Gradual Persuasion and Maximal Inequalities

Itai Arieli (Technion),
Yakov Babichenko (Technion),
Fedor Sandomirskiy (Princeton)

Economic Theory Seminar - Toulouse, April 2024

Motivating example

Product Adoption

Bayesian persuasion: The product adoption example:

- Binary state $\omega=0,1$ with common prior $p \in[0,1]$.

Product Adoption

Bayesian persuasion: The product adoption example:

- Binary state $\omega=0,1$ with common prior $p \in[0,1]$.
- Receiver with binary action $\{$ adopt, reject $\}$.

Receiver adopts iff his posterior $x \geq \theta$.

Product Adoption

Bayesian persuasion: The product adoption example:

- Binary state $\omega=0,1$ with common prior $p \in[0,1]$.
- Receiver with binary action $\{$ adopt, reject $\}$.

Receiver adopts iff his posterior $x \geq \theta$.

- Sender wants the receiver to adopt.

Product Adoption

Bayesian persuasion: The product adoption example:

- Binary state $\omega=0,1$ with common prior $p \in[0,1]$.
- Receiver with binary action $\{$ adopt, reject $\}$.

Receiver adopts iff his posterior $x \geq \theta$.

- Sender wants the receiver to adopt.
- Sender commits to a signaling policy before observing ω.

Product Adoption

Bayesian persuasion: The product adoption example:

- Binary state $\omega=0,1$ with common prior $p \in[0,1]$.
- Receiver with binary action $\{$ adopt, reject $\}$.

Receiver adopts iff his posterior $x \geq \theta$.

- Sender wants the receiver to adopt.
- Sender commits to a signaling policy before observing ω.

Which signaling policy maximizes the probability of adoption?
What is the maximal probability of adoption?

Product Adoption

Solution to the product adoption problem:

- Signaling policies \leftrightarrow Splits of the prior.

Product Adoption

Solution to the product adoption problem:

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.

Product Adoption

Solution to the product adoption problem:

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

Product Adoption

Solution to the product adoption problem:

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

What if θ is unknown to the sender?
What if the sender faces a population of receivers with different θ s?

Product Adoption

Solution to the product adoption problem:

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

What if θ is unknown to the sender?
What if the sender faces a population of receivers with different θ s?

Immediate answer: The Sender cannot persuade two receivers with different $\theta_{i} \mathrm{~S}$ with their maximal probability $\frac{p}{\theta_{i}}$.

Gradual Persuasion

Dynamic variant of the product adoption problem:

- The interaction occurs over time $t \in[0,1]$.

Gradual Persuasion

Dynamic variant of the product adoption problem:

- The interaction occurs over time $t \in[0,1]$.
- Sender chooses a martingale $X=\left(X_{t}\right)_{t \in[0,1]}$, which captures the receiver's posterior over time. $X_{0}=\delta_{p}$.

Gradual Persuasion

Dynamic variant of the product adoption problem:

- The interaction occurs over time $t \in[0,1]$.
- Sender chooses a martingale $X=\left(X_{t}\right)_{t \in[0,1]}$, which captures the receiver's posterior over time. $X_{0}=\delta_{p}$.

Assumptions

- Irreversible adoption: The adoption action is irreversible.

Gradual Persuasion

Dynamic variant of the product adoption problem:

- The interaction occurs over time $t \in[0,1]$.
- Sender chooses a martingale $X=\left(X_{t}\right)_{t \in[0,1]}$, which captures the receiver's posterior over time. $X_{0}=\delta_{p}$.

Assumptions

- Irreversible adoption: The adoption action is irreversible.
- Immediate adoption: Adoption happens once $x_{t} \geq \theta$.

Gradual Persuasion

Dynamic variant of the product adoption problem:

- The interaction occurs over time $t \in[0,1]$.
- Sender chooses a martingale $X=\left(X_{t}\right)_{t \in[0,1]}$, which captures the receiver's posterior over time. $X_{0}=\delta_{p}$.

Assumptions

- Irreversible adoption: The adoption action is irreversible.
- Immediate adoption: Adoption happens once $x_{t} \geq \theta$.

Rational Behind the Assumptions

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...

Rational Behind the Assumptions

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...
Immediate Adoption: Patient sender and impatient receiver.

Rational Behind the Assumptions

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...
Immediate Adoption: Patient sender and impatient receiver.
Proposition (Informal)
For every discount factor $\delta<1$ of the receiver, the sender can reveal information slow enough over time $t \in[0, \infty)$ to incentivize the receiver to adopt slightly above θ.

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau^{\prime}=\min \left\{t \mid X_{t} \in\{0\} \cup[\theta, 1]\right\}$.

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau^{\prime}=\min \left\{t \mid X_{t} \in\{0\} \cup[\theta, 1]\right\}$.
- Fully revealing $\Rightarrow \tau^{\prime} \leq 1$ w.p. 1 .

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau^{\prime}=\min \left\{t \mid X_{t} \in\{0\} \cup[\theta, 1]\right\}$.
- Fully revealing $\Rightarrow \tau^{\prime} \leq 1$ w.p. 1 .
- $\tau=\min \left\{t \mid X_{t} \in\{0, \theta\}\right\}$.

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau^{\prime}=\min \left\{t \mid X_{t} \in\{0\} \cup[\theta, 1]\right\}$.
- Fully revealing $\Rightarrow \tau^{\prime} \leq 1$ w.p. 1 .
- $\tau=\min \left\{t \mid X_{t} \in\{0, \theta\}\right\}$.
- Lower semi-continuity $\Rightarrow \tau=\tau^{\prime}$.

Gradual Persuasion is Powerful!

A martingale $\left(X_{t}\right)_{t \in[0,1]}$ if fully revealing if $\operatorname{supp}\left(X_{1}\right)=\{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_{t} persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau^{\prime}=\min \left\{t \mid X_{t} \in\{0\} \cup[\theta, 1]\right\}$.
- Fully revealing $\Rightarrow \tau^{\prime} \leq 1$ w.p. 1 .
- $\tau=\min \left\{t \mid X_{t} \in\{0, \theta\}\right\}$.
- Lower semi-continuity $\Rightarrow \tau=\tau^{\prime}$.
- $\mathbb{E}\left[X_{\tau}\right]=p \Rightarrow \mathbb{P}\left[X_{\tau}=\theta\right]=\frac{p}{\theta}$.

Extensions:

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.
- Partially informed sender and/or receiver.

Extensions:

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.
- Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Extensions:

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.
- Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.

Extensions:

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.
- Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.
Maximal Inequalities \Rightarrow Gradual Persuasion.

Extensions:

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.
- Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.
Maximal Inequalities \Rightarrow Gradual Persuasion.
Gradual Persuasion \Rightarrow Maximal Inequalities.

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].
- Hobson's maximal maximum martingale [1998]. New results:
- A formula for Hardy-Littlewood inequality in this setting.
- An alternative simple construction for the maximal maximum martingale.

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].
- Hobson's maximal maximum martingale [1998]. New results:
- A formula for Hardy-Littlewood inequality in this setting.
- An alternative simple construction for the maximal maximum martingale.

Corollary

The existence of a martingale that persuades any receiver with its maximal possible probability is quite a general phenomenon.

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

- Its behavior in each step.
- Its terminal distribution.

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

- Its behavior in each step.
- Its terminal distribution.

The Hardy-Littlewood transform of a distribution $Y \in \Delta([0,1])$ is the function $q_{Y}:[\mathbb{E}[Y], \max \{\operatorname{supp}(Y)\}] \rightarrow[0,1]$, where $q_{Y}(\theta)$ is the top-quantile of Y whose mean is θ.

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

- Its behavior in each step.
- Its terminal distribution.

The Hardy-Littlewood transform of a distribution $Y \in \Delta([0,1])$ is the function $q_{Y}:[\mathbb{E}[Y], \max \{\operatorname{supp}(Y)\}] \rightarrow[0,1]$, where $q_{Y}(\theta)$ is the top-quantile of Y whose mean is θ.

Hardy-Littlewood Maximal Inequality

For every martingale $\left(X_{t}\right)_{t \in[0,1]}$ with terminal distribution $X_{1}=Y$ and every $\theta \in[p, 1]$ we have

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

- The sender's posterior is distributed according to Y.

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales $\left(X_{t}\right)_{t \in[0,1]}$ with $X_{1} \leq Y$.

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales $\left(X_{t}\right)_{t \in[0,1]}$ with $X_{1} \leq Y$.
- $q_{Y}(\theta)$: the value of the static persuasion problem.

The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales $\left(X_{t}\right)_{t \in[0,1]}$ with $X_{1} \leq Y$.
- $q_{Y}(\theta)$: the value of the static persuasion problem.

The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]

- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right]$: the probability of adoption in the dynamic model if the sender uses strategy X_{t}.

Interpreting Hardy-Littlewood Inequality

$$
\mathbb{P}\left[\max _{t \in[0,1]} X_{t} \geq \theta\right] \leq q_{Y}(\theta)
$$

Gradual Persuasion with partially informed sender:

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales $\left(X_{t}\right)_{t \in[0,1]}$ with

$$
X_{1} \leq Y
$$

- $q_{Y}(\theta)$: the value of the static persuasion problem.

The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]

- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right]$: the probability of adoption in the dynamic model if the sender uses strategy X_{t}.
- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right] \leq \operatorname{Val}($ dynamic $) \leq \operatorname{Val}($ static $)=q_{Y}(\theta)$.

Tightness of Hardy-Littlewood Inequality

Is Hardy-Littlewood inequality tight?

Tightness of Hardy-Littlewood Inequality

Is Hardy-Littlewood inequality tight?

Theorem: [Dubins-Gilat '78]

For every terminal distribution Y, there exists a martingale X_{t} with $X_{1}=Y$ for which $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right]=q_{Y}(\theta)$ for all $\theta \in[p, 1]$.

Tightness of Hardy-Littlewood Inequality

Is Hardy-Littlewood inequality tight?

Theorem: [Dubins-Gilat '78]

For every terminal distribution Y, there exists a martingale X_{t} with $X_{1}=Y$ for which $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right]=q_{Y}(\theta)$ for all $\theta \in[p, 1]$.

This martingale is called a maximal maximum martingale because its distribution of the maximum FOSD the distribution of the maximum of any other martingale with terminal distribution Y.

Interpreting Dubins-Gilat Martingale

The Dubins-Gilat martingale:
At time $t \in[0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom t-quantile of Y. If so she reveals y.

Interpreting Dubins-Gilat Martingale

The Dubins-Gilat martingale:
At time $t \in[0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom t-quantile of Y. If so she reveals y.

At time $t=1-q(\theta)$, if y does not belong to the bottom t-quantile, receiver's posterior is θ. This happens w.p. $q(\theta)$.

Interpreting Dubins-Gilat Martingale

The Dubins-Gilat martingale:
At time $t \in[0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom t-quantile of Y. If so she reveals y.

At time $t=1-q(\theta)$, if y does not belong to the bottom t-quantile, receiver's posterior is θ. This happens w.p. $q(\theta)$.

Corollary

Using the Dubins-Gilat martingale, a partially informed sender whose partial information is $Y \in \Delta([0,1])$ persuades every receiver with threshold θ with the maximal possible probability $q_{Y}(\theta)$ in the gradual persuasion model.

Incorporating the Initial Martingale's Distribution

So far, no restrictions on X_{0}. Now, X_{0} is also given.

Incorporating the Initial Martingale's Distribution

So far, no restrictions on X_{0}. Now, X_{0} is also given.
Can Hardy-Littlewood Inequality be strengthened?
Does a maximal maximum martingale exist?

Incorporating the Initial Martingale's Distribution

So far, no restrictions on X_{0}. Now, X_{0} is also given.
Can Hardy-Littlewood Inequality be strengthened?
Does a maximal maximum martingale exist?
[Hobson '98] contributions

- A strengthening of Hardy-Littlewood Inequality.
- A construction of a maximal maximum martingale which achieves this bound for all θ s.

Incorporating the Initial Martingale's Distribution

So far, no restrictions on X_{0}. Now, X_{0} is also given.
Can Hardy-Littlewood Inequality be strengthened?
Does a maximal maximum martingale exist?
[Hobson '98] contributions

- A strengthening of Hardy-Littlewood Inequality.
- A construction of a maximal maximum martingale which achieves this bound for all θ s.

Our contributions

- A formula for this inequality.
- A different construction of a maximal maximum martingale.
- Simple proofs!

Hardy-Littlewood analogue

We are given two distributions $Y_{0} \leq Y_{1}$, and $\theta \in[p, 1]$.

Hardy-Littlewood analogue

We are given two distributions $Y_{0} \leq Y_{1}$, and $\theta \in[p, 1]$.

$$
c=\mathbb{P}\left[Y_{0} \geq \theta\right]\left(\mathbb{E}\left[Y_{0} \mid Y_{0} \geq \theta\right]-\theta\right)
$$

Hardy-Littlewood analogue

We are given two distributions $Y_{0} \leq Y_{1}$, and $\theta \in[p, 1]$.

$$
c=\mathbb{P}\left[Y_{0} \geq \theta\right]\left(\mathbb{E}\left[Y_{0} \mid Y_{0} \geq \theta\right]-\theta\right)
$$

Proposition (A generalized Hardy-Littlewood inequality)

For every martingale X_{t} with $X_{0}=Y_{0}$ and $X_{1}=Y_{1}$ we have

$$
\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right] \leq z
$$

where z is the fixed point of

$$
z=q_{Y_{1}}\left(\theta+\frac{c}{z}\right)
$$

in the range $z \in\left[\mathbb{P}\left[Y_{0} \geq \theta\right], q_{Y_{1}}(\theta)\right]$.

Proof of the Poroposition

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_{1}.

Proof of the Poroposition

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_{1}.
- Sender must initially (not gradually) reveal information according to Y_{0}.

Proof of the Poroposition

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_{1}.
- Sender must initially (not gradually) reveal information according to Y_{0}.
- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right] \leq \operatorname{Val}($ dynamic $) \leq \operatorname{Val}($ static $)$

Proof of the Poroposition

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_{1}.
- Sender must initially (not gradually) reveal information according to Y_{0}.
- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right] \leq \operatorname{Val}($ dynamic $) \leq \operatorname{Val}($ static $)$

The static problem:

$$
\max _{X: Y_{0} \leq X \leq Y_{1}} \mathbb{P}[X \geq \theta]
$$

Proof of the Poroposition

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_{1}.
- Sender must initially (not gradually) reveal information according to Y_{0}.
- $\mathbb{P}\left[\max _{t} X_{t} \geq \theta\right] \leq \operatorname{Val}($ dynamic $) \leq \operatorname{Val}($ static $)$

The static problem:

$$
\max _{X: Y_{0} \leq X \leq Y_{1}} \mathbb{P}[X \geq \theta]
$$

Maximization over mean-preserving contraction and mean-preserving spreads have been recently actively studied in the persuasion literature [Dworczak, Martini '19], [Kleiner et. al. '21] [Arieli et. al. '21]. But not both.

Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack '21]:
Distributions \leftrightarrow Convex functions.

Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack '21]:
Distributions \leftrightarrow Convex functions.
Given a distribution X with CDF F we let

$$
f(t)=\int_{0}^{t} F(x) d x
$$

Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack '21]:
Distributions \leftrightarrow Convex functions.
Given a distribution X with CDF F we let

$$
f(t)=\int_{0}^{t} F(x) d x
$$

f satisfies:
(P1) f is convex.
(P2) $f(0)=0$ and $f(1)=1-p$.
(P3) $0 \leq f^{\prime}(x) \leq 1$, where f^{\prime} is the left derivative.

Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack '21]:
Distributions \leftrightarrow Convex functions.
Given a distribution X with CDF F we let

$$
f(t)=\int_{0}^{t} F(x) d x
$$

f satisfies:
(P1) f is convex.
(P2) $f(0)=0$ and $f(1)=1-p$.
(P3) $0 \leq f^{\prime}(x) \leq 1$, where f^{\prime} is the left derivative.

- Every f that satisfies (P1)-(P3) uniquly defines a distribution.

Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack '21]:
Distributions \leftrightarrow Convex functions.
Given a distribution X with CDF F we let

$$
f(t)=\int_{0}^{t} F(x) d x
$$

f satisfies:
(P1) f is convex.
(P2) $f(0)=0$ and $f(1)=1-p$.
(P3) $0 \leq f^{\prime}(x) \leq 1$, where f^{\prime} is the left derivative.

- Every f that satisfies (P1)-(P3) uniquly defines a distribution.
- $\mathcal{C}=\{f: f$ satisfies (P1)-(P3) $\}$.

Proof of the Proposition

Convex-function maximization analog:

- g_{0}, g_{1} are the corresponding convex functions of Y_{0}, Y_{1}.

Proof of the Proposition

Convex-function maximization analog:

- g_{0}, g_{1} are the corresponding convex functions of Y_{0}, Y_{1}.

$$
\max _{X: Y_{0} \leq X \leq Y_{1}} \mathbb{P}[X \geq \theta]=\max _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} 1-f^{\prime}(\theta)=1-\min _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} f^{\prime}(\theta)
$$

Proof of the Proposition

Convex-function maximization analog:

- g_{0}, g_{1} are the corresponding convex functions of Y_{0}, Y_{1}.

$$
\max _{X: Y_{0} \leq X \leq Y_{1}} \mathbb{P}[X \geq \theta]=\max _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} 1-f^{\prime}(\theta)=1-\min _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} f^{\prime}(\theta)
$$

The latter minimization can be solved explicitly:

Proof of the Proposition

Convex-function maximization analog:

- g_{0}, g_{1} are the corresponding convex functions of Y_{0}, Y_{1}.

$$
\max _{X: Y_{0} \leq X \leq Y_{1}} \mathbb{P}[X \geq \theta]=\max _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} 1-f^{\prime}(\theta)=1-\min _{f \in \mathcal{C}: g_{0} \leq f \leq g_{1}} f^{\prime}(\theta)
$$

The latter minimization can be solved explicitly:

Hobson's Maximal Maximum Martingale

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of martingales with initial distribution Y_{0} and terminal distribution Y_{1}.

Hobson's Maximal Maximum Martingale

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of martingales with initial distribution Y_{0} and terminal distribution Y_{1}.

Hobson's construction is quite involved.

Hobson's Maximal Maximum Martingale

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of martingales with initial distribution Y_{0} and terminal distribution Y_{1}.

Hobson's construction is quite involved.
We provide a different, simple, construction of such a martingale.

A Construction for Hobson's Martingale

A Construction for Hobson's Martingale

Continuously move θ from 0 to 1 .

A Construction for Hobson's Martingale

Continuously move θ from 0 to 1 .
We get a single parametric family of functions f_{t} (where $t=\theta$), such that $f_{t} \leq f_{t^{\prime}}$ for $t<t^{\prime}$.

A Construction for Hobson's Martingale

Continuously move θ from 0 to 1.
We get a single parametric family of functions f_{t} (where $t=\theta$), such that $f_{t} \leq f_{t^{\prime}}$ for $t<t^{\prime}$.

Namely, a single parametric family $\left(X_{t}\right)$ s.t., $X_{t} \leq X_{t^{\prime}}$ for $t<t^{\prime}$.

A Construction for Hobson's Martingale

Continuously move θ from 0 to 1.
We get a single parametric family of functions f_{t} (where $t=\theta$), such that $f_{t} \leq f_{t^{\prime}}$ for $t<t^{\prime}$.

Namely, a single parametric family $\left(X_{t}\right)$ s.t., $X_{t} \leq X_{t^{\prime}}$ for $t<t^{\prime}$.
There exists a martingale whose distribution at time t is X_{t} [Kellerer '61].

Other Extensions

Multiple actions for the receiver.

- Receiver's actions $\{0,1,2, \ldots, n\}$.

Other Extensions

Multiple actions for the receiver.

- Receiver's actions $\{0,1,2, \ldots, n\}$.
- Action i is optimal iff receiver's posterior $x \in\left[\theta_{i}, \theta_{i+1}\right]$ with $0=\theta_{0} \geq \theta_{1} \geq \theta_{n} \geq \theta_{n+1}=1$.

Other Extensions

Multiple actions for the receiver.

- Receiver's actions $\{0,1,2, \ldots, n\}$.
- Action i is optimal iff receiver's posterior $x \in\left[\theta_{i}, \theta_{i+1}\right]$ with $0=\theta_{0} \geq \theta_{1} \geq \theta_{n} \geq \theta_{n+1}=1$.
- $u_{S}(n) \geq u_{S}(n-1) \geq \ldots \geq u_{S}(0)$.

Other Extensions

Multiple actions for the receiver.

- Receiver's actions $\{0,1,2, \ldots, n\}$.
- Action i is optimal iff receiver's posterior $x \in\left[\theta_{i}, \theta_{i+1}\right]$ with $0=\theta_{0} \geq \theta_{1} \geq \theta_{n} \geq \theta_{n+1}=1$.
- $u_{S}(n) \geq u_{S}(n-1) \geq \ldots \geq u_{S}(0)$.
- The receiver is allowed to increase but not decrease his action over time.

Other Extensions

Multiple actions for the receiver.

- Receiver's actions $\{0,1,2, \ldots, n\}$.
- Action i is optimal iff receiver's posterior $x \in\left[\theta_{i}, \theta_{i+1}\right]$ with $0=\theta_{0} \geq \theta_{1} \geq \theta_{n} \geq \theta_{n+1}=1$.
- $u_{S}(n) \geq u_{S}(n-1) \geq \ldots \geq u_{S}(0)$.
- The receiver is allowed to increase but not decrease his action over time.

Sender's utility can be expressed as a monotonic function of $\max _{t \in[0,1]} X_{t} . \Rightarrow$ the same martingales extract the maximal utility from every receiver type $\left(\theta_{i}\right)_{i \in[n]}$.

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.
- Sender's utility: $u_{S}\left(a_{1}, \ldots, a_{n}\right)$.

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.
- Sender's utility: $u_{S}\left(a_{1}, \ldots, a_{n}\right)$.

Proposition

If $u(a)$ is supermodular then the same martingales extract the maximal utility.
Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.
- Sender's utility: $u_{S}\left(a_{1}, \ldots, a_{n}\right)$.

Proposition

If $u(a)$ is supermodular then the same martingales extract the maximal utility.
Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.
- Sender's utility: $u_{S}\left(a_{1}, \ldots, a_{n}\right)$.

Proposition

If $u(a)$ is supermodular then the same martingales extract the maximal utility.
Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.
Optimal correlation: "as much as possible" [Lovasz '83].

Other Extensions

Multiple receivers.

- n receivers with binary actions $a_{i}=\{0,1\}$.
- Sender's utility: $u_{S}\left(a_{1}, \ldots, a_{n}\right)$.

Proposition

If $u(a)$ is supermodular then the same martingales extract the maximal utility.
Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.
Optimal correlation: "as much as possible" [Lovasz '83].
This exactly happens in the gradual persuasion model.

Thank You!

