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Abstract
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data from eBay, deriving bounds on buyers and sellers private value distributions and

the gains from trade using a range of assumptions on behavior. These assumptions

range from weak (assuming only that acceptance and rejection decisions are rational)

to less weak (e.g., assuming that bargaining offers are weakly increasing in players’

private values). We estimate the bounds and show what they imply for consumer

negotiation behavior and inefficient breakdown. For the median product, bargaining

ends in impasse in 35% of negotiations even when the buyer values the good more

than the seller.
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1 Introduction

Bilateral bargaining is one of the oldest and most common forms of trade. A large theoret-

ical literature and growing structural empirical literature examine the topic, but modeling

choices of theorists and empiricists diverge widely, especially in how they consider the is-

sue of impasse. Theoretical work (e.g., Myerson and Satterthwaite 1983) allows for the

possibility that negotiators fail to agree even when gains from trade exist, whereas the

workhorse model for empirical studies — Nash bargaining, in various forms — assumes

that inefficient impasse never occurs. In these empirical models, negotiating agents know

the opposing party’s value precisely, and hence agents only negotiate over how to split a

pie of known size. In many real-world settings, these strong assumptions are immediately

rejected by data. In this paper, we analyze a large, detailed dataset of alternating-offer se-

quences from consumers negotiating online. We propose an approach to bound buyers’ and

sellers’ values and the degree of inefficient impasse. Unlike Nash bargaining, the approach

accommodates the presence of incomplete information. Our quantification exercises are

aimed at providing motivation for more realistic theoretical empirical bargaining models

and determining how well bargaining performs in practice in consumer markets.

The data comes from eBay’s Best Offer platform, with thousands of eBay listings, each

corresponding to a particular product identifier (such as an iPhone 6 or X-Box 360). For

each listing, the seller posts a list (a Buy-It-Now) price and a buyer begins negotiating

with a counteroffer. We observe these prices and all subsequent counteroffers between any

buyer-seller pair.

We model each bilateral bargaining pair as a buyer with value B ∼ FB negotiating se-

quentially with a seller of value S ∼ FS. The key objects we wish to bound are FB, FS,

and P(B ≥ S), the probability that the buyer values the good more than the seller (the trade

probability in a first-best world). Comparing this object to the realized trade probability in

the data offers a measure of the inefficient impasse relative to the first-best outcome.

The challenges we face are, first, S and B are not observed in the data, and second,

there is no theoretical characterization of equilibria in our game (bilateral negotiations in
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which both parties potentially have incomplete information and can make offers), and hence

no obvious way to identify FS and FB from observed bargaining actions.1 Indeed, unlike

auction games or complete-information bargaining games (e.g. the Rubinstein 1982 model

of non-cooperative bargaining with complete information), there is no canonical model of

bargaining under incomplete information. This dearth is especially pertinent for studying

consumer price negotiations, where agents meet and negotiate infrequently and where it is

arguably particularly unrealistic to model agents as perfectly informed about the game’s

structure or opponents’ values (as Nash bargaining presumes, for example).

To study this setting empirically, we propose a bounds approach based on an incomplete

model. We first derive bounds on FB and FS. We begin with weak rationality assumptions

on agents’ behavior. We then propose stronger conditions that appear in previous game the-

oretic bargaining models: monotonicity (an agent’s value being weakly increasing in her

first offer) and independence (an agent’s value being independent of her opponent’s first

offer). We demonstrate theoretically that these assumptions can be violated by unobserved

game-level heterogeneity, and then propose two weaker conditions, stochastic monotonic-

ity (an agent’s value being stochastically increasing in her offer) and positive correlation (an

agent’s value being stochastically increasing in her opponent’s value). Building on these

assumptions, we derive bounds on the gains from trade and, in turn, the first-best trade

probability, leading to bounds on the degree of inefficient breakdown in the eBay data.

The bounds under any given set of assumptions are sharp. We propose nonparametric es-

timators for the bounds and estimate them separately for each product, limiting to products

for which we have at least 200 bargaining sequences. To assess the validity of the underly-

1Previous theoretical discussions have emphasized the difficulties of incomplete information in bargain-
ing models. Fudenberg and Tirole (1991) claimed that “the theory of bargaining under incomplete infor-
mation is currently more a series of examples than a coherent set of results. This is unfortunate because
bargaining derives much of its interest from incomplete information.” Binmore et al. (1992) observed, “In
spite of this progress [in bargaining theory], important challenges are still ahead. The most pressing is that
of establishing a properly founded theory of bargaining under incomplete information. A resolution of this
difficulty must presumably await a major breakthrough in the general theory of games of incomplete infor-
mation.” These challenges, still unsolved today, arise from the sequential nature of the game: belief updating
after off-equilibrium-path actions can sustain an infinite set of on-path behavior. Refinements, such as perfect
Bayes equilibrium, do little or nothing to narrow the set of equilibria. See discussion in Gul and Sonnenschein
(1988), and Ausubel et al. (2002) for a survey.
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ing assumptions, we look for cases where bounds cross. We find evidence that our strongest

assumptions (weak monotonicity of the seller’s first offer or independence of the buyer’s

value and seller’s first offer) can be violated. Bounds based on our weaker assumptions,

such as stochastic monotonicity or weak monotonicity of the buyer’s first offer conditional

on the seller’s, do not cross.

We also exploit auto-accept and auto-decline thresholds that sellers can report secretly

to the platform; sellers respond to price offers that fall between these thresholds, but eBay

automatically rejects or accepts prices lying outside of these thresholds. These secret prices

are themselves bounds on the true distribution FS. We confirm that the estimated bounds are

consistent with these auto-accept/decline bounds (which are not explicitly used anywhere

in computing our bounds).

Having demonstrated the informativeness of these bounds on the marginal distributions,

we estimate bounds on the first-best trade probability separately for each product in our

sample. Under the weakest assumptions, bounds on this object are uninformative, with the

lower bound corresponding to the sale probability observed in the data and the upper bound

being 1. Under our strongest assumptions, the bounds can cross. We propose assumptions

of intermediate strength that are reasonable, informative, and do not cross.

The lower bound on the first-best trade probability can be compared to the trade proba-

bility in the data to infer a bound on the degree of inefficient impasse. For example, for a

popular cell phone product in our sample, agents agree in the real-world negotiations 26.6%

of the time. Under our preferred assumptions, the counterfactual first-best trade probability

is bounded below by 0.465, suggesting that at least 43% of the time (1− 0.266/0.465),

agents fail to reach an agreement even when the buyer truly values the good more than

the seller. For the median product, this lower bound on inefficient impasse is 35.4%. The

inefficient impasse lower bound ranges from 13.0% to 53.2% across all products.

We explore features of the negotiation or the agents themselves to study when efficiency

appears to improve, which we define as a decrease in the inefficient impasse lower bound.

We find that this lower bound decreases when agents communicate with one another via
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messages on the platform (although this decrease is not statistically significant), when the

buyer is in the U.S., or when the seller provides more photos of the item. The largest

improvement comes when sellers choose to use eBay’s auto-accept/decline feature, which

is associated with a decrease in the lower bound on inefficient impasse of 10 percentage

points. More seller reviews or additional buyer experience, in contrast, are associated with

an increase in the inefficient impasse lower bound.

Our study contributes to the theoretical and empirical bargaining literature. Theory work

studies incomplete information bargaining either by explicitly modeling the extensive form

of the game or applying mechanism design tools. Even our strongest assumptions (mono-

tonicity and independence) are satisfied in the environments and equilibria of extensive-

form games in the literature (e.g. Perry 1986, Grossman and Perry 1986, and Cramton

1992). We demonstrate, however, that in the presence of unobserved game-level hetero-

geneity (i.e., features of the negotiation that shift or scale the values of both agents in a

given instance of the game, but that are unobservable to the econometrician), monotonicity

assumptions can fail. This is not an indication that these theoretical equilibria cannot possi-

bly describe real-world bargaining games well, but rather that data limitations (unobserved

heterogeneity) can invalidate any attempt to use these existing theoretical results to analyze

bargaining, even if the researcher is confident that she knows which of many equilibria

generates the data. We show that our milder assumptions, such as stochastic monotonicity,

can still be satisfied under unobserved heterogeneity.

In the mechanism design literature, our study is related to Myerson and Satterthwaite

(1983), who demonstrated that when agents have independent values and face uncertainty

about whether gains from trade exist, no incentive-compatible, individually rational mech-

anism will realize the first-best surplus without running a deficit. In his extensive-form

game, Cramton (1992) showed that the first-best probability of trade is attainable if agents

burn surplus to signal their values. Our study quantifies how close real-world negotiators

in consumer markets get to that first-best trade probability.

Our work relates to a small but recently growing literature estimating structural models of
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incomplete-information bargaining. The most closely related studies are Keniston (2011),

who studied bargaining for auto-rickshaw rides in India, and Larsen (2021), who analyzed

bargaining between used-car businesses. Our study is distinct in several dimensions. First,

we study a setting where both agents may be inexperienced negotiators (unlike the drivers

in Keniston 2011 or used-car businesses in Larsen 2021). The importance of this distinc-

tion is that previous studies assumed more about agents’ behavior (such as optimality) or

knowledge of game outcomes that, while plausible for the frequent market participants and

professionals in those studies, are unlikely to hold when applied to consumers in a mar-

ketplace like eBay. Our study develops a new, incomplete-model approach that relies on a

series of intuitive (and falsifiable) assumptions, and takes these bounds to real-world con-

sumer negotiation data to estimate private values and the degree of inefficient impasse. Our

study is also distinct methodologically. Keniston (2011) relied on inequality bounds gener-

ated from a two-step dynamic game method. Larsen (2021) relied on auction (in addition to

bargaining) data, and applied a special case of one of the bounds we propose herein (seller

independence).2 In contrast, the methodology we develop does not rely on auction data,

only sequential-offer bargaining data, and extends beyond the independence case.

Several structural empirical studies have focused on take-it-or-leave-it-offer bargaining

(e.g. Silveira 2017, studying judicial settings) or sequential bargaining with all offers by

one party (Ambrus et al. 2018, studying ransom negotiations for Spaniards taken captive by

North African pirates in the seventeenth century). Li and Liu (2015) studied incomplete-

information bargaining in the form of a k double auction, where each party simultaneously

makes a single offer. In our setting, multiple offers from both parties can and frequently do

occur, and hence the frameworks of these previous papers do not apply.

Our work also relates to a literature exploiting eBay as a laboratory for studying fun-

damental questions of price discovery and efficiency. The structural literature examining

efficiency of eBay trading mechanisms has largely focused on auctions (e.g. Hendricks

2Two structural empirical studies that also examined the used-car setting are Larsen and Zhang (2021) and
Larsen et al. (2022). The latter paper relied on the methodology of Larsen (2021) and examined the impact
of intermediaries in bargaining, while the former studied bargaining power using incentive compatibility and
optimality assumptions that may be too strong for the consumer negotiations we study.
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et al. 2021; Bodoh-Creed et al. 2021). Backus et al. (2020), Keniston et al. (2021), and

Green and Plunkett (2022) documented a number of patterns in eBay bargaining data con-

sistent with the existence of incomplete information and cognitive limitations, underscoring

the benefit of our flexible approach bounding agents’ values without assuming a complete

model of fully rational equilibrium behavior.

Finally, our work connects to a large literature using partially identified models to study

objects of interest, such as distributions of wages or treatment effects. Canonical papers in

this literature include Manski (1989, 1990) and Manski and Pepper (2000), among others.

Examples that, like ours, begins with weak, uncontroversial assumptions and add stronger

assumptions to improve bound informativeness, are Blundell et al. (2007), studying wages,

and Frandsen and Lefgren (2021), studying treatment effects. See Ho and Rosen (2017) for

additional discussion of this literature.

2 eBay’s Best Offer Platform

eBay’s Best Offer option, introduced in 2006, permits a posted-price seller to “allow of-

fers”; a prospective buyer will then see the Buy-It-Now price (which we will refer to as the

list price) as well as a Make Offer button, illustrated for an iPhone 8 in Figure 1.3 Clicking

this button lets the buyer to propose an offer. The seller responds by declining, accepting,

or countering. If she counters, it is then the buyer’s turn to accept, decline, or counter. If

the seller declines, the buyer may still choose to make a counteroffer. Each party is limited

to three offers, and the buyer can purchase at the list price at any time.4 If any agent delays

responding more than 48 hours, the offer expires (effectively declining).

Our data comes from a mix of business-to-consumer and consumer-to-consumer price

negotiations: buyers are typically retail consumers while sellers may be businesses or in-

3This option has, for many years, been the default, and sellers must opt out to disable it.
4This three-offer limit stood during our time period; in more recent years, eBay moved to a five-offer

limit. Sellers can specify auto-accept and auto-decline prices; buyer offers above the auto-accept or below the
auto-decline price are automatically accepted or declined by the platform. In our analysis we take advantage
of these secretly reported thresholds to examine the validity of our bounds.
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Figure 1: Illustration of Best Offer Listing

dividuals. Consumers thus play an important role in this market, in contrast to the profes-

sional negotiators studied in Keniston (2011), Ambrus et al. (2018), or Larsen (2021). As

some consumers may be particularly inexperienced with the eBay game, our study adopts

a robust bounds approach that does not require a complete model of equilibrium behavior.

We use data created for the descriptive analysis of Backus et al. (2020), which studied

bargaining on the U.S. eBay site from June 2012 to May 2013. We arrange the data with

an observation being a given bargaining sequence, containing the list price and all offers.5

For this paper, we focus on a subset of items with well-labeled product identifiers (bar

codes), such as “Apple iPhone 8 64 GB” or “Xbox 360”. We observe each item’s condi-

tion (used/new), and we consider a product to be a combination of the condition type and

product identifier. The data includes a reference price, the average of all non-Best-Offer

posted-price sales of that same product during the sample period.6 We restrict the sample

to products with reference prices constructed from at least ten sales. We limit the sample

to listings to which a buyer makes an offer. This means we do not analyze cases where

a buyer arrives at a listing page but immediately buys at the Buy-It-Now price or leaves

5We use the terms negotiation (or negotiation sequence) and bargaining sequence (or sequence) inter-
changeably.

6We use the reference price as a normalization to put each product on a similar scale by dividing
prices/offers by its reference price.
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without making an offer. Our motivation for focusing on these listings is that we wish to

analyze the degree of inefficient impasse conditional on both the buyer and seller indicating

an interest in negotiating.

We refer to this sample as our original data. We impose several restrictions to remove a

small fraction of incomplete sequences or cases where offers are extreme outliers. Section

3.2 discusses two additional sample restrictions that are best understood after introducing

the model. To leave sufficient data to estimate our bounds, we also limit to products for

which we observe at least 200 negotiation sequences after imposing all other restrictions.

In the end, we are left with 14,557 bargaining sequences corresponding to 44 products.

Appendix Table 7 describes each sample restriction.

Table 1: Descriptive Statistics: Highest-Selling Product per Category and Full Sample

Category Reference n P(sale) Final Price Buyer Price Seller Price
Price ($) Over List Over List Over List

(if trade) (if no trade) (if no trade)
Consumer Electronics 51.44 419 0.43 0.77 0.54 0.97
Video Games/Consoles 80.78 342 0.42 0.84 0.6 0.96
Cell Phones 224.82 1,227 0.26 0.87 0.67 0.99
Computers/Tablets 543.27 321 0.12 0.89 0.63 0.99

All Products 215.71 14,557 0.3 0.83 0.63 0.98
Notes: First four rows show statistics for top-selling product in each category. Final row shows same statistics
for estimation sample of 44 products (14,557 observations). n represents number of observations.

The data does not specify product titles (only anonymous product identifiers) but does

specify product categories. Table 1 displays statistics for the top-selling product in each of

the four categories in our final sample. These four products are all used products (only 3

of the 44 products in our sample are new). The products in Table 1 vary in reference price,

ranging from $51 for the consumer electronics product to $543 for computer/table product.

When trade occurs, the final price as a fraction of the list price ranges from 0.77 to 0.89.

When trade fails, the highest price offered by the buyer as a fraction of the list price ranges

from 0.54 to 0.67, whereas the lowest price offered by the seller in these disagreement

cases ranges from 0.97 to 0.99. A key object of interest in this study is the fourth column,

the sale probability (P(sale)), which varies widely — from 0.12 for the computers/tablets
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product (which was the subject of 321 negotiations) to 0.43 for the consumer electronics

product (419 negotiations). Our empirical approach allows us to quantify inefficiency by

constructing bounds on the counterfactual first-best trade probability.

3 Bounds on Values in a Bargaining Game

In this section we present bounds on buyers’ and sellers’ values in an alternating-offer

bargaining game, the protocol used on eBay.7 We begin with bounds under minimal as-

sumptions, using revealed preference arguments only. We then introduce assumptions on

strategic behavior and the dependence of buyer and seller values to tighten bounds.

3.1. Bargaining Game Setup and Notation. A seller has value S ∼ FS and a buyer has

value B ∼ FB.8 If the buyer and seller agree on a price P, the buyer’s payoff is B−P and

the seller’s is P. If they break up the bargaining (i.e., some agent quits), the seller gets S

and the buyer gets 0. Throughout the paper, we maintain the assumption that, in a given

instance of the game, S and B are known to the seller and buyer, respectively, before any

actions take place and are held fixed throughout the negotiation.9 To match the structure of

eBay’s protocol, we treat the first bargaining offer as coming from the seller (the list price).

The buyer makes the second offer. The seller can then choose to accept, counter, or quit.

We refer to each turn as a period, beginning with the seller at t = 1.

Denote the offers of the seller in odd periods t by PS
t and the offer by the buyer in even

periods t by PB
t . Denote the decision of the buyer in even t by DB

t ∈ {a,c,q} (representing

“accept”, “counter”, and “quit”). Similarly, let DS
t be the decision of the seller in odd t.

Either player accepting or quitting ends the game. For a given instance of the game, the

data consists of the sequence of offers and any decisions to accept or quit.10

7The bounds we derive can be modified to allow for protocol other than alternating offers.
8Throughout, we use uppercase letters to denote random variables and lowercase to denote realizations.
9We allow for the buyer and seller to be learning about their opponents’ values during the game, but not

for agents to learn any additional information about their own values (such as learning about the quality of
the good), which Desai and Jindal (2020) show in laboratory experiments is certainly a possibility.

10If the buyer has not reached the three-offer limit, she can make an additional offer following a seller
choice to decline; we reclassify such sequences as consisting of the seller having not declined but rather
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We define the following random variables at the sequence- (rather than period-) level:

Let XS
AC = min{{PB

t : DS
t+1 = a},mint{PS

t : DS
t = c}} be the smallest offer the seller makes

or accepts in a given sequence (where “AC” stands for “accepting or countering”). Note

that XS
AC is always defined because the seller always makes the first offer (so DS

1 = c). Also,

let XS
Q = max{{PB

t : DS
t+1 = q},0} be the offer at which a seller quits, if she does quit, and

0 otherwise. There can be at most one offer in a sequence at which an agent quits. The

definition ensures that XS
Q is well defined even if DS

t ̸= q for all t. Let XB
AC = max{{PS

t :

DB
t+1 = a},maxt{PB

t : DB
t = c}} be the largest price a buyer accepts or offers in a given

sequence. This is always defined because we focus on cases where buyers make offers PB
2

(so DB
2 = c). Let XB

Q = min{{PS
t : DB

t+1 = q},∞} be the offer at which a buyer quits, if

indeed the buyer quits, and ∞ if DB
t ̸= q for all t.11

A number of the arguments we derive below rely on the following identities, which are

representations for FS and FB applying the law of iterated expectations:

P(S ≤ x) =
∫

P(S ≤ x | PS
1 = y)dFPS

1
(y) (1)

P(B ≤ x) =
∫

P(B ≤ x | PS
1 = y,PB

2 = z)dFPS
1 ,P

B
2
(y,z) (2)

where FPS
1

is the CDF of PS
1 and FPS

1 ,P
B
2

is the joint distribution of PS
1 ,P

B
2 . When written as a

function, P(·) represents the probability of a given event.

As a final piece of notation, for given random variables X and Y , let supp(Y | X ≥ a)

and supp(Y | X ≥ a) be the maximum and minimum of the support of Y given X ≥ a,

respectively. Define XS∗
AC(y) ≡ supp(XS

AC : PS
1 ≥ y) and XS∗

Q (y) ≡ supp(XS
Q : PS

1 ≤ y). Thus,

XS∗
AC(y) is the smallest accept/counter price of sellers conditional on the first offer of sellers

being at least y. XS∗
Q (y) has a similar interpretation. For all (y,z) on the support of (PS

1 ,P
B
2 ),

define XB∗
AC(y,z) ≡ supp(XB

AC : PB
2 ≤ z,PS

1 = y) and XB∗
Q (y,z) ≡ supp(XB

Q : PB
2 ≥ z,PS

1 = y).

Conditional on PS
1 , XB∗

AC(y,z) is the largest accept/counter price of buyers conditional on

events where the second offer of buyers is at most z. XB∗
Q (y,z) has a similar interpretation.

having countered at her previous offer. Thus, sequences ending with a seller quitting only occur if a seller
declines an offer and there is no further action by the buyer.

11The support points ∞ and 0 are conservative and can easily be replaced with other assumptions.
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3.2. Model Discussion Before deriving bounds, we discuss dynamics across negotiations,

an issue not explicitly modeled but allowed for in our framework. While we refer to B and

S as “values” for brevity, more precise terms would be “net values,” or “willingness to pay”

and “willingness to sell.” Throughout the paper, we focus on one negotiating pair at time,

but our framework allows for the possibility that, in a given negotiation, the buyer may

receive gross utility V from trading and a nonzero outside option µ from not trading, where

µ is a continuation value in a broader game where the buyer returns to the platform or looks

for the item elsewhere. The buyer’s willingness to pay in this negotiation is V −µ , and we

refer to this quantity as the buyer’s value, B ≡ V − µ . For our purposes, when studying

buyers, we do not need to separately identify bounds on V and µ (nor can we using our

method); we only seek bounds on FB.

Similarly, the seller’s willingness to sell S is the utility the seller receives if trade does

not occur, which, in a broader continuation game, represents the value she receives from

re-entering the eBay market, attempting to sell the item elsewhere, or keeping the good.

Thus, in this broader game, the objects S and B are not primitives. They are nonetheless the

initial objects we are interested in bounding because doing so will allow us to study several

properties of bargaining offers and a notion of efficiency that does not require separately

identifying V and µ or unpacking S into more primitive objects.12

This notion of B representing a buyer’s willingness to pay suggests that, in the eBay con-

text, an upper bound on B for a given item will be PS
1 (the list/Buy-It-Now price), because

an eBay buyer can choose to purchase at that price at any time, even after a breakdown

in negotiations. We can incorporate this information into our notation above by modify-

ing the definition of XB
Q (which, as we will show, provides an upper bound on B) to be

min{{PS
t : DB

t+1 = q},PS
1 ,∞}. In our analysis, we will say that we use the list-price-recall

condition when taking advantage of this alternative definition of XB
Q (see Section 5).

As highlighted above, we treat B and S as fixed during a given negotiation and do not con-

sider the possibility of these changing (such as through the buyer’s outside option chang-

12Appendix D shows how several forms of bargaining costs would also fit into this framework.
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ing). Such changes are certainly possible if a buyer negotiates with multiple sellers at once

or vice versa. To minimize this possibility, we limit our sample to negotiations in which

neither party negotiates with multiple opponents in an overlapping time window.13 This re-

striction drops 48.6% of negotiations. Among the remaining, non-overlapping sequences,

we limit to the first seller of a given product with whom a given buyer negotiates, and,

among these, the first buyer with whom a given seller negotiates. This drops 16% of nego-

tiations (see Table 7 in the Appendix) and yields a unique set of negotiating pairs: no seller

appears twice for the same listing and no buyer appears twice for the same product.

It is tempting to retain data on cases where a given seller negotiates with multiple (non-

overlapping) buyers over time (for example, one buyer today and another buyer a week

later), under the additional assumption that S stays constant across negotiations, not just

within a negotiation. If this stronger assumption were true, future and past negotiations

between a given seller and different buyers would contain information about S in the current

negotiation. We do not adopt this assumption and instead limit our data to a single buyer

per seller and vice versa. Our motivation is twofold: many of the bounds we derive do

not immediately apply to cases where an agent negotiates with multiple opponents over

time, and attempts to extend these assumptions quickly become unwieldy (see Section 3.4),

making a set of unique pairs appealing. This set of unique pairs could be formed using the

last (or a random) seller among those with whom a given buyer negotiates, rather than the

first. Our motivation for selecting the first is to reduce a type of selection that could occur in

the bargaining. Specifically, if, after an agreement, an agent exits the market, then among

multiple sequences involving a given agent, the later sequences are more likely to involve

agreement. This can lead to buyer and seller values being negatively correlated in later

13We define this time window for a given negotiation as the time from the buyer’s first offer to the last
action taken. The 25th and 75th percentile of window length are 9 seconds and 6.29 hours; the 10th and
90th percentiles are zero seconds (which can happen if the sequence ends immediately through the auto ac-
cept/decline mechanism) and 48 hours. We say a sequence has overlapping buyers if the window overlaps that
of any other sequence for that same seller/item and some other buyer (or if some other buyer bought the item
through the Buy-It-Now option on a day that overlaps the window). A sequence has overlapping sellers if the
window for a given buyer/product with a given seller overlaps the window for that same buyer/product and
some other seller. 44.4% of negotiations in the original data have overlapping buyers, 9.0% have overlapping
sellers, and some have both, leading to 48.6% overall that have either.
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sequences, with a higher-value buyer negotiating with a lower-value seller (and hence the

parties agree to trade).14

3.3. Sharpness In our presentation of bounds below, we will say a CDF, F , is in the iden-

tified set of buyer values under a given set of assumptions if there exists a data generating

process (DGP) satisfying those assumptions such that F is the CDF of buyer values. If

no such DGP exists, F is not in the identified set under those assumptions. Our sharpness

notion is one sided: under the assumptions and data used to derive a given lower bound,

that bound and any CDF lying above it are in the identified set. Similarly, under the as-

sumptions used to derive a given upper bound, that bound and any CDF lying below it are

in the identified set.15 For some bounds, our proofs do not imply that the lower and upper

bounds would constitute the sharp identified set if we were to consider the upper and lower

bound assumptions jointly. These issues are related to sharpness discussions in Chesher

and Rosen (2017) and Molinari (2020).16

3.4. Unconditional Bounds on Value Distributions. We now describe a range of assump-

tions about equilibrium behavior yielding sharp bounds on marginal value distributions.

Our first and weakest assumption is the following:

Assumption A1 (Revealed Preferences). The seller (i) never accepts (or counters) at a

price P < S and (ii) never quits at a price P > S. The buyer (iii) never accepts (or counters)

at a price P > B and (iv) never quits at a price P < B.

These assumptions are similar to those in Haile and Tamer (2003) for English auctions.17

14While this is our motive for focusing on the first seller a buyer engages with and vice versa, in practice
this restriction has a negligible effect on our results, which are similar when using the last (or a random) seller
a buyer negotiates with (and vice versa); see Appendix Table 8.

15Throughout the paper we will use the term “lower bound” on a CDF to refer to a bound lying graphically
below that CDF (and vice-versa for “upper bound”), although a graphical lower bound is in fact an upper
bound on the random variable in the stochastic dominance sense.

16For example, with interval data, it is not necessarily true that a CDF will be in the identified set even if
it lies between the CDF of the lower bounds of intervals and the CDF of the upper bounds of the intervals.

17There, the authors assume that a bidder (i) never bids above her value and (ii) never lets another agent
win at a price she is willing to beat. An important distinction is that upper and lower bounds exist for each
observation in Haile and Tamer (2003). In contrast, in the two-sided bargaining game we study, a given
negotiation may end with one side of the bounds unobserved (e.g., because no agent quits). We handle this
complication by relying on probabilities of events, rather than on empirical CDFs of prices/bids alone.
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Importantly, A1 imposes only a weak rationality condition, not requiring that agents behave

according to any equilibrium concept, although the conditions are weak enough to be sat-

isfied by standard concepts, such as Bayes Nash or Perfect Bayes.

Important implications of this assumption are that XS
Q ≤ S ≤ XS

AC and XB
AC ≤ B ≤ XB

Q .

These inequalities imply what we call our unconditional bounds on FS and FB:

P(XS
AC ≤ x)≤ FS(x)≤ P(XS

Q ≤ x) (3)

P(XB
Q ≤ x)≤FB(x)≤ P(XB

AC ≤ x) (4)

Theorem 1. (3) gives a sharp lower bound for FS under A1.i and a sharp upper bound for

FS under A1.ii. (4) gives a sharp lower bound for FB under A1.iv and a sharp upper bound

for FB under A1.iii.

All proofs are in the appendix. The proof follows immediately from XS
Q ≤ S ≤ XS

AC

and XB
AC ≤ B ≤ XB

Q . For sharpness of Theorem 1, given that we place no restrictions on

behavior other than A1, nothing in the data or assumptions rules out the possibility that the

play of the game is such that XS
AC = S, and similarly for the other bounds. These bounds

can be relatively tight in some cases and loose in others. Appendix F offers Monte Carlo

simulations illustrating this point.

The bounds are nonparametric. They are weakly increasing and lie in [0,1], and thus can

correspond themselves to a CDF. The bounds will be valid even if the game has multiple

equilibria, and, in particular, even if the data is not all generated by the same equilibrium or

by any standard notion of equilibrium play. Furthermore, if the true DGP does not in fact

entail sellers all drawing from the same distribution FS — that is, if sellers (or, analogously,

buyers) are asymmetric — the bounds will remain valid for the mixture distribution of

values in the data.

These bounds place no restrictions on the dependence between B and S. For example,

the bounds allow for the possibility that B and S are correlated through game-level het-

erogeneity that is either unobservable or observable to the econometrician.18 One form of

heterogeneity is S =W + S̃ and B =W + B̃, where S̃, B̃, and W are independent, and where
18In the case of used cell phones that we examine in Section 5, unobserved heterogeneity can include
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W is known to both agents but not the econometrician. In this scenario, S and B are indepen-

dent conditional on W , but, from the analyst’s perspective, are correlated across instances

of the game through W . A related possibility is multiplicative separability, where S =WS̃

and B=WB̃.19 We do not impose either structure but highlight these below as special cases

allowed for by our moderate assumptions and ruled out by our strongest assumptions (and

by some existing theoretical models).

3.5. What Assumptions Are Suggested by Bargaining Theory? We now explore whether

theoretical bargaining models of the environment we study suggest assumptions to tighten

the unconditional bounds. There are very few extensive-form equilibria studied in the liter-

ature from bargaining games close in generality to the one we study — a bargaining game

with two-sided incomplete information and a continuous value distribution where both par-

ties can make offers.20 The two models closest to our setting are those of Perry (1986) and

Cramton (1992). Appendix G describes these in detail. Our bounds allow for a much wider

range of possible outcomes than the equilibria in these two papers; indeed, these equilib-

ria are among infinitely many that our bounds accommodate. We focus on these examples

only because they are the two existing examples general enough to relate to our framework.

Table 2 summarizes the assumptions and theoretical models we consider.

3.5.1. Monotonicity. In both Perry (1986) and Cramton (1992), offers satisfy a property

we refer to as monotonicity, describing how an agent’s first offer relates to her own value:

Assumption A2 (Monotonicity). (i) S is weakly increasing in PS
1 , and (ii) B is weakly

increasing in PB
2 conditional on PS

1 .

A2.i describes own-offer weak monotonicity for sellers: for y < y′, a seller with PS
1 = y

has a weakly lower value than a second seller who has chooses PS
1 = y′, and therefore

aspects of the seller’s reputation or of the cell phone that both the buyer and seller observe but not the
econometrician (e.g., a cracked screen in a listing photo or a protective covering included with the phone).

19Multiplicative or additive separability are two structures for unobserved heterogeneity commonly as-
sumed in empirical auction work (e.g., Krasnokutskaya 2011; Freyberger and Larsen 2022).

20See Table A9 of Larsen (2021) for a breakdown of the theoretical literature modeling extensive-form,
incomplete-information bargaining games. This literature largely focuses on models where only one side has
a private value, only one side is allowed to make offers, or agents have only two possible values.
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Table 2: Assumptions’ Relationships to Models of Two-Sided Incomplete Information
Model/Environment Uncond. Monoton. Indep. Stoch. Positive

Monoton. Corr.
A1 A2 A3 A4 A5

Cramton (1992) ✓ ✓ ✓ ✓ ✓

Cramton (1992) + Unobs. Het. ✓ ✓ ✓

Perry (1986) ✓ ✓ ✓ ✓ ✓

Perry (1986) + Unobs. Het. ✓ ✓ ✓
Assumption Type Behavioral Behavioral Envir. Behavioral Envir.

Notes: Table shows which assumptions are satisfied in Cramton (1992) and Perry (1986) models, as well
as in modifications of those models we derive with unobserved heterogeneity (Appendix G). Final row
distinguishes between assumptions about behavior vs. those about information environment.

the lowest price at which the second seller counters or accepts is an upper bound on the

value of the first seller. This is precisely what is represented by XS∗
AC(y), defined in Section

3.1. Similarly, A2.i implies that the highest quit price among sellers with first offers less

than y provides a lower bound on the value of the seller who has PS
1 = y. Part (ii) of A2,

monotonicity for the buyer, is weaker, as it is conditional on the seller’s first offer. These

arguments yield∫
1(XS∗

AC(y)≤ x)dFPS
1
(y)≤ FS(x)≤

∫
1(XS∗

Q (y)≤ x)dFPS
1
(y) (5)∫

1(XB∗
Q (y,z)≤ x)dFPS

1 ,P
B
2
(y,z)≤ FB(x)≤

∫
1(XB∗

AC(y,z)≤ x)dFPS
1 ,P

B
2
(y,z) (6)

Theorem 2. (5) gives a sharp lower bound for FS under A1.i and A2.i and a sharp upper

bound for FS under A1.ii and A2.i. (6) gives a sharp lower bound for FB under A1.iv and

A2.ii and a sharp upper bound for FB under A1.iii and A2.ii

These monotonicity bounds are derived as follows: Under A2 and conditional on PS
1 = y,

we have XS∗
Q (y) ≤ S ≤ XS∗

AC(y), and the objects XS∗
AC(y) and XS∗

Q (y) are non-random. We

plug these objects into (1) to obtain (5), where 1(·) is the indicator function. The buyer

bounds follow similarly. The bounds improve upon the unconditional ones by comparing

the accept/counter or quit actions of agents across instances of the game. Appendix F

shows simulations where the bounds do vs. do not improve upon the unconditional ones.

Appendix G shows that Perry (1986) and Cramton (1992) satisfy monotonicity.

3.5.2. Independence. This assumption relates an agent’s value to the opponent’s offer:
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Assumption A3 (Independence). (i) S is independent of PB
2 conditional on PS

1 , and (ii) B

is independent of PS
1 .

As the seller makes the first move, a natural assumption is that the seller’s first offer

depends on S. A3.ii takes this one step further and assumes that the seller’s first offer does

not depend on B; A3.i describes a similar condition for the seller’s value, but conditional on

the seller’s first offer. Through this relationship between an agent’s value and an opponent’s

offer, A3 captures a notion of independence between values. This assumption is satisfied

in the Perry (1986) and Cramton (1992) environments.

A3 implies the following independence bounds:∫
max

z
mS

AC(x,y,z)dFPS
1
(y)≤ FS(x)≤

∫
min

z
mS

Q(x,y,z)dFPS
1
(y) (7)

max
y′

P(XB
Q ≤ x | PS

1 = y′)≤ FB(x)≤ min
y′

P(XB
AC ≤ x | PS

1 = y′) (8)

where mS
AC(x,y,z) = P(XS

AC ≤ x | PS
1 = y,PB

2 = z), mS
Q(x,y,z) = P(XS

Q ≤ x | PS
1 = y,PB

2 = z).

Theorem 3. (7) gives a sharp lower bound for FS under A1.i and A3.i and a sharp upper

bound for FS under A1.ii and A3.i. (8) gives a sharp lower bound for FB under A1.iv and

A3.ii and a sharp upper bound for FB under A1.iii and A3.ii

These bounds are obtained by applying (1) and (2) and then using A1 and A3. The

bounds can be narrow or wide in practice; Monte Carlo simulations in Appendix F illustrate

both cases and discusses data features affecting the bounds’ width.21

While the models of Cramton (1992) and Perry (1986) satisfy both monotonicity and

independence, it is not hard to modify their environments to violate these assumptions.

Appendix G shows that additively separable unobserved heterogeneity would violate both

assumptions in both models, as listed in Table 2.
21The independence case shows how our bounds would become unwieldy, as alluded to in Section 3.2, if

we were to attempt to exploit data from a single agent negotiating with multiple opponents over time, even
if these negotiations are non-overlapping. Consider a seller negotiating with multiple buyers over time, and
assume S and PS

1 are constant across negotiations. The generalization of the independence assumption would
be that, conditional on PS

1 , S is independent of each PB
2 the seller faces, and our bounds would then condition

on the (potentially large) set of such offers — a set that may differ in size across instances of the game. As
highlighted in Section 3.2, this complication is one reason why we limit our data to only one buyer per seller
and vice versa. The independence case is only one such example; other bounds become unwieldy as well
without this restriction.
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Table 2 also distinguishes between assumptions about behavior (e.g. monotonicity) vs.

the environment (e.g. independence). Either type of assumption may be violated in a given

dataset if they fail to describe behavior or an environment well, or because of a data weak-

ness (e.g. unobserved heterogeneity). This raises an important point for empirical work:

theoretical equilibrium models of bargaining may be unhelpful for empirics if their results

do not hold in the presence of unobserved heterogeneity across instances of the game. It

is precisely empirical challenges such as this that motivate our incomplete modeling ap-

proach, which can help bridge the gap between restrictive, extensive-form (and complete)

models and analysis of bargaining in actual negotiation data.

3.6. Weakening Monotonicity and Independence. Our next assumption generalizes

monotonicity:

Assumption A4 (Stochastic Monotonicity). (i) P(S ≤ x | PS
1 = y) weakly decreases in y ∀

x, and (ii) P(B ≤ x | PS
1 = y,PB

2 = z) weakly decreases in z ∀ y, x.

This assumption is implied by monotonicity. Like monotonicity, stochastic monotonicity

describes how an agent’s offer is related to her value and allows us to exploit comparisons

across instances of the game. A4 means that an agent’s value is more likely high when

her first offer is high.22 Combined with (1) and (2), we obtain the following stochastic

monotonicity bounds:∫
max
y′≥y

P(XS
AC ≤ x | PS

1 = y′)dFPS
1
(y)≤ FS(x)≤

∫
min
y′≤y

P(XS
Q ≤ x | PS

1 = y′)dFPS
1
(y) (9)

∫
max
z′≥z

mB
Q(x,y,z

′)dFPS
1 ,P

B
2
(y,z)≤ FB(x)≤

∫
min
z′≤z

mB
AC(x,y,z

′)dFPS
1 ,P

B
2
(y,z) (10)

where mB
Q(x,y,z) = P(XB

Q ≤ x | PS
1 = y,PB

2 = z), mB
AC(x,y,z) = P(XB

AC ≤ x | PS
1 = y,PB

2 = z).

Theorem 4. (9) gives a sharp lower bound for FS under A1.i and A4.i and a sharp upper

bound for FS under A1.ii and A4.i. (10) gives a sharp lower bound for FB under A1.iv and

A4.ii and a sharp upper bound for FB under A1.iii and A4.ii.

22In another recent application of a similar assumption, Frandsen and Lefgren (2021) exploit stochastic
monotonicity to bound treatment effects of charter school attendance.
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Our next assumption weakens independence:

Assumption A5 (Positive correlation). (i) P(S ≤ x | PS
1 = y,PB

2 = z) is weakly decreasing

in z for all y and x, and (ii) P(B ≤ x | PS
1 = y) is weakly decreasing in y for all x.

A5 states that one agent’s value is stochastically increasing in the other agent’s first offer,

capturing a notion of correlation between buyer and seller values.23 A5 is implied by A3.

Under A5 we obtain∫
max
z′≥z

mS
AC(x,y,z

′)dFPS
1 ,P

B
2
(y,z)≤ FS(x)≤

∫
min
z′≤z

mS
Q(x,y,z

′)dFPS
1 ,P

B
2
(y,z) (11)∫

max
y′≥y

P(XB
Q ≤ x | PS

1 = y′)dFPS
1
(y)≤ FB(x)≤

∫
min
y′≤y

P(XB
AC ≤ x | PS

1 = y′)dFPS
1
(y) (12)

Theorem 5. (11) gives a sharp lower bound for FS under A1.i and A5.i and a sharp upper

bound for FS under A1.ii and A5.i. (12) gives a sharp lower bound for FB under A1.iv and

A5.ii and a sharp upper bound for FB under A1.iii and A5.ii

Appendix G demonstrates that, when modifying Cramton (1992) and Perry (1986) to

include unobserved heterogeneity, independence and monotonicity can be violated even

while these weaker conditions hold. Table 2 summarizes these results.

3.7. Combining Assumptions on Marginal Distributions. A2–A5 can be combined to

obtain tighter bounds. For example, we can combine A2 and A3 — monotonicity and inde-

pendence — our two strongest assumptions. Or we can combine A4 and A5 — stochastic

monotonicity and positive correlation — two weaker assumptions. Appendix C derives

these combined bounds and proves sharpness.

The choice of which assumptions to adopt should be based on which seem reasonable in

a given setting. For example, seller monotonicity and buyer independence may be inappro-

priate in settings with suspected unobserved heterogeneity, where stochastic monotonicity

and positive correlation would be more appropriate. Other assumptions that may be less

23While these bounds exhibit a form of opponent-offer stochastic monotonicity, we refer to them as the
positive correlation bounds to distinguish them from A4, (own-offer) stochastic monotonicity.
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sensitive to unobserved heterogeneity include buyer monotonicity, which, through condi-

tioning on the seller’s first offer, may purge some unobserved heterogeneity. In Section 5,

we estimate each of the bounds and test for crossings.

4 Estimation

We now describe estimators for the bounds. For some of the bounds, the natural plug-in

estimators are unbiased or have an outward bias. In other cases, however, the plug-in es-

timator are inward biased and might be artificially tight (and unbiased estimators do not

exist; Hirano and Porter 2012). We therefore modify the plug-in estimator to be either out-

ward biased or half-median-unbiased in the spirit of Chernozhukov et al. 2013. We describe

the basics of our estimators here and relegate additional details, along with discussions of

inference and testing, to Appendix E. An observation i = {1, . . . ,n} is the bargaining se-

quence for a given buyer-seller pair negotiating over a given product. We do all estimation

separately by product and thus omit any notation denoting products.

4.1. Preliminary Ingredients for Estimation. For each i, the variables XS
AC,i, XS

Q,i, XB
AC,i,

and XB
Q,i are observed. We estimate the conditional probability P(XB

Q ≤ x | PS
1 = y′) =

E
[
1(XB

Q ≤ x) | PS
1 = y′

]
for each value of x using the Nadaraya-Watson kernel estimator

with an Epanechnikov kernel and bandwidth n−1/4. This bandwidth choice implies under-

smoothing, which facilitates inference. Let P̂(XB
Q ≤ x | PS

1 = y′) denote the estimator. We

proceed analogously for P(XB
AC ≥ x |PS

1 = y′), P(XS
AC ≤ x |PS

1 = y′), and P(XS
Q ≥ x |PS

1 = y′).

Similarly, we estimate the function mB
Q(x,y,z) using the Nadaraya-Watson kernel esti-

mator with an Epanechnikov kernel and bandwidth n−1/5. Due to the higher dimension

of mB
Q(·), the bandwidth converges at a slower rate. Denote the estimator m̂B

Q(x,y,z). We

estimate m̂B
AC(x,y,z), m̂S

AC(x,y,z), and m̂S
Q(x,y,z) analogously.

XS∗
AC(y) and XS∗

Q (y) can be estimated with sample analogs, X̂S∗
AC(y) = mini:PS

1,i≥y XS
AC,i and

X̂S∗
Q (y) = maxi:PS

1,i≤y XS
Q,i. Notice that X̂S∗

AC(y)≥ XS∗
AC(y) and X̂S∗

Q (y)≤ XS∗
Q (y), which implies

that the estimated seller monotonicity bounds are outward biased (i.e., they are on average
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too wide) and thus are conservative when it comes to bounding the true CDF.

Estimating XB∗
AC(y,z) and XB∗

Q (y,z) is more complicated, as these condition on a specific

value of the continuous variable PS
1 . Let N(y) = {z ∈ R : |z − y| ≤ hn(y)} be a neigh-

borhood of y of a size hn(y) dependent on n and decreasing to 0 as n → ∞. Define

X̂B∗
AC(y,z) = maxi:PB

2,i≤z,PS
1,i∈N(y)XB

AC,i and X̂B∗
Q (y,z) = mini:PB

2,i≥z,PS
1,i∈N(y)XB

Q,i. As opposed

to X̂S∗
AC(y), the bias of X̂B∗

AC(y,z) cannot be signed. To obtain a conservative estimator,

we assume that XB∗
AC(y,z) is Lipschitz continuous. That is, there exists C ≥ 0 such that

|XB∗
AC(y,z)−XB∗

AC(y
′,z)| ≤C|y− y′| for all y,y′,z. Then X̂B∗

AC(y,z)≤ supp(XB
AC : PB

2 ≤ z,PS
1 ∈

N(y)) ≤ XB∗
AC(y,z)+Chn(y). To choose hn(y), we use a matching approach. Let Kn be the

number of neighbors and let hn(y) be such that ∑
n
i=1 1(|PS

1,i − y| ≤ hn(y)) = Kn. We choose

Kn = n1/4. If the density of PS
1 (y) is bounded and bounded away from 0 in a neighborhood

of y, then hn(y) is proportional to n−3/4 and therefore goes to 0 as n → ∞. Finally, we let

X̃B∗
AC(y,z) = X̂B∗

AC(y,z)−ηn where ηn = n−1/2, which ensures that X̃B∗
AC(y,z)≤ XB∗

AC(y,z) with

probability approaching 1. Similarly, we use X̃B∗
Q (y,z) = X̂B∗

Q (y,z)+ηn.

4.2. Estimation of Bounds. With the ingredients from above, we estimate the bounds. For

brevity, we describe here the estimation of each lower bound; estimators for upper bounds

are analogous. The unconditional lower bound estimators are simply the empirical analogs

of (3) and (4): 1
n ∑

n
i=1 1(XS

AC,i ≤ x) and 1
n ∑

n
i=1 1(XB

Q,i ≤ x), both of which are unbiased.

For the monotonicity bounds, note that
∫

1(XS∗
AC(y)≤ x)dFPS

1
(y) = EPS

1
[1(XS∗

AC(P
S
1 )≤ x)],

where EPS
1
[·] is an expectation over PS

1 . We estimate the lower bounds from (5) and (6) by
1
n ∑

n
i=1 1(X̂S∗

AC(P
S
1,i)≤ x) and 1

n ∑
n
i=1 1(X̃B∗

Q (PS
1,i,P

B
2,i)≤ x), which are both conservative.

We estimate the stochastic monotonicity lower bounds in (9) and (10) by
1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)
P̂(XS

AC ≤ x | PS
1 = y′) and 1

n ∑
n
i=1 maxz′∈ω2(PB

2,i)
m̂B

Q(x,P
S
1,i,z

′), where we

define ω1(PS
1,i) = {y : y ≥ PS

1,i,y ∈ Q0.05(PS
1,i)∪ {PS

1,i}}, and for any random variable Y ,

Qα(Y ) is the interval between the α and 1−α quantiles of Y ; ω2(PB
2,i) is defined anal-

ogously. Notice that the sample analog estimator of the seller’s stochastic monotonicity

lower bound is 1
n ∑

n
i=1 maxy′≥PS

1,i
P̂(XS

AC ≤ x | PS
1 = y′), but we use the additional constraint

that y∈Q0.05(PS
1,i) since P(XS

AC ≤ x | PS
1 = y′) can be poorly estimated at the support bound-
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ary. Moreover, to ensure that we maximize over a nonempty set, we always include PS
1,i.

Applying this tail truncation yields conservative estimates; the same is true for all estima-

tors in the paper using this truncation. These estimators might still be inward biased due to

the maxima. To address this, we modify our estimators to be half-median-unbiased (Ap-

pendix E). Simulations in Appendix F compare bias-corrected and uncorrected estimators.

We estimate the independence lower bounds in (7) and (8) by
1
n ∑

n
i=1 maxz∈Q0.05(PB

2,i)
m̂S

AC(x,P
S
1,i,z) and maxy′∈Q0.05(PS

1,i)
P̂(XB

Q ≤ x | PS
1 = y′), and the pos-

itive correlation lower bounds in (11) and (12) by 1
n ∑

n
i=1 maxz′∈ω2(PB

2,i)
m̂S

AC(x,P
S
1,i,z

′) and
1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)
P̂(XB

Q ≤ x |PS
1 = y′). Appendix E discusses corresponding half-median-

unbiased estimators. Appendices C and E address estimators combining assumptions.24

5 Bounding Values in eBay Bargaining

5.1. Bounds on Buyer and Seller Values for Cell Phones. We apply these estimators

to bound buyer and seller value distributions separately for all 44 products. We normalize

prices by the product’s reference price to aid interpretation. To illustrate, we first focus on

one product: the most popular product from the cell phone category from Table 1.

5.1.1. Bounds on Seller Values. Figure 2 shows bounds on FS for this product under

different assumptions. Every panel also shows the unconditional bounds for comparison.

Dashed lines are upper and solid lines are lower bounds. Next to point estimates, we also

show 95% one-sided pointwise confidence bands.

The unconditional bounds — which rely on our weakest assumptions — can be wide,

the upper bound in particular. This is because it is constructed using prices at which a seller

quits (walking away from bargaining), which are unobserved if a sequence either ends in

agreement or if the buyer quits (rather than the seller).25 Depending on the product, some

24While we do address this in this paper, one could condition bounds arguments on covariates and apply
this conditioning in the estimated conditional probability functions. In this case, a parametric approximation,
such as a probit, may be preferred to the nonparametric estimators we propose here. The matching approach
described above could then be used to estimate support bounds for the monotonicity assumptions.

25In such cases, we cannot rule out the seller having a value of zero, and hence the upper bound CDF
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Figure 2: Bounds on Seller Distribution for Cell Phone

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Stoch mono u.b.
Stoch mono l.b.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Mono u.b.
Mono l.b.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Pos corr u.b.
Pos corr l.b.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Ind u.b.
Ind l.b.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Pos corr + stoch mono u.b.
Pos corr + stoch mono l.b.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Uncond. u.b.
Uncond. l.b.
Ind + stoch mono u.b.
Ind + stoch mono l.b.

Notes: Bounds on FS for most popular cell phone product. Top two panels show stochastic monotonicity
bounds (left) and monotonicity bounds (right). Middle panels show positive correlation bounds (left) and
independence bounds (right). Bottom panels show combined positive correlation + stochastic monotonicity
bounds (left) and combined independence + stochastic monotonicity bounds (right). Every panel shows
unconditional bounds for comparison. Upper bounds are dashed lines and lower bounds are solid lines.
Faded lines represent 95% confidence bands (constructed via subsampling; see Appendix E) for the bounds
represented in the corresponding color. All prices are scaled by product’s reference price, and thus units on
horizontal axis are fraction of the reference price.

assumptions do little to improve the unconditional bounds. For example, for this product,

the stochastic monotonicity bounds (top left panel), are nearly as wide as the unconditional

bounds. Stochastic monotonicity implies that a seller with a high first offer is likely to have

a high value. This assumption will lead to a tightening of the lower bound if, for example,

is (graphically) high. The lower bound, on the other hand, relies on prices at which the seller accepts or
counters, and at least one of these prices is always available in the data (PS

1 ). The lower bound will thus, by
construction, be surjective (i.e., mapping to each value in [0,1]).
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in some instances of the game in which sellers have relatively high first offers the seller

eventually ends up accepting a relatively low offer.26 If instead sellers with high first offers

always end up accepting higher prices, the stochastic monotonicity assumption (even if

true) will not tighten the bounds.

The monotonicity bounds (top right) illustrate the potential for crossings; here the lower

bound lies entirely above the upper bound. As demonstrated in Section 3.5 and Appendix

G, monotonicity can be violated by unobserved game-level heterogeneity, which can gen-

erate non-monotonicities in the relationship between S and PS
1 . This finding highlights the

importance of our weaker assumption (stochastic monotonicity), which is not rejected by

the data. In the bottom right panel of Figure 2, we display the tightest bounds for this

product that do not cross (independence with stochastic monotonicity). Monte Carlo sim-

ulations in Appendix F demonstrate that any of these bounds — even the unconditional

bounds — can be quite narrow or wide, depending on the DGP.

Figure 3: Bounds on Seller Distribution and Auto Accept/Decline Prices
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Notes: Bounds on FS using only negotiations in which seller reported a non-zero auto-accept and auto-decline
price. Left panel shows monotonicity bounds and right panel shows combined independence and stochastic
monotonicity bounds, with upper bounds as dashed lines and lower bounds as solid lines. Every panel also
shows the unconditional bounds for comparison. Empirical CDFs of auto-accept and auto-decline prices are
shown in gray dotted lines. All prices are scaled by the reference price for the product, and thus units on the
horizontal axis are fraction of the reference price.

For seller values, secret auto-accept and auto-decline prices serve as a novel validation

26This can happen due to the randomness in the buyer to which the seller is matched or other DGP features
for later offers, which we make no assumptions about. A similar argument applies to the positive correlation
bounds (left middle panel). These bounds rely on assuming the seller’s value is stochastically increasing in
the buyer’s first offer conditional on the seller’s first offer, and will only tighten the lower bound, say, if,
conditional on cases where PS

1 = y, sellers who face high PB
2 sometimes accept relatively low offers. If this is

not the case, positive correlation, while not rejected by the data, will do little to improve the bounds.
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check — private information of the seller that offers an immediate upper and lower bound

on the true FS.27 Here we re-estimate FS bounds limiting to the 396 negotiations of this

product in which the seller reported these secret thresholds. Figure 3 shows the results,

along with empirical CDFs of auto-accept and auto-decline prices (gray dotted lines). The

left panel shows the monotonicity bounds, which still cross. The right panel (independence

with stochastic monotonicity) is our primary interest, as these are the tightest bounds we

obtain without the (overly strong) assumption of seller monotonicity. Here we observe that

our assumptions are consistent with the tight bounds implied by the secret prices: the lower

bound implied by the auto-accept price CDF lies below our upper bound and the auto-

decline price CDF lies above our lower bound. We repeat this exercise for the two other

products in our sample with at least 200 negotiations with auto-accept/decline prices and

find similar results, suggesting the bounds are consistent with these secret thresholds.28

5.1.2. Bounds on Buyer Values. Figure 4 displays bounds on FB for this same product.

We find wider bounds for FB than for FS. The lower bound is not onto on [0,1] because it

depends on quit prices, similar to the FS upper bound. The combined positive correlation

and monotonicity bounds (bottom right) especially help to tighten the buyer bounds for this

product. Unlike for FS, the monotonicity bounds for FB do not cross. The monotonicity

assumption for B is weaker, requiring only that, conditional on the seller’s first offer, a

buyer’s value be higher at higher buyer offers (whereas the seller monotonicity assumption

is particularly strong). We reiterate that all bounds are sharp, implying they are the best

possible under their corresponding assumptions. Any tightening of the bounds necessarily

requires stronger assumptions.
27A given seller’s auto-accept price is a weak upper bound on her value and the auto-decline price a weak

lower bound. If, rather than alternating offers, the protocol involved only a take-it-or-leave-it offer by the
buyer, the seller’s optimal choice would be to set both the auto-accept and auto-decline prices equal to her
value. The auto-accept/decline prices are not used anywhere in identifying or estimating our bounds; we
intentionally withhold that information to use it in this validation exercise.

28Cases where the auto-accept/decline prices are inconsistent with our bounds are when the FS lower
bound lies above the auto-decline price CDF or the FS upper bound lies below the auto-accept price CDF.
We always find such crossings for seller monotonicity bounds (as Table 3 below shows, seller monotonicity
bounds cross for all products). For one product, we also find a crossing of the auto-decline price under the
seller independence assumption, but the size of the crossing is small, corresponding to 0.0002 of the mass of
seller types (estimated via the integrated violation error, described in Section 5.2.).
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Figure 4: Bounds on Buyer Distribution for Cell Phone
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Notes: Bounds on FB for most popular cell phone product. Top two panels show stochastic monotonicity
bounds (left) and monotonicity bounds (right). Middle panels show positive correlation bounds (left) and
independence bounds (right). Bottom panels show combined positive correlation + stochastic monotonicity
bounds (left) and combined positive correlation + monotonicity bounds (right). Every panel shows uncondi-
tional bounds for comparison. Upper bounds are dashed lines and lower bounds are solid lines. Faded lines
represent 95% confidence bands (constructed via subsampling; see Appendix E) for the bounds represented
in the corresponding color. All prices are scaled by product’s reference price, and thus units on horizontal
axis are fraction of the reference price.

We can examine how the bounds in Figure 4 change — and whether they cross — when

we impose a stronger assumption that raises the lower bound: the list-price-recall condition

described in Section 3.2.29 For this condition, recall that we incorporate into XB
Q the concept

that a buyer can always purchase at the list price, and therefore, under this condition, B ≤

PS
1 . Under this condition, we should observe the buyer independence bounds crossing,

29The list-price-recall condition only affects the FB lower bound, the only bound that uses XB
Q .
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because B≤PS
1 implies B and PS

1 are not independent. Figure 5 shows bounds incorporating

this condition. We observe clear evidence of the independence bounds being violated: the

lower bound lies nearly entirely above the upper. The unconditional bounds (black lines)

are also much tighter under list-price-recall, and do not cross. Exploiting the list-price-

recall condition also offers a check on the validity of the tightest bounds we obtained in

Figure 4, those relying on monotonicity and positive correlation. Even applying the list-

price-recall condition, these bounds do not cross. The fact that the positive correlation

bounds do not cross, while the independence bounds do, highlights the benefit of the weaker

assumption underlying these bounds.

Figure 5: Bounds on Buyer Distribution with List Price Recall
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Notes: Bounds on FB for most popular cell phone product using the list-price-recall condition. Upper bounds
are equivalent to those in Figure 4; only lower bounds change. Left panel shows independence bounds and
right panel shows combined positive correlation and monotonicity bounds. Every panel shows unconditional
bounds for comparison. Upper bounds are dashed lines and lower bounds are solid lines. All prices are scaled
by product’s reference price, and thus units on horizontal axis are fraction of the reference price.

5.2. Exploring All Products. We now summarize bounds for all 44 products. In Table

3, we show, under each assumption, the fraction of products for which bounds cross.30

Crossings indicate a violation of the underlying assumption(s). Some crossings may be due

to finite sample estimation error, and we account for this by testing whether any crossing

is statistically significant (Frac. Reject); Appendix E describes details. We also compute

the integrated violation error (IVE), which ranges from 0 to 1 and measures the average

30In practice we choose a grid on which to evaluate the bounds and check for crossings (upper bound lying
below lower bound) at each grid point. We use 0 to 2.5 in increments of 0.1. To allow for machine rounding
errors, we only consider violations exceeding 2e-10.
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difference between the upper and lower bound in cases where they cross.31

Table 3: Bound Crossings Under Different Assumptions

Seller Bounds Buyer Bounds

Frac. Frac. IVE Frac. Frac. IVE
Cross Reject Cross Reject

Unconditional (A1) 0 0 0 0 0 0
Monotonicity (A2) 1.00 1.00 0.22 0 0 0
Independence (A3) 0.05 0 0 0.41 0.14 0.01
Stochastic Monotonicity (A4) 0 0 0 0 0 0
Positive Correlation (A5) 0 0 0 0.0227 0 0
Mon. + Indep. (A2 + A3) 1.00 1.00 0.22 0.64 0.50 0.06
Mon. + Pos. Corr (A2 +A5) 1.00 1.00 0.22 0.02 0 0
Stoch. Mon. + Indep. (A4 + A3) 0.14 0.02 0.00 0.34 0.16 0.01
Stoch. Mon. + Pos. Corr (A4 + A5) 0 0 0 0 0 0

Notes: Across all products in the estimation sample, table shows the fraction of products for which seller
lower bound crosses the upper bound, fraction of products for which crossings are statistically significant,
and the IVE. Table shows similar quantities for the buyer bounds.

Table 3 shows that the results from Figures 2 and 4 are representative of products in our

data. In particular, we find that seller monotonicity bounds cross for 100% of products,

with the upper monotonicity bound violating the lower monotonicity bound by an average

of 22% (the IVE).32 For buyer values, where the monotonicity assumption is weaker, the

bounds never cross. The opposite is true for the independence bounds, which only cross

for 5% of products for sellers (and no crossings are statistically significant) but for 41%

of products when bounding FB, 14% of which are statistically significant. In general, we

observe that, even for bounds with some statistically significant crossings, the size of the

crossings are small, as indicated by the low IVE.33

31For a generic upper and lower bound by FU and FL, the IVE is given by
∫

max{FL(x)−FU (x),0}dG(x),
where the distribution function G is equal the unconditional lower bound in the case of sellers and the un-
conditional buyer bound in the case of buyers. We choose these distributions as they are surjective on [0,1]
(mapping to every point in [0,1]), as the seller lower bound depends on PS

1 and the buyer upper bound depends
on PB

2 , which are both always observed in our sample.
32Appendix C proves that the FS monotonicity bounds are unchanged when combined with independence

or positive correlation.
33Imposing the list-price-recall condition leads to additional products having statistically significant cross-

ings only for FB bounds involving independence (consistent with our findings in Section 5.1.2) and to 1 out
of the 44 products having a statistically significant crossing for the FB monotonicity + positive correlation
bounds.
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Table 4: Statistics Across Products on Width of Bounds

Seller Bounds Buyer Bounds

Min Mean Max Min Mean Max
Unconditional (A1) 0.330 0.411 0.512 0.404 0.430 0.459
Monotonicity (A2) – – – 0.294 0.380 0.445
Independence (A3) 0.172 0.273 0.419 0.095 0.238 0.339
Stochastic Monotonicity (A4) 0.312 0.408 0.499 0.391 0.420 0.452
Positive Correlation (A5) 0.241 0.365 0.498 0.366 0.415 0.441
Mon. + Indep. (A2 + A3) – – – 0.113 0.223 0.316
Mon. + Pos. Corr (A2 +A5) – – – 0.265 0.361 0.423
Stoch. Mon. + Indep. (A4 + A3) 0.164 0.258 0.382 0.124 0.256 0.356
Stoch. Mon. + Pos. Corr (A4 + A5) 0.239 0.366 0.483 0.368 0.410 0.442

Notes: Table shows the minimum, mean, and max (across products) of the average width of the bounds,
where the average width for a given product is computed by the upper minus lower bound integrated against
the density of the unconditional lower bound for sellers or the unconditional upper bound for buyers. These
statistics are computed for a given set of bounds only for products for which the bounds do not cross (thus,
the width of bounds and any bounds relying on seller monotonicity is omitted, as these always cross).

In Table 4, for a given set of bounds, we compute the average width of the bounds for a

given product and take the mean, minimum, and maximum of these average widths across

products.34 The unconditional seller bounds can be relatively tight for some products, with

an average probability gap of 0.330 for the minimum-width product, and quite wide for

others, with an average gap of 0.512 for the maximum product. The average width for

some bounds — such as the stochastic monotonicity bounds — is quite similar to that of

the unconditional bounds. Given that all of the bounds are sharp under their correspond-

ing assumptions, these widths could only be reduced under stronger assumptions. We find

that stochastic monotonicity and positive correlation assumptions for the seller improve the

bounds for some products, decreasing the minimum average width to 0.239. For buyer

bounds, monotonicity and positive correlation improve tightness relative to the uncondi-

tional bounds, with a minimum average width of 0.265.

34For a given type of bounds for a given product, we integrate the upper bound minus the lower bound
against the density of the unconditional lower bound in the case of seller values and the unconditional upper
bound in the case of buyer values, as with the IVE. This average width metric is similar to the IVE, ranging
from 0 to 1, with a lower number meaning the bounds are tighter.
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6 Quantifying Inefficient Impasse and Uncertainty

6.1. Motivation. We now consider bounds on the counterfactual first-best trade probability.

In a first-best world, a buyer with value B and seller with value S will trade whenever B≥ S.

The Myerson and Satterthwaite (1983) Theorem demonstrated that the surplus offered by

such a mechanism is unattainable when buyers and sellers have independent private values

with overlapping supports. Cramton (1992) demonstrated that, while the first-best surplus

is infeasible, it is possible for negotiators to achieve the first-best quantity of trade after

costly delay. The first-best quantity of trade will be weakly higher than the realized volume

of trade in the data; the question is, how much higher? A lower bound of P(B ≥ S) can

be compared to the sale probability in the data to bound the degree of inefficient impasse

occurring in reality.35 As important as the object P(B ≥ S) is for quantifying inefficiency,

existing empirical tools and theoretical models are insufficient for identifying it, and data

from bargaining settings where agents have private information will not typically contain

data on those private values themselves (S and B) except in lab experiments.

As explained in Section 3.2, we allow for the possibility that buyers and sellers may have

a continuation value after failed trades (and may, for example, re-enter the marketplace).

Buyer/seller values are then interpretable as willingness to pay/sell. This interpretation is

not problematic for studying inefficient impasse because we are quantifying, for a fixed

set of buyer-seller pairs, how well real-world bilateral bargaining performs relative to the

first-best. We do not model or study the process by which those pairs came to be matched,

which would be necessary to study the efficiency of the searching and matching process.

Both types of efficiencies — the efficiency of the search and matching process and the ef-

ficiency of the incomplete-information bilateral bargaining conditional on matching — are

important components of the efficiency of the market as a whole. Given the complexities

35Note that the trade probability is intimately related to the conditional surplus (the gains from trade
conditional on trade occurring); the latter is weakly increasing in the former. The trade probability is a more
useful object for our empirical purposes because the real-world counterpart is observable in the data, whereas
the conditional surplus is not. This is because, whenever trade occurs, trade must be the efficient outcome,
but the size of those gains is not necessarily identified. Whenever trade fails even though gains from trade
exist, the outcome is necessarily inefficient, but the size of the loss is not necessarily identified.
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of incomplete-information bargaining (a continuum of equilibria with no full characteri-

zation; Ausubel et al. 2002), this paper focuses only on the latter: the inefficiency of the

bargaining conditional on the buyer-seller pairs matched to one another in the data.

It also bears emphasis that the goal of our exercise is not to construct a policy counter-

factual — indeed, the counterfactual we examine, the first-best, is not feasible — but rather

to quantify how well real-world bargaining performs relative to this benchmark. We hope

this quantification can inform several audiences. For the platform, it may offer insights into

how much value is left on the table in the current sales mechanism and whether it might

be worth investigating alternatives, such as encouraging the use of the auto accept/decline

feature or encouraging more communication between agents (which has been shown in

lab experiments to reduce inefficient impasse in incomplete-information bargaining; Valley

et al. 2002). For empirical bargaining researchers, who typically model negotiated prices

as arising from a protocol with no inefficient impasse (some form of Nash bargaining; e.g.,

Crawford and Yurukoglu 2012), this quantification exercise may offer some insights into

how reasonable such an abstraction may be, albeit only within the eBay platform. For

bargaining theory, we hope the exercise can motivate future models capturing elements of

inefficient impasse and unobserved heterogeneity.

6.2. Bounds on Surplus. In this section we construct bounds on the distribution of B−S

(the surplus) and use these to bound P(B ≥ S). Two of these bounds follow immediately

from steps in Section 3. The other two are new, building on ideas from the marginal distri-

bution bounds in Section 3.

Our weakest bounds for P(B− S ≥ x) rely only on revealed preferences (A1), which

implies P(B− S ≥ x) ≥ P(XB
AC −XS

AC ≥ x). Buyers will generally not accept or counter

at a price that is strictly higher than the seller (as this would be strange behavior indeed).

Therefore, P(XB
AC−XS

AC ≥ x) typically corresponds to P(XB
AC−XS

AC = x), which, at x = 0, is

equal to P(sale) (the sale probability in the data), as this represents cases where one agent

accepts a price the other proposes. The upper bound is similar: A1 implies P(B−S ≥ x)≤

P(XB
Q −XS

Q ≥ x). At x = 0, this latter probability is always equal to 1, because only one
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party (the buyer or seller) can quit in a given negotiation. When the seller quits, XB
Q = ∞,

and when the buyer quits, XS
Q = 0. Thus, revealed preferences alone yield uninformative

bounds; the most we learn is that P(B ≥ S) ∈ [P(sale),1].

We next consider bounds that rely on buyer monotonicity (A2.ii) as well as the following

weak assumption on B−S:

Assumption A6. (Surplus stochastic monotonicity). P(B− S ≥ x | PS
1 = y,PB

2 = z) is in-

creasing in z for all y.

To interpret this assumption, consider two negotiations, both of which involve PS
1 =

$300. Suppose that in the first negotiation PB
2 = $200 and the parties trade, while in the

second negotiation PB
2 = $290 and trade fails. A6 implies that gains from trade likely

exist in the second negotiation, even though trade fails.36 A6 is akin to our stochastic

monotonicity assumption on values applied instead to the difference in values.37 Combined

with buyer monotonicity, it yields the following:

P(B−S ≥ x)≥
∫

max
z′≤z

P(XB∗
AC(y,z)−XS

AC ≥ x | PS
1 = y,PB

2 = z′)dFPS
1 ,P

B
2
(y,z) (13)

P(B−S ≥ x)≤
∫

min
z′≥z

P(XB∗
Q (y,z)−XS

Q ≥ x | PS
1 = y,PB

2 = z′)dFPS
1 ,P

B
2
(y,z) (14)

Theorem 6. (13) gives a sharp lower bound for P(B−S ≥ x) under A1.i, A1.iii, A2.ii, and

A6. (14) gives a sharp upper bound for P(B−S ≥ x) under A1.ii, A1.iv, A2.ii, and A6.

A stronger variant of the last assumption is the following:

Assumption A7. (Surplus weak monotonicity). B− S is weakly increasing in PB
2 condi-

tional on PS
1 .

Revisiting the example discussed after A6, A7 implies that gains from trade definitely

(rather than only likely) existed in the second negotiation. While stronger than surplus
36Sufficient (but not necessary) conditions for A6 are a strict version of A2.ii (buyer monotonicity) and

A3.i (seller independence), two assumptions for which we do not find large crossings in Section 5. To
see that these assumptions are sufficient, suppose we can write PB

2 = f (B,PS
1 ) where f (·,PS

1 ) is increasing
for all PS

1 with inverse function g(·,PS
1 ). Then the conditional probability statement in A6 can be written

P(B−S ≥ x | PS
1 = y,B = g(z,y)) = P((z,y)−S ≥ x | PS

1 = y,B = g(z,y)). This latter statement is equivalent
to P(g(z,y)−S ≥ x | PS

1 = y), which is increasing in z for all y.
37Note that we do not rely on assumptions about the correlation structure between S and B, as these are

unhelpful when examining the difference B−S.
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stochastic monotonicity (Assumption A6), this assumption is weaker than assuming mono-

tonicity for both the buyer and seller.38 As A6 is akin to a stochastic monotonicity assump-

tion applied to B−S, A7 is akin to weak monotonicity. Combined with buyer monotonicity,

A7 yields the following:

P(B−S ≥ x)≥
∫

1(XB∗−S
Q (y,z)≥ x)dFPS

1 ,P
B
2
(y,z) (15)

P(B−S ≥ x)≤
∫

1(XB∗−S
AC (y,z)≥ x)dFPS

1 ,P
B
2
(y,z) (16)

where XB∗−S
AC (y,z)= supp(XB∗

AC(y,z)−XS
AC : PB

2 ≥ z,PS
1 = y) and XB∗−S

Q (y,z)= supp(XB∗
Q (y,z)−

XS
Q : PB

2 ≤ z,PS
1 = y).

Theorem 7. (15) gives a sharp lower bound for P(B−S ≥ x) under A1.i, A1.iii, A2.ii, and

A7. (16) gives a sharp upper bound for P(B−S ≥ x) under A1.ii, A1.iv, A2.ii, and A7.

Finally, the strongest assumptions we consider for bounding P(B−S ≥ x) rely on mono-

tonicity (A2) for both the buyer and seller, implying that P(XB∗
AC −XS∗

AC ≥ x) ≤ P(B− S ≥

x)≤ P(XB∗
Q −XS∗

Q ≥ x). Section 5 shows that seller (but not buyer) monotonicity is rejected

by the data. We nonetheless estimate these bounds to illustrate that they are indeed too

strong and can cross. Estimators for all of our bounds on P(B−S ≥ x) are similar to those

for FS and FB and are discussed in Appendix E.

6.3. Inefficient Impasse Results. We evaluate bounds on P(B − S ≥ x) at x = 0, or,

equivalently, P(B ≥ S), the first-best trade probability. We are primarily interested in the

lower bound on P(B ≥ S) but we evaluate the upper bound as well to look for crossings.

We display estimates of lower bounds on P(B ≥ S), along with confidence intervals

on these lower bounds, under these assumptions in Table 5. For the electronics prod-

uct, P(sale) is 0.432 and the lower bound on the counterfactual P(B ≥ S) under surplus

stochastic monotonicity and buyer monotonicity (column 2) is 0.463, suggesting that the

real-world bargaining misses some efficient trades. However, the confidence interval con-

38Strict versions of A2.i and A2.ii are sufficient for A7 to hold, but not necessary. Specifically, suppose we
can write PS

1 = f1(S) and PB
2 = f2(B,PS

1 ) where f1(·) and f2(·,PS
1 ) are increasing with inverse functions g1(·)

and g2(·,PS
1 ), respectively. Then B−S = g2(PB

2 ,P
S
1 )−g1(PS

1 ) and, conditional on PS
1 , this latter difference is

an increasing function of PB
2 .
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tains P(sale), and thus the evidence of inefficient impasse under this set of assumptions is

relatively weak. Column 3 shows bounds relying on surplus weak monotonicity and buyer

monotonicity. Here we find confidence intervals that lie above P(sale) for most products,

suggesting that, maintaining these assumptions, bargaining is indeed inefficient. The col-

umn 4 lower bounds are higher still, but recall that these invoke seller monotonicity and

hence are rejected by the data.

Table 5: Lower Bounds on First-Best Trade Probability for Most Popular Products

(1) (2) (3) (4)
Surplus Surplus

Uncond. Stoch Mon, Weak Mon, Seller Mon,
n P(sale) Buyer Mon Buyer Mon Buyer Mon

Consumer Electronics 419 0.432 0.463 0.721 0.845
[0.385,0.480] [0.400,0.527] [0.629,0.766] [0.779,0.892]

Video Games/Consoles 342 0.415 0.423 0.576 0.705
[0.363,0.468] [0.385,0.514] [0.467,0.631] [0.624,0.759]

Cell Phones 1227 0.266 0.256 0.465 0.876
[0.241,0.290] [0.229,0.291] [0.409,0.496] [0.845,0.904]

Computers/Tablets 321 0.125 0.116 0.181 0.346
[0.088,0.161] [0.078,0.157] [0.083,0.229] [0.269,0.432]

Notes: For the most popular products with each category, table displays lower bounds on P(B ≥ S) under
different assumptions. 95% confidence intervals (obtained via subsampling) are shown in square braces
below each estimate.

We can construct a measure of inefficient impasse, which we define as the fraction of

cases where gains from trade exist and yet trade fails, or 1−P(sale)/P(B ≥ S). A lower

bound on this quantity is obtained by plugging in a lower bound on P(B ≥ S). The bounds

in Table 5 suggest that the real-world bargaining for these products exhibits inefficient im-

passe, but not as much as implied by the (overly strong) assumption of seller monotonicity.

For example, for the popular cell phone product, the sale probability in the data is 0.266,

but in column 3 we find that it would be as high as 0.465 in a first-best world, suggesting

that, when the buyer values the phone more than the seller, the pair still fails to reach an

agreement 43% of the time (i.e., 1−0.266/0.465).

Figure 6 extends this analysis to all 44 products. In each panel, we order products on

the horizontal axis by their sale probability in the data. On vertical axes, an “×” represents
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Figure 6: Bounds on P(B ≥ S), All Products

(A) Surplus Stochastic Monotonicity
and Buyer Monotonicity

(B) Surplus Weak Monotonicity
and Buyer Monotonicity

(C) Seller Monotonicity
and Buyer Monotonicity

Notes: Figure display upper bounds (marked with “×” and lower bounds (marked with hollow circles) for
the counterfactual first-best trade probability (P(B ≥ S)) under different assumptions, for each product in the
estimation sample. Horizontal axes rank products by sale probability in the data. The solid line represents
the 45-degree line. Solid purple dots in panel C highlight the lower bound for products where bounds cross.

the estimated upper bound and a hollow circle the lower bound.39 These hollow circles

are made solid purple for products where the estimated bounds cross (i.e., where the lower

39To facilitate uncovering possible violations, we tighten the upper bound by invoking the list-price-recall
condition. This condition only affects the upper bound on P(B ≥ S) because only the upper bound is related
to XB

Q . The gain from invoking this condition is small here, lowering the upper bound only by 3.2 percentage
points for the average product in panel B and by 0.3 percentage points in panels A and C.
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bound lies above the upper bound). Panel A displays bounds relying on surplus stochastic

monotonicity and buyer monotonicity. As in Table 5, these assumptions are too weak to

yield informative bounds, as they are close to P(sale) and 1. In panel C, we find that

assuming monotonicity for both agents yields bounds that are tighter, but violated for some

products (3 out of 44).40 These crossings are expected, as seller monotonicity bounds cross

for all products (Table 3). The Goldilocks-like assumptions are in panel B (surplus weak

monotonicity and buyer monotonicity), where we observe informative bounds that do not

cross. The lower bounds suggest that the real-world bargaining indeed exhibits inefficient

impasse, ranging from 13.0% to 53.2% across products, with a median of 35.4%.

As discussed in Section 3.7, the choice of which bounds to favor should be guided by

the details of a particular setting, where possible. We favor the bounds in Figure 6.B be-

cause both buyer monotonicity and surplus weak monotonicity allow us to condition on the

seller’s first offer, allowing us to potentially condition on some unobserved heterogeneity,

which seems wise in the eBay setting. We have additional confidence that these assump-

tions may be capturing accurate general properties of eBay bargaining in that, like the buyer

monotonicity bounds alone (Table 3), they consistently do not cross for any product.

6.4. When is Bargaining More Efficient? We now evaluate inefficient impasse (1 −

P(sale)/P(B ≥ S)) separately in various cuts of the data in which agents, items, or other

aspects of the negotiation satisfy particular conditions (such as whether or not the agents

exchange any messages). We rely on our lower bounds based on surplus weak monotonicity

and buyer monotonicity (Theorem 7). For each condition we consider, we limit the analysis

to products for which we observe at least 100 negotiations where the condition is satisfied

and 100 where it is not. We then evaluate the difference in the inefficient impasse lower

bound between those two subsets. We also compare P(sale) between the two subsets, as

well as the P(B ≥ S) lower bound. This exercise is exploratory and speculative in nature.

We have no model for why bargaining would be more efficient under certain conditions.

Our goal here is to provide a number of findings that may motivate future investigation.

40Figure 6 only shows bounds on P(B−S ≥ x) at x = 0; the bounds may cross at other x as well.
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Table 6: Heterogeneity in Inefficient Impasse Lower Bound

A. Diff. in Inefficient Impasse Lower Bound Between Obs. Where Condition Met vs. Not
P(sale) P(B ≥ S) Ineff. Impasse

Condition Diff. S.E. Diff. S.E. Diff. S.E. # Prod
Has ≥ One Message 0.123 (0.0329) 0.159 (0.0304) -0.039 (0.0411) 2
Seller is an eBay Store 0.001 (0.0170) 0.003 (0.0173) -0.002 (0.0232) 9
Buyer is from U.S. 0.369 (0.0083) 0.503 (0.0087) -0.082 (0.0299) 25
Has Auto Accept/Decline 0.004 (0.0143) -0.064 (0.0155) -0.100 (0.0253) 10
High Num. of Photos -0.022 (0.0095) -0.041 (0.0100) -0.032 (0.0165) 29
High Seller Average Rating 0.006 (0.0084) -0.001 (0.0089) -0.007 (0.0143) 39
High Seller Num. of Reviews -0.015 (0.0081) 0.000 (0.0085) 0.033 (0.0140) 43
High Seller Experience -0.036 (0.0079) -0.038 (0.0084) 0.022 (0.0143) 44
High Buyer Experience -0.038 (0.0080) -0.033 (0.0085) 0.041 (0.0143) 43

B. Diff. in Inefficient Impasse Lower Bound Between Obs. Where Condition Met vs. Obs.
with Low Seller & Low Buyer Experience
High Seller/High Buyer Exp -0.062 (0.0217) 0.023 (0.0003) 0.031 (5.0000) 5
High Seller/Low Buyer Exp -0.018 (0.0222) 0.023 (0.0037) 0.030 (5.0000) 5
Low Seller/High Buyer Exp -0.041 (0.0220) 0.023 (0.0218) 0.031 (5.0000) 5

C. Diff. in Inefficient Impasse Lower Bound Between Prod. Where Condition Met vs. Obs.
New Product (vs. Used) -0.018 (0.0169) 0.019 (0.0647) 0.046 (4.0000) 4
High Reference Price Prod -0.156 (0.0085) 0.009 -(0.0138) 0.011 (44.0000) 44

Notes: Analysis using various subsamples. For each row in panels A and B, we limit to products with at least
100 negotiations where the condition is satisfied and 100 where it is not, resulting in fewer than 44 products
for many conditions. This is true even for conditions relying on within-product medians (“High” rows),
because some products have multiple observations at the median, resulting in fewer than 100 observations
weakly greater than (or fewer than 100 strictly less than) the median. We compute P(sale), P(B ≥ S), and
the inefficient impasse (1−P(sale)/P(B ≥ S)) within the subsample where the condition is satisfied vs. not,
compute the difference between these values in the two subsamples for a given product, and then average
across products. These average differences are reported in the “Diff.” columns, with standard errors on these
differences shown in the “S.E.” columns, computed via the delta method. The final column shows the number
of products available for a given condition. Panel B measures differences relative to negotiations with low
seller and low buyer experience. Panel C instead computes differences between products that are used vs.
new (using the 2 product identifiers that appear in our sample both as used and new products) in the first
row. Panel C second row compares differences between products with a reference price above the the median
(across products) vs. below the median.

The results are shown in Table 6. We illustrate this exercise first by comparing observa-

tions in which agents exchanged some text communication during the negotiation.41 The

first row of Table 6 shows that, on average, the sale probability is 12.3 percentage point

41Our data indicates whether some agent sends a message, not who sends it. In the samples used in Table
6.A, the average product has the following percentages of observations satisfying the following conditions:
has a message, 11.6%; eBay store, 27.9%; U.S. buyer, 55.1%; has auto accept/decline price, 32.4%.
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higher with communication, and the lower bound on the first-best trade probability is 15.9

percentage points higher. Together, the inefficient impasse lower bound is 3.9 percentage

points lower with communication, but this difference is not statistically significant. Be-

cause we only have lower bounds on inefficient impasse, the type of inference statement

we could make, if this result were more precisely estimated, would be that there is a degree

of efficiency that may be reached in negotiations satisfying this condition that cannot be

reached in other negotiations. For simplicity, we will say, for example, that a negotiation

is “more efficient” or, equivalently, “has less inefficient impasse” when the condition is

met. This particular finding about communication, though insignificant, is consistent with

laboratory experiments in Valley et al. (2002) and with descriptive evidence from a natu-

ral experiment on eBay’s Germany site (Backus et al. 2023) in which the sale probability

increased when the site began allowing communication. Importantly, here we find only a

correlation, not a causal statement, as agents choose whether to convey such messages.

Table 6 shows only a small and insignificant difference in the inefficient impasse bound

in negotiations with the seller being an eBay store vs. not.42 However, bargaining does

appear to be more efficient with U.S. buyers (a decrease in the inefficient impasse bound

of 8.2 percentage points).43 We also find that bargaining is more efficient (an increase in

the bound of 10 percentage points) when the seller reports auto-accept/decline prices. This

feature is meant to eliminate the need for the seller to consider very low or very high offers,

saving the seller time. Our results suggest that this form of automation — allowing the

seller to commit a priori to an acceptable range of offers — may also reduces inefficient

impasse.

The remaining conditions in panel A of Table 6 refer to “high” vs “low” characteristics,

e.g., a high number of photos in the listing. We define a listing to have a high number of

photos if it has weakly more photos than the median listing for that product. Other “high”

42A store is a status larger sellers may pay for, giving them access to special marketing tools.
43Previous work has documented mixed results comparing negotiations in the U.S. and elsewhere. Roth

et al. 1991, studying lab ultimatum games, found higher offers and lower acceptance rates in the U.S. than in
Japan or Israel. Keniston et al. 2021 showed that agents have preferences for splitting the difference between
previously proposed bargaining offers in the U.S., Spain, and India, and in cross-country tariff negotiations.
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vs. “low” conditions are defined analogously.44 Listings with a high number of photos

have an inefficient impasses lower bound that is 3.2 percentage points lower, consistent

with more information about product quality improving efficiency, and this difference is

relatively precisely estimated.45

The remaining variables in Table 6 refer to the seller’s average rating, the seller’s number

of reviews, and the buyer and seller experience. These experience variables are the total

number of eBay negotiations the agent has engaged in prior to the current one.46 We find

that a higher quantity of reviews and higher buyer and seller experience are all associated

with a higher inefficient impasse lower bound. These differences are precisely measured

(and we find no difference based on the level of the seller’s ratings).

A possible explanation for greater inefficiency accompanying more reviews/more expe-

rience lies in an interesting feature of incomplete-information bargaining settings. In such

settings, there is a clear trade off between efficiency and rent extraction (Myerson and Sat-

terthwaite 1983; Loertscher and Marx 2022).47 If additional experience (or reviews) gives

an agent more power to extract rents from her opponent, and agents exploit this power, we

would expect additional experience to harm efficiency, consistent with Table 6. In panel

B of Table 6, we peel back these experience results further, reporting the difference be-

tween the inefficient impasse lower bound in observations with different combinations of

high and low experience. In each case, the difference is relative to negotiations between

low-experience sellers and low-experience buyers. We find the largest difference when the

buyer is experienced and the seller is not, but this difference is not precisely measured.

44The number of photos is a choice of the seller; eBay requires at least one. Th median number of photos
(across observations within a product) is 3.2 photos for the average product.

45Backus et al. (2020) documented that the first buyer offer on a listing arrives more quickly to listings with
more photos, arguing that the additional photos may reduce asymmetric information, a problem that reduces
efficiency in some models (Deneckere and Liang 2006). Lewis (2011) similarly associates an increase in the
number of photos on eBay listings with a reduction in asymmetric information.

46The median cutoff conditions defining “High” realizations of these variables are, for the average prod-
uct, a 99.8 rating (out of 100), 763.3 reviews, 300.8 previous negotiations for the seller, and 16.9 previous
negotiations for the buyer.

47Under incomplete information, giving one agent more bargaining power increases her payoff but also
increases deadweight loss, reducing the size of the total pie. In a complete-information settings (Nash bar-
gaining, say), an increase in the bargaining power of one agent does not imply any change to total surplus.
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Finally, panel C of Table 6 compares inefficiency across products (rather than within)

based on certain characteristics. We find that the inefficient impasse lower bound is 6.5

percentage points higher for negotiations over new products than used products, although

this difference is not statistically significant.48 We find a small and insignificant difference

between higher reference price products relative to lower reference price products.

7 Discussion and Conclusion

This study provides bounds on the private-value distributions of buyers and sellers and on

the first-best trade probability from sequential-offer bargaining data on eBay. The bounds

are sharp and nonparametric. We rely on revealed preferences arguments and other as-

sumptions on behavior or information without specifying a full model of equilibrium play.

Bounds relying on our strongest assumptions (monotonicity of sellers’ first offers and inde-

pendence between buyer’s values and seller’s first offers) can cross. While these strong as-

sumptions are satisfied in equilibria of two-sided incomplete-information bargaining games

analyzed in the theoretical literature, they appear too strong for empirical work. This un-

derscores the importance of our more moderate assumptions, which allow for empirical

features such as unobserved game-level heterogeneity.

Our approach circumvents a major theoretical problem arising in bargaining games of

incomplete information: signaling. Each action taking by a player signals information

to the opposing player, yielding a multiplicity (even a continuum) of equilibria that are

qualitatively very different depending on how off-equilibrium beliefs are specified (see

Ausubel et al. 2002). The bounds we propose do not rely on any specification of beliefs,

equilibrium refinements, or equilibrium selection, allowing us to study how well bargaining

performs in this real-world market without strongly constraining the answer a priori.

Given that the bounds rely on assumptions that, in many cases, are quite weak, they

48This comparison uses the two bar codes that appear in our sample both as new and used item; that is,
we observe at least 200 negotiations for used versions and at least 200 for new versions of these bar codes.
Because we define a product as a bar-code-condition-type pair (where condition type means used vs. new),
as described in Section 2, there are four products in the analysis of the first row of Table 6
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can naturally be wide. We show that, in spite of this, the bounds can highlight which

behavioral properties are consistent with real-world bargaining and allow us to quantify

inefficient impasse — a question that is not possible to address under complete-information

frameworks such as Nash bargaining. Under our preferred assumptions, we find evidence

of inefficient impasse: for the median product, at least 35% of failed trades are cases where

positive trade gains exist. Thus, viewing consumer negotiations in this market through

the lens of a complete-information model would be incorrect. We also find that it would be

misleading to impose too strong of an assumption on behavior. Though satisfied by existing

theoretical models, the strongest assumptions we explore would suggest that inefficient

breakdown is far more prevalent. We are able to falsify these stronger assumptions.

It is possible that the assumptions we use — even those that are not the strongest —

are still too strong. To assess this, there are relatively few empirical analyses of bargain-

ing under incomplete information to which ours can be directly compared — and none,

to our knowledge, from real-world negotiations involving consumers. However, several

studies offer useful comparisons. First, Valley et al. (2002) studied laboratory participants

in a two-sided incomplete-information bargaining game, and found that participants fail to

trade in 46% of cases where trade gains exist. They found that this impasse is reduced sub-

stantially (to 15%) when negotiators are allowed to communicate. Bochet et al. (2023) and

Huang et al. (2023) also studied two-sided incomplete-information experimentally, finding

a corresponding level of inefficient impasse of 30% and 17%, respectively. In a structural

model, Larsen (2021), studying professionals negotiating over used-car inventory, found

that at least 21% of first-best trades fail, and Larsen et al. (2022) found that skilled me-

diators substantially reduce this inefficient breakdown.49 Relative to these numbers, our

estimates of inefficient impasse for the median product suggest that the performance of

bargaining in real-world consumer settings is in the ballpark of (but perhaps more inef-

ficient than) those involving laboratory participants or business-to-business negotiations.

49These numbers are found in (or can be constructed from) Table 1 of Valley et al. (2002), Figure 3 of
Bochet et al. (2023), Table 2 of Huang et al. (2023), and Table 3 of Larsen (2021). Note that in Huang et al.
(2023), gains from trade always exist, which is not the case for the other experimental studies.
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We see our findings as useful benchmarks to which future studies of bargaining in various

contexts may be compared.
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A Auxiliary Lemmas

We prove two auxiliary lemmas. The first is used to prove that an lower or upper bound

is in the identified set and the second to show that any function above the lower bound (or

below the upper bound) is also.

Lemma 1. Let X be a random variable, Y a random vector, and denote the conditional

CDF by FX |Y (x | y). Let g(x,y) : R1+dim(Y ) → [0,1] be a CDF for all y.

1. If g(x,y) ≥ FX |Y (x | y) for all x and y, then there exists a random variable W such

that W ≤ X and FW |Y (x | y) = g(x,y).

2. If g(x,y) ≤ FX |Y (x | y) for all x and y, then there exists a random variable W such

that W ≥ X and FW |Y (x | y) = g(x,y).

Proof. We only prove part 1; part 2 follows from analogous arguments. Define g−1(z,y) =

inf{x∈R : g(x,y)≥ z}. Let U ∼U [0,1] be independent of (X ,Y ) and define F̃X ,U |Y (x,u,y)=

P(X < x | Y = y)+P(X = x |Y = y)u. Finally, let W = g−1 (F̃X ,U |Y (X ,U,Y ),Y
)
. We show

that W ≤ X and FW |Y (x | y) = g(x,y).

For the second part, it is sufficient to prove that F̃X ,U |Y (X ,U,Y ) | Y = y ∼U [0,1] for all

y. To do so, let x̄1(y), x̄2(y), . . . , x̄M(y)(y) be the mass points of X conditional on y. Then for

all m = 1,2, . . . ,M(y)

F̃X ,U |Y (X ,U,Y )∼U [P(X < x̄m(y) | Y = y),P(X = x̄m(y) | Y = y)]

conditional on Y = y and X = x̄m(y) and for all m = 1, . . . ,M(y)−1

F̃X ,U |Y (X ,U,Y )∼U [P(X ≤ x̄m(y) | Y = y),P(X < x̄m+1(y) | Y = y)]

conditional on Y = y and X ∈ (x̄m(y), x̄m+1(y)). Finally if P(X < x̄1(y) | Y = y) > 0, then
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F̃X ,U |Y (X ,U,Y ) |Y = y,X < x̄1(y)∼U [0,P(X < x̄1(y) |Y = y)] and if P(X > x̄M(y)(y) |Y =

y) > 0, then F̃X ,U |Y (X ,U,Y ) | Y = y,X > x̄M(y)(y) ∼ U [P(X ≤ x̄M(y)(y) | Y = y),1]. Since

the supports of the intervals of these uniforms only overlap at the boundaries, the union

of the supports is [0,1], and the difference of the upper and lower bound is equal to the

probability that X is in the respective set (that is either X = x̄m(y) or X ∈ (x̄m(y), x̄m+1(y))),

it follows that F̃X ,U |Y (X ,U,Y ) | Y = y ∼U [0,1] for all y.

To show that W ≤ X , notice that, since g(x,y)≥ FX |Y (x | y) for all x and y, it holds that

g−1(z,y) = inf{x ∈ R : g(x,y)≥ z} ≤ inf{x ∈ R : FX |Y (x | y)≥ z}= F−1
X |Y (z | y)

Next, notice that, if Y = y and X = x̄m(y), then F̃X ,U |Y (x,u,y) ≤ P(X = x̄m(y) | Y = y) for

all u ∈ [0,1] and

W = g−1 (F̃X ,U |Y (x̄m(y),U,y),y
)
≤ F−1

X |Y (P(X = x̄m(y) | Y = y) | y) = x̄m(y)

Finally, for all Y = y and X = x /∈ {x̄1(y), x̄2(y), . . . , x̄M(y)(y)},

W = g−1 (F̃X ,U |Y (x,U,y),y
)
≤ F−1

X |Y (P(X ≤ x | Y = y) | y)≤ x.

Lemma 2. Let X be a random variable, Y a random vector, and g(x) : R→ [0,1] a CDF.

1. If g(x)≥ FX(x) for all x, then there exists a random variable W such that W ≤ X and

FW (x) = g(x).

2. If g(x)≤ FX(x) for all x, then there exists a random variable W such that W ≥ X and

FW (x) = g(x).

Moreover, in both cases, if FX |Y (x | y) is either weakly increasing, weakly decreasing, or

constant in an element of y for all x, then FW |Y (x | y) shares this property.

Proof. Define g−1(z) = inf{x ∈ R : g(x) ≥ z}. Let U ∼ U [0,1] be independent of (X ,Y )

and define F̃X ,U(x,u) = P(X < x)+P(X = x)u. Finally, let W = g−1 (F̃X ,U(X ,U)
)
. The

first two parts of the lemma follow immediately from the proof of Lemma 1. To show that
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FX |Y (x | y) and FW |Y (x | y) share the same monotonicity properties, define pX(x) =P(X = x)

and notice that

P(W ≤ w | Y = y) = P
(
g−1 (F̃X ,U(X ,U)

)
≤ w | Y = y

)
=
∫ 1

0
P
(
g−1 (FX(X)+ pX(X)(u−1))≤ w | Y = y

)
du

The function h(x,u) = g−1 (FX(x)+ pX(x)(u−1)) is weakly increasing in x for all u. It

follows that there exists x(u) such that

P(h(X ,u)≤ w | Y = y) = P(X ≤ x(u) | Y = y)

or

P(h(X ,u)≤ w | Y = y) = P(X < x(u) | Y = y)

If the right hand side is weakly increasing/decreasing/constant in y for all u, it follows that

P(W ≤ w | Y = y) shares the same monotonicity property.

B Proofs of Main Theorems

Proof of Theorem 1 (Unconditional Bounds). XS
Q ≤ S ≤ XS

AC ⇒ P(XS
AC ≤ x)≤ P(S ≤ x)≤

P(XS
Q ≤ x). Similarly, XB

AC ≤ B ≤ XB
Q ⇒ P(XB

Q ≤ x)≤ P(B ≤ x)≤ P(XB
AC ≤ x).

If S = XS
AC, then P(XS

AC ≤ x) = P(S ≤ x). Hence, the lower bound can be attained. More-

over, it follows from Lemma 2 (with X = XS
AC) that any CDF F(x) with F(x)≥ P(XS

AC ≤ x)

for all x is also in the identified set. Similar arguments imply sharpness of the upper bound

and the buyer bounds.

Proof of Theorem 2 (Monotonicity). Conditional on PS
1 = y, PB

2 = z, XB∗
AC(y,z)≤B≤XB∗

Q (y,z)

and XB∗
AC(y,z) and XB∗

Q (y,z) are non-random. Then (2) and XB
AC ≤ B ≤ XB

Q ⇒ P(B ≤ x) ≥∫
1(XB∗

Q (y,z)≤ x)dFPS
1 ,P

B
2
(y,z). The buyer upper bound is analogous. For the seller, condi-

tional on y, we have XS∗
Q (y) ≤ S ≤ XS∗

AC(y) and XS∗
Q (y) and XS∗

AC(y) are non-random. Com-
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bining this with (1) implies
∫

1(XS∗
AC(y)≤ x)dFPS

1
(y)≤ P(S ≤ x)≤

∫
1(XS∗

Q (y)≤ x)dFPS
1
(y).

The seller lower bound is attained with S = XS∗
AC(P

S
1 ), in which case S is increasing in PS

1 .

We can apply a modification of Lemma 2 (with X = XS∗
AC(P

S
1 )) to show that any CDF F(x)

with F(x)≥ P(XS∗
AC(P

S
1 )≤ x) for all x is also in the identified set. To do so, let x̃1, x̃2, . . . , x̃L

be the mass points of XS∗
AC(P

S
1 ). Let Ũ ∼U [0,1] be independent of XS∗

AC(P
S
1 ) and

U =

FPS
1 |X

S∗
AC(P

S
1 )=x̄l

(PS
1 ) if XS∗

AC(P
S
1 ) = x̄l ∀ l = 1,2, . . . ,L

Ũ if XS∗
AC(P

S
1 ) ∈ (x̄l, x̄u)

and define F̃XS∗
AC(P

S
1 ),U

(x,u) = P
(
XS∗

AC(P
S
1 )< x

)
+ P(XS∗

AC(P
S
1 ) = x)u Finally, let F−1(z) =

inf{x ∈ R : F(x)≥ z} and W = F−1 (F̃X ,U(XS∗
AC(P

S
1 ),U)

)
.

Since U | XS∗
AC(P

S
1 ) ∼ U [0,1], the arguments from the proof of Lemma 2 imply P(W ≤

x) = F(x). The construction ensures that W is increasing in PS
1 and hence, the CDF is

attained when S =W . Sharpness of the upper bound follows analogously.

Similarly, the lower bound for the buyer is attained when B = XB∗
Q (PS

1 ,P
B
2 ) ≤ XB

Q and,

just like above, a modification of Lemma 2 implies that any CDF F(x) with F(x) ≥

P(XB∗
Q (PS

1 ,P
B
2 )≤ x) for all x is also in the identified set.

Proof of Theorem 3 (Independence). First, note P(S ≤ x) =
∫

P(S ≤ x | PS
1 = y)dFPS

1
(y),

which, by A3.i, is
∫

maxz P(S ≤ x | PS
1 = y,PB

2 = z)dFPS
1
(y). The lower bound follows from

S ≤ XS
AC. The seller upper bound is analogous. For the buyer, P(B ≤ x) = maxy P(B ≤ x |

PS
1 = y) and P(B ≤ x) = miny P(B ≤ x | PS

1 = y). The bounds follow from XB
AC ≤ B ≤ XB

Q .

Attainment of the seller lower bounds follows from Lemma 1 with X = XS
AC and Y =

(PS
1 ,P

B
2 ), g(x,y,z) = maxz′ P(XS

AC ≤ x | PS
1 = y,PB

2 = z′), and W = S. Since g does not

depend on z, the implied distribution of S is independent of PB
2 conditional on PS

1 . Any

function above the CDF being in the identified set follows from Lemma 2. Sharpness of

the upper bound and the buyer bounds follows from analogous arguments.

Proof of Theorem 4 (Stochastic Monotonicity). By (2), P(B≤ x)=
∫

P(B≤ x |PS
1 = y,PB

2 =

z)dFPS
1 ,P

B
2
(y,z). By A4 this can then be written

∫
maxz′≥z P(B≤ x |,PS

1 = y,PB
2 = z′)dFPS

1 ,P
B
2
(y,z)
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or
∫

minz′≤z P(B ≤ x | PS
1 = y,PB

2 = z′)dFPS
1 ,P

B
2
(y,z). The bounds follow from XB

AC ≤ B ≤ XB
Q .

For the seller, we have, by (1) and A4, P(S ≤ x) =
∫

maxy′≥y P(S ≤ x | PS
1 = y′)dFPS

1
(y) and

P(S ≤ x) =
∫

miny′≤y P(S ≤ x | PS
1 = y′)dFPS

1
(y). The bounds follow from XS

Q ≤ S ≤ XS
AC.

Attainment of the seller lower bounds follows from Lemma 1 with X = XS
AC, Y = PS

1 ,

g(x,y) = maxy′≥y P(XS
AC ≤ x | PS

1 = y′), and W = S. Since g is weakly increasing y for all x,

the implied conditional distribution of S satisfies A4.i. Any function above the CDF being

in the identified set follows from Lemma 2. Sharpness of the upper bound and the buyer

bounds follows from analogous arguments.

Proof of Theorem 5 (Positive Correlation). First, note P(S ≤ x) =
∫

P(S ≤ x | PS
1 = y,PB

2 =

z)dFPS
1 ,P

B
2
(y,z), which, by A5, is

∫
maxz′≥z P(S≤ x |PS

1 = y,PB
2 = z′)dFPS

1 ,P
B
2
(y,z). The lower

bound follows from S ≤ XS
AC. The seller upper bound is analogous. For the buyer, we have

P(B ≤ x) =
∫

maxy′≥y P(B ≤ x | PS
1 = y′)dFPS

1
(y) and P(B ≤ x) =

∫
miny′≤y P(B ≤ x | PS

1 =

y′)dFPS
1
(y). The bounds follow from XB

AC ≤ B ≤ XB
Q . The sharpness arguments follow from

similar arguments as those in the proof of Theorem 4.

Proof of Theorem 6 (Surplus Stochastic Monotonicity and Buyer Monotonicity). Note P(B−

S≥ x)=
∫

P(B−S≥ x |PS
1 = y,PB

2 = z)dFPS
1 ,P

B
2
(y,z). By A6, this can be written

∫
maxz′≤z P(B−

S ≥ x | PS
1 = y,PB

2 = z′)dFPS
1 ,P

B
2
(y,z). The lower bound follows from A1.i and A2.ii, imply-

ing XB∗
AC(P

S
1 ,P

B
2 )−XS

AC ≤ B−S. The upper bound is analogous.

Theorem 2 applied with X =XS
AC−XB∗

AC(P
S
1 ,P

B
2 ), Y =(PS

1 ,P
B
2 ), g(x,y,z)=maxz′≤z Pr(XS

AC−

XB∗
AC(y,z)≤ x | PS

1 = y,PB
2 = z′), and W = S−B implies that there exists a random variable

W such that W ≥ XB∗
AC(P

S
1 ,P

B
2 )−XS

AC and

P(W ≥ x | PS
1 = y,PB

2 = z) =
∫

max
z′≤z

P(XB∗
AC(y,z)−XS

AC ≥ x |,PS
1 = y,PB

2 = z′)dFPS
1 ,P

B
2
(y,z)

Letting B = XB∗
AC(P

S
1 ,P

B
2 ) and S = W +B implies that all assumptions are satisfied and the

lower bound is attained. Any function above the CDF being in the identified set follows

modifying Lemma 2 as in the proof of Theorem 8.

Proof of Theorem 7 (Surplus Weak Monotonicity and Buyer Monotonicity). By A1 and A2,
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S ≤ XS
AC and B ≥ XB∗

AC(y,z) conditional on PS
1 = y and PB

2 = z. Define XB∗−S
AC (y,z) =

supp(XB∗
AC(y,z)−XS

AC : PB
2 ≤ z,PS

1 = y). The assumptions imply that B−S≥XB∗−S
AC (y,z) con-

ditional on PS
1 = y and PB

2 = z and thus, P(B−S ≥ x) ≥
∫

1(XB∗−S
AC (y,z) ≥ x)dFPS

1 ,P
B
2
(y,z).

The upper bound is analogous.

The lower bound is attained when B=XB∗
AC(P

S
1 ,P

B
2 ) and S=XB∗

AC(P
S
1 ,P

B
2 )−XB∗−S

AC (PS
1 ,P

B
2 )

in which case both monotonicity assumptions hold. That any function above the CDF is

also in the identified set follows from modifying Lemma 2, as in the Theorem 2 proof.

C Bounds Based on Combined Assumptions

B.1. Derivation of Bounds Combining Assumptions.

Theorem 8. (Independence + Monotonicity.) (5) gives a sharp lower bound for FS under

A1.i, A2.i, and A3.i and a sharp upper bound for FS under A1.ii, A2.i, and A3.i. The

following inequalities give a sharp lower bound for FB under A1.iv, A2.ii, and A3.ii and a

sharp upper bound for FB under A1.iii, A2.ii, and A3.ii:

maxy
∫

1(XB∗
Q (y,z)≤ x)dFPB

2 |P
S
1
(z|y)≤ FB(x)≤ miny

∫
1(XB∗

AC(y,z)≤ x)dFPB
2 |P

S
1
(z|y)

Proof. Sharpness of the seller lower bound follows from the proof of Theorem 2 and the

observation that XS∗
AC(P

S
1 ) is independent of PB

2 conditional of PS
1 = y (because XS∗

AC(y) is

deterministic).

Note P(B ≤ x) = maxy P(B ≤ x | PS
1 = y). The lower bound follows by (2) and B ≤

XB∗
Q (y,z). The upper bound is analogous. Attainment of the lower bound follows from

modifying Lemma 2. In particular, denote the lower and upper mass point of XB∗
Q (PS

1 ,P
B
2 )

conditional on PS
1 = y by x̃1(y), . . . , x̃L(y)(y) and let U = FPB

2 |P
S
1 =y,XB∗

Q (y,PB
2 )=x̄u(y)(P

B
2 ,P

S
1 ) if

PS
1 = y and XB∗

Q (P1,PB
2 )= x̄l(y) and U ∼U [0,1] independent of all other random variables if

PS
1 = y and XB∗

Q (P1,PB
2 ) ̸= x̄l(y) for all l = 1,2, . . .L(y). Then U | PS

1 = y,XB∗
Q (P1,PB

2 ) = x ∼

U [0,1] for x and y. Using this random variable U , Lemma 1 applied with X = XB∗
Q (PS

1 ,P
B
2 ),

Y = PS
1 , g(x,y) = maxy′ P(XB∗

Q (PS
1 ,P

B
2 ) ≤ x | PS

1 = y′), and W = B implies that the lower

bound can be attained. The construction also ensures that W is weakly increasing in PB
2
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conditional on P1
S . Any function above the CDF being in the identified set follows from a

similar modification of Lemma 2.

Theorem 9. (Positive Correlation + Monotonicity.) (5) gives a sharp lower bound for FS

under A1.i, A2.i, and A5.i and a sharp upper bound for FS under A1.ii, A2.i, and A5.i. The

following inequalities give a sharp lower bound for FB under A1.iv, A2.ii, and A5.ii and a

sharp upper bound for FB under A1.iii, A2.ii, and A5.ii:∫
max
y′≥y

∫
1(XB∗

Q (y′,z)≤ x)dFPB
2 |P

S
1
(z|y)≤ FB(x)≤

∫
min
y′≤y

∫
1(XB∗

AC(y
′,z)≤ x)dFPB

2 |P
S
1
(z|y)

Proof. Sharpness of the seller lower bound follows from the proof of Theorem 2 and the

observation that XS∗
AC(P

S
1 ) is independent of PB

2 conditional of PS
1 = y (because XS∗

AC(y) is

deterministic).

Note P(B ≤ x) =
∫

maxy′≥y P(B ≤ x | PS
1 = y′)dFPS

1
(y). The lower bound follows by

(2) and B ≤ XB∗
Q (y,z). The upper bound is analogous. Sharpness follows from the same

arguments as those in the proof of Theorem 8.

Theorem 10. (Independence + Stochastic Monotonicity.) The following inequalities give

a sharp lower bound for FS under A1.i, A4.i, and A3.i; a sharp upper bound for FS under

A1.ii, A4.i, and A3.i; a sharp lower bound for FB under A1.iv, A4.ii, and A3.ii; and a sharp

upper bound for FB under A1.iii, A4.ii, and A3.ii:∫
max
y′≥y

max
z

mS
AC(x,y

′,z)dFPS
1
(y)≤ FS(x)≤

∫
min
y′≤y

min
z

mS
Q(x,y

′,z)dFPS
1
(y)

max
y

∫
max
z′≥z

mB
Q(x,y,z

′)dFPB
2 |P

S
1
(z|y)≤ FB(x)≤ min

y

∫
max
z′≥z

mB
AC(x,y,z

′)dFPB
2 |P

S
1
(z|y)

Proof. Note P(S ≤ x) =
∫

maxy′≥y P(S ≤ x | PS
1 = y′)dFPS

1
(y), and P(S ≤ x | PS

1 = y′) =

maxz P(S ≤ x | PS
1 = y′,PB

2 = z). The lower bound follows from S ≤ XS
AC. For the buyer,

P(B ≤ x) = maxy P(B ≤ x | PS
1 = y). Applying (2) and A4 yields P(B ≤ x | PS

1 = y) =∫
maxz′≥z P(B ≤ x | PS

1 = y,PB
2 = z)dFPB

2 |P
S
1
(z|y). The lower bound follows from B ≤ XB

Q .

Analogous arguments yield the upper bounds. Sharpness follows from the same arguments

as those with the corresponding single assumption case.

52



Theorem 11. (Positive Correlation + Stochastic Monotonicity.) The following inequalities

give a sharp lower bound for FS under A1.i, A4.i, and A5.i; a sharp upper bound for FS

under A1.ii, A4.i, and A5.i; a sharp lower bound for FB under A1.iv, A4.ii, and A5.ii; and a

sharp upper bound for FB under A1.iii, A4.ii, and A5.ii:

FS(x)≥
∫

max
y′≥y

∫
max
z′≥z

mS
AC(x,y

′,z′)dFPB
2 |P

S
1
(z|y′)dFPS

1
(y)

FS(x)≤
∫

min
y′≤y

∫
min
z′≥z

mS
Q(x,y

′,z′)dFPB
2 |P

S
1
(z|y′)dFPS

1
(y)dy

FB(x)≥
∫

max
y′≥y

∫
max
z′≥z

mB
Q(x,y

′,z′)dFPB
2 |P

S
1
(z|y′)dFPS

1
(y)

FB(x)≤
∫

min
y′≤y

∫
min
z′≥z

mB
AC(x,y

′,z′)dFPB
2 |P

S
1
(z|y′)dFPS

1
(y)

Proof. Note P(S ≤ x) =
∫

maxy′≥y P(S ≤ x | PS
1 = y′)dFPS

1
(y) and

P(S ≤ x | PS
1 = y′) =

∫
P(S ≤ x | PS

1 = y′,PB
2 = z)dFPB

2 |P
S
1
(z|y′)

=
∫

max
z′≥z

P(S ≤ x | PS
1 = y′,PB

2 = z)dFPB
2 |P

S
1
(z|y′)

The lower bound follows from S ≤ XS
AC. For the buyer, P(B ≤ x) =

∫
maxy′≥y P(B ≤ x |

PS
1 = y′)dFPS

1
(y) and

P(B ≤ x | PS
1 = y′) =

∫
P(B ≤ x | PS

1 = y′,PB
2 = z)dFPB

2 |P
S
1
(z|y′)

=
∫

max
z′≥z

P(B ≤ x | PS
1 = y′,PB

2 = z)dFPB
2 |P

S
1
(z|y′)

The lower bound follows from B ≤ XB
Q . Upper bounds follow analogously. Sharpness

follows from arguments as those with the corresponding single assumption case.

D Additional Discussion of Data and Assumptions

D.1. Sample Restrictions. As discussed in Section 2, what we refer to as our original

data consists of all eBay Best-Offer-enabled listings from June 2012 through May 2013

satisfying the following: a buyer makes an offer, the item has a product identifier, and the

product’s reference price is computed based on at least ten non-Best-Offer posted price
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sales. We impose several sample restrictions on this dataset to obtain our estimation sam-

ple. These restrictions are described in the notes to Table 7, which shows the number of

observations from the original sample that are dropped due to each restriction.50 Several re-

strictions are data cleaning steps that drop only a small fraction of observations. Our major

restrictions are the following. First, we remove negotiations in which an agent is involved

in other negotiations simultaneously, dropping 48.55% of observations. Second, after im-

posing this restriction, we then keep only the first seller with whom a given buyer interacts

for a given product, and the first buyer with whom a given seller negotiates, dropping 16%.

Third, we limit to products for which we have at least 200 observations, dropping 29%.

Table 7: Data Cleaning

1) Frac. incomplete sequences 0.0226
2) Frac. overlapping sequences 0.4855
3) Frac. additional incomplete sequences 0.0004
4) Frac. extreme outlier offers/prices 0.0340
5) Frac. dropped by keeping only first seller/buyer 0.1604
6) Frac. with fewer than 200 negotiations per product 0.2905

Notes: Table shows the order in which our additional sample restrictions are enforced on the original data,
and the fraction of observations dropped at each step. First row shows a small fraction are dropped due
to incomplete or nonsensical bargaining data, including observations where (i) an offer or the final price is
higher than the Buy-It-Now price, (ii) more than one offer arrives at the same time from the same buyer, (iii),
additional actions take place after one party accepts, (iv) one or both parties make more than three offers,
(v) the data indicates a counteroffer takes place but the offer itself is not recorded, or (vi) agents make non-
monotonic offers (e.g. a buyer offers more than the seller has asked for or a seller asks for less than the buyer
has offered). Second row shows the fraction of observations dropped due to overlapping negotiations. Third
row shows an additional small fraction of incomplete/nonsensical observations more easily identified after
overlapping sequences are dropped in step 2. Fourth row shows observations dropped because of offers or
auto accept/decline prices being greater than 2.5 times the reference price. Fifth row shows fraction dropped
when we keep only the first seller a buyer negotiates with and vice versa. Final row shows fraction of the data
dropped because the product had fewer than 200 negotiations.

We now consider how our results change when we modify step 5 of these sample restric-

tions. Table 8 replicates Table 3 from the body of the paper but where, instead of step 5, we

keep the last (in panel A) or a random (in panel B) seller among those with whom a given

buyer interacts, and similarly for sellers interacting with multiple buyers. The results are

50The precise fraction of observations dropped due to each restriction depends on the order in which the
restrictions are imposed. The order we followed is the order in which they are listed in Table 7.
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similar to those in Table 3. Let the last version of the data denote the sample used in panel

A and the random version denote the sample used in panel B. Recall that the inefficient

impasse lower bound for the median product is 0.354 in our main sample. This number

decreases to 0.298 when we use the last version of the data, and decreases to 0.328 when

we use the random version. Thus, the implications for inefficient impasse are similar in

these samples as in our main sample, albeit slightly lower.

Table 8: Bounds Crossing with Different Bilateral Bargaining Pairs

Seller Bounds Buyer Bounds

Frac. Frac. IVE Frac. Frac. IVE
Cross Reject Cross Reject

A. Restricting to last seller a buyer negotiates with, and vice versa
Unconditional (A1) 0 0 0 0 0 0
Monotonicity (A2) 1.00 1.00 0.23 0 0 0
Independence (A3) 0.07 0 0 0.40 0.14 0.01
Stochastic Monotonicity (A4) 0 0 0 0 0 0
Positive Correlation (A5) 0 0 0 0 0 0
Mon. + Indep. (A2 + A3) 1.00 1.00 0.23 0.60 0.47 0.06
Mon. + Pos. Corr (A2 +A5) 1.00 1.00 0.23 0 0 0
Stoch. Mon. + Indep. (A4 + A3) 0.19 0 0.00 0.37 0.14 0.01
Stoch. Mon. + Pos. Corr (A4 + A5) 0 0 0 0 0 0

B. Restricting to random seller a buyer negotiates with, and vice versa
Unconditional (A1) 0 0 0 0 0 0
Monotonicity (A2) 1.00 1.00 0.23 0 0 0
Independence (A3) 0.05 0 0 0.27 0.12 0.01
Stochastic Monotonicity (A4) 0 0 0 0 0 0
Positive Correlation (A5) 0 0 0 0 0 0
Mon. + Indep. (A2 + A3) 1.00 1.00 0.23 0.61 0.39 0.05
Mon. + Pos. Corr (A2 +A5) 1.00 1.00 0.23 0 0 0
Stoch. Mon. + Indep. (A4 + A3) 0.15 0 0 0.27 0.10 0.00
Stoch. Mon. + Pos. Corr (A4 + A5) 0 0 0 0 0 0

Notes: Table replicates Table 3 using different samples. The main sample in the paper restricts to the first
seller a given buyer negotiates with and the first buyer a given seller negotiates with. Panel A above uses the
last seller and last buyer. Panel B selects a random seller among those a given buyer negotiates with, and a
random buyer among those that a given seller negotiates with.

D.2. Bargaining Costs. We do not explicitly model bargaining costs in this paper. Such

costs could take many forms; we highlight only a few here and show how they would fit

into our framework. Suppose the buyer faces an additive disutility, call it χ , when making

or accepting an offer, and the buyer’s gross utility and outside option are V and µ (as in
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Section 3.2). The buyer’s value (willingness to pay) for this trade would be B =V −µ −χ .

The object B is the buyer’s value net of bargaining costs, just as it is net of any outside

option. An alternative cost form is the fee τ that a seller pays eBay when a sale occurs;

with this fee, the seller’s willingness to sell is S ≡ S̆+ τ , where S̆ is the least the seller

would be willing to accept absent eBay fees.51 Costs could also include a shipping cost ψ

a buyer pays, resulting in buyer value of B =V −µ −ψ . Finally, costs might take the form

of discounting, such that, for a discount factor δ , the buyer receives δ (V −P) by accepting

an offer P and µ otherwise. The buyer’s willingness to pay that could be bounded by

observing accept or quit decisions would then be B =V −µ/δ .52

E Estimation and Inference

E.1. Inference and Median Unbiased Estimation with Single Assumptions

Here we focus only on lower bound estimators. Upper bound estimators are analogous.

Let z1−α be the 1−α quantile from a standard normal distribution. The unconditional lower

bound estimators are empirical distribution functions and pointwise, one-sided 1−α confi-

dence bands are therefore 1
n ∑

n
i=1 1(XS

AC,i ≤ x)− z1−α

√
( 1

n ∑
n
i=1 1(XS

AC,i≤x))(1− 1
n ∑

n
i=1 1(XS

AC,i≤x))
n

and 1
n ∑

n
i=1 1(XB

Q,i ≤ x)− z1−α

√
( 1

n ∑
n
i=1 1(XB

Q,i≤x))(1− 1
n ∑

n
i=1 1(XB

Q,i≤x))
n . Similarly, we calcu-

late confidence bands under monotonicity by replacing XS
AC,i with X̂S∗

AC(P
S
1,i) and XB

Q,i with

X̃B∗
Q (PS

1,i,P
B
2,i)

The large-sample distributions of the stochastic monotonicity bounds are nonstandard

because the bounds are only directionally differentiable functions of conditional mean func-

tions. Similar inference problems arise in Chernozhukov et al. (2013) and Fang and Santos

(2018). However, neither paper applies in our setting because Chernozhukov et al. (2013)

focus on maxima and minima of conditional mean functions and Fang and Santos (2018) is

51In practice, this fee is a percentage commission (typically 10%) but in this discussion we consider it to
be additive for simplicity.

52If bargaining costs were heterogeneous across agents — for example, if each faced distinct additive
disutilities or discount rates — other assumptions we work with, such as monotonicity, could be violated.
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not applicable with nonparametric estimators. Developing a (nonstandard) bootstrap proce-

dure, as in Fang and Santos (2018), while allowing for nonparametric estimators, is beyond

the scope of our paper. We therefore use subsampling, which is known to be consistent un-

der weak assumptions (Politis and Romano 1994). We use a subsample size of bn = n−3/4

and bandwidths of b−1/3
n and b−1/4

n for one- and two-dimensional functions, respectively.

We undersmooth relatively more in the subsamples than in our main estimation sample to

ensure that, due to the smaller sample size, the finite sample biases of the nonparametric

estimators in the subsamples do not dominate those in the original sample. Confidence

bands for the independence and positive correlation bounds are also based subsampling.

The estimated stochastic monotonicity, independence, and positive correlation bounds

are generally inward biased due to the maxima and minima. As explained in Chernozhukov

et al. (2013) , a half-median-unbiased estimator is given by simply constructing a 50% one-

sided confidence interval, which we calculate using our subsampling procedure.

E.2. Estimation and Inference of Bounds Combining Assumptions. Here we focus only

on lower bound estimators. Upper bound estimators are analogous. We first consider the

bounds in Theorem 8. For the buyer, we write the lower bound as

max
y

(∫
1(XB∗

Q (y,z)≤ x)dFPB
2 |P

S
1
(z|y)

)
= max

y

(
P(XB∗

Q (y,PB
2 )≤ x | PS

1 = y)
)

= max
y

P(XB∗
Q (PS

1 ,P
B
2 )≤ x | PS

1 = y)

We estimate P(XB∗
Q (PS

1 ,P
B
2 )≤ x | PS

1 = y) using X̃B∗
Q (PS

1 ,P
B
2 ) instead of XB∗

Q (PS
1 ,P

B
2 ) and the

Nadaraya-Watson kernel estimator with an Epanechnikov kernel and bandwidth.

We write the buyer lower bound from Theorem 9 as

∫
max
y′≥y

P(XB∗
Q (y′,PB

2 )≤ x | PS
1 = y′)dFPS

1
(y) =

∫
max
y′≥y

P(XB∗
Q (PS

1 ,P
B
2 )≤ x | PS

1 = y′)dFPS
1
(y)

Using the estimator P̂(X̃B∗
Q (PS

1 ,P
B
2 )≤ x | PS

1 = y′) from above, we estimate the lower bound

by 1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)
P̂(X̃B∗

Q (PS
1 ,P

B
2 )≤ x | PS

1 = y′).
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We estimate the seller lower bound in Theorem 10 using the sample analog
1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)
maxz m̂S

AC(x,y
′,z). For the buyer, define gB

Q(x,y,z)=maxz′≥z mB
Q(x,y,z

′).

Then we can write the lower bound as maxy

(
E[gB

Q(x,P
S
1 ,P

B
2 ) | PS

1 = y]
)

. For each x, we

estimate E[gB
Q(x,P

S
1 ,P

B
2 ) | PS

1 = y] using the Nadaraya-Watson kernel estimator with an

Epanechnikov kernel function and bandwidth n−1/4. Let Ê[gB
Q(x,P

S
1 ,P

B
2 ) | PS

1 = y] de-

note the estimator. Our estimator is maxy∈Q0.05(PS
1,i)

(
Ê[gB

Q(x,P
S
1 ,P

B
2 ) | PS

1 = y]
)

, where

gB
Q(x,y,P

B
2 ) = maxz′∈ω2(PB

2,i)
mB

Q(x,y,z
′).

For the bounds from Theorem 11, we estimate the seller lower bound by
1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)

(
Ê[gS

AC(x,P
S
1 ,P

B
2 ) | PS

1 = y′]
)

as well as the buyer lower bound by

1
n ∑

n
i=1 maxy′∈ω1(PS

1,i)

(
Ê[gB

Q(x,P
S
1 ,P

B
2 ) | PS

1 = y′]
)

.

Inference is based on subsampling in all of these cases, as explained in Section E.1.

Using subsampling, we then also obtain median unbiased estimators as described in the

previous subsection.

E.3. Estimation and Inference of Bounds on First-Best Trade Probability. For the

lower bound in Theorem 6, we first estimate P(XB∗
AC −XS

AC ≥ x | PS
1 = y,PB

2 = z) by re-

placing XB∗
AC − XS

AC with X̂B∗
AC(y,z)− X̂S

AC(y) and using the Nadaraya-Watson kernel esti-

mator with an Epanechnikov kernel function and bandwidth n−1/5. Denote the estima-

tor by m̂B−S(y,z). The estimated lower bound is then 1
n ∑

n
i=1 maxz′∈ω2(PB

2,i)
m̂B−S(PS

1,i,z
′).

For the lower bound in Theorem 7, define X̂B∗−S
AC (y,z) ≡ mini:PB

2,i≤z,PS
1,i∈N(y)(X

B
AC,i −XS

AC,i),

where the neighborhood N(y) is as in Section 4. The estimated lower bound is then
1
n ∑

n
i=1 1(X̂B∗−S

AC (PS
1,i,P

B
2,i)≥ x). The estimator that is based on both buyer and seller mono-

tonicity is 1
n ∑

n
i=1 1(X̂B∗

AC(P
S
1,i)− X̂S∗

AC(P
S
1,i)≥ x).

For the confidence bands of the marginal distributions, we explain in Section E.1 that we

use conservative estimators and one-sided confidence bands. To construct the two-sided

confidence intervals for the lower bound in Theorem 6 (shown in Table 5), we first use

the previously described estimators and subsampling to approximate the quantiles of the

centered distribution. We then use these quantiles as well as conservative point estimators

to construct confidence intervals. In particular, for the lower endpoint of the confidence
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interval, we use X̂B∗
AC(y,z)+ηn − X̂S

AC(y) instead of X̂B∗
AC(y,z)− X̂S

AC(y), and for the upper

endpoint we use X̂B∗
AC(y,z)−ηn − X̂S

AC(y), where ηn = n−1/2 as in Section 4.1. The confi-

dence interval for the sale probability is simply based on the large sample distribution of

the empirical distribution function. The confidence interval for the lower bound in Theo-

rem 7 is also based on the empirical distribution function but using conservative estimates

of XB∗−S
AC , as this estimator suffers from the same potential inward bias as the buyer mono-

tonicity bounds. In particular, for the lower and upper endpoints of the confidence interval,

we use X̃B∗−S
AC (y,z)+ηn and X̃B∗−S

AC (y,z)−ηn, respectively, where again ηn = n−1/2.

E.4. Testing. Let gl(x) and gu(x) denote a lower and upper bound derived under some

assumptions. To test the null hypothesis that the imposed assumptions are true, we use a

scaled estimated version of 1
J ∑

J
j=1 min{gu(x j)− gl(x j),0}, which is equal to 0 under the

null hypothesis and negative if the bounds cross (at one of the J grid points). We use an

equally spaced grid on [0,2.5] with J = 25. Note that bounds might not cross even if the

assumptions do not hold.

The test statistic is based on the estimators discussed in Sections 4 and E.2. For the

unconditional and the monotonicity bounds, we use the large sample distribution of the

empirical distribution functions to approximate the distribution function of the test statistic.

For all other assumptions, we use subsampling, as described in sections E.1 and E.2, to

approximate the distribution of the test statistic. We reject the null if the test statistic is

smaller than the α quantile of that distribution (essentially using a one-sided test).

F Monte Carlo Simulations

We present a Monte Carlo study of the buyer and seller distribution bounds. There is nat-

urally a great deal of flexibility in how to simulate two-sided bargaining; here we simply

simulate outcome data consistent with our assumptions. We do not simulate actual equi-

librium play of a two-sided bargaining game, as the equilibria focused on in previous work

(Perry 1986; Grossman and Perry 1986; Cramton 1992) do not result in multiple offers by
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a given party that vary with the party’s value.

F.1. Algorithm for Simulating Bargaining Data. The primary parameters we vary in

this exercise are αb and αs, which we refer to as shade factors; the probability a buyer and

seller accept/decline; and the means of buyer and seller value distributions. Shade factors

allow us to vary how aggressive agents’ offers are: a buyer with value b and shade factor

αb makes the same offers as a buyer with value b+αb and shade factor 0, and in this

sense shade factors set a minimum level of offer shading. The probability a buyer or seller

accepts or quits (instead of making a counteroffer) allows us to investigate how countering

frequency affects bound tightness. Varying mean values allows us to adjust the potential

surplus. The DGP is described in Table 9.

Table 9: Alogorithm for Simulating Bargaining Data

0. Initialize: Draw B ∼ FB and S ∼ FS. Set shade factors αB and αS, and set cap Tmax on
number of rounds. Set functions pBQ(k), pBA(k), pSQ(k), and pSA(k) specifying probabili-
ties, in round k, of buyer quitting, buyer accepting, seller quitting, or seller accepting
1. Round 1: Seller offers PS

1 = g1(S,αs,U1) where U1 ∼U [0,1] and g1 is a function weakly
increasing in all arguments (we vary g1 in our illustrations)
2. Round 2: Buyer offers PB

2 = U2(B−αb) if PS
1 > B and PB

2 = U2 min{PS
1 ,B−αb} if

PS
1 ≤ B, where U2 ∈ (0,1) is random or fixed depending on specific setup

3. Round 3≥ k < Tmax , k odd: Seller responds to buyer’s last offer
Case 1. PB

k−1 < S: Seller quits with probability pSQ(k), or else makes counteroffer
PS

k = U3PS
k−2 + (1−U3)(S +αS), where U3 ∈ (0,1) and its distribution depends on

specific setup
Case 2. PB

k−1 ≥ S: Seller accepts with fixed probability pSA(k), or else makes coun-
teroffer PS

k =U3PS
k−2 +(1−U3)max(PB

k−1,S+αS)

4. Round 4≥ k < Tmax, k even: Buyer responds to seller’s last offer PS
k−1

Case 1. PS
k−1 > B: Buyer quits with probability pBQ(k), or else makes counteroffer

PB
k = U4PB

k−2 + (1− λ )(B−αB), where U4 ∈ (0,1) and its distribution depends on
specific setup
Case 2. PS

k−1 ≤ B: Buyer accepts with probability pBA(k), or else makes counteroffer
PB

k =U4PB
k−2 +(1−U4)min(PS

k−1,b−αB)

5. Round Tmax: Terminate with no trade occurring

F.2. Results of Monte Carlo Exercise. Figure 7 illustrates several of our bounds estimated

using this simulated data. For each panel, we simulate 100 replications of the DGP and then
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report the true distribution, the true bounds as well as the estimated bounds along with 95%

one-sided, pointwise confidence bands averaged across these replications. In each example

we set n = 200 and Tmax = 8. We draw the values from a Beta distribution, which has

support on [0,1]. The Beta distribution has two parameters, α and β . We set α = 2 and

set β depending on which mean value we want to achieve. We then add the maximum

shading factor to ensure that bids are always non-negative. We vary the parameters of the

DGP in each panel in order to illustrate what features will lead to bounds that are loose

(panels on the left) or tight (panels on the right). We focus only on three sets of bounds

— the seller unconditional bounds, seller monotonicity bounds, and buyer independence

bounds — to conserve space and because the intuition gained by these three cases extends

to the other bounds in the paper. In each panel, lower bounds are shown with solid lines and

upper bounds with dashed lines. The true CDF as well as the true bounds are shown with a

dot-dash line. We obtain the true bounds by estimating the bounds on a very large sample

(1 million observations). Comparing the estimated bounds on small samples to these true

bounds allows us to evaluate bias in the estimated bounds.

We show the seller unconditional bounds in panels A and B. For the seller unconditional

bounds to be relatively tight, it must be the case that sellers quit at prices close to their

values and also counter at prices close to their values. As an example, consider a setting

where buyer and seller values are highly correlated and have a similar mean. Suppose

the typical play of the game is that the seller offers a price a little above her value, the

buyer counters at a price a little below the seller’s value (and also below the buyer’s value,

naturally), and the seller then quits. This sequence of play is consistent with the weak

revealed preference assumptions that the unconditional bounds are built on (A1) and it

yields the tight bounds on seller values illustrated in panel B.53 We can also easily generate

wide unconditional bounds. For example, consider a case where the seller typically makes

offers far above her value and rarely quits. Such bounds are illustrated in panel A.54 Here,

53The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and
their correlation is 0.999. We set pBQ(k) = pBA(k) = pSA(k) = 0, pSQ(k) = 0.95, g1(S,αs,U1) = 1.1(S+αs),
and U2 = 0.9, U3 ∼U [0,0.5], U4 ∼U [0,0.5].

54The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and
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Figure 7: Simulation Results

(A) Unconditional Bounds, Seller (Wide)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True distribution
Uncond. bounds
Uncond. CIs

(B) Unconditional Bounds, Seller (Tight)
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(C) Monotonicity Bounds, Seller (Wide)
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(D) Monotonicity Bounds, Seller (Tight)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True distribution
Unconditional bounds
Unconditional CIs
True mono. bounds
Est. mono. bounds
Mono. CIs

(E) Independence Bounds, Buyer (Wide)
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(F) Independence Bounds, Buyer (Tight)
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Notes: The figure shows bounds estimated from simulated data under cases where bounds are wide (on
left) vs. narrow (on right). Panels A and B show unconditional seller bounds. Panels C and D show seller
monotonicity bounds. Panels E and F show buyer independence bounds. Estimated bounds are shown with
solid lines, confidence bands with dashed lines, and true CDF and true bounds with a dot-dash line. Panels
C–F also show unconditional bounds for comparison.
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the correlation structure between buyer and seller values plays no role.

We illustrate the seller monotonicity bounds in panels C and D. The monotonicity bounds

will improve upon the unconditional bounds when there is some probability that sellers who

start with relatively low first offers end the game at relatively high final accept/counter or

quit prices. This can occur due to randomness in the value of the buyer to whom the seller

is matched and due to features of bargaining at later rounds of the game. We illustrate such

a case in panel D.55 If, however, the final accept/counter and quit prices of a seller are,

like PS
1 , deterministically mononotonic in the seller’s value, the monotonicity assumption

will do nothing to improve upon the unconditional bounds (because XS∗
AC = XS

AC and XS∗
Q =

XS
Q in that case, and the unconditional bounds will equal the monotonicity bounds). We

illustrate this situation in panel C, where the monotonicity bounds are equally as wide as

the unconditional bounds.56

Finally, we illustrate the buyer independence bounds in panels E and F. Recall that these

bounds are obtained by combining P(B ≤ x|PS
1 = y) = P(B ≤ x) (buyer independence) with

weak rationality on the part of the buyer (XB
AC ≤B for the buyer upper bound). The buyer in-

dependence assumption will therefore yield no improvement over the buyer unconditional

upper bounds if XB
AC and XB

Q are, like B, independent of PS
1 . This case is illustrated in panel

E.57 It is easy to generate a case in which the maximum accept/counter price of the buyer

does depend on PS
1 , and this yields a much tighter upper bound. To do so, we generate

data such that B is independent of PS
1 , but XB

AC and XB
Q are not because bids in later rounds

directly depend on PS
1 .58

their correlation is 0. We set pBQ(k) = pBA(k) = 1, pSA(k) = 0, pSQ(k) = 0.25, g1(S,αs,U1) = 1.5(S+αs)+
0.5, and U2 = 0.9, U3 ∼U [0,0.5], U4 ∼U [0,0.5].

55The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and
their correlation is 0.999. We set pBQ(k) = pBA(k) = pSA(k) = 0, pSQ(k) = 0.5, g1(S,αs,U1) = 1.5(S+αs),
and U2 = 0.5, U2 ∼U [0,0.5], U3 ∼U [0,0.5].

56The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and
their correlation is 0.999. We set pBQ(k) = pSQ(k) = 1, pBA(k) = pSA(k) = 0, g1(S,αs,U1) = 1.5(S+αs),
and U2 = 0.5, U3 ∼U [0,0.5], U4 ∼U [0,0.5].

57The specification for this case is as follows: both the buyer and the seller have mean values of 0.5
and their correlation is 0. We set pBQ(k) = 0.95, pSQ(k) = pBA(k) = pSA(k) = 0, g1(S,αs,U1) = U1 with
U1 ∼ [1,1.5], and U2 ∼U [0.75,1], and U3 =U4 =U1.

58The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and
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Figure 8: Bias Comparisons

(A) Independence Bounds, Buyer, n = 200
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(B) Independence Bounds, Buyer, n = 2000
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Notes: The figure shows buyer independence bounds estimated from simulated data and two sample sizes
under cases where bounds are narrow.

F.3. Bias Correction. Estimators of unconditional bounds are unbiased and, as explained

in Section 4, estimators of the monotonicity bounds have an outward bias. While we use

half-median-unbiased estimators for the independence bounds, this estimator can still be

biased in finite samples, which is particularly noticeable in panel F of Figure 7, where

the estimate of the lower bound lies below the true bound. The estimator (and the other

estimators that involve minima and maxima) have two main sources of biases that go in

opposite directions. First, there is a inward bias that arises from taking the minimum (or

maximum) of an estimated function. This bias term is handled by using the half-median-

unbiased estimator. Second, the Nadaraya-Watson estimator is biased and, at the maximum,

the estimator of the function is downward biased (and upward biased at the minimum). This

bias term is handled by using undersmoothing, but still results in an outward bias in finite

samples. In panel F, the second bias term dominates.

Figure 8 shows the buyer independence bounds again, but also includes the non-bias-

corrected estimator. For the upper bound, where the first bias term dominates, the half-

median-unbiased estimator is closer to the true bound, but the bias-adjustment has almost

no effect for the lower bound. As the sample sizes increases, the biases decrease, as can be

their correlation is 0. We set pBQ(k) = 0.95, pSQ(k) = pBA(k) = pSA(k) = 0, g1(S,αs,U1) =U1(S+αs) with
U1 ∼ [1,1.5], and U2 ∼U [0.75,1], and U3 =U4 = max{1−PS

1 ,0}.
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seen from panel B, where the sample size is 2,000.

G Related Extensive-Form Models

In this section we consider two extensive-form bargaining models: Cramton (1992) and

Perry (1986). In each case, when discussing unobserved heterogeneity, our notation here

differs slightly from the body of the paper. Here we write a seller’s value with additively

separable unobserved heterogeneity included as S̃ = S+W (in the body of the paper, we

instead write S = S̃+W ). Similarly, for the multiplicative case, we write S̃ = SW . We apply

this notation to the buyer’s value and to buyer and seller offers as well. We adopt this change

so that variables without (·̃) always represent those absent unobserved heterogeneity.

G.1. Cramton (1992). This model studies a setting similar to ours, where a seller and

buyer with independent private values engage in bargaining. One possible outcome in the

Cramton (1992) equilibrium is for the seller to make the first offer, PS
1 , which completely

reveals the seller’s value S. The buyer then either accepts, quits, or makes a counteroffer

PB
2 that completely reveals her value B.59 These first two offers are PS

1 = δS+γ(S)
1+δ

and

PB
2 = δB+S

1+δ
, where δ is a discount factor and the object γ(S) is the buyer type indifferent

between accepting and rejecting the seller’s offer of PS
1 given that the seller has revealed her

type to be S and the buyer’s value is bounded above by some b. In the equilibrium studied

in Cramton (1992), the function γ(·) is given by the following:

FB(b)−FB(γ)− (1−δ
2)(γ − s) fB(γ) =

∫
γ

s
δ

3
(

b− s
γ − s

)1+δ

dFB(b) (17)

This object is quite complex, depending on the CDF and density of buyer values, FB and

fB. If buyer and seller values are uniformly distributed, γ(s) has a closed-form solution

γ(s) = α −(2α −1)s, where α is defined by 1−2α = −δ

2+δ−δ 2 . For our arguments here, we

59If the buyer chooses to make a counteroffer, PB, the buyer exploits this knowledge of the seller’s type
and makes an offer that corresponds to the Rubinstein (1982) equilibrium offer for the case where the buyer
and seller know each others’ values. Note that, in the Cramton (1992) equilibrium, the timing of these offers
is also important in revealing an agent’s value, but the level of the offers is sufficient for our purposes.
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assume γ(s) is differentiable with γ ′(s)∈ (−δ ,0). It is possible to show that γ ′(s)∈ (−δ ,0)

is satisfied with slack in the uniform case, which we state as the following lemma:60

Lemma 3. In the Cramton (1992) model, if buyer and seller values are uniformly dis-

tributed, the function γ(·) satisfies (with slack) γ ′(·) ∈ (−δ ,0).

Proof. Note that α ∈ (1
2 ,

3
4) for δ ∈ (0,1], so γ ′(s) ∈ [−.5,0) for δ ∈ (0,1]. Therefore,

γ ′(s) < 0 is satisfied with slack. Now note γ ′(s) = 1− 2α . Setting γ ′(s) ≥ −δ yields
−δ

2+δ−δ 2 ≥−δ ⇐⇒ δ 2 ≤ 2, and thus γ ′(s)>−δ is satisfied with slack.

An immediate result of this property is that the equilibrium offers, PS
1 = δS+γ(S)

1+δ
and

PB
2 = δB+S

1+δ
, satisfy A2 (strictly, in fact): PS

1 is strictly monotone in S because γ ′(s) > −δ ,

and hence PB
2 is also strictly monotone in B conditional on PS

1 .

Now consider a modified setting in which a buyer and seller play the equilibrium of

Cramton (1992), but in a given realization of the game buyer and seller values are both

shifted additively by a common amount, W , that is independent of B and S. Specifically, a

buyer’s value is given by B+W and a seller’s by S+W , where W = w is known to both

agents but not to the econometrician. Cramton’s model assumes, without loss of generality,

that buyer values are distributed on [0,1]. In our modification, we instead have values

distributed on [w,1+w]. In this environment, the equilibrium offers simply shift additively

by w as well, becoming PS
1 +w and PB

2 +w, as we demonstrate in the following lemma:

Lemma 4. Suppose seller and buyer values in the Cramton (1992) setting are given by

S+W and B+W. If, when W = 0, the first two offers are given by PS
1 = pS

1 and PB
2 = pB

2 ,

then, when W = w, these offers are given by pS
1 +w and pB

2 +w.

Proof. We first prove the following claim: The function γ(·) satisfies additive separability.

Let γ̃(s,w) represent the value of γ in a game in which W = w; thus γ(s) = γ̃(s,0). We will

60It is also possible to derive sufficient conditions for these properties outside of the uniform case; these
would be similar to the assumption referred to as “(Fδ )” in Cramton (1992). These conditions are cumber-
some. Like Cramton, therefore, we instead show they are satisfied with slack in the uniform case and thus
they do not appear to be overly restrictive.
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show that γ̃(s,w) = γ(s)+w. To see this, let b̃ = b+w, and s̃ = s+w, and let F̃B̃ and f̃B̃ be

the distribution and density of B̃.

The condition defining γ̃ is given by modifying (17) to become F̃B̃(b̃)− F̃B̃(γ̃)− (1−

δ 2)(γ̃ − s̃) f̃B̃(γ̃) =
∫ γ̃

s̃ δ 3
(

x−s̃
γ̃−s̃

)1+δ

dF̃B̃(x). Note that, for any number x, F̃B̃(x̃) = FB(x̃−w)

and f̃B̃(x̃) = fB(x̃−w). We now apply a change of variables from x to y = x−w in the

integral, yielding
∫

γ̃−w
s δ 3

(
y+w−s̃

γ̃−s̃

)1+δ

dFB(y). Combining these results yields

FB(b)−FB(γ̃ −w)− (1−δ
2)(γ̃ − s̃) fB(γ̃ −w) =

∫
γ̃−w

s
δ

3
(

y− s
γ̃ − s̃

)1+δ

dFB(y) (18)

Comparing (17) to (18) demonstrates that, if γ is the solution to the former then γ +w is

the solution to the latter, proving the claim.

Now consider the equilibrium conditional on a realization of W . Offers will be given by

p̃S
1 =

δ s̃+γ̃(s,w)
1+δ

= δ s+γ(s)
1+δ

+w and p̃B
2 = δ b̃+s̃

1+δ
= δb+s

1+δ
+w, satisfying additivity.

We now demonstrate that unobserved heterogeneity can lead to a violation of the mono-

tonicity assumption even while stochastic monotonicity is satisfied. We show that mono-

tonicity of the seller’s first offer P̃S in the seller’s value S̃ is violated in this setting, and we

prove an analogous result for the buyer. Note that here we are considering what this setting

would look like to the econometrician, who would see observations of different instances

of the game and where realizations of W may vary across these observations.

Lemma 5. The Cramton (1992) equilibrium offers in the game with additive unobserved

heterogeneity can violate A2, but A4 is still satisfied.

Proof. Suppose s increases by 1 and w decreases by η < 1 (so s̃ increases overall). Because

γ(s)′ ∈ (−δ ,0), the change in p̃S
1 due to the change in s is at most an increase of δ

1+δ
, and

the change in p̃S
1 due to the change in w is a decrease of η . For any η ∈

(
δ

1+δ
,1
)

, p̃S
1

decreases even though s̃ increases, violating seller monotonicity.

For buyer monotonicity, suppose s increases by ηs and w decreases by ηw such that p̃S
1

does not change. It then holds that 0 < ηw < ηs. Next suppose b increases by ηb ∈ (ηw <

ηs). Then b̃ = b+w decreases, but since δ (b+ηb)+(s+ηs)
1+δ

+w−ηw > δb+s
1+δ

+w, p̃B
2 increases.
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To see that stochastic monotonicity is satisfied for the seller, let g(s) ≡ s−γ(s)
1+δ

, which is

strictly increasing under our assumption that γ(·) is strictly decreasing. Then we have

P(S̃ ≤ x|P̃S
1 = y) = P

(
S ≤ x−W |PS

1 +W = y
)

=
∫

P(S ≤ x− y+ f (S)|w = y− f (S),W = w) fW |w=y− f (S)(w)dw

=
∫

P

(
S ≤ x− y+

δS+ γ(S)
1+δ

∣∣∣∣∣w = y− f (S),W = w

)
fW (w)dw

=
∫

P(g(S)≤ x− y| f (S) = y−w,W = w) fW (w)dw

=
∫

P(g(S)≤ x− y| f (S) = y−w) fW (w)dw

=
∫

P
(
g( f−1(y−w))≤ x− y

)
fW (w)dw

=
∫

1
(
g( f−1(y−w))≤ x− y

)
fW (w)dw

Since g( f−1(·)) is a strictly increasing function, P(S̃ ≤ x|P̃S
1 = y) is strictly decreasing in y.

In the third and fifth line, we use that W and S are independent.

Using similar arguments, we can also show that the stochastic monotonicity condition of

the buyer holds. To do so, write

P(B̃ ≤ x|P̃S
1 = y, P̃B

2 = z)

= P

(
B ≤ x−W

∣∣∣∣∣ f (S)+W = y,
δB+S
1+δ

+W = z

)

=
∫

P

(
B ≤ x−w

∣∣∣∣∣ f (S)+w = y,
δB+S
1+δ

+w = z

)
fW (w)dw

=
∫

P

(
B ≤ x−w

∣∣∣∣∣S = f−1(y−w),
δB+ f−1(y−w)

1+δ
= z−w

)
fW (w)dw

=
∫

P

(
B ≤ x−w

∣∣∣∣∣S = f−1(y−w),B =
1
δ

(
(1+δ )(z−w)− f−1(y−w)

))
fW (w)dw

=
∫

1
(

1
δ

(
(1+δ )(z−w)− f−1(y−w)

)
≤ x−w

)
fW (w)dw

which is decreasing in z. In the third line, we used that W is independent of (S,B).
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The Cramton model assumes independence of B and S, and this immediately yields the

result that the independence assumption for the seller is satisfied in his model: S is inde-

pendent of PB
2 conditional on PS

1 because PS
1 completely reveals S to the buyer, and hence,

conditional on PS
1 , there is no variation left in S. However, even maintaining the inde-

pendence of the components B and S, if additive unobserved heterogeneity is introduced

into the game, then B+W will be correlated with PS
1 +W , violating buyer independence.

The proof of Lemma 6, focusing on the uniform distribution case, demonstrates that seller

independence can also be violated without violating positive correlation.

Lemma 6. The Cramton (1992) equilibrium offers in a game with additive unobserved

heterogeneity can violate A3.i for the seller and A3.ii for the buyer.

Proof. In the Cramton model with unobserved heterogeneity, clearly B̃ is correlated with

P̃S
1 through W , so buyer independence (A3.ii) is violated. For seller independence (A3.i),

note from Lemma 5 that P̃B
2 can be written as follows, where P̃S

1 is fixed at y: P̃B
2 =

δB+ f−1(y−W )
1+δ

+W . Now consider a change in S̃. Holding P̃S
1 fixed at y, this change in S̃

must also correspond to a change in W (or else P̃S
1 could not remain constant).

The change in W will necessarily affect P̃B
2 unless the terms in P̃B

2 depending on W offset

one another; that is, unless d
dw

(
f−1(y−w)

1+δ
+w

)
= 0. To see that this is not the case, note

γ ′ ∈ (−δ ,0) implies f ′ ∈ (0, δ

1+δ
), and, by the inverse function theorem, f−1′ ∈ (1+δ

δ
,∞).

This implies d
dw

f−1(y−w)
1+δ

+w ∈ (−∞,−1/δ +1). For any δ < 1, this derivative is non-zero,

and thus variation in W also leads to variation in P̃B
2 , violating seller independence.

G.2. Perry (1986). The Perry model has no discounting. Instead, agents face a per-offer

additive cost of bargaining, cS for the seller and cB for the buyer. While players can alternate

offers, the equilibrium that Perry focuses on has the property that only one player makes

an offer and the other accepts or rejects (and never makes a counteroffer). One outcome

in the Perry equilibrium is for the seller to make the first offer, PS
1 , with this offer given by

PS
1 =

1−FB(PS
1 )

fB(PS
1 )

+S, where fB is the density of buyer values. In this equilibrium, the seller’s

first offer, PS
1 , clearly satisfies monotonicity (A2.i), and hence also satisfies the weaker
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condition of stochastic monotonicity (A4.i).

In a version of this model with additively separable unobserved heterogeneity, the seller’s

offer will also be additively separable in the unobserved heterogeneity. Specifically, P̃S
1 =

1−FB̃(P̃
S
1 )

fB̃(P̃
S
1 )

+ S̃ =
1−FB(P̃S

1 −W )

fB(P̃S
1 −W )

+S+W = PS
1 +W . Thus, P̃S

1 = PS
1 +W .

In this modified version of the model, seller monotonicity (A2.i) can be violated. To

show this, we re-write PS
1 =

1−FB(PS
1 )

fB(PS
1 )

+S as φ(pS
1) = s, where φ(pS

1)≡ pS
1 −

1−FB(pS
1)

fB(pS
1)

is the

buyer’s virtual value function. Implicit differentiation of φ(pS
1) = s with respect to s yields

d pS
1

ds = 1
φ ′(pS

1)
. Consider now a case where s increases by 1 and w decreases by η < 1, and

hence s̃ increases overall. The object p̃S
1 will increase by 1

φ ′(pS
1)
−η . For any distribution FB

with φ ′(·) > 1, there exists an η < 1 such that pS
1 will increase by less than when η when

s increases by 1, and, in such a case, p̃S
1 will decrease overall. The uniform distribution on

[0,1] is one such example, where this condition is satisfied with slack, with φ ′(·) = 2.

Consider now a case in which agents play the equilibrium of Perry (1986), but in a given

realization of the game buyer and seller values are both scaled multiplicatively (rather than

shifted additively) by some amount W which, again, is common knowledge to both agents.

Thus, S̃ =WS and B̃ =WB. In this case, it can be shown that P̃S
1 =WPS

1 =W 1−FB(P̃S
1 /W )

fB(P̃S
1 /W )

+

WS, where PS
1 is the offer the seller would make if the realization of W were 1. The

presence of this multiplicative heterogeneity can lead to violations of weak monotonicity

across instances of the game. Consider, for simplicity, the case where B ∼ U [0,1]. In

this case, the expression for P̃S
1 simplifies to 2pS

1 = w+ws. Suppose s increases by 1 and

w decreases, scaling down by some factor η ∈ (1
2 ,1); overall, s̃ increases by a factor of

2η > 1. However, the expression for P̃S
1 then implies that p̃S

1 = η pS
1, and thus p̃S

1 decreases.

Independence of the buyer’s value from the seller’s first offer (A3.ii) is satisfied in this

model absent unobserved heterogeneity. However, once unobserved heterogeneity is in-

cluded, the seller’s first offer P̃S
1 and buyer’s value B̃ will be correlated through W in both

the additively or multiplicatively separable unobserved heterogeneity models. The Perry

model cannot serve for studying monotonicity of the buyer’s first offer or independence of

the buyer’s offer from the seller’s value because only one offer occurs in equilibrium.
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