
IMPROVE LEARNING COMBINING CROWDSOURCED
LABELS BY WEIGHTING AREAS UNDER THE MARGIN

Tanguy Lefort & Benjamin Charlier ∗
IMAG, Univ Montpellier, CNRS, Montpellier, France
{tanguy,benjamin}.{lefort,charlier}@umontpellier.fr

Alexis Joly†
Inria, LIRMM, Univ Montpellier, CNRS
Montpellier, France
alexis.joly@inria.fr

Joseph Salmon ‡
IMAG, Univ Montpellier, CNRS, Montpellier, France
Institut Universitaire de France (IUF)
joseph.salmon@umontpellier.fr

ABSTRACT

In supervised learning – for instance in image classification – modern massive
datasets are commonly labeled by a crowd of workers. The obtained labels in
this crowdsourcing setting are then aggregated for training. The aggregation step
generally leverages a per worker trust score. Yet, such worker-centric approaches
discard each task ambiguity. Some intrinsically ambiguous tasks might even fool
expert workers, which could eventually be harmful for the learning step. In a stan-
dard supervised learning setting – with one label per task and balanced classes –
the Area Under the Margin (AUM) statistic is tailored to identify mislabeled data.
We adapt the AUM to identify ambiguous tasks in crowdsourced learning scenar-
ios, introducing the Weighted AUM (WAUM). The WAUM is an average of AUMs
weighted by worker and task dependent scores. We show that the WAUM can help
discarding ambiguous tasks from the training set, leading to better generalization
or calibration performance. We report improvements with respect to feature-blind
aggregation strategies both for simulated settings and for the CIFAR-10H crowd-
sourced dataset.

1 INTRODUCTION

Crowdsourcing labels for supervised learning has become quite common in the last two decades,
notably for image classification with datasets such as CIFAR-10 and Imagenet. Using a crowd of
workers is fast, simple (see Figure 1) and less expensive than using experts. Furthermore, aggregat-
ing crowdsourced labels instead of working directly with a single one enables modeling the sources
of possible ambiguities and directly take them into account in the training pipeline (Aitchison, 2021).
With deep neural networks nowadays common in many applications, both the architectures and data
quality have a direct impact on the model performance (Müller et al., 2019; Northcutt et al., 2021b)
and on calibration (Guo et al., 2017). Yet, depending on the crowd and platform’s control mecha-
nisms, the obtained label quality might vary and harm generalization (Snow et al., 2008).

Popular label aggregation schemes take into account the uncertainty related to workers’ abilities:
for example by estimating confusions between classes, or using a latent variable representing each
worker trust (Dawid & Skene, 1979; Kim & Ghahramani, 2012; Sinha et al., 2018; Camilleri &
Williams, 2019). This leads to scoring workers without taking into account the inherent difficulty
of a task at stake. Inspired by the Item Response Theory (IRT) (Birnbaum, 1968), Whitehill et al.
(2009) combined both the task difficulty and the worker’s ability in a feature-blind fashion for label
aggregation. They only require labels but not the associated features1. In the classical supervised

∗https://tanglef.github.io/, https://imag.umontpellier.fr/˜charlier/,
†http://www-sop.inria.fr/members/Alexis.Joly
‡http://josephsalmon.eu/
1We use the term task interchangeably with the term feature in this work

1

ar
X

iv
:2

20
9.

15
38

0v
1

 [
cs

.L
G

]
 3

0
Se

p
20

22

https://www.cs.toronto.edu/~kriz/cifar.html
www.image-net.org
https://tanglef.github.io/
https://imag.umontpellier.fr/~charlier/
http://www-sop.inria.fr/members/Alexis.Joly
http://josephsalmon.eu/

Figure 1: Crowdsourcing labels scheme, from label collection using a crowd to training a neural network on
aggregated training labels. High ambiguity from either crowd workers or tasks intrinsic difficulty can lead to
mislabeled data and harm generalization performance. To illustrate our notation, here the set of task annotated
by worker w3 is T (w3) = {1, 3} while the set of workers annotating the task x3 is A(x3) = {1, 3, 4}.

learning setting, the labels are said to be hard – i.e., a Dirac mass on one class. Multiple crowd-
sourced labels induce soft labels – i.e., probability distributions over the classes – for each task. Our
motivation is to identify ambiguous tasks from their associated features, hence discarding hurtful
tasks (such as the one illustrated on Figure 2b). Recent work on data-cleaning in supervised learn-
ing (Han et al., 2019; Pleiss et al., 2020; Northcutt et al., 2021a) has shown that some images might
be too corrupted or too ambiguous to be labeled by humans. Hence, one should not consider these
tasks for label aggregation and learning since they might be harmful for generalization.

In this work, we combine task difficulty scores with worker abilities scores, but we measure the
task difficulty by incorporating feature information. We thus introduce the Weighted Area Under
the Margin (WAUM), a generalization to the crowdsourcing setting of the Area Under the Margin
(AUM) (Pleiss et al., 2020). The AUM is a confidence indicator in an assigned label defined for
each training task. It is computed as an average of margins over scores obtained along the learning
steps, and reflects how a learning procedure struggles to classify a task to an assigned label (see
Figures 3 and 5 to visualize how the AUM is connected to the classical margin from the kernel
literature). The AUM is well suited when training a neural network (where the steps are training
epochs) or other iterative methods. For instance, it has led to better network calibration (Park &
Caragea, 2022) using MixUp strategy (Zhang et al., 2018), i.e., mixing tasks identified as simple
and difficult by the AUM. The WAUM identifies harmful data points in crowdsourced datasets, so
one can prune ambiguous tasks that degrade the generalization. It is a weighted average of workers
AUM, where the weights reflect trust scores based on tasks difficulty and workers ability.

2 RELATED WORK

Inferring a learning consensus from a crowd is a challenging task. In Table 1, we summarize features
used by standard strategies to address such a task. In this work we do not consider methods with
prior knowledge on workers, since most platforms do not provide this information2. Likewise, we
do not rely on ground-truth knowledge for any tasks. Hence, trapping-set or control-items based
algorithms like ELICE or CLUBS (Khattak, 2017) do not match our framework. Some algorithms
rely on self-reported confidence: they directly ask workers their answering confidence and integrate
it in the model (Albert et al., 2012; Oyama et al., 2013; Hoang et al., 2021). We discard such cases
for several reasons. First, self-reported confidence might not be beneficial without a reject option (Li
& Varshney, 2017). Second, workers have a tendency to be under or overconfident, raising questions
on how to present self-evaluation and inferring their own scores (Draws et al., 2021).

The most common aggregation step is majority voting (MV), where one selects the label most often
answered by workers. MV does not infer any trust score on workers, thus does not leverage workers
abilities. MV is also very sensitive to under-performing workers (Gao & Zhou, 2013; Zhou et al.,
2015), to biased workers (Kamar et al., 2015), to spammers (Raykar & Yu, 2011), or to a lack of
experts for hard tasks (James, 1998; Gao & Zhou, 2013; Germain et al., 2015). Closely related to
MV, naive soft labeling goes beyond hard labels (also referred to as one-hot labels) by computing
the frequency of answers per label. In practice, training a neural network with soft labels improves
calibration (Guo et al., 2017) with respect to using hard labels. However, both methods are sensitive
to spammers (e.g., workers answer all tasks randomly) or workers biases (e.g., workers who answer

2For instance, by default Amazon Mechanical Turk https://www.mturk.com/ does not provide it.

2

https://www.mturk.com/

(a) Label frog is easy to identify. Only
one worker mislabeled this frog as a
bird.

(b) Label deer is hard to identify, confused
with horse, dog or other animals available.

Figure 2: Two images from CIFAR-10H dataset (Peterson et al., 2019): the deer image is more ambiguous
due to the image poor quality. With enough workers, the votes’ distribution reflects this ambiguity though in
practice there may be only a few workers for some tasks.

some tasks randomly). Hence, the noise induced by workers labeling might not be representative of
the actual task difficulty (Jamison & Gurevych, 2015).

Another class of methods leverages latent variables, defining a probabilistic model on worker’s
responses. The most popular one, proposed by Dawid & Skene (1979) (DS) estimates a single con-
fusion matrix per worker, as a measure of workers’ expertise. The vanilla DS model assumes that
a worker answers according to a multinomial distribution, yielding a joint estimation procedure of
the error-rates and the soft labels through an Expectation-Maximization (EM) algorithm (see Algo-
rithm 2 in Appendix A). Variants on the original DS algorithm include accelerated versions (Sinha
et al., 2018), sparse versions (Servajean et al., 2017), clustered versions (Imamura et al., 2018)
among others. Since DS only models workers abilities, Whitehill et al. (2009) have introduced the
Generative model of Labels, Abilities, and Difficulties (GLAD) with a task difficulties scores to bet-
ter handle confusion factors. While DS estimates a matrix of pairwise labels confusion per worker,
GLAD estimates (also with EM) a single ability score per worker, and a single difficulty score per
task. It is inspired by Item Response Theory (IRT) (Birnbaum, 1968), modeling the workers’ proba-
bility to answer the true label with a logistic transform of the product of these scores. Following IRT,
the difficulty is inferred as a latent variable given the answers, without ever considering the actual
task affected to each worker. We propose the WAUM to combine the information from a confusion-
matrix per worker and a measure of relative difficulty between tasks. It leads to a more accurate
judging system and identifies data points harming generalization that should be pruned. Data prun-
ing has been shown to improve generalization by removing mislabeled data (Angelova et al., 2005;
Pleiss et al., 2020), possibly dynamically along the learning phase (Raju et al., 2021) or by defining
a forgetfulness score (Paul et al., 2021). Finally, Sorscher et al. (2022) have highlighted that data
pruning strategies require label information to be successful in the standard supervised setting; we
confirm its relevance to the crowdsourcing framework.

Table 1: Summary of vote aggregation algorithms: MV, naive soft, DS, GLAD and WAUM (ours). With the
WAUM, we use tasks features to identify and remove harmful tasks.

Soft label Worker ability Task difficulty Use tasks & votes

MV 7 7 7 7
Naive soft 3 7 7 7
DS (vanilla) 3 3 7 7
GLAD 3 3 3 7
WAUM 3 3 3 3

3 WEIGHTED AREA UNDER THE MARGIN

3.1 DEFINITION AND CONSTRUCTION

For any set S, we write |S| for the cardinality, and for any integer n, [n] represents the set {1, . . . , n}.
We consider classical notation from multi-class classification settings with input from X (e.g., im-
ages) and labels in [K] = {1, . . . ,K}. Consider a set {(x1, y?1), . . . , (xntask , y

?
ntask)} with ntask

3

i.i.d tasks and labels. The set of tasks is written as Xtrain = {x1, . . . , xntask}. The underlying
distribution is denoted by P, and each pair (xi, y

?
i) ∈ X × [K] is a feature/label pair.

In our context, the true labels y?i for i = 1, . . . , ntask are unobserved (except in simulations); we
only collects the proposed labels given by a crowd of nworker workers (named w1, . . . , wnworker). As
represented in Figure 1, some workers might annotate more tasks than others, and similarly some
tasks might receive more annotations than others. For any i ∈ [ntask], we write the annotators set
given a task xi asA(xi) = {j ∈ [nworker] : worker wj answered task xi} . We recover the standard
supervised setting when |A(xi)| = 1 for all i ∈ [ntask]. Similarly, for any j ∈ [nworker] we write
the tasks given a worker wj as T (wj) = {i ∈ [ntask] : worker wj answered task xi} . For each
task xi and each j ∈ A(xi), we denote y(j)i ∈ [K] the label answered by the j-th worker, and write
ŷi an estimation of the (possibly soft) label obtained after aggregation. Note that ŷi belongs to the
standard simplex ∆K−1 = {p ∈ RK ,

∑K
k=1 pk = 1, pk ≥ 0, k = [K]} of dimension K − 1. Our

training set has task-wise or worker-wise formulations:

Dtrain =

ntask⋃
i=1

{(
xi,
(
y
(j)
i

))
for j ∈ A(xi)

}
=

nworker⋃
j=1

{(
xi,
(
y
(j)
i

))
for i ∈ T (wj)

}
=

nworker⋃
j=1

D(j)
train .

(1)

DS model. The Dawid and Skene (DS) model (Dawid & Skene, 1979) aggregates answers and
evaluates the workers’ confusion matrix to observe where their expertise lies exactly. The confusion
matrix of worker wj is denoted by π(j) ∈ RK×K and reflects individual error-rates between pairs of
labels. Each individual error-rate π(j)

`k , which represents the probability that worker wj gives label k
to a task with true label `, is estimated using the EM algorithm (see Appendix A, Algorithm 2; the
likelihood it maximizes is available in Appendix A, Equation 5). This algorithm is independent of
Xtrain and only considers the labels. The model assumes that the probability for a task i to have true
label y?i = ` follows a multinomial distribution with probabilities π(j)

`• for each worker.

AUM. Pleiss et al. (2020) have introduced the AUM in the standard learning setting, where one
observes a training set Dtrain, i.e., with |A(xi)| = 1 for all i ∈ [ntask]. Given a training image
and a label (x, y) ∈ Dtrain, let z(t)(x) ∈ RK be the associated score vector at epoch t ≤ T when
learning a neural network on Dtrain (T being the number of training epochs). We use the notation
z
(t)
[1] (x) ≥ · · · ≥ z(t)[K](x) for sorting the vector (z

(t)
1 (x), . . . , z

(t)
K (x)) in decreasing order. Denote

softmax(t)(x) := softmax(z(t)(x)) the softmax output of the scores at epoch t. Sorting the proba-
bilities in decreasing order such that softmax

(t)
[1] (x) ≥ · · · ≥ softmax

(t)
[K](x), the AUM reads:

AUM (x, y;Dtrain) := AUM (x, y) =
1

T

T∑
t=1

[
softmax(t)

y (x)− softmax
(t)
[2] (x)

]
∈ R . (2)

Pleiss et al. (2020) uses an average of margins over scores, whereas we instead consider the average
over the margin with the softmax output in Equation 2. We have adapted the original AUM by
using the softmax to avoid any scaling issue (as advocated by Ju et al. (2018) in ensemble learn-
ing). Another difference is that the margin considered is from Yang & Koyejo (2020), since the
corresponding Hinge loss has better theoretical properties3 than the one in the original AUM (Lapin
et al., 2016; Yang & Koyejo, 2020).

During the training phase, the AUM keeps track of the difference between the score assigned to the
proposed label and the score assigned to the second largest one. It has been introduced to detect
mislabeled observations in a dataset: the higher the AUM, the more confident the prediction is in the
assigned label. Hence, the lower the AUM, the more likely the label is wrong. The AUM algorithm
is described in Appendix A, Algorithm 4. Finally, note that the AUM computation depends on
the chosen neural network and on its initialization: pre-trained architectures could be used, yet any
present bias would transfer to the AUM computation.

WAUM. The AUM is defined in a standard supervised setting with (hard) labels: we now adapt it
to crowdsourced frameworks. Given a (xi, y

(j)
i) ∈ Dtrain = D(1)

train ∪ · · · ∪ D
(nworker)
train , let s(j)(xi) ∈

3For top-k accuracy, one could consider softmax
(t)

[k+1](x) instead of softmax
(t)

[2] (x) in Equation (2).

4

[0, 1] be a trust factor in the answer of worker wj for the task xi. The WAUM is then defined as:

WAUM(xi) =
1∑

j∈A(xi)
s(j)(xi)

∑
j∈A(xi)

s(j)(xi)AUM
(
xi, y

(j)
i ;D(j)

train

)
∈ R . (3)

The WAUM is the weighted average of the AUMs over each worker’s answer with a weighting
score s(j) for each task based on workers abilities. The WAUM allows to identify potentially too
hard tasks and to remove them from the training set and from the worker’s confusion estimation.
The scores s(j)(xi) consider the impact of the AUM of one answer. It is indeed more informative if
an expert worker’s AUM indicates a potential uncertainty in the label than a potential error from a
poor-quality worker. The architecture used in the AUM computation also needs to be reset between
workers to avoid mutual influence. For additional details on AUM and WAUM, see Appendix B.
The weights s(j) are obtained à la Servajean et al. (2017): each worker has an estimated confusion
matrix π̂(j) ∈ RK×K . Note that the vector diag(π̂(j)) ∈ RK represents the probability for the
worker wj to answer correctly to each task. Moreover, with a neural network classifier, we estimate
the probability for the input xi ∈ Xtrain to belong in each category by softmax(T)(xi) – i.e., the
probability estimate obtained at the last epoch. As a trust factor, we propose the inner product
between the diagonal of the confusion matrix and the softmax vector:

s(j)(xi) =
〈
diag(π̂(j)), softmax(T)(xi)

〉
∈ [0, 1] , (4)

that controls the weight of each worker in the WAUM(xi) formulation given by Equation (3). This
choice of weight is also inspired by the bilinear scoring system of the GLAD strategy as further
detailed hereafter. The closer to one, the more we trust the worker for the given task.

Link with GLAD. In GLAD (Whitehill et al., 2009), the trust score is modeled as the product
αjβi, with αj ∈ R (resp. βi ∈ (0,+∞)) representing worker ability (resp. task difficulty), cf. Ap-
pendix A, Algorithm 3. Using DS, we can leverage the full confusion matrices using a scalar product
between a quantity related to the worker and another to the task. The diagonal of the confusion ma-
trix π̂(j) represents the worker ability and the softmax probabilities represents the task information.
This trust score s(j)(xi) can thus be seen as a multidimensional version of GLAD’s trust score.

3.2 LABEL AGGREGATION USING THE WAUM.

The WAUM metric aims at identifying training samples that are difficult to classify, and that could
be discarded either when aggregating workers’ labels or at training. The last step relies on training a
neural network thanks to the obtained soft labels, whose architecture is adapted to the task at hand4.

Dataset pruning. Our proposed procedure (Algorithm 1), proceeds as follows. Confusion matri-
ces are estimated for all workers using an estimation step on the full training set Dtrain. By default
we rely on the DS algorithm described in Algorithm 2, but any estimates of workers’ confusion
matrices can be used instead (see Appendix E). For each worker wj , AUMs are computed for its
labeled tasks using Algorithm 4 on D(j)

train, and worker-dependent trust scores for each task s(j)(xi)
with Equation (4). The WAUM in Equation (3) is then computed for each task. Tasks below the
quantile of order α ∈ [0, 1] are then pruned. From the resulting dataset Dpruned (with tasks Xpruned),
we update confusion matrices. We eventually provide soft labels ŷi for task xi ∈ Xpruned by weight-
ing labels with workers’ confidence. A neural network can then be trained on (xi, ŷi) for i ∈ Xpruned.
The hyperparameter α (amount of training data points pruned) can be chosen on a validation set, yet
choosing α = 0.1 or 0.01 has led to satisfactory results. The output soft labels still contain infor-
mation regarding human uncertainty, while being less noisy than naive soft labels. They could help
improving model calibration (Wen et al., 2021; Zhong et al., 2021), a property often expected for
interpretations (Jiang et al., 2012; Kumar et al., 2019).

Datasets stacking. In case of time constraints or with few labels per workers, the AUM and
worker trust scores can be modified to only train a single network. To do so, one can modify Algo-
rithm 1; Lines 2–5, so the network is trained onDstack := {(xi, y(j)i)}i∈[ntask],j∈A(xi), the stacking
of all workers’ training sets. We explore stacking in Appendix E.3 for few labels per worker.

4We describe this choice for each experiment in the following section.

5

Algorithm 1: Label aggregation using the WAUM.
Data: Dtrain: tasks and crowdsourced labels, α ∈ [0, 1]: cut-off proportion
Result: {π̂(j)}j∈[nworker]: estimated confusion matrices; (ŷi): tasks’ aggregated label

1 Initialization: Get confusion matrix estimation {π̂(j)}j∈[nworker]
2 for j ∈ [nworker] do
3 Train a neural network on D(j)

train =
{(
xi, y

(j)
i

)
for i ∈ T (wj)

}
for T epochs

4 Compute AUM(xi, y
(j)
i ;D(j)

train) using Equation (2) for i ∈ T (wj)

5 Compute trust scores s(j)(xi) using Equation (4) for i ∈ T (wj)
6 for each task x ∈ Xtrain do
7 Compute WAUM(x) using Equation (3)
8 Get qα the WAUM’s quantile threshold of order α of (WAUM(xi))i∈[ntask]

9 Define Dpruned =
{(
xi,
(
y
(j)
i

)
j∈A(xi)

)
: WAUM(xi) ≥ qα for i ∈ [ntask]

}
10 Compute {π̂(j)}j∈[nworker] on tasks in Dpruned

11 Soft labels: ŷi = ỹi∑
k∈[K](ỹi)k

∈ ∆K−1 with ỹi =
(∑
j∈A(xi)

π̂
(j)
k,k1{y(j)i =k}

)
k∈[K]

for all xi ∈ Xpruned

Refining confusion matrix estimation. DS might suffer from the curse of dimensionality when
the numberK of classes is large. Indeed, it relies on estimatingK2 coefficients per worker. Possible
adaptation depending on the number of workers and how many answers they give are possible. For
instance, one can use clustered (workers) confusion matrices in Algorithm 1 as a remedy (Imamura
et al., 2018). Another alternative is to leverage the iterative nature of Algorithm 1 and estimate
confusion matrices π̂(j) only on unambiguous tasks, see Appendix E.2.

4 EXPERIMENTS

In our experiments, we investigate simulations and the CIFAR-10H dataset (Peterson et al., 2019),
a crowdsourced dataset with both tasks and workers labels openly accessible. For each aggregation
schemes considered, we train a neural network on the soft (except for MV) labels obtained after
the aggregation step. We compare our WAUM scheme with MV, Naive Soft, DS and GLAD; see
Appendix A for an overview of the methods5 and Appendix D for details and additional simulations.

Metrics investigated After training with the aggregated labels, we report the following perfor-
mance metrics on test set Dtest (available for simulations and for CIFAR-10H): top-1 accuracy and
expected calibration error (ECE) (with M = 15 bins as in Guo et al. (2017), see Equation 7 in Ap-
pendix C). We also report the train accuracy: Acctrain(y?, ŷ) = 1

|Dtrain|
∑|Dtrain|
i=1 1{argmax ŷi=y?i }, i.e.,

the accuracy of the aggregation method on the training set’s true labels (available for simulations
and for CIFAR10-H). When dealing with hard labels, the arg max can simply be omitted in the
definition of Acctrain. For the WAUM, the train accuracy is computed on Dpruned instead of Dtrain as
this method does not label tasks detected ambiguous. All results are averaged over 10 repetitions.

Implementation details For simulated datasets, the training is performed with a three dense lay-
ers’ artificial neural network (30, 20, 20) with batch size set to 64. Moreover, workers are simu-
lated6 with scikit-learn (Pedregosa et al., 2011). For with CIFAR-10H the Resnet-18 (He
et al., 2016) architecture is chosen for simplicity (with batch size also set to 64). To optimize the
parameters, we consider an SGD optimizer over 150 training epochs, with initial learning rate of 0.1,
decreasing it by a factor 10 at epoch 50 and 100. Other hyperparameters for Pytorch’s (Paszke
et al., 2019) SGD are momentum=0.9 and weight decay=5e-4. Our goal is to observe the
generalization performance considering feature-blind aggregation strategies against the WAUM.
We do not use data augmentation since duplicating mislabeled or poorly labeled tasks can artifi-
cially worsen performance (Harutyunyan et al., 2020; Nishi et al., 2021), see Appendix D.1. All
experiments are executed on servers equipped with an Nvidia RTX 2080 and Quadro T2000 GPUs.

5Code is available in the supplementary material; an online repository will be released for the conference.
6
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

6

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

Simulated binary dataset: two circles. We simulate ntask = 500 points with scikit-
learn’s function two circles (with noise ε = 0.2 and scaling factor 0.4). Our nworker =
3 workers are standard classifiers (see details in Appendix D): a linear Support Vector Machine
Classifier (linear SVC), an SVM with RBF kernel (SVC), and a gradient boosted classifier (GBM)
with five estimators. Data is split between train (70%) and test (30%) and each simulated worker
votes for each task, i.e., for all x ∈ Xtrain, |A(x)| = nworker. Figure 3 illustrates that the AUM
identifies tasks misclassified or close to the decision change, for each worker. The WAUM indicates
few potentially ambiguous tasks (low value) and a peak on simple ones (high value), see Figure 3,
right part. Tasks with large WAUM are located mostly on the west/south-west of the two circles
separation, i.e., where workers disagree the most. Thanks to soft labels and DS confusion matrices
estimated on Dpruned, WAUM achieves better test accuracy and expected calibration (in terms of
ECE), see Table 2.

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M 0.2 0.4 0.6 0.8 1

0
0.5
1
1.5
2

q0.1

WAUM

0

0.25

0.5

s(
j
) 0.4

0.6

0.8

Figure 3: two circles: simulated workers (w1, w2 and w3) with their associated AUM and normalized
trust scores (left) and associated WAUM distributions (right) for α = 0.1.

Tr
ai

n
(h

ar
d

la
be

ls
)

Ground truth MV Naive soft DS GLAD WAUM

Te
st

(h
ar

d
la

be
ls

)

Figure 4: two circles: label predictions on train/test sets provided by a three dense layers’ artificial neural
network (30, 20, 20) trained on smooth labeled obtained by various aggregation strategies. Points in red are
pruned from training by WAUM (here α = 0.1). In this binary case, we display binary labels, but soft
alternatives can also be visualized (cf. Appendix subsection D.2).

Table 2: Aggregation schemes on two circles (ntask = 500 tasks, |A(x)| = nworker = 3. For reference,
the best worker is w3 (GBM) with a training accuracy of 0.960 and a test accuracy of 0.880.

Aggregation Acctrain Test accuracy ECE

MV 0.889 0.847± 0.004 0.120± 0.006
Naive soft 0.889 0.810± 0.017 0.091± 0.015
DS 0.874 0.819± 0.006 0.127± 0.010
GLAD 0.889 0.847± 0.003 0.123± 0.006

WAUM(α = 10−3) 0.891 0.855± 0.001 0.054± 0.006

WAUM(α = 10−2) 0.896 0.867± 0.011 0.064± 0.009

WAUM(α = 10−1) 0.930 0.863± 0.012 0.075± 0.013
WAUM(α = 0.25) 0.962 0.837± 0.016 0.082± 0.012

7

Simulated multiclass dataset: three circles. We adapt the previous example for K = 3
classes, simulating 250 tasks per class (ntask = 750), and similar workers, each classifying all
training tasks. The disagreement area is identified in the north-west area of the dataset as can be
seen in Figure 5. Table 3 also shows that pruning too little data (α small) or too much (α large) can
mitigate the performance.

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M 0 0.5

0

1

2
q0.1

WAUM

0

0.25

0.5

s(
j
) 0.2

0.4

0.6

0.8

Figure 5: three circles: simulated workers (w1, w2 and w3) with their associated AUM and normalized
trust scores (left) and associated WAUM distributions (right) for α = 0.1.

Tr
ai

n
(h

ar
d

la
be

ls
)

Ground truth MV Naı̈ve soft DS GLAD WAUM

Te
st

(h
ar

d
la

be
ls

)

Figure 6: three circles: label predictions on train/test sets provided by a three dense layers’ artificial
neural network (30, 20, 20) trained on smooth labeled obtained by various aggregation strategies. Points in red
are pruned from training by WAUM (here α = 0.1).

Table 3: Aggregation schemes on three circles (ntask = 7500 tasks, |A(x)| = nworker = 3). For
reference, the best worker is w3 (GBM) with a training accuracy of 0.920 and a test accuracy of 0.836.

Aggregation Acctrain Test accuracy ECE

MV 0.794 0.727± 0.026 0.133± 0.027
Naive soft 0.794 0.697± 0.018 0.178± 0.016
DS 0.747 0.753± 0.072 0.220± 0.077
GLAD 0.549 0.578± 0.023 0.356± 0.024

WAUM(α = 10−3) 0.891 0.781± 0.042 0.179± 0.014

WAUM(α = 10−2) 0.894 0.783± 0.055 0.181± 0.020

WAUM(α = 10−1) 0.936 0.806± 0.051 0.186± 0.033
WAUM(α = 0.25) 0.949 0.790± 0.042 0.183± 0.025

CIFAR-10H. We consider now the CIFAR-10H dataset Peterson et al. (2019). The training part of
CIFAR-10H consists of the 10 000 tasks of the test set of the original CIFAR-10 dataset (Krizhevsky
& Hinton, 2009). In total nworker = 2571 workers participated on the Amazon Mechanical Turk
platform, each labeling 200 images (20 from each original class), leading to approximately 50 an-
swers per task. We have randomly extracted 500 tasks for a validation set (hence |Dtrain| = 9500).

8

The final weights output by the network are the one achieving the lowest cross-entropy loss on this
set. We test our model on |Dtest| = 50K tasks of the original (hard labeled) train dataset of CIFAR-
10. This dataset is notoriously more curated (Aitchison, 2021) than common dataset in the field (but
is the only one openly available with both votes and tasks): most difficult tasks were identified and
removed at the creation of the CIFAR-10 dataset, resulting in few ambiguities. Table 4 shows that
in this simple setting, our data pruning strategy is still relevant, with the choice α = 0.01. A visual
influence of the α hyperparameter is available in Appendix D.2 Figure 9. Also notice that in this
case, the GLAD algorithm is highly impacted and performs worse than a majority voting.

Furthermore, the WAUM leads to better generalization performance than vanilla DS model or DS
model with spammers identification. However, due to the few ambiguous tasks, using naive soft
labels can lead to close results for the WAUM, with a slight but consistent gain on our side on the
final calibration error. Note that vanilla DS slightly underperformed compared to other aggregation
schemes, but using the WAUM we obtain both confusion matrices from DS and aggregated labels
with competitive performance.

Table 4: Label recovery, generalization performance and calibration error on the CIFAR-10H dataset by a
Resnet-18 (here α = 0.01, removing on average 95 tasks).

Aggregation method Test accuracy ECE Acctrain

MV 69.533± 0.84 0.175± 0.00 99.2
Naive soft 72.149± 2.74 0.132± 0.03 99.2
DS (vanilla) 70.268± 0.93 0.173± 0.00 99.3
DS (spam identification) 70.053± 0.81 0.174± 0.0 99.3
GLAD 66.569± 8.48 0.173± 0.01 99.2
WAUM 72.747± 1.93 0.124± 0.00 99.2

We observe in Table 4 that with labels collected in CIFAR-10H, simple aggregation methods already
perform well. Over the 2571 workers, less than 20 are identified as spammers using Raykar & Yu
(2011), but we remind that most difficult tasks were removed when creating the CIFAR-10 original
dataset. We refer to the CIFAR-10 dataset collection procedure described in the ”labeler instruc-
tion sheet” of Krizhevsky & Hinton (2009, Appendix C) for more information about the written
incentives given to workers.

5 CONCLUSION AND FUTURE WORK

In this paper, we empirically investigate crowdsourcing aggregation models and how judging sys-
tems may impact generalization performance. Most models consider the ambiguity from the work-
ers’ perspective (very few consider the difficulty of the task itself) and evaluate workers on hard tasks
that might be too ambiguous to be relevant, leading to performance drop. Using a popular model
(DS) and small architectures’ classifiers, we develop the WAUM, a feature aware metric that im-
prove generalization performance. It also yields a fairer evaluation of workers’ abilities and supports
recent research on data pruning in supervised datasets. Extension of the WAUM to more general
learning tasks (e.g., top-k classification) would be natural. Future works need to improve compu-
tational efficiency of the WAUM – the vanilla algorithm requires to train one neural network per
worker – as initiated with our stacked version (see Appendix E.3). Moreover, adapting the WAUM
to imbalanced crowdsourced datasets is of interest to identify potentially too ambiguous images that
naturally occurs in open platforms like Pl@ntNet7. Last but not least, on the dataset side, providing
a challenging dataset (such as the one by Garcin et al. (2021) for instance) to learn in crowdsourcing
settings is still missing. Indeed, a dataset with the following properties could greatly foster future
research in the field: 1) a varying number of labels per worker, 2) a high number of classes and 3) a
subset with ground truth labels to test generalization performance.

ACKNOWLEDGMENTS

We thank Maximilien Servajean for his valuable input, especially on the use of classifiers as workers
for the simulations. This work was partially funded by the ANR CaMeLOt ANR-20-CHIA-0001-
01.

7https://plantnet.org/en/

9

https://plantnet.org/en/

REFERENCES

Laurence Aitchison. A statistical theory of cold posteriors in deep neural networks. In ICLR, 2021.

Isabelle Albert, Sophie Donnet, Chantal Guihenneuc-Jouyaux, Samantha Low-Choy, Kerrie
Mengersen, and Judith Rousseau. Combining expert opinions in prior elicitation. Bayesian Anal-
ysis, 7(3):503–532, 2012.

Anelia Angelova, Yaser S. Abu-Mostafa, and Pietro Perona. Pruning training sets for learning of
object categories. In CVPR, volume 1, pp. 494–501 vol. 1, 2005.

A Lord Birnbaum. Some latent trait models and their use in inferring an examinee’s ability. Statis-
tical theories of mental test scores, 1968.

Michael PJ Camilleri and Christopher KI Williams. The extended Dawid-Skene model. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 121–
136. Springer, 2019.

AP Dawid and AM Skene. Maximum likelihood estimation of observer error-rates using the EM
algorithm. J. R. Stat. Soc. Ser. C. Appl. Stat., 28(1):20–28, 1979.

Tim Draws, Alisa Rieger, Oana Inel, Ujwal Gadiraju, and Nava Tintarev. A checklist to combat cog-
nitive biases in crowdsourcing. In AAAI Conference on Human Computation and Crowdsourcing,
volume 9, pp. 48–59, 2021.

Chao Gao and Dengyong Zhou. Minimax optimal convergence rates for estimating ground truth
from crowdsourced labels. arXiv preprint arXiv:1310.5764, 2013.

C. Garcin, A. Joly, P. Bonnet, A. Affouard, J.-C. Lombardo, M. Chouet, M. Servajean, T. Lorieul,
and J. Salmon. Pl@ntnet-300k: a plant image dataset with high label ambiguity and a long-tailed
distribution. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, 2021.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand, and Jean-Francis Roy.
Risk bounds for the majority vote: from a pac-bayesian analysis to a learning algorithm. J. Mach.
Learn. Res., 16:787–860, 2015.

C Guo, G Pleiss, Y Sun, and KQ Weinberger. On calibration of modern neural networks. In ICML,
pp. 1321, 2017.

Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep self-learning from noisy labels. In ICCV, pp.
5138–5147, 2019.

Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, and Aram Galstyan. Improving generalization by
controlling label-noise information in neural network weights. In ICML, pp. 4071–4081, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Lê-Nguyên Hoang, Louis Faucon, Aidan Jungo, Sergei Volodin, Dalia Papuc, Orfeas Liossatos, Ben
Crulis, Mariame Tighanimine, Isabela Constantin, Anastasiia Kucherenko, Alexandre Maurer, Fe-
lix Grimberg, Vlad Nitu, Chris Vossen, Sébastien Rouault, and El-Mahdi El-Mhamdi. Tournesol:
A quest for a large, secure and trustworthy database of reliable human judgments. arXiv preprint
arXiv:2107.07334, 2021.

Hideaki Imamura, Issei Sato, and Masashi Sugiyama. Analysis of minimax error rate for crowd-
sourcing and its application to worker clustering model. In ICML, pp. 2147–2156, 2018.

Gareth Michael James. Majority vote classifiers: theory and applications. PhD thesis, Stanford
University, 1998.

Emily Jamison and Iryna Gurevych. Noise or additional information? leveraging crowdsource
annotation item agreement for natural language tasks. In Conference on Empirical Methods in
Natural Language Processing, pp. 291–297, 2015.

10

Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. Calibrating predictive model
estimates to support personalized medicine. J. Am. Med. Inform. Assoc., 19(2):263–274, 2012.

Cheng Ju, Aurélien Bibaut, and Mark van der Laan. The relative performance of ensemble methods
with deep convolutional neural networks for image classification. J. Appl. Stat., 45(15):2800–
2818, 2018.

Ece Kamar, Ashish Kapoor, and Eric Horvitz. Identifying and accounting for task-dependent bias
in crowdsourcing. In Third AAAI Conference on Human Computation and Crowdsourcing, 2015.

Faiza Khan Khattak. Toward a Robust and Universal Crowd Labeling Framework. PhD thesis,
Columbia University, 2017.

Hyun-Chul Kim and Zoubin Ghahramani. Bayesian classifier combination. In AISTATS, volume 22,
pp. 619–627, 2012.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. In NeurIPS,
volume 32, 2019.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss functions for top-k error: Analysis and
insights. In CVPR, pp. 1468–1477, 2016.

Qunwei Li and Pramod K Varshney. Does confidence reporting from the crowd benefit crowdsourc-
ing performance? In International Workshop on Social Sensing, pp. 49–54, 2017.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help?
NeurIPS, 32, 2019.

Kento Nishi, Yi Ding, Alex Rich, and Tobias Hollerer. Augmentation strategies for learning with
noisy labels. In CVPR, pp. 8022–8031, 2021.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. J. Artif. Intell. Res., 70:1373–1411, 2021a.

Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize
machine learning benchmarks. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2021b.

Satoshi Oyama, Yukino Baba, Yuko Sakurai, and Hisashi Kashima. Accurate integration of crowd-
sourced labels using workers’ self-reported confidence scores. In IJCAI, 2013.

Seo Yeon Park and Cornelia Caragea. On the calibration of pre-trained language models using
mixup guided by area under the margin and saliency. In ACML, pp. 5364–5374, 2022.

Rebecca J. Passonneau and Bob Carpenter. The benefits of a model of annotation. Transactions of
the Association for Computational Linguistics, 2:311–326, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, pp. 8024–8035. 2019.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In NeurIPS, volume 34, pp. 20596–20607, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12:2825–2830,
2011.

JC Peterson, RM Battleday, and TL Griffithsand O Russakovsky. Human uncertainty makes classi-
fication more robust. In ICCV, pp. 9617–9626, 2019.

11

Geoff Pleiss, Tianyi Zhang, Ethan R Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. In NeurIPS, 2020.

Ravi S. Raju, Kyle Daruwalla, and Mikko H. Lipasti. Accelerating deep learning with dynamic data
pruning. CoRR, abs/2111.12621, 2021.

Vikas C Raykar and Shipeng Yu. Ranking annotators for crowdsourced labeling tasks. In NeurIPS,
pp. 1809–1817, 2011.

Maximilien Servajean, Alexis Joly, Dennis Shasha, Julien Champ, and Esther Pacitti. Crowdsourc-
ing thousands of specialized labels: A bayesian active training approach. IEEE Trans. Multimed.,
19(6):1376–1391, 2017.

Vaibhav B Sinha, Sukrut Rao, and Vineeth N Balasubramanian. Fast Dawid-Skene: A fast vote
aggregation scheme for sentiment classification. arXiv preprint arXiv:1803.02781, 2018.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. Cheap and fast – but is it good?
evaluating non-expert annotations for natural language tasks. In Conference on Empirical Meth-
ods in Natural Language Processing, pp. 254–263. Association for Computational Linguistics,
2008.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. arXiv preprint arXiv:2206.14486, 2022.

Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lak-
shminarayanan, and Dustin Tran. Combining ensembles and data augmentation can harm your
calibration. In ICLR, 2021.

J Whitehill, T Wu, J Bergsma, J Movellan, and P Ruvolo. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. In NeurIPS, volume 22, 2009.

Forest Yang and Sanmi Koyejo. On the consistency of top-k surrogate losses. In ICML, pp. 10727–
10735, 2020.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR, 2018.

Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed recog-
nition. In CVPR, pp. 16489–16498, 2021.

Dengyong Zhou, Qiang Liu, John C Platt, Christopher Meek, and Nihar B Shah. Regularized
minimax conditional entropy for crowdsourcing. arXiv preprint arXiv:1503.07240, 2015.

12

A POPULAR LABEL AGGREGATION TECHNIQUES

Hereafter, we recall

Dtrain =

ntask⋃
i=1

{(
xi,
(
y
(j)
i

))
for j ∈ A(xi)

}
(1 revisited)

=

nworker⋃
j=1

{(
xi,
(
y
(j)
i

))
for i ∈ T (wj)

}
= D(1)

train ∪ · · · ∪ D
(nworker)
train .

In practice, we usually aggregate the crowdsourced labels from Dtrain into a probability distribution
(soft labels) over the possible classes to train a classifier. For the i-th task xi, we write ŷi for a soft
label associated to xi. The loss used to train a (neural network) classifier must be adapted to these
soft labels. Here, we have only considered the cross entropy loss:

H(ŷi, pi) = −
∑
k∈[K]

(ŷi)k log(pi)k ,

between the aggregated label ŷi and the associated predicted probability pi. In our experiments, we
have only investigated pi = softmax(xi), i.e., the softmax output associated to the task xi.

In this paper, we compare several aggregation strategies described thereafter: Naive soft, Majority
Voting (MV), Dawid and Skene (DS), GLAD, and compared it to our WAUM aggregation.

A.1 NAIVE SOFT

The naive soft labeling consists on computing the distribution of answered votes:

ŷi =
ỹi∑

k∈[K](ỹi)k
with ỹi =

(∑
j∈A(xi)

1{y(j)i =k}

)
k∈[K]

.

A.2 MAJORITY VOTE

Majority voting simply consists on choosing the most answered label (and can be seen as an arg max
of the naive soft):

ŷi = arg max
k∈[K]

(∑
j∈A(xi)

1{y(j)i =k}

)
.

A.3 DAWID AND SKENE

The Dawid and Skene (DS) (Dawid & Skene, 1979) model aggregates answers and evaluates the
workers’ confusion matrix to observe where their expertise lies exactly. Let us introduce ρ` the
prevalence of each label in the dataset, i.e., the probability that a task drawn at random has label
` ∈ [K]. Following standard notations, we also write {Ti`, i ∈ [ntask]} the indicator variables for
task i that is 1 if the task has label y? = `. Finally, let π(j)

`k be the probability for worker j to select
label k when y? = `. The model’s likelihood is:∏

i∈[ntask]

∏
`∈[K]

[
ρ`

∏
j∈[nworker]

∏
k∈[K]

(
π
(j)
`k

)]Ti`

. (5)

Using the EM Algorithm 2, we obtain maximum likelihood estimations of π(j) and ρ` for j ∈
[nworker] and ` ∈ [K]. The convergence criterion is often chosen as the likelihood’s variability
between two iterations.

The DS model has been adapted to different settings (sparsity, worker clustering, accelerations)
(Servajean et al., 2017; Imamura et al., 2018; Sinha et al., 2018) to overcome limitations mostly due
to the estimation of the confusion matrices of size K2 for each worker. We discuss these possible
alternatives in Appendix E.

13

Algorithm 2: EM algorithm DS model.
Data: Dtrain: crowdsourced dataset
Result: {π̂(j)}j∈[nworker]: estimated confusion matrices; (ŷi)i∈[ntask]: tasks soft labels

1 Initialization: ∀i ∈ [ntask],∀` ∈ [K], T̂i` = 1
|A(xi)|

∑
j∈A(xi)

1{y(j)i =`}
2 while Convergence not achieved do

// M-step: Get π̂ and ρ̂ assuming T̂s are known

3 ∀(`, k) ∈ [K]2, π̂
(j)
`k ←

∑
i∈[ntask]

T̂i`∑
k∈[K]

∑
i′∈[ntask]

T̂i′`

4 ∀` ∈ [K], ρ̂` ← 1
ntask

∑
i∈[ntask] T̂i`

// E-step: Estimate T̂s with current π̂ and ρ̂

5 ∀i ∈ [ntask],∀` ∈ [K], T̂i` =
∏

j∈A(xi)

∏
k∈[K] ρ̂`

(
π̂
(j)
`k

)
∑

`′∈[K]

∏
j′∈A(xi)

∏
k′∈[K] ρ̂`′

(
π̂
(j′)
`′k′

)
6 Labels: ∀i ∈ [ntask], ŷi = T̂i• ∈ RK

A.4 GLAD

We recall the GLAD (Whitehill et al., 2009) algorithm in the binary setting8. A modeling assump-
tion is that the j-th worker labels correctly the i-th task with probability given by

P(y
(j)
i = y?i |αj , βi) =

1

1 + e−αjβi
,

with αj ∈ R the worker’s expertise: αj < 0 implies misunderstanding, αj = 0 an impossibility
to separate the two classes and αj > 0 a valuable expertise. The coefficient 1/βi ∈ R+ represents
the task’s intrinsic difficulty: if 1/βi → 0 the task is trivial; on the other side when 1/βi → +∞
the task is very ambiguous. Parameters (αj)j∈[nworker] and (βi)i∈[ntask] are estimated using an EM
algorithm as described in Algorithm 3.

Algorithm 3: EM algorithm GLAD model.
Data: Dtrain: crowdsourced dataset
Result: α = {αj}j∈[nworker]: worker abilities, β = {βi}i∈[ntask]: task difficulties,

(ŷi)i∈[ntask]: aggregated labels
1 while Convergence not achieved do
2 E-step // Estimate probability of y?i

3 ∀i ∈ [ntask], P(y?i |{y
(j)
i }i, α, βi) ∝ P(y?i)

∏
j P(y

(j)
i |y?i , αj , βi)

4 M-step // Maximization
5 Maximize auxiliary function Q(α, β) in Equation (6) with respect to α and β

The auxiliary function for the binary GLAD model is:

Q(α, β) = E[logP({y(j)i }ij , {y?i }i)] =
∑
i

E[logP(y?i)] +
∑
ij

E[logP(y
(j)
i |y?i , αj , βi)] . (6)

Following Whitehill et al. (2009), denote pk = P(y?i = k|{y(j)i }ij , α, β), then one can obtain partial
derivatives of the function Q with respect to αj and βi as follows:

∂Q

∂αj
=
∑
i

(p1y
(j)
i + p0(1− y(j)i)− P(y

(j)
i = y?i |αj , βi))βi ,

∂Q

∂αj
=
∑
j

(p1y
(j)
i + p0(1− y(j)i)− P(y

(j)
i = y?i |αj , βi))αj .

Setting the partial derivatives of the functionQ to zero, one can solve iteratively the nonlinear system
of equations. See Whitehill et al. (2009)[Supplementary material] for additional details.

8we provide few more details at the end of the paragraph for multi-class settings

14

An extension to the multiclass setting is given by Whitehill et al. (2009) under the following assump-
tion: the distribution over all incorrect labels is supposed uniform. However, this is not verified in
many practical cases, as can be seen for example in Figure 2 where the deer label is only mistaken
with labels referring to other animals and not with vehicles. We have used the implementation from
https://github.com/notani/python-glad to evaluate the GLAD performance in our
experiments. Instead of setting the partial derivatives to zero and solving the nonlinear system, it
maximizes the function Q with respect to α and β using the conjugate gradient algorithm.

B ADDITIONAL DETAILS ON AUM AND WAUM

AUM computation in practice. We recall in Algorithm 4 how to compute the AUM in practice
for a given training set Dtrain. This step is used within the WAUM (label aggregation step). Overall,
with respect to training a model, computing the AUM, requires an additional cost: T training epochs
are needed to record margins for each task. This usually represents less than twice the original time
budget. We recall that softmax(t)(xi) is the softmax output of the predicted scores for the task xi at
iteration t.

Algorithm 4: AUM algorithm.
Data: Dtrain = (xi, yi)i∈[ntask]: training set with ntask task/label couples, T : total epochs.
Result: (AUM(xi, yi))i∈[ntask]: tasks’ AUM.

1 for t = 1, . . . , T do
2 Train the neural network for epoch t using Dtrain
3 for i ∈ [ntask] do
4 Record softmax output softmax(t)(xi) ∈ ∆K−1
5 Compute margin M (t)(xi, yi) = softmax(t)

yi (xi)− softmax
(t)
[2] (xi)

6 ∀i ∈ [ntask], AUM(xi, yi;Dtrain) = 1
T

∑
t∈[T]M

(t)(xi, yi) .

Example 1 (Confusion matrix update). The WAUM procedure estimates each worker’s confusion
matrix using a DS-like model first on Dtrain, and then on Dpruned. A naturally arising question is
then: does pruning these few tasks selected with lowest WAUM really has an impact on the esti-
mates matrices π̂(j)? Let us go back to the three circles simulated dataset from Section 4 and
compare the confusion matrices on Dtrain denoted π(j)

train and on Dpruned denotes π(j)
pruned for our three

simulated workers. We also represent in Figure 7 the variation between the estimated confusion
matrices onDtrain andDpruned. Figure 7 shows that on the three circles dataset, removing am-
biguous training data with a cut-off parameter α = 0.1 lead to significant changes in the estimated
error rates in the confusion matrices. It decreased the confidence in w1 to find the innermost class,
and increased the confidence in the best worker w3.

Example 2 (Trust factors). Assume K = 3, nworker = 2 and confusion matrices:

π̂(1) =

(
1 0 0

0.5 0.5 0
0.5 0.5 0

)
and π̂(2) =

(
0 0.5 0.5

0.5 0.5 0
0 0 1

)
.

Given a task x answered by both workers and an arbitrary neural network trained with T epochs
such that softmax(T)(x) = (0.5, 0.5, 0), then s(1)(x) = 0.75 and s(2)(x) = 0.25. Thus, the
averaged margin with the label proposed by worker w1 counts three times more than the one from
worker w2 as the network ambiguity only comes from the first two labels where worker w1 is more
competent.
Example 3 (Extreme cases for WAUM aggregations). Aggregation strategies often return soft la-
bels, but in a context with low uncertainty, hard label (say Dirac distribution) might be popular too.
With high uncertainty, the estimated label distribution tend to be uniform over the K classes. Such
phenomenon naturally arises with WAUM aggregation. In the following we illustrate when these
extreme cases occur in the binary setting.

Using Algorithm 1, the aggregated label ŷ of a task inDpruned is a Dirac distribution (perfect consen-
sus) if all workers, independently of their confusions, answer the same label. On the other extreme,

15

https://github.com/notani/python-glad

0

1

2

π̂
(j

)
D t

ra
in

w0 w1 w2

0.0

0.5

1.0

0

1

2π̂
(j

)
D p

ru
ne

d

0.0

0.5

1.0

0 1 2

0

1

2
π̂

(j
)
D t

ra
in
−
π̂

(j
)
D p

ru
ne

d
0 1 2 0 1 2

−1

0

1

Figure 7: Confusion matrices of the three simulated workers on the three circles dataset before and after
pruning tasks selected with lowest WAUM with α = 0.1.

soft labels representing uniform distributions can be obtained by many configurations. In a binary
setting (K = 2), picking nworker = 3 such that y(1) = y(2) = 1, y(3) = 2 and

π̂(1) =

(
0.25 0.75
0.4 0.6

)
, π̂(2) =

(
0.25 0.75

0 1

)
and π̂(3) =

(
0.5 0.5
0 1

)
,

results in uniform soft labels: ŷ = (1
2 ,

1
2) ∈ ∆1. Similar compensations occur for K > 2.

C REMINDER ON CALIBRATION OF NEURAL NETWORKS

Hereafter, we propose a reminder on neural networks calibration metric defined in Guo et al. (2017).
Calibration measures the discrepancy between the accuracy and the confidence of a network. In this
context, we say that a neural network is perfectly calibrated if it is as accurate as it is confident.
For each task x ∈ Xtrain = {x1, . . . , xntask}, let us recall that an associated predicted probability
distribution is provided by softmax(x) ∈ ∆K−1. Let us split the prediction interval [0, 1] into M
bins I1, . . . , IM of size 1/M : Im = (m−1M , mM]. Following Guo et al. (2017), we denote Bm =

{x ∈ Xtrain : softmax[1](x) ∈ Im} the task whose predicted probability is in the m-th bin9. We
recall that the accuracy of the network for the samples in Bm is given by:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1{softmax[1](xi)=yi} .

We can now define the empirical confidence on the same Bm by:

conf(Bm) =
1

|Bm|
∑
i∈Bm

softmax[1](xi) .

Finally, the expected calibration error (ECE) reads:

ECE =

M∑
m=1

|Bm|
ntask

|acc(Bm)− conf(Bm)| . (7)

A neural network is said perfectly calibrated if ECE = 0, thus if the accuracy equals the confidence
for each subset Bm.

D LEARNING ON SIMULATED CROWDSOURCED DATASETS

In this section, we provide some details about the experiments on simulated datasets two circles
and three circles described in Section 4. We also consider two extra experiments showing
some limitations of the pruning step.

9Remember that with our notation softmax[1](x) = arg maxk∈[K] (softmax(x))k, with ties broken at
random.

16

We consider simulated datasets and workers represented by popular classifiers: a linear SVC, an
SVC with RBF kernel and a gradient boosted classifier (with five estimators). To induce more
ambiguity (and avoid too similar workers), one-shot learners are classifiers with maximum iteration
set to 1 in the learning phase. Other hyperparameters are set to scikit-learn’s default values10.

The two circles dataset is simulated with the make circles from scikit-learn. The
noise ε = 0.2 and the factor is set to 0.4. For the three circles’s dataset, we use the same
scikit-learn function twice, with two different factors: 0.3 and 0.7 creating each circle ring.

D.1 LABEL NOISE AND DATA AUGMENTATION

The classification dataset two circles is also generated using make circles, with ε = 0.2
indicating the standard deviation of the noise added to each task. We also use a factor of 0.4 to scale
between the two circles. We generate ntask = 500 tasks addressed by our workers. Workers are
simulated as in Section 4 with answers stated in Figure 3. Here, we show with the simulation setting
of Section 4 that data augmentation with noisy tasks could hurt the test accuracy.

Each task x ∈ Xtrain is labeled by all workers, and augmented by adding a Gaussian noise with
probability p ∈ {0.1, 0.25, 0.5, 0.75} as follows (on each batch):

xaug = x+N (0, 0.52) .

We then train a three dense layers’ artificial neural network (30, 20, 20) neural network on aggre-
gated soft labels from naive soft and WAUM methods and compare the test accuracy in Table 5.
Duplicating too much noisy labels at learning can thus harm the generalization performance.

Table 5: Test accuracy after learning with augmented data for the two circles dataset with ntask = 500
tasks and |A(x)| = nworker by a three dense layers’ artificial neural network (30, 20, 20). Each x ∈ Xtrain is
augmented with probability p. Results are averaged over 10 repetitions.

p 0 0.1 0.25 0.5 0.75

Naive soft 0.810± 0.02 0.619± 0.01 0.592± 0.02 0.536± 0.00 0.482± 0.02
WAUM(α = 0.01) 0.863± 0.01 0.795± 0.01 0.782± 0.01 0.736± 0.01 0.684± 0.01

D.2 OTHER SIMULATED CROWDSOURCED DATASETS

We provided here more datasets to illustrate some aspects of our proposed WAUM, as well as its
limits. In all cases, the data is split into train (70%) and test (30%) sets.

• The two circles dataset, as introduced in Section 4, to highlight the ambiguity visual-
ization.

• The three circles dataset, introduced in Section 4, to show the visual impact of the
parameter α on the WAUM.

• The make classification dataset, that consists on two clusters. It provides a case
where pruning is not relevant and all methods achieve similar generalization.

• The two moons dataset with an intrinsic difficulty that is highly relevant for the final
decision, in this setting, pruning is unadvised as it can hurt generalization performance.

The first dataset does not present any significant difficulty thus leading to similar performance across
aggregated labels. The goal with the two moons dataset is to showcase a limitation of the WAUM:
removing data should not be done at the cost of removing inherent structure. We recall that the three
simulated workers are a Linear Support Vector Classifier (Linear SVC), a one-shot radial basis
function SVC (SVC) and a gradient boosting classifier using trees with five estimators (GBM).

10For instance, the squared-hinge loss function is penalized with `2 regularization with strength set to 1 for
the linear SVC and the SVC), the gradient boosted classifier uses the multinomial deviance as loss, and the
maximum depth (number of nodes in trees) defaults to 3.

17

The two circles dataset: ambiguity visualization. The workers’ answers here are un-
changed from Figure 3. This part shows the ambiguity in the soft labels estimated with Dtrain using
the different aggregation strategies. We also represent the ambiguity in the output distribution. Each
point represents a task xi, and the associated label ŷi is represented with the color. Indeed, ŷi ∈ ∆1,
thus knowing the probability to belong in one class, the other probability can easily be inferred.

Tr
ai

n
(h

ar
d

la
be

ls
)

Ground truth MV Naive soft DS GLAD WAUM

0

0.2

0.4

0.6

0.8

1

Tr
ai

n
(s

of
tl

ab
el

s)
Te

st
(h

ar
d

la
be

ls
)

Te
st

(s
of

tl
ab

el
s)

Figure 8: two circles: soft labels (probabilities) predictions on train/test sets provided by a three dense
layers’ artificial neural network (30, 20, 20) trained on smooth labeled obtained by various aggregation strate-
gies. Points in red are pruned from training by WAUM (here α = 0.1). Each point represents a task xi, and its
color is the probability to belong in class 1. This lets us visualize the ambiguity in the soft training aggregated
labels, but also in the resulting predictions by the neural network.

Figure 8 shows that most training labels with DS and GLAD do not induce much ambiguity. This
lack of ambiguity is then reflected in the test output with more confident probabilities. However,
the WAUM labels have less uncertainty than the Naive soft ones, especially in the south-west re-
gion. There, the test probabilities also reflect this confidence, while keeping the uncertainty near the
decision boundary similar to the one by the Naive soft strategy. Overall, the WAUM aggregation
removed much of the unneeded uncertainty and kept the uncertainty on very ambiguous tasks.

18

The three circles dataset: influence of α. In Table 3, we show on the three circles
simulated dataset that we get better performance with the WAUM using hyperparameter α = 0.1.
We visually compare the influence of this quantile hyperparameter on the pruning, in Figure 9.

Tr
ai

n
Ground truth α = 10−3 α = 10−2 α = 10−1 α = 0.25

Te
st

Figure 9: Influence of α on the pruning step. Red dots indicate data points pruned from the training set, at level
qα in the WAUM (see line 8 in Algorithm 1). We consider (α ∈ {10−3, 10−2, 10−1, 0.25}). The closer α
is to 1, the more training tasks are pruned from the training set (and the worse the performance). The neural
network used for predictions is a three dense layers’ (30, 20, 20), as for other simulated experiments.

The make classification dataset: a case where pruning is useless. We simulate ntask =
500 tasks using make classification from scikit-learn using two clusters per class
(here K = 2) and split the data in train/test with a test size of 0.3. We consider a class separation
factor of 1.5 on the hypercube. With this dataset, all methods achieve similar performance.

Table 6: Training and test accuracy depending on the aggregation method used for the
make classification’s dataset with ntask = 500 points used for training a three dense layers’
artificial neural network (30, 20, 20). For reference the best workers are w1 and w3 with respective training
accuracies of 0.786 and 0.790 and test accuracies of 0.770 and 0.660.

Aggregation Acctrain Test accuracy ECE

MV 0.923 0.907± 0.000 0.085± 0.000
Naive soft 0.923 0.906± 0.002 0.160± 0.012
DS 0.920 0.886± 0.000 0.108± 0.002
GLAD 0.926 0.893± 0.004 0.076± 0.004

WAUM(α = 10−3) 0.928 0.897± 0.006 0.078± 0.013

WAUM(α = 10−2) 0.933 0.901± 0.002 0.078± 0.012

WAUM(α = 10−1) 0.965 0.889± 0.007 0.084± 0.016
WAUM(α = 0.25) 0.977 0.899± 0.011 0.084± 0.015

19

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M 0.4 0.6 0.8 1

0

1

2
q0.1

WAUM

0

0.25

0.5

s(
j
) 0.4

0.6

0.8

Figure 10: Simulated workers with associated AUM and normalized trust scores on the
make classification dataset. The hyperparameter α is set to 0.1.

Tr
ai

n
(h

ar
d

la
be

ls
)

Ground truth MV Naı̈ve soft DS GLAD WAUM

0

0.2

0.4

0.6

0.8

1

Tr
ai

n
(s

of
tl

ab
el

s)
Te

st
(h

ar
d

la
be

ls
)

Te
st

(s
of

tl
ab

el
s)

Figure 11: Training set and test predictions probabilities by a three dense layers’ artificial neural network
(30, 20, 20) on the make classification’s simulated dataset depending on the label aggregation strategy.
Points in red are pruned from the training set in the WAUM aggregation. The α hyperparameter is set to 0.1.
Each point represents a task xi, and its color is the probability to belong in class 1. This lets us visualize the
ambiguity in the soft training aggregated labels, but also in the resulting predictions by the neural network.

20

The two moons dataset: a case where pruning is not recommended The two moons sim-
ulation framework showcases the difference between relevant ambiguity in a dataset and artificial
one. This dataset is created using make moons function from scikit-learn. We simulate
ntask = 500 points, a noise ε = 0.2 and use a test split of 0.3. As can be observed with Figure 12
and Figure 13, the difficulty on this dataset comes from the two shapes leaning into one another.
However, this intrinsic difficulty is not due to noise, but is actually inherent to the data. In this case,
removing the hardest tasks mean removing points at the edges of the crescents, and those are in fact
important in the data’s structure. From Table 7, we observe that learning on naive soft labeling leads
to better performance than other aggregations. But with these workers, no aggregation produced
label capturing the shape of the data.

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M

0.20.40.60.8 1
0

1

2
q0.1

WAUM

0

0.25

0.5

s(
j
)

0.4
0.6
0.8

Figure 12: Simulated workers with associated AUM and normalized trust scores on the two moons dataset.
The hyperparameter α is set to 0.1.

Tr
ai

n
(h

ar
d

la
be

ls
) Ground truth MV Naı̈ve soft DS GLAD WAUM

0

0.2

0.4

0.6

0.8

1

Tr
ai

n
(s

of
tl

ab
el

s)
Te

st
(h

ar
d

la
be

ls
)

Te
st

(s
of

tl
ab

el
s)

Figure 13: Training set and test predictions probabilities by a three dense layers’ artificial neural network
(30, 20, 20) on the two moons simulated dataset depending on the label aggregation strategy. Points in red
are pruned from the training set in the WAUM aggregation. The α hyperparameter is set to 0.1. Each point
represents a task xi, and its color is the probability to belong in class 1. This lets us visualize the ambiguity in
the soft training aggregated labels, but also in the resulting predictions by the neural network.

21

Table 7: Training and test accuracy depending on the aggregation method used for the two moons’s dataset
with ntask = 500 points used for training a three dense layers’ artificial neural network (30, 20, 20). For
reference, the best worker is w3 with a training accuracy of 0.923 and a test accuracy of 0.900.

Aggregation Acctrain Test accuracy ECE

MV 0.917 0.894± 0.002 0.098± 0.004
Naive soft 0.917 0.887± 0.002 0.217± 0.010
DS 0.871 0.867± 0.000 0.126± 0.001
GLAD 0.006 0.872± 0.006 0.107± 0.004

WAUM(α = 10−3) 0.917 0.875± 0.002 0.088± 0.012

WAUM(α = 10−2) 0.919 0.874± 0.002 0.092± 0.011

WAUM(α = 10−1) 0.926 0.870± 0.003 0.101± 0.020
WAUM(α = 0.25) 0.946 0.829± 0.006 0.135± 0.011

E MODELS LIMITATIONS AND POSSIBLE EXTENSIONS

E.1 GLAD LIMITATIONS: ILLUSTRATION ON A CLASSICAL DATASET

Our goal in this section is to show the importance to consider both the tasks and the labels answered
when assessing a task’s difficulty in an aggregation model. Indeed, we show experimentally that
removing ambiguous tasks from training leads to significant accuracy improvements for GLAD. In
this experiment, we consider the classical crowdsourcing setting where no task is available (i.e., no
Xtrain). We investigate the performance of the GLAD algorithm to retrieve training labels. Recall
that GLAD takes into account both tasks’ intrinsic difficulties and workers’ abilities.

The three difficulties dataset. We consider the three difficulties dataset, a
crowdsourcing example with binary labels we have adapted from Whitehill et al. (2009). In this
dataset, a crowd of nworker = 50 workers has to label ntask = 1000 tasks. Labels are binary
and balanced. Tasks are either easy, hard or random indicating their intrinsic difficulty. Tasks
difficulties are drawn with probabilities respectively peasy = 0.53, phard = 0.27 and prandom = 0.2.
We thus simulate (y?i , d

?
i) ∈ {0, 1} × {easy,hard,random}. We model each worker ability by

two levels: they are independently chosen as good (with probability 0.75) or bad (with probability
0.25). The interplay between task difficulty and worker ability is governed by the confusion matrices
presented in Table 8. In this context, the random tasks represent ambiguous tasks that workers
labels by flipping a fair coin.

Table 8: Confusion matrices simulated with three levels of difficulty. Tasks easy induce no error, random
ones are answered as a fair coin while hard tasks induce more confusion to bad workers than to good ones.

easy (53%)
hard (27%)

random (20%)
good worker (75%) bad worker (25%)(

1 0
0 1

) (
0.75 0.25
0.25 0.75

) (
0.55 0.45
0.45 0.55

) (
0.5 0.5
0.5 0.5

)

We chose a varying number of answers per task to reflect that in non-controlled experiments, the
number of answers per task can fluctuate. Hence, each tasks’ number of answers is drawn uniformly
at random as |A(x)| ∼ U({1, . . . , 10}), and then |A(x)| workers are chosen uniformly at random
among the nworker. We repeat the experiment 40 times and monitor the training label accuracy
obtained by GLAD.

Without pruning the random tasks, the training accuracies lays inside [0.838, 0.885] for 95% of the
repetitions. When pruning the random tasks, the accuracy improves and lays inside [0.941, 0.965]
for 95% of the repetitions. Thus, identifying such tasks is important to improve training since the
accuracy is sensitive to ambiguous task (such as random tasks).

As displayed in Figure 14a, with GLAD, the difficulty estimated β̂ only discriminates easy tasks
from the others. Besides, when a task x has only received a single label (|A(x)| = 1, see Figure 14b)
the task’s difficulty cannot be estimated. Thus all these tasks have nearly the same estimated diffi-
culty. Identifying such tasks is thus essential to distinguish between hard (necessary in the learning

22

random hard easy

difficulty

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g(
β̂

)

(a) Distribution of the log estimated difficulty (β̂) depend-
ing in each simulated difficulty level: random and hard
tasks have similar distributions

0 200 400 600 800 1000

Sorted task index

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
g(
β̂

)

difficulty

random

hard

easy

one vote

False

True

(b) Sorted tasks by estimated difficulty (β̂) using
GLAD: tasks with a single vote all have nearly
the same estimated difficulty

Figure 14: The three difficulties dataset (ntask = 1000, nworker = 50). Difficulty estimated with
GLAD. Associated difficulty levels, workers quality and confusion matrices are presented in Table 8.

process) and random ones (that could be harmful). We have introduced the WAUM to identify such
ambiguous tasks. Note that the neural network output probabilities can act as a control agent and
take into account tasks that only have one vote too. This is why using models with the actual tasks
(xi)i∈[ntask] and not only the tasks’ labels is crucial in crowdsourcing settings with high variations
in the number of votes per task.

E.2 CONFUSION MATRICES ESTIMATION IN THE WAUM

To compute the WAUM, we use the confusion matrices {π(j)}j∈[nworker] (estimated with Algo-
rithm 1). The vanilla DS model (Dawid & Skene, 1979) can be used to estimate these confusion
matrices π(j) ∈ RK×K for each worker wj . The quadratic number of parameters to estimate for
each worker can lead to convergence issues with the vanilla DS model. But as stated in Section 3,
any model that estimates confusion matrices can be used in the WAUM’s computation.

We detail below some possible variants:

• Sinha et al. (2018), who have accelerated vanilla DS convergence by constraining the esti-
mated labels’ distribution Ti• to be a Dirac mass. Hence, predicted labels are hard labels,
leading to worse calibration error than vanilla DS while preserving the same accuracy.

• Passonneau & Carpenter (2014) who have introduced Dirichlet priors on the confusion
matrices’ rows and the prevalence ρ.

• Servajean et al. (2017) who have exploits the sparsity of the confusion matrices when the
number of classes K is high.

• Imamura et al. (2018) estimates L� nworker clusters of workers thus constraining at most
L different confusion matrices using variational inference. This lead to estimate K2 × L
coefficients for the confusion matrices instead of K2 × nworker.

These alternatives to the vanilla DS model could help computing faster the confusion matrices used
in the WAUM for the trust score computation.

Iterate confusion matrix estimation. As Algorithm 1 is an iterative procedure to estimate confu-
sion matrices π̂(j) on less ambiguous tasks, one natural question is whether one iteration is enough
or if repeating this process improves the performance. We denote WAUMiter the strategy that esti-
mates the WAUM with confusion matrices obtained from the first dataset Dpruned.

We consider the same workers on the three circles classification task, but vary the number of
votes per task. Each tasks’ number of answers is drawn uniformly at random such that 1 ≤ |A(x)| ≤
3. Then, |A(x)| workers are chosen among the nworker ones available in the crowd with probability
0.2 for the linear SVC (that worst simulated workers), and 0.4 for the two other classifiers. Workers’

23

Table 9: Performance metrics by aggregation method for the three circles dataset with 250 tasks per
label and 1 ≤ |A(x)| ≤ nworker = 3 by a three dense layers’ artificial neural network (30, 20, 20). Test size
is 0.3.

Aggregation Naive soft DS GLAD WAUM WAUMiter

Acctrain 0.729 0.659 0.583 0.667 0.753
Test accuracy 0.728± 0.018 0.644± 0.027 0.581± 0.003 0.725± 0.056 0.753± 0.039
ECE 0.146± 0.023 0.242± 0.011 0.196± 0.004 0.137± 0.034 0.156± 0.023

decisions are unchanged from Figure 5. Table 9 reports the train and test accuracy for the aggregation
methods considered. DS and GLAD underperform WAUM, whose decision boundary is affected
nonetheless. Note that, contrary to GLAD, the tasks’ difficulty considered by the WAUM can be
evaluated thanks to the tasks’ features even with a single answer.

In short, taking into accounts tasks’ features lets us break through one of GLAD limitations –
estimating the difficulty for tasks with a single vote. We recall possible alternatives to compute
faster the confusion matrix used in the WAUM statistic. Finally, iterating the confusion matrix and
scores estimation in the WAUM procedure can improve performance in practice.

E.3 STACKING WORKERS ANSWERS IN THE WAUM

As stated in Section 3, the WAUM computation in Algorithm 1 can be costly in scenarios with
many workers, as it requires one neural network per worker to compute each AUM independently.
To limit this issue, we propose a stacked version. It consists in computing the WAUM withDstack :=

{(xi, y(j)i)}i∈[ntask],j∈A(xi), the dataset obtained by stacking all workers’ tasks and labels together.
We denote this alternate version WAUMstack. The difference between Algorithm 1 and Algorithm 5
resides in the neural network training happening once on Dstack instead of one networks trained per
D(j)

train. The AUM and trust scores are still evaluated worker-wise and task-wise. Moreover, using
Dstack can break independence between workers. Indeed, for a given task, the trust score associated
to worker j depends on the answers given by all other workers. It might not be desirable: when
many spammers are present in the crowd, the network’s softmax output (on which the scores rely)
could be corrupted.

Algorithm 5: WAUMstack computation.
Data: Dtrain: tasks and crowdsourced labels, α ∈ [0, 1]: cut-off proportion
Result: {π̂(j)}j∈[nworker]: estimated confusion matrices; (ŷi): tasks’ aggregated label

1 Initialization: Get confusion matrix estimation {π̂(j)}j∈[nworker]
2 Train a neural network on the stacked dataset Dstack = {(xi, y(j)i)}i,j for T epochs
3 for j ∈ [nworker] do
4 Compute AUM(xi, y

(j)
i ;D(j)

train) using Equation (2) for i ∈ T (wj)

5 Compute trust scores s(j)(xi) using Equation (4) for i ∈ T (wj)
6 for each task x ∈ Xtrain do
7 Compute WAUM(x) using Equation (3)
8 Get qα the WAUM’s quantile threshold of order α of (WAUM(xi))i∈[ntask]

9 Define Dpruned =
{(
xi,
(
y
(j)
i

)
j∈A(xi)

)
: WAUM(xi) ≥ qα for i ∈ [ntask]

}
10 Compute {π̂(j)}j∈[nworker] on tasks in Dpruned

11 Soft labels: ŷi = ỹi∑
k∈[K](ỹi)k

∈ ∆K−1 with ỹi =
(∑
j∈A(xi)

π̂
(j)
k,k1{y(j)i =k}

)
k∈[K]

for all xi ∈ Xpruned

We simulate nw = 150 workers who answer tasks from a dataset with K = 4 classes
simulated using scikit-learn’s function make classification; we call this dataset
make classification multiclass. All simulated tasks are labeled by up to five work-
ers among Linear SVCs, SVCs or Gradient Boosted Classifiers (GBM) chosen uniformly. In order
to simulate multiple workers with some dissimilarities, we randomly assign hyperparameters for
each classifier as follows:

24

• Linear SVC:
– the margin C is chosen in a linear grid of 20 points from 10−3 to 3,
– the maximum number of iterations ranges between 1 and 100,
– and the loss function is in {hinge,squared hinge}.

• SVC:
– the kernel is in {poly,rbf,sigmoid} (polynomial is with degree 3),
– and the maximum number of iterations is between 1 and 100.

• GBM:
– the learning rate is in {0.01, 0.1, 0.5},
– the number of estimators is in {1, 2, 5, 10, 15, 20, 30, 50, 100},
– and the maximum number of iterations is between 1 and 100.

All simulated workers are also initialized using different seeds. All hyperparameters are drawn
uniformly at random from their respective set of possible values.

0 100 200 300 400 500 600 700

xi

0

1

2

3

4

5

|A
(x

i)
|

(a) Number of answers per task

0 20 40 60 80 100 120 140

wj

0

5

10

15

20

25

|T
(w

j
)|

(b) Number of votes per worker

Figure 15: The make classification multiclass dataset. Distribution of votes per task (a) and the
number of votes for the 150 workers (b) in the simulated classification problem with K = 4 classes and 250
tasks per class.

Table 10 shows a case with many workers and varying number of votes (nworker = 150 and up to five
votes per task, see Figure 15 for the repartition). In this setting, the stacked version of the WAUM
has the same performance as the vanilla WAUM, with a much lower computational cost (as we do
not train nworker networks but a single one).

Table 10: The make classification multiclass dataset: Performance metrics by aggregation
method. The number of tasks is ntask = 250 tasks per classes and 1 ≤ |A(x)| ≤ 5.

Aggregation Naive soft DS GLAD WAUM WAUMstack

Acctrain 0.8428 0.820 0.850 0.858 0.883
Test accuracy 0.851± 0.00 0.849± 0.004 0.842± 0.002 0.849± 0.006 0.861± 0.007
ECE 0.146± 0.023 0.242± 0.011 0.196± 0.004 0.137± 0.034 0.156± 0.023

F CIFAR-10H DATASET

Introduced by Peterson et al. (2019), the crowdsourced dataset CIFAR-10H attempts to recapture
the human labeling noise present when creating the dataset. CIFAR-10H train set consists of the test
set of CIFAR-10. The generalization performance is measured on CIFAR-10’s training set:

|Dtrain| = 10000 and |Dtest| = 50000 .

The crowdsourcing experimentation involved nworker = 2571 workers on Amazon Mechanical
Turk. Workers had to chose one of the ten labels of CIFAR-10 for each presented image (no alter-
native choice available). Each worker labeled 200 tasks (and was paid $1.50 for that): 20 for each

25

original category. Answering time was also measured for each worker. Note that attention check
occurred every 20 trials on tasks considered obvious: 14 workers failed a 75% accuracy thresh-
old.The CIFAR-10 dataset is balanced with respect to crowd votes as each task has been labelled by
50 workers in average. However, due to the original curation of the dataset (Krizhevsky & Hinton,
2009; Aitchison, 2021) this high number of votes does not imply wide disagreements in the pro-
posed labels. Figure 16 shows the distribution of the entropy on the soft label distribution of votes
per task:

∀x ∈ Xtrain, Ent(x) = −
∑
k∈[K]

ŷk log(ŷk) with ŷ =

∑
j∈A(x)

1{y(j)=k}∑
k∈[K]

(∑
j∈A(x)

1{y(j)=k}
) .

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Entropy

100

101

102

103

C
ou

nt

Figure 16: Frequency of task’s naive soft labels entropies (in logarithmic scale) in the CIFAR-10H dataset.
Only very few tasks show workers disagreeing. For reference, the maximum entropy is log(K) ' 2.303.

26

	1 Introduction
	2 Related work
	3 Weighted Area Under the Margin
	3.1 Definition and construction
	3.2 Label aggregation using the WAUM.

	4 Experiments
	5 Conclusion and future work
	A Popular label aggregation techniques
	A.1 Naive soft
	A.2 Majority vote
	A.3 Dawid and Skene
	A.4 GLAD

	B Additional details on AUM and WAUM
	C Reminder on calibration of neural networks
	D Learning on simulated crowdsourced datasets
	D.1 Label noise and data augmentation
	D.2 Other simulated crowdsourced datasets

	E Models limitations and possible extensions
	E.1 GLAD limitations: illustration on a classical dataset
	E.2 Confusion matrices estimation in the WAUM
	E.3 Stacking workers answers in the WAUM

	F CIFAR-10H dataset

