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Product Adoption

Bayesian persuasion: The product adoption example:

Binary state ω = 0,1 with common prior p ∈ [0,1].

Receiver with binary action {adopt, reject}.
Receiver adopts iff his posterior x ≥ θ.

Sender wants the receiver to adopt.

Sender commits to a signaling policy before observing ω.

Which signaling policy maximizes the probability of adoption?

What is the maximal probability of adoption?
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Product Adoption

Solution to the product adoption problem:

Signaling policies ↔ Splits of the prior.

The sender splits the prior p to the two posteriors 0, θ.

Adoption (i.e., the posterior θ) occurs w.p. p
θ .

What if θ is unknown to the sender?

What if the sender faces a population of receivers with different θs?

Immediate answer: The Sender cannot persuade two receivers

with different θi s with their maximal probability p
θi
.
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Gradual Persuasion

Dynamic variant of the product adoption problem:

The interaction occurs over time t ∈ [0,1].

Sender chooses a martingale X = (Xt)t∈[0,1], which captures

the receiver’s posterior over time. X0 = δp.

Assumptions

Irreversible adoption: The adoption action is irreversible.

Immediate adoption: Adoption happens once xt ≥ θ.
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Rational Behind the Assumptions

Irreversible Adoption: Taking a vaccine shot, purchasing a

product,...

Immediate Adoption: Patient sender and impatient receiver.

Proposition (Informal)

For every discount factor δ < 1 of the receiver, the sender can

reveal information slow enough over time t ∈ [0,∞) to incentivize

the receiver to adopt slightly above θ.
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Gradual Persuasion is Powerful!

A martingale (Xt)t∈[0,1] if fully revealing if supp(X1) = {0,1}.

Observation

Every fully revealing lower semi-continuous martingale Xt

persuades a receiver with threshold θ with the maximal possible

probability p
θ .

Proof of the observation:

τ ′ = min{t ∣Xt ∈ {0} ∪ [θ,1]}.

Fully revealing ⇒ τ ′ ≤ 1 w.p. 1.

τ = min{t ∣Xt ∈ {0, θ}}.

Lower semi-continuity ⇒ τ = τ ′.

E[Xτ ] = p⇒ P[Xτ = θ] = p
θ . ∎
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Extensions:

A receiver with more than two actions.

A sender with supermodular utility facing multiple receivers.

Partially informed sender and/or receiver.

What is the underlying mathematical phenomenon that allows for

this surprising observation?

Answer: Maximal inequalities; The existence of a maximal

maximum martingale.

Maximal Inequalities ⇒ Gradual Persuasion.

Gradual Persuasion ⇒ Maximal Inequalities.
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Our Contribution

Gradual persuasion as a tool for analyzing maximal

inequalities; simple proofs for classical results such as

Harddy-Littlewood maximal inequality for martingales [1930].

Dubins-Gilat maximal maximum martingale [1978].

Hobson’s maximal maximum martingale [1998].

New results:

A formula for Hardy-Littlewood inequality in this setting.

An alternative simple construction for the maximal maximum

martingale.

Corollary

The existence of a martingale that persuades any receiver with its

maximal possible probability is quite a general phenomenon.
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Hardy-Littlewood Inequality

Martingale Maximal Inequalities: Bound from above the

maximum of a martingale as a function of:

Its behavior in each step.

Its terminal distribution.

The Hardy-Littlewood transform of a distribution Y ∈∆([0,1]) is
the function qY ∶ [E[Y ],max{supp(Y )}] → [0,1], where qY (θ) is
the top-quantile of Y whose mean is θ.

Hardy-Littlewood Maximal Inequality

For every martingale (Xt)t∈[0,1] with terminal distribution X1 = Y
and every θ ∈ [p,1] we have

P [ max
t∈[0,1]

Xt ≥ θ] ≤ qY (θ).
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Interpreting Hardy-Littlewood Inequality

P [ max
t∈[0,1]

Xt ≥ θ] ≤ qY (θ).

Gradual Persuasion with partially informed sender:

The sender’s posterior is distributed according to Y .

The sender’s strategies are martingales (Xt)t∈[0,1] with
X1 ⪯ Y .

qY (θ): the value of the static persuasion problem.

The optimal policy is to pool together the top quantile which

has the mean θ. [Renault, Solan, Vieille ’17]

P[maxt Xt ≥ θ]: the probability of adoption in the dynamic

model if the sender uses strategy Xt .

P[maxt Xt ≥ θ] ≤ Val(dynamic) ≤ Val(static) = qY (θ). ∎
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Tightness of Hardy-Littlewood Inequality

Is Hardy-Littlewood inequality tight?

Theorem: [Dubins-Gilat ’78]

For every terminal distribution Y , there exists a martingale Xt with

X1 = Y for which P[maxt Xt ≥ θ] = qY (θ) for all θ ∈ [p,1].

This martingale is called a maximal maximum martingale because

its distribution of the maximum FOSD the distribution of the

maximum of any other martingale with terminal distribution Y .
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Interpreting Dubins-Gilat Martingale

The Dubins-Gilat martingale:

At time t ∈ [0,1] the sender reveals whether y ∼ Y belongs to the

bottom t-quantile of Y . If so she reveals y .

At time t = 1 − q(θ), if y does not belong to the bottom

t-quantile, receiver’s posterior is θ. This happens w.p. q(θ).

Corollary

Using the Dubins-Gilat martingale, a partially informed sender

whose partial information is Y ∈∆([0,1]) persuades every receiver

with threshold θ with the maximal possible probability qY (θ) in
the gradual persuasion model.
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Incorporating the Initial Martingale’s Distribution

So far, no restrictions on X0. Now, X0 is also given.

Can Hardy-Littlewood Inequality be strengthened?

Does a maximal maximum martingale exist?

[Hobson ’98] contributions

A strengthening of Hardy-Littlewood Inequality.

A construction of a maximal maximum martingale which

achieves this bound for all θs.

Our contributions

A formula for this inequality.

A different construction of a maximal maximum martingale.

Simple proofs!
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Hardy-Littlewood analogue

We are given two distributions Y0 ⪯ Y1, and θ ∈ [p,1].

c = P[Y0 ≥ θ] (E[Y0∣Y0 ≥ θ] − θ)

Proposition (A generalized Hardy-Littlewood inequality)

For every martingale Xt with X0 = Y0 and X1 = Y1 we have

P[max
t

Xt ≥ θ] ≤ z

where z is the fixed point of

z = qY1 (θ +
c

z
)

in the range z ∈ [P[Y0 ≥ θ],qY1(θ)].
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Proof of the Poroposition

Corresponding gradual persuasion model:

Partially informed sender with a distribution of posteriors Y1.

Sender must initially (not gradually) reveal information

according to Y0.

P[maxt Xt ≥ θ] ≤ Val(dynamic) ≤ Val(static)

The static problem:

max
X ∶Y0⪯X⪯Y1

P[X ≥ θ]

Maximization over mean-preserving contraction and

mean-preserving spreads have been recently actively studied in the

persuasion literature [Dworczak, Martini ’19], [Kleiner et. al. ’21]

[Arieli et. al. ’21]. But not both.
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Proof of the Proposition

Equivalent representation [Kleiner, Moldovanu, Strack ’21]:

Distributions ↔ Convex functions.

Given a distribution X with CDF F we let

f (t) = ∫
t

0
F (x)dx .

f satisfies:

(P1) f is convex.

(P2) f (0) = 0 and f (1) = 1 − p.

(P3) 0 ≤ f ′(x) ≤ 1, where f ′ is the left derivative.

Every f that satisfies (P1)-(P3) uniquly defines a distribution.

C = {f ∶ f satisfies (P1)-(P3)}.
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Proof of the Proposition

Convex-function maximization analog:

g0,g1 are the corresponding convex functions of Y0,Y1.

max
X ∶Y0⪯X⪯Y1

P[X ≥ θ] = max
f ∈C∶g0≤f ≤g1

1 − f ′(θ) = 1 − min
f ∈C∶g0≤f ≤g1

f ′(θ)

The latter minimization can be solved explicitly:

x
θ 1

1 − p

g1(x)
g0(x)
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Hobson’s Maximal Maximum Martingale

Theorem [Hobson ’98]

There exists a maximal maximum martingale for the set of

martingales with initial distribution Y0 and terminal distribution

Y1.

Hobson’s construction is quite involved.

We provide a different, simple, construction of such a martingale.
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A Construction for Hobson’s Martingale

x
θ′ θ 1

1 − p

g1(x)

g0(x)

Continuously move θ from 0 to 1.

We get a single parametric family of functions ft (where t = θ),
such that ft ≤ ft′ for t < t ′.
Namely, a single parametric family (Xt) s.t., Xt ⪯ Xt′ for t < t ′.
There exists a martingale whose distribution at time t is Xt

[Kellerer ’61].
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Other Extensions

Multiple actions for the receiver.

Receiver’s actions {0,1,2, ...,n}.

Action i is optimal iff receiver’s posterior x ∈ [θi , θi+1] with
0 = θ0 ≥ θ1 ≥ θn ≥ θn+1 = 1.

uS(n) ≥ uS(n − 1) ≥ ... ≥ uS(0).

The receiver is allowed to increase but not decrease his action

over time.

Sender’s utility can be expressed as a monotonic function of

maxt∈[0,1]Xt . ⇒ the same martingales extract the maximal utility

from every receiver type (θi)i∈[n].
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Other Extensions

Multiple receivers.

n receivers with binary actions ai = {0,1}.

Sender’s utility: uS(a1, ..., an).

Proposition

If u(a) is supermodular then the same martingales extract the

maximal utility.

Moreover, this maximal utility equals the utility that can be

extracted by private communication with the receivers.

Idea: In a private persuasion the sender additionally controls the

correlation of adoption.

Optimal correlation: ”as much as possible” [Lovasz ’83].

This exactly happens in the gradual persuasion model.
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Thank You!
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