds to build an identified set for the parameters of interest.

3.1 ISD Bounds

The main assumption behind ISD Bounds in SMSGs, Assumption 1 below, says that for (almost)
all possible values of (x, θ, ξ) the (x, θ, ξ)-game is an SMSG. This assumption implies that the
results of Theorem 1 hold for all (x, θ, ξ). Importantly, this assumption does not say that the
set of complements and substitutes of each firm has to be the same for all (x, θ, ξ). This is an
important source of flexibility if the researcher does not want to impose the nature of strategic
interactions between players, and rather wants this to be revealed by the data (as in Ciliberto and
Jäkel (2021)).16

Assumption 1 (SMSG Assumption). The (x, θ, ξ)-game is an SMSG for almost every (x, θ, ξ) ∈
X ×Θ× Ξ.

To put bounds on the distribution of outcomes, we need to specify how outcomes are generated
in the first place. Here, since we have assumed that firms behave optimally relative to their
expectations, this implies the need for a constrain on expectations. Assumption 2, below, constrains
expectations to be consistent with ISD.

Assumption 2 (ISD-Consistent Beliefs). For every (x, θ, ξ)-game and for each pair of firms f and
g, f believes that g plays a strategy ρfg ∈ Σg,ISD.

Two comments about Assumption 2. First, ISD-Consistent beliefs are allowed to depend on
(x, θ, ξ). This must be so, since ΣISD also depends on (x, θ, ξ). Second, rational expectations are
ISD-Consistent, so Assumption 2 allows for equilibrium play. More generally, ISD-Consistent beliefs
need not satisfy rational expectations, so Assumption 2 allows for non-equilibrium play. The ISD
Bounds I derive below are robust to such suboptimal play, as long as the beliefs that generate this
behavior are ISD-Consistent.

With this, we are in a position to move to Theorem 2, which uses Theorem 1 to derive bounds
on the distribution of outcomes implied by ISD. In particular, the bounds exploit the fact that in
every SMSG a strategy σf that survives ISD lies between σLf and σHf . To move in this direction
define the following probabilities (making dependence on (x, θ, ξ) explicit):

PL(y|x, θ) =

∫
E

∫
Ξ

1{σL(ε;x, θ, ξ) ≥ y}dG(ε;x, θ, ξ)dH(ξ;x, θ)

P ρ(y|x, θ) =

∫
E

∫
Ξ

1{σρ(ε;x, θ, ξ) ≥ y}dG(ε;x, θ, ξ)dH(ξ;x, θ)

PH(y|x, θ) =

∫
E

∫
Ξ

1{σH(ε;x, θ, ξ) ≥ y}dG(ε;x, θ, ξ)dH(ξ;x, θ)

(4)

16This contrasts with bounds like the ones in Aradillas-Lopez (2011) which requires that the research have a priori
knowledge of the nature of strategic interaction between players.
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where H is the distribution of the common-knowledge unobservables, ξ. With this, we are in a
position to show Theorem 2.

Theorem 2 (ISD Bounds in SMSGs). Consider a class of games indexed by (x, θ, ξ) satisfying
Assumption 1 and say for every distinct pair of firms f and g, ρfg is ISD-Consistent as per Assumption
2. The following holds:

PL(y|x, θ) ≤ P ρ(y|x, θ) ≤ PH(y|x, θ) (5)

for all firms and almost all y, x, and θ.

Proof. Fix (x, θ, ξ) and fix ISD-Consistent beliefs for each player. Since σρf is a best response to a
strategy/belief that survives ISD it must itself survive ISD, hence by Theorem 1 σL ≤ σρ ≤ σH .
Fix an action profile y ∈ Y and a shock ε, it is easy to see that (making explicit the dependence on
(x, θ, ξ)):

1
{
σL(ε;x, θ, ξ) ≥ y

}
≤ 1 {σρ(ε;x, θ, ξ) ≥ y} ≤ 1

{
σH(ε;x, θ, ξ) ≥ y

}
Integrating over ε and ξ yields (5).17

Let us make two noteworthy points regarding ISD Bounds. First, as in Aradillas-Lopez and
Tamer (2008), Aradillas-Lopez (2010) and Molinari and Rosen (2008), analogous ISD Bounds may
be built using k ISD rounds, for k < ∞. In fact, it is easy to see that the more ISD rounds one
uses, the tighter the bounds. Second, and relatedly, bounds based on k ISD rounds hold for k′-ISD-
consistent beliefs if k′ ≥ k. In other words, for k-ISD-rounds bounds to hold we only need that
beliefs are k′-ISD-Consistent with k′ ≥ k. This observation is important, as researchers may wish
to explore the identifying power of different rounds of ISD. I formalize this below.

Remark 1. Let P k,Lf and P k,Hf be the ISD Bounds that result from k ISD rounds (defined analogously
to (4)). For any ISD-Consistent beliefs, ρ:

P k,L(y|x, θ) ≤ P k+1,L(y|x, θ) ≤ P ρ(y|x, θ) ≤ P k+1,H(y|x, θ) ≤ P k,H(y|x, θ)

for all k = 0, 1, 2, . . ..
Furthermore, say ρ is k′-ISD-Consistent (defined analogously to Assumption 2) with k′ ≥ k.

The following holds:

P k,L(y|x, θ) ≤ P ρ(y|x, θ) ≤ P k,H(y|x, θ)

for all k = 0, 1, 2, . . ..
All results below hold for k′-ISD-Consistent beliefs and ISD Bounds that result from k ISD

rounds, with k′ ≥ k.
17Note that beliefs ρ depend on ξ, so for the term in the middle we are effectively integrating over beliefs in different

games.
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It is also worth noting that firm-level bounds, i.e., bounds on the distribution of yf , can be derived
using the same argument we used for the outcome-level bounds in Theorem 2. Furthermore, when
yf is binary (say, yf = 0 or yf = 1) for all f , we can reduce the inequalities in (5) to a single
inequality per firm. This is an important case, as bounds at the firm level are easier to compute and
require less data to estimate precisely. Naturally, firm-level bounds are wider than outcome level
bounds, as they bind only the marginal distribution, rather than the joint, so estimation based on
firm level bounds will result in larger identified sets. I formalize firm-level bounds in the remark
below.

Remark 2. If Yf = {0, 1} for all f , the following firm-level ISD Bounds hold for almost all
(x, θ):

PLf (x, θ) ≤ P ρf (x, θ) ≤ PHf (x, θ)

where P ρf (x, θ) = P ρf (1|x, θ) is the probability of yf = 1 given beliefs ρ. PLf and PHf are defined
analogously.

Finally, building on results by Garrido (2021), a similar argument to the ones used in Theorems
1 and 2 can be used to build bounds on equilibrium prices for Bertrand pricing games between
multi-product firms with nested demand. As opposed to ISD Bounds, however, the these bounds
do not have an ISD interpretation to them. I show how these bounds are built in Appendix E.

3.2 Two Entry-Game Examples Continued

Before building the identified set, let us explore how Theorem 2 produces ISD Bounds for the entry
games presented in sections 2.3.1 and 2.3.2.

3.2.1 Independent Private Information Entry Game Revisited

Consider the independent private information game introduced in 2.3.1, and assume that there are
no common knowledge unobservables, ξ = ∅. Furthermore, say we want to see the implications of
Theorem 2 for outcome y = (1, 1). The right panel of Figure 4 depicts said implications.

To see this, note that beliefs ρ are ISD-Consistent, as they lie in the dashed green square
that represents the set of strategies that survive ISD. Given the independent εf assumption, the
probability that σρ ≥ (1, 1) is given by the orange rectangle. This rectangle is bounded from below
by the probability that σL ≥ (1, 1), which corresponds to the purple dotted area, and from above
by the probability that σH ≥ (1, 1) which corresponds to the light-blue area. Although harder to
visualize, similar bounds can be build for the rest of the outcomes.

The right panel of figure Figure 4 shows the result of the same exercise for outcome (0, 1). The
purple dotted area represents the probability that σL(ε) ≥ (0, 1), the light blue area represents the
probability that σH(ε) ≥ (0, 1) and the areas inside the orange square represent the probability that
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Figure 4: ISD Bounds in a 2× 2 Incomplete Information Entry Game
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P ρ2

P ρ1

P ρ(0, 1)P ρ(1, 1)

Note: Pf represents the entry probability of firm f . The blue (red) line represents the optimal entry probability
of firm 1 (2) given the entry probability of firm 2 (1). These lines are omitted from the right panel to minimize
clutter. In the left (resp. right) panel, the purple dotted are represent the lower ISD Bound for outcome (1, 1) (resp.
(0, 1)), and the lightblue area represents the respective upper ISD Bound. The areas inside orange squares represent
Pr(σρ(ε) ≥ y) for some arbitrary ISD-Consitent beliefs ρ.

σρ(ε) ≥ (0, 1). As before, for any ISD consistent ρ, the probability according to ρ lies between the
upper and lower ISD Bounds.

Note that in this example firms are wrong about their competitors’ strategies, i.e., ρfg 6= P ρg . As
a result, the distribution over outcomes under ρ is not compatible with a Bayes Nash Equilibrium.
Still, since beliefs are ISD-Consistent, ISD Bounds hold.

3.2.2 Complete Information Example

Consider the complete information example introduced in 2.3.2. As depicted in Figure 3, every
realization of (ξ1, ξ2) triggers a different SMSG, and for each (ξ1, ξ2) the set of strategies that
survive ISD is pinned down by different extreme strategies σH and σL.

For ξ /∈ 5 the game is dominance solvable. Hence, for any such ξ the only ISD-Consistent
beliefs are ρ(ξ) = σL(ξ) = σH(ξ). Furthermore, the corresponding vector of best responses is
σρ(ξ) = σL(ξ) = σH(ξ). For ξ ∈ 5 , in contrast, ISD has no bite so any belief is ISD-Consistent,
and the most that we can say about firms’ behavior is: σL(ξ) = (0, 0) ≤ σρ(ξ) ≤ σH(ξ) = (1, 1).

As before, say we want to build bounds for outcome (1, 1). To compute the lower bound we
need to find the values of ξ for which σL(ξ) ≥ (1, 1), which occurs only in region 9 . Similarly, to
compute the upper bound we need to find the values of ξ for which σH(ξ) ≥ (1, 1). This occurs in
regions 5 and 9 . Hence, ISD Bounds for outcome (1, 1) are:

PL(0, 1) = Pr
(
ξ ∈ 9

)
PH(0, 1) = Pr

(
ξ ∈ 5 ∪ 9

)
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3.3 Identified Set

In this subsection I derive the ISD identified set. To this end, consider the following assumption on
the data generating process.

Assumption 3 (Data Generating Process (DGP)). There is a real parameter vector θ0, and real
ISD-Consistent beliefs, ρ0 for every x and ξ. Furthermore, observed outcomes are drawn from the
distribution P 0(y|x) ≡ P ρ

0
(y|x, θ0), where, as in equation (4), P ρ is a complementary cumulative

distribution function.

Assumption 3 says that the model is correctly specified, and that the realization of each game
comes from beliefs that are ISD-Consistent. Then, by Theorem 2 ISD Bounds (expression (5)) hold
for θ = θ0 and ρ = ρ0. Hence, if θ does not satisfy :

PH(y|x, θ) ≤ P 0(y|x) ≤ PL(y|x, θ) (6)

for some y and some x, then θ 6= θ0. This intuition leads us to define the ISD identified set as
follows.

Definition 6 (ISD Identified Set). The ISD Identified Set, ΘISD, is the collection of all θ ∈ Θ such
that θ satisfies (6), i.e.:

ΘISD = {θ ∈ Θ : θ satisfies (6),∀x ∈ X ,∀y ∈ Y}

It is easy to see that an analogous identified set can be derived using the firm-level bounds from
Remark 2. In the next section I give some insights on the question of how informative are ISD
Bounds.

4 Identifying Power of ISD Bounds in Binary Games

A common concern when dealing with set identification is how informative is the identified set.
In this section I give some insights into this question by providing two results. First, I show that
for binary games with independent private information, i.e., εf ⊥ εg for all f 6= g, ΘISD is sharp,
meaning for all θ in the identified set we can find ISD-Consistent beliefs ρ such that the model
under (θ, ρ) matches the DGP. Second, I provide necessary and sufficient conditions to rule out the
existence of parameters value for which ISD never has any bite, and therefore trivially lie in the
identified set.18

4.1 Sharp Identified Sets

For the purpose of this model, the sharp identified set is the collection of θ’s for which there is some
set of beliefs ρ such that the resulting distribution over outcomes matches the DGP. Since the sharp

18A third (negative) result, relegated to Appendix C.3, shows a form of non-identification in entry games with
linear strategic effects.

21



identified set is defined relative to a DGP, whether the ISD identified set is sharp or not will depend
on the beliefs the researcher assumes generate the data. For example, if the researcher assumes that
the beliefs in the DGP satisfy rational expectations, i.e, data comes from (Bayes) Nash equilibrium
play, then ΘISD, which is built under the weaker notion of ISD, will not be sharp.

The main result of this section is that in binary games, when the beliefs in the DGP are assumed
to be ISD-Consistent and there is either independent private information or perfect information,
then the ISD Identified Set is sharp. Below, I provide the definition of the sharp identified set, and
formally state this result.

Definition 7 (Sharp Identified Set). Let P 0 be a DGP satisfying Assumption 3. The sharp identified
set, Θsharp, is the collection of θ ∈ Θ for which there is an ISD-Consistent ρ for each (x, ξ) such
that the implied distribution over outcome matches P 0. Formally:

Θsharp = {θ ∈ Θ : ∃ρ satisfying Assumption 2 s.t. P ρ(y|x, θ) = P 0(y|x) for all x and y} (7)

where P ρ and P 0 are the distributions over outcomes under (θ, ρ) and under (θ0, ρ0) respectively.

Theorem 3. For any class of binary games (i.e., Yf = {0, 1} for all f ∈ F) indexed by (x, θ, ξ) and
satisfying Assumptions 1 and 2, and any corresponding DGP satisfying Assumption 3, if either:

• εf ⊥ εg for all f 6= g, and εf has a continuous distribution with full support in R. Or,

• εf = ∅ for all f ∈ F , i.e., firms have complete information.

Then, the ISD identified set is sharp, i.e., ΘISD = Θsharp.

Proof. See appendix C.1.

The proof of Theorem 3 relies on showing that ΣISD contains only strategies that survive ISD.19

To get an idea of how this works, consider the case of independent private information without
unobserved heterogeneity, i.e., ξ = ∅, and note that this implies that for all (x, θ), all strategies
between σLf and σHf are the best response to some ISD-Consistent belief, ρf (see Figure 2). Hence,
all probabilities in the interval [PLf , P

H
f ] can be generated by an appropriate belief. By definition,

any θ ∈ ΘISD satisfies P 0
f ∈ [PLf , P

H
f ], so by the argument above we can find beliefs such that

P ρf = P 0
f . Finally, since the εf ’s are independent this implies that P ρ = P 0, which in turn implies

θ ∈ Θsharp.
The independent private information assumption in Theorem 3 is less constraining than what

it may seem at a first glance. This assumption is mainly ruling out situations where parties
are differentially informed, e.g., one party has full information while the others only have access
to independent private shocks. Put differently, Theorem 3 applies to any model in which the
informational value of the εf ’s can be decomposed into publicly and privately observed components,

19Theorem 1 shows that ΣISD contains all strategies that survive ISD, but it does not rule out that some of its
elements do are dominated by another strategy in ΣISD.
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like, for example, if εf = τf+ ε̃f for all f , where τf is public and ε̃f is private. In such case, we simply
need to group τf ’s with ξ as unobserved public information, and redefine the private information as
(ε̃f )f . Furthermore, Theorem 3 applies in to games with perfect information, in which case εf = ∅
for all f .

4.2 (Non-)Trivial ISD Bounds

Tamer (2003) and Aradillas-Lopez and Tamer (2008) use an “identification-at-infinity” argument to
show that point identification can be recovered if there is enough independent variation in the firms’
profit shifters. For example, consider a two-firm entry game and say a profit shifter of firm 2 goes to
infinity (resp. negative infinity) so that the firm will always (resp. never) choose to enter regardless
of the value of unobservables.20 In such case, since firm 2’s decision is a foregone conclusion, firm 1’s
problem reduces to a single agent problem. As a result, provided certain regularity conditions hold,
firm 1’s parameters are point identified. This result stresses the importance having wide variation
in profit shifters to tighten the identified set.

Here I provide a complementary result, Theorem 4, which gives necessary and sufficient conditions
for the existence of some θ that generates trivial ISD Bounds in binary games, i.e., for some θ,
PL(y|x, θ) = 0 and PH(y|x, θ) = 1 for all x and all y > (0)∀f .21 Any such θ lies in ΘISD not
because it fits the data well, but because it does not rule anything out. The conditions for Theorem
4 emphasize the importance of cross-sectional variation in variables that uniformly shift profits
across markets, such as market size, for tightening the ISD Bounds. In this sense, the conditions for
Theorem 4 are complementary to the conditions for point identification emphasized by Tamer (2003)
and Aradillas-Lopez and Tamer (2008), in that the two emphasize different sources of variation that
help with narrowing down the identified set.

To move in this direction, let us first specify the details of the game for which this result holds.
This specification is quite flexible and covers many models considered in the empirical literature.
Consider a class of binary SMSGs indexed by (x, θ, ξ) where payoffs are additively separable:

πf = Rf (yf , y−f ;x, θf,R) + yf

(
θcons,f + θsc,f

(√
θw,fξf +

√
1− θw,f εf

))
where θ = (θR,f , θcons,f , θsc,f , θw,f )f∈F is the vector of parameters of interest, and where θR,f is a
vector of parameters that controls Rf , θcons,f is a constant profit term from choosing yf = 1, θsc,f
is a scale parameter, and θw,f is a weight parameter that controls the share of total variance of
composite shock that comes from ξf .22 Finally, let us define f ’s marginal profit:

∆Rf (y−f ;x, θR) = Rf (1, y−f ;x, θR)−Rf (0, y−f ;x, θR)

20There is an implicit assumption here that the profit shifter that goes to infinity (negative infinity) has a positive
effect on profits.

21Note that by construction PL((0)∀f |θ) = PH((0)∀f |θ) = 1, so the ISD Bound for y = (0)∀f is always trivially
satisfied.

22In most empirical applications θw,f is assumed to be known. Theorem 4 still holds under this assumption.
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which is useful in stating and proving Theorem 4, below.

Theorem 4. There exists a θ ∈ Θ such that PL(y|x, θ) = 0 and PH(y|x, θ) = 1 for all y > (0)∀f

and all x, if and only if Rf satisfies:

sup
x∈X

{
min

y−f∈Yf
∆Rf (y−f ;x, θf,R)

}
< inf

x∈X

{
max
y−f∈Yf

∆Rf (y−f ;x, θf,R)

}
(8)

for all θf,R and all f ∈ F .

Proof. See appendix C.2

To get an intuition for this result, consider a symmetric two-firm incomplete information entry
game with payoffs:

πf =


Rmon(x)− θec + θscεf if yf = 1, y−f = 0

Rduo(x)− θec + θscεf if yf = 1, y−f = 1

0 if yf = 0

where θec and θsc represents the entry cost and the scale parameter, respectively. And where,
Rmon > Rduo are known monopolic and duopolistic profit functions. If Rduo(x) < Rmon(x′) for all
x and x′, then we can set θec = (infxR

mon(x) + supxR
duo(x))/2 and for any θsc > 0 we have:

Rduo(x)− θec
θsc

< 0 <
Rmon(x)− θec

θsc
,∀x

letting θsc → 0 makes being a monopolist (duopolist) arbitrarily profitable (unprofitable) simultaneously
for all x, which implies that we can make ISD Bounds arbitrarily uninformative. If, in contrast,
there are x and x′ such that Rmon(x) < Rduo(x′), then any (θec, θsc) that satisfies the inequality
above for x will violate it for x′, hence is not possible to make being a monopolist (duopolist)
arbitrarily profitable (unprofitable) for all x simultaneously.

As mentioned above, Theorem 4 stresses the importance of cross-sectional variation in narrowing
down the identified set. In particular, it highlights the role of variables that uniformly shift profits
across markets, such as market size. Intuition suggests that the more variation in market size we
have, i.e., the larger Rduo(x′)−Rmon(x) > 0, the more values of θ are ruled out by ISD Bounds.

5 Monte Carlo Exercises and Bound Comparison

Here I provide some Monte Carlo exercises to study the performance of ISD Bounds. First, in Section
5.1, I provide Monte Carlo experiments for the case of incomplete information with unobserved
heterogeneity. Second, in Section 5.2, I focus on a entry game of complete information and compare
ISD Bounds to previous bounds proposed in the literature
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5.1 Incomplete Information Entry Game with Unobserved Heterogeneity

Here I study the performance of ISD Bounds in games of incomplete information. To this end,
consider the independent private information entry game described in section 2.3.1 and 3.2.1, except
that the number of firms is arbitrary, and there is unobserved heterogeneity in the form of firm
specific unobserved profit shifters ξf ∼ N(0, 1) for all f . Let the profit function be:23

πf = yf

(
xf

(2 +
∑

g 6=f yg)
2
− θec + θsc

(√
θwξf +

√
1− θwεf

))

where εf ∼ N(0, 1) for all f , and where θw controls the amount of randomness (from the perspective
of the econometrician) that comes from private information vs. unobserved heterogeneity.

I set the parameters to θ0
ec = 1, θ0

sc = 1 and conduct separate experiments for the case without
unobserved heterogeneity, θ0

w = 0, and for the case with unobserved heterogeneity, θ0
w = 0.5.

Furthermore, I let X = {0.5, 2.5, 4.5}|F|. Figure 5 depicts the the best responses generated in
the two player case, for each possible x ∈ X , and for ξ1 = ξ2 = 0.24 The case without (with)
unobserved heterogeneity is depicted on the left (right) panel. The green dots represent the Bayes
Nash equilibria of each game, while the green areas represent the strategies that survive ISD.

Figure 5 shows that when θw = 0. although there is substantial variation in x, no game generates
multiple equilibria, and the all games are dominance solvable. For every x ISD Bounds pin down a
unique distribution over outcomes, i,e, PL = PH , and give us point identification. In contrast, when
θw = 0.5 the DGP is able to generate multiple equilibria for large values of x and point identification
is not guaranteed. Note that the best responses in the two cases differ only because the variance of
the private information component is lower in when θw = 0.5, so firms’ best responses are (slightly)
more sensitive to changes in the competitors’ entry probabilities.

For each case, I simulate 100 samples of M = 4000 markets each. For each market, I draw an
x ∈ X using a uniform distribution and I draw a ξf for each firm from a standard normal. Then, for
each (x, ξ) I find a Bayes Nash Equilibrium under θ0.25 This process yields a sample (Ym, Xm)Mm=1.
For inference I follow Fan and Yang (2022) in using the test proposed by Andrews and Soares (2010)
(AS) (see Appendix D for details).

Let θ̂ec and θ̂sc be guesses for θ0
ec and θ0

sc, respectively. Keeping θ̂sc = θ0
sc I perform the AS

test for each sample and for each θ̂0
ec in an equally spaced grid going from 0 to 2θ0

ec, and compute
the share of samples for which the null (θ̂ec, θsc, θw) ∈ ΘISD gets rejected. I conduct an analogue
exercise for θsc.

The results of this exercise can be found in Figures 6 and 7 for the case without and with
unobserved heterogeneity respectively. In each case the horizontal axis of each plot represents
the ratio of the guess to the true parameter, e.g., θ̂ec. The identified sets for θec and θsc are very

23The function xf/(2 +
∑
f ′ 6=f yf ′) is a reduced for profit from a Cournot competition second stage.

24The condition ξ1 = ξ2 = 0 is only relevant for the case with unobserved heterogeneity. When there is no
unobserved heterogeneity θw = 0, the ξf ’s get multiplied by zero.

25I start the solution algorithm from a randomly chosen vector of entry probabilities, so there is not much that I
can say about the actual Equilibrium Selection Mechanism behind the simulated data.
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Figure 5: Incomplete Information Best Responses for values of x (Left: θw = 0. Right: θw = 0.5)

Note: Two-way best responses for each x ∈ X . Each column (row) depicts the games for a fixed value of x1 (x2). The
horizontal (vertical) axis of each plot represents the entry probability of firm 1 (resp. 2) and the blue (resp. orange)
line represents its best response. Green dots represent the Bayes Nash equilibria, and the light green areas represents
the strategies that survive ISD.

informative about the underlying parameters. The parameters seem to be (close to) point identified.
This should not be surprising in light of the “identification at infinity” arguments advanced by Tamer
(2003) and Ciliberto and Tamer (2009), and more recently Aradillas-López and Rosen (2022).

In both figures I include the confidence set on θw for completeness. The figures show that ISD
Bounds do a reasonably good job of distinguishing the extreme cases. When there θ0

w = 0 the
bounds quickly rule out values too different from zero, but when θ0

w = 0.5 the bounds seem to only
rule out the extreme cases, θw = 1 and θw = 0, and have a hard time ruling out intermediate values
of θw. The implication is that the set of distributions over outcomes allowable by ISD is not very
sensitive to changes in θw.

5.2 Complete Information Probability ISD Bounds Comparison

Tamer (2003) and Ciliberto and Tamer (2009) (CT) pioneered the probability bounds approach to
set identification for discrete games of complete information. This approach has also been studied
by Aradillas-Lopez and Tamer (2008) and Fan and Yang (2022) (FY). In this subsection I study
how ISD Bounds compare to CT and FY Bounds. To this end, I consider a complete information
entry game, in the spirit of CT, and provide comparisons between CT, FY and ISD Bounds.

In our notation, CT Bounds assume that beliefs, ρ, satisfy rational expectations so that the
data is generated by Nash equilibria. Under this assumption, if y is the unique (pure strategy)
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Figure 6: Share of not Reject for |F| = 2 (top row) and |F| = 3 (bottom row) Under Incomplete
Information and θw = 0

Note: The Left, middle and right columns show the results for θec, θsc, and θw, respectively. The top (bottom) row
represents the 2 (3) player case. In each case, the x-axis depicts values of θ̂ec (left) and θ̂sc (middle) and θ̂w. The
y-axes show the share of samples for which the null that the corresponding parameter is equal to the parameter in
the DGP is not rejected.

Figure 7: Share of not Reject for |F| = 2 (top row) and |F| = 3 (bottom row) Under Incomplete
Information and and θw = 0.5

Note: The Left, middle and right columns show the results for θec, θsc, and θw, respectively. The top (bottom) row
represents the 2 (3) player case. In each case, the x-axis depicts values of θ̂ec (left) and θ̂sc (middle) and θ̂w. The
y-axes show the share of samples for which the null that the corresponding parameter is equal to the parameter in
the DGP is not rejected.
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Table 1: CT vs. ISD vs. FY Bounds for (0, 1)

Bound Type Lower Bound Upper Bound

CT (0, 1) Pr
(
ξ ∈ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6

)
ISD y = (0, 1) Pr

(
ξ ∈ 2 ∪ 3 ∪ 6 ∪ 9

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6 ∪ 9

)
ISD y1 = 0 Pr

(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 5 ∪ 6

)
ISD y2 = 1 Pr

(
ξ ∈ 2 ∪ 3 ∪ 6 ∪ 9

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6 ∪ 9

)
FY y1 = 0 Pr

(
ξ ∈ 1 ∪ 2 ∪ 3

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6

)
FY y2 = 1 Pr

(
ξ ∈ 3 ∪ 6 ∪ 9

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6 ∪ 8 ∪ 9

)
equilibrium then σρ = y, and if σρ = y then y must be in an equilibrium. Hence:

1{{y} = NE(x, θ, ξ)} ≤ 1{y = σρ(x, θ, ξ)} ≤ 1{y ∈ NE(x, θ, ξ)}
PLCT (y|x, θ) ≤ P ρ(y|x, θ) ≤ PHCT (y|x, θ))

where NE(x, θ, ξ) is the set of pure strategy equilibria of the (x, θ, ξ)-game, and where the second
line comes from integrating over ξ, where PLCT (y|x, θ) and PHCT (y|x, θ)) are the integrals of the LHS
and the RHS respectively, and they represent the lower and the upper CT probability bounds.
Similarly, FY bounds are based on the idea that players will never choose a dominated action and
will always choose a dominant action. Hence:

1{{yf} = Σ1
f,ISD(x, θ, ξ)} ≤ 1{y = σρ(x, θ, ξ)} ≤ 1{y ∈ Σ1

f,ISD(x, θ, ξ)}
PLFY (yf |x, θ) ≤ P ρf (yf |x, θ) ≤ PHFY (yf |x, θ))

where Σ1
f,ISD is the set of player-f strategies that survive one ISD round, as per Theorem (1).

Table 1 compares CT Bounds, ISD Bounds, firm-level ISD Bounds (as defined in Remark 2) and
FY Bounds for the outcome (0, 1). For CT Bounds, ISD Bounds, and firm-level ISD Bounds, the
“difference” between the upper and the lower bound is equal to region 5 , hence for outcome (0, 1)

both bounds are equally informative. For FY Bounds, in contrast, the “difference” between the
lower and the upper bounds is larger as it include areas where a single ISD round is not able to rule
out anything for one player, but iterative application of would ISD result more precise prediction.

The difference between CT Bounds and ISD Bounds becomes apparent in Table 2, where I
consider outcome (0, 0). Ignoring mixed strategies, there is no value of ξ for which (0, 0) is one
of many equilibrium outcomes, so there is no difference between CT upper and lower bounds. In
contrast, y = (0, 0) survives ISD in regions 1 and 5 , so the upper ISD Bound is larger than
the upper CT Bound. Here, again, FY bounds are wider than either CT, ISD, and firm-level ISD
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Table 2: CT vs. ISD Bounds for (0, 0)

Bound Type Lower Bound Upper Bound

CT (0, 0) Pr
(
ξ ∈ 1

)
Pr
(
ξ ∈ 1

)
ISD (0, 0) Pr

(
ξ ∈ 1

)
Pr
(
ξ ∈ 1 ∪ 5

)
ISD y1 = 0 Pr

(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 5 ∪ 6

)
ISD y2 = 0 Pr

(
ξ ∈ 1 ∪ 4 ∪ 7 ∪ 8

)
Pr
(
ξ ∈ 1 ∪ 4 ∪ 5 ∪ 7 ∪ 8

)
FY y1 = 0 Pr

(
ξ ∈ 1 ∪ 2 ∪ 3

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6

)
FY y2 = 0 Pr

(
ξ ∈ 1 ∪ 4 ∪ 7

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 4 ∪ 5 ∪ 7 ∪ 8

)
Bounds.

Let us move to the Monte Carlo experiments. Consider the entry game introduced in sections
2.3 and 3.2, with |F| = 2, 3, and assume that firm’s get profits:

πf (yf , yf ′ ;xf , θ, ξf ) = yf

(
xf

(2 +
∑

f ′ 6=f y−f )2
− θec + θscξf

)

with θ = (θec, θsc), and where ξ ∼ N(0, 1).
For simulations I set (θ0

ec, θ
0
sc) = (1, 1) and generate 100 Monte Carlo Samples consisting of 4000

markets each. For each market I draw Xm ∈ {0.5, 2.5, 4.5}|F| from a uniform distribution, and draw
for each firm an ξfm from a standard normal. For each (Xm, ξm) I simulate the complete information
game assuming that the data come from a randomly chosen pure strategy Nash equilibrium.

Figure 8 depicts the the best responses generated in the two player case for each possible x ∈ X ,
when ξ1 = ξ2 = 0. If xf = 0.5, no entry is dominant for f , whereas if xf = 4.5 then entry is
dominant. For all the plots in the borders, at least one firm has a dominant strategy and the game
is dominance solvable. When xf = 2.5 for both firms, everything survives ISD. The figure shows
that the range of xf is wide enough to produce every possible game, and that the ISD has no bite
for many of the games that this DGP generates.

As before, for each Monte Carlo sample I compute the AS (see Appendix D) and compute the
share of samples for which the hypothesis θ = θ0 is not rejected. As expected, CT Bounds provide
the smallest confidence set, followed by outcome-level ISD Bounds, then firm-level ISD Bounds, and
finally FY bounds. Regardless of the type of bounds, the confidence sets for both parameters seem
to be large larger with 3 firms rather than 2. This is to be expected, since intuition suggests that
the set strategies that survives ISD increases with the number of players.
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Figure 8: Complete Information Two-way Best Responses for Values of x ∈ X

Note: Two-way best responses for each x ∈ X . Each column (row) depicts the games for a fixed value of x1 (x2). The
horizontal (vertical) axis of each plot represents the entry probability of firm 1 (resp. 2) and the blue (resp. orange)
line represents its best response. Green dots represent the (pure strategy) Nash equilibria, and the light green areas
represents the strategies that survive ISD.

Figure 9: Pr(θ̂ ∈ ΘISD) for |F| = 2 (top) and |F| = 3 (bottom) under Complete Information and
Unobserved Heterogeneity

Note: The left column shows the results for θec and the right column for θsc. The top row shows the results for
|F| = 2, and the bottom row for |F| = 3. For each column, the horizontal axis represents θ̂ec and θ̂sc. Finally, in all
subplots the vertical axis represent the percentage of samples where the null hypothesis that (θec, θsc) = (1, 1) is not
rejected.
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6 Airline Industry Background and Data

6.1 Industry Background and the JetBlue/Spirit Merger

Over the past fifteen years the U.S. Airline Industry has seen a marked trend towards higher
concentration. Just between 2010 and 2013 three mega-mergers took place in the U.S.: Delta/Northwest
(2010) United/Continental (2012), and American/US Airways (2013). At their respective times,
each of these mergers produced the largest carrier in the world. Furthermore, American Airlines
remains the largest carrier to this day.26

More recently, in 2020, American and JetBlue created Northeastern Alliance with the alleged
goal of realizing economies of scope through code sharing and network externalities. The alliance
was contested by the Department of Justice on the grounds that it reduced competition, and on
May 2023 a federal judge ruled that the alliance violated antitrust law and forced the parties to end
it.

Against this backdrop, on March of 2022 JetBlue offered to buy Spirit for $3.8 billion. The
Department of Justice sued to block the acquisition, alleging that it would increase prices and harm
consumers, while JetBlue and Spirit defended the merger on the grounds that it would allow them
to realize economies of scope, expand their network and lower their prices. On January 2024, the
merger was blocked by a federal judge.

To evaluate this merger, and to put ISD Bounds to test, in the next section I propose a model
that allows me to capture the main pro and anti-competitive effects through which the merger
is likely to affect consumer welfare. On the anti-competitive side, the merger is likely to result
in higher prices through decreased competition in markets where JetBlue and Spirit overlap. On
the pro-competitive side, if a larger network allows firms to realize economies of scope that reduce
marginal costs or entry costs, then the price increase in overlapping markets will be ameliorated,
and entry of the merged entity into new markets will result in increased competition.

Figure 10 and Table 3, below, use data from the DB1B dataset for the first quarter of 2019 (see
Section 6.2) to compute some basic details about the merging parties. Figure 10 shows the network
of each airline, while Table 3 shows the number of markets (non-directional airport pairs) where
the each firm was active, as well as the number of markets where each firm was a potential entrant,
i.e., had activity at both endpoints.27

The table reveals that JetBlue’s and Spirit’s networks overlap in 30 markets and that they jointly
serve 257, hence they overlap in roughly 12% of the markets. Additionally, the table reveals that
the carriers are simultaneously potential entrants in 317 different markets, these are markets where
the number of potential entrants would decrease due to the merger. At the same time, the joint
firm would be a potential entrant in 1281 markets, which is 209 additional markets than if we count

26Although national concentration after these mergers increased, this did not necessarily translate into increased
concentration at the route level. For example, the Delta/Northwest merger did not raise opposition from the
Department of Justice because the carriers were direct competitors only in a handful of markets.

27The number of Active markets in Table 3 does not match the number of Direct Routes in Figure 10, because
Active markets include non-direct routes.
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the status quo of level 1072(= 860 + 529− 317).28

Table 3: Markets where JetBlue (B6) and Spirit (NK) are Active/Players

Carrier Active P layer
B6 118 1016
NK 169 534

Overlap 30 381
Joint 257 1281

Note: A firm is active in a market if it serves more than 100 passengers and its market share is more than 1%. A
firm is a player in a market if it is active in at least one other market at each endpoint.

Figure 10: Direct Routes for JetBlue (B6) and Spirit (NK).

6.2 Data Description

My main data source is the Origin and Destination Survey (DB1B) collected by the Bureau of
Transportation Statistics (BTS). The data consists of a sample of 10% of all trips taken within the
U.S. in a given quarter/year. For each trip, it contains the price of the ticket as well as the origin
and destination airports, and all layover airports. The DB1B is a widely used data source in the
airline literature (e.g., Berry (1992), Ciliberto and Tamer (2009), Aguirregabiria and Ho (2012)).

I use the DB1B data set for the first quarter of 2019, and supplement it with information on
airport locations (city) from the BTS, as well as population data from the Census Bureau. I keep
the airports located at the 70 top MSAs in terms of population, which yields a total of 80 airports
over 66 MSAs.29 Table 4 presents the list of the top 15 MSAs ranked by the population, while Table
5 shows some airport summary statistics.

A market corresponds to a non-directional airport pair regardless of the number of stops. With
80 airports, this would imply 3160(= 80 · 79/2) markets, however, I drop airport pairs that lie in
the same MSA (e.g. JFK and La Guardia), and hand-drop airport pairs that are too close to have
flights between them (e.g., JFK-PHL, PHL-BWI, BWI-DCA) leaving a total of 3078 markets.

28Consider a market that connects airports A and B. If pre-merger JetBlue has operations only on A, and Spirit
has operations only in B, then neither firm is a potential entrant to this market. After the merger, however, the
merged entity is a potential entrant because it has operations at both end points.

29Some MSAs are lost because there is no airport attached to them, or because the DB1B does not show flights
involving airports in these MSAs and airports in other top-80 MSAs.
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Table 4: Top 15 Cities by MSA Population

Airports City State Population
EWR− JFK − LGA NewY ork NY 19.2

LAX − LGB LosAngeles CA 13.2
MDW −ORD Chicago IL 9.5
DAL−DFW Dallas TX 7.6
HOU − IAH Houston TX 7.1
DCA− IAD Washington DC 6.3
FLL−MIA Miami FL 6.2

PHL Philadelphia PA 6.1
ATL Atlanta GA 6.0

PHX −AZA Phoenix AZ 4.9
BOS Boston MA 4.9

OAK − SFO SanFrancisco CA 4.7
ONT Riverside CA 4.7
DTW Detroit MI 4.3
SEA Seattle WA 4.0

Note: Top 15 cities in terms of MSA population (millions) and their airports.

In terms of carriers, I keep American (AA), JetBlue (B6), Delta (DL), Spirit (NK), United
(UA), and Southwest (WN). I group the remaining airlines under a fictional Low Cost Carrier
(LCC). Table 6 presents summary statistics, across airports, of the number of direct destinations
served by each carrier, and Table 7 presents summary statistics for each carrier at the market level.

Table 5: Airport Summary Statistics

Stat Population Carriers Destinations
Mean 3.8 5.3 34.2
SD 4.1 1.7 18.8
Min 0.8 1.0 1.0
q25 1.3 5.0 18.8

Median 2.2 6.0 35.0
q75 4.8 7.0 49.2
Max 19.2 7.0 69.0

Note: Airport summary statistics. Population is measured in millions of people, Carriers represents the number of
carriers that have a flight arriving to/departing from an airport, and Direct Destinations represents the number of
unique airports that can be reached from an airport via a direct flight.

Finally, Table 8 shows the distribution of number of players across markets. Each row represents
said distribution conditional on the corresponding carrier being a player. It is noteworthy that in
aggregate the legacy airlines are the unique player in 103 markets, and non legacy carriers are the
unique player in 249 markets. In these markets carriers face a single agent problem, so for all
parameter values the lower and higher ISD bounds concide, i.e., PL = PH . AS such, these markets
will be particularly helpful in pinning down the parameter values. In fact, in principle one could
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Table 6: Direct Destinations Across Airports for Each Carrier

Carrier min p25 mean p50 p75 max SD
AA 0.0 4.0 10.4 7.0 9.0 66.0 14.4
B6 0.0 0.0 2.9 1.0 3.0 36.0 6.1
DL 0.0 3.0 10.6 6.0 10.0 68.0 13.9
LLC 0.0 3.0 9.4 7.0 11.0 51.0 10.1
NK 0.0 0.0 4.1 0.0 5.2 27.0 6.9
UA 0.0 3.0 9.2 5.5 9.0 62.0 13.4
WN 0.0 7.0 25.2 25.5 41.5 59.0 19.8

Note: Summary statistics (across airports) of the number of direct flights offered by each carrier.

recover point identification from these markets alone.

7 Parametrized Airline Model

The model consists of a two stage game. In the first stage firms simultaneously and independently
choose whether to enter a market or not. In the second stage firms compete in prices. In what
follows, I present the building blocks of the model in reverse order.

7.1 Second Stage: Price Competition

The stage starts with all carriers and consumers in market m observing the outcome of the entry
stage, ym = (yfm)f∈Fm ∈ {0, 1}|Fm|, where Fm is the number of players/potential entrants. From
among the carriers that entered the market, i.e., yfm = 1, consumer i chooses which one to fly with,
f ∈ F , or the outside option f = 0. By choosing carrier f consumer i gets:

uifm = β′xdfm − λpfm + ϑfm + ϕifm if f ∈ F
ui0m = ϕi0m if f = 0

Where xdfm is a vector of exogenous demand/utility shifters, the impact of which is controlled
by the vector of parameters β. pfm is the price charged by airline f in market m and λ is the
price sensitivity. Finally, ϑfm is an unobserved (by the econometrician) taste shifter, ϕifm is an
idiosyncratic taste shock.

The distribution of (ϕifm)f∈F∪{0} is such that the induced demand is nested logit with nesting
parameter τ ∈ (0, 1], where one nest contains the outside option, and the other nest contains all
products.30 Under this assumption, the market share of firm f is:

sfm =
e(β′xdfm−λpfm+ϑfm)/τ

Dm

Dτ
m

1 +Dτ
m

30Cardell (1997) showed that there exist a random variable, ιifm, such that ϕifm = ιifm + τϕ̃ifm generates a
nested logit distribution with nesting parameter τ , where ϕifm is an type-I extreme value shock.

34



Table 7: Carrier Level Summary Statistics

Carrier Statistic P layer Active Act|Pl Passengers Price
AA Mean 0.75 0.31 0.41 1596.0 2.4

SD 0.43 0.46 0.49 2544.6 0.6
B6 Mean 0.33 0.04 0.12 3719.0 1.9

SD 0.47 0.19 0.32 3321.8 0.6
DL Mean 0.75 0.27 0.36 1650.0 2.4

SD 0.43 0.44 0.48 2398.5 0.6
LCC Mean 0.73 0.13 0.18 1733.0 1.5

SD 0.44 0.34 0.38 2363.8 0.5
NK Mean 0.17 0.05 0.32 1183.0 1.1

SD 0.38 0.23 0.47 1078.0 0.1
UA Mean 0.7 0.18 0.25 1926.0 2.5

SD 0.46 0.38 0.43 2922.2 0.6
WN Mean 0.61 0.34 0.56 1908.0 1.8

SD 0.49 0.47 0.5 2449.1 0.4

Note: Carrier level means and standard deviations. Player (Active) represents the share of markets where the carrier
is a potential entrant (is active, i.e., Yfm = 1). Act|Pl represents the share of markets where the carrier is active
conditional on it being a player. Passengers and Price correspond to the number of passengers and the price in active
markets.

where Dm is the logit denominator:

Dm =
∑

f :yfm=1

e(β′xdfm−λpfm+ϑfm)/τ

The parameter τ controls the substitution between the flying with any carrier and the outside option.
When τ = 1, the model reduces to a standard multinomial logit, whereas when τ approaches zero
the substitution between the flying and the outside option vanishes.

Carriers that did not enter the market during the entry stage do nothing. Carriers that did
enter the market choose prices simultaneously and independently. Carrier f in market m chooses
pfm to solve:

max
pfm

sizem(pfm − cfm)sfm

where sizem is the size of market m, and cfm is the constant marginal cost of production which I
parametrize as:

log(cfm) = η′xcfm + υfm

where xcfm are cost shifters of firm f in market m, η is a vector of parameters that controls the
effect of the cost shifters, and υfm is a common knowledge random shock which is unobserved by
the econometrician.

35



Table 8: Distribution of Number of Players Across Markets

Players AA B6 DL LCC NK UA WN Total
0.0 0 0 0 0 0 0 0 150
1.0 36 25 67 206 0 0 18 352
2.0 140 65 82 40 7 85 91 255
3.0 252 45 263 183 12 254 122 377
4.0 263 62 277 244 23 216 119 301
5.0 838 101 838 815 75 818 775 852
6.0 538 473 544 514 172 535 500 546
7.0 245 245 245 245 245 245 245 245
Total 2312 1016 2316 2247 534 2153 1870 3078

Note: For a given carrier, say AA, the corresponding column shows the frecquency of "number of players" across
markets in which AA is active. Similarly, the last row shows the number of markets in which AA is a player. The
last column shows how many markets have any given number of players. Note that, becuase of double (and triple,
quadruple, etc.) counting, the last row is not the sum of the rest of the numbers in the row, but rather the sum
divided by the number of players.

7.2 Entry Game

Potential entrants in market m. Fm, simultaneously choose whether to enter market or not. Each
carrier has ISD-Consistent beliefs, ρfm ∈ Σ−fm,ISD, regarding its competitors strategies and chooses
yfm ∈ {0, 1} to maximize its interim profit:

Πfm = yfm

(
Rf (ρfm;xm)− z′fmθec,f + θsc,f

(√
θw · ξfm +

√
1− θw · εfm

))
(9)

where Rf (ρfm;xm) is f ’s expected variable profit of firm f , with the expectation taken over ρfm,
and the demand and marginal cost shocks (ϑg, υg)∀g. The vector zfm contains entry cost shifters
controlled by the parameter vector θec,f , while θsc,f is the scale parameter of the joint profit shock,
√
θwξfm +

√
1− θwεfm. As before, ξfm is public information and εfm is private information, both

of which follow a standard normal distribution, and θw ∈ [0, 1] controls the amount of variation that
comes from each source.

Garrido (2021) and Nocke and Schutz (2018) show that entry always decreases equilibrium profits
in a (nested) logit Bertrand pricing game. As a result, Πf exhibits decreasing in (yfm, y−fm), which
guarantees that the game is in fact an SMSG for all θ = ((θec,f , θsc,f )f , θw), all (xm, zm), and all
ξm. Since many beliefs may be ISD-Consistent, our solution concept does not pin down a unique
distribution over outcomes for all observables, θ and ξ. Hence, ISD Bounds are necessary for
estimation.

8 Estimation and Results

I estimate the game in two stages. First I estimate the demand and cost parameters that determine
the pricing stage outcomes using standard IO techniques. Then, I use these estimates to compute
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the expected variable profits, Rfm, under every possible market structure, ym ∈ Ym and use these
expected variable profit estimates to estimate the entry stage parameters.

8.1 Pricing Game Estimation

For demand estimation, I use the nested logit inversion from Berry (1994) to get the following
estimable expression which I estimate using 2SLS.

log

(
sfm
s0m

)
= β′xdfm − λpfm + (1− ρ) log

(
sfm

1− s0m

)
+ ϑfm

Demand shifters in xdfm include distance between airports (measured in thousands of kilometers),
distance squared, carrier dummies, and as in Aguirregabiria and Ho (2012) I control for hub size,
i.e., the geometric mean of the total population served by direct flights at both end-points by carrier
f , as well as origin/destination airport dummies. Table 9 shows some summary statistics of the
demand (and marginal cost) shifters.

To deal with the endogeneity of pfm and log
(

sfm
1−s0m

)
, I use the number of active carriers, the

number of direct flights, whether an endpoint is a hub, and a dummy for monopolists markets.
Intuitively, given that firms do not learn about demand and marginal cost shocks until after entry
decisions are made, all of these variables are orthogonal to the shocks in the pricing game.31

With the demand parameter estimates at hand I back out the marginal costs that rationalize
the observed prices, cfm, and use these to estimate the marginal cost equation via OLS. Marginal
cost shifters in xcfm include distance, distance squared, the geometric mean across end points of the
number of direct destinations for a given carrier, i.e., carrier_airport_ndest, and airport and carrier
dummies. See Table 9 for summary statistics.

The demand and marginal cost estimates can be found in Table 10. Parameter estimates have
all the expected signs and are, in magnitude, in line with the previous research. It is noteworthy the
effect of carrier dummies in demand and marginal are what one would expect. While legacy airlines,
i.e., American, Delta, and United, are perceived as higher quality than the low cost counterparts,
i.e., Jet Blue, Spirit, Southwest, and LCC, they also have higher marginal costs.

8.2 Entry Game Estimation

[TBA]

8.3 Counterfactuals: Spirit/JetBlue Merger

[TBA]
31Bontemps et al. (2023) and Aguirregabiria and Ho (2012) use similar instruments.

37



Table 9: Demand and Marginal Cost Controls Summary Statistics

variable Statistic AA B6 DL LCC NK UA WN
p Mean 2.5 1.8 2.6 1.4 1.1 2.6 2.0

Median 2.4 1.7 2.6 1.1 1.1 2.5 2.0
SD 0.5 0.5 0.6 0.6 0.1 0.5 0.4

distance Mean 2.0 2.0 1.9 2.0 1.9 2.2 1.9
Median 1.8 1.7 1.6 1.7 1.7 2.1 1.7
SD 1.1 1.2 1.1 1.0 0.9 1.1 1.0

distancesq Mean 5.0 5.6 4.8 5.0 4.3 6.0 4.7
Median 3.1 3.0 2.6 3.0 2.9 4.3 3.0
SD 4.8 5.8 4.8 4.8 3.8 5.2 4.4

hubsize_AH Mean 71.7 53.6 66.2 55.3 68.8 76.4 83.1
Median 68.6 55.2 61.2 52.1 63.0 72.4 77.7
SD 27.3 19.8 27.2 26.3 23.4 27.3 29.9

ndest Mean 13.6 9.8 14.2 15.8 13.5 13.8 20.2
Median 11.8 8.8 12.7 14.5 12.7 13.5 18.4
SD 8.8 4.7 8.7 7.0 4.4 8.5 8.7

Note: Carrier specific mean/median/s.d. for demand and marginal cost variables. Price is measures in of dollars,
distance in thousands of kilometers, hub size is the geometric mean, across end-points, of the aggregate population
(in millions) connected by directs flights, and carrier airport destinations is the geometric mean of the number of
direct destinations at each end point.

9 Closing Remarks

I provided probability bounds on (the distribution of) outcomes of games, and showed that they pin
down an identified set for the parameters of interests. The bounds are based on an ISD argument
(ISD Bounds), so they are robust to multiple equilibria both in pure and mixed strategies, as well
as to non-equilibrium play as long as beliefs are ISD-Consistent. As opposed to previous bounds
proposed in the literature, ISD Bounds can accommodate games of discrete or continuous strategies
of any dimensionality, and allow for any informational structure regarding the players’ private shocks
(e.g., complete information, independent private information, privileged information), and they are
informative about the underlying informational structure. i.e., different informational structures
will produce different bounds.

To maximize the bite of ISD Bounds I introduce the Strategically Monotonic Supermodular
Games, i.e., games where payoffs are supermodular on own actions, and exhibit either increasing
differences or decreasing differences between own and competitors’ actions. I argue that for these
games ISD is informative, in that it rules out large swaths of the strategy set, and useful, in that
the bounds are easy to compute.

In Monte Carlo simulations, I show that ISD Bounds are informative about the parameters of
interest. Furthermore, I show that the bounds are able to inform about the relative degree of private
information vs. unobserved heterogeneity in the underlying DGP.

Finally, in an application to the airline industry I show that ISD Bounds are practical and
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Table 10: Second Stage Nested Logit

(1) (2)
log_csos log_mc

p -2.038∗∗∗

(0.300)

log(s_f|In) 0.184∗∗

(0.068)

distance 0.422∗∗∗ 0.196∗∗∗

(0.092) (0.013)

distance_sq -0.028∗∗ 0.007∗∗

(0.013) (0.003)

hub_size_AH 0.028∗∗∗

(0.001)

AA 0.000 0.000
(.) (.)

B6 0.516∗∗ -0.358∗∗∗

(0.192) (0.017)

DL 0.676∗∗∗ 0.089∗∗∗

(0.070) (0.006)

LCC -1.282∗∗∗ -0.777∗∗∗

(0.280) (0.020)

NK -2.491∗∗∗ -1.044∗∗∗

(0.348) (0.015)

UA 0.124∗∗ 0.023∗∗

(0.041) (0.007)

WN -0.953∗∗∗ -0.292∗∗∗

(0.154) (0.007)

ndest 0.003∗∗∗

(0.000)

Constant 0.152 0.247
(0.738) (0.179)

Observations 8120 8120
AirportFE Yes Yes
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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informative about the parameters of interest. I take advantage of these estimates to evaluate the
proposed merger between JetBlue and Spirit and find, in counterfactual simulations, that [TBA]
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A Proof of Theorem 1 and Best Response Iteration

A.1 Proof of Theorem 1

Here I prove Theorem 1. To this end, it is useful to show lemma 1, below, which states that
conditions the define an SMSG (Definition 5), hold for the game written with interim profits.

Lemma 1 (Interim SMSG). Let the (x, θ, ξ)-game be an SMSG. Then (omitting dependence on
(x, θ, ξ) for brevity):

1.a. Complete Lattice Strategy Set: The strategy set Σf , together with the partial order “≥”
is a complete and compact lattice for all f ∈ F , where σf ≥ σ′f ⇔ σf (εf ) ≥ σ′f (εf ) for all
εf ∈ Ef .

1.b. Order Upper-Semi Continuity: The interim profit function, Πf , is order upper semi-
continuous. This is, for any totally ordered set C ⊂ Yf :

lim sup
yf∈C,yf↓inf(C)

Πf (yf , σ−f , εf ) ≤ Πf (inf(C), σ−f , εf )

lim sup
yf∈C,yf↑sup(C)

Πf (yf , σ−f , εf ) ≤ Πf (sup(C), σ−f , εf )

for all σ−f ∈ Σ−f , all f ∈ F .

1.c. Supermodularity: The interim profit function Πf is supermodular in yf for all σ−f .

1.d. Strategic Monotonicity: For all εf ∈ Ef , and all f, f ′ ∈ F , if f ′ ∈ C(f) then Πf has ID in
(yf , σf ′), and if or f ′ ∈ S(f), then Πf has DD in (yf , σf ′).

Proof. Fix an arbitrary SMSG. I begin by showing that Σf , together with the partial order ≤, where
σf ≤ σ′f ⇔ σf (εf ) ≤ σ′f (εf ), for all εf ,32 conform a complete lattice.

Take two strategies σf and σ′f . By definition, for all εf , σf (εf ), σ′f (εf ) ∈ Yf , hence sup{σf (εf ), σ′f (εf )} ∈
Yf and inf{σf (εf ), σ′f (εf )} ∈ Y, for all ε, which implies sup{σf , σ′f}, inf{σf , σ′f} ∈ Σf .

This shows that Σf is a lattice. The argument for completeness is analogous. Consider a
collection of strategies Σ̃f ⊆ Σf , and let Ỹf (εf ) = {yf ∈ Yf : σf (εf ) = yf for some σf ∈ Σ̃f}. Since
Ỹf (εf ) ⊆ Yf , and Yf is a complete lattice, then sup{Ỹf (εf )}, inf{Ỹf (εf )} ∈ Yf for all εf , which
implies sup{Σ̃f}, inf{Σ̃f} ∈ Σf .

To see that Πf is order upper semi-continuous simply fix a strategy for f ’s competitors σ−f . By
order upper semi-continuity of πf , for any εf and any totally ordered set C ⊂ Yf :

lim sup
yf∈C,yf↓inf(C)

πf (yf , σ−f (ε−f ), εf ) ≤ πf (inf(C), σ−f (ε−f ), εf )

lim sup
yf∈C,yf↑sup(C)

πf (yf , σ−f (ε−f ), εf ) ≤ πf (sup(C), σ−f (ε−f ), εf )

32I slightly abuse notation by using “≤” to denote the standard vector inequality and the partial order in Σ.
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Integrating over ε−f .

lim sup
yf∈C,yf↓inf(C)

Πf (yf , σ−f , εf ) ≤ Πf (inf(C), σ−f , εf )

lim sup
yf∈C,yf↑sup(C)

Πf (yf , σ−f , εf ) ≤ Πf (sup(C), σ−f , εf )

as desired.
To see that Πf is supermodular consider any two actions yf and y′f , and fix an arbitrary strategy

for f ’s competitors σ−f . By supermodularity of πf , for any εf :

πf (sup{yf , y′f}, σ−f (ε−f ), εf ) + πf (inf{yf , y′f}, σ−f (ε−f ), εf )

≥ πf (yf , σ−f (ε−f ), εf ) + πf (y′f , σ−f (ε−f ), εf )

which, integrating over ε−f , yields:

Πf (sup{yf , y′f}, σ−f , εf ) + Πf (inf{yf , y′f}, σ−f , εf ) ≥ Πf (yf , σ−f , εf ) + Πf (y′f , σ−f , εf )

Finally, I show that if πf has ID in (yf , y−f ), then Πf has ID in (yf , σ−f ) (the proof for the DD
case is analogous). Fix actions y′f ≥ yf and a pair of strategies for f ’s competitors, σ′−f ≥ σ−f . By
ID of πf , for any εf :

πf (y′f , σ
′
−f (ε−f ), εf )− πf (y′f , σ

′
−f (ε−f ), εf ) ≥

πf (y′f , σ−f (ε−f ), εf )− πf (y′f , σ−f (ε−f ), εf )

Integrating over ε−f ,

Πf (y′f , σ
′
−f , εf )−Πf (yf , σ

′
−f , εf ) ≥ Πf (y′f , σ−f , εf )−Πf (yf , σ−f , εf )

as desired.

Having shown Lemma 1, we are in a position to show Theorem 1, which I restate below.

Theorem 1. [ISD in SMSGs] Let the (x, θ, ξ)-game be an SMSG and say σ ≤ σ′ if and only if
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σ(ε) ≤ σ′(ε) for all ε. Consider the following sequence:

Set up:
Σ0
ISD = Σ

σH,0f = {sup{Yf} : εf ∈ Ef}
σL,0f = {inf{Yf} : εf ∈ Ef}

Σk
ISD = {σ ∈ Σ : σL,k ≤ σ ≤ σH,k}

Ykf (εf ) = {yf ∈ Yf : σL,kf (εf ) ≤ yf ≤ σH,kf (εf )}
Best/Worst Case:

σB,k−f =
(
σH,kC(f), σ

L,k
S(f)

)
σW,k−f =

(
σL,kC(f), σ

L,k
S(f)

)
Update:

σH,kf = sup

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
B,k−1
−f , εf ) : εf ∈ Ef


σL,kf = inf

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
W,k−1
−f , εf ) : εf ∈ Ef



(3)

The following holds:

1.a. For each k = 1, 2, . . ., all σf � σk,Lf and all σf � σk,Hf are dominated relative to Σk−1
ISD.

1.b. The set Σk
ISD contains all strategies that survives k ISD rounds.

1.c. For k →∞, (σk,L, σk,H)→ (σL, σH) with σL ≤ σH . Furthermore, the set:

ΣISD = {σ ∈ Σ : σL ≤ σ ≤ σH}

contains all strategies that survive ISD.

1.d. If σL = σH then the game is dominance solvable, and this strategy profile is the unique (Bayes)
Nash Equilibrium.

Proof. I start by generalizing Lemma 1 of Milgrom and Roberts (1990) to the case of Strategic
Monotonicity. Consider an SMSG and let Σ̃(sL, sH) = {σ ∈ Σ : sL ≤ σ ≤ sH} for some pair
of strategy profiles sL ≤ sH in Σ. Let λLf (σ−f ) and λHf (σ−f ) be f ’s lowest and highest best
responses to σ−f in Σ̃f (sLf , s

H
f ).33 Furthermore, let λLf (εf ;σ−f ) and λHf (εf ;σ−f ) be these strategies

evaluated at εf . Finally let σB−f = (sHC(f), s
L
S(f)) be the “best case” for firm f , i.e., the case where f ’s

complements are playing their highest possible strategy and f ’s substitutes are playing their lowest
possible strategy. I argue that any σf ∈ Σ̃f (sLf , s

H
f ), such that σf � λHf (σB−f ) is strictly dominated

(relative to Σ̃−f (sL−f , s
H
−f )) by inf{σf , λHf (σB−f )}.

33By Assumption 1 and Lemma 1, these are guaranteed to exist.
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If there is no σf ∈ Σ̃f (sLf , s
H
f ) such that σf � λHf (σB−f ), the statement is trivially true and we

are done.
Say a σf � λHf (σB−f ) exists. By definition there is at least one εf such that σf (εf ) � λHf (εf ;σB−f ),

so for such εf , σf (εf ) ≥ inf{σf (εf ), λHf (εf ;σB−f )}. Then, for any σ−f = (σC(f), σS(f)) ∈ Σ̃−f (sL, sH):

Πf

(
σf (εf ),

(
σC(f), σS(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
σC(f), σS(f)

)
, εf

)
< Πf

(
σf (εf ),

(
sHC(f), σS(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
sHC(f), σS(f)

)
, εf

)
< Πf

(
σf (εf ),

(
sHC(f), s

L
S(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
sHC(f), s

L
S(f)

)
, εf

)
≤ Πf

(
sup

{
σf (εf ), λHf (εf ;σB−f )

}
, σB−f , εf

)
− Πf

(
λHf (εf ;σB−f ), σB−f , εf

)
≤ 0

where the first inequality uses the fact Πf has ID in (yf , σC(f)), and the second inequality comes
from the fact that Πf has DD in (yf , σS(f)). The third comes from supermodularity of Πf and from
substituting σB−f = (sHC(f), s

L
S(f)), while the fourth inequality follows from fact that λLf (εf ;σB−f )

maximizes Πf given σB−f and εf . It follows that:

Πf (σf (εf ), σ−f , εf ) < Πf (inf{σf (εf ), λHf (εf ;σB−f )}, σ−f , εf )

for all σ−f ∈ Σ̃−f (sL−f , s
H
−f ).

Letting σW−f = (sLC(f), s
H
S(f)) be the “worst case,” for f , an analogue argument shows that

σf � λLf (σW−f ) is strictly dominated by sup{σf , λLf (σW−f )}. From these two results, it follows
that every strategy in Σ̃f (sL, sH) \ Σ̃f (λL(σW ), λH(σB)) is strictly dominated. This concludes the
generalization of Lemma 1 from Milgrom and Roberts (1990) to the case of strategic monotonicity.

The statements of the Theorem follow immediately. For part 1.a., set Σk
ISD = Σ̃(σk,L, σk,H)

and Σk+1
ISD = Σ̃(λL(σk,W ), λH(σk,B)). The result above implies that for every f , every strategy in

Σk
f,ISD \ Σk+1

f,ISD is strictly dominated relative to Σk
ISD, as desired.

Part 1.b. follows by definition of Σk
ISD.

Part 1.c. follows from the fact that σk,L ≤ σk,H for all k, and the fact that σk,L is increasing,
and σk,H decreasing, in k.

Part 1.d. is straightforward. Say σL = σH , then for every firm σLf = σHf and σW−f = σL−f . By
definition σLf is a best response to σW−f , so it is a best response to σL−f , so σ

L is a (Bayesian) Nash
equilibrium.
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A.2 Applying ISD

Here I show how to apply ISD to an SMSG for two special cases of interest: the pure ID case, where
all players are each others’ complements, i.e., C(f) = F \{f} for all f ; and the pure DD case, where
all players are each others’ substitutes, i.e., S(f) = F \{f} for all f . The pure ID case encompasses
coordination games, while the pure DD case encompasses games with strategic substitution (like
the entry game in the example).

A.2.1 Pure ID Case

In this case, the best response iteration that converges to (σL, σH) follows directly from Milgrom
and Roberts (1990) and Van Zandt and Vives (2007). The details of the sequence are outlined in
(10).

To get an intuition, consider the case where yf is univariate, and start from f ’s “best case,”
i.e., σ0,H

−f (ε−f ) = sup{Y−f} for all ε−f . By ID, f ’s best response to σ0,H
−f , i.e., σ1,H

f , is the largest
strategy that f can optimally choose, and it strictly dominates all σf > σ1,H

f . Since this holds for
all f , all strategy profiles σ > σ1,H are eliminated by σ1,H . Iterating over this procedure yields
the largest strategy profile not eliminated by ISD, σH . An analogous sequence, starting from σ0,L,
yields σL.

ISD sequence for the ID case.

Set-up
σ0,L = {inf{Y} : ε ∈ E}
σ0,H = {sup{Y} : ε ∈ E}

Σk
ISD =

{
σ ∈ Σ : σk,L ≤ σ ≤ σk,H

}
Ykf (εf ) =

{
yf ∈ Yf : σk,Lf (εf ) ≤ yf ≤ σk,Hf (εf )

}
ISD Step

σk,Lf =

inf

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
k−1,L
−f , εf )

 : εf ∈ Ef


σk,Hf =

sup

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
k−1,H
−f , εf )

 : εf ∈ Ef



(10)

A.2.2 Pure DD Games

The intuition for the pure DD case is similar. Consider the case of univariate yf for all f , and start
from f ’s “best case,” i.e., σ0,L

−f (ε−f ) = inf{Y−f} for all ε−f , and its “worst case,” i.e., σ0,H
−f (ε−f ) =

sup{Y−f} for all ε−f . In the best case, DD implies that σ1,H
f is the largest strategy that player

f could plausibly choose, hence any σf > σ1,H
f is dominated. Since this is true for all f , we can
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discard all σ > σH,1. Similarly, in the worst case, σ1,L
f is the smallest best response that f could

plausibly choose, hence any σf < σ1,L
f is strictly dominated by σ1,L

f . Since this is true for all f we
can safely discard all σ < σ1,L. Putting these two arguments together, we build a new game with
strategy set Σ1 = {σ ∈ Σ : σ1,L ≤ σ ≤ σ1,H}. Finally, applying this argument iteratively, yields the
extreme strategy profiles σL and σH .

ISD sequence for the ID case.

Set-up
σ0,L = {inf{Y} : ε ∈ E}
σ0,H = {sup{Y} : ε ∈ E}

Σk
ISD =

{
σ ∈ Σ : σk,L ≤ σ ≤ σk,H

}
Ykf (εf ) =

{
yf ∈ Yf : σk,Lf (εf ) ≤ yf ≤ σk,Hf (εf )

}
ISD Step

σk,Lf =

inf

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
k−1,H
−f , εf )

 : εf ∈ Ef


σk,Hf =

sup

 argmax
yf∈Yk−1

f (εf )

Πf (yf , σ
k−1,L
−f , εf )

 : εf ∈ Ef



(11)

B Outcome Probability Bounds

Theorem 2 derives bounds on the distribution yf . Analogue bounds can be built for the distribution
of y rather than yf . For binary games with independent private information, Theorem 3 implies
that there is no informational gain from moving from bounds over yf rather than y. Furthermore,
empirical moment inequalities based on y are like less precise than those based on yf . As a result,
it is hard to justify the move.

Nevertheless, if we drop the independent private information assumption, it may be that bounds
on y are tighter than bounds on yf . For this reason, here I show how one would build bounds over
y. To this end,consider the following probabilities:

PL(y|x, θ) ≡
∫

Ξ

∫
E
1{σL(ε;x, θ, ξ) ≥ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

P ρ(y|x, θ) ≡
∫

Ξ

∫
E
1{σρ(ε;x, θ, ξ) ≥ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

PH(y|x, θ) ≡
∫

Ξ

∫
E
1{σL(ε;x, θ, ξ) ≥ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

(12)

With this, I present Outcome Probability ISD Bounds as Corollary to Theorem 2.
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Corollary 1. [Outcome Probability ISD Bounds in SMSGs] Consider a class of games indexed by
(x, θ, ξ) satisfying Assumption 1. Furthermore, let H(·|x, θ) be the distribution of ξ. Say for every
f and g, ρfg is ISD-Consistent as per Assumption 2. The following holds:

PL(y|x, θ) ≤ P ρ(y|x, θ) ≤ PH(y|x, θ) (13)

for all y, x, and θ.

Proof. Fix (x, θ, ξ) and a set of ISD-Consistent beliefs, ρ. Because ρ is ISD-Consistent, then each
firm’s best response also survives ISD, hence σL ≤ σρ ≤ σH . It is easy to see that the following
inequality holds (making explicit the dependence on (x, θ, ξ)):

1
{
σL(ε;x, θ, ξ) ≥ y

}
≤ 1 {σρ(ε;x, θ, ξ) ≥ y} ≤ 1

{
σH(ε;x, θ, ξ) ≥ y

}
Integrating over ε and ξ yields the desired expression.

With this, we can define the identified set based on Outcome Probability ISD Bounds as follows:

Definition 8 (Outcome Probability ISD Identified Set). The Outcome Probability ISD Identified
Set, ΘOutcome Pr.

ISD , is the collection of all θ ∈ Θ such that:

ΘOutcome Pr.
ISD = {θ ∈ Θ : PL(y|x, θ) ≤ P ρ(y|x, θ) ≤ PH(y|x, θ),∀x ∈ X ,∀y ∈ Y}

We can also use Theorem 1 to build bounds over outcomes rather than their distribution.
This bounds are likely much less informative than the bounds proposed in Theorem 2, as they
involve integrating over the implied distribution of y. I add them here, nevertheless, for the sake of
completeness. To move in this direction, consider the following expressions:

yL(x, θ) ≡
∫

Ξ

∫
E
σL(ε;x, θ, ξ)dG(ε|x, θ, ξ)dH(ξ|x, θ)

yρ(x, θ) ≡
∫

Ξ

∫
E
σρ(ε;x, θ, ξ)dG(ε|x, θ, ξ)dH(ξ|x, θ)

yH(x, θ) ≡
∫

Ξ

∫
E
σH(ε;x, θ, ξ)dG(ε|x, θ, ξ)dH(ξ|x, θ)

(14)

An immediate corollary of Theorem 1 is that yL(x, θ) ≤ yρ(x, θ) ≤ yH(x, θ). Letting y0(x) =

yρ
0
(x, θ0) be the expected outcome under the DGP, conditional on x, and applying the same logic

we used in Definitions 6 and 8 we can define the following identified set:

Definition 9 (Level ISD Identified Set). The Level ISD identified set is the collection of all θ ∈ Θ

such that:

ΘISD = {θ ∈ Θ : yL(x, θ) ≤ y0(x) ≤ yH(x, θ),∀x ∈ X}
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C Identification Results

C.1 Proof of Theorem 3

Theorem 3. For any class of binary games (i.e., Yf = {0, 1} for all f ∈ F) indexed by (x, θ, ξ) and
satisfying Assumptions 1 and 2, and any corresponding DGP satisfying Assumption 3, if either:

• εf ⊥ εg for all f 6= g, and εf has a continuous distribution with full support in R. Or,

• εf = ∅ for all f ∈ F , i.e., firms have complete information.

Then, the ISD identified set is sharp, i.e., ΘISD = Θsharp.

Proof. For ease of exposition, throughout this proof I omit dependence on x.
That Θsharp ⊆ ΘISD follows by definition. To see this say θ ∈ Θsharp, then for every ξ there

is an ISD-Consistent ρ such that P ρ(y|θ, ξ) = P 0(y|ξ). Because ρ is ISD-Consistent PL(y|ξ, θ) ≤
P ρ(y|ξ, θ) ≤ PH(y|ξ, θ). Since this holds for all ξ, θ ∈ ΘISD.

Now I show the inclusion in the other direction. To this end, note that both under independence
of the εf ’s and under perfect information, firms actions are independent conditional on ρ, i.e.,
σρf (εf ; θ, ξ) ⊥ σρg(εg; θ, ξ).34 Hence, we can write P 0(y|ξ) as the product of the marginals (recall
that P 0 is a complementary cumulative distribution), i.e.,

P 0(y|ξ) =
∏
f∈F

(
P 0
f (ξ)

)yf (1− P 0
f (ξ)

)1−yf
where P 0

f is the marginal probability that yf = 1 in the DGP. With this, we can write any P 0 as
the sum of P 0

f ’s as follows:

P 0(y|ξ) =
∑
ỹ≥y

∏
f∈F

(
P 0
f (ξ)

)ỹf (1− P 0
f (ξ)

)1−ỹf
Hence, to show that ΘISD is sharp it suffices to show that for any θ ∈ ΘISD, any ξ, and any f ,
there are ISD-Consistent beliefs such that P ρf (θ, ξ) = P 0

f (ξ).
For the imperfect information case, I do this by showing that P ρf (θ, ξ) is a continuous function

of ρf whose minimum is PLf (θ, ξ) and its maximum is PHf (θ, ξ). Then, the result follows by the
intermediate value theorem.

That the minimum and maximum values of P ρf (θ, ξ) are PLf (θ, ξ) and PHf (θ, ξ), respectively,
follows from the definition of sequence (3) in Theorem (1). In particular, P ρf is minimal when
ρf = PW−f (θ, ξ), and it is maximal when ρf = PBf (θ, ξ), where PWf and PBf are f ’s best and worst
cases as defined in sequence (3).

34If εf is correlated to εg then f infers information about g’s action through εf . In such case, even conditional on
ρ, σf and σg are correlated through the correlation between the shocks.
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To see that P ρf is continuous, note that f ’s interim payoff given ρf , i.e.:

Πf (yf , ρ
f , εf ; θ, ξ) =

∑
y−f∈Y−f

∏
g 6=f

(ρfg )yg(1− ρfg )1−yg

πf (yf , y−f , εf ; θ, ξ)

is continuous in ρf , hence f ’s best response is:

P ρf (θ, ξ) =

∫
εf∈Ef

1
{

Πf (1, ρf , εf ; θ, ξ) ≥ Πf (0, ρf , εf ; θ, ξ)
}
dGf

which is also continuous in ρf , as desired.
Now consider the complete information case, i.e., ε = ∅. Given ρf , f ’s interim payoff is:

Πf (yf , ρ
f ; θ, ξ) =

∑
y−f∈Y−f

∏
g 6=f

(ρfg )yg(1− ρfg )1−yg

πf (yf , y−f ; θ, ξ)

If Πf (0, ρf ; θ, ξ) > Πf (1, ρf ; θ, ξ) for all ISD-Consistent ρf , i.e., yf = 0 is dominant, then:

PLf (θ, ξ) = P ρf (θ, ξ) = P 0
f (ξ) = PHf (θ, ξ) = 0

Similarly, if Πf (0, ρf ;x, θ, ξ) < Πf (1, ρf ;x, θ, ξ) for all ISD-Consistent ρf , i.e., yf = 1 is dominant,
then:

PLf (θ, ξ) = P ρf (θ, ξ) = P 0
f (ξ) = PHf (θ, ξ) = 1

Finally, if Πf (0, ρf ; θ, ξ) = Πf (1, ρf ; θ, ξ) for some ISD-Consistent ρf , i.e., no strategy is dominant
nor dominated, then PLf (θ, ξ) = 0 and PHf (θ, ξ) = 1. For such ρf any P ρf is a best response. In
particular P ρf (ξ, θ) = P 0

f (ξ) is optimal. Putting these three cases together we can always find ρ such
that P ρf (ξ, θ) = P 0

f (ξ), hence θ ∈ Θsharp, as desired.

C.2 Proof Theorem 4

Theorem 4. There exists a θ ∈ Θ such that PL(y|x, θ) = 0 and PH(y|x, θ) = 1 for all y > (0)∀f

and all x, if and only if Rf satisfies:

sup
x∈X

{
min

y−f∈Yf
∆Rf (y−f ;x, θf,R)

}
< inf

x∈X

{
max
y−f∈Yf

∆Rf (y−f ;x, θf,R)

}
(8)

for all θf,R and all f ∈ F .
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Proof. Consider the sequence of best response iterations defined in (3) and let:

∆B
f (x, θR,f ) ≡ ∆Rf (σ0,B

−f ;x, θR,f )

∆W
f (x, θR,f ) ≡ ∆Rf (σ0,W

−f ;x, θR,f )

Note that since σ0,B and σ0,W are deterministic strategies (see the definition of sequence (3)), we can
do without the expectation operator. Furthermore, note that by increasing differences/decreasing
differences, ∆B

f is the maximal ∆Rf and ∆W
f is the minimal ∆Rf over σ−f .

To show necessity, say θR,f satisfies:

sup
x∈X

{
∆W
f (x, θR,f )

}
< inf

x∈X

{
∆B
f (x, θR,f )

}
and set:

θcons,f = −1

2

(
sup
x∈X

{
∆W
f (x, θR,f )

}
+ inf
x∈X

{
∆B
f (x, θR,f )

})
By construction, we can write:

∆W
f (x, θR,f ) < −θcons,f < ∆B

f (x, θR,f )

∆W
f (x, θR,f ) + θcons,f < 0 < ∆B

f (x, θR,f ) + θcons,f

for all x, where the second line simply re-arranges some terms. The left-hand side (right-hand side)
of this inequality represents the marginal profit of going from yf = 0 to yf = 1 under σW,0−f (resp.
σB,0−f ). Hence:

σ1,H
f (εf ) = 1

{
∆B
f (x, θR,f ) + θcons,f + θsc,f

(√
θw,fξf +

√
1− θw,f εf

)
> 0
}

σ1,L
f (εf ) = 1

{
∆W
f (x, θR,f ) + θcons,f + θsc,f

(√
θw,fξf +

√
1− θw,f εf

)
> 0
}

which induces entry probabilities equal to:

P 1,H
f (x, θ, ξ) = 1−Gf

(
− 1√

1− θw

(
∆B
f (x, θR,f ) + θcons,f

θsc,f
+
√
θw,fξf

))

P 1,L
f (x, θ, ξ) = 1−Gf

(
− 1√

1− θw

(
∆W
f (x, θR,f ) + θcons,f

θsc,f
+
√
θw,fξf

))

where Gf is the marginal distribution of εf . By construction (∆B
f + θcons,f )/θsc,f > 0 for all x, so

taking the limit as θsc,f → 0 implies P 1,H
f = P 0,H = 1. A similar argument shows that θsc,f → ∞

implies P 1,L
f = P 0,L

f = 0. We have reached convergence after one iterations, so PLf (x, θ, ξ) = 0 and
PHf (x, θ, ξ) = 1 for all x and ξ.

For sufficiency I show the contra-positive. Fix Rf and assume that for all θR,f there exist x and
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x′ such that:

∆B
f (x, θR,f ) < ∆W

f (x′, θR,f )

For any θ we can write:

∆W
f (x, θR,f ) + θcons,f

θsc,f
<

∆B
f (x, θR,f ) + θcons,f

θsc,f
<

∆W
f (x′, θR,f ) + θcons,f

θsc,f
<

∆B
f (x′, θR,f ) + θcons,f

θsc,f

where the left-hand side represents f ’s best case (normalized by θsc,f ) marginal profit under x,
the term in the center represents f ’s worst case marginal profit under x′ and the right-hand side
represents f ’s best case marginal profit under x′.

If all the expressions in the inequality above are positive (negative), then ISD Bounds are not
trivial since εf has positive density on all R. If the last two terms are positive and the first two
terms are negative, then PHf (x, θ, ξ) < 1 for some ξ and PLf (x′, θ, ξ) > 0 for some ξ, so bounds are
not trivial.

Finally, say that:

∆W
f (x′, θR,f ) + θcons,f

θsc,f
< 0 <

∆B
f (x′, θR,f ) + θcons,f

θsc,f

then PH(x, θ, ξ) < 1. Similarly if:

∆W
f (x, θR,f ) + θcons,f

θsc,f
< 0 <

∆B
f (x, θR,f ) + θcons,f

θsc,f

then PL(x, θ) > 0

This exhaust all possibilities, hence there is no way to simultaneously make PL(x, θ, ξ) =

PL(x′, θ, ξ) = 0 and PH(x, θ, ξ) = PH(x′, θ, ξ) = 1, as desired.

C.3 Non-Identification in Models with Linear Competitive Effect

Here I present a non-identification result that arises in entry games when competitive effects are
linear. For example, as in πf (yf , y−f , εf ;x, θ) = yf (x′θx−θst

∑
g 6=f yg+εf ), where θst is the strategic

effect.35

The problem arises because given taking θst,f → ∞ makes the profit of entry go to negative
infinity whenever ρfg > 0 for some g, but it does not affect the profit of entry when ρfg = 0.

Consider a two firm independent private information entry game like the one described in 2.3.1.
35Note that this specification covers many examples of games that have been studied in prior the prior empirical

literature such as Bresnahan and Reiss (1990), Berry (1992), Tamer (2003), Ciliberto and Tamer (2009), among
others.
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Letting P−f represent the entry probability of f ’s competitor we can write f ’s profit as:

Πf = yf
(
x′θx − θsty−fP−f + εf

)
where θ = (θx, θst) are the parameters of interest, and θ0 = (θ0

x, θ
0
st) are the “real” parameter

values. As θst → ∞ the profit of being a duopolist goes to negative infinity, hence if P−f = 1 we
get limθst→∞ P

L
f → 0. In contrast, if P−f = 0 the monopolistic profit remains unchanged even if

θst →∞, hence: limθst→∞ P
H
f = 1−G(−x′θx).

To see why this is a problem, let ρ0 be the real ISD-Consistent beliefs. It is easy to see that for
P 0
f = 1−G(−θ0

x
′
x+ θsty−f ) the following holds:

PLf ≤ P 0
f ≤ lim

θst→∞
PHf

hence clearly PLf (x, θ) ≤ P 0
f (x) ≤ PHf (x, θ).

As mentioned above, the key driver of this result is that monopolistic profits do not depend on γ,
so by increasing γ we can make duopolistic profits infinitely unattractive while keeping monopolistic
profits unchanged. Figure 11, below, shows mutual best responses for Rmon = 1, δ0 = 1, β0 = 0

and different values of γ. The red dot represents the entry probabilities when there is no strategic
interaction, i.e., γ = 0, the purple dot represents the data generating process y0 which results from
γ0 = 1, and the green dot/area represents the strategies that survive ISD. For γ ∈ {0.5, 1, 2} the
game has a unique equilibrium so only one strategy profile survives ISD, i.e., y = y. Furthermore,
for γ = 0.5, we have y > y0 so γ = 0.5 is not in the identified set. Similarly, for γ = 2, y0 > yf , so
γ = 2 is not in the identified set either.

As γ grows, the game starts exhibiting multiple equilibria. For γ = 2.6 the ISD set is no longer
singleton, i.e., σL < σH , however σH < σ0 so γ = 2.6 is not in the identified set. When γ = 3 the
ISD set has grown larger and now σL < σ0 < σH , so γ = 3 belongs to the identified set. Finally,
for γ = 6, the competitive effect is so large that for a large enough entry probability of firm 1, firm
2 enters with close zero probability (and vice versa). Clearly, γ = 6 is in the identified set.

D Entry Game Estimation

Assuming that firms have ISD Consistent beliefs, ISD Bounds imply the following conditional
moment inequalities for all f and all x:

E
[
σ0
f (εf ;x, θ, ξ)− PHf (x, θ)|x

]
≤ 0

E
[
PLf (x, θ)− σf (ε0f ;x, θ, ξ)|x

]
≤ 0
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Figure 11: Two-way Best Response and ISD Set for Values of δ
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Letting hl(x) be a collection of l = 1, . . . , L non-negative random variables we can write the following
unconditional moment inequatlities:

E
[
(σ0
f (εf ;x, θ, ξ)− PHf (x, θ))h(x)

]
≤ 0

E
[
(PLf (x, θ)− σf (ε0f ;x, θ, ξ))h(x)

]
≤ 0

Taking a simulated sample (Ym, Xm)Mm=1, the empirical analogue of the unconditional moment
function is:

ψHfml(θ) = (Yfm − PHf (Xm, θ))hl(Xm)

ψLfml(θ) = (PLf (Xm, θ)− Yfm)hl(Xm)

and we can compute the sample mean for each f, l:

ψ
H
fl(θ) =

1

M

M∑
m=1

ψHfml(θ)

ψ
L
fl(θ) =

1

M

M∑
m=1

ψLfml(θ)

Let ψm(θ) = ((ψHfml)∀f,l, (ψ
L
fml)∀f,l) be a column vector of size L = 2 · |F| · L that stacks ψHfml

and ψLfml for all f and l, for.a given market m. With this, we can write the estimator of the
variance-covariance matrix as:

V̂ (θ) =
1

M

M∑
m=1

(ψm(θ)− ψ(θ))(ψm(θ)− ψ(θ))′

where ψ(θ) = ((ψ
H
fl)∀f,l, (ψ

L
fl)∀f,l) is the vector that stacks the cross-market means.

Andrews and Soares (2010) propose a T-statistic:

T (θ) = S(
√
Mψ(θ), V̂ (θ))

where for a vector W of length N and an N ×N matrix Z, S is defined as:

S(W,Z) =
∑ [Wn]2+

Zn,n

where []+ is a function that takes the maximum between zero and its argument, Wn is the n’th term
of W and Zn,n is n’th term of the diagonal of W .

Andrews and Soares (2010) compare this T-statistic with a critical value that is built as follows.
Let D̂(θ) = Diag(V̂ (θ)), let Ω̂(θ) = D̂−1/2V̂ (θ)D̂(θ)1/2, and note that Ω̂(θ) is a correlation matrix.
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The critical value of AS is the 1− α’th percentile of the random variable:

S(Ω
1/2
0 W + η,Ω0), where W ∼ N(0L, IL)

where η =
(

M
log(M)

)1/2
D̂−1/2[ψ(θ)]−, where [ψ(θ)]− corresponds to the result of applying [·]− to

ψ(θ) element by element. As AS and FY, I compute this critical value by drawing 500 realization
of W and backing out the 95’th percentile of the simulated vector.

D.1 Monte Carlo Experiments

Here I define the h functions I use in the Monte Carlo experiments. To this end, let qfm =
xf∏

g 6=f x
1/(|F|−1)
g

and let q = (qfm)∀f,m. This variable is meant to capture the relative “strength” of

firm f relative to its competitors. Moreover, let l(i, f) be a one-to-one function that maps a firm
and an index i, to an h-function index, l. The functions I use are:

hl(i,f)(Xm) = 1{qfm above the 80’th percentile of q} if i = 1

hl(i,f)(Xm) = 1{qfm between 60’th and 80’th percentile of q} if i = 2

hl(i,f)(Xm) = 1{qfm between 40’th and 60’th percentile of q} if i = 3

hl(i,f)(Xm) = 1{qfm between 20’th and 50’th percentile of q} if i = 4

hl(i,f)(Xm) = 1{qfm below the 20’th percentile of q} if i = 5

hl(i,f)(Xm) = qfm if i = 6

hl(i,f)(Xm) = 1
qfm

if i = 7

So, we have a total of L = 2 · 7 · |F| moment inequalities for estimation.

D.2 Empirical Exercise

To estimate the entry game parameters, θ, I use a collection of functions hk(Xm) to transform
moments conditional on Xm = (Xm, wm) into unconditional moments. In particular, I use functions
of variables that shift entry costs, and function of the firm type which, as mentioned in the main text,
serve as sufficient statistic of the expected profits Rf . Note, that I do not use demand and marginal
cost shifters as instruments in the entry game stage, as these variables have less information about
expected profits than firm types.
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I use the following functions:

h0f (Xm) = 1

h1f (Xm) = 1{wfm ≤ 20th percentile over m of wfm}

h2f (Xm) = 1{wfm ≥ 80th percentile over m of wfm}

h3f (Xm) = 1{wfm is between the 20th and 80th percentile over m of wfm}

h4f (Xm) = hubfm

h5f (Xm) = directfm

h6f (Xm) = 1{distancem ≥ median distance}

h7f (Xm) = 1{distancem < median distance}

This gives a total of K = 7× 8 = 56 moment inequalities.

E Bounds in Oligopolistic Pricing Games with Nested Logit Demand

In this section I show how one can build bounds, similar to ISD Bounds, for oligopolistic pricing
games among multi-product firms facing nested logit demand.

Consider a multi-product firm oligopoly facing a two-level nested logit demand as described in
figure 12. The nesting structure is such that there is a single high-level nest (the inside option)
which represents the choice between buying and not buying, and multiple low-level nests/segments,
indexed by b = 1, . . . , B. Each nest represents different market segments. Let N represent the set
of all products in the market and Nb the set of products in market segment b. As is standard, every
product belongs to exactly one nest/segment, so that the collection of nests (Nb)b is a partition of
N .

Every consumer k purchases at most one one product. Consumer k buying product j at a price
pj gets a utility of:

uji = αj − λpj + εji,∀j ∈ N

u0i = ε0i, for j = 0

where αj is the product quality, λ is the price sensitivity parameter, and εj is an idiosyncratic taste
shock whose distribution generates a nested logit demand. Furthermore, product j = 0 represents
the outside option, whose utility has been normalized to zero. Given these assumption, demand for
product j is:

sj(pj , I) =
e(αj−λpj)/τb

eIb

eτbIb/γ

eW
eγW

1 + eγW

59



where I = (Ib)b=1,··· ,B, and

Ib = log

∑
j∈b

e(αj−λpj)/τb


W = log

∑
j∈b

eτbIb/γ


represent de inclusive value of nest b, and the inclusive value of the inside option, respectively.
Additionally, τb ∈ (0, γ] is the nesting parameter of nest b and it controls the substitution between
products in b and products in other nests. In particular, τb → 0 implies little substitution between
b and other nests, where as τb = γ implies that consumers do not perceive products in b as closer
substitutes to each other than to products not in b. Similarly, γ ∈ (0, 1] is the nesting parameter of
the “inside nest,” and controls substitution between buying and not buying.

Producers face a product specific marginal cost cj , and own a set of products Nf
b in each nest

b. Each good is produced by exactly on firm, so the collection (Nf
b )f is a partition of Nb. Firms

simultaneously choose prices to maximize profits:

πf (pf , I) =
B∑
b=1

∑
j∈Nf

b

(pj − cj)sj(pj , I)

In Theorem 3.1 of Garrido (2021) I show that this is an aggregative game, meaning that
firm optimal behavior can be represented as responding to an aggregator level I. Let ρρρf (I) =

(ρj(I))j∈Nf
b ,∀b

represent f ’s optimal prices given an aggregator I, and let ρρρ(I) = (ρρρf (I))∀f . An
equilibrium can be represented as an aggregator, I, such that the aggregate behavior of firms given
I generates that same aggregator. Formally, an equilibrium corresponds to a value of I such that:

I = ΓΓΓ(I) ≡

log

∑
j∈Nb

eαj−λρj(I)

 : b ∈ B


In Theorems 3.2 and 3.3 of Garrido (2021) I show that there exist I and I, with I ≤ I, such

that both I and I are equilibrium aggregators, and any other equilibrium aggregator, I, satisfies
I ≤ I ≤ I. Furthermore, I show that ρρρ(I) is monotonic on I.

Theorem 3.4 of the paper uses this fact to provide the following equilibrium finding algorithm.
Let H0 be the aggregator that results from all firms charging monopoly prices, and define the
sequence Hn+1 = ΓΓΓ(Hn). Theorem 3.4 of the paper shows this sequence in increasing and that
limn→∞Hn = I. Similarly, let H0 be the aggregator that results from all firms charging pj = cj

for all j ∈ N , and define the sequence Hn+1 = ΓΓΓ(Hn). Theorem 3.4 of the paper shows that this
sequence is increasing and limn→∞Hn = I.

An immediate corollary of this result is that the sequence pn = ρρρ(Hn) is decreasing in n and
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converges to p = ρρρ(I). Similarly, the sequence p
n

= ρρρ(Hn) is increasing in n and converges to
p = ρρρ(I). Finally, any equilibrium vector of prices p? satisfies p ≤ p? ≤ p. In what follows, I use
this result to derive bounds on the distribution of prices that can be used for identification.

To understand how this works let αj = xαj
′βα + ξαj , where xj is a vector of observable product

characteristics, βα is a vector of parameters, and ξαj is a quality shock observed by all firms but not
by the econometrician. Similarly, let cj = xcj

′βc + ξcj where x
c
j is a vector of observable cost shifters,

βc is a vector of parameters, and ξcj is an unobservable cost shifter. Furthermore, assume that both
ξαj and ξcj follow distributions Hα and Hc both of which are known up to a vector of parameters θα

and θc. Finally, let us collect the parameters of the game in θ = (βα, βc, (τb)b, γ, θ
α, θc).

Fix an (x, θ, ξ)-game, where x = (xαj , x
c
j)∀j and ξ = (ξαj , ξ

c
j)∀j . From above, for any equilibrium

p?(x, θ, ξ), the following hold:

p(x, θ, ξ) ≤ p?(x, θ, ξ) ≤ p(x, θ, ξ)

As before, the inequality above holds for all ξ, so integrating over ξ we get:

p(x, θ) ≤ p?(x, θ) ≤ p(x, θ)

This inequality holds for all θ. In particular, it holds for θ = θ0. Letting p0(x) = p?(x, θ0) it is
easy to see that any θ that violates:

p(x, θ) ≤ p0(x) ≤ p(x, θ) (15)

cannot be equal to θ0. This reasoning yields the following identified set.

Definition 10 (Nested Logit Identified Set). Consider an oligopolistic pricing model among multi-
product firms facing nested logit demand as described above. The identified set for θ corresponds to
all values of θ satisfy equation (15). This is:

ΘI =
{
θ ∈ Θ : p(x, θ) ≤ p0(x) ≤ p(x, θ), ∀x ∈ X

}

61



Figure 12: Nesting Structure

Outside option

Buy
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· · · · · ·

. . . . . . . . .

Buy/Not Buy

Choice of nest: b = 1, . . . , B

Choice of product: j ∈ Nb
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