Gradual Persuasion and Maximal Inequalities

Itai Arieli (Technion), **Yakov Babichenko (Technion)**, Fedor Sandomirskiy (Princeton)

Economic Theory Seminar - Toulouse, April 2024

Itai Arieli (Technion), Yakov Babichenko (Technion), Fedor Sa

Motivating example

• Binary state $\omega = 0, 1$ with common prior $p \in [0, 1]$.

- Binary state $\omega = 0, 1$ with common prior $p \in [0, 1]$.
- Receiver with binary action {adopt, reject}.
 Receiver adopts iff his posterior x ≥ θ.

- Binary state $\omega = 0, 1$ with common prior $p \in [0, 1]$.
- Receiver with binary action {adopt, reject}.
 Receiver adopts iff his posterior x ≥ θ.
- Sender wants the receiver to adopt.

- Binary state $\omega = 0, 1$ with common prior $p \in [0, 1]$.
- Receiver with binary action {adopt, reject}.
 Receiver adopts iff his posterior x ≥ θ.
- Sender wants the receiver to adopt.
- Sender commits to a signaling policy before observing ω .

- Binary state $\omega = 0, 1$ with common prior $p \in [0, 1]$.
- Receiver with binary action {adopt, reject}.
 Receiver adopts iff his posterior x ≥ θ.
- Sender wants the receiver to adopt.
- Sender commits to a signaling policy before observing ω .

Which signaling policy maximizes the probability of adoption? What is the maximal probability of adoption?

• Signaling policies \leftrightarrow Splits of the prior.

- Signaling policies ↔ Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

- Signaling policies ↔ Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

What if θ is unknown to the sender?

What if the sender faces a population of receivers with different θ s?

- Signaling policies \leftrightarrow Splits of the prior.
- The sender splits the prior p to the two posteriors $0, \theta$.
- Adoption (i.e., the posterior θ) occurs w.p. $\frac{p}{\theta}$.

What if θ is unknown to the sender?

What if the sender faces a population of receivers with different θ s?

Immediate answer: The Sender cannot persuade two receivers with different θ_i s with their maximal probability $\frac{p}{\theta_i}$.

• The interaction occurs over time $t \in [0, 1]$.

- The interaction occurs over time $t \in [0, 1]$.
- Sender chooses a martingale X = (X_t)_{t∈[0,1]}, which captures the receiver's posterior over time. X₀ = δ_p.

- The interaction occurs over time $t \in [0, 1]$.
- Sender chooses a martingale X = (X_t)_{t∈[0,1]}, which captures the receiver's posterior over time. X₀ = δ_p.

Assumptions

• Irreversible adoption: The adoption action is irreversible.

- The interaction occurs over time $t \in [0, 1]$.
- Sender chooses a martingale X = (X_t)_{t∈[0,1]}, which captures the receiver's posterior over time. X₀ = δ_p.

Assumptions

- Irreversible adoption: The adoption action is irreversible.
- Immediate adoption: Adoption happens once $x_t \ge \theta$.

- The interaction occurs over time $t \in [0, 1]$.
- Sender chooses a martingale X = (X_t)_{t∈[0,1]}, which captures the receiver's posterior over time. X₀ = δ_p.

Assumptions

- Irreversible adoption: The adoption action is irreversible.
- Immediate adoption: Adoption happens once $x_t \ge \theta$.

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...

Immediate Adoption: Patient sender and impatient receiver.

Irreversible Adoption: Taking a vaccine shot, purchasing a product,...

Immediate Adoption: Patient sender and impatient receiver.

Proposition (Informal)

For every discount factor $\delta < 1$ of the receiver, the sender can reveal information slow enough over time $t \in [0, \infty)$ to incentivize the receiver to adopt slightly above θ .

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

•
$$\tau' = \min\{t | X_t \in \{0\} \cup [\theta, 1]\}.$$

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

•
$$\tau' = \min\{t | X_t \in \{0\} \cup [\theta, 1]\}.$$

• Fully revealing $\Rightarrow \tau' \leq 1$ w.p. 1.

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

•
$$\tau' = \min\{t | X_t \in \{0\} \cup [\theta, 1]\}.$$

• Fully revealing $\Rightarrow \tau' \leq 1$ w.p. 1.

•
$$\tau = \min\{t | X_t \in \{0, \theta\}\}.$$

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau' = \min\{t | X_t \in \{0\} \cup [\theta, 1]\}.$
- Fully revealing $\Rightarrow \tau' \leq 1$ w.p. 1.
- $\tau = \min\{t | X_t \in \{0, \theta\}\}.$
- Lower semi-continuity $\Rightarrow \tau = \tau'$.

A martingale $(X_t)_{t \in [0,1]}$ if fully revealing if supp $(X_1) = \{0,1\}$.

Observation

Every fully revealing lower semi-continuous martingale X_t persuades a receiver with threshold θ with the maximal possible probability $\frac{p}{\theta}$.

Proof of the observation:

- $\tau' = \min\{t | X_t \in \{0\} \cup [\theta, 1]\}.$
- Fully revealing $\Rightarrow \tau' \leq 1$ w.p. 1.
- $\tau = \min\{t | X_t \in \{0, \theta\}\}.$
- Lower semi-continuity $\Rightarrow \tau = \tau'$.

•
$$\mathbb{E}[X_{\tau}] = p \Rightarrow \mathbb{P}[X_{\tau} = \theta] = \frac{p}{\theta}$$
.

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.

• Partially informed sender and/or receiver.

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.

• Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.

• Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.

• Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.

Maximal Inequalities \Rightarrow Gradual Persuasion.

- A receiver with more than two actions.
- A sender with supermodular utility facing multiple receivers.

• Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for this surprising observation?

Answer: Maximal inequalities; The existence of a maximal maximum martingale.

Maximal Inequalities \Rightarrow Gradual Persuasion.

Gradual Persuasion \Rightarrow Maximal Inequalities.

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].
- Hobson's maximal maximum martingale [1998].
 New results:
 - A formula for Hardy-Littlewood inequality in this setting.
 - An alternative simple construction for the maximal maximum martingale.

Our Contribution

Gradual persuasion as a tool for analyzing maximal inequalities; simple proofs for classical results such as

- Harddy-Littlewood maximal inequality for martingales [1930].
- Dubins-Gilat maximal maximum martingale [1978].
- Hobson's maximal maximum martingale [1998].
 New results:
 - A formula for Hardy-Littlewood inequality in this setting.
 - An alternative simple construction for the maximal maximum martingale.

Corollary

The existence of a martingale that persuades any receiver with its maximal possible probability is quite a general phenomenon.

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

- Its behavior in each step.
- Its terminal distribution.

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

• Its behavior in each step.

• Its terminal distribution.

The Hardy-Littlewood transform of a distribution $Y \in \Delta([0,1])$ is the function $q_Y : [\mathbb{E}[Y], \max\{\sup (Y)\}] \rightarrow [0,1]$, where $q_Y(\theta)$ is the top-quantile of Y whose mean is θ .

Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the maximum of a martingale as a function of:

- Its behavior in each step.
- Its terminal distribution.

The Hardy-Littlewood transform of a distribution $Y \in \Delta([0,1])$ is the function $q_Y : [\mathbb{E}[Y], \max\{\sup (Y)\}] \rightarrow [0,1]$, where $q_Y(\theta)$ is the top-quantile of Y whose mean is θ .

Hardy-Littlewood Maximal Inequality

For every martingale $(X_t)_{t \in [0,1]}$ with terminal distribution $X_1 = Y$ and every $\theta \in [p, 1]$ we have

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

Itai Arieli, Yakov Babichenko, Fedor Sandomirskiy

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

Gradual Persuasion with partially informed sender:

• The sender's posterior is distributed according to Y.

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales $(X_t)_{t \in [0,1]}$ with $X_1 \leq Y$.

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales (X_t)_{t∈[0,1]} with X₁ ≤ Y.
- q_Y(θ): the value of the static persuasion problem.
 The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales (X_t)_{t∈[0,1]} with X₁ ≤ Y.
- q_Y(θ): the value of the static persuasion problem.
 The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]
- 𝒫[max_t X_t ≥ θ]: the probability of adoption in the dynamic model if the sender uses strategy X_t.

$$\mathbb{P}\left[\max_{t\in[0,1]}X_t\geq\theta\right]\leq q_Y(\theta).$$

- The sender's posterior is distributed according to Y.
- The sender's strategies are martingales (X_t)_{t∈[0,1]} with X₁ ≤ Y.
- q_Y(θ): the value of the static persuasion problem.
 The optimal policy is to pool together the top quantile which has the mean θ. [Renault, Solan, Vieille '17]
- 𝒫[max_t X_t ≥ θ]: the probability of adoption in the dynamic model if the sender uses strategy X_t.

•
$$\mathbb{P}[\max_t X_t \ge \theta] \le \text{Val}(\text{dynamic}) \le \text{Val}(\text{static}) = q_Y(\theta)$$
.

Is Hardy-Littlewood inequality tight?

Is Hardy-Littlewood inequality tight?

Theorem: [Dubins-Gilat '78]

For every terminal distribution Y, there exists a martingale X_t with $X_1 = Y$ for which $\mathbb{P}[\max_t X_t \ge \theta] = q_Y(\theta)$ for all $\theta \in [p, 1]$.

Is Hardy-Littlewood inequality tight?

Theorem: [Dubins-Gilat '78]

For every terminal distribution Y, there exists a martingale X_t with $X_1 = Y$ for which $\mathbb{P}[\max_t X_t \ge \theta] = q_Y(\theta)$ for all $\theta \in [p, 1]$.

This martingale is called a maximal maximum martingale because its distribution of the maximum FOSD the distribution of the maximum of any other martingale with terminal distribution Y.

The Dubins-Gilat martingale:

At time $t \in [0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom *t*-quantile of *Y*. If so she reveals *y*.

The Dubins-Gilat martingale:

At time $t \in [0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom *t*-quantile of *Y*. If so she reveals *y*.

At time $t = 1 - q(\theta)$, if y does not belong to the bottom t-quantile, receiver's posterior is θ . This happens w.p. $q(\theta)$.

The Dubins-Gilat martingale:

At time $t \in [0,1]$ the sender reveals whether $y \sim Y$ belongs to the bottom *t*-quantile of *Y*. If so she reveals *y*.

At time $t = 1 - q(\theta)$, if y does not belong to the bottom t-quantile, receiver's posterior is θ . This happens w.p. $q(\theta)$.

Corollary

Using the Dubins-Gilat martingale, a partially informed sender whose partial information is $Y \in \Delta([0,1])$ persuades every receiver with threshold θ with the maximal possible probability $q_Y(\theta)$ in the gradual persuasion model.

So far, no restrictions on X_0 . Now, X_0 is also given.

So far, no restrictions on X_0 . Now, X_0 is also given.

Can Hardy-Littlewood Inequality be strengthened?

Does a maximal maximum martingale exist?

So far, no restrictions on X_0 . Now, X_0 is also given.

Can Hardy-Littlewood Inequality be strengthened?

Does a maximal maximum martingale exist?

[Hobson '98] contributions

- A strengthening of Hardy-Littlewood Inequality.
- A construction of a maximal maximum martingale which achieves this bound for all θ s.

So far, no restrictions on X_0 . Now, X_0 is also given.

Can Hardy-Littlewood Inequality be strengthened?

Does a maximal maximum martingale exist?

[Hobson '98] contributions

- A strengthening of Hardy-Littlewood Inequality.
- A construction of a maximal maximum martingale which achieves this bound for all θs.

Our contributions

- A formula for this inequality.
- A different construction of a maximal maximum martingale.
- Simple proofs!

Hardy-Littlewood analogue

We are given two distributions $Y_0 \leq Y_1$, and $\theta \in [p, 1]$.

Hardy-Littlewood analogue

We are given two distributions $Y_0 \leq Y_1$, and $\theta \in [p, 1]$.

$$c = \mathbb{P}[Y_0 \ge \theta] (\mathbb{E}[Y_0 | Y_0 \ge \theta] - \theta)$$

Hardy-Littlewood analogue

We are given two distributions $Y_0 \leq Y_1$, and $\theta \in [p, 1]$.

$$c = \mathbb{P}[Y_0 \ge \theta] (\mathbb{E}[Y_0 | Y_0 \ge \theta] - \theta)$$

Proposition (A generalized Hardy-Littlewood inequality)

For every martingale X_t with $X_0 = Y_0$ and $X_1 = Y_1$ we have $\mathbb{P}[\max_t X_t \ge \theta] \le z$

where z is the fixed point of

$$z = q_{Y_1} \left(\theta + \frac{c}{z} \right)$$

in the range $z \in [\mathbb{P}[Y_0 \ge \theta], q_{Y_1}(\theta)].$

Corresponding gradual persuasion model:

• Partially informed sender with a distribution of posteriors Y_1 .

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_1 .
- Sender must initially (not gradually) reveal information according to Y₀.

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_1 .
- Sender must initially (not gradually) reveal information according to Y₀.
- $\mathbb{P}[\max_t X_t \ge \theta] \le \text{Val}(\text{dynamic}) \le \text{Val}(\text{static})$

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_1 .
- Sender must initially (not gradually) reveal information according to Y₀.
- $\mathbb{P}[\max_t X_t \ge \theta] \le \text{Val}(\text{dynamic}) \le \text{Val}(\text{static})$

The static problem:

 $\max_{X:Y_0 \leq X \leq Y_1} \mathbb{P}[X \geq \theta]$

Corresponding gradual persuasion model:

- Partially informed sender with a distribution of posteriors Y_1 .
- Sender must initially (not gradually) reveal information according to Y₀.
- $\mathbb{P}[\max_t X_t \ge \theta] \le \text{Val}(\text{dynamic}) \le \text{Val}(\text{static})$

The static problem:

$$\max_{X:Y_0 \leq X \leq Y_1} \mathbb{P}[X \geq \theta]$$

Maximization over mean-preserving contraction and mean-preserving spreads have been recently actively studied in the persuasion literature [Dworczak, Martini '19], [Kleiner et. al. '21] [Arieli et. al. '21]. But not both.

Equivalent representation [Kleiner, Moldovanu, Strack '21]:

Distributions \leftrightarrow Convex functions.

Equivalent representation [Kleiner, Moldovanu, Strack '21]: Distributions ↔ Convex functions.

Given a distribution X with CDF F we let

$$f(t)=\int_0^t F(x)dx.$$

Equivalent representation [Kleiner, Moldovanu, Strack '21]: Distributions ↔ Convex functions.

Given a distribution X with CDF F we let

$$f(t)=\int_0^t F(x)dx.$$

f satisfies:

(P1) f is convex. (P2) f(0) = 0 and f(1) = 1 - p. (P3) $0 \le f'(x) \le 1$, where f' is the left derivative.

Equivalent representation [Kleiner, Moldovanu, Strack '21]: Distributions ↔ Convex functions.

Given a distribution X with CDF F we let

$$f(t)=\int_0^t F(x)dx.$$

f satisfies:

(P1) f is convex. (P2) f(0) = 0 and f(1) = 1 - p. (P3) $0 \le f'(x) \le 1$, where f' is the left derivative.

• Every f that satisfies (P1)-(P3) uniquely defines a distribution.

Equivalent representation [Kleiner, Moldovanu, Strack '21]: Distributions ↔ Convex functions.

Given a distribution X with CDF F we let

$$f(t)=\int_0^t F(x)dx.$$

f satisfies:

(P1) f is convex.

(P2) f(0) = 0 and f(1) = 1 - p.

(P3) $0 \le f'(x) \le 1$, where f' is the left derivative.

• Every f that satisfies (P1)-(P3) uniquely defines a distribution.

Convex-function maximization analog:

• g_0, g_1 are the corresponding convex functions of Y_0, Y_1 .

Convex-function maximization analog:

• g_0, g_1 are the corresponding convex functions of Y_0, Y_1 .

$$\max_{X:Y_0 \le X \le Y_1} \mathbb{P}[X \ge \theta] = \max_{f \in \mathcal{C}: g_0 \le f \le g_1} 1 - f'(\theta) = 1 - \min_{f \in \mathcal{C}: g_0 \le f \le g_1} f'(\theta)$$

Convex-function maximization analog:

• g_0, g_1 are the corresponding convex functions of Y_0, Y_1 .

$$\max_{X:Y_0 \leq X \leq Y_1} \mathbb{P}[X \geq \theta] = \max_{f \in \mathcal{C}: g_0 \leq f \leq g_1} 1 - f'(\theta) = 1 - \min_{f \in \mathcal{C}: g_0 \leq f \leq g_1} f'(\theta)$$

The latter minimization can be solved explicitly:

Convex-function maximization analog:

• g_0, g_1 are the corresponding convex functions of Y_0, Y_1 .

$$\max_{X:Y_0 \leq X \leq Y_1} \mathbb{P}[X \geq \theta] = \max_{f \in \mathcal{C}:g_0 \leq f \leq g_1} 1 - f'(\theta) = 1 - \min_{f \in \mathcal{C}:g_0 \leq f \leq g_1} f'(\theta)$$

The latter minimization can be solved explicitly:

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of

martingales with initial distribution Y_0 and terminal distribution

 Y_1 .

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of martingales with initial distribution Y_0 and terminal distribution Y_1 .

Hobson's construction is quite involved.

Theorem [Hobson '98]

There exists a maximal maximum martingale for the set of martingales with initial distribution Y_0 and terminal distribution Y_1 .

Hobson's construction is quite involved.

We provide a different, simple, construction of such a martingale.

Continuously move θ from 0 to 1.

Continuously move θ from 0 to 1.

We get a single parametric family of functions f_t (where $t = \theta$), such that $f_t \le f_{t'}$ for t < t'.

Continuously move θ from 0 to 1.

We get a single parametric family of functions f_t (where $t = \theta$), such that $f_t \le f_{t'}$ for t < t'.

Namely, a single parametric family (X_t) s.t., $X_t \leq X_{t'}$ for t < t'.

Continuously move θ from 0 to 1.

We get a single parametric family of functions f_t (where $t = \theta$), such that $f_t \le f_{t'}$ for t < t'.

Namely, a single parametric family (X_t) s.t., $X_t \leq X_{t'}$ for t < t'. There exists a martingale whose distribution at time t is X_t [Kellerer '61].

• Receiver's actions {0, 1, 2, ..., n}.

- Receiver's actions {0, 1, 2, ..., n}.
- Action *i* is optimal iff receiver's posterior $x \in [\theta_i, \theta_{i+1}]$ with $0 = \theta_0 \ge \theta_1 \ge \theta_n \ge \theta_{n+1} = 1.$

- Receiver's actions {0, 1, 2, ..., n}.
- Action *i* is optimal iff receiver's posterior x ∈ [θ_i, θ_{i+1}] with
 0 = θ₀ ≥ θ₁ ≥ θ_n ≥ θ_{n+1} = 1.

•
$$u_{S}(n) \ge u_{S}(n-1) \ge ... \ge u_{S}(0).$$

- Receiver's actions {0, 1, 2, ..., n}.
- Action *i* is optimal iff receiver's posterior x ∈ [θ_i, θ_{i+1}] with
 0 = θ₀ ≥ θ₁ ≥ θ_n ≥ θ_{n+1} = 1.

•
$$u_{S}(n) \ge u_{S}(n-1) \ge ... \ge u_{S}(0).$$

• The receiver is allowed to increase but not decrease his action over time.

- Receiver's actions {0,1,2,...,n}.
- Action *i* is optimal iff receiver's posterior $x \in [\theta_i, \theta_{i+1}]$ with $0 = \theta_0 \ge \theta_1 \ge \theta_n \ge \theta_{n+1} = 1.$

•
$$u_{S}(n) \ge u_{S}(n-1) \ge ... \ge u_{S}(0).$$

• The receiver is allowed to increase but not decrease his action over time.

Sender's utility can be expressed as a monotonic function of $\max_{t \in [0,1]} X_t$. \Rightarrow the same martingales extract the maximal utility from every receiver type $(\theta_i)_{i \in [n]}$.

Multiple receivers.

• *n* receivers with binary actions $a_i = \{0, 1\}$.

Multiple receivers.

- *n* receivers with binary actions $a_i = \{0, 1\}$.
- Sender's utility: $u_S(a_1,...,a_n)$.

Multiple receivers.

- *n* receivers with binary actions $a_i = \{0, 1\}$.
- Sender's utility: $u_S(a_1,...,a_n)$.

Proposition

If u(a) is supermodular then the same martingales extract the maximal utility.

Moreover, this maximal utility equals the utility that can be

extracted by private communication with the receivers.

Multiple receivers.

- *n* receivers with binary actions $a_i = \{0, 1\}$.
- Sender's utility: $u_S(a_1,...,a_n)$.

Proposition

If u(a) is supermodular then the same martingales extract the maximal utility.

Moreover, this maximal utility equals the utility that can be

extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.

Multiple receivers.

- *n* receivers with binary actions $a_i = \{0, 1\}$.
- Sender's utility: $u_S(a_1,...,a_n)$.

Proposition

If u(a) is supermodular then the same martingales extract the maximal utility.

Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.

Optimal correlation: "as much as possible" [Lovasz '83].

Multiple receivers.

- *n* receivers with binary actions $a_i = \{0, 1\}$.
- Sender's utility: $u_S(a_1,...,a_n)$.

Proposition

If u(a) is supermodular then the same martingales extract the maximal utility.

Moreover, this maximal utility equals the utility that can be extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the correlation of adoption.

Optimal correlation: "as much as possible" [Lovasz '83].

This exactly happens in the gradual persuasion model.

Itai Arieli, Yakov Babichenko, Fedor Sandomirskiy

Thank You!

Itai Arieli, Yakov Babichenko, Fedor Sandomirskiy