
EC
O

N
O

M
IC

SC
IE

N
CE

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

A formula for the value of a stochastic game
Luc Attiaa,1 and Miquel Oliu-Bartonb,1,2
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In 1953, Lloyd Shapley defined the model of stochastic games,
which were the first general dynamic model of a game to be
defined, and proved that competitive stochastic games have a
discounted value. In 1982, Jean-François Mertens and Abraham
Neyman proved that competitive stochastic games admit a robust
solution concept, the value, which is equal to the limit of the
discounted values as the discount rate goes to 0. Both contribu-
tions were published in PNAS. In the present paper, we provide a
tractable formula for the value of competitive stochastic games.

stochastic games | repeated games | dynamic programming

1. Introduction
A. Motivation. Stochastic games are the first general model of
dynamic games. Introduced by Shapley (1) in 1953, stochas-
tic games extend the model of strategic-form games, which is
due to von Neumann (2), to dynamic situations in which the
environment (henceforth, the state) changes in response to the
players’ choices. They also extend the model of Markov decision
problems to competitive situations with more than one decision
maker.

Stochastic games proceed in stages. At each stage, the players
choose actions which are available to them at the current state.
Their choices have 2 effects: They generate a stage reward for
each player, and they determine the probability for the state at
the next stage. Consequently, the players are typically confronted
with a trade-off between getting high rewards in the present
and trying to reach states that will ensure high future rewards.
Stochastic games and their applications have been studied in
several scientific disciplines, including economics, operations
research, evolutionary biology, and computer science. In addi-
tion, mathematical tools that were used and developed in the
study of stochastic games are used by mathematicians and com-
puter scientists in other fields. We refer the readers to Solan and
Vieille (3) for a summary of the historical context and the impact
of Shapley’s seminal contribution.

The present paper deals with finite competitive stochastic
games, that is, 2-player stochastic games with finitely many states
and actions, and where the stage rewards of the players add up
to zero. Shapley (1) proved that these games have a discounted
value, which represents what playing the game is worth to the
players when future rewards are discounted at a constant posi-
tive rate. Bewley and Kohlberg (4) proved that the discounted
values admit a limit as the discount rate goes to 0. Building on
this result, Mertens and Neyman (5, 6) proved that finite compet-
itive stochastic games admit a robust solution concept, the value,
which represents what playing the game is worth to the players
when they are sufficiently patient.

Finding a tractable formula for the value of finite competitive
stochastic games was a major open problem for nearly 40 y, which
is settled in the present contribution. While opening an addi-
tional path for faster computations, our approach may also bring
additional quantitative and qualitative insights into the model of
stochastic games.

B. Outline of this Paper. This paper is organized as follows: Section
2 states our results on finite competitive stochastic games, namely
a formula for the λ-discounted values (proved in Section 3), and

a formula for the value (proved in Section 4). Section 5 describes
the algorithmic implications and tractability of these 2 formulas.
Section 6 concludes with remarks and extensions.

2. Context and Main Results
To state our results precisely, we recall some definitions and well-
known results about 2-player zero-sum games (Section 2A) and
about finite competitive stochastic games (Section 2B). In Sec-
tion 2C we give a brief overview of the relevant literature on
finite competitive stochastic games. Our results are described in
Section 2D.

Notation. Throughout this paper, N denotes the set of positive
integers. For any finite set E we denote the set of probabili-
ties over E by ∆(E) = {f :E→ [0, 1] |

∑
e∈E f (e) = 1} and its

cardinality by |E |.

A. Preliminaries on Zero-Sum Games. The aim of this section is to
recall some well-known definitions and facts about 2-player zero-
sum games, henceforth zero-sum games.
Definition. A zero-sum game is described by a triplet (S ,T , ρ),
where S and T are the sets of possible strategies for player 1 and
player 2, respectively, and ρ :S ×T→R is a payoff function. It
is played as follows: Independently and simultaneously, the first
player chooses s ∈S and the second player chooses t ∈T . Player
1 receives ρ(s, t) and player 2 receives −ρ(s, t). The zero-sum
game (S ,T , ρ) has a value whenever

sup
s∈S

inf
t∈T

ρ(s, t) = inf
t∈T

sup
s∈S

ρ(s, t).

In this case, we denote this common quantity by val ρ.
Optimal strategies. Let (S ,T , ρ) be a zero-sum game which has
a value. An optimal strategy for player 1 is an element s∗ ∈S so
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that ρ(s∗, t)≥ val ρ for all t ∈T . Similarly, t∗ ∈T is an optimal
strategy for player 2 if ρ(s, t∗)≤ val ρ for all s ∈S .
The value operator. The following properties are well known:

i) Minmax theorem: Let (S ,T , ρ) be a zero-sum game. Sup-
pose that S and T are 2 compact subsets of some topological
vector space, ρ is a continuous function, the map s 7→ ρ(s, t)
is concave for all t ∈T , and the map t 7→ ρ(s, t) is convex for
all s ∈S . Then (S ,T , ρ) has a value and both players have
optimal strategies.

ii) Monotonicity: Suppose that (S ,T , ρ) and (S ,T , ν) have a
value, and ρ(s, t)≤ ν(s, t) holds for all (s, t)∈S ×T . Then
val ρ≤ val ν.

Matrix games. In the sequel, we identify every real matrix M =
(ma,b) of size p× q with the zero-sum game (SM ,TM , ρM ),
where SM = ∆({1, . . . , p}), TM = ∆({1, . . . , q}) and where

ρM (s, t) =

p∑
a=1

q∑
b=1

s(a)ma,b t(b) ∀(s, t)∈SM ×TM .

The value of the matrix M , denoted by valM , is the value
of (SM ,TM , ρM ) which exists by the minmax theorem. The
following properties are well known:

iii) Continuity: Suppose that M (t) is a matrix with entries that
depend continuously on some parameter t ∈R. Then the
map t 7→ valM (t) is continuous.

iv) A formula for the value: For any matrix M , there exists
a square submatrix M̂ of M so that valM = det M̂

ϕ(M̂ )
, where

ϕ(M̂ ) denotes the sum of all of the cofactors of M̂ , with the
convention that ϕ(M̂ ) = 1 if M̂ is of size 1× 1.

Comments. Property i) is taken from Sion (7), a generalization
of von Neumann’s (2) minmax theorem, while property iv) was
established by Shapley and Snow (8). The other 2 properties are
straightforward.

B. Stochastic Games. We present now the standard model of finite
competitive stochastic games, henceforth stochastic games for
simplicity. We refer the reader to Sorin’s book (ref. 9, chap. 5)
and to Renault’s notes (10) for a more detailed presentation of
stochastic games.
Definition. A stochastic game is described by a tuple (K , I , J ,
g , q , k), where K = {1, . . . ,n} is a finite set of states, for some
n ∈N; I and J are the finite action sets of player 1 and player 2,
respectively; g :K × I × J→R is a reward function to player 1;
q :K × I × J→∆(K ) is a transition function; and 1≤ k ≤n is
an initial state.

The game proceeds in stages as follows: At each stage m ≥
1, both players are informed of the current state km ∈K ,
where k1 = k . Then, independently and simultaneously, player
1 chooses an action im ∈ I and player 2 chooses an action jm ∈
J . The pair (im , jm) is then observed by both players, from
which they can infer the stage reward g(km , im , jm). A new state
km+1 is then chosen according to the probability distribution
q(km , im , jm), and the game proceeds to stage m + 1.
Discounted stochastic games. For any discount rate λ∈ (0, 1],
we denote by (K , I , J , g , q , k ,λ) the stochastic game (K , I , J , g ,
q , k) where player 1 maximizes, in expectation, the normalized
λ-discounted sum of rewards∑

m≥1
λ(1−λ)m−1g(km , im , jm),

while player 2 minimizes this amount.
In the following, the discount rate λ and the initial state k are

considered as parameters, while (K , I , J , g , q) is fixed.

Strategies. A behavioral strategy, henceforth a strategy, is a deci-
sion rule from the set of possible observations of a player to
the set of probabilities over the set of the player’s actions. For-
mally, a strategy for player 1 is a sequence of mappings σ=
(σm)m≥1, where σm : (K × I × J )m−1×K →∆(I ). Similarly, a
strategy for player 2 is a sequence of mappings τ = (τm)m≥1,
where τm : (K × I × J )m−1×K →∆(J ). The sets of strategies
are denoted, respectively, by Σ and T .
The expected payoff. By the Kolmogorov extension theorem,
together with an initial state k and the transition function q ,
any pair of strategies (σ, τ)∈Σ×T induces a unique proba-
bility Pk

σ,τ over the sets of plays (K × I × J )N on the sigma
algebra generated by the cylinders. Hence, to any pair of strate-
gies (σ, τ)∈Σ×T corresponds a unique payoff γk

λ(σ, τ) in the
discounted game (K , I , J , g , q , k ,λ),

γk
λ(σ, τ) :=Ek

σ,τ

[∑
m≥1

λ(1−λ)m−1g(km , im , jm)
]
,

where Ek
σ,τ denotes the expectation with respect to the probabil-

ity Pk
σ,τ .

Stationary strategies. A stationary strategy is a strategy that
depends only on the current state. Thus, x :K →∆(I ) is a
stationary strategy for player 1 while y :K →∆(J ) is a sta-
tionary strategy for player 2. The sets of stationary strategies
are ∆(I )n and ∆(J )n , respectively. A pure stationary strategy
is a stationary strategy that is deterministic. The sets of pure
stationary strategies are I n and J n , respectively, and we refer
to pure stationary strategies with the signs in boldface type,
i∈ I n and j∈ J n .
A useful expression. Suppose that both players use station-
ary strategies x and y in the discounted stochastic game
(K , I , J , g , q , k ,λ) for some λ∈ (0, 1]. The evolution of the state
then follows a Markov chain, and the stage rewards depend
only on the current state. Let Q(x , y)∈Rn×n and g(x , y)∈Rn

denote, respectively, the corresponding transition matrix and the
vector of expected rewards. Formally, for all 1≤ `, `′≤n ,

Q`,`′(x , y) =
∑

(i,j)∈I×J

x `(i)y`(j )q(`′ | `, i , j ) [2.1]

g`(x , y) =
∑

(i,j)∈I×J

x `(i)y`(j )g(`, i , j ). [2.2]

Let γλ(x , y) = (γ1
λ(x , y), . . . , γn

λ (x , y))∈Rn . Then Q(x , y),
g(x , y), and γλ(x , y) satisfy the relations

γλ(x , y) =
∑

m≥1
λ(1−λ)m−1Qm−1(x , y)g(x , y)

=λg(x , y) + (1−λ)Q(x , y)γλ(x , y).

Let Id denote the identity matrix of size n . The matrix Id− (1−
λ)Q(x , y) is invertible because Q(x , y) is a stochastic matrix.
Consequently, γλ(x , y) =λ(Id− (1−λ)Q(x , y))−1g(x , y) and,
by Cramer’s rule,

γk
λ(x , y) =

dk
λ(x , y)

d0
λ(x , y)

, [2.3]

where d0
λ(x , y) = det(Id− (1−λ)Q(x , y)) and where dk

λ(x , y) is
the determinant of the n ×n matrix obtained by replacing the
k th column of Id− (1−λ)Q(x , y) with λg(x , y).
The discounted values. The discounted stochastic game (K , I ,
J , g , q , k ,λ) and the zero-sum game (Σ, T , γk

λ) are equal by
construction. Thus, the discounted stochastic game has a value
whenever

sup
σ∈Σ

inf
τ∈T

γk
λ(σ, τ) = inf

τ∈T
sup
σ∈Σ

γk
λ(σ, τ).
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In this case, the value is denoted by vk
λ and is often referred to as

the λ-discounted value of the stochastic game (K , I , J , g , q , k).
The following result is due to Shapley (1):

v) Every discounted stochastic game (K , I , J , g , q , k ,λ) has a
value, and both players have optimal stationary strategies.
For each 1≤ `≤n and u ∈Rn , consider the following matrix
of size |I | × |J |:

G`λ,u :=
(
λg(`, i , j ) + (1−λ)

∑n

`′=1
q(`′ | `, i , j )u`

′)
i,j
.

The vector of values vλ = (v1
λ, . . . , vn

λ ) is then the unique
fixed point of the Shapley operator Φ(λ, · ) :Rn→Rn , which is
defined by Φ`(λ, u) := valG`λ,u , for all 1≤ `≤n and u ∈Rn .
Remark. In the model of stochastic games, the discount rate
stands for the degree of impatience of the players, in the sense
that future rewards are discounted. Alternatively, one can inter-
pret λ as the probability that the game stops after every stage.
The more general case of stopping probabilities that depend on
the current state and on the players’ actions can be handled in a
similar way, as already noted by Shapley (1).
The value. The stochastic game (K , I , J , g , q , k) has a value if
there exists vk ∈R such that for any ε> 0 there exists M0 such
that player 1 can guarantee that for any M0≤M ≤+∞ the
expectation of the average reward per stage in the first M stages
of the game is at least vk − ε, and player 2 can guarantee that
this amount is at most vk − ε. It follows that if the game has
a value vk , then for each ε> 0 there exists a pair of strategies
(σε, τε)∈Σ×T such that, for some λ0 ∈ (0, 1], the following
inequalities hold for all λ∈ (0,λ0):

γk
λ(σε, τ)≥ vk − ε ∀τ ∈T

γk
λ(σ, τε)≤ vk + ε ∀σ ∈Σ.

The following result is due to Mertens and Neyman (5):

vi) Every stochastic game (K , I , J , g , q , k) has a value vk , and
vk = limλ→0 v

k
λ .

C. State of the Art. Since its introduction by Shapley (1), the the-
ory of stochastic games and its applications have been studied
in several scientific disciplines. We restrict our brief literature
survey to the theory of finite competitive stochastic games and
related algorithms.
The discounted values. In 1953, Shapley (1) proved that every
discounted stochastic game (K , I , J , g , q , k ,λ) admits a value vk

λ

and that both players have optimal stationary strategies. Further-
more, the vector of values vλ = (v1

λ, . . . , vn
λ ) is the unique fixed

point of an explicit operator.
Existence of the value. Building on Shapley’s characterization of
the discounted values and on a deep result from real algebraic
geometry, the so-called Tarski–Seidenberg elimination theorem,
Bewley and Kohlberg (4) proved in 1976 that the discounted
values converge as the discount rate tends to zero. Mertens
and Neyman (5, 6) strengthened this result in the early 1980s
by establishing that every stochastic game (K , I , J , g , q , k) has
a value vk and that the value coincides with the limit of the
discounted values. It is worth noting that, unlike discounted
stochastic games, where the observation of the past actions is
irrelevant, the existence of the value relies on the observation
of the stage rewards.
Alternative proofs of convergence. In the late 1990s, Szczechla,
Connell, Filar, and Vrieze (11) gave an alternative proof for the
convergence of the discounted values as the discount rate goes to
zero, using Shapley’s characterization of the discounted values
and the geometry of complex analytic varieties. Another proof

was recently obtained by Oliu-Barton (12), based on the theory
of finite Markov chains and on Motzkin’s alternative theorem for
linear systems.
Robustness of the value. The years 2010 to 2018 have brought
many additional results concerning the value of stochastic games.
Neyman and Sorin (13) studied stochastic games with a ran-
dom duration clock. That is, at each stage, the players receive an
additional signal which carries information about the number of
remaining stages. Assuming that the expected number of remain-
ing stages decreases throughout the game and that the expected
number of stages converges to infinity, the values of the stochas-
tic games with a random duration clock converge, and the limit
is equal to the value of the stochastic game. Ziliotto (14) consid-
ered weighted-average stochastic games, that is, stochastic games
where player 1 maximizes in expectation a fixed weighted aver-
age of the sequence of rewards, namely

∑
m≥1 θmg(km , im , jm).

If
∑

m≥1 |θ
p
m+1− θpm | converges to zero for some p> 0, then the

values of the weighted-average stochastic games converge, and
the limit is equal to the value of the stochastic game. Neyman
(15) considered discounted stochastic games in continuous time
and proved that their value coincides with the value of the dis-
crete model. Finally, Oliu-Barton and Ziliotto (16) proved that
stochastic games satisfy the constant payoff property, as conjec-
tured by Sorin, Venel, and Vigeral (17). That is, for sufficiently
small λ, any pair of optimal strategies of the discounted game
(K , I , J , g , q , k ,λ) has the property that, in expectation, the
average of the cumulated λ-discounted sum of rewards on any set
of consecutive stages of cardinality of order 1/λ is approximately
equal to vk .
Characterization of the value. The first results on the value of
stochastic games go back to the mid-1960s. By adapting the
tools developed by Howard (18) for Markov decision problems,
Hoffman and Karp (19) obtained a characterization for the limit
of the λ-discounted values in the irreducible case (that is, when
any pair of stationary strategies induces an irreducible Markov
chain), in the spirit of an average cost optimality equation. Soon
after, Blackwell and Ferguson (20) determined the value of the
“Big Match,” an example of a stochastic game whose value
depends on the initial state. In the mid-1970s, Kolhberg (21)
introduced absorbing games, a class of stochastic games in which
there is at most one transition between states and which includes
the Big Match as a particular case. Kohlberg proved that these
games have a value and provided a characterization using the
derivative of Shapley’s operator. Two additional characteriza-
tions for the value of absorbing games were obtained recently
by Laraki (22) and by Sorin and Vigeral (23), respectively.
Algorithms. Whether the value of a finite stochastic game can
be computed in polynomial time is a famous open problem in
computer science. This problem is intriguing because the class
of simple stochastic games is both NP (nondeterministic poly-
nomial time) and co-NP, and several important problems with
this property have eventually been shown to be polynomial-time
solvable, such as primality testing or linear programming. (A sim-
ple stochastic game is one where the transition function depends
on one player’s action at each state.) The known algorithms fall
into 2 categories: decision procedures for the first-order theory
of the reals, such as refs. 24–26, and value or strategy iteration
methods, such as refs. 27 and 28. All of them are worst-case
exponential in the number of states or in the number of actions.
Recently, Hansen, Koucký, Lauritzen, Miltersen, and Tsigaridas
(29) achieved a remarkable improvement by providing an algo-
rithm which is polynomial in the number of actions, for any
fixed number of states. However, the dependence on the num-
ber of states is both nonexplicit and doubly exponential. Based
on the characterization of the value obtained in the present
paper, Oliu-Barton (30) improved the algorithm of Hansen et al.
(29) by significantly reducing the dependence on the number
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of states to an explicit polynomial dependence on the number
of pure stationary strategies. Although not polynomial in the
number of states, this algorithm is the most efficient algorithm
that is known today.

D. Main Results. As already argued, the value is a very robust solu-
tion concept for stochastic games. Its existence was proved nearly
40 y ago, and an explicit characterization has been missing since
then. The main contribution of the present paper is to provide a
tractable formula for the value of stochastic games.

Our result relies on a different characterization of the dis-
counted values, which is obtained by reducing a discounted
stochastic game with n states to n independent parameterized
matrix games, one for each initial state.

For the rest of this paper, 1≤ k ≤n denotes a fixed initial
state. The parameterized game that corresponds to k is simply
obtained by linearizing the ratio in Eq. 2.3 for all pairs of pure
stationary strategies, as follows:

Definition D.1. For any z ∈R , define the matrix W k
λ (z ) of size

|I |n × |J |n by setting

W k
λ (z )[i, j] := dk

λ(i, j)− zd0
λ(i, j) ∀(i, j)∈ I n × J n .

Theorem 1 (A Formula for the Discounted Values). For any λ∈ (0, 1],
the value of the discounted stochastic game (K , I , J , g , q , k ,λ) is
the unique solution to

z ∈R, valW k
λ (z ) = 0.

Theorem 2 (A Formula for the Value). For any z ∈R, the limit
F k (z ) := limλ→0 val W

k
λ (z )/λn exists in R∪{±∞}. The value

of the stochastic game (K , I , J , g , q , k) is the unique solution to

w ∈R,

{
z >w ⇒ F k (z )< 0

z <w ⇒ F k (z )> 0.

Comments.

1) Theorem 1 provides an uncoupled characterization of the
discounted values. That is, each initial state is considered
separately. This property, which contrasts with Shapley’s (1)
characterization, provides the key to Theorem 2.

2) Theorem 1 can be extended to stochastic games with compact
action spaces and continuous payoff and transition functions,
but Theorem 2 cannot because the discounted values may fail
to converge in this case.

3) Theorem 2 provides a different and elementary proof of the
convergence of the λ-discounted values as λ tends to 0.

4) Theorem 2 captures the characterization of the value for
absorbing games obtained by Kohlberg (21).

5) The sign of F k (z ) can be easily computed using linear pro-
gramming techniques. This is a crucial aspect of the formula
of Theorem 2.

6) Theorems 1 and 2 suggest binary search algorithms for com-
puting, respectively, the discounted values and the value, by
successively evaluating the sign of valW k

λ (z ) and of F k (z )
for well-chosen z . These algorithms are polynomial in the
number of pure stationary strategies. The precise description
and analysis of these algorithms are the object of a separate
paper (30). For completeness, we provide a brief description
in Section 5.

3. A Formula for the Discounted Values
In this section we prove Theorem 1. In the sequel, we consider a
fixed discounted stochastic game (K , I , J , g , q , k ,λ). The proof
is based on the following 4 properties:

1) d0
λ(i, j) is positive for all (i, j)∈ I n × J n .

2) (x , y , z ) 7→ d0
λ(x , y)− zdk

λ(x , y) is a multilinear map.
3) z 7→ valW k

λ (z ) is a strictly decreasing real map.
4) val W k

λ (vk
λ) = 0.

Indeed, Theorem 1 clearly follows from the last two. The exten-
sion of this result to the more general framework of compact-
continuous stochastic games (that is, stochastic games with com-
pact metric action spaces and continuous payoff and transition
functions) proceeds along the same lines and is postponed to
Section 6B.

Notation. We use the following notation:

• For any x = (x1, . . . , xn)∈∆(I )n we denote by x̂ ∈∆(I n)
the element that corresponds to the direct product of the
coordinates of x . Formally,

x̂ (i) :=

n∏
`=1

x `(i`) ∀ i = (i1, . . . , in)∈ I n .

The map x 7→ x̂ is one to one and defines the canonical inclu-
sion ∆(I )n ⊂∆(I n). The map y 7→ ŷ is defined similarly and
gives the canonical inclusion ∆(J )n ⊂∆(J n).

• The letters x and y in boldface type refer to elements of ∆(I n)
and ∆(J n), respectively.

• For all z ∈R and all (x, y)∈∆(I n)×∆(J n) we set

W k
λ (z )[x, y] :=

∑
(i,j)∈In×Jn

x(i)W k
λ (z )[i, j] y(j).

We now prove the 4 properties above. The first one is due to
Ostrovski (31), and for completeness we provide a short proof.

Lemma 1. For any stochastic matrix P of size n ×n and any λ∈
(0, 1], det(Id− (1−λ)P)≥λn .

Proof: Set M := Id− (1−λ)P . Because P is a stochastic matrix,
M `,`−

∑
`′ 6= ` |M

`,`′ | ≥λ for all 1≤ `≤n . Hence, M is strictly
diagonally dominant. For any µ∈R so that µ<λ, the matrix
M −µId is still strictly diagonally dominant, so in particular
it is invertible. Consequently, all real eigenvalues of M are
larger than or equal to λ. Similarly, for any µ= a + bi ∈C so
that |µ| :=

√
a2 + b2 <λ, the matrix M −µId is strictly diag-

onally dominant, so that M −µId is invertible. Consequently,
if a + bi is a complex eigenvalue of M , then λ≤ |a + bi |,
so that λ2≤ |a + bi |2 = a2 + b2 = (a + bi)(a − bi). Recall that
detM =

∏n
`=1 µ`, where µ1, . . . ,µn are the eigenvalues of M

counted with multiplicities. Because each real eigenvalue con-
tributes at least λ in the product, and each pair of conju-
gate eigenvalues contributes at least λ2, it clearly follows that
detM ≥λn . �

Lemma 2. For any (x , j)∈∆(I )n × J n and z ∈R,

i) d0
λ(x , j) =

∑
i∈In x̂ (i)d0

λ(i, j).
ii) dk

λ(x , j) =
∑

i∈In x̂ (i)dk
λ(i, j).

iii) W k
λ (z )[x̂ , j] = dk

λ(x , j)− zd0
λ(x , j).

Proof:

i) Let j∈ J n be fixed. For any x ∈∆(I n) set M (x , j) := Id−
(1−λ)Q(x , j), so that detM (x , j) = d0

λ(x , j) and, in par-
ticular, detM (i, j) = d0

λ(x , j) for all i∈ I n . By Eq. 2.1, the
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first row of M (x , j) depends on x only through x1, and the
dependence is linear. Write x as a convex combination of
the stationary strategies {(i , x2, . . . , xn), i ∈ I }, and use the
multilinearity of the determinant to obtain

detM (x , j) = det
(∑

i∈I
x1(i)M ((i , x2, . . . , xn), j)

)
=
∑

i∈I
x1(i) detM ((i , x2, . . . , xn), j).

Using the same argument for the remaining rows, one
inductively obtains that detM (x , j) is equal to∑
i1∈I

x1(i1)
∑
i2∈I

x2(i2) · · ·
∑
in∈I

xn(in) detM ((i1, i2, . . . , in), j),

which is equal to
∑

i∈In x̂ (i) detM (i, j) by the definition
of x̂ .

ii) The proof goes along the same lines as i). Fix j∈ J n . For any
x ∈∆(J )n , let M k (x , j) be the matrix obtained by replacing
the k th column of M (x , j) by λg(x , j), so that detM k (x , j) =
dk
λ(x , j) and, in particular, detM k (i, j) = dk

λ(i, j) for all i∈
I n . By Eqs. 2.1 and 2.2, the `th row of M k (x , j) depends
on x only through x ` and that the dependence is linear.
Like in i), these properties imply the desired result, namely
detM k (x , j) =

∑
i∈In x̂ (i) detM k (i, j).

iii) The result follows directly from i), ii), and the definition of
W k
λ (z )[x̂ , j]. Indeed,

W k
λ (z )[x̂ , j] =

∑
i∈In

x̂ (i)W k
λ (z )[i, j]

=
∑

i∈In
x̂ (i)dk

λ(i, j)− z
∑

i∈In
x̂ (i)d0

λ(i, j)

= dk
λ(x , j)− zd0

λ(x , j).

�

Remark: Lemma 2 is stated for all (x , j) for convenience, but is
also valid for all (x , y). The last property, for instance, can be
stated as follows. For all (x , y , z )∈∆(I )n ×∆(J )n ×R,

W k
λ (z )[x̂ , ŷ ] = dk

λ(x , y)− zd0
λ(x , y).

Lemma 3. For any (z1, z2)∈R2 so that z1 < z2,

valW k
λ (z1)− val W k

λ (z2)≥ (z2− z1)λn .

In particular, z 7→ valW k
λ (z ) is a strictly decreasing real map.

Proof: By definition, Q(i, j) is a stochastic matrix of size n ×n
for each (i, j)∈ I n × J n . Hence, by Lemma 1,

d0
λ(i, j) = det(Id− (1−λ)Q(i, j))≥λn ∀(i, j)∈ I n × J n .

Therefore, for all z1 < z2 and (i, j),

W k
λ (z1)[i, j]−W k

λ (z2)[i, j] = (z2− z1)d0
λ(i, j)

≥ (z2− z1)λn .

The result follows then from the monotonicity of the value
operator, stated in item ii) of Section 2A. �

Lemma 4. val W k
λ (vk

λ) = 0.

Proof: By Lemma 2, iii), the relation

W k
λ (vk

λ)[x̂ , j] = dk
λ(x , j)− vk

λd
0
λ(x , j) [3.1]

holds for all (x , j)∈∆(I )n × J n . Let x∗ ∈∆(I )n be an optimal
stationary strategy of player 1 in (K , I , J , g , q , k ,λ), which exists
by Shapley (1) as already noted in item v) of Section 2B, and
let x̂∗ ∈∆(I n) denote the direct product of its coordinates. The
optimality of x∗ implies

γk
λ(x∗, j) =

dk
λ(x∗, j)

d0
λ(x∗, j)

≥ vk
λ .

The matrix Q(x∗, j) is stochastic of size n ×n so that d0
λ(x∗, j) =

det(Id− (1−λ)Q(x∗, j))≥λn > 0 by Lemma 1. Consequently,
the previous relation is equivalent to

dk
λ(x∗, j)− vk

λd
0
λ(x∗, j)≥ 0. [3.2]

Therefore, W k
λ (vk

λ)[x̂∗, j]≥ 0 follows from Eqs. 3.1 and 3.2.
For any matrix M = (ma,b) of size p× q and any s ∈
∆({1, . . . , p}), the definition of the value implies that valM ≥
min1≤b≤q

∑
1≤a≤p s(a)ma,b . Consequently,

val W k
λ (vk

λ)≥min
j∈Jn

W k
λ (vk

λ)[x̂∗, j]≥ 0.

By reversing the roles of the players one similarly obtains an
analogue of Lemma 2 for all (i, y)∈ I n ×∆(J )n , and then
val W k

λ (vk
λ)≤ 0, which gives the desired result. �

Proof of Theorem 1: By Lemma 3, z 7→ valW k
λ (z ) is a strictly

decreasing real function. Consequently, the set {z ∈R, val
W k
λ (z ) = 0} contains at most one element. By Lemma 4, this

element is precisely vk
λ . �

4. A Formula for the Value
In this section we prove Theorem 2. Before we establish this
result, we show that the limit F k (z ) := limλ→0 valW

k
λ (z )/λn

exists in R∪{−∞, +∞} for all z ∈R and that the equation

w ∈R,

{
z >w ⇒ F k (z )< 0

z <w ⇒ F k (z )> 0
[4.1]

admits a unique solution. This is shown in the following 2
lemmas.

Lemma 1. Let z ∈R. Then, there exists a rational fraction R and
λ0 > 0 so that

valW k
λ (z ) =R(λ) ∀λ∈ (0,λ0).

Proof: By construction, the entries of W k
λ (z ) are polynomials in

λ. By Shapley and Snow (8), the value of a matrix satisfies the for-
mula stated in item iv) of Section 2A. Consequently, for any λ∈
(0, 1], there exists a rational fraction R so that valW k

λ (z ) =R(λ).
Because the choice of the square submatrix may vary with λ, the
corresponding rational fraction may also vary. However, as the
number of possible square submatrices is finite, so is the num-
ber of possible rational fractions that may satisfy this equality.
Consequently, there exists a finite collection E = {R1, . . . ,RL}
of rational fractions so that for each λ∈ (0, 1] there exists R ∈
E that satisfies valW k

λ (z ) =R(λ). Hence, for any λ, the point
(λ, valW k

λ (z )) belongs to the union of the graphs of the func-
tions R1, . . . ,RL. As already noted in item iii) of Section 2A,
the map λ 7→ valW k

λ (z ) is continuous on (0, 1]. Consequently,

Attia and Oliu-Barton PNAS Latest Articles | 5 of 9

D
ow

nl
oa

de
d 

at
 In

te
ru

ni
ve

rs
ita

ire
 d

e 
M

ed
ec

in
e 

on
 D

ec
em

be
r 

17
, 2

01
9 



as λ varies on the interval (0, 1], the curve λ 7→ (λ, valW k
λ (z ))

can “jump” from the graph of R to the graph of R′ only at
points where these 2 graphs intersect. Yet, for any 2 rational
fractions, either they are congruent or they intersect finitely
many times. Hence, there exists λ0 so that, for any R,R′ ∈E ,
either R(λ) =R′(λ) for all (0,λ0) or R(λ) 6=R′(λ) for all (0,λ0).
In particular, there exists R ∈E so that valW k

λ (z ) =R(λ) for
all (0,λ0). �

Lemma 2. Eq. 4.1 admits a unique solution.

Proof: By Lemma 1, limλ→0 valW
k
λ (z )/λn exists for all z ∈R.

Suppose that Eq. 4.1 admits 2 solutions w <w ′. Then, for any z ∈
(w ,w ′) one has F k (z )< 0 and F k (z )> 0, which is impossible.
Therefore, Eq. 4.1 admits at most one solution. Let (z1, z2)∈R2

satisfy z1 < z2. Rearranging the terms in Lemma 3, dividing by
λn , and taking λ to 0 yields

F k (z1)≥F k (z2) + z2− z1. [4.2]

In particular, the following relations hold:
F k (z )≥ 0 ⇒ F k (z ′)≥ 0, ∀z ′≤ z

F k (z )≤ 0 ⇒ F k (z ′)≤ 0, ∀z ′≥ z

F k (z ) = 0 ⇒ F k (z ′) 6= 0, ∀z ′ 6= z .

[4.3]

We now show that F k is not constant, which is still
compatible with Eq. 4.2 if F k ≡+∞ or F k ≡−∞. Let
C− := mink ,i,j g(k , i , j ) and C+ := maxk ,i,j g(k , i , j ). For any
λ∈ (0, 1], one clearly has C−≤ vk

λ ≤C+. Consequently, by
Lemma 3,

valW k
λ (C+)≤ valW k

λ (vk
λ)≤ valW k

λ (C−).

Dividing by λn and taking λ to 0, one obtains

F k (C+)≤ 0≤F k (C−). [4.4]

We now define recursively 2 real sequences (u−m )m≥1 and
(u+

m )m≥1 by setting u−1 :=C−, u+
1 :=C+, and, for all m ≥ 1,

u−m+1 :=

{
1
2
(u−m + u+

m ) if F k
(

1
2
(u−m + u+

m )
)
≥ 0

u−m otherwise,

u+
m+1 :=

{
1
2
(u−m + u+

m ) if F k
(

1
2
(u−m + u+

m )
)
≤ 0

u+
m otherwise.

By construction, F k (u−m )≥ 0 and F k (u+
m )≤ 0 for all m ≥ 1.

Moreover, Eqs. 4.3 and 4.4 imply C−≤ u−m ≤ u+
m ≤C+ for all

m ≥ 1, so that (u−m )m is nondecreasing and (u+
m )m is nonin-

creasing. Furthermore, u+
m+1− u−m+1≤ 1

2
(u+

m − u−m ) for all m ≥
1. Hence, the 2 sequences admit a common limit ū . For any ε> 0,
let mε be such that u−mε

> ū − ε. By Eq. 4.2, this implies

F k (ū − ε)≥F k (u−mε
) + u−mε

− (ū − ε)> 0.

Similarly, F k (ū + ε)< 0 for any ε> 0. Together with Eq. 4.3, this
shows that ū is a solution to Eq. 4.1. �

We are now ready to prove our main result.

Proof of Theorem 2: Let w be the unique solution Eq. 4.1 and fix
ε> 0. By the choice of w , F k (w − ε)> 0. Consequently, there
exists λ0 > 0 so that

valW k
λ (w − ε)> 0 ∀λ∈ (0,λ0). [4.5]

By Lemma 3, the map z 7→ valW k
λ (z ) is strictly decreasing. By

Lemma 4, valW k
λ (vk

λ) = 0. Therefore, Eq. 4.5 implies

vk
λ >w − ε ∀λ∈ (0,λ0). [4.6]

Because ε is arbitrary, lim infλ→0 v
k
λ ≥w . By reversing the roles

of the players, one obtains in a similar manner lim supλ→0 v
k
λ ≤

w . Hence, the λ-discounted values converge as λ goes to 0, and
limλ→0 v

k
λ =w . The result follows then from item vi) of Sec-

tion 2B, namely the existence of the value vk and the equality
limλ→0 v

k
λ = vk , due to Mertens and Neyman (5). �

5. Algorithms
The formulas obtained in Theorems 1 and 2 suggest binary search
methods for approximating the λ-discounted values and the
value of a stochastic game (K , I , J , g , q , k), based on the eval-
uation of the sign of the real functions z 7→ valW k

λ (z ) and z 7→
F k (z ), respectively. In this section we provide a brief descrip-
tion of these algorithms and discuss their complexity using the
logarithmic cost model (a model which accounts for the total
number of bits which are involved). We refer the reader to ref.
30 for more technical details and for 2 additional algorithms
which provide exact expressions for vk

λ and vk within the same
complexity class.

Notation. For any m ∈N, let Em := {0, 1
m

, 2
m

, . . . , m
m
} and

Zm := {0, 1
2m , 2

2m , . . . , 2m

2m }.

A. Computing the Discounted Values. The following bisection algo-
rithm, which is directly derived from Theorem 1, inputs a dis-
counted stochastic game with rational data and outputs an
arbitrarily close approximation of its value.
Input. A discounted stochastic game (K , I , J , g , q , k ,λ) so that,
for some (N ,L)∈N2, the functions g and q take values in EN

and λ∈EL and a precision level r ∈N.
Output. A 2−r approximation of vk

λ .
Complexity. Polynomial in n , |I |n , |J |n , logN , logL and r .

1) Set w := 0, w := 1
2) WHILE w −w > 2−r DO

2.1) z := w+w
2

2.2) v := sign of valW k
λ (z )

2.3) IF v ≥ 0 THEN w := z
2.4) IF v ≤ 0 THEN w := z

3) RETURN u :=w .

Clearly, the output u satisfies |u − vk
λ | ≤ 2−r , and the number

of iterations in step 2, the “while” loop, is bounded by r . Also,
the complexity of each iteration depends crucially on the com-
plexity of step 2.2. First of all, one needs to determine the matrix
W k
λ (z ) for some z ∈Zr , and this requires the computation of

2 n ×n determinants for each of its |I |n × |J |n entries. Algo-
rithms for computing the determinant of a matrix exist which
are polynomial in its size and in the number of bits that which
are needed to encode this matrix. Second, the choice of z and
Hadamard’s inequality imply that the number of bits which are
needed to encode W k

λ (z ) is polynomial in n , |I |n , |J |n , logN
and logL, and r . Third, computing the value of a matrix can be
done with linear programming techniques, and algorithms exist
[for example, Karmarkar (32)] which are polynomial in its size
and in the number of bits which are needed to encode this matrix.
Consequently, the complexity of step 2.2 is polynomial in n , |I |n ,
|J |n , logN and logL, and r , and the same is true for the entire
algorithm.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1908643116 Attia and Oliu-Barton

D
ow

nl
oa

de
d 

at
 In

te
ru

ni
ve

rs
ita

ire
 d

e 
M

ed
ec

in
e 

on
 D

ec
em

be
r 

17
, 2

01
9 

https://www.pnas.org/cgi/doi/10.1073/pnas.1908643116


EC
O

N
O

M
IC

SC
IE

N
CE

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

B. Computing the Value. The following bisection algorithm, which
is directly derived from Theorem 2, inputs a stochastic game with
rational data and outputs an arbitrarily close approximation of
its value.
Input. A stochastic game (K , I , J , g , q , k) so that, for some N ∈
N, the functions g and q take values in EN and a precision level
r ∈N.
Output. A 2−r approximation of vk .
Complexity. Polynomial in n , |I |n , |J |n , logN and r .

1) Set w := 0, w := 1
2) WHILE w −w > 2−r DO

2.1) z := w+w
2

2.2) v := sign of F k (z )
2.3) IF v ≥ 0 THEN w := z
2.4) IF v ≤ 0 THEN w := z

3) RETURN u :=w .

Like before, the output u satisfies |u − vk | ≤ 2−r , the number
of iterations in step 2 (the “while” loop) is bounded by r , and
the variable z always takes values in the set Zr . Unlike before,
however, each iteration requires computing the sign of F k (z )
at step 2.2, a computation that might seem problematic due to
the limiting nature of the function F k . However, this difficulty
is overcome with the help of proposition 4.1 of ref. 30: “For any
r ∈N, let λr :=N−10n2|I |2n r . Then, the sign of F k (z ) is equal to
the sign of valW k

λr
(z ) for all z ∈Zr .” Consequently, the com-

putation in step 2.2 can be replaced with the computation of
valW k

λr
(z ). By the choice of λr and z , the number of bits which

are needed to encode W k
λr

(z ) is polynomial in n , |I |n , |J |n , logN ,
and r . Hence, the computation of step 2.2 is polynomial in these
variables, and the same is true for the entire algorithm.

6. Remarks and Extensions
First, we provide an alternative definition of the parameterized
games W k

λ (z ). Second, we extend Theorem 1 to the more gen-
eral framework of stochastic games with compact metric action
sets and continuous payoff and transition function and explain
why the extension of Theorem 2 fails. Finally, we show that the
formula obtained by Kohlberg (21) for the value of absorbing
games is captured by Theorem 2.

A. An Alternative Formulation of the Parameterized Games. The
parameterized game W k

λ (z ) plays a crucial role in both The-
orems 1 and 2. We provide an alternative construction of this
game which is based on the Kronecker product of matrices.
Let U denote a matrix of ones of size |I | × |J |. For each
1≤ `, `′≤n , consider the matrices Q`,`′ = (q(`′ | `, i , j ))i,j and
G` = (g(`, i , j ))i,j and use them to form the following n × (n +
1) array of matrices of size |I | × |J |:

Dλ =

−λG
1 U − (1−λ)Q1,1 . . . −(1−λ)Q1,n

...
...

. . .
...

−λGn −(1−λ)Qn,1 . . . U − (1−λ)Qn,n

.
For any 0≤ `≤n , let D`

λ be the n ×n array of matrices obtained
by removing the (`+ 1) th column of matrices from D . Denote
by det⊗ the determinant of a square array of matrices, devel-
oped along columns and where the products are replaced with
the Kronecker product of matrices. By construction one has
det⊗D0

λ = (d0
λ(i, j))i,j and (−1)k det⊗Dk

λ = (dk
λ(i, j))i,j, so that

W k
λ (z ) = (−1)k det⊗Dk

λ − z det⊗D0
λ.

The linearity relations established in Lemma 2 can also be
deduced from the properties of the Kronecker product. This

alternative expression for W k
λ (z ) is reminiscent of (or, rather,

inspired by) the theory of multiparameter eigenvalue problems
initiated by Atkinson in the 1960s (ref. 33, chap. 6). The inter-
esting connection which exists between stochastic games and
multiparameter eigenvalue problems is developed by L.A. and
M.O.-B. in a forthcoming paper (34).

B. Compact-Continuous Stochastic Games. Throughout this sec-
tion we consider stochastic games (K , I , J , g , q), where K =
{1, . . . ,n} is a finite set of states, I and J are 2 compact met-
ric sets, and g and q are continuous functions. These games are
referred to as compact-continuous stochastic games, for short.
We denote by ∆(I ) and ∆(J ), respectively, the sets of proba-
bility distributions over I and J . These sets are compact when
endowed with the weak∗ topology. For any pair of measures
(α,β)∈∆(I )×∆(J ), their direct product is denoted by α⊗β ∈
∆(I × J ). For all 1≤ `, `′≤n and u ∈Rn , we set

g(`,α,β) :=

∫
I×J

g(`, i , j ) d(α⊗β)(i , j )

q(`′ | `,α,β) :=

∫
I×J

q(`′ | `, i , j ) d(α⊗β)(i , j ),

ρ`λ,u(α,β) :=λg(`,α,β) + (1−λ)

n∑
`′=1

q(`′ | `,α,β).

By the minmax theorem stated in item i) of Section 2A, the
zero-sum game (∆(I ), ∆(J ), ρ`λ,u) has a value, so one can
define the Shapley operator Φ(λ, · ) :Rn→Rn like in the finite
case. Furthermore, the compact-continuous stochastic game
(K , I , J , g , q , k ,λ) has a value vk

λ , which is the unique fixed point
of Φ(λ, · ), and both players have optimal stationary strategies.
These results are well known.
Extension of Theorem 1. Theorem 1 can be extended to compact-
continuous stochastic games.

The proof goes along the same lines. Like in the finite case,
any pair of stationary strategies (x , y)∈∆(I )n ×∆(J )n induces
a Markov chain with state-dependent rewards. Let Q(x , y)∈
Rn×n and g(x , y)∈Rn denote the transition matrix of this
chain and the vector of expected rewards. Formally, they are
defined like in Eqs. 2.1 and 2.2, but replacing, for 1≤ `, `′≤
n , the sum

∑
(i,j)∈I×J x `(i)y`(j ) with the corresponding inte-

gral
∫
I×J

d(x `⊗ y`)(i , j ). Similarly, let γλ(x , y)∈Rn be the
vector of expected normalized λ-discounted sum of rewards,
which is well defined because the state k , the pair (x , y), and
the transition function q induce a unique probability mea-
sure over (K × I × J )N on the sigma algebra generated by the
cylinders, by the Kolmogorov extension theorem. Like in the
finite case,

γk
λ(x , y) =

dk
λ(x , y)

d0
λ(x , y)

,

where d0
λ(x , y) := det(Id− (1−λ)Q(x , y)) 6= 0 and where

dk
λ(x , y) is the determinant of the n ×n matrix obtained

by replacing the k th column of Id− (1−λ)Q(x , y) with
λg(x , y). Lemma 2 can be extended word for word, by
replacing sums with the corresponding integrals and setting
x̂ := x1⊗ · · ·⊗ xn ∈∆(I n).

For each z ∈R, the auxiliary game W k
λ (z ) can be defined in a

similar manner by setting

W k
λ (z )[i, j] := dk

λ(i, j)− zd0
λ(i, j) ∀(i, j)∈ I n × J n .

Note that W k
λ (z ) is no longer a matrix, but a mapping from the

compact metric set I n × J n to R. Like in the finite case, consider
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the mixed extension of this game; that is, the zero-sum game with
action sets ∆(I n) and ∆(J n) and payoff function

W k
λ (z )[x, y] :=

∫
In×Jn

W k
λ (z )[i, j] d(x⊗ y)(i, j).

By the minmax theorem stated in item i) of Section 2A, this game
admits a value, denoted by valW k

λ (z ). Lemmas 3 and 4 can thus
be extended word for word as well; it is enough to replace all
sums with the corresponding integrals. The extension of Theorem
1 follows directly from these 2 lemmas.
Extension of Theorem 2. Theorem 2 cannot be extended to
compact-continuous stochastic games.

Indeed, Vigeral (35) provided an example of a stochastic
game with compact action sets and continuous payoff and transi-
tion functions for which the discounted values do not converge.
In this sense, the extension of our result to this framework
is not possible. However, we point out that only one point
in our proof is problematic. Indeed, the failure occurs in the
use of Lemma 1, which relies on the formula stated as prop-
erty iv) in Section 2A, which holds only in the finite case. For
infinite action sets it is no longer true that λ 7→ val W k

λ (z )
is a rational fraction in λ in a neighborhood of 0 for all
z ∈R, which was crucial to prove the existence of the limit
F k (z ) := limλ→0 valW

k
λ (z )/λn .

Determining necessary and sufficient conditions on I , J , g ,
and q which ensure the convergence of the discounted values or
the existence of the value is an open problem. Bolte, Gaubert,
and Vigeral (36) provided sufficient conditions, namely that g
and q are separable and definable. Without going into a pre-
cise definition of these 2 conditions, they hold in particular when
the payoff function g and the transition q are polynomials in the
players’ actions. However, the case where I , J , g , and q are semi-
algebraic is still unsolved. (A subset E of Rd is semialgebraic if it
is defined by finitely many polynomial inequalities; a function is
semialgebraic if its graph is semialgebraic.)

C. Absorbing Games. We now show that Kohlberg’s (21) result on
absorbing games is captured in Theorem 2. An absorbing game
is a stochastic game (K , I , J , g , q , k) so that, for some fixed state
k0 ∈K ,

q(k | k , i , j ) = 1 ∀(i , j )∈ I × J , ∀ k 6= k0.

For any initial state k 6= k0, the state does not evolve during the
game and, as a consequence, vk

λ is equal to the value of the
matrix (g(k , i , j ))(i,j)∈I×J for all λ∈ (0, 1] and k 6= k0. We use
the notation vk to emphasize that vk

λ does not depend on λ, for
all k 6= k0.

Notation. We assume without loss of generality that k0 = 1 and
set u(z ) := (z , v2, . . . , vn) for all z ∈R.
Kolhberg’s result. Every absorbing game (K , I , J , g , q , 1) has a
value, denoted by v1, which is the unique point where the func-
tion T :R→R∪{±∞} changes sign; T is defined using the
Shapley operator by

T (z ) : = lim
λ→0

Φ1(λ, u(z ))− z

λ
.

Comparison to our result. We claim that F 1 =T in the class of
absorbing games. First of all, for all (i, j)∈ I n × J n ,

d0
λ(i, j) =λn−1 (1− (1−λ)q(1 | 1, i1, j1)

)
d1
λ(i, j) =λn−1

(
λg(1, i1, j1) + (1−λ)

n∑
`=2

q(` | 1, i1, j1)v `
)
.

Thus, for any z ∈R, the (i, j) th entry of W 1
λ (z ) is equal to

λn−1
(
λg(1, i1, j1) + (1−λ)

∑n

`=1
q(` | 1, i1, j1)u`(z )− z

)
.

In particular, W 1
λ (z ) depends on (i, j) only through (i1, j1)∈

I × J . By eliminating the redundant rows and columns of
W 1
λ (z ) one thus obtains the matrix λn−1(G1

λ,u − zU ), where
U denotes a matrix of ones of appropriate size, and G1

λ,u

is the matrix game described in item v) of Section 2B. The
affine invariance of the value operator, namely val(cM + dU ) =
c valM + d for any matrix M and any (c, d)∈ (0, +∞)×R,
gives then

valW 1
λ (z )

λn
=
λn−1val (G1

λ,u(z)− zU )

λn
=

Φ1(λ, u(z ))− z

λ
.

Taking λ to 0 gives the desired equality.
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