
Identify ambiguous tasks combining crowdsourced labels
by weighting Areas Under the Margin

Tanguy Lefort 1 2 3 Benjamin Charlier 1 2 Alexis Joly 1 2 4 3 Joseph Salmon 1 2 5

Abstract
In supervised learning — for instance in image
classification — modern massive datasets are
commonly labeled by a crowd of workers. The
obtained labels in this crowdsourcing setting are
then aggregated for training. The aggregation
step generally leverages a per-worker trust score.
Yet, such worker-centric approaches discard each
task’s ambiguity. Some intrinsically ambiguous
tasks might even fool expert workers, which could
eventually be harmful to the learning step. In
a standard supervised learning setting — with
one label per task — the Area Under the Mar-
gin (AUM) is tailored to identify mislabeled data.
We adapt the AUM to identify ambiguous tasks
in crowdsourced learning scenarios, introducing
the Weighted AUM (WAUM). The WAUM is an
average of AUMs weighted by task-dependent
scores. We show that the WAUM can help discard
ambiguous tasks from the training set, leading to
better generalization or calibration performance.
We report improvements over existing strategies
for learning a crowd, both for simulated settings
and for the CIFAR-10H, LabelMe and Music
crowdsourced datasets.

1. Introduction
Crowdsourcing labels for supervised learning has become
quite common in the last two decades, notably for image
classification datasets. Using a crowd of workers is fast,
simple (see Fig. 1) and less expensive than using experts.
Furthermore, aggregating crowdsourced labels instead of
working directly with a single one enables modeling the
sources of possible ambiguities and directly taking them
into account at training (Aitchison, 2021). With deep neural
networks nowadays common in many applications, both the
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architectures and data quality have a direct impact on the
model performance (Müller et al., 2019; Northcutt et al.,
2021b) and on calibration (Guo et al., 2017). Yet, depend-
ing on the crowd and platform’s control mechanisms, the
quality of the labels might be low, with possibly many mis-
labeled instances (Müller & Markert, 2019), leading to poor
generalization (Snow et al., 2008).

Popular label aggregation schemes take into account the
uncertainty related to workers’ abilities: for example by
estimating confusions between classes, or using a latent vari-
able representing each worker trust (Dawid & Skene, 1979;
Kim & Ghahramani, 2012; Sinha et al., 2018; Camilleri
& Williams, 2019). This leads to scoring workers without
taking into account the inherent difficulty of the tasks at
stake. Inspired by the Item Response Theory (IRT) from
Birnbaum (1968), Whitehill et al. (2009) combined both
the task difficulty and the worker’s ability in a feature-blind
fashion for label aggregation. Other feature-blind aggre-
gation strategies exist using rank-one matrix completion
(Ma & Olshevsky, 2020; Ma et al., 2020) or also pairwise
co-occurrences (Ibrahim et al., 2019). All the feature-blind
strategies only require the labels but not the associated fea-
tures1. For instance, GLAD (Whitehill et al., 2009) esti-
mates a task difficulty without the actual task: its estima-
tion only relies on the collected labels and not on the tasks
themselves (in image-classification settings, this means the
images are not considered for evaluating the task difficulty).
In the classical supervised learning setting, the labels are
said to be hard — i.e., a Dirac mass on one class. Multiple
crowdsourced labels induce soft labels — i.e., probability
distributions over the classes — for each task. Our moti-
vation is to identify ambiguous tasks from their associated
features, hence discarding hurtful tasks (such as the ones
illustrated on Fig. 2b and Fig. 2b).

Recent works on data-cleaning in supervised learning (Han
et al., 2019; Pleiss et al., 2020; Northcutt et al., 2021a)
have shown that some images might be too corrupted or too
ambiguous to be labeled by humans. Hence, one should not
consider these tasks for label aggregation or learning since
they might reduce generalization power.

1In this work we use the term task and feature interchangeably.
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Identify ambiguous tasks combining crowdsourced labels by weighting Areas Under the Margin

Figure 1: Learning with crowdsourcing labels: from label collection with a crowd to training on a pruned dataset. High ambiguity from
either crowd workers or tasks intrinsic difficulty can lead to mislabeled data and harm generalization performance. To illustrate our
notation, here the set of tasks annotated by workerw3 is T (w3) = {1, 3}while the set of workers annotating task x3 isA(x3) = {1, 3, 4}.

In this work, we combine task difficulty scores with worker
abilities scores, but we measure the task difficulty by in-
corporating feature information. We thus introduce the
Weighted Area Under the Margin (WAUM), a generaliza-
tion to the crowdsourcing setting of the Area Under the
Margin (AUM) by Pleiss et al. (2020). The AUM is a
confidence indicator in an assigned label defined for each
training task. It is computed as an average of margins over
scores obtained along the learning steps. The AUM reflects
how a learning procedure struggles to classify a task to an
assigned label2. The AUM is well suited when training a
neural network (where the steps are training epochs) or other
iterative methods. For instance, it has led to better network
calibration (Park & Caragea, 2022) using MixUp strategy
(Zhang et al., 2018), i.e., mixing tasks identified as sim-
ple and difficult by the AUM. Our extension of the AUM,
the WAUM identifies harmful data points in crowdsourced
datasets, so one can prune ambiguous tasks that degrade the
generalization. It is a weighted average of workers AUM,
where the weights reflect trust scores based on task difficulty
and workers’ ability.

2. Related work
Inferring a learning consensus from a crowd is a challeng-
ing task. In this work, we do not consider methods with
prior knowledge on the workers, since most platforms do
not provide this information3. Likewise, we do not rely on
ground-truth knowledge for any tasks. Hence, trapping-set
or control-items-based algorithms like ELICE or CLUBS
(Khattak, 2017) do not match our framework. Some algo-
rithms rely on self-reported confidence: they directly ask
workers their answering confidence and integrate it into the
model (Albert et al., 2012; Oyama et al., 2013; Hoang et al.,
2021). We discard such cases for several reasons. First,
self-reported confidence might not be beneficial without a
reject option (Li & Varshney, 2017). Second, workers have

2See the Linear SVC in Fig. 6 to visualize how the AUM is
connected to the classical margin from the kernel literature.

3For instance, by default Amazon Mechanical Turk https:
//www.mturk.com/ does not provide it.

a tendency to be under or overconfident, raising questions
on how to present self-evaluation and assessing own scores
(Draws et al., 2021).

To reach a consensus in the labeling process, the most com-
mon aggregation step is majority voting (MV), where one
selects the label most often answered. MV does not infer
any trust score on workers and does not leverage workers’
abilities. MV is also very sensitive to under-performing
workers (Gao & Zhou, 2013; Zhou et al., 2015), to biased
workers (Kamar et al., 2015), to spammers (Raykar & Yu,
2011), or lack of experts for hard tasks (James, 1998; Gao
& Zhou, 2013; Germain et al., 2015). Closely related to
MV, naive soft (NS) labeling goes beyond hard labels (also
referred to as one-hot labels) by computing the frequency
of answers per label. In practice, training a neural network
with soft labels improves calibration (Guo et al., 2017) with
respect to using hard labels. However, both MV and NS
are sensitive to spammers (e.g., workers answer all tasks
randomly) or workers’ biases (e.g., workers who answer
some tasks randomly). Hence, the noise induced by work-
ers’ labeling might not be representative of the actual task
difficulty (Jamison & Gurevych, 2015).

Another class of methods leverages latent variables, defining
a probabilistic model on workers’ responses. The most pop-
ular one, proposed by Dawid & Skene (1979) (DS) estimates
a single confusion matrix per worker, as a measure of work-
ers’ expertise. The vanilla DS model assumes that a worker
answers according to a multinomial distribution, yielding
a joint estimation procedure of the confusion matrices and
the soft labels through the Expectation-Maximization (EM)
algorithm (see Appendix A, Algorithm 2). Variants on the
original DS algorithm include accelerated versions (Sinha
et al., 2018), sparse versions (Servajean et al., 2017), and
clustered versions (Imamura et al., 2018) among others.

Since DS only models workers’ abilities, Whitehill et al.
(2009) have introduced the Generative model of Labels,
Abilities, and Difficulties (GLAD) to exploit task difficul-
ties for improved confusion estimation. While DS estimates
a matrix of pairwise label confusion per worker, GLAD
estimates (also with EM) a single ability score per worker,

https://www.mturk.com/
https://www.mturk.com/
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Image #7681
CIFAR-10 label: airplane
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(a) Label airplane is easy to identify
(unanimity among workers).

Image #6750
CIFAR-10 label: deer
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(b) Label deer is meaningless here, and
workers are confused with all other labels.

Image #9246
CIFAR-10 label: cat
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(c) Label cat often confused with horns
of a wild deer

Figure 2: Three images from CIFAR-10H dataset (Peterson et al., 2019): the airplane image (a) is easy, while the landscape (b) is
ambiguous due to the image’s poor quality. The last image (c) is a black cat face often perceived as the horns of a wild deer.

and a single difficulty score per task. It is inspired by the
IRT (Birnbaum, 1968), modeling the workers’ probability to
answer the true label with a logistic transform of the product
of these scores. Following IRT, the difficulty is inferred as a
latent variable given the answers, without ever considering
the actual tasks assigned to each worker. Other feature-blind
aggregation strategies exist using rank-one matrix comple-
tion (Ma et al., 2020; Ma & Olshevsky, 2020) or pairwise
co-occurrences (Ibrahim et al., 2019).

Finally, following deep learning progresses, end-to-end
strategies have emerged: they do not produce aggregated
labels but allow to train classifiers from crowdsourced la-
bels. Rodrigues & Pereira (2018) introduced CrowdLayer
adding a new layer inside the network mimicking confusion
matrices per worker. Later, Chu et al. (2021) have general-
ized this setting with CoNAL, using an additional global
confusion.

We propose the WAUM to combine the information from
a confusion matrix per worker and a measure of relative
difficulty between tasks. It refines the judging system and
identifies data points harming generalization that should be
pruned. Data pruning has been shown to improve general-
ization by removing mislabeled data (Angelova et al., 2005;
Pleiss et al., 2020), possibly dynamically along the learning
phase (Raju et al., 2021) or by defining a forgetfulness score
(Paul et al., 2021). Sorscher et al. (2022) have highlighted
that data pruning strategies are highly impacted by the la-
beling in supervised settings and we confirm its relevance
to the crowdsourcing framework.

3. Weighted Area Under the Margin
3.1. Definitions, notation, and construction

We consider classical multi-class learning notation, with
input in X and labels in [K] := {1, . . . ,K}. The set of
tasks is written as Xtrain = {x1, . . . , xntask}, and we assume
{(x1, y?1), . . . , (xntask , y

?
ntask)} are ntask i.i.d tasks and la-

bels, with underlying distribution denoted by P. The true

labels (y?i )i∈[ntask] are unobserved but crowdsourced labels
are provided by nworker workers (wj)j∈[nworker]. We write
A(xi) = {j ∈ [nworker] : worker wj labeled task xi}
the annotators set4 of a task xi and T (wj) = {i ∈
[ntask] : worker wj answered task xi} the tasks set for
a worker wj . For a task xi and each j ∈ A(xi), we
denote y(j)i ∈ [K] the label answered by worker wj and
we call soft label any vector ŷi in the standard simplex
∆K−1 = {p ∈ RK ,

∑K
k=1 pk = 1, pk ≥ 0}. The training

set has task-wise and worker-wise formulations:

Dtrain =

ntask⋃
i=1

{(
xi,
(
y
(j)
i

))
for j ∈ A(xi)

}
(1)

=

nworker⋃
j=1

{(
xi,
(
y
(j)
i

))
for i ∈ T (wj)

}
︸ ︷︷ ︸

D(j)
train

. (2)

For any set S, we write |S| for its cardinality.

DS model. The Dawid and Skene (DS) model (Dawid &
Skene, 1979) aggregates answers and evaluates the work-
ers’ confusion matrix to observe where their expertise lies
exactly. The confusion matrix of worker wj is denoted by
π(j) ∈ RK×K and reflects individual error-rates between
pairs of labels: π(j)

`,k = P(y
(j)
i = k|y?i = `) represents the

probability that worker wj gives label k to a task whose
true label is `. The model assumes that the probability
for a task xi to have true label y?i = ` follows a multino-
mial distribution with probabilities π(j)

`,• for each worker,
independently of Xtrain (feature-blind). In practice, DS es-
timates are obtained thanks to the EM algorithm to output
estimated confusion matrices (π(j))j∈[nworker] (see details
in Appendix A, Algorithm 2).

Ambiguous tasks identification with the AUM. Pleiss
et al. (2020) have introduced the AUM in the standard learn-

4As illustrated in Fig. 1, the size of the annotators and tasks sets
might not be fixed, and the standard supervised setting is recovered
when |A(xi)| = 1 for all i ∈ [ntask].
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(a) CIFAR-10H dataset.
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(b) LabelMe dataset.
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(c) Music dataset.

Figure 3: Entropy of votes vs. WAUM for CIFAR-10H, LabelMe, and Music. When large amounts of votes per task are available,
WAUM and entropy ranking coincide well, as in (a). Yet, when votes are scarce, as in (b) and (c), entropy becomes irrelevant while our
introduced WAUM remains useful. Indeed, tasks with few votes can benefit from feedback obtained for a similar one. Parameters for
WAUM computations are described in Sec. 4. Additional visualizations for each dataset can be found in Appendix D, Figs. 13, 15 and 17.

ing setting (i.e., |A(xi)| = 1 for all i ∈ [ntask]). Given a
training task and a label (x, y) ∈ Dtrain, let z(t)(x) ∈ RK
be the logit score vector at epoch t ≤ T when learning a
neural network on Dtrain (where T is the number of training
epochs). We use the notation z(t)[1] (x) ≥ · · · ≥ z(t)[K](x) for
sorting (z

(t)
1 (x), . . . , z

(t)
K (x)) in non-increasing order. Let

us denote σ(t)(x) := σ(z(t)(x)) the softmax output of the
scores at epoch t. Sorting the probabilities in decreasing
order such that σ(t)

[1] (x) ≥ · · · ≥ σ(t)
[K](x), the AUM reads:

AUM (x, y;Dtrain) =
1

T

T∑
t=1

[
σ(t)
y (x)− σ(t)

[2] (x)
]
. (3)

We write AUM (x, y) instead of AUM (x, y;Dtrain) when
the training set is clear from the context. Pleiss et al. (2020)
use an average of margins over logit scores, whereas we
instead consider the average of margin after a softmax step
in Eq. (3). We have adapted the original AUM relying
on logit scores by applying a softmax step. This tempers
scaling issues as advocated by Ju et al. (2018) in ensemble
learning. Moreover, we consider the margin introduced by
Yang & Koyejo (2020) instead. Indeed, the corresponding
hinge loss has better theoretical properties than the one used
in the original AUM, especially in top-k settings5 (Lapin
et al., 2016; Yang & Koyejo, 2020; Garcin et al., 2022).

During the training phase, the AUM keeps track of the
difference between the score assigned to the proposed label
and the score assigned to the second-largest one. It has been
introduced to detect mislabeled observations in a dataset:
the higher the AUM, the more confident the prediction is
in the assigned label. Hence, the lower the AUM, the more
likely the label is wrong. The AUM algorithm is described
in Appendix B.3, Algorithm 5. Finally, note that the AUM
computation depends on the chosen neural network and on
its initialization: pre-trained architectures could be used, yet
any present bias would transfer to the AUM computation.

WAUM. The AUM is defined in a standard supervised
setting with (hard) labels: we now adapt it to crowdsourced

5For top-k, consider σ(t)

[k+1](x) instead of σ(t)

[2] (x) in Eq. (3).

frameworks to improve the identification of hard tasks. Let
s(j)(xi) ∈ [0, 1] be a trust factor in the answer of worker
wj for task xi. The WAUM is then defined as:

WAUM(xi) =

∑
j∈A(xi)

s(j)(xi)AUM
(
xi, y

(j)
i s
)

∑
j′∈A(xi)

s(j
′)(xi)

. (4)

It is a weighted average of AUMs over each worker’s answer
with a per task weighting score s(j)(xi) based on workers’
abilities. This score considers the impact of the AUM for
each answer since it is more informative if the AUM indi-
cates uncertainty for an expert than for a non-expert.

The scores s(j) are obtained à la Servajean et al. (2017):
each worker has an estimated confusion matrix π̂(j) ∈
RK×K . Note that the vector diag(π̂(j)) ∈ RK represents
the probability for worker wj to answer correctly to each
task. With a neural network classifier, we estimate the prob-
ability for the input xi ∈ Xtrain to belong in each category
by σ(T )(xi), i.e., the probability estimate at the last epoch.
As a trust factor, we propose the inner product between the
diagonal of the confusion matrix and the softmax vector:

s(j)(xi) =
〈
diag(π̂(j)), σ(T )(xi)

〉
∈ [0, 1] . (5)

The scores control the weight of each worker in Eq. (4). This
choice of weight is inspired by the bilinear scoring system
of GLAD (Whitehill et al., 2009), as detailed hereafter. The
closer to one, the more we trust the worker for the given task.
In GLAD, the trust score is modeled as the product αjβi,
with αj ∈ R (resp. βi ∈ (0,+∞)) representing worker
ability (resp. task difficulty), cf. Appendix A, Algorithm 3.
In Eq. (5), the diagonal of the confusion matrix π̂(j) repre-
sents the worker’s ability and the softmax the task difficulty.
Hence, the score s(j)(xi) can be seen as a multidimensional
version of GLAD’s trust score.

Dataset pruning. Our procedure (Algorithm 1) proceeds
as follows. We initialize our method by estimating the
confusion matrices for all workers. For each worker wj ,
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(a) 8 worst images with our proposed WAUM (b) 8 worst images with original AUM as in (Pleiss et al., 2020)

Figure 4: CIFAR-10H: 8 worst images detected for the ’cat’ (first row) and ’deer’ (second row) labels in CIFAR-10. (a) the worst
AUMs for the original method by Pleiss et al. (2020), training on the test set of CIFAR-10; (b) the worst WAUMs with our proposed
method training on CIFAR-10H. Both are computed using a Resnet-18. Other classes are available in Appendix D.2, Fig. 14.

the AUM is computed for its labeled tasks, and so is its
worker-dependent trust scores s(j)(xi) with Eq. (5). The
WAUM in Eq. (4) is then computed for each task. The
most ambiguous tasks, the ones whose WAUM are below
a threshold, are then discarded, and the associated pruned
dataset Dpruned is output.

We consider for the threshold a quantile of order α ∈ [0, 1]
of the WAUM scores. The hyperparameter α (proportion of
training data points pruned) can be chosen on a validation
set, yet choosing α ∈ {0.1, 0.05, 0.01} has led to satisfac-
tory results in all our experiments. More details and possible
limits on AUM and WAUM are in Appendix B.

Algorithm 1 WAUM (Weighted Area Under the Margin).
Input: Dtrain: tasks and crowdsourced labels,

α ∈ [0, 1]: proportion of training points pruned
T ∈ N: number of epochs
Est: Estimation procedure for the confusion matrices

Initialization: Get confusion matrix {π̂(j)}j∈[nworker] from Est
Train a neural network for T epochs on Dtrain
for j ∈ [nworker] do

Get AUM(xi, y
(j)
i ;Dtrain) using Eq. (3) for i ∈ T (wj)

Get trust scores s(j)(xi) using Eq. (5) for i ∈ T (wj)
for each task x ∈ Xtrain do

Compute WAUM(x) using Eq. (4)
Get qα (WAUM(xi))i∈[ntask], α-quantile threshold
Dpruned =

{(
xi,
(
y
(j)
i

)
j∈A(xi)

)
:WAUM(xi) ≥ qα, xi ∈ Xtrain

}
Result: Dpruned

Refined initialization: estimating confusion matrices.
By default, we rely on the Est=DS algorithm (described in
Algorithm 2) to get workers’ confusion matrices, but other
estimates are possible: DS might suffer from the curse of
dimensionality when the number K of classes is large (K2

coefficients needed per worker). Possible alternatives are
presented in Appendix B.2.

3.2. Label aggregation and classifier training.

Once a pruned dataset Dpruned has been obtained thanks to
the WAUM, one can create soft labels through an aggre-
gation step, and use them to train another classifier. Ag-

gregated soft labels contain information regarding human
uncertainty, and could often be less noisy than NS labels.
They can help improve model calibration (Wen et al., 2021;
Zhong et al., 2021), a property useful for interpretation
(Jiang et al., 2012; Kumar et al., 2019). Concerning the
classifier training, note that it can differ from the one used
to compute the WAUM. We train a neural network whose
architecture is adapted dataset per dataset and that can differ
from the one used in Algorithm 1 (it is the case for instance
for the LabelMe dataset). Details on the training are given
in the following section and in Appendix D.3.

For an aggregation technique agg, we write the full train-
ing method WAUM + agg and instantiate several choices
below. By default, our aggregation strategy is a weighted
version of DS6, coined WAUM + WDS, and we refer to
it as the WAUM when we report learning metrics later
on. It weights votes according to each worker’s confi-
dence as follows. First, it estimates confusion matrices
{π̂(j)}j∈[nworker] with DS applied to Dpruned. Then, it com-
putes soft labels (ŷWDS

i )k∈[K] for all tasks xi ∈ Xpruned
by weighting labels with workers’ confidence: ŷWDS

i =
ỹi∑

k∈[K](ỹi)k
with ỹi =

( ∑
j∈A(xi)

π̂
(j)
k,k1{y(j)i =k}

)
k∈[K]

for all xi ∈ Xpruned.

4. Experiments
Our first experiment focuses on a simulated multiclass
case. Then, we consider the CIFAR-10H dataset (Peterson
et al., 2019), a large-scale crowdsourced dataset. Finally,
we consider LabelMe from Rodrigues & Pereira (2018)
and Music from Rodrigues et al. (2014), both smaller real
crowdsourced datasets. For each aggregation scheme con-
sidered, we train a neural network on the soft labels (or hard
labels for MV) obtained after the aggregation step. We com-
pare our WAUM scheme with several other strategies like
GLAD or CoNAL. For CoNAL, two regularization levels
are considered: λ = 0 and λ = 10−4 (λ controls the norm
between the global and the individual confusion matrices).
More simulations and an overview of all compared methods

6Other alternatives are given in Appendix A.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 5: three circles: One realization of Tab. 1 varying the aggregation strategy. Training labels are provided from Fig. 6 and
predictions on the test set are from three dense layers’ artificial neural network (30, 20, 20) trained on the aggregated soft labels. Red
points are pruned from training by WAUM with threshold α = 0.1. Here, we have K = 3 and ntask = 525.

are deferred to Appendix A.

Metrics investigated After training with aggregated la-
bels, we report two performance metrics on a test set
Dtest: top-1 accuracy and expected calibration error (ECE)
(with M = 15 bins as in Guo et al. (2017), see Ap-
pendix C, Eq. (12)). We also report the training accuracy
Acctrain(y?, ŷ) = 1

|Dtrain|
∑|Dtrain|
i=1 1{argmax ŷi=y?i }, the accu-

racy of the aggregation method on the training set’s true
labels. The training accuracy is computed on Dpruned for the
WAUM since tasks detected ambiguous are not labeled.

Implementation details For simulations, the training is
performed with a three dense layers’ artificial neural net-
work (30, 20, 20) with batch size set to 64. Workers
are simulated7 with scikit-learn (Pedregosa et al.,
2011). For CIFAR-10H the Resnet-18 (He et al., 2016)
architecture is chosen with batch size set to 64. For op-
timization, we consider an SGD solver with 150 train-
ing epochs, an initial learning rate of 0.1, decreasing it
by a factor 10 at epoch 50 and 100. Other hyperpa-
rameters for Pytorch’s (Paszke et al., 2019) SGD are
momentum=0.9 and weight decay=5e-4. For the
LabelMe and Music datasets, we use the Adam optimizer
with default hyperparameters. Experiments were executed
with Nvidia RTX 2080 and Quadro T2000 GPUs. Addi-
tional coding details8 are available in Appendix D.3.

4.1. Simulated multiclass dataset: three circles.

We simulate three cloud points (to represent K = 3 classes)
using scikit-learn’s function two circles. The
nworker = 3 workers are standard classifiers (details in
Appendix D.1): w1 is a linear Support Vector Machine
Classifier (linear SVC), w2 is an SVM with RBF kernel
(SVC), and w3 is a gradient boosted classifier (GBM). Data

7
https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.make_circles.html
8The code is in the supplementary material.

is split between train (70%) and test (30%) for a total of
750 points and each simulated worker votes for each task,
i.e., for all x ∈ Xtrain, |A(x)| = nworker = 3, leading to
ntask = 525 tasks (points). The performance reported in
Tab. 1 is averaged over 10 repetitions.

A disagreement area is identified in the northeast area of
the dataset (see Fig. 6). Tab. 1 also shows that pruning too
little data (α small) or too much (α large) can mitigate the
performance. A visual synthesis of the influence of α is
given in Appendix D.1.1, Fig. 8.

Table 1: three circles: Average of 10 repetitions of the
aggregation and learning performance presented in Fig. 5 (ntask =
525 tasks, |A(x)| = nworker = 3). Note that the best worker, w3

(GBM), reaches a 0.92 training accuracy and 0.84 test accuracy.

Aggregation method Acctest ECE Acctrain
MV 0.73± 0.03 0.13± 0.03 0.79
NS 0.70± 0.02 0.18± 0.02 0.79
DS 0.75± 0.07 0.22± 0.08 0.75
GLAD 0.58± 0.02 0.36± 0.02 0.55
WDS 0.81± 0.04 0.17± 0.03 0.81

WAUM(α = 10−2) 0.80± 0.04 0.17± 0.01 0.91

WAUM(α = 10−1) 0.83± 0.03 0.19± 0.04 0.91
WAUM(α = 0.25) 0.69± 0.02 0.19± 0.02 0.91

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M −0.2 0 0.2 0.4

0

0.5

1

1.5q0.1

WAUM

0

0.25

0.5

s(
j
) 0

0.2

0.4

Figure 6: three circles: one realization of simulated workers
w1, w2, w3, with their AUM, normalized trust scores s(j) (left)
and WAUM distributions (right) for α = 0.1.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
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4.2. Real datasets

In this section, we investigate three popular crowdsourced
datasets: CIFAR-10H, LabelMe and Music. The first
one, CIFAR-10H (Peterson et al., 2019), is a curated
dataset with many votes per task while LabelMe (Ro-
drigues & Pereira, 2018) and Music (Rodrigues et al.,
2014) datasets are more challenging, having fewer labels
per task.

Feedback effort per task, load per worker and NS labels
visualizations are available in Appendix D.2. To prune
only a few tasks, we choose α = 1% for CIFAR-10H and
LabelMe datasets. For the Music dataset, α = 5% leads
to better generalization performance; considering the dataset
size and complexity, picking α = 0.1 would be harmful.

CIFAR-10H dataset. The training part of CIFAR-10H
consists of the 10 000 tasks extracted from the test set of the
classical CIFAR-10 dataset (Krizhevsky & Hinton, 2009),
and K = 10. A total of nworker = 2571 workers par-
ticipated on the Amazon Mechanical Turk platform, each
labeling 200 images (20 from each original class), leading to
approximately 50 answers per task. We have randomly ex-
tracted 500 tasks for a validation set (hence ntrain = 9 500).
The neural network weights are found by minimizing the
cross-entropy loss on this validation set. This dataset is
notoriously more curated (Aitchison, 2021) than a common
dataset in the field: most difficult tasks were identified and
removed at the creation of the CIFAR-10 dataset, resulting
in few ambiguities. Tab. 2 shows that in this simple setting,
our data pruning strategy is still relevant, with the choice
α = 0.01.

Table 2: CIFAR-10H: generalization performance by crowdsourc-
ing strategy (here α = 0.01).

Aggregation method Acctest ECE Acctrain

MV 69.533± 0.84 0.175± 0.00 99.2
NS 72.149± 2.74 0.132± 0.03 99.2
DS 70.268± 0.93 0.173± 0.00 99.3
GLAD 70.281± 0.88 0.162± 0.01 99.2
WDS 72.497± 0.48 0.132± 0.00 99.2
WAUM 72.668± 0.59 0.132± 0.00 99.3

Furthermore, the WAUM leads to better generalization per-
formance than the vanilla DS model. However, due to the
few ambiguous tasks, NS can lead to results close to the
one obtained by the WAUM, with a slight but consistent
gain on our side on the calibration error. Note that vanilla
DS slightly underperformed compared to other aggregation
schemes, but using the WAUM we obtain both confusion
matrices from DS and aggregated labels with competitive
performance. Note that when the number of tasks labeled
per worker is high, an adaptation of the WAUM (presented
in Appendix B.1) uses one network per worker to compute
the trust scores and AUMs.

CIFAR-10H is a relatively well-curated dataset, and we ob-
serve in Tab. 2 that in this case, simple aggregation methods
already perform well, in particular NS. Over the 2 571 work-
ers, less than 20 are identified as spammers using Raykar
& Yu (2011) but remind that most difficult tasks were re-
moved when creating the CIFAR-10 original dataset. We
refer to the ”labeler instruction sheet” of Krizhevsky &
Hinton (2009, Appendix C) for more information about the
directives given to workers.

LabelMe dataset. This dataset consists in classifying
1 000 images in K = 8 categories. In total 77 workers are
reported in the dataset (though only 59 of them answered
any task at all!). Each task has between 1 and 3 labels.
A validation set of 500 images and a test set of 1 188 im-
ages are available. The architecture used for training is a
VGG-16 combined with two dense layers as described in
Rodrigues & Pereira (2018). The VGG-16 backbone clas-
sifier is pre-trained on Imagenet with data augmentation
using random flipping, shearing and dropout. Adam opti-
mizer with a learning rate set to 0.005 is used during the
1 000 training epochs. For the WAUM computation, 500
epochs are used with a pre-trained Resnet-50 (it differs from
the modified VGG used later for training) and the same op-
timization settings. Contrary to the modified VGG-16, the
Resnet-50 could be fully pre-trained. The general stability
of pre-trained Resnets, thanks to the residuals connections,
allows us to compute the WAUM with way fewer epochs
(each being also with a lower computational cost) compared
to VGGs (He et al., 2016). The hyperparameter α is set to
0.01.

Table 3: LabelMe: generalization performance by crowdsourcing
strategy (here α = 0.01)

Aggregation method Acctest ECE Acctrain

MV 85.4±1.0 0.136±0.01 76.1
NS 86.1±1.0 0.138±0.01 76.9
DS 86.8±0.5 0.123±0.01 79.7
GLAD 87.1±0.9 0.119±0.01 77.6
CrowdLayer 85.4±4.2 0.142±0.04 –
CoNAL(λ = 0) 88.1±1.0 0.119±0.01 –
CoNAL(λ = 10−4) 86.2±6.4 0.135±0.06 –
WAUM 87.1±0.8 0.129±0.01 74.4
WAUM+CoNAL(λ = 0) 89.2±1.0 0.108±0.01 –
WAUM+CoNAL(λ = 10−4) 90.0±0.8 0.099±0.01 –

We observe in Tab. 3 that the WAUM improves the final
test accuracy when combined with the CoNAL network.
CoNAL was specifically tailored for LabelMe. Hence, by
modeling a common confusion between classes, pruning
most ambiguous tasks with the WAUM, CoNAL improves
the classifier generalization performance and calibration
in comparison to simple strategies. Combined with our
WAUM, additional gains are obtained on both metrics.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
www.image-net.org
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(a) Label street.
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(b) Label tallbuilding.

Figure 7: LabelMe dataset: Worst WAUM for classes (top) and the associated voting distribution for each image (bottom). (a) Label
street (b) Label tallbuilding. Even if the two tasks are very similar, because the workers are different the associated proposed
labels can differ and add noise during training.

Music dataset. This dataset differs from LabelMe and
CIFAR-10H as it consists in classifying 1 000 recordings
of 30 seconds into K = 10 music genres. All the 44 work-
ers involved voted for at least one music, resulting in up to
7 labels per task. Instead of classifying the original audio
files, we use the associated Mel spectrograms to retrieve an
image classification setting. The architecture used for train-
ing is similar to LabelMe’s with the VGG-16 backbone
classifier and the added dense layers. As in the LabelMe
experiment, we use a Resnet-50 to compute the WAUM.
We also use the Adam optimizer with a learning rate set to
0.001 during 2 000 epochs. The WAUM is computed on
T = 1 000 epochs with the same settings. We consider a
cut-off hyperparameter α = 0.05. Though the benefits are
not as striking as before on test accuracy, the ECE is slightly
improved by combining our WAUM with CoNAL.

Table 4: Music: generalization performance by crowdsourcing
strategy (here α = 0.05)

Aggregation method Acctest ECE Acctrain

MV 60.5±1.76 0.376±0.01 70.0
NS 61.1±2.35 0.376±0.02 71.1
DS 62.9±1.72 0.339±0.01 77.5
GLAD 61.5±0.78 0.361±0.01 79.5
CoNAL(λ = 0) 64.2±0.91 0.340±0.02 –
CoNAL(λ = 10−4) 64.2±0.55 0.361±0.01 –
WAUM 63.1±3.22 0.377±0.03 81.5
WAUM+CoNAL(λ = 0) 64.5±0.76 0.265±0.01 –
WAUM+CoNAL(λ = 10−4) 64.4±0.78 0.274±0.02 –

5. Conclusion and future work
In this paper, we investigate crowdsourcing aggregation
models and how judging systems may impact generalization
performance. Most models consider the ambiguity from the
workers’ perspective (very few consider the difficulty of the
task itself) and evaluate workers on hard tasks that might

be too ambiguous to be relevant, leading to a performance
drop. Using a popular model (DS), we develop the WAUM,
a flexible feature-aware metric that can identify hard tasks9

and improves generalization performance. It also yields a
fairer evaluation of workers’ abilities and supports recent
research on data pruning in supervised datasets. Indepen-
dently of pruning, the WAUM allows identifying early the
images that need extra labeling efforts, or that cannot be
correctly labeled at all. Limitations of the WAUM based
pruning are discussed in Appendix B.4.

Extension of the WAUM to more general learning tasks
(e.g., top-k classification) would be natural, including label-
ing tasks sequentially. Indeed, the WAUM could help to
identify tasks requiring additional expertise and guide how
to allocate more experts/workers for such identified tasks.
Future works could adapt the WAUM to imbalanced crowd-
sourced datasets to identify potentially too ambiguous im-
ages that naturally occur in open platforms like Pl@ntNet10.

Last but not least, on the dataset side, we believe that
the community would benefit from releasing a challeng-
ing dataset (such as the one by Garcin et al. (2021) for
instance) tailored to learn in crowdsourcing settings. Indeed,
a dataset with the following properties could greatly foster
future research in the field: a varying number of labels per
worker, a high number of classes, and a subset with ground
truth labels to test generalization performance.
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A. Popular label aggregation techniques
Several aggregation techniques can transform crowdsourced labels into probability distributions (soft labels). For any d ∈ N
and z ∈ (0,∞)d, let Norm(z) ∈ (0,∞)d be the vector defined by ∀i ∈ [d],Norm(z)i = zi/

∑d
i′=1 zi′ .

A.1. Naive soft (NS)

The naive soft (NS) labeling is simply the empirical distribution of the answered votes:

∀xi ∈ Dtrain, ŷNS
i = Norm(ỹi), where ỹi =

( ∑
j∈A(xi)

1{y(j)i =k}

)
k∈[K]

. (6)

A.2. Majority voting (MV)

Majority voting (MV) outputs the most answered label:

∀xi ∈ Dtrain, ŷMV
i = argmax

k∈[K]

( ∑
j∈A(xi)

1{y(j)i =k}

)
. (7)

A.3. Dawid and Skene (DS)

The Dawid and Skene (Dawid & Skene, 1979) model aggregates answers and evaluates the workers’ confusion matrix to
observe where their expertise lies exactly. Let us introduce ρ` the prevalence of each label in the dataset (i.e., P(y?i = `)), the
probability that a task drawn at random is labeled ` ∈ [K]. Following standard notations, we also write {Ti,`, i ∈ [ntask]}
the indicator variables for task i, that is Ti,` = 1 if the true label for task i is ` (i.e., y?i = `) and zero otherwise. Finally, let
π
(j)
`,k be the probability for worker j to select label k when y? = `. The model’s likelihood reads:

∏
i∈[ntask]

∏
`∈[K]

[
ρ`

∏
j∈[nworker]

∏
k∈[K]

(
π
(j)
`,k

)1
{y(j)

i
=k}

]Ti`

. (8)

To maximize the likelihood, we use the EM algorithm (Dempster et al., 1977) to estimate the parameters π(j)
`,k and ρ`, using

(Ti,•)i∈[ntask] as latent variables. Our implementation of the EM algorithm is given in Algorithm 2. The convergence
criterion we use in practice is that the likelihood has not decreased more than ε > 0 between two iterations. By default, ε is
set to 10−6, and the EM algorithm stops at iteration t ∈ N if

∣∣Likelihoodt − Likelihoodt+1

∣∣ < ε.

Algorithm 2 DS (EM version)
Input: Dtrain: crowdsourced dataset
Initialization: ∀i ∈ [ntask],∀` ∈ [K], T̂i,` = 1

|A(xi)|
∑
j∈A(xi)

1{y(j)i =`}
while not converged do

// M-step: Get π̂ and ρ̂ assuming T̂s are known

∀(`, k) ∈ [K]2, π̂
(j)
`,k ←

∑
i∈[ntask]

T̂i,`·1{y(j)
i

=k}∑
k′∈[K]

∑
i′∈[ntask]

T̂i′,`·1{y(j)

i′
=k′}

∀` ∈ [K], ρ̂` ← 1
ntask

∑
i∈[ntask] T̂i,`

// E-step: Estimate T̂s knowing π̂ and ρ̂

∀(i, `),∈ [ntask]× [K], T̂i` ←
∏

j∈A(xi)

∏
k∈[K] ρ̂`·

(
π̂
(j)
`,k

)1
{y(j)

i
=k}

∑
`′∈[K]

∏
j′∈A(xi)

∏
k′∈[K] ρ̂`′ ·

(
π̂
(j′)
`′k′

)1
{y(j′)

i
=k′}

Result: (ŷDS
i )i∈[ntask] = (T̂i,•)i∈[ntask]: estimated soft labels
{π̂(j)}j∈[nworker]: estimated confusion matrices

A.4. Weighted Dawid and Skene (WDS)

Let us run the DS model to get estimated confusion matrices π̂(j) ∈ RK×K for j ∈ [nworker]. Now, remind that for a given
worker j ∈ [nworker] and a class k ∈ [K], the term π̂

(j)
k,k estimate the probability for worker wj to recognize a task whose
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true label is k. We use this term as a trust score and define the WDS soft label as

∀xi ∈ Dtrain, ŷWDS
i = Norm(ỹi), with ỹi =

( ∑
j∈A(xi)

π̂
(j)
k,k1{y(j)i =k}

)
k∈[K]

. (9)

A.5. Generative model of Labels, Abilities, and Difficulties (GLAD)

We recall the GLAD (Whitehill et al., 2009) algorithm in the binary setting. A modeling assumption is that the j-th worker
labels correctly the i-th task with probability given by

P(y
(j)
i = y?i |αj , βi) =

1

1 + e−αjβi
, (10)

with αj ∈ R the worker’s expertise: αj < 0 implies misunderstanding, αj = 0 an impossibility to separate the two classes
and αj > 0 a valuable expertise. The coefficient 1/βi ∈ R+ represents the task’s intrinsic difficulty: if 1/βi → 0 the task
is trivial; on the other side when 1/βi → +∞ the task is very ambiguous. Parameters (αj)j∈[nworker] and (βi)i∈[ntask] are
estimated using an EM algorithm as described in Algorithm 3.

The auxiliary function for the binary GLAD model is:

Q(α, β) = E[logP({y(j)i }ij , {y?i }i)] =
∑
i

E[logP(y?i )] +
∑
ij

E[logP(y
(j)
i |y?i , αj , βi)] . (11)

An extension to the multiclass setting is given by Whitehill et al. (2009) under the following assumption: the distribution
over all incorrect labels is supposed uniform. In this setting, the model assumption from Eq. (10) still holds and

∀k 6= y?i , P(y
(j)
i = k|αj , βi) =

1

K − 1

(
1− 1

1 + e−αjβi

)
.

However, this is not verified in many practical cases, as can be seen for example in Fig. 2c where the cat label is only
mistaken deer and not with other ones. We have used the implementation from https://github.com/notani/
python-glad to evaluate the GLAD performance in our experiments. The maximization of the function Q with respect
to α and β is performed using a conjugate gradient solver. The initial parameters are all set to 1.

Algorithm 3 GLAD (EM version)
Input: Dtrain: crowdsourced dataset
Result: α = {αj}j∈[nworker]: worker abilities, β = {βi}i∈[ntask]: task difficulties,

(ŷGLADi )i∈[ntask]: aggregated labels
while Convergence not achieved do

// E-step: Estimate probability of y?i

∀i ∈ [ntask], P(y?i |{y
(j)
i }i, α, βi) ∝ P(y?i )

∏
j P(y

(j)
i |y?i , αj , βi)

// M-step: Maximization

Maximize auxiliary function Q(α, β) in Eq. (11) with respect to α and β

A.6. Crowdlayer and its matrix weights strategy (MW)

From (Rodrigues & Pereira, 2018), Crowdlayer is an end-to-end strategy in the crowdsourcing setting. From the output of a
neural network, a new layer called crowd layer is added to take into account worker specificities. The main classifier thus
becomes globally shared, and the new layer is the only worker-aware layer. As multiple variants of Crowdlayer can exist, we
only considered in this paper the matrix weights (MW) strategy that is akin to the DS model. Denoting z = f(xi) the output
of the neural network classifier f for a given task xi labeled by a worker wj , the added layer multiplies z by a matrix of
weights W j ∈ RK×K . This matrix of weights per worker takes into account the local confusion of each worker. In practice,
the forward pass F on a task xi annotated by worker wj using Crowdlayer computes F (xi, wj) = W jσ(f(xi)).

A.7. Common Noise Adaptation Layers (CoNAL)

Crowdlayer takes into account worker-specific confusion matrices. CoNAL (Chu et al., 2021) generalizes this setting by
creating a global confusion matrix W g ∈ RK×K in addition to the local ones W j ∈ RK×K for j ∈ [nworker] working all

https://github.com/notani/python-glad
https://github.com/notani/python-glad
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Algorithm 4 worker-wise WAUM.
Input: Dtrain: tasks and crowdsourced labels

α ∈ [0, 1]: proportion of training points pruned
T ∈ N: number of epochs
Est: Estimation procedure for the confusion matrices

Initialization: Get confusion matrices {π̂(j)}j∈[nworker] from Est // By default DS strategy
for j ∈ [nworker] do

for T epochs do
Train a neural network for T epochs on D(j)

train =
{(
xi, y

(j)
i

)
for i ∈ T (wj)

}
// Train worker-wise

Get AUM(xi, y
(j)
i ;D(j)

train) using Eq. (3)
Get trust scores s(j)(xi) using Eq. (5)

for each task x ∈ Xtrain do
Compute WAUM(x) using Eq. (4)

Get qα the quantile threshold of order α of (WAUM(xi))i∈[ntask]

Define Dpruned =
{(
xi,
(
y
(j)
i

)
j∈A(xi)

)
: WAUM(xi) ≥ qα for i ∈ [ntask]

}

together with the classifier f . Given a worker wj , the confusion is global with weight ωji and local with weight 1− ωji . The
final distribution output used to compute the loss is given by:

pout(xi, wj) = ωjiW
gf(xi) + (1− ωji )W jf(xi) .

As is, CoNAL local matrices tend to aggregate themselves onto the global matrix. To avoid this phenomenon, a regularization
term in the loss can be added as leading to the final loss:

L(W g, {W j}j∈[nworker]) =
1

ntask

∑
i∈[ntask]

∑
j∈[nworker]

H
(
y
(j)
i , pout(xi, wj)

)
− λ

∑
j∈[nworker]

‖W g −W j‖2 ,

with λ the regularization hyperparameter. The larger λ, the farther local confusion weights are from the shared confusion.

B. AUM and WAUM additional details
B.1. Unstacking workers answers in the WAUM : the worker− wiseWAUM

In Algorithm 1, the WAUM requires training a classifier directly from all votes. If the crowdsourcing experiment
generates many answers per worker, for example when each worker answers all the tasks, we can modify Algorithm 1
to train one classifier per worker for T epochs instead of a single one. This means that each classifier is only trained
on D(j) := {(xi, y(j)i )}i∈[ntask] to compute the AUM of the tasks answered. We refer to this as the worker-wise WAUM
and give the full algorithm in Algorithm 4. By doing so, the network trained for a given worker is not influenced by the
answers of the other workers. Hence, the AUM computed by this worker-wise WAUM is independent across workers
(assuming workers are answering independently). One downside of this worker-wise application is its training cost. Where
the vanilla WAUM adds a cost of T epochs before training to identify ambiguous tasks, worker-wise WAUM adds a cost of
T × nworker epochs.

In the simulated examples we propose, we provide the results for the worker-wise WAUM, yet in such simulated cases with
many labels per task, the results do not differ much from the WAUM; see for instance Tab. 7.

B.2. Confusion matrices estimation in the WAUM

To compute the WAUM, we use the confusion matrices {π̂(j)}j∈[nworker] (estimated with Algorithm 4). The vanilla DS
model (Dawid & Skene, 1979) can be used to estimate the underlying confusion matrices π(j) ∈ RK×K for each worker wj .
The quadratic number of parameters to estimate for each worker can lead to convergence issues with the vanilla DS model.
But as stated in Sec. 3, any model that estimates confusion matrices can be used in the WAUM’s computation.

We detail below some possible variants, that could help compute faster the confusion matrices used in the WAUM for the
trust score computation.

• Sinha et al. (2018) have accelerated vanilla DS by constraining the estimated labels’ distribution Ti• to be a Dirac mass.
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Hence, predicted labels are hard labels, leading to worse calibration errors than vanilla DS while preserving the same
accuracy.

• Passonneau & Carpenter (2014) who have introduced Dirichlet priors on the confusion matrices’ rows and the
prevalence ρ.

• Servajean et al. (2017) who exploits the sparsity of the confusion matrices when the number of classes K is high.

• Imamura et al. (2018) estimates with variational inference L� nworker clusters of workers, constraining at most L
different confusion matrices, and requiring only K2 × L coefficients instead of K2 × nworker.

B.3. AUM computation in practice.

We recall in Algorithm 5 how to compute the AUM in practice for a given training set Dtrain. This step is used within the
WAUM (label aggregation step). Overall, with respect to training a model, computing the AUM requires an additional cost:
T training epochs are needed to record the margins’ evolution for each task. This usually represents less than twice the
original time budget. We recall that σ(t)(xi) is the softmax output of the predicted scores for the task xi at iteration t.

Algorithm 5 AUM algorithm

Input: Dtrain = (xi, yi)i∈[ntask]: training set with ntask task/label couples
T ∈ N: number of epochs

for t = 1, . . . , T do
Train the neural network for the tth epoch, using Dtrain for i ∈ [ntask] do

Record softmax output σ(t)(xi) ∈ ∆K−1
Compute margin M (t)(xi, yi) = σ

(t)
yi (xi)− σ(t)

[2] (xi)

∀i ∈ [ntask], AUM(xi, yi;Dtrain) = 1
T

∑
t∈[T ]M

(t)(xi, yi)

Result: (AUM(xi, yi;Dtrain))i∈[ntask]: tasks’ AUM

B.4. Limitations of the WAUM

As a statistic to identify potentially too ambiguous tasks, the WAUM can help clean crowdsourced datasets. However, as
with any other pruning strategy, users should be cautious regarding the following points:

• Distribution distortion: A usual assumption made on learning problems is that the task/label pairs are i.i.d. However,
by removing some of the hardest tasks, the new dataset Dpruned contains tasks that are not independent anymore. The
data curation can distort the distribution, however, this is not unusual. In practice, the data collection design can
also alter the distribution. In CIFAR-10 for example, some images were removed from the dataset before being
published during a selection procedure. This type of selection leads to cleaner datasets, but still violates the theoretical
independence assumption. Furthermore, Ilyas et al. (2022) has shown that in the classical classification dataset, the
data is not i.i.d to begin with.

• Imbalance setting and learning bias: If the dataset is highly imbalanced, as in Garcin et al. (2021), the vanilla
WAUM pruning procedure is not adapted to this setting. In particular, in the extreme case where every tasks of a class
have a WAUM below the pruning quantile qα, the label might disappear from the dataset. In a less extreme case, one
ambiguous class might be more impacted by the data pruning than others. This can create a learning bias. To avoid this,
first, the hyperparameter α should remain small to avoid a large modification of the distribution. Second, the pruning
can be done with a class-dependent quantile to avoid harming classes with very few instances.

• Worker quality evaluation: The trust score s(j) from Eq. (5) depends on the diagonal of the estimated confusion
matrix for each worker. Depending on the experimental design, the confusion matrix can be easier to estimate for
some workers than others. A first design choice is to have workers label the same number of tasks (Fig. 13). This
number should be large enough with respect to K (∀j, j′ ∈ [nworker], |T (wj)| = |T (w′j)|). Yet, in some applications,
this might not be feasible, and one receives a varying number of labels per worker (Fig. 15 and Fig. 17). In the latter,
some workers can label very few tasks, degrading the estimation quality of the confusion matrix. Note that this is a
limitation of the confusion matrix estimation strategy and using clustering schemes Imamura et al. (2018) could help in
this setting.
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C. Reminder on the calibration of neural networks
Hereafter, we propose a reminder on neural networks calibration metric defined in Guo et al. (2017). Calibration measures
the discrepancy between the accuracy and the confidence of a network. In this context, we say that a neural network is
perfectly calibrated if it is as accurate as it is confident. For each task x ∈ Xtrain = {x1, . . . , xntask}, let us recall that an
associated predicted probability distribution is provided by σ(x) ∈ ∆K−1. Let us split the prediction interval [0, 1] into
M = 15 bins I1, . . . , IM of size 1/M : Im = (m−1M , mM ], where m = 1, . . . ,M . Following Guo et al. (2017), we denote
Bm = {x ∈ Xtrain : σ[1](x) ∈ Im} the task whose predicted probability is in the m-th bin11. We recall that the accuracy of
the network for the samples in Bm is given by acc(Bm) the empirical confidence by conf(Bm):

acc(Bm) =
1

|Bm|
∑
i∈Bm

1{σ[1](xi)=yi} and conf(Bm) =
1

|Bm|
∑
i∈Bm

σ[1](xi) .

Finally, the expected calibration error (ECE) reads:

ECE =

M∑
m=1

|Bm|
ntask

|acc(Bm)− conf(Bm)| . (12)

A neural network is said perfectly calibrated if ECE = 0, thus if the accuracy equals the confidence for each subset Bm.

D. Datasets description
D.1. Synthetic dataset

In this section, we present multiple simulated datasets to showcase the specificities and possible limitations of the WAUM.
Here is a summary of the experiments detailed in the following sub-sections:

1. The three circles dataset: we illustrate the influence of the α ∈ [0, 1] hyperparameter (the parameter controlling
the proportion of pruned tasks). As one might expect, pruning too few or too many tasks might harm performance.

2. The two moons dataset: we show a case where the ambiguous tasks should be kept and not pruned. No simulated
worker was able to get past the intrinsic difficulty of the dataset.

3. The make classication dataset: we have a case where pruning doesn’t make a significant statement on the
generalization performance because pruned points had limited influence on the decision boundary.

4. The make classication many workers dataset: we showcase a setting with many workers and few labels per
task. In this case, it is more relevant to consider the WAUM instead of the worker-wise WAUM.

D.1.1. THE THREE CIRCLES DATASET

This dataset was presented in Sec. 4, we give additional details here. We simulate three cloud points using scikit-learn’s
function two circles. Each of the ntask = 525 points represents a task. The nworker = 3 workers are standard
classifiers: w1 is a linear Support Vector Machine Classifier (linear SVC), w2 is an SVM with RBF kernel (SVC), and w3

is a gradient boosted classifier (GBM) with five estimators. To induce more ambiguity (and avoid too similar workers),
the SVC has a maximum iteration set to 1 in the learning phase. Other hyperparameters are set to scikit-learn’s
default values12. Data is split between train (70%) and test (30%) and each simulated worker votes for each task, i.e., for all
x ∈ Xtrain, |A(x)| = nworker = 3. The disagreement area is identified in the northeast area of the dataset as can be seen in
Fig. 6. Tab. 1 also shows that pruning too little data (α small) or too much (α large) can mitigate the performance.

We provide here more experiments to illustrate the influence of α on our worker WAUM identification step. In Tab. 1,
we show on the three circles simulated dataset that we get better performance with the worker-wise WAUM using
hyperparameter α = 0.1. We visually compare the influence of this quantile hyperparameter on the pruning, in Fig. 8.
However, using α too big can degrade the generalization performance (as there is no longer enough data to train on).

11Remember that with our notation σ[1](x) = argmaxk∈[K] (σ(x))k, with ties broken at random.
12For instance, the squared-hinge is penalized with an `2 regularization parameter set to 1 for linear SVC and SVC, GBM uses as loss

the multinomial deviance, and the maximum depth equals to 3 (default).
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Figure 8: Influence of α on the pruning step. Red dots indicate data points pruned from the training set, at level qα in the
worker-wise WAUM (see line 8 in Algorithm 4). We consider (α ∈ {10−3, 10−2, 10−1, 0.25}). The closer α is to 1, the more
training tasks are pruned from the training set (and the worse the performance). The neural network used for predictions is three dense
layers’ (30, 20, 20), as for other simulated experiments.

D.1.2. THE TWO MOONS DATASET

This dataset is introduced as a case where pruning is not recommended, to illustrate the limitations of the worker-wise WAUM
method. The two moons simulation framework showcases the difference between relevant ambiguity in a dataset and
an artificial one. This dataset is created using make moons function from scikit-learn. We simulate ntask = 500
points, a noise ε = 0.2 and use a test split of 0.3.

Figure 9: two moons dataset: simulated workers with associated AUM and normalized trust scores. The hyperparameter α is set to 0.1
for the worker-wise WAUM. Notice that the SVC classifier is mostly wrong (since we only train for one epoch for this worker), inducing
a lower trust score overall.

Table 5: Training and test accuracy depending on the aggregation method used for the two moons’s dataset with ntask = 500 points
used for training a three dense layers’ artificial neural network (30, 20, 20). For reference, the best worker is w3 with a training accuracy
of 0.923 and a test accuracy of 0.900.

Aggregation Acctrain Acctest ECE

MV 0.917 0.894± 0.002 0.098± 0.004
NS 0.917 0.887± 0.002 0.217± 0.010
DS 0.871 0.867± 0.000 0.126± 0.001
GLAD 0.866 0.872± 0.006 0.107± 0.004

worker-wise WAUM(α = 10−3) 0.917 0.875± 0.002 0.088± 0.012

worker-wise WAUM(α = 10−2) 0.919 0.874± 0.002 0.092± 0.011

worker-wise WAUM(α = 10−1) 0.926 0.870± 0.003 0.101± 0.020
worker-wise WAUM(α = 0.25) 0.946 0.829± 0.006 0.135± 0.011

As can be observed with Fig. 9 and Fig. 10, the difficulty of this dataset comes from the two shapes leaning into one another.
However, this intrinsic difficulty is not due to noise but is inherent to the data. In this case, removing the hardest tasks means
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Figure 10: two moons dataset: One realization of Tab. 5 varying the aggregation strategy. Label predictions on train/test sets provided
by a three dense layers’ artificial neural network (30, 20, 20) trained on smooth labeled obtained by after aggregating the crowdsourced
labels (as in Fig. 9). Points in red are pruned from the training set in the worker-wise WAUM aggregation. The α hyperparameter is set
to 0.1. Each point represents a task xi, and its color is the probability to belong in class 1. One can visualize the ambiguity in the soft
training aggregated labels, but also in the resulting predictions by the neural network.

removing points at the edges of the crescents, and those are important in the data’s structure. From Tab. 5, we observe that
learning on naive soft labeling leads to better performance than other aggregations. But with these workers, no aggregation
produced labels capturing the shape of the data.

D.1.3. THE MAKE CLASSIFICATION DATASET: A CASE WHERE PRUNING IS IRRELEVANT.

We simulate ntask = 500 tasks using make classification from scikit-learn using two clusters per class (here
K = 2) and split the data in train/test with a test size of 0.3. We consider a class separation factor of 1.5 on the hypercube.
With this dataset, all methods achieve similar performance.

The difficulty induced by this dataset can be seen in Fig. 11. The groups are generated using two clusters per class and
because of their elongation, the tasks are overlapping when far away from the cluster’s center. This leads to common areas
of confusion for workers and global uncertainty for both the workers and the classifier trained on the aggregated votes.

Table 6: Training and test accuracy depending on the aggregation method used for the make classification’s dataset with
ntask = 500 points used for training a three dense layers’ artificial neural network (30, 20, 20). For reference, the best workers are w1

and w3 with respective training accuracies of 0.786 and 0.790 and test accuracies of 0.770 and 0.660.

Aggregation Acctrain Acctest ECE

MV 0.923 0.907± 0.000 0.085± 0.000
NS 0.923 0.906± 0.002 0.160± 0.012
DS 0.920 0.886± 0.000 0.108± 0.002
GLAD 0.926 0.893± 0.004 0.076± 0.004

worker-wise WAUM(α = 10−3) 0.928 0.897± 0.006 0.078± 0.013

worker-wise WAUM(α = 10−2) 0.933 0.901± 0.002 0.078± 0.012

worker-wise WAUM(α = 10−1) 0.965 0.889± 0.007 0.084± 0.016
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Figure 11: make classification dataset: simulated workers w1, w2, w3 with associated AUM and normalized trust scores s(j)

(left) and associated worker− wiseWAUM distributions (right) for α = 0.1, for K = 2 classes.
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Figure 12: make classification dataset: One realization of Tab. 6 varying the aggregation strategy. Label predictions on train/test
sets provided by a three dense layers’ artificial neural network (30, 20, 20) trained on smooth labeled obtained after aggregating the
crowdsourced labels (as in Fig. 11). Red points are pruned from training by worker− wiseWAUM with threshold α = 0.1. Each point
represents a task xi, and its color is the probability to belong in class 1. One can visualize the ambiguity in the soft training aggregated
labels, but also in the resulting predictions by the neural network.

D.1.4. THE MAKE CLASSIFICATION MANY WORKERS DATASET

We simulate nw = 150 workers who answer tasks from a dataset with K = 4 classes simulated using scikit-learn’s
function make classification. In this setting, the WAUM has the same performance as the worker-wise WAUM,
with a much lower computational cost (as we do not train nworker networks but a single one). All simulated tasks are
labeled by up to five workers among Linear SVCs, SVCs or Gradient Boosted Classifiers (GBM) chosen uniformly. To
simulate multiple workers with some dissimilarities, we randomly assign hyperparameters for each classifier as follows.

Each Linear SVC has a margin C chosen in a linear grid of 20 points from 10−3 to 3, a maximum number of iterations
between 1 and 100, and either hinge or squared hinge as loss function. Each SVC has a poly (with degree 3),
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rbf or sigmoid kernel and a maximum number of iterations between 1 and 100. Finally, each GBM has a learning
rate of 0.01, 0.1 or 0.5, a given number of base estimators in {1, 2, 5, 10, 15, 20, 30, 50, 100} and a maximum number of
iterations between 1 and 100. All simulated workers are also initialized using different seeds. All hyperparameters are
drawn uniformly at random from their respective set of possible values.

Table 7: The make classification many workers dataset: Performance metrics by aggregation method. The number of tasks is
ntask = 250 tasks per classes and 1 ≤ |A(x)| ≤ 5.

Aggregation Acctrain Acctest ECE

NS 0.8428 0.851± 0.00 0.146± 0.023
DS 0.820 0.849± 0.004 0.242± 0.011
GLAD 0.850 0.842± 0.002 0.196± 0.004

worker-wise WAUM(α = 10−1) 0.858 0.849± 0.006 0.137± 0.034

WAUM(α = 10−1) 0.883 0.861± 0.007 0.156± 0.023

D.2. Real datasets

The datasets we consider are all decomposed into three parts: train (Dtrain), validation (Dval), and test (Dtest). They are
described in the following subsections. In particular, we provide for the training set of each dataset (see Figs. 13, 15
and 17) three visualizations: the feedback effort per task distribution (|A(x)|), the load per worker distribution (|W(x)|),
and the naive soft labels entropy distribution, i.e., the entropy distribution for each task in the training set, defined by:
∀xi ∈ Xtrain, Ent(xi) = −∑k∈[K](ŷ

NS
i )k log((ŷNS

i )k).

We have conducted experiments on three real datasets. The CIFAR-10H dataset has been proposed to reflect human
perceptual uncertainty in (a subpart of) the classical CIFAR-10 dataset. Each worker has annotated a large number of
(seemingly easy) tasks, thus leading to few disagreements. The LabelMe and Music datasets have very few votes per
task, leading to more ambiguous votes distributions.

D.2.1. THE CIFAR-10H DATASET
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Figure 13: CIFAR-10H: dataset visualization

Introduced by Peterson et al. (2019), the crowdsourced dataset CIFAR-10H attempts to recapture the human labeling
noise present when creating the dataset. We have transformed this dataset, mainly by creating a validation set. Hence, the
training set for our version of CIFAR-10H consists of the first 9 500 test images from CIFAR-10, hence |Dtrain| = 9 500.
The validation set is then composed of the last 500 images from the training set of CIFAR-10 meaning |Dtest| = 500.
The test set consists of the whole training set from CIFAR-10, so |Dtest| = 50 000. The crowdsourcing experimentation
involved nworker = 2 571 workers on Amazon Mechanical Turk. Workers had to choose one label for each presented image
among the K = 10 labels of CIFAR-10: airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. Each worker labeled 200 tasks (and was paid $1.50 for that): 20 for each original category. Answering time
was also measured for each worker13. The CIFAR-10H annotating effort is balanced: each task has been labeled by 50
workers on average. We display in Fig. 14 the 8 images with smallest (worst) AUM and WAUM, for each label. This

13Note that attention checks occurred every 20 trial for each worker, for tasks whose labels were known. They have been removed from
the dataset since the corresponding images are not available.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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extends the results presented in Fig. 4.

(a) 8 worst images according to our proposed WAUM. (b) 8 worst images according to the AUM (Pleiss et al., 2020).

Figure 14: CIFAR-10H: 8 worst images for WAUM/AUM scores, by labels given in CIFAR-10. The rows represent the labels
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. a) The 8 worst WAUMs with our proposed
WAUM, training on CIFAR-10H. b) worst AUMs for the original method by Pleiss et al. (2020) training on the test set of CIFAR-10.
Both methods rely on the same Resnet-18.

D.2.2. THE LABELME DATASET
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Figure 15: LabelMe: dataset visualization

Another real dataset in the crowdsourced image classification field that can be used is the LabelMe crowdsourced dataset
created by Rodrigues & Pereira (2018). This dataset consists of ntask = 1 000 training images dispatched among K = 8
classes: highway, insidecity, tallbuilding, street, forest, coast, mountain or open country.
The validation set has 500 images and the test set has 1 188 images. The whole training tasks have been labeled by

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


Identify ambiguous tasks combining crowdsourced labels by weighting Areas Under the Margin

Figure 16: LabelMe: top-10 worst images detected by the WAUM (with labels row-ordered from top to bottom: highway,
insidecity, street, tallbuilding). Overlapping classes lead to labeling confusion and learning difficulties for both the
workers and the neural network.

nworker = 59 workers, each task having between one and three given (crowdsourced) labels. In particular, 42 tasks have
been labeled only once, 369 tasks have been labeled twice and 589 received three labels. This is a way sparser labeling
setting than the CIFAR-10H dataset.

Also, note that the LabelMe dataset has classes that overlap and thus lead to intrinsic ambiguities. This is the reason why
the CoNAL strategy was introduced by Chu et al. (2021), see details in Appendix A.7. For example, the classes highway,
insidecity, street and tallbuilding (in rows) are overlapping for some tasks: some cities have streets with tall
buildings, leading to confusion as shown in Figure 16. The proposed feature aware aggregation using the WAUM leads to
better performance in test accuracy and calibration as illustrated in Tab. 3.

D.2.3. THE MUSIC DATASET
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Figure 17: Music: dataset visualization

Rodrigues et al. (2014) released a crowdsourced dataset of audio files. The goal of this classification task was to decide
the genre of ntask = 700 30 seconds musical excerpts. The nworker = 44 workers had K = 10 possible labels: blues,
classical, country, disco, hiphop, jazz, metal, pop and reggae. Each audio file was labeled by between 1
and 7 workers. To test the results, a dataset of 299 labeled clips is used (originally 300, but one file is known to be corrupted).
Instead of working with the original audio files, we have used Mel spectrograms, openly available14, to rely on standard
neural networks architecture for image classification.

14
https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?datasetId=568973

https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?datasetId=568973
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Among other interesting discoveries, the stacked WAUM help us detect that the music Zydeco Honky Tonk by Buckwheat
Zydeco was labeled as classical, country or pop by the workers, though it is a blues standard. Another example is
Caught in the middle by Dio classified (with the same number of votes) as rock, jazz, or country when it is a metal
song. One last example detected: the music Patches by Clarence Carter is stored in the disco00020.wav file. The true
label is supposed to be disco, while the workers have provided the following labels: two have chosen rock, two blues,
one pop and another one proposed country. The actual genre of this music is country-soul, so both the true label and
five out of six workers are incorrect.

D.3. Algorithmic details on the neural network training

In all our experiments, we have used a neural network for the training part in Algorithm 1. We provide here some details on
how the training was performed.

The loss used to train all neural networks is the cross entropy loss between the aggregated label ŷi (see the list of candidates
in Appendix A) and the associated predicted probability pi:

H(ŷi, p̂i) = −
∑
k∈[K]

(ŷi)k log(p̂i)k .

In our experiments, we have considered p̂i = σ(xi), i.e., the softmax output associated with the task xi. The optimizer
chosen is either the SGD with an initial learning rate set to 0.1, a weight decay of 51̇0−4 and a momentum of 0.9 (for
CIFAR-10H and the simulated datasets) or Adam with standard hyperparameters β1 = 0.9 and β2 = 0.999 (for the
LabelMe and Music dataset).

Experiments can be reproduced by using the code available at https://github.com/peerannot/peerannot,
whose content is described below:

• A README.md file is available at the folder’s root presenting how to install and format the crowdsourced datasets and
more importantly how to reproduce the label aggregations and training depending on the strategy considered.

• The README.md contains a minimal working example to reproduce the experiment summarized in Tab. 2 for the
CIFAR-10H dataset. Other scripts to reproduce the experiments summarized in Tab. 3 and Tab. 4 are available as
shell scripts in peerannot/datasets/<dataset name>/run all.sh.

• The WAUM identification strategy and data pruning (with hyperparameter α as an argument) is implemented in
the file /peerannot/models/WAUM.py. The per-worker version of the WAUM function can be found at
/peerannot/models/WAUM perworker.py.

• For LabelMe and Music datasets, the neural network architecture used combines a VGG-16 with two additional
layers as proposed in Rodrigues & Pereira (2018), is implemented in /peerannot/helpers/networks.py.

• Training and aggregation hyperparameters are provided in the /peerannot/runners/ files or using the Command
Line Interface $peerannot aggregate -h or $peerannot train -h. Strategies using neural networks
(for instance CoNAL) have documentation accessible by the command $peerannot aggregate-deep -h. The
code to perform task identification using the WAUM is available with $peerannot identify -h.

https://github.com/peerannot/peerannot

