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INFORMATION DESIGN OF ONLINE PLATFORMS

ABSTRACT

We consider the strategic use of information by an online platform to both guide con-
sumers’ search through product recommendations and influence sellers’ targeted adver-
tising decision. Our model unifies the analysis of personalized product recommendation
and targeted advertising under the information design framework. We illustrate a fun-
damental tradeoff facing the platform between increasing trades through higher match
efficiency and extracting seller surplus by inducing their competition for prominence.
The optimal information design may be socially inefficient, as it balances the tradeoff by
limiting consumer search and mixing the matched product with a long tail of unmatched
ones for recommendation.

Keywords: information design, platform design, product recommendation, personalization, tar-
geted advertising, consumer search
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1 Introduction

Growing availability of consumer data and rapid advances in data analytics have fueled
the growth of online marketplaces in recent years. Harnessing the power of granular
data on customer characteristics and purchasing history, online platforms can predict
the match between buyers and sellers and thus make personalized product recommen-
dations to buyers. Enhanced match efficiency can increase platforms’ sales revenue.1

Meanwhile, these platforms are gaining ground on the digital advertising market. Al-
ibaba and Amazon have grown into the third- and forth-largest online ad platforms
in the world respectively, only trailing behind Google and Facebook (eMarketer, 2019).
Customer data analytics have improved the accuracy of targeted advertising, increasing
sellers’ bidding incentives and thereby raising the ad revenue for online platforms.2

However, these two concurrent trends are seemingly at odds with each other. With
more precise data, platforms can recommend sellers to consumers at a higher accuracy
and thus generate more sales revenue. Yet, this may create thinner advertising mar-
kets where the recommended sellers can establish local monopoly power. Consequently,
sellers’ incentives to bid for advertising are reduced, eventually hurting platforms’ ad-
vertising revenue.

This research seeks to explain the phenomenon from the perspective of information
design and shed light on how the above trade-off is influenced by consumer search.
Drawing on the Bayesian persuasion framework (Kamenica and Gentzkow 2011), we
posit that a platform can design a public signal that influences the beliefs of both con-
sumers and sellers. In practice, such a signal takes the forms of personalized product
recommendation on the consumer side and targeted advertising on the seller side. Upon
observing the signal, a consumer can conduct a sequential search with perfect recall
among the sellers. After visiting a seller, the consumer observes the product price and
whether the product is a match or not (Wolinsky 1986). Besides setting the price, sellers
also decide how much to bid in a second-price ad auction for each consumer, where the
winner is granted a prominent position. The consumer can obtain the price and match
information of the seller in the prominent position at no cost. Beyond the prominent po-
sition, the consumer incurs search cost to visit additional sellers. In essence, we aim to
build a unified model that examines three interrelated information problems stemming
from the matching uncertainty between consumers and sellers: (1) consumers can search

1Schrage (2021) reports that online shoppers are 4.5 times more likely to complete a purchase after click-
ing on any product recommendation, and personalized product recommendation accounted for almost 31%
of the revenues in the global e-commerce industry. For streaming services like YouTube and Netflix, video
recommendation accounts for 60-75% of revenue generated. Agrawal et al. (2018) envisioned that as the
recommendation accuracy further improves, retail platforms’ current business model of “shop-then-ship”
may be replaced by a new model of “ship-then-shop”, where companies can anticipate their customers’
needs and ship relevant products to them before they place an order, and then, customers only need to
return the ones they do not want.

2For example, Amazon’s interest-based ads allow advertisers to target Amazon’s customers based on
their interactions with Amazon sites, content, and services, as well as cookies that track their viewing and
clicking activities on third-party sites.
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for the best matched product; (2) sellers can direct consumer search by advertising; and
(3) a platform can design an information environment to influence both the consumers’
search and sellers’ advertising.

The crux of the information design problem is the platform’s dilemma in increas-
ing trades through higher match efficiency and extracting seller surplus by inducing
their competition for prominence. By revealing more information, the platform im-
proves match efficiency, but it also gives the matched seller a competitive edge over the
unmatched ones. Thus, the unmatched sellers are discouraged from competitive bid-
ding, impairing the platform’s ability to extract sellers’ surplus from their competitive
ad-bidding.

We illustrate the basic trade-off with two extreme designs—full information and no
information. In the full information environment, the platform perfectly reveals the
match information—the matched seller will win the prominent position but pay zero
price. Given that, the consumer does not need to search beyond the prominent seller. As
a result, the platform profits only from sales commissions with no advertising revenue.
In other words, even though the match is enabled by an auction, it is as if the auction
were shut down and instead, the platform uses personalized product recommendation
solely to monetize consumer attention. Conversely, in a no-information environment,
the platform randomly matches the consumer with one seller. The inefficiency in match-
ing may motivate the consumer to search for the matched seller, which in turn provides
an incentive for sellers to bid aggressively to become prominent so as to influence con-
sumer search. Their competitive motive to corner competitors out of the prominent po-
sition ultimately leads to the prisoner’s dilemma: all sellers’ bidding will not change the
random matching outcome but the platform can fully exploit seller surplus. In other
words, we end up with the other extreme where no product recommendation is used by
the platform; instead, sponsored ads are the sole means to monetizing consumer atten-
tion.

The optimal information design lies in-between these two polar cases. Equipped
with data capability, the platform can design a posterior belief that induces any search
order of a consumer. The induced search order further affects sellers’ bidding incentive
for the prominent position. To solve for the optimal information design, we show that
the platform’s profit-maximization problem over posterior beliefs is equivalent to the
problem of finding the optimal consumer search length induced by an optimal belief.

If a consumer’s search cost is sufficiently low, then it is optimal for the consumer to
keep searching until she finds the matched product. Anticipating the perfect match, sell-
ers have no incentive to advertise. Any information design of the platform leads to the
same expected profit, which only consists of commissions from sales. On the other hand,
if consumer’s search cost is not that low, then the optimal information design hinges on
the platform’s ability to collect commissions from sales. In practice, commissions are of-
ten shaped by the bargaining power between the platform and sellers, platform competi-
tion, and/or regulatory policies. When a platform is able to demand a high commission
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fee, it will find it optimal to adopt the full information design, which maximizes match
efficiency, despite of zero advertising revenue. In contrast, when the commission rate is
relatively lower, the platform finds it optimal to adopt a coarse information design. That
is, it recommends two sellers (“contenders” hereafter) that have an equal and relatively
high probability to be the match, while recommending the remaining sellers (“a long
tail” hereafter) with an equal and relatively low probability to be the match.

Under this optimal information design, one of the two contenders will win the promi-
nent position, and consumers do not search beyond the prominent seller, even if it turns
out to be a mismatch. By recommending two contenders with a relatively high matching
probability, the platform provides “winning rewards” to the them, who upon winning
the prominent position can expect a relatively high probability of being matched. In
the meantime, by keeping a long tail of sellers with a relatively low but positive match-
ing probability, the platform ensures that, upon finding out the prominent seller is not a
match, a consumer is still unsure which remaining seller could be a match and thus stops
searching. The limited search length essentially serves as a “losing punishment” to the
two contenders, who upon losing the prominent position will never be visited. The win-
ning rewards and the losing punishment together incentivize the two contenders to bid
for advertising while ensuring the chance of matching to be as high as possible.

Our findings yield several implications for online marketplaces. First, when a plat-
form’s ability to appropriate from sales revenue is relatively low, the optimal “noisy
design” introduces social inefficiency to the market. This result implies that a policy that
only regulates a platform’s market power without limiting its data power could hurt so-
cial welfare. Second, the optimal noisy design implies that platforms may not need to
invest in collecting all pieces of information. They do not necessarily get hurt from regu-
latory protection of consumer privacy. Last, platform designs may have non-monotonic
effects on the optimal information design and social welfare. Notably, the match effi-
ciency and social welfare under the optimal information design is non-monotonic in the
number of sellers in one product category. Moreover, a platform would have an incen-
tive to obfuscate consumer search because it is easier for the platform to limit consumer
search and thus provide sellers with higher incentives to bid for advertising and compete
for prominence.

This paper enriches a growing literature of information design (a là Kamenica and
Gentzkow 2011) and applies the method to a two-sided market with a public signal.
The information design literature has examined the impact of information structure on
market outcomes such as market segmentation (Bergemann et al. 2015), consumer search
and price competition (Board and Lu 2018, Bergemann et al. 2021, Dogan and Hu 2022,
Whitmeyer 2021), and product differentiation (Armstrong and Zhou 2022). Compared
with the existing studies, our application is novel as the design of the signal factors in
the strategic interactions between consumers’ search and purchase decisions on one side
of the market and sellers’ targeting and advertising decisions on the other side.

When designing the information, the platform faces a trade-off between match effi-
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ciency and surplus extraction. A similar tradeoff between targetability and market thick-
ness in online advertising markets has been discussed by Levin and Milgrom (2010) and
studied by Bergemann and Bonatti (2011). In their framework, targetability improves
match efficiency between sellers and buyers but inevitably creates many thin markets
that limit the sellers’ competitive incentives. Different from them, we do not impose
exogenous market segmentation but allow the platform to use information design to
directly moderate the sellers’ incentives to become prominent in consumer search.

Our paper builds on the seminal search model of Wolinsky (1986) and Anderson
and Renault (1999) and contributes to the literature, especially those with applications in
retail industry (e.g., Zhou 2014, Rhodes 2015, Rhodes and Zhou 2019, Jiang and Zou 2020,
Rhodes et al. 2021). Since we focus on a third-party retail platform instead of multiple
competing retail outlets, it seems natural to abstract away from the consumers’ multi-
product search problem that has been much of the focus of the literature. On the other
hand, we allow the platform to use sponsored ads to influence consumer search order;
in this sense, our paper also contributes to the literature of position auctions (e.g., Athey
and Ellison 2011, Chen and He 2011).

The rest of the paper is organized as follows. We present the model in Section 2.
Section 3 demonstrates the main tradeoff by analzying the two polar information de-
signs (full information in 3.1 and no information in 3.2). Then we solve for the optimal
information design problem in 4. Section 5 concludes the paper and discusses some
limitations and future research directions.

2 The Model

Consider an online platform that matches N ≥ 3 sellers with I ≥ 1 consumers. Sellers
are indexed by n ∈ {1, · · · , N} ≡ N , each offering one product. Their marginal pro-
duction costs are assumed to be the same and normalized as zero. For each consumer,
there is one and only one product that matches with her preference. This assumption
greatly simplifies the state space for information design; we discuss what happens un-
der alternative setups in Section 5. Given the selling price of p, each consumer’s demand
function is D(p) for the matched product and zero for the unmatched ones. It is assumed
that D(·) is strictly decreasing, differentiable and log-concave. This guarantees that the
monopolistic price, p∗, given by D(p∗) + p∗D′(p∗) = 0 exists and is positive. Moreover,
it is further assumed that D(p∗) > 0 so that consumers earn positive surplus under the
monopolistic price. All players share the common prior belief that for each consumer, all
sellers are equally likely to be a match. That is, for each consumer, the match probability
is 1/N a priori for every product. Consumers also have an outside option normalized as
zero. We impose the tie-breaking rule that consumers prefer the outside option than an
unmatched product.

The true state of the world, i.e., the identity of the matched seller for each consumer,
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is represented by ω = (n1, n2, · · · , nI) ∈ N I , where ni ∈ N is the index of the matched
seller for consumer i ∈ {1, · · · , I} ≡ I. The platform is the Sender who designs an infor-
mation structure that consists of a signal realization space S and a family of probability
distribution {π(s|ω)}ω∈N I for s ∈ S , where without loss of generality we can restrict
S = N I . Both the consumers and sellers are Receivers, who observe the platform’s choice
of the information structure and a signal realization s = (s1, · · · , sI) ∈ N I . In practice,
the platform’s information design can be operationalized via a two-sided recommenda-
tion strategy. Particularly, a signal realization of s = (s1, · · · , sI) means that the platform
will recommend seller si to consumer i for purchase and recommend consumer i to seller
si for targeted advertising for i ∈ I. All consumers and sellers understand that they get
this recommendation s with probability π(s|ω) that depends on ω, the true state of the
world. For example, a fully revealing design with π(ω|ω) = 1 for ∀ω ∈ N I induces
recommendation of perfect matches. An uninformative design with π(s|ω) = 1/N I for
∀s,ω ∈ N I induces a purely random recommendation of products.

Once the platform determines the information structure, it holds a second-price auc-
tion for each consumer i ∈ I to sell a prominent position that displays an advertisement
from sellers to that consumer. In Section 5, we discuss other selling mechanisms such
as take-it-or-leave-it offers. We impose the tie-breaking rule that given multiple sellers’
bids being the same, the platform will choose the winner that maximizes its revenue un-
der the information environment it commits to. Each seller n ∈ N sets his selling price
pn ≥ 0 as well as bid bni ≥ 0 in the auction for consumer i. The winner of the auction will
be advertised in a prominent position for the consumer, who learns the match value and
price of the seller in the prominent position freely. Based on the information structure
and the realized signal, the consumer updates her belief of match values of the remaining
sellers and decides whether to continue to search for information on them sequentially.
Upon continuation, she decides which seller to visit next. By paying a search cost c > 0,
the consumer visits a seller and learns her match value and price. At any time point,
she chooses between continuing to search and stopping searching to make a purchase
decision from one of the sellers that she has visited or to take the outside option. Our
utility specification implies that a consumer will make a purchase only if the product is
a match. When a transaction takes place, the platform pockets a fraction α ∈ [0, 1] of
the revenue as a commission while the seller keeps the remaining fraction 1 − α. The
commission α may be determined by various factors out of the scope of the model, such
as competition between platforms, and thus is treated as exogenous in our main model;
we discuss endogenous α as well as two-part tariffs of commission in Section 5.

We conclude the model setup by summarizing the game timeline. First, the platform
commits to an information structure {π(·|ω)}ω∈N I . Second, a signal s realizes according
to the information structure. Both sellers and consumers observe the signal realization.
Third, sellers decide their price pn and bid bni (for n ∈ N and I ∈ I). Lastly, each
consumer observes the prominent seller determined by the ad auction and then makes
her search and purchase decisions.
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3 Preliminary Analysis

We first analyze sellers’ pricing decisions and consumers’ optimal search strategy under
any given information structure and realized signal. In our model, consumers do not ob-
serve sellers’ prices beforehand. They form rational expectation about the unobserved
prices, which coincide with the actual ones in equilibrium. We follow the literature (e.g.,
Wolinsky 1986, Anderson and Renault 1999) and assume passive belief updating in that
if a consumer observes a seller’s deviation from the equilibrium price, she does not up-
date her belief about the prices of other sellers that she has not visited yet. The following
lemma characterizes the equilibrium prices and consumer search strategy in a similar
flavor of Diamond (1971). Proofs to all statements in this paper are provided in Ap-
pendix.

Lemma 1 (Equilibrium Price). In any perfect Bayesian equilibrium, every seller with a positive
demand sets price at the monopolistic level of p∗.

We have set up the model in such a way that sellers’ strategic decisions in pricing is
shut down. This greatly simplifies the equilibrium analysis and allows us to focus on the
impact of the platform’s information design on sellers’ targeted advertising decisions on
one side of the market and consumers’ search decisions on the other. The key driving
force behind Lemma 1 is the binary nature of match values—it does not depend on the
assumption of one and only one matched seller for each consumer.

Lemma 1 implies that the platform’s information design does not affect sellers’ pric-
ing decision. Moreover, notice that sellers’ advertising decisions are targeted at indi-
vidual consumer level. These two observations together imply that sellers’ pricing and
advertising decisions for different consumers are independent so that we can without
loss of generality restrict our attention to just one representative consumer i. With slight
abuse of notation, the platform’s information design problem can be decomposed at
consumer level with π(s|ω) = Πi∈Iπ(si|ni). Under this decomposition, consumer i only
needs to observe {π(si|ni)}ni∈N , while sellers observe {π(s|ω)}ω∈N I and s. Therefore,
a consumer only needs to observe the product recommendation targeted at her. For
notational simplicity, we drop subscript i for the remaining analysis when we study a
representative consumer.

Let us define a seller’s monopolistic profit before commission as V and a consumer’s
surplus from a matched seller as U , where

V = p∗D(p∗),

U =

! ∞

p∗
D(p)dp.

To avoid the trivial case where consumers never search, we make the following assump-
tion

Assumption 1. 0 < c < U .
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Denote a representative consumer’s posterior belief given signal s ∈ N by µs(n) for
n ∈ N , where by Bayes’ rule,

µs(n) =
π(s|n)"

n∈N π(s|n) . (1)

The following lemma characterizes the consumer’s optimal search strategy given her
posterior belief.

Lemma 2 (Optimal Search Strategy). If a consumer searches beyond the prominent seller, then
it is optimal for her to search by the descending order of her posterior belief.

The lemma illustrates a key point that the platform can use information design to in-
fluence consumers’ posterior belief and consequently, guide their search process. Notice
that we cannot leverage Weitzman (1979) directly to prove the lemma, because for a con-
sumer, there is only one matched seller in the market so that sellers are not independent
(Ke and Lin, 2020, Janssen and Ke, 2020).

Next, to illustrate the main trade-off, we first analyze two polar cases of the informa-
tion environment: (1) the platform chooses a fully informative information structure; (2)
it chooses a completely uninformative one. The former case can be understood as an en-
vironment where the platform exploits rich consumer data to precisely tell which seller
a consumer likes. Contrarily, the latter depicts an environment in which the platform
commits not to utilize (or do not have access to) any consumer data.

3.1 Full Information

Let us consider the bidding strategy of seller n, who is the match for the representative
consumer. Note that if he wins the prominent position, he earns a profit of Rwin = (1 −
α)V ; on the other hand, if he loses, the consumer will still visit him as c < U , so his profit
upon losing, Rlose = Rwin. This implies that the seller will bid b∗n = Rwin−Rlose = 0. Ob-
viously, other sellers will bid zero. Given our tie-breaking rule, the platform will choose
the matched seller as the winner, as it maximizes the platform’s revenue. As a result,
seller n wins the prominent position at no cost and the platform gets zero advertising
revenue. Ad auctions are essentially inactive, and the platform profits solely from sales
commission. The following proposition summarizes these equilibrium outcomes.

Proposition 1 (Full Information). Under the fully informative environment, in equilibrium:

1. all sellers bid zero, and the matched seller wins and earns a profit of (1− α)V ;

2. consumers do not search and buy from the prominent seller, each expecting a surplus of U ;

3. the platform obtains a profit of αIV .
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3.2 No Information

With no information from the platform, consumers’ posterior belief is the same as the
prior, where all sellers are equally likely to be a match, so if they decide to search, they
will search among the unadvertised sellers randomly.

Lemma 3 (“None or All”). Under the uninformative environment, if 0 < c ≤ 2U/N , the
consumer keeps searching until she finds a match; if 2U/N < c < U , the consumer never
searches beyond the advertised seller.

If the consumer has the incentive to start searching, then not seeing a match after a
product search will strengthen her belief about the possibility of a match in the remaining
pool of unsearched products, making her more willing to search than before. Thus, she
will continue to search until a match is found.

Next, we examine a seller’s bidding strategy. If he wins the auction, he has an 1/N

chance to be a match, yielding an expected payoff of Rwin = (1−α)V/N ; if he loses, there
are two cases to consider according to Lemma 3. First, if 0 < c ≤ 2U/N , the consumer
keeps searching until she finds a match, so we have Rlose = Rwin. The seller will bid
b∗n = Rwin − Rlose = 0, and the platform gets commission of αIV and zero advertising
revenue. Second, if 2U/N < c < U , the consumer never searches beyond the advertised
seller, so we have Rlose = 0. The seller will bid b∗n = Rwin−Rlose = (1−α)V/N . Given the
platform commits to disclose no information, it can only choose the winner randomly.
By doing so, it gets commission of αIV/N and advertising revenue of (1− α)IV/N . The
following proposition summarizes these equilibrium outcome.

Proposition 2 (No Information). Under the uninformative environment, in equilibrium:

1. If 0 < c ≤ 2U/N ,

(a) all sellers bid zero, and a random seller wins the prominent position, and the matched
seller earns a profit of (1− α)V ;

(b) consumers purchase the advertised product if it is a match; otherwise, they keep
searching until finding a match; each consumer expects a surplus of U −Nc/2;

(c) the platform obtains a profit of αIV .

2. Otherwise, if 2U/N < c < U ,

(a) all sellers bid (1−α)V/N , and a random seller wins the prominent position and earns
zero profit;

(b) consumers purchase the advertised product if it is a match; otherwise, they exit the
market; each consumer expects a surplus of U/N ;

(c) the platform obtains a profit of IV/N .
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3.3 Comparison

By comparing the equilibrium outcomes between the two polar cases above, we can
establish the following proposition.

Proposition 3 (Full vs. No Information). When 0 < c ≤ 2U/N , full and no information
environments generate the same revenue for the platform, but consumer surplus is lower under
the no information environment. When 2U/N < c < U , the platform earns a higher revenue
under the full information environment if and only if αN > 1.

The first case (0 < c ≤ 2U/N ) is more likely to happen when the number of sellers N
is small, or consumer search cost c is low. In this case, even without any information pro-
vided by the platform, matching uncertainty can be resolved through consumer search.
As a result, the platform’s information design becomes inconsequential.

On the contrary, the second case (2U/N < c < U ) illustrates the platform’s trade-
off between match efficiency and surplus extraction in designing information environ-
ment. By revealing all information, the platform perfectly matches sellers and con-
sumers. However, as sellers have been matched with right consumers, they have no
incentive to pay for advertising. In contrast, by suppressing all information, the plat-
form randomly matches the two sides and suffers from mismatch inefficiency. Nonethe-
less, such a mismatch outcome provides an opportunity for sellers to influence consumer
purchase by advertising at the prominent position. Consequently, the platform sacrifices
match volume but fully extracts sellers’ surplus by inducing them to compete in adver-
tising.

The discussion on the two extreme cases naturally invites a question of the optimal
information design, which we address next.

4 Optimal Information Design

Denote the representative consumer’s posterior belief given signal s ∈ N by µs =

(µs(1), · · · , µs(N)). Signal s can be intuitively understood as the recommendation of
seller s. Notice that all sellers are ex-ante symmetric, the realization of different sig-
nals, s will only induce a permutation of the posterior belief among sellers. There-
fore, we can without loss of generality omit the dependence of µs on s and assume
µ(1) ≥ µ(2) ≥ · · · ≥ µ(N). That is, when the platform is designing the information
structure and correspondingly, the posterior belief, the identity of the sellers does not
matter; only the distribution of µ(n) across seller n matters. We first solve for the pos-
terior belief, µ∗ that maximizes the platform’s revenue. Then, we show that it is Bayes
plausible by constructing the signal distribution {π(s|ω)}ω∈N I .

Define the platform’s revenue as Π(µ) given the consumer’s posterior belief µ. We
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can write down the platform’s revenue maximization problem as the following.

Π∗ = max
µ

Π(µ) s.t. µ(1) ≥ · · · ≥ µ(N) ≥ 0 and
N#

n=1

µ(n) = 1. (2)

Notice that because of the permutation symmetry among sellers, the Bayes plausibility is
naturally satisfied, so it does not appear in the constrained optimization problem above.
This will become clearer later when we construct the the signal distribution that realizes
the optimal posterior belief.

4.1 Search Length and Platform Profit

To derive Π(µ), we need to determine the consumers’ search behavior and sellers’ bid-
ding behaviors induced by the posterior belief µ. Given a consumer’s posterior belief
upon receiving the signal and the seller at the prominent position, Lemma 2 implies that
she will search among sellers in the descending order of her posterior belief. Therefore,
to characterize a consumer’s search behavior, we only need to know how long she will
continue to search before seeing a match. This observation motivates the notion of search
length.

Definition 1 (Search Length). Given the posterior belief µ and seller n taking the prominent
position, a consumer’s search length, L(µ, n), is defined as the number of sellers, including the
prominent seller, that she will visit given no match has been found.

Given this definition, we can completely pin down the consumer’s search behavior as
the following: she will first visit the prominent position and then keep searching among
the sellers in the descending order of her posterior belief until she either finds a match
or has visited L(µ, n) sellers, whichever comes first.

Let’s define Π(µ, L) as the platform’s profit given the consumer’s posterior belief µ
and any exogenously fixed search length L. One can intuitively understand Π(µ, L) by
imaging that the platform could assign any search length, L exogenously to the con-
sumer, who still follows the search order determined by Lemma 2 given her posterior
belief µ. Π(µ, L) is well defined because the consumer’s search strategy is completely
pinned down given µ and the exogenously given search length, L.

We derive Π(µ, L) next, for which, we need to consider two cases. First, if L = N ,
the consumer will always keep searching until she finds the match, implying that all
sellers will bid zero and the platform expects zero advertising revenue, similar to case 1
in Proposition 2. Therefore, we have Π(µ, N) = αIV . Second, consider L = 1, · · · , N−1.
For seller n = 1, · · · , L − 1 (if L = 1, this is an empty set), his profit upon winning the
auction is Rwin = (1− α)µ(n)V . If he loses the auction, the consumer will still visit him
if he is the match, so Rlose = (1 − α)µ(n)V = Rwin. This implies that seller n will bid
b∗n = Rwin − Rlose = 0 for n = 1, · · · , L − 1. This further implies that the winner of the
auction will be among sellers L, · · · , N . For seller n = L, · · · , N , his profit upon winning
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the auction is Rwin = (1 − α)µ(n)V . If he loses the auction, the consumer will not visit
him, so Rlose = 0. This implies that seller n will bid b∗n = Rwin − Rlose = (1 − α)µ(n)V

for n = L, · · · , N . Therefore, seller L will win the auction and pay seller L + 1’s bid,
and consequently, the consumer follows the sequence of L, 1, · · · , L − 1 to search. The
platform’s revenue is

Π(µ, L) = αIV

L#

n=1

µ(n)

$ %& '
commission fee

+(1− α)IV µ(L+ 1)$ %& '
advertising revenue

, for L = 1, · · · , N − 1. (3)

Next, we turn to endogenous search length, and establish the relationship between
Π(µ) and Π(µ, L). Denote n∗(µ) as the seller who wins the prominent position in equi-
librium induced by any belief µ. Then the endogenous equilibrium search length is
L(µ, n∗(µ)). We have:

Lemma 4. In any sub-game equilibrium induced by µ, the profit of the platform satisfies

Π(µ) = Π(µ, L(µ, n∗(µ))). (4)

This lemma is not as trivial as it may appear at first glance. In fact, in order to cal-
culate Π(µ), we need to know the platform’s advertising revenue, for which, we need to
know each seller’s bid, including those who lose the auction in equilibrium. This would
further entail an analysis of the off-equilibrium path, on which, a seller who loses in
equilibrium but deviates to win the auction. On this off-equilibrium path, there is no
guarantee that the consumer’s search length is still L(µ, n∗(µ)), because the prominent
seller is no longer n∗(µ). This is the disconnection between Π(µ) and Π(µ, L(µ, n∗(µ))),
as the latter always entails a fixed search length of L(µ, n∗(µ)). Nevertheless, we prove
in Appendix that equation (4) holds.

Based on Lemma 4, we can reformulate the problem in (2) as follows:

Π∗ = max
L=1,··· ,N

Π∗(L), where, (5)

Π∗(L) = max
µ

Π(µ, L) s.t. L(µ, n∗(µ)) = L, µ(1) ≥ · · · ≥ µ(N) ≥ 0 and
N#

n=1

µ(n) = 1.

In this reformulation, we first solve for the optimal belief for a given search length. This
step requires that the belief is chosen such that the consumer follows the given search
length. We then solve for the optimal search length.
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4.2 A Relaxed Problem with Exogenous Search Length

In the following, we will first work on a relaxed problem of (5) by relaxing the constraint
of L(µ, n∗(µ)) = L:

Π∗
relexed(L) = max

µ
Π(µ, L) s.t. , µ(1) ≥ · · · ≥ µ(N) ≥ 0 and

N#

n=1

µ(n) = 1. (6)

That is, we will first investigate the platform’s design of µ given a consumer’s arbi-
trary and fixed search length, L ∈ N . This gives us some intuition about the plat-
form’s tradeoff in designing the optimal posterior belief. To solve problem (6), no-
tice that by equation (3), Π(µ, L) increases with µ(1), · · · , µ(L + 1) and does not de-
pend on µ(L + 2), · · · , µ(N). Thus, we shall minimize µ(L + 2), · · · , µ(N) by setting
µ(L + 2) = · · · = µ(N) = 0. Therefore, µ(L + 1) = 1 −

"L
n=1 µ(n), and correspond-

ingly, Π(µ, L) = (1 − α)IV + (2α − 1)IV
"L

n=1 µ(n). To maximize Π(µ, L) subject to
µ(1) ≥ · · · ≥ µ(L+ 1) ≥ 0, we have the optimal solution as the following,

(
))*

))+

L#

n=1

µ(n) = 1 and µ(1) ≥ · · · ≥ µ(L) ≥ µ(L+ 1) = · · · = µ(N) = 0, if α ≥ 1

2
,

µ(1) = · · · = µ(L+ 1) =
1

L+ 1
and µ(L+ 2) = · · · = µ(N) = 0, otherwise.

(7)

Intuitively, if the commission rate α is above 1/2, the platform allocates all the match
probability to the first L products to maximize commission; otherwise, the platform will
essentially maximize µ(L + 1) so as to maximize the advertising revenue subject to the
constraint µ(1) ≥ · · · ≥ µ(L+ 1). Hence, the optimal solution is µ(1) = · · · = µ(L+ 1) =

1/(L+ 1).

4.3 Solving the Original Problem with Endogenous Search Length

Next, we work on the original problem (5) with the constraint L(µ, n∗(µ)) = L. Equation
(7) implies that there are two cases to consider.

First, consider α ≥ 1/2. Notice that given the solution in equation (7), Π(µ, L) = αIV ,
which does not depend on L. Π∗ = maxL=1,··· ,N−1Π

∗(L) ≤ maxL=1,··· ,N−1Π
∗
relaxed(L) =

αIV . Meanwhile, by Proposition 1, we know under full information, the consumer’
search length is one and the platform’s profit is αIV . This implies that Π∗ ≥ Π∗(1) ≥
αIV . Therefore, we must have Π∗ = αIV and the optimal solution to problem (2) is
given by the full information design in Proposition 1.

Second, consider α < 1/2. Given the solution in equation (7), Lemma 3 implies that
L(µ, n∗(µ)) = 1 or L(µ, n∗(µ)) = L+ 1. Therefore, we need to “modify” the solution in
equation (7) to ensure L(µ, n∗(µ)) = L. We solve problem (5) in Appendix and present
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the solution by the following two lemmas. Let us first introduce the following notation.

κL ≡
U −max

,
0, U − N−L

2 c
-

c−max
,
0, U − N−L

2 c
- > 1, for L = 1, · · · , N − 1.

Moreover, for any x ∈ , let’s define x± 0 as x± ε with ε > 0 and ε → 0.

Lemma 5 (Optimal Posterior Belief with Search Length of One). The solution to Π∗(1) in
problem (5) is:

(
)))))*

)))))+

µ(1) = 1 and µ(2) = · · · = µ(N) = 0, if 0 < c ≤ 2U

N
or α ≥ 1

1 + κ1
,

µ(1) = µ(2) =
1

1 + κ1
− 0 and

µ(3) = · · · = µ(N) =
κ1 − 1

(N − 2)(1 + κ1)
+ 0, otherwise.

(8)

To understand Lemma 5 above, first notice that by equation (3), the platform’s ob-
jective function under L = 1 is given by Π(µ, 1) = αµ(1)IV + (1 − α)µ(2)IV , where
αµ(1)IV is the commission and (1−α)µ(2)IV is the advertising revenue. We can under-
stand Lemma 5 by comparing it with the solution in equation (7) under L = 1. There are
essentially two differences between equations (7) and (8).

First, when 0 < c ≤ 2U/N , Lemma 5 implies that µ(1) = 1 and µ(2) = · · · = µ(N) =

0, regardless of the value of α. In this case, the platform gives up the advertising revenue
and relies on commission solely. This is optimal because under low search cost c ≤
2U/N , consumers will search all sellers anyway and thus sellers have no incentive to bid
for the prominent position. We have obtained the same result in Proposition 2 under
no information. In contrast, equation (7) does not involve this condition on search cost,
because the consumer’s search length L is exogenously fixed.

Second, under a high search cost c > 2U/N and low commission fee α < (1 + κ1)
−1,

we have µ(3) = · · · = µ(N) > 0 in Lemma 5, rather than being zero in equation (7). This
is because if µ(3) = · · · = µ(N) = 0, then after visiting seller 1 in the prominent position
and learning that it is not a match, a consumer will infer that seller 2 must be the match
and will surely continue to visit seller 2, resulting in a search length of L = 2. To ensure
that the search length is one, the platform needs to deter the consumer from searching
seller 2 by allocating some positive match probability to µ(3), · · · , µ(N). At the same
time, the platform wants to keep the total of these match probabilities, µ(3), · · · , µ(N),
as small as possible so that it can maximize the posterior beliefs for sellers 1 and 2 so as
to maximize commission and ad revenue.

We show in Appendix that the optimal way to allocate these probabilities is uniform
allocation, µ(3) = · · · = µ(N) ≡ µtail. Intuitively, the consumer finds it most reluctant
to continue to search if the expected search cost to identify the match is the highest. The
uniform allocation can achieve this under the constraint µ(3) ≥ · · · ≥ µ(N). We can then
apply Lemma 3 to derive the expected value of continuing search. In particular, upon
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knowing that seller 1 is not the match, the consumer is just unwilling to search seller 2 if

−c+
µ(2)

µ(2) + (N − 2)µtail
U +

(N − 2)µtail

µ(2) + (N − 2)µtail
max{0, U − N − 1

2
c} = 0− 0.

We then have µtail = (κ1 − 1)(N − 2)−1(1 + κ1)
−1 + 0. Given this result, maximizing

the advertising revenue implies µ(1) = µ(2) = (1 + κ1)
−1 − 0 which is less than 1/2.

That is, the advertising revenue is lower compared with the case of exogenous search
length. Thus, the threshold for α in equation (8), (1 + κ1)

−1 is lower than 1/2, which is
the threshold in equation (7).

Next, we solves problem (5) for the other cases with 2 ≤ L(µ, n∗(µ)) ≤ N . Notice that
given L = N or any 2 ≤ L ≤ N − 1 such that µ(L+ 1) = 0, by equation (3) we have that
the platform’s profit come solely from the commission. In this case, the full information
design characterized by Proposition 1 enables every consumer to be matched and thus
maximizes the commission. Under the full information design, the search length is equal
to 1. This implies that the cases with L = N or 2 ≤ L ≤ N − 1 and µ(L + 1) = 0 are
weakly dominated by the full information design with L = 1. Therefore, we can without
loss of generality restrict ourselves to µ(L + 1) > 0 and 2 ≤ L ≤ N − 1 when solving
problem (5).

Lemma 6 (Optimal Posterior Belief with Search Length of L ≥ 2). If α ≥ (1 + κL)
−1 or

L ≥ N + 1 − 2U/c, there does not exist a solution to problem (5) that satisfies µ(L + 1) > 0;
otherwise if α < (1+κL)

−1 and 2 ≤ L < N+1−2U/c, the solution that satisfies µ(L+1) > 0

is:

µ(n) =
c

U − c

.
U

U − c

/L−n−1 κL

1 +
0

U
U−c

1L−1
κL

− 0, for n = 1, · · · , L− 1,

µ(L) = µ(L+ 1) =
1

1 +
0

U
U−c

1L−1
κL

− 0,

µ(L+ 2) = · · · = µ(N) =
1

N − L− 1
· κL − 1

1 +
0

U
U−c

1L−1
κL

+ 0.

To understand Lemma 6, notice that similar to Lemma 5, there are two cases. When α

is above the threshold of (1+κL)
−1, in Appendix, we show that the optimal design entails

µ(L+1) = 0 and the platform’s profit comes from commission almost solely. In this case,
the full information design is optimal as argued above. Moreover, if L ≥ N + 1− 2U/c,
there are only a few sellers left unexplored, after a consumer has visited seller L− 1 and
found it a mismatched. As such, the consumer will be tempted to continue to search and
it is impossible for the search length to reach L. On the other hand, when α is below the
threshold of (1 + κL)

−1 and 2 ≤ L < N + 1 − 2U/c, we still have µ(L) = µ(L + 1) >

µ(L+ 2) = · · · = µ(N), similar to the case of L(µ, n∗(µ)) = 1 in Lemma 5.
What is new here is µ(n) for n = 1, · · · , L − 1, which decreases exponentially over
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n. They are set in a way such that the consumer is just willing to search seller n + 1

after learning that seller n is not a match. This can minimize the probability allocated to
µ(1), · · · , µ(L − 1) and thus reserves most probability to µ(L + 1) so as to maximize the
advertising revenue.

Given the consumer’s search length of L, she will stop searching after visiting L

sellers, so her continuation value after visiting L sellers is zero. Given the previous
L − 1 sellers unmatched (including seller L at the prominent position), the consumer
will search seller L− 1 if and only if

− c+
µ(L− 1)

µ(L− 1) + µ(L+ 1) +
"N

n=L+2 µ(n)
U ≥ 0

⇔ µ(L− 1) ≥ c

U − c

2
µ(L+ 1) +

N#

n=L+2

µ(n)

3
.

In Appendix, we show that this constraint is binding so that µ(L − 1) = c
U−c

4
µ(L +

1) +
"N

n=L+2 µ(n)
5
. By applying the same argument above recursively, we have for

n = 1, · · · , L− 1,

µ(n) =
c

U − c

2
L−n−1#

k=1

µ(L− k) + µ(L+ 1) +

N#

n=L+2

µ(n)

3

=
c

U − c

.
U

U − c

/L−n−1
2
µ(L+ 1) +

N#

n=L+2

µ(n)

3
.

This explains the exponential decline of µ(n) with respect to n for n = 1, · · · , L − 1. To
further determine µ(n) for all n ∈ N , we need to further utilize four other conditions:
(1) µ(L) = µ(L + 1), (2) the consumer is indifferent between continuing to search and
stopping after visiting L sellers, (3) the normalization condition such that

"N
n=1 µ(n) = 1,

and (4) the uniform belief allocation for the long tail, µ(L+ 2) = · · · = µ(N). The details
are relegated to Appendix.

4.4 Optimal Posterior Belief

After solving problem (5) by Lemmas 5 and 6, we can compare Π∗(L) for all L = 1, · · · , N
to determine the optimal search length for the platform. We prove the following propo-
sition in Appendix. To simplify notation, we define:

α∗ ≡ 1

1 + κ1
=

c−max
,
0, U − N−1

2 c
-

U + c− 2max
,
0, U − N−1

2 c
- .

Proposition 4 (Optimal Posterior Belief).

1. If 0 < c ≤ 2U/N , any posterior belief µ yields the same profit for the platform.
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2. Otherwise, if 2U/N < c < U , the optimal posterior belief µ∗ is given by equation (8).
That is,
6

µ∗(1) = 1 and µ∗(2) = · · · = µ∗(N) = 0, if α ≥ α∗,

µ∗(1) = µ∗(2) = α∗ − 0 and µ∗(3) = · · · = µ∗(N) = 1−2α∗

N−2 + 0, otherwise,
(9)

under which, consumers’ search length is equal to one so that they only visit the prominent
seller.

When 0 < c ≤ 2U/N , Proposition 3 has already shown that the full and no informa-
tion yield the same platform profit. Proposition 4 extends this result to any information
design. This result is quite intuitive—when consumers’ search cost is sufficiently low,
they will always visit all sellers to find the match, leaving little room for the platform
to design an information environment so as to influence their search behaviors. In con-
trast, when 2U/N < c < U , Proposition 4 implies that it is optimal for the platform to
design the information environment that induces consumers’ search length to be one.3

Essentially, we find that L = 1 maximizes Π∗(L).
To understand why it is optimal for the platform to limit consumer search, notice

that the platform’s revenue Π∗(L) consists of two parts: commission and advertising
revenue. By Lemmas 5 and 6, we can calculate the platform’s advertising revenue under
consumer search length of L:

(1− α)IV µ(L+ 1) =
(1− α)IV

1 +
0

U
U−c

1L−1
κL

− 0,

which decreases with L as κL increases with L. This implies that L = 1 maximizes
the platform’s advertising revenue. The intuition is that by limiting consumer search,
the platform incentivizes the sellers to bid high because losing the auction means no
demand. When the platform’s commission rate α < α∗(< 1/2), advertising revenue is
more important. Therefore, it is optimal for the platform to limit consumer search so as to
maximize advertising revenue. However, when α ≥ α∗, as shown by Proposition 1, full
information design maximizes the platform’s commission, under which the consumer’s
search length is also equal to one.

4.5 Optimal Information Design

We now construct an information structure {π(s|n)}n∈N that can implement the optimal
posterior belief µ∗ in Proposition 4. The following proposition presents one optimal
information design as well as the welfare of consumers, sellers and the platform under
the optimal design.

Proposition 5 (Optimal Information Design).

3It is possible that there exist other optimal designs that yield the same maximum platform profit.
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1. If 0 < c ≤ 2U/N , any information design π(·|·) yields the same profit of αIV for the
platform.

2. If 2U/N < c < U and α ≥ α∗, the optimal information design entails full information
disclosure with π∗(n|n) = 1 and π∗(s|n) = 0 for s ∕= n. In equilibrium:

(a) all sellers bid zero, and the matched seller, n wins and earns a profit of (1− α)V ;

(b) consumers buy the prominent products and do not continue to search, each expecting
a surplus of U ;

(c) the platform obtains a profit of αIV .

3. If 2U/N < c < U and α < α∗, one optimal information design is:

π∗(n|n) = π∗(n+ 1|n) = α∗ − 0 and π∗(s|n) = 1− 2α∗

N − 2
+ 0 for s ∕= n, n+ 1,

where we have used the cyclic indexing so that π∗(N + 1|N) ≡ π∗(1|N). In equilibrium:

(a) sellers s and s− 1 bid (1−α)V α∗ − 0, and the other sellers bid (1−α)V 1−2α∗

N−2 +0;
sellers s and s− 1 win the auction with equal probability and make zero profit;

(b) consumers buy the prominent products and do not continue to search, each expecting
a surplus of Uα∗ − 0;

(c) the platform obtains a profit of α∗IV − 0.

We make a few remarks about the implications of the optimal information design
next. Let us first focus on the case with 2U/N < c < U so that the platform’s infor-
mation design is relevant. There are two different scenarios depending on whether α

is above or below the threshold of α∗. Casual observations suggest that, in practice,
the commission rate α typically ranges from 5% to 20% on e-commerce platforms. The
model suggests that the threshold α∗ is less than 1/2. This implies that either of these
two cases could be relevant in practice. Furthermore, notice that the full information
design implemented under α ≥ α∗ is the first-best design that maximizes the social wel-
fare. Proposition 5 then implies that the option of offering targeted advertising by the
platform will introduce social inefficiency to the market when α < α∗, where the social
waste is I(U + V )(1− α∗).4

Given the optimal design involves “noisy matching”, the platform may find it some-
times unattractive to invest in data analytics technologies that produce precise targeted
advertising and recommendation. It also implies that decreased data availability due to
regulations on consumer privacy does not necessarily hurt platforms that much. In fact,
the no-information case characterized by Proposition 2 is the market equilibrium when
the consumer opts out of the platform’s data collection. It is straightforward to show

4This finding depends on the assumption that the platform has perfect information about which seller is
the match for each consumer. With imperfect match information, targeted advertising can increase match
efficiency by allowing matched sellers to bid higher and win the prominent position.
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that the consumer surplus is always weakly higher under the platform’s optimal infor-
mation design compared with that under no information. Therefore, if we endogenize
consumers’ opt-in decision on the platform’s data collection, they will indeed choose to
opt in under our model. This will also weakly benefit the platform and the seller.

Notice that α∗ increases with both c and N . Proposition 5 then implies that a plat-
form’s profit under the optimal information design increases in consumer’s search cost
c as well as the number of sellers. A higher search cost reduce consumers’ incentive
to search beyond the prominent seller, leading to competitive ad bidding of the sellers.
This can benefit the platform when it cannot demand a high commission fee and thus
relies on persuading sellers to bid for the prominent position. Similarly, as N increases,
consumers are less willing to search, and thus the platform profit increases.

The match efficiency and social welfare under the optimal information design are
non-monotonic in the number of sellers, N . When N ≤ 2U/c, the social welfare is max-
imized and invariant to N under the full disclosure (assuming that when the platform
is indifferent among several information designs, he chooses the one that maximizes
the social welfare). As N increases just above 2U/c, the social welfare drops discretely
because mismatches are introduced to discourage consumer search under the optimal
information design. As N further increases, consumers are less willing to search, and
thus the mismatches are gradually reduced.

5 Concluding Remarks

In this research, we highlight a looming trade-off in the two revenue streams that re-
sulted from ubiquitous usage of big data in online retail platforms. While big data can
improve match efficiency, it enhances a seller’s market power. This effect, however, may
reduce sellers’ competition for advertising, limiting the platform’s ability to extract sell-
ers’ surplus. The optimal information design that takes into account this strategic trade-
off entails limiting consumer search and mixing the matched product with a long tail of
unmatched ones for recommendation. Our research has a few limitations, and thus we
invite for future research.

First, we consider a specific form of match value distribution among sellers such that
there is one and only match for each consumer. This leads to correlated match values
among sellers. This setting approximates situations in reality where upon one purchase
occasion, each consumer has a favorite seller in one product category and prefers this
seller much more than the others. Alternative specification such as independent and
identically distributed match values of sellers implies a multi-dimensional state space
which greatly complicates the information design problem. In a setting similar with ours
but with two or more matches, the information design problem becomes trivial, where
the optimal design is to disclose information fully, because it always ensures match and
thus maximizes the commission while at the same time also results in the maximum

18

Electronic copy available at: https://ssrn.com/abstract=4149349



advertising revenue.
Second, consistent with the majority of the literature on online platforms, our anal-

ysis assumes exogenous linear commission rate, α. Notice that sellers earn zero profit
under the optimal information design, and thus we cannot simply endogenize α by con-
sidering an elastic demand of seller entry or platform competition. Hence, it seems to go
beyond the current model setup to fully endogenize α. We leave this as an important and
interesting direction for future research. More complex contracts such as two-part tariff
will make our result trivial, because the platform can simply set α = 1 while at the same
time pay the sellers a lump-sum payment. This will resolve the platform’s incentive to
extract seller surplus via sponsored advertising. In other words, our result requires the
vertical relationship between the platform and the sellers to be not fully integrated so
that there is some room for sponsored advertising to play a role. This seems reasonable
given casual observations from the practice, where even though two-part tariffs have
been used, it is the sellers instead of the platform who pay the lump-sum fee.

Third, the model assumes a simple second-price auction without a reserved price.
This assumption is made partly without loss of generality, allowing us to focus on the
main forces underlying the information design problem. It is easy to verify that, under
the optimal information design, augmenting the auction with a reserved price (or simply
offering a take-it-or-leave-it contract to the sellers) does not improve the profit of the
platform. However, if the platform is allowed to set the reserved price for any auction
design, it is not clear whether the same equilibrium is reached. The reason is that the
reserved price only changes the sellers’ bidding strategies without a direct impact on
buyers’ search behavior; however, in the model we consider, the platform can fine-tune
the public beliefs to directly impact both the sellers’ bidding strategies and buyers’ search
behavior.

Last, a potential direction for future research is to investigate the optimal information
design that allows private signals—one to sellers and one to consumers.

19

Electronic copy available at: https://ssrn.com/abstract=4149349



APPENDIX

Proof of Lemma 1:
Proof. Consider any seller n with a positive demand. All consumers in the market must
be one of the following three types: (1) those who have visited the seller and found a
match, (2) those who have visited the seller and did not find a match, (3) those who de-
cide not to visit the seller. Consumers of type (2) will never buy from seller n regardless
of his price so they are irrelevant. Consumers of type (3) do not observe seller n’s price,
which has no impact on their visiting decision. So, the only relevant consumers are type
(1), who have already paid the search cost if any and have no interest for other sellers
because seller n is the only possible match, so the seller will charge the price pn so as to
maximize the monopolistic profit, (1− α)pnD(pn), which yields pn = p∗.

Proof of Lemma 2:
Proof. To simplify notation without introducing confusion, we can omit the subscript
s and denote a consumer’s posterior belief of product n being the match by µ(n). We
only need to show that at any time point, given the posterior belief µ(1) > µ(2), if the
consumer decides to search, she weakly prefers to search seller 1 before seller 2. We
prove by contradiction. Suppose it generates a strictly higher payoff for the consumer
following a search order of 2, 3, · · · , k, 1, k + 1, · · · , N . Notice that we do not impose
any constraint on µ(i) for i = 1, · · · , N except that µ(1) > µ(2). The consumer will
stop searching if she has found a match. We use zk (for k = 1, · · · , N ) to represent the
consumer’s search decision so that if zk = 1, the consumer decides to continue to search
seller k given she has not found any match so far, and if zk = 0, the consumer will stop
searching. Under the proposed search strategy, the consumer’s expected payoff is

U2 =

7

8z2µ(2) +
k#

l=3

9

:
l;

j=2

zj

<

=µ(l) +

9

:
k;

j=2

zj

<

= z1µ(1) +

N#

l=k+1

9

:
l;

j=1

zj

<

=µ(l)

>

?U.

Now we propose an alternative search strategy, under which, the consumer follows the
search order of 1, 3, · · · , k, 2, k + 1, · · · , N , and for each seller: applies z1 for seller 2, z2
for seller 1, and zk for seller k = {3, · · · , N}. Under the alternative search strategy, the
consumer’s expected payoff is

U1 =

7

8z2µ(1) +
k#

l=3

9

:
l;

j=2

zj

<

=µ(l) +

9

:
k;

j=2

zj

<

= z1µ(2) +

N#

l=k+1

9

:
l;

j=1

zj

<

=µ(l)

>

?U.

By noting zk ≤ 1 for k = 1, · · · , N , we have,

U1 − U2 = (µ(1)− µ(2))z2

7

81− z1

9

:
k;

j=3

zj

<

=

>

?U ≥ 0.
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This means that the alternative strategy generates weakly higher payoff than the pro-
posed one. This is a contradiction, so we have proved the original statement.

Proof of Lemma 3:
Proof. We reformulate the consumer’s problem after seeing an unmatched advertised
product as a dynamic programming problem. There are at most N − 1 periods. Let
Wk denote the optimal continuation value for the consumer in period k, given that no
match has been found prior to and including period k. This implies that there are N − k

products left that are likely to be a match. We have the following Bellman equation for
every k = 1, 2, · · · , N − 1:

Wk = max
@
0,−c+

1

N − k
U +

N − k − 1

N − k
Wk+1

$ %& '
≡!Wk

A
, (10)

where the two terms in the curly brace above are respectively, the outside option and the
value of continuing to search, denoted by BWk. By paying c, the consumer gets a match
and thus the surplus of U with probability 1/(N −k) and with the remaining probability
of 1− 1/(N −k), the consumer does not find a match and expects the continuation value
of Wk+1. Based on equation (10), next, we show the optimality of the proposed rule.

We first show that if c ≤ 2U/N or equivalently, U ≥ cN/2, the consumer will continue
to search until she finds a match. In fact, if none of the previous N − 1 products is a
match, the consumer is sure that the next and final product must be a match, so we have
BWN−1 = U − c. By applying equation (10) and the condition of U ≥ cN/2 iteratively, we
have

BWk = U − N − k + 1

2
c and BWN−1 ≥ BWN−2 ≥ · · · ≥ BW1 ≥ 0.

Therefore, the consumer will keep searching until she finds a match.
Next, we show that if 2U/N < c < U or equivalently, c < U < cN/2, the consumer

will never search. In fact, given c < U < cN/2, there must exist k∗ ∈ and 1 ≤ k∗ ≤
N − 2 such that (N − k∗)c/2 ≤ U < (N − k∗ + 1)c/2. Starting from BWN−1 = U − c,
by applying equation (10) iteratively, we will have W1 = · · · = Wk∗ = 0. Therefore, the
consumer will never search in the first place.

Proof of Lemma 4
Proof. Let’s calculate Π(µ). First it is straightforward to show that seller n’s bid satisfies
that 0 ≤ b∗n(µ) ≤ (1 − α)µ(n)V , because he has the outside option of zero and (1 −
α)µ(n)V is the maximum payoff he could expect from winning the auction. Given the
consumer’s equilibrium search length as L(µ, n∗(µ)), sellers 1, · · · , L(µ, n∗(µ)) − 1 will
be visited if they are the match, so they will bid zero. This can be seen by noticing that
they have no incentive to deviate by bidding positively to take the prominent position.
This implies that the winner of the auction must be among sellers L(µ, n∗(µ)), · · · , N ;
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that is, n∗(µ) ≥ L(µ, n∗(µ)).
Let’s prove n∗(µ) = L(µ, n∗(µ)) next. There are two cases to consider. First, if

µ(L(µ, n∗(µ))) = · · · = µ(n∗), the difference between sellers L(µ, n∗(µ)), · · · , n∗(µ) is ar-
tificial and one can renumber sellers L(µ, n∗(µ)), · · · , n∗(µ) such that n∗(µ) = L(µ, n∗(µ)).
Second, if there is a strict inequality in µ(L(µ, n∗(µ))) ≥ · · · ≥ µ(n∗), we must have
µ(L(µ, n∗(µ))) > µ(n∗). We prove n∗ = L(µ, n∗(µ)) by contradiction. Suppose n∗(µ) ≥
L(µ, n∗(µ))+1. Consider seller L(µ, n∗(µ)), who will never be visited in equilibrium and
thus expects zero profit. However, the seller can deviate by bidding (1−α)µ(L(µ, n∗(µ)))V−
ε > (1 − α)µ(n∗)V ≥ b∗n∗ to win the auction for ε > 0 but sufficiently small and get
positive profit. This implies that it is not an equilibrium for n∗(µ) ≥ L(µ, n∗(µ)) + 1.
Therefore, we must have n∗ = L(µ, n∗(µ)). That is, seller L(µ, n∗(µ)) wins the auction.

For sellers n = L(µ, n∗(µ)) + 1, · · · , N , their profits in equilibrium is zero. If they
deviate to win the auction, their profit become (1− α)µ(n)V . This implies that his equi-
librium bid is b∗n = (1− α)µ(n)V . Given seller L(µ, n∗(µ)) wins the auction, the second-
highest bidder must be seller L(µ, n∗(µ)) + 1, and thus the platform’s advertising rev-
enue is (1 − α)µ(L(µ, n∗(µ)) + 1)IV . Given consumer’s search length as L(µ, n∗(µ)),
the platform’s commission fee is αIV

"L(µ,n∗(µ))
n=1 µ(n). By equation (3), we have Π(µ) =

Π(µ, L(µ, n∗(µ))).

Proof of Lemmas 5 and 6:
Proof. We first fix µ(L+ 1) = a and then optimize over a later. Problem (5) becomes

max
µ(1),··· ,µ(L),µ(L+2),··· ,µ(N)

α

L#

n=1

µ(n) + (1− α)a, (11)

s.t. µ(1) ≥ · · · ≥ µ(L) ≥ a ≥ µ(L+ 2) ≥ · · · ≥ µ(N),

L#

n=1

µ(n) +

N#

n=L+2

µ(n) = 1− a,

L(µ, n∗(µ)) = L.

Notice that the objective function of problem (11) increases with µ(1), · · · , µ(L) but does
not depend on µ(L+2), · · · , µ(N). The normalization constraint,

"L
n=1 µ(n)+

"N
n=L+2 µ(n) =

1 − a then implies that we need to minimize
"N

n=L+2 µ(n). There are two cases to con-
sider depending on whether a = 0.

If a = 0, the platform’s profit comes from commission solely. Full information design
as shown by Proposition 1 enables all consumers to be matched with the right seller
and therefore maximizes the commission, in which case we have the consumers’ search
length L(µ, n∗(µ)) equal to 1. This implies that we do not need to analyze the cases with
L(µ, n∗(µ)) ≥ 2, because they are weakly dominated by the case with L(µ, n∗(µ)) = 1.

It remains to solve problem (11) given a > 0. We will first analyze the cases with
2 ≤ L ≤ N − 2. The other cases with L = 1 and N − 1 will be analyzed afterwards.
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Step 1: Minimizing
"N

n=L+2 µ(n).

We shall minimize the long tail
"N

n=L+2 µ(n) subject to the constraints (i) a ≥ µ(L+2) ≥
· · · ≥ µ(N − 1) ≥ µ(N) = b and (ii) L(µ, n∗(µ)) = L. Notice that onstraint (ii) implies
that a consumer does not search beyond the first L sellers, if she has not found a match
among them. That is,

− c+
a

a+
"N

n=L+2 µ(n)
U +

"N
n=L+2 µ(n)

a+
"N

n=L+2 µ(n)
WL+1 ≤ 0, (12)

where WL+1 is the continuation value after seeing L + 1 sellers unmatched. Next, we
show that it is sufficient to consider a uniform belief allocation, µ(L+2) = · · · = µ(N) =

b > 0.
To see that, suppose we have a strict inequality in constraint (i) such that µ(N − 1) >

µ(N). We can reduce µ(N − 1) by a small amount of ε, µ′(N − 1) = µ(N − 1) − ε,
while raising µ(N) for the same amount, µ′(N) = µ(N) + ε. In doing so, we can keep
"N

n=L+2 µ(n) unchanged. However, WL+1 will be reduced. First,

W ′
N−2 = max{0,−c+

µ′(N − 1)

µ′(N − 1) + µ′(N)
U +

µ′(N)

µ′(N − 1) + µ′(N)
W ′

N−1}

= max{0,−c+
µ′(N − 1)

µ′(N − 1) + µ′(N)
(U −W ′

N−1) +W ′
N−1}

= max{0,−c+
µ(N − 1)− ε

µ(N − 1) + µ(N)
(U −WN−1) +WN−1}

≤ WN−2,

where W ′
N−1 = WN−1 = U − c, and µ′(N − 1) + µ′(N) = µ(N − 1) + µ(N). For all

earlier periods k = L + 2, · · · , N − 3, the belief allocation remains unchanged, and thus
µ(k + 1) + · · ·+ µ′(N − 1) + µ′(N) =

"N
n=k+1 µ(n). Then recursively,

W ′
k = max{0,−c+

µ(k + 1)

µ(k + 1) +
"N

n=k+2 µ(n)
U +

"N
n=k+2 µ(n))

µ(k + 1) +
"N

n=k+2 µ(n))
W ′

k+1}

≤ max{0,−c+
µ(k + 1)

µ(k + 1) +
"N

n=k+2 µ(n)
U +

"N
n=k+2 µ(n))

µ(k + 1) +
"N

n=k+2 µ(n))
Wk+1}

= Wk.

Hence, the LHS of inequality (12) becomes smaller because
"N

n=L+2 µ(n) remains un-
changed but W ′

L+1 ≤ WL+1. Lastly, we can turn the strict inequality µ(N − 1) > µ(N)

into equality µ′(N − 1) = µ′(N) by setting ε = (µ(N − 1) − µ(N))/2 > 0. We can
repeatedly apply the same procedure above recursively for any strict equality µ(k) >

µ(k + 1) = µ(k + 2) = · · ·µ(N). That is, we first reduce µ(k) by a small amount of
ε, µ′(k) = µ(k) − ε, and then distribute this amount uniformly to µ(k + 1), · · · , µ(N).
By the same argument above, we can keep the inequality (12) being satisfied given
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W ′
L+1 ≤ WL+1. Setting ε = (µ(k) − µ(k + 1))(N − k)/(N − k + 1), we can ensure that

µ′(k) = µ′(k + 1) = µ′(k + 2) = · · ·µ′(N).
To summarize, applying the above argument recursively for k = N−1, N−2, · · · , L+

1, we can turn any original belief allocation with some strict inequalities into a uniform
one µ(L + 2) = · · · = µ(N), while keeping the sum of beliefs unchanged and satisfying
the constraint (ii). Let b = µ(L + 2) = · · · = µ(N). Minimizing

"N
n=L+2 µ(n) is then

equivalent to minimizing b. Notice that b ∕= 0, because otherwise the LHS of inequality
(12) becomes U − c, which is positive, violating the incentive constraint (ii).

Given the uniform belief allocation, we can apply Lemma 3 and establish that, WL+1 =

max{0, U − (N − L)c/2}. The LHS of inequality (12) can then be rewritten as

− c+
a

a+ (N − L− 1)b
U +

(N − L− 1)b

a+ (N − L− 1)b
max{0, U − N − L

2
c},

=− c+
a

a+ (N − L− 1)b
(U −max{0, U − N − L

2
c}) + max{0, U − N − L

2
c},

which is decreasing in b. Clearly, we should minimize b such that the inequality (12)
holds with equality. That is,

b =
U − c

(N − L− 1)
C
c−max

,
0, U − N−L

2 c
-Da+ 0, (13)

Lastly, we need to impose the condition that a ≥ b > 0, which is equivalent to

L < N + 1− 2U

c
, (14)

which does not depend on a. If the condition (14) is violated, we cannot ensure the search
length is equal to L. Notice that c < U under Assumption 1, so condition (14) implies
that L < N − 1. Therefore, the case of L = N − 1 can be ruled out.

Step 2: Lower bounds of µ(1), · · · , µ(L).

Given equation (13) and condition (14), problem (11) becomes:

max
µ(1),··· ,µ(L)

α [1− a− (N − L− 1)b] + (1− α)a, (15)

s.t. µ(1) ≥ · · · ≥ µ(L) ≥ a,

L#

n=1

µ(n) = 1− a− (N − L− 1)b,

L(µ, n∗(µ)) = L.

The objective function of problem (15) does not depend on µ(1), · · · , µ(L), so we only
need to check the feasibility of the constraints in problem (15). Next, we first identify the
constraints that µ(1) ≥ · · · ≥ µ(L) ≥ a and L(µ, n∗(µ)) = L impose on µ(1), · · · , µ(L).
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Given seller L wins the prominent position, we have the lower bound on µ(L) as,

µ(L) = a. (16)

To determine the lower bound on µ(L − 1), first notice that given the previous L sellers
unmatched, the consumer will stop without visiting seller L + 1, and her continuation
value is zero. Given the previous L − 1 sellers unmatched, the consumer will search
seller L− 1 if and only if

−c+
µ(L− 1)

µ(L− 1) + a+ (N − L− 1)b
U ≥ 0 ⇔ µ(L−1) ≥ c

U − c
[a+(N−L−1)b] ≡ µ(L−1).

Let’s show that µ(L−1) = c
U−c [a+(N−L−1)b] ≥ a = µ(L). In fact, given the expression

of b in equation (13), c
U−c [a+ (N − L− 1)b] ≥ a is equivalent to,

c2 + (U − 2c)max

E
0, U − N − L

2
c

F
≥ 0.

If U ≥ 2c or U ≤ (N − L)c/2, obviously, the above inequality holds; otherwise when
(N − L)c/2 < U < 2c, we have the above inequality equivalent to,

G
U −

.
1 +

N − L

4

/
c

H2
+

N − L

2

.
1− N − L

8

/
c2 ≥ 0,

which always holds, because (N − L)c/2 < U < 2c implies that N − L < 4. Therefore,
we have shown that µ(L− 1) ≥ µ(L). This implies that when µ(L) takes its lower bound
of µ(L), µ(L− 1) ≥ µ(L) is not binding, given µ(L− 1) ≥ µ(L− 1).

By applying a similar argument that determines µ(L− 1) above iteratively, we have,

µ(n) =
c

U − c
[a+ (N − L− 1)b] +

c

U − c

L−n−1#

k=1

µ(L− k)

=
c

U − c

.
U

U − c

/L−n−1

[a+ (N − L− 1)b], for n = 1, · · · , L− 1. (17)

Obivously, µ(1) ≥ · · · ≥ µ(L − 1). To summarize, (µ(1), · · · , µ(L)) is the lowest val-
ues (µ(1), · · · , µ(L)) can take given the constraints of µ(1) ≥ · · · ≥ µ(L) ≥ a and
L(µ, n∗(µ)) = L.

Now, we consider the remaining constraint of
"L

n=1 µ(n) = 1 − a − (N − L − 1)b in
problem (15). We only need to ensure

"L
n=1 µ(n) ≤ 1− a− (N −L− 1)b, which reduces

to,

a+

.
U

U − c

/L−1

[a+ (N − L− 1)b] ≤ 1. (18)
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Step 3: Solving for the optimal µ(L+ 1).

To summarize, we have identified the feasibility condition for problem (15) as in equa-
tion (18). Given a > 0 and 2 ≤ L ≤ N − 2, by substituting the expression of b in equation
(13) into problem (15), we can can rewrite problem (5) in terms of a as the following:

max
0<a≤ 1

L+1

α

2
1−

U −max
,
0, U − N−L

2 c
-

c−max
,
0, U − N−L

2 c
- a

3
+ (1− α)a

s.t. L < N + 1− 2U

c
,

2
1 +

.
U

U − c

/L−1 U −max
,
0, U − N−L

2 c
-

c−max
,
0, U − N−L

2 c
-
3
a < 1.

The optimal solution to the optimization problem is:

a =

2
1 +

.
U

U − c

/L−1 U −max
,
0, U − N−L

2 c
-

c−max
,
0, U − N−L

2 c
-
3−1

− 0,

if L < N + 1− 2U

c
and α <

2
1 +

U −max
,
0, U − N−L

2 c
-

c−max
,
0, U − N−L

2 c
-
3−1

. (19)

Notice that if α ≥
G
1 +

U−max{0,U−N−L
2

c}
c−max{0,U−N−L

2
c}

H−1

, it is optimal for a = 0, which has been

discussed above. Moreover, under the optimal solution in equation (19), µ(n) = µ(n)

for n = 1, · · · , L. This also immediately implies that a ≤ 1/(L+ 1) is not binding under
the optimal solution in equation (19), because we have shown that µ(1) ≥ · · ·µ(L) ≥ a,
which implies that a ≤ 1

L+1

"L+1
n=1 µ(n) = [1− (N − L− 1)b]/(L+ 1) < 1/(L+ 1).

Completing the proof.

So far we have solved problem (11) for 2 ≤ L ≤ N −2. Now, let’s consider the remaining
cases of L = 1 and L = N − 1. Notice that the case of L = N − 1 has been ruled out in
step 1 above. If L = 1, then following a similar analysis as above can straightforwardly
show that µ(3) = · · · = µ(N) = b is still given by equation (13) and µ(1) = µ(1) =

1− a− (N − 2)b. µ(2) = a given a > 0 is:

a =

2
1 +

U −max
,
0, U − N−1

2 c
-

c−max
,
0, U − N−1

2 c
-
3−1

−0, if c >
2U

N
and α <

2
1 +

U −max
,
0, U − N−1

2 c
-

c−max
,
0, U − N−1

2 c
-
3−1

.

Lastly, by comparing the platform’s profit between the two cases with a = 0 and
a > 0 given by equation (19), we obtain the solution to problem (5).
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Proof of Proposition 4:
Proof. If 0 < c ≤ 2U/N , Proposition 2 shows that the consumer’s search length is N

given µ(1) = · · ·µ(N) = 1/N . As argued in the proof of Lemmas 5 and 6 above, µ(1) =
· · ·µ(N) = 1/N is the case where the consumer is most reluctant to search because of
the highest expected search cost. This implies that under any posterior belief µ, the
consumer’s search length will be N , and the consumer will always find the match and
the platform’s profit is αIV .

On the other hand, if 2U/N < c < U , denote the solution to problem (5) under the
search length of L as µL. We only need to show that the platform’s profit presented in
Lemma 6, Π(µL, L) is dominated by that in Lemma 5, Π(µ1, 1). In fact, by the discussion
above Lemma 6, we only need to consider the case with α < (1 + κL)

−1, under which,
we have

Π(µL, L) =

7

I8α+
1− α(1 + κL)

1 +
0

U
U−c

1L−1
κL

>

J? IV ≤ 1

1 + κ1
IV ≤ Π(µ1, 1),

where in the second last inequality above, we have utilized that κL increases with L.
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