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1 Introduction

When agents have heterogeneous and imperfect information about the state of the econ-

omy, they each have an incentive to learn from their observations of endogenous aggregate

variables. But because these aggregates themselves depend on the forecasts of other agents,

learning from them requires each agent to forecast the forecasts of others. This mechanism

has proven to be both interesting and challenging for economists to incorporate into their

models. Interesting both because it can alter the way that fundamental shocks propagate

through the economy and because it opens the door for non-fundamental shocks to expecta-

tions to have real consequences, but challenging because it introduces technical difficulties

for standard solution procedures. In the existing literature, the model of Townsend (1983)

has played an important role as an early dynamic formalization of this mechanism, and as a

laboratory in which to explore its implications.

The purpose of this paper is to revisit the Townsend model to simplify, revise, and extend

existing theoretical results about it in the large (and growing) subsequent literature. The

first part of the paper shows that the aggregate price index can reveal so much information

about the state of the economy that uncertainty about other firms’ forecasts plays no role

in affecting the equilibrium dynamics. Existing proofs of this result appear in the literature,

but with disadvantages, in that they are either less general, unnecessarily roundabout, or

incorrect. Furthermore, this part proves that the revealing equilibrium is unique, which

is more difficult to establish, and has so far proven elusive. It then describes how this

collection of results extends to perturbed versions of the baseline model, including versions

with persistent idiosyncratic shocks and structural heterogeneity across sectors.

The second part of the paper discusses the version of the model originally analyzed

by Townsend, in which observations of the aggregate price index are not perfect, but are

contaminated by independent noise. The main contribution in this part is an impossibility

result, which says that it is impossible to represent the equilibrium dynamics with a finite

number of state variables. An equivalent way to say this is that, even though the endogenous

processes are all stationary in equilibrium, they do not have autoregressive moving average

(ARMA) representations. This formally confirms Townsend’s original conjecture that the

infinite regress of higher-order beliefs in this model leads to an infinite state problem, despite

evidence to the contrary from the existing literature.

The fact that the state is infinite-dimensional poses a challenge for using standard Kalman

filtering formulas to compute the equilibrium, and this paper presents a new numerical pro-

cedure to compute the equilibrium in models of this type by iterating on the equilibrium

fixed-point equation in the frequency domain. This procedure is used to compare the pre-
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dictions of the model with and without learning from endogenous variables in a numerical

example. This example shows that a natural modification of the Townsend model in which

firms receive a noisy signal of the exogenous aggregate demand shock instead of the endoge-

nous aggregate price index makes very similar predictions, while avoiding the complications

that arise from having an endogenous signal. Of course, this finding is model-specific, and

the additional discipline and different counterfactual predictions of the endogenous signal

model are still reasons why one might prefer this formulation.

Throughout the paper, the approach is to focus attention narrowly on the Townsend

model rather than to try to state results over a more abstract class of models. The cost of

this approach is that the results in this paper cannot be directly applied to other models

without modification. However, the benefit is that by restricting attention to a particular

model, it is possible to take results farther and make them more concrete. The hope is that

by working through each step of the analysis in as much detail as possible, it will be easier

to understand both the results themselves and what would be involved in applying them to

other models.

The paper is most closely connected to a series of papers that directly analyze the

Townsend model. Marcet and Sargent (1989), Sec. III, use a least-squares learning algorithm

to compute the equilibrium of the model numerically, under the restriction that agents’ per-

ceived laws of motion are first-order vector autoregressions. Sargent (1991) extends this

algorithm by allowing agents to fit vector ARMA models, and claims that by doing so it is

possible to formulate the equilibrium as the fixed point of a finite-dimensional operator. Taub

(1989), Sec. 5, explains that full revelation can obtain in a model similar to Townsend’s with

a large number of agents and perfect observation of aggregate capital. Kasa (2000) seeks to

compute the closed-form solution to the Townsend model without assuming that the state of

the economy is fully revealed after a finite number of periods. Pearlman and Sargent (2005)

apply the methodology proposed by Pearlman et al. (1986) to show that prices can fully

reveal demand shocks in a two-sector version of the model. Points of connection with these

papers are discussed as they arise in the analysis below.

Beyond the Townsend model, this paper is also related to the broader literature on

learning from endogenous signals. Many early models of this mechanism assume that learning

only lasts for one period, as in the static models of Grossman (1976, 1978), Kreps (1977),

Grossman and Stiglitz (1980), Diamond and Verrecchia (1981), and Hellwig (1980), or the

dynamic models of Lucas (1972, 1975), King (1982), and Kimbrough (1984). Papers that

follow Townsend in allowing learning from endogenous variables to last multiple periods

include Chari (1979), Futia (1981), Singleton (1987), He and Wang (1995), Bacchetta and

Van Wincoop (2006, 2008), Bernhardt et al. (2010), Makarov and Rytchkov (2012), Kasa
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et al. (2014), Melosi (2016), Nimark (2017), Rondina and Walker (2021), Acharya et al.

(2021), Sec. 5 of Miao et al. (2021), Han et al. (2022), Adams (2022), Rondina and Walker

(2023), Sec. 5 of Huo and Takayama (2023), and Huo and Pedroni (2023). Another part of

the literature also emphasizes the importance of higher-order beliefs, but in models with no

learning from endogenous variables. Examples include Morris and Shin (2002), Woodford

(2003), Lorenzoni (2009), Angeletos and La’O (2013), Melosi (2014), Nimark (2014), and

Angeletos et al. (2018). A more detailed review of the literature on dispersed information

can be found in Angeletos and Lian (2016).

To outline the paper, Section 2 describes the Townsend model and defines the rational

expectations equilibrium up to a specification of agents’ information sets. Section 3 char-

acterizes situations in which an index of prices reveals enough information for firms to act

as if all private information was commonly known. Section 4 analyzes the case when prices

are observed only with error and proves that the state vector becomes infinite-dimensional.

Lastly, Section 5 concludes.

2 Townsend model

This section describes the model of Townsend (1983). It is a multi-sector version of the

Lucas and Prescott (1971) model of firm investment under uncertainty, where the only

interconnection between sectors arises through the structure of demand. The description

provided here differs from the original in explicitly deriving the system of linear equilibrium

conditions as approximations from a nonlinear model.

The economy is made up of n sectors, each of which has a representative firm. At each

point in time, the firm in sector i chooses a contingent plan for investment from that time

forward, so as to maximize expected discounted cash flows. From the perspective of time

t = 0, the firm chooses Iit for all t ≥ 0 so as to maximize

Ei0

∞∑
t=0

βt
[
PitYit − Iit

(
1 + Φ

(
Iit
Kit

))]
,

where Ei0 denotes the expectations of the firm in sector i as of time t = 0, Pit is the sectoral

price of output, Yit is the output of the firm, Iit is gross investment expenditure on new

capital goods, β ∈ (0, 1) is an intertemporal discount factor, and Φ is a strictly increasing

and convex adjustment cost function satisfying Φ(0) = 0 and 2Φ′(α) + αΦ′′(α) > 0 for

any scalar α, as in Abel and Blanchard (1983). The representative firm assumption implies

that the notation Yit, Iit, and Kit can be used interchangeably for sector-level and firm-level

variables; the same is true for the operator Eit.
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The firm’s maximization problem is subject to the production technology

Yit = F (Kit),

where F is strictly increasing and concave, the capital accumulation equation

Ki,t+1 −Kit = Iit − δKit,

where δ ∈ (0, 1) is the depreciation rate of the capital stock, and the long-run constraint

limt→∞ β
tEi0Kit ≥ 0. The timing convention adopted here is that output is produced using

the stock of capital that was determined one period in advance.

Up to a log-linear approximation, the optimal evolution of the capital stock in sector i

can be described by the equation

f2(ki,t+1 − kit) = βEit[f0pi,t+1 − f1ki,t+1 + f2(ki,t+2 − ki,t+1)], (1)

where kit ≡ ln(Kit/Ki) and pit ≡ ln(Pit/Pi) denote the percent deviation of capital and price

from their steady state values Ki > 0 and Pi > 0, and

f0 ≡ PiF
′(Ki) > 0, f1 ≡ −PiF ′′(Ki)Ki ≥ 0, and f2 ≡ 2Φ′(δ) + δΦ′′(δ) > 0.

The steady state values are the values to which the variables in the model converge in the

absence of any exogenous disturbances, and all subjective expectations are correct. The

analysis abstracts from trend growth, which is why the steady-state values of capital and

the price of output are constant.

The price of output in each sector is determined in equilibrium, which requires a speci-

fication of demand. This is done by introducing a demand schedule for the output of each

sector of the form

Pit = D(Yit, Uit),

where D is strictly decreasing in Yit and strictly increasing in Uit, which is an exogenous

random variable. Importantly, Uit is not independent across sectors. Exogenous shifts to

demand in sector i are at least partly correlated with shifts to demand in other sectors. This

correlation creates a physical link between sectors, and provides an incentive for firms in one

sector to extract information from variables in other sectors about their own demand.1

Up to a log-linear approximation around the steady state, the demand schedule in sector

1Another reason firms might find information about other islands informative is the presence of strategic
complementarity, as in Woodford (2003).
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i can be described by the equation

pit = −b1yit + uit, (2)

where yit ≡ ln(Yit/Yi) denotes the percent deviation of output from its steady-state value

Yi > 0, uit ≡ DU(Yi, 0)/D(Yi, 0)Uit is proportional to the deviation of Uit from its steady-

state value Ui = 0, and

b1 ≡ −DY (Yi, 0)Ki/D(Yi, 0)2 > 0.

In addition, it is assumed that D(Yi, 0) = Ki/Yi > 0, so the production function can be

written in log-linear approximate form as

yit = f0kit. (3)

The exogenous component of demand, uit, is represented as the sum of a persistent

economy-wide component θt and a transitory idiosyncratic component εit,

uit = θt + σεεit, θt = ρθt−1 + σvvt, (4)

where ρ ∈ (0, 1), σε, σv > 0, and the random variables vt, ε1t, ε2t, . . . , εnt are jointly Gaussian,

mutually uncorrelated and uncorrelated over time, with mean zero and unit variance.2 Note

that, by the law of large numbers, limn→∞
1
n

∑n
i=1 εit = 0.

The system of equations (1), (2), (3), and (4) describes the equilibrium in the economy

at each point in time, up to a specification of expectations.3 It represents a “temporary

equilibrium” of the type discussed by Hicks (1939) and Lindahl (1939), and is compatible

with a range of different assumptions regarding how expectations are formed, provided that

these expectations satisfy standard probability laws (e.g. Eit = EitEi,t+1). The focus in

this paper is on rational expectations equilibria, which implies that the specification of

expectations reduces to a specification of the variables that firms observe when solving their

decision problems.

Letting sit denote the observation vector of the representative firm in sector i at time t,

its information set at that time is given by the information generated by the current and

2Gaussianity can be dispensed with if the expectations in (1) are interpreted as linear projections.
3Note that the reduced-form parameters in (1), (2), and (3) exactly match the original notation of

Townsend (1983). This shows that the model considered in that paper can be interpreted as a linear-
quadratic approximation of the model analyzed here, provided that variables are interpreted as appropriate
deviations from their steady state values.
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past history of this observation vector,

sti ≡ (sit, si,t−1, . . . ),

so that Eit = E(·|sti). As usual, this assumes that information is retained over time. Any

variables that are either directly chosen by the firm at time t or are functions of them, such

as ki,t+1 and yi,t+1, must be measurable with respect to sti, and so are always contained in the

firm’s time-t information set. Other endogenous variables from sector i that are not directly

chosen by the firm may or may not be contained in its information set, depending on the

specification of sit. For example, (2) implies that pit will be contained in the firm’s time-t

information set if sit includes uit.

The distinctive feature of the Townsend model is that firms’ information sets can de-

pend on endogenous variables from other sectors. To the extent that equilibrium prices are

correlated across sectors, due to correlated demand, the firm wishes to extract whatever

information from these variables is helpful for predicting the path of future prices in its own

sector. But because the variables are themselves endogenous with respect to the economy as

a whole, their information content depends on the solution to the signal extraction problems

simultaneously being solved by firms in other sectors. This feature would not be present if

the observation vector sit consisted only of exogenous variables.

It is now possible to define a rational expectations equilibrium in this economy, up to a

specification of the observation vectors s1t, s2t, . . . , snt. Let us collect all exogenous random

variables, including vt, ε1,t, ε2t, . . . , εnt, and any exogenous random variables introduced in

the specification of sit, into the single vector ξt.
4 Attention will be restricted to station-

ary equilibria, in which the process {ξt} has a stationary structure and extends back into

the infinite past, and all endogenous variables are time-invariant measurable functions of

the history ξt ≡ (ξt, ξt−1, . . . ). This abstracts from transitional dynamics, and amounts to

analyzing only the limiting stationary distribution of the economy.

Definition 1. A rational expectations equilibrium (REE) is a collection of covariance sta-

tionary processes {yit, kit, pit} for each sector that satisfy (1), (2), and (3), given an exogenous

demand process {uit} that satisfies (4) and an observation vector sit that is measurable with

respect to ξt at all times.

4These may include non-fundamental noise or sunspot variables, or variables containing news about future
fundamental disturbances.
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3 Information revelation

This section proves that uncertainty about higher-order beliefs plays no role in the equilib-

rium dynamics when, in addition to economic conditions in its own sector, each firm is able

to observe the economy-wide average output price. The reason is that, in equilibrium, the

average price reveals the average demand shock, which is a sufficient statistic of the demand

shocks in all sectors. By observing the average price, each firm is able to implement the same

state-contingent plan that it would choose if it were able to observe all the demand shocks

directly. The existing literature contains partial versions of this result, which establish only

that an information revealing equilibrium of this type exists in certain special cases. The

purpose of this section is to simplify and extend those results, and then to present new

results regarding the more difficult question of whether this equilibrium is unique.

Before analyzing the equilibrium in which firms must learn from endogenous variables,

it is necessary to introduce a type of equilibrium originally proposed by Radner (1979), in

which information about demand is shared by firms in all sectors.5

Definition 2. A full communication equilibrium (FCE) with

sit = ut ≡ (u1t, u2t, . . . , unt)

for all i and t.

In an FCE, all firms in the economy have the same information at each point in time,

which consists of the history ut ≡ (ut, ut−1, . . . ). This implies that output and capital in all

sectors are common knowledge. It also implies that firms’ forecasts of all variables are the

same. Higher-order uncertainty plays no role in this equilibrium because each firm knows

the forecasts of all other firms. Notice, however, that in an FCE, firms still have imperfect

information about the underlying latent disturbances vt and εt ≡ (ε1t, ε2t, . . . , εnt), (at least

for finite n), and therefore about the realization of ξt ≡ (vt, εt). Therefore, it is possible to

distinguish this from a “full information equilibrium,” in which the history of all exogenous

disturbances is common knowledge; i.e. sit = ξt.
6

The first result is the closed-form solution to the FCE. It says that the optimal capital

choice of firm i is a second-order autoregressive filter of the average demand shock.

5Sometimes the FCE is described as a different equilibrium concept from the REE; but it is equally
possible to view it as a REE with a particular specification of information, as is done here. Sometimes this
equilibrium is also referred to as a “pooling equilibrium.”

6According to this terminology, the full communication equilibrium approaches the full information equi-
librium as n→∞, since then all firms can perfectly infer ξt at each point in time.

7



Proposition 1. The FCE exists and is unique. Moreover, in this equilibrium,

ki,t+1 =
ω

(1− λL)(1− φL)
ūt (5)

for all i and t, where L denotes the lag operator, ūt ≡ 1
n

∑n
i=1 uit, λ ∈ (0, 1) solves

λ2 − (1 + β−1 + (b1f
2
0 + f1)/f2)λ+ β−1 = 0,

φ ∈ (0, ρ) solves

ρσ2
εφ

2 − (σ2
ε(1 + ρ2) + nσ2

v)φ+ ρσ2
ε = 0,

and

ω ≡ f0βλ(ρ− φ)

f2(1− βλρ)
> 0.

The details of the proof are in Appendix A, but it is helpful to provide a brief sketch

here. Using the demand schedule (2) to substitute out the price from the capital optimality

condition (1), the equilibrium path of capital in sector i must evolve according to the equation

ki,t+1 = λkit +
f0
f2

∞∑
j=1

(βλ)jEitui,t+j, (6)

where λ has the definition stated in the proposition. This says that capital in sector i depends

only on forecasts of future demand shocks in sector i. The orthogonal projection theorem

implies that the conditional expectation Eitui,t+j ≡ E(ui,t+j|ut) exists and is unique for all

i, t, and j, so the equilibrium capital path exists and is unique as well. The closed-form

solution in (5) is obtained by explicitly computing these expectations using the structure of

the demand process in (4).

The second result applies to an economy with dispersed information, in which firms are

not able to directly observe the history of demand shocks in all sectors. Each firm still

observes the demand shock in its own sector, but now in addition can only observe the

economy-wide average output price. What can be shown in this case is that the FCE paths

from Proposition 1 are a REE in this economy.

Proposition 2. Consider an economy with

sit = (uit, p̄t)

for all i and t, where p̄t ≡ 1
n

∑n
i=1 pit. The FCE paths of {yit, kit, pit} are a REE in this

economy.
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The proof of this result is simple. Equation (5) indicates that, in the FCE, capital in

each sector depends only on the history of average demand shocks, ūt. By the demand curve

(2), the average price also depends only on the history of average demand shocks; i.e.

p̄t =

[
1− b1f0ωL

(1− λL)(1− φL)

]
ūt. (7)

Moreover, it is straightforward to verify that this mapping from the history of average

demand shocks to the history of average prices is invertible (as shown in Appendix A).

Therefore, observing the history of average prices is equivalent to observing the history of

average demand shocks, so each firm will implement the same state-contingent plan that is

optimal under full communication.

While Proposition 2 says that the FCE paths of {yit,, kit, pit} are a REE in the dispersed

information economy, this does not imply that the two equilibria are identical. Firms still

have less information in the dispersed information economy. For example, they only have

imperfect information about output and prices in sectors other than their own. In principle,

observations of cross-sector forecasts of these variables would be able to distinguish between

these two equilibria. Instead, what Proposition 2 says is that there exist equilibrium paths of

{yit,, kit, pit} which are the same “as if” firms had this additional information. The average

output price aggregates all the relevant information necessary to optimally predict their own

future prices.

For the special case with n = 2, a different proof of this result is provided in Sec. 5.2 of

Pearlman and Sargent (2005). The strategy in that paper is to apply the method developed

by Pearlman et al. (1986) to show by brute force computation that perceived laws of motion

coincide with actual laws of motion when the perceived laws of motion for each firm are

the ones from the FCE. What is shown here is that it is possible to avoid that computation

by instead checking that the operator in (7) is invertible. This is both simpler and more

intuitive, because it shows that the reason observing output prices in both sectors is sufficient

for implementing FCE plans is because they can be used to compute the average price, the

history of which can be used to infer the history of average demand shocks.

Sec. 3 of Kasa (2000) also provides a proof of this result with n = 2, based on computing

the closed-form solution of the model and inspecting its properties. The problem is that

the closed-form solution provided there, described in Proposition 3.1.2, is not correct. The

reason for this is that the frequency-domain procedure used to compute the solution assumes

that each of the three variables in the observation vector contains some independent infor-

mation. The observation vector in that paper is (uit, p1t, p2t), which in the case of n = 2 is

informationally equivalent to s̃it = (uit, pit, p̄t). This vector is three dimensional, but only
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contains two independent sources of information in the FCE.7 To see this, observe that (2)

and (5) imply

pit =
−b1f0ωL

(1− λL)(1− φL)
ūt + uit.

Since Proposition 2 establishes that p̄t and ūt contain the same information, this equation

shows that pit is a function of (uti, p̄
t), and therefore contains no additional information.8

While Proposition 2 improves upon existing proofs of this result in the literature, it says

nothing about whether the equilibrium described there is unique. Could there perhaps exist

other rational expectations equilibria in which the paths of {yit,, kit, pit} differ from their

FCE paths? This question is substantially more difficult to answer, and so far there are no

results about it in the existing literature.

The following proposition says that the equilibrium from Proposition 2 is the unique

symmetric REE. The notion of symmetry involved is that all firms have the same policy

functions mapping information sets into actions. For example, ki,t+1 = B(L)sit, where B(L)

is the same for all i. This does not require all firms to have the same information, of course,

because the realizations of sit can differ across sectors.

Proposition 3. In any symmetric REE of the economy from Proposition 2, the paths of

{yit, kit, pit} are the same as in the FCE.

While the details of the proof are somewhat involved, the basic structure is straightfor-

ward, and consists of four main steps. The first is to show that in any symmetric REE, there

is a mapping of the form

p̄t = A(L)ūt (8)

from average demand shocks to average prices, where A(L) is a scalar operator which is

one-sided into the past. Equation (7) shows that a mapping of this form exists in the FCE,

and it can be shown that such a relationship holds in any other symmetric REE as well.

The remaining three steps amount to showing that in any REE in which a relation of the

form (8) holds, the operator A(L) must be invertible, so the history of average prices and

average demand shocks always contain the same information. The second step uses (8) and

the law of motion of uit in (4) to find the Wold representation of the observation process,

sit = Γ(L)wit, (9)

where wit is the one-step-ahead innovation in sit, and the operator Γ(L) depends on A(L).

This operator is needed to compute firms’ optimal forecasts of future demand. Usually,

7More formally: the three-dimensional process {s̃it} only has rank two; cf. Sec. 1.9 of Rozanov (1967).
8Alternatively, it shows that uit is redundant given (pti, p̄

t).
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these forecasts are computed using the Kalman filter. But because A(L) is arbitrary, the

older Wiener-Kolmogorov filter must be used instead.9 The third step uses Γ(L) and the

structural equations of the model to find the equilibrium fixed-point equation

A(L) = T [A(L)] (10)

in closed form. The fourth step shows that any operator A(L) satisfying (10) must be

invertible, which completes the proof.

While the hypothesis of symmetry is required for the proof of Proposition 3, there is no

reason to think that other non-symmetric equilibria exist, which differ from the FCE. In

fact, as it has perhaps been possible to infer from the discussion so far, the information-

revealing properties of the average price imply an even starker uniqueness result, which does

not require symmetry.

Proposition 4. Consider an economy in which

sit = p̄t

for all i and t. The FCE paths of {yit, kit, pit} constitute the unique REE in this economy.

This result says that the average price in fact reveals so much information that once

firms observe this, they do not need to observe any other information about demand in

their own sector to implement the same state-contingent plan that would be optimal with

full communication. The reason is that, as shown in equation (5), the optimal evolution of

capital in the full communication equilibrium only depends on the history of average demand

shocks. Since these are fully revealed by the average price, this information is sufficient for

all firms to implement their optimal actions, regardless of whether they also observe other

prices or quantities in their own sector.

Why does Proposition 4 imply that firms do not need to rely on their own sector-specific

information to implement the optimal plan under full communication? The result is due to

the assumption that the idiosyncratic component of demand is purely transitory, together

with the one period time-to-build assumption in production. The optimal choice of capital

today, to be used in production tomorrow, depends on forecasts of demand shocks from

tomorrow out into the future, as shown in (6). Since today’s idiosyncratic shock is purely

transitory, it is only necessary to forecast the common component of demand; Eitui,t+j =

Eitθt+j. And since uit does not contain any more information about this common component

beyond what is contained in ūt, it is therefore unnecessary to respond to it.

9Whittle (1983) is a standard reference on these two approaches to filtering.
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From this discussion, it is not difficult to see that Proposition 4 relies heavily on the

assumption that common disturbances to demand are persistent, while idiosyncratic distur-

bances are not. While this assumption is a common one, and has been followed in much of the

subsequent literature, there is really no compelling reason why it must be the case. Sector-

specific variation in demand could be as or even more persistent than common variation in

demand. The next sub-section considers this possibility in more detail.

3.1 Persistent idiosyncratic shocks

When the idiosyncratic component of demand is persistent, sector-specific information is

useful for predicting future demand, and the stark result from Proposition 4 that observing

the average price alone is sufficient to implement the optimal full communication plan, no

longer holds. However, the assertions of Propositions 1, 2, and 3 continue to hold under this

perturbation of the baseline model, as this subsection shows.

To introduce persistence in the idiosyncratic component of demand, generalize the law

of motion (4) to

uit = θt + zit, θt = ρθθt−1 + σvvt, zit = ρzzi,t−1 + σεεit, (11)

where ρθ, ρz ∈ (0, 1) and σε, σv > 0. The new parameter ρz controls the persistence of the

idiosyncratic component. Continue to assume that the random variables vt, ε1t, ε2t, . . . , εnt

are jointly Gaussian, mutually uncorrelated and uncorrelated over time, with mean zero and

unit variance.

The first result is a generalization of Proposition 1. It shows that when idiosyncratic

shocks are persistent, the optimal choice of capital now depends separately on ūt and uit.

Proposition 5. Consider an economy in which the demand process {uit} satisfies (11). The

FCE exists and is unique. Moreover, in this equilibrium,

ki,t+1 =
ωθ(1− ρzL)

(1− λL)(1− φL)
ūt +

ωz
1− λL

uit (12)

for all i and t, where L denotes the lag operator, ūt ≡ 1
n

∑n
i=1 uit, λ ∈ (0, 1) is defined as in

Proposition 1, and

ωθ ≡
f0βλ(ρθ − φ)

f2(1− βλρθ)(1− βλρz)
, ωz ≡

f0βλρz
f2(1− βλρz)

> 0.

Equation (12) shows that the optimal capital choice places some weight on the history

of both average and sector-specific demand shocks. The expression for ωz shows that the

12



weight on the latter is positive whenever ρz > 0, while the expression for ωθ shows that in

the special case when the common and idiosyncratic components of demand have exactly

the same persistence, ρθ = ρz, which implies that ρθ = φ, the optimal capital choice places

no weight on the average demand shock.10 This is because each firm is only interested in

forecasting demand for its own good, and not necessarily in distinguishing between common

and idiosyncratic components of demand. When both components have the same persistence,

(11) reduces to

uit = ρui,t−1 + σwwit,

where ρ ≡ ρθ = ρz, σ
2
w ≡ σ2

v + σ2
ε , and wit is i.i.d. over time with mean zero and unit

variance. Therefore E(ui,t+j|ut) = ρjuit for all j ≥ 0.

The second result generalizes Proposition 2. It shows that the FCE paths of the en-

dogenous variables are always a REE in the dispersed information economy, even when

idiosyncratic shocks are persistent.

Proposition 6. Consider an economy in which the demand process {uit} satisfies (11) and

sit = (uit, p̄t)

for all i and t, where p̄t ≡ 1
n

∑n
i=1 pit. The FCE paths of {yit, kit, pit} are a REE in this

economy.

The logic of the proof is the same as in Proposition 2. By subsituting the closed-form

solution (12) for the FCE evolution of capital into the demand schedule (2) and averaging

across sectors, it is possible to show that the average price depends on the history of average

demand shocks in the following way,

p̄t =

[
1− b1f0L

(1− λL)(1− φL)

(
ωθ(1− ρzL) + ωz(1− φL)

)]
ūt (13)

And, as in the proof of Proposition 2 it is possible to show that the operator on the right

side of this equation is always invertible.

The last proposition extends Proposition 3 to the case of persistent idiosyncratic shocks,

establishing that the REE described in Proposition 6 is unique.

Proposition 7. In any symmetric REE of the economy from Proposition 6, the paths of

{yit, kit, pit} are the same as in the FCE.

10In combination with Proposition 7 below, this implies that in any REE, endogenous information is
ignored when ρθ = ρz, consistent with Proposition 1 of Taub (1989).
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3.2 Structural heterogeneity

The results in this section so far have shown that in the Townsend model, the average

economy-wide price has strong information revelation properties. A natural question is how

much these results depend on the assumption that the sectors are completely symmetric,

both with respect to supply and demand. To address this question, this section perturbs the

baseline model by introducing different types of heterogeneity and exploring the extent to

which previous results need to be modified.

The first modification is to relax the assumption that the structural parameters in equa-

tions (1), (2), and (3) are the same across sectors. The equations take the same form as

before, but with all parameters explicitly indexed by i:

f2i(ki,t+1 − kit) = βiEit[f0ipi,t+1 − f1iki,t+1 + f2i(ki,t+2 − ki,t+1)] (14)

pit = −b1iyit + uit (15)

yit = f0ikit. (16)

The parameters continue to satisfy the inequalities

f0i > 0, f1i ≥ 0, f2i > 0, and b1i > 0,

for all i = 1, 2, . . . , n. Everything else about the economy and the definition of equilibrium

remains the same as in Proposition 2. In this case, it is possible to prove the following result.

Proposition 8. Consider an economy in which the REE paths of {yit, kit, pit} in each sector

satisfy (14), (15), and (16), and the demand process {uit} satisfies (4). Propositions 1, 2,

and 4 are true as stated, provided that λ and ω are replaced by λi and ωi, where λi ∈ (0, 1)

solves

λ2i − (1 + β−1i + (b1if
2
0i + f1i)/f2i)λi + β−1i = 0,

and

ωi ≡
f0iβiλi(ρ− φ)

f2i(1− βiλiρ)
> 0.

This result says that, as long as the structure of demand shocks remains symmetric across

sectors, other forms of heterogeneity do not not affect the information revelation properties of

the average price. The intuition is that the symmetry of demand shocks implies that firms

only need to obtain information about the average demand shock in order to implement

their optimal state-contingent plans. In the FCE, the average price continues to be an

invertible function of current and past average demand shocks, regardless of whether there is
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asymmetry across sectors in terms of their structural parameters. The only change relative

to the results from the previous section is that proving that this mapping is invertible is

somewhat more involved, as shown in Appendix A.

In the existing literature, Sec. 3 of Kasa (2000) suggests that structural asymmetries

across sectors, such as in adjustment cost parameter, will prevent the full communication

dynamics from being an equilibrium with partial information. The intuition provided there is

that this type of asymmetry “jams the price signal,” making it impossible to “posit symmetric

responses in the two industries” to each of the two idiosyncratic shocks. The intuition that

responses are no longer symmetric is correct, because the dependence of capital (and prices)

on each of the idiosyncratic shocks depends on the parameters ωi and λi, which can differ

across sectors; e.g.

ki,t+1 =
ωi

(1− λiL)(1− φL)

(
θt +

1

n

n∑
i=1

σεεit

)
.

However, what Proposition 1 demonstrates is that symmetric responses to idiosyncratic

shocks is not a necessary condition for average prices to be a sufficient statistic for imple-

menting full communication plans. This same conclusion is briefly mentioned in Sec. 5.2.1

of Pearlman and Sargent (2005), but only in terms of one type of asymmetry (adjustment

costs) and only in a two-sector economy.

Now, consider the consequences of relaxing the assumption that demand shocks are sym-

metric across sectors. Specifically, suppose that (4) is generalized to allow differences both

in the sensitivity of different sectors to the common component, and in the volatility of the

idiosyncratic component,

uit = αiθt + σεiεit, θt = ρθt−1 + σvvt, (17)

where 0 < ρ < 1, σε1, σε2, . . . , σεn, σv > 0, and the random variables vt, ε1t, ε2t, . . . , εnt are

jointly Gaussian, mutually uncorrelated and uncorrelated over time, with mean zero and

unit variance.

Proposition 9. Consider an economy in which the rational expectations paths of {yit, kit, pit}
in each sector satisfy (14), (15), and (16), and the demand process {uit} satisfies (17).

Propositions 1, 2, and 4 are true as stated, provided that λ is replaced with λi defined in

Proposition 8, ω is replaced with

ωi ≡ αi
f0iβiλi(ρ− φ)

f2i(1− βiλiρ)
,
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σ2
ε is defined as

σ2
ε ≡

(
1

n

n∑
i=1

α2
i

σ2
εi

)−1
,

and ūt and p̄t are defined as

ūt ≡
1

n

n∑
i=1

σ2
ε

σ2
εi

αiuit and p̄t ≡
1

n

n∑
i=1

σ2
ε

σ2
εi

αipit.

This result indicates that with heterogeneity in the structure of demand shocks, there

always exists an average price that fully reveals the information necessary to replicate the

FCE dynamics. However, this is now a weighted average, where prices in sectors with more

volatility idiosyncratic shocks or less sensitivity to the common component are given less

weight. The intuition is straightforward: prices in more volatile or less sensitive sectors

provide less informative signals about the common component, and so for the purpose of

forecasting future values of this variable, those noisier signals need to be given less weight.

Proposition 9 raises the interesting possibility that there may exist a price index which

reveals the right sufficient statistic needed to implement full communication plans, but firms

instead observe a different price index. In this case, full revelation can fail, and the REE

dynamics will differ from those in the FCE. To illustrate this possibility, Figure 1 shows the

impulse responses of output for an economy with sectoral heterogeneity in which firms do

not observe the appropriately weighted average price from Proposition 9. The economy has

three sectors, which differ only in their sensitivity to the common component of demand, as

in (17), with weights

(α1, α2, α3) = (−1, 1, 2).

Instead of observing its own demand shock uit and the appropriately weighted average price

(
∑n

j=1 α
2
j )
−1∑n

i=1 αipit, each firm instead observes its own demand shock uit and the equally-

weighted average price n−1
∑n

i=1 pit. In this example, the persistence of the common com-

ponent is set to ρ = 0.5, and the values of all other parameters are the same as in Table 1

of Townsend (1983).

Figure 1 shows that in the FCE a purely transitory idiosyncratic demand shock in sector

1 leads to a persistent decline in output in sector 2 (shown by the line marked with × in the

(2,2) panel of the figure). Even under full communication, firms are not able to perfectly

disentangle common and idiosyncratic shocks. The firm in sector 2 knows that demand in

sector 1 has increased, but does not know whether this is because of a negative common

shock or a positive idiosyncratic shock. The firm attaches some probability to the possibility

that there was a negative common shock, with sectors 2 and 3 receiving offsetting positive
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Figure 1: Consequences of observing the wrong price index in a three sector economy with
(α1, α2, α3) = (−1, 1, 2). The lines labeled REE show the responses of output to the struc-
tural shocks when firms observe the equally-weighted average price instead of the appro-
priately weighted average price needed to support the FCE allocations. Parameter values:
ρ = 0.5, b1 = 1, β = 0.96, f0 = 0.2, f1 = 0, f2 = 0.8, σ2

v = σ2
ε = σ2

η = 1.

idiosyncratic shocks, and so reduces production in response, with declining effects over time

as the firm learns that the shock was not common.

When firms instead observe the equally-weighted average price, the firm in sector 2 still

knows that its own demand has not changed, but now only observes an increase in the

equally-weighted average price in response to the idiosyncratic shock in sector 1. It reasons

that the increase in the average price could be due to a positive idiosyncratic shock in sector

1, but could also be due to a positive common shock together with an offsetting negative

idiosyncratic shock in sector 2. This is because sector 3 is more sensitive (in absolute value) to

the common component than sector 1, so the net effect of a common demand shock would be

positive, also leading to an increase in the equally-weighted average price. In this numerical

example, on balance the firm in sector 2 attaches greater probability to the possibility that

the price increase is due to a positive common demand shock, and therefore responds by

increasing rather than decreasing production.

This example illustrates how information revelation can fail to obtain simply as a result
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of sectoral heterogeneity, when firms do not observe the appropriate price index. In this case,

the observed price index only provides a noisy observation of the ideal price index, where

the noise depends on the differences in weights. If firms observe p̃t =
∑n

i=1wipit, for some

arbitrary sequence of weights {wi}ni=1, this can be written as p̃t = p̄t + σηηt, where p̄t is the

ideal index from Proposition 9, and the error term

σηηt ≡
n∑
i=1

(
wi −

1

n

σ2
εαi
σ2
εi

)
pit

acts as aggregate “noise” in the observation of the ideal price index. Therefore, the reason

that information revelation fails to obtain in this case is conceptually similar to the rea-

son that it fails to obtain when observations of endogenous variables are contaminated by

exogenous noise, which is the situation analyzed in the next section.

More generally, with arbitrary types of heterogeneity in the structure of demand, it can

no longer be guaranteed that there will exist a single common price index that is sufficient

for all firms to implement their full communication plans. The reason is that each firm

will need to compute its own sufficient statistic of the demand shocks in order to optimally

forecast its own demand. To reveal this statistic, each firm will require observations of its

own unique price index. However, if firms are able to observe the history of all prices in the

economy, this intuition suggests that it will still be possible for them to implement their full

communication plans.

4 Infinite state problem

This section proves that the equilibrium of the Townsend model does not have a finite state

representation when firms observe average prices with error, and explains the problem with

evidence to the contrary from the existing literature. It also provides a new numerical

procedure for solving models of this type in the frequency domain.

In the context of models with dispersed information, the “infinite regress problem” refers

to a situation in which the forecasting problem that agents face requires them not only

to forecast the exogenous state of the economy, but also to forecast the forecasts of other

agents, and so on ad infinitum.11 The reason why this problem is interesting is because

it has the potential to amplify and propagate existing structural disturbances, or open the

door for purely expectational disturbances to affect equilibrium outcomes. However, the

technical challenge this problem introduces is that it may cause the equilibrium dynamics to

11This differs from the infinite regress problem in discussions of bounded rationality; cf. Conlisk (1996).
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fail to have have a finite-dimensional state-space representation, making it infeasible to use

standard Kalman filtering formulas to compute agents’ expectations.

In the case of full revelation, considered in the previous section, the infinite regress prob-

lem does not lead to an infinite state problem.12 As discussed in the previous section, when

firms observe an appropriately weighted price index, the REE dynamics of sectoral output,

capital, and prices admit the same finite-state representation as in the FCE. However, for the

same reason, the infinite regress problem does not play any role in affecting the equilibrium

dynamics. Even though firms are required to form beliefs about demand shocks indirectly

through observations of endogenous variables, the equilibrium dynamics are identical to what

they would be in an economy where firms are able to observe demand shocks directly.

Based on revelation results of this type, the literature appears to have concluded that,

for better or worse, the “new and exciting dynamics” envisioned by Townsend (1983) fail to

appear in his model. Pearlman and Sargent (2005) summarize this view as follows:

“Townsend created [his] environment as a laboratory in which to study the effects

of unleashing ‘higher order beliefs.’ He wanted to put [agents] into a setting in

which they would have to estimate the beliefs of others in order to solve their

own optimization and forecasting problems. The claim emerging from the string

of papers just cited is that higher order beliefs disappear from this environment

because there are so few sources of private information that prices can reveal all

[agents’] private information. This result has both encouraging and discouraging

aspects. Encouraging parts are that the equilibria of models like that of Townsend

(1983), Section 8, are much easier to compute than Townsend originally thought,

that standard recursive methods suffice to do the computations, [and] that the

resulting equilibria have low-dimensional representations... A discouraging aspect

is the fact that the dimension of the state-space is finite reflects the disappearance

of the ‘forecasting the forecasts of others problem’ in equilibrium.” (p.493)

However, this summary turns out to be misleading, for at least two reasons. The first

is that the economy actually analyzed in Sec. 8 of Townsend (1983) is not one in which

firms perfectly observe the appropriately weighted price index.13 Instead, firms are assumed

to observe it only with error. In terms of the baseline model described in Sec. 2 above,

Townsend takes n→∞ and assumes that, in addition to their own demand shock uit, firms

observe

p̃t = p̄t + σηηt, (18)

12Another situation in which the infinite regress problem does not lead to an infinite state problem is when
agents do not learn from endogenous variables, as in Woodford (2003).

13Angeletos and Lian (2016) also point this out in footnote bk on p.1155.
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where p̄t ≡ limn→∞
1
n

∑n
i=1 pit, and the random variable ηt is jointly Gaussian but uncorre-

lated with the other disturbances in the model, uncorrelated over time, with mean zero and

unit variance. In this case, the information revelation results from the previous section no

longer apply (including the special case of Proposition 2 discussed by Pearlman and Sargent),

and therefore cannot be used to determine whether the infinite state problem discussed by

Townsend appears under his own informational assumptions.

The second reason that the summary above is misleading is because papers that do follow

Townsend in assuming that observations of average prices are contaminated with error do

not prove any of the results described there. Two papers that may appear to suggest the

opposite are Sargent (1991) and Kasa (2000). Sargent (1991) claims that the inclusion of

“moving average components in agents’ perceptions and of lagged innovations to agents’

information in the state vector...enables [him] to formulate the equilibrium as a fixed point

of a finite-dimensional operator” (pp.246-247). However, only numerical evidence is provided

to support this claim, and it turns out to be incorrect (as Proposition 10 will show). Kasa

(2000) presents the closed-form solution to the model, in Proposition 2.2.3, and it has a

finite-dimensional state-space representation. However, the closed-form solution presented

there is incorrect, essentially for the same reason discussed in Sec. 3 above: the procedure

used to derive the solution fails to take into account that some observables can become

informationally redundant in equilibrium.

The following result clarifies the situation, by proving that the infinite regress problem

does indeed lead to an infinite state problem in the Townsend model. Similar results have

been asserted in simpler settings, such as Chari (1979), Makarov and Rytchkov (2012), and

Huo and Takayama (2023).14 Establishing a similar result in the Townsend model is more

difficult due to its more complex dynamics, both in firms’ observation process and in the

underlying model structure.

Proposition 10. Consider the economy from Sec. 2, with n→∞ and

sit = (uit, p̃t)

for all i and t, where p̃t is given by (18). There does not exist a symmetric REE in which

{yit, kit, pit} have finite-order autoregressive moving average (ARMA) representations.

The structure of this proof is very similar to the proofs of Propositions 3 and 7, and

basically amounts to a brute-force application of the infinite-dimensional method of unde-

termined coefficients described in Townsend (1983). The first step is to write the equilibrium

14The proof of Theorem 4.1 in Chari (1979) is suggestive but invalid.
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law of motion of the endogenous signal as

p̃t = A(L)vt +B(L)ηt, (19)

where A(L) and B(L) are one-sided operators, and use this to find the Wold representation

of the observation vector sit = (uit, p̃t). Here, p̃t only depends on aggregate shocks due to

the assumption of symmetry and the fact that limn→∞
1
n

∑n
i=1 εit = 0. The second step is

to use the classical filtering formulas and structural equations of the model to compute the

equilibrium fixed-point equation

(A(L), B(L)) = T [(A(L), B(L))] (20)

in closed form. The third step is to suppose to the contrary that A(L) and B(L) are

rational functions of L, meaning that they can be written as ratios of polynomials with no

common zeros, and use this hypothesis to rewrite the fixed-point equation (20) in terms

of those polynomials. The fourth step is to derive a contradiction, proving no operators

(A(L), B(L)) satisfying (20) can be rational functions of L. This implies that neither {p̃t}
nor the processes {yit, kit, pit} which depend on it can be expressed as finite-order ARMA

processes.

4.1 Numerical procedure

In response to the infinite state problem, the literature has taken one of three different

approaches to compute the solution of the model numerically. The first is to modify the

information structure of agents in the model by assuming that all exogenous disturbances

become common knowledge after a finite number of periods. This is the approach taken by

Townsend (1983), originally proposed by Chari (1979), and has been followed by a number

of subsequent papers. The second is to assume common knowledge of expectations at some

finite order, as in Melosi (2014) and Nimark (2017). The third is to use ARMA processes to

numerically approximate the equilibrium dynamics, even though the endogenous variables

do not have ARMA representations. This is the approach taken by Sargent (1991), and

further developed by Han et al. (2022), Adams (2022), and Huo and Takayama (2023).

As a complementary alternative to these, this paper proposes a new numerical procedure

that does not rely on ARMA approximations.15 The basic idea is to iterate on the equilibrium

fixed-point equation of the model in the frequency domain rather than in the time domain.

The difference relative to Han et al. (2022) is that the classical Wiener-Kolmogorov filter is

15A parallel procedure for models with rationally inattentive agents is presented in Jurado (2023).
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used to compute forecasts instead of the Kalman fitler, as is done theoretically in the proofs

of Propositions 3, 7, and 10.

The procedure involves iterating on the equilibrium fixed-point equation of the model. To

derive that equation, begin by writing firms’ perceived law of motion for the noisy endogenous

price signal in any symmetric REE as

p̃t = A(L)vt +B(L)ηt, (21)

where A(L) and B(L) are one-sided operators. In terms of these operators, the law of motion

of the observation vector sit = (uit, p̃t) is given by

sit =

 Hv(L) 0 Hε(L)

A(L) B(L) 0


 vt

ηt

εit

 ≡M(L)eit, (22)

where eit ≡ (vt, ηt, εit). For the purposes of describing the procedure the exogenous laws of

motion in (4) and (19) have been generalized to

uit = Hv(L)vt +Hε(L)εit and p̃t = p̄t +Hη(L)ηt,

where Hv(L), Hε(L), and Hη(L) are arbitrary one-sided operators, invertible into the past.

Letting sit = Γ(L)wit denote the Wold representation associated with the law of motion

(22), the Hansen and Sargent (1981) formula implies that

∞∑
j=1

(βλ)jEitui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1sit.

Substituting this into the policy function (6) and the demand curve (2), and then averaging

across sectors delivers the implied actual law of motion

p̃t = Hv(L)vt+Hη(L)ηt−
βλ

L− βλ
[ 1 0 ] (Γ(L)−Γ(βλ))Γ(L)−1

[
Hv(L)vt

A(L)vt +B(L)ηt

]
. (23)

Matching coefficients in the perceived and actual laws of motion (21) and (23) delivers the
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equilibrium fixed-point equation

[ A(L) B(L) ] = [ Hv(L) Hη(L) ] (24)

− b1f
2
0βλL

f2(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
Hv(L) 0

A(L) B(L)

]
.

The numerical procedure involves iterating on this equation by representing the operators

A(L) and B(L) in the frequency domain. This means viewing operators of the form

A(L) =
∞∑
s=0

AsL
s

as functions of the real parameter ω ∈ [−π, π] by defining a(ω) ≡ limr→1A(re−iω), where

i here denotes the imaginary unit and ω represents the “frequency.”16 Numerically, the

function a(ω) can be represented on a discrete grid of frequencies ω1, ω2, . . . , ωN by the

sequence {a(ω1), a(ω2), . . . , a(ωN)}. Using frequency-domain approximations of this type,

the iteration algorithm can be described as follows.

Algorithm 1. Initialize the functions (a(n)(ω), b(n)(ω)) on a discrete grid over [−π, π].

1. Substitute (a(n)(ω), b(n)(ω)) into (22) to compute m(n)(ω).

2. Use the factorization procedure of Tunnicliffe-Wilson (1972) to compute γ(n)(ω).

3. Use (24) to compute the updated functions (a(n+1)(ω), b(n+1)(ω)).

4. Repeat (1)-(3) until ‖(a(n+1)(ω), b(n+1)(ω))− (a(n)(ω), b(n)(ω))‖ is acceptably low.

Once numerical approximations of the functions a(ω) and b(ω) have been obtained by

means of this algorithm, the associated time domain coefficient sequences {As} and {Bs},
which represent the impulse responses of p̃t to the aggregate disturbances vt and ηt, can be

recovered using the inverse Fourier transform; i.e.

As =
1

2π

∫ π

−π
eiωsa(ω)dω.

The Fast Fourier Transform (FFT) algorithm provides a numerically efficient method of

approximating the Fourier coefficients of a square-integrable function. Implementations of

16The convention adopted here is to use lower-case letters for functions of ω and upper-case letters for
functions of L.
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this algorithm are available in most numerical programming packages. In Matlab, this

algorithm is implemented by the built-in function ifft, which accepts both univariate and

multivariate inputs.

In Step 2 of Algorithm 1, the factorization procedure of Tunnicliffe-Wilson (1972) takes

the place usually occupied by the Kalman filter in finding the Wold factor associated with

firms’ observation process. This procedure computes γ(ω) = Γ(e−iω) by directly factorizing

the spectral density f(ω) ≡ M(e−iω)M(e−iω)∗ in the frequency domain, using a matrix

version of Newton’s method for obtaining square roots.

The next sub-section uses Algorithm 1 to explore how the presence of endogenous signals

affects the equilibrium dynamics of the model.

4.2 Effects of endogenous signals

The key economic mechanism in the Townsend model is that agents learn about the un-

derlying state of the economy through imperfect observations of aggregate variables, which

act as endogenous signals. But how much of an effect does this mechanism have on the

equilibrium dynamics? Proposition 10 implies that one effect is that the dynamics cannot

be represented by a finite-dimensional system. However, it is not clear from this theoreti-

cal result whether this difference is either quantitatively or economically substantial. The

purpose of this subsection is to present results from a simple numerical exercise that helps

address this question.

The exercise is to compare the equilibrium dynamics in the Townsend model with en-

dogenous signals to alternative versions of the model without them. For this purpose, two

alternative versions of the model serve as relevant benchmarks. The first is one in which

firms have full information about all underlying disturbances. In this version of the model,

there is no learning from endogenous variables because there is no learning at all. Firms face

no uncertainty about the current state of the economy, and all information is common. The

second is one in which firms do face uncertainty about the current state of the economy, but

they receive only exogenous signals about it, as in Woodford (2003). In this version, there

is learning, but not from endogenous variables.

More specifically, consider three versions of the Townsend economy, where the observation

vector is specified variously as

1. Full information: sit = (εt, θt, ηt), where εt ≡ (ε1t, ε2t, . . . ).

2. Exogenous signal: sit = (uit, θ̃t), where θ̃t = θt + σηηt.

3. Endogenous signal: sit = (uit, p̃t), where p̃t = p̄t + σηηt.
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Figure 2 plots the impulse responses of the average level of output, the average price, and

the average error in estimating θt to the aggregate disturbances in the model in each of these

three versions of the model. The parameter values are the ones from Table 1 of Townsend

(1983). The relevant comparison is in the difference between the responses under each of the

different informational assumptions.
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Figure 2: Effects of endogenous signals on aggregates. This figure shows the responses of
average level of output, prices, and the average estimation error of θt in response to the
common demand disturbance vt and the signal noise disturbance ηt. Parameter values:
ρ = 0.9, b1 = 1, β = 0.96, f0 = 0.2, f1 = 0, f2 = 0.8, σ2

v = σ2
ε = σ2

η = 1.

What Figure 2 shows is that there is a much larger difference in dynamics between the

full information economy and the two dispersed information economies, than between the

two dispersed information economies themselves. Indeed, the responses in the exogenous

signal economy are very similar to those in endogenous signal economy, despite the fact that

the dynamics admit a finite-dimensional representation in the first case but not the second.

Nevertheless, the endogenous signal economy does exhibit the most persistence, both with

respect to the aggregate demand shock (though visually imperceptible in the figure) and the
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aggregate noise shock.17

The similarity between the two dispersed information models can also be seen in their

implications for the dynamics of higher-order expectations. Figure 3 illustrates the implied

dynamics of higher-order expectations of θt in response to both aggregate shocks. Defining

Ē
(0)
t θt ≡ θt and Ē

(k)
t θt ≡ lim

n→∞

1

n

n∑
i=1

Eit[Ē
(k−1)
t θt],

the figure plots the response of Ē
(k)
t θt for various values of the parameter k. All panels

show that in response to the shocks, higher order expectations converge more slowly towards

the true response (solid line). In response to noise shocks, this means that higher order

expectations increase by more on impact, and more slowly adjust to zero. Comparing the

top and bottom rows of panels, it can be seen that the degree of sluggishness in the higher-

order expectations is moderately greater in the endogenous signal model, but overall the

dynamics are quite similar.
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Figure 3: Effects of endogenous signals on higher-order expectations. This figure shows the
responses of for higher-order expectations of the common demand component, Ē

(k)
t θt, for

various values of k. The case k = 0 indicates the response of θt itself. Parameter values are
the same as in Figure 2.

Even though the exogenous signal economy has very similar predictions in terms of the

time-series dynamics of model variables, there are at least three important caveats. The first

17In contrast to the discussion of Kasa (2000), the bottom two panels show that the model does exhibit
waves of optimism and pessimism that last for more than one period, consistent with Figures 4 and 5 of
Townsend (1983).
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is a reminder that this conclusion is specific both to the particular model and parameter

values chosen. In terms of the model parameters, some experimentation with different values

suggests that it is difficult to make the responses in the two dispersed information economies

differ by much more than they do in the figure. In terms of the model itself, the focus here

is narrowly on the Townsend model, and while this has been a helpful laboratory in the

dispersed information literature for some time, obviously nothing rules out the possibility

that the effect of endogenous signals may be larger in other environments. The exercise in

this section does suggest, however, that a numerical comparison of this type would be helpful

for isolating the contribution of the endogenous learning mechanism in other environments.

The second caveat is that even if the exogenous and endogenous signal economies have

similar dynamics, the latter economy imposes greater discipline on agents’ information

structures. Supposing that firms observe an exogenous signal θ̃t = C(L)vt + D(L)ηt, it

is not obvious what form the operators C(L) and D(L) should take. Figure 2 chooses

C(L) = σv/(1− ρL) and D(L) = ση, and while this choice may seem natural from a statisti-

cal modeling perspective, there is no economic justification for it. In the endogenous signal

economy, by contrast, the mapping from the average price to the shocks is endogenously

determined by other model assumptions. Moreover, it is not difficult to see that for any

endogenous signal economy, there always exists an observationally equivalent exogenous sig-

nal economy: simply set C(L) and D(L) equal to the equilibrium values of A(L) and B(L)

implied by the endogenous signal economy. While it may be surprising that the particular

mappings C(L) and D(L) chosen in Figure 2 happen to replicate the dynamics of the en-

dogenous information economy fairly well, the fact that there exist some mappings that do

this is not.

The third caveat is that exogenous signal economies do not permit analysis of how changes

in model structure, including policy, affect agents’ information. This is a central aspect of

the macroeconomic literature on endogenous information choice, especially the literature on

rational inattention following Sims (2003). While agents do not choose their information

sets optimally subject in the Townsend model, the fact that they are still required to learn

from endogenous variables does mean that their information sets endogenously respond to

structural changes, unlike in an exogenous signal economy.

5 Conclusion

Prices are often referred to as signals. But in most modern macroeconomic models, they play

no formal role in transmitting information. One of the first dynamic models that explicitly

considers this mechanism is the one developed by Townsend (1983). However, the subtle
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technical and conceptual issues that this model raises have led to a degree of confusion in

the subsequent literature. This paper has revisited this influential model to help provide

some precision and clarity.

On the one hand, existing results about information revelation in this model are not

stated as strongly as they could be. A single price index can reveal a substantial amount

of information, fully revealing all essential information even in the presence of a great deal

of heterogeneity, as shown in Propositions 2, 6, 8, and 9. On the other hand, existing

results about information revelation in this model are stated more strongly than they should

be. Realistic types of heterogeneity or noise in the observation of prices can prevent full

revelation, and can lead to a situation in which the equilibrium state vector can become

infinite dimensional, as in Proposition 10.

From a methodological perspective, the proofs provided in this paper can be read as

a step-by-step guide for how to prove similar results in other models, and the numerical

procedure described in Section 4.1 is broadly applicable. Hopefully these contributions will

help reduce barriers to entry for working on models with endogenous signals, especially

as new evidence on higher-order expectations, such as the survey responses collected and

analyzed by Coibion et al. (2021), makes it possible to directly discipline models of this type

in ways that were not feasible when they were originally formulated.
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A Proofs

Proof of Proposition 1.

First, it is shown that the full communication equilibrium exists and is unique. Sub-

stitution of the demand schedule (2) into the capital optimality condition (1) delivers the

second-order difference equation

Eit[A(L)ki,t+2] = −f0
f2
Eitui,t+1, (25)

where A(L) = 1− (1 + β−1 + (b1f
2
0 + f1)/f2)L+ β−1L2, and L is the lag operator. This lag

polynomial can be factored as

A(L) = (1− λ1L)(1− λ2L),

where λ1 and λ2 are the two roots of the characteristic polynomial

P(λ) ≡ λ2 − (1 + β−1 + (b1f
2
0 + f1)/f2)λ+ β−1.

Note that P(0) > 0, P(1) < 0, and P(β−1) < 0, while P(λ) > 0 for all sufficiently large

positive values of λ. It follows that there must be two real roots, satisfying 0 < λ1 < 1 <

β−1 < λ2. Furthermore, comparing the factorization with the original lag polynomial, these

roots must satisfy λ1λ2 = β−1.

Using this factorization, write (25) as

Et[(1− λ1L)(1− λ2L)ki,t+2] = −f0
f2
Eitui,t+1,

or as

zt = λ−12 Eitzt+1 + λ−12

f0
f2
Eitui,t+1, (26)

where zt ≡ (1 − λ1L)ki,t+1. Because λ−12 < 1, the unique covariance stationary solution to

(26) is obtained by solving forward, yielding

zt =
f0
f2

∞∑
j=1

λ−j2 Eitui,t+j. (27)

Using the definition of zt and the fact that λ1λ2 = β−1, and defining λ ≡ λ1, it follows from
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this equation that

ki,t+1 = λkit +
f0
f2

∞∑
j=1

(βλ)jEitui,t+j. (28)

Since sit = ut, the orthogonal projection theorem implies that Eitui,t+j exists and is uniquely

determined for all j.

Given (28), the closed-form expression in the proposition comes from evaluating the

forecasts Eitui,t+j. To do so, first notice that (2) implies

Eitui,t+j = ρjEitθt (29)

Second, notice that the vector ut = (u1t, . . . , unt) contains the same information as the vector

(ūt, û1t, . . . , û2t), where ūt ≡ 1
n

∑n
i=1 uit and ûit ≡ uit − ūt, since one can be obtained from

the other by a non-degenerate linear transformation. Moreover, the processes {û1t, . . . , ûnt}
constructed in this way are independent of {θt}, so

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (30)

Now it is necessary to compute E(θt|ūt). By (4),

ūt = θt + σεε̄t, θt = ρθt−1 + σvvt,

where ε̄t ≡ 1
n

∑n
i=1 εt is uncorrelated over time, with mean zero and variance 1/n. This

implies that the Wold factor associated with the spectral density of {ūt} is

h(L) =

√
ρσ2

ε

φn

(1− φL)

(1− ρL)

where φ is defined in the proposition. Applying the Wiener-Kolmogorov filtering equations,

E(θt|ūt) =

[
σ2
v

(1− ρL)(1− ρL−1)
h(L−1)−1

]
+

h(L)−1ūt

=
φnσ2

v

ρσ2
ε

[
1

(1− ρL)(1− φL−1)

]
+

(1− ρL)

(1− φL)
ūt.

=
(1− φ/ρ)

(1− φL)
ūt, (31)
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where the operator [ · ]+ projects onto the space spanned by non-negative powers of L, and

the third line uses the fact that σ2
v = ρσ2

ε

φn
(1−φρ)(1−φ/ρ) by definition of φ. Substitution of

(29), (30), and (31) into the policy function (28) delivers the expression for ki,t+1 presented

in the proposition.

Proof of Proposition 2.

Consider the equilibrium dynamics under full communication. By substituting the closed-

form expression (5) into the demand curve (2), and averaging across sectors,

p̄t =

[
1− b1f0ωL

(1− λL)(1− φL)

]
ūt. (32)

To prove the proposition, it is sufficient to verify that the operator on the right side is

invertible into the past. Since 0 < φ < 1 and 0 < λ < 1, this holds if and only if the

characteristic polynomial

P(µ) ≡ µ2 − (λ+ φ+ b1f0ω)µ+ λφ

has both zeros inside the unit circle. Note that P(0) > 0, P(λ) < 0, and P(1) = (1−λ)(1−
φ) − b1f0ω > 0. The last inequality follows from the fact that the definitions of λ and φ

imply that

(1− λ)(1− φ) =
b1f

2
0 + f1
f2

βλ

1− βλ
σ2 + (1− ρ)σ2

ε

σ2 + σ2
ε

>
b1f

2
0

f2

βλρ

1− βλρ
σ2

σ2 + σ2
ε

= b1f0ω.

Therefore, both zeros of P(µ) are inside the unit circle, and the operator on the right side

of (32) is invertible into the past. This proves that (uti, p̄
t) contains the same information

as (uti, ū
t), which, according to Proposition 1, is sufficient for each firm to implement its full

communication optimal plan.

Proof of Proposition 3.

Step 1. Prove that p̄t = A(L)ūt in any symmetric REE, with A(L) one-sided into the past.

In any symmetric REE, the fact that the choice variable ki,t+1 is measurable with respect

to the history sti = (uti, p̄
t) implies that it is possible to write

ki,t+1 = Bu(L)uit +Bp(L)p̄t
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for some one-sided operators Bu(L) and Bp(L). The hypothesis of symmetry requires these

operators to be the same across all sectors. By substituting this expression for ki,t+1 into

the demand curve, averaging across i, and solving for p̄t, it follows that

p̄t =
1− b1f0Bu(L)L

1 + b1f0Bp(L)L
ūt ≡ A(L)ūt. (8)

And since p̄t must be measurable with respect to the history of structural disturbances, the

operator A(L) must be one-sided into the past.

Step 2. Find the Wold representation of the observation vector sit = Γ(L)wit.

Collecting all disturbances into the vector εt ≡ (ε1t, . . . , εnt), the law of motion for sit

can be written in terms of the operator A(L) as follows:

sit =
1

1− ρL

[
σv σε(1− ρL)ι′i

σvA(L) σε(1− ρL)A(L) 1
n
1′n

][
vt

εt

]
≡ 1

1− ρL
Mi(L)et,

where ιi is a vector of zeros with a one in the i-th position, and 1n is an n-dimensional vector

of ones.

First notice that

Mi(L)Mi(L
−1)′ = ρ

α
σ2
ε(1− αL)(1− αL−1) ρ

φ
σ2
ε

n
(1− φL)(1− φL−1)A(L−1)

ρ
φ
σ2
ε

n
(1− φL)(1− φL−1)A(L) ρ

φ
σ2
ε

n
(1− φL)(1− φL−1)A(L)A(L−1)

 ,
where α and φ solve the quadratic equations

ρσ2
εα

2 − (σ2
ε(1 + ρ2) + σ2

v)α + ρσ2
ε = 0 and ρσ2

εφ
2 − (σ2

ε(1 + ρ2) + nσ2
v)φ+ ρσ2

ε = 0,

respectively, and satisfy the inequalities 0 < φ < α < ρ.

Following the procedure described on pp.44-47 of Rozanov (1967), the Wold factor Γ(L)
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is given by

Γ(L) =
1√

1 + ϑ2

1

(1− ρL)
(33)

×

 ϑ
√

ρ
α
σε(L− α) −

√
ρ
α
σε(1− αL)

ϑ
√

ρ
α
α
φ
σε
n

(1−φL)(L−φ)
(1−αL) A(L) + γ(L) −

√
ρ
α
α
φ
σε
n

(1−φL)(L−φ)
(L−α) A(L) + ϑγ(L)1−αL

L−α

 ,
where

ϑ ≡
√
ρ

α

α

φ

σε
n

(1− αφ)(α− φ)

(1− α2)

A(α)

γ(α)
, (34)

and γ(L) is defined to be the univariate Wold factor that satisfies

γ(L)γ(L−1) = A(L)A(L−1)
α

φ

σ2
ε

n

(
1− 1

n

)
(1− φL)(1− φL−1)(1− ρL)(1− ρL−1)

(1− αL)(1− αL−1)
. (35)

Step 3. Find the equilibrium fixed-point equation A(L) = T [A(L)].

According to the structural model,

p̄t = ūt −
b1f

2
0

f2

L

(1− λL)

∞∑
j=1

(βλ)jĒtui,t+j, (36)

where 0 < λ < 1 is defined in Proposition 1. By the Hansen and Sargent (1981) formula,

∞∑
j=1

(βλ)jĒtui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
ūt.

Together these imply the fixed-point equation

A(L) = 1− b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
.

Substituting the expression for Γ(L) in (33) into this equation and rearranging so that A(L)

only explicitly appears on the left, it follows that

A(L) =
(1− λL)(1− αL)(L− α)− b0L[ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)]

(1− λL)(1− αL)(L− α) + b0(1− α2)ϑσε
√

α
ρ

(
1− 1

n

)
(1−ρL)2(L−ρ)L
γ(L)(1−αL)

, (37)
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where

b0 ≡ b(1− κ), b ≡ b1f
2
0βλ

f2(1− βλρ)
, κ ≡ ϑ2

1 + ϑ2
.

From these definitions, it can be seen that b > 0 and 0 < κ < 1. A further important

property of the parameter b is that

b < 1− λ. (38)

To see this, note that by the definition of λ in Proposition 1,

1− λ =
(b1f

2
0 + f1)βλ

f2(1− βλ)
>

b1f
2
0βλ

f2(1− βλρ)
= b.

Step 4. Prove that A(L) must be invertible.

First, it will be established that

ϑ 6= 0. (39)

To see this, notice that (34) implies that it is only possible for ϑ = 0 if A(α) = 0, since γ(L)

has no inside zeros. Substituting ϑ = 0 into (37) implies that

A(L) =
(1− λL)(1− αL)− b0L(ρ− α)

(1− λL)(1− αL)
.

So in order for A(α) = 0, it must be that α is a zero of the polynomial in the numerator on

the right; i.e. (1− αλ)(1− α2)− b0α(ρ− α) = 0. But this is a contradiction, because when

ϑ = 0,

(1− αλ)(1− α2)− b0α(ρ− α) = (1− αλ)(1− α2)− bα(ρ− α)

= [(1− αλ)− bαρ]− α2[(1− αλ)− b]

> (1− α2)[(1− αλ)− b] > 0. (by (38))

Second, it is convenient to rewrite the fixed point equation (37). To that end, let h(L)

denote the Wold factor that satisfies

h(L)h(L−1) = A(L)A(L−1). (40)
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By (35),

γ(L) =

√
σ2
ε

n

α

φ

(
1− 1

n

)
(1− φL)(1− ρL)

(1− αL)
h(L). (41)

Substituting this expression into (37), it follows that

A(L) =
h(L)(1− λL)(1− αL)(L− α)− b0h(L)L[ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)]

h(L)(1− λL)(1− αL)(L− α) + b0(1− α2)ϑ
√

φ(n−1)
ρ

(1−ρL)(L−ρ)L
(1−φL)

.

(42)

Third, it will be shown by contradiction that A(L) must be invertible to satisfy (42).

Suppose to the contrary that A(L) is not invertible, which implies that it has at least one

inside zero (which is not at the origin, since A(0) = 1). By (40), this means that h(L) has

at least one outside zero that is not shared by A(L). By (42), this is possible only if that

outside zero is ρ, because otherwise the outside zero of h(L) in the numerator would not

cancel on the denominator, and so would also be a zero of A(L). Therefore, A(L) must have

a zero at L = ρ of multiplicity one. By (40),

h(L) =
1− ρL
L− ρ

A(L). (43)

By substituting this into (42) and solving for A(L), it follows that

A(L) = 1− b0L
(1− φL)[ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)] + ϑ(1− α2)

√
φ(n−1)

ρ (L− ρ)2

(1− φL)(1− λL)(1− αL)(L− α)
.

(44)

Since A(L) is one-sided into the past, the numerator of the fraction on the right side

of (44) must have a zero at L = α, to cancel the factor (L − α) in the denominator. This

implies

ϑ = −

√
φ(n− 1)

ρ

(ρ− α)2

(1− αφ)(1− αρ)
. (45)

In addition, the fact that A(ρ) = 0 implies

ϑ2 =
(ρ− α)

(1− αρ)2
(1− λρ)(1− αρ)− b0ρ(ρ− α)

b0ρ
. (46)

Combining (45) and (46), the model parameters must satisfy the condition

b0
1− λρ

=
(1− αρ)

ρ(ρ− α)

[
1 +

φ(n− 1)

ρ

(ρ− α)2

(1− αφ)2

]−1
.
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Using b0 = b/(1 + ϑ2) and (45), this condition can be rewritten as

b

1− λρ
=

(1− αρ)

ρ(ρ− α)

(
1 + φ(n−1)

ρ
(ρ−α)2
(1−αφ)2

(ρ−α)2
(1−αρ)2

)
(

1 + φ(n−1)
ρ

(ρ−α)2
(1−αφ)2

) . (47)

From here it can be verified (using the definitions of α and φ) that the expression on the

right side of (47) is always strictly greater than one. At the same time, (38) implies that the

expression on the left side of (47) is always strictly less than one. This is a contradiction.

Proof of Proposition 4.

The fact that the FCE paths are a REE follows from the fact that the operator on the

right side of (32) is invertible into the past, as shown in the proof of Proposition 2.

What remains is to show that this REE is unique. If sit = ūt, then the equilibrium is

unique, by the same reasoning as in the proof of Proposition 1. Therefore, what needs to

be shown is that, in any equilibrium, the information of firm i at time t when sit = p̄t is

equivalent to the information generated by ūt.

The fact that ki,t+1 is measurable with respect to sti = p̄t implies that

ki,t+1 =
∞∑
j=0

Aij p̄t−j ≡ Ai(L)p̄t

in any equilibrium, for some operators Ai(L), i = 1, 2, . . . , n, with square summable coef-

ficients. Plugging this into the demand schedule (2) and averaging across sectors implies

that [
1 +

1

n

n∑
i=1

b1f0LAi(L)

]
p̄t = ūt.

This implies that in any equilibrium, ūt must be measurable with respect to p̄t.

In addition, the operator on the left must always be invertible into the past, so that

p̄t is also measurable with respect to ūt. If not, then its inverse would have an expansion

including terms with negative powers of L, so p̄t would not be measurable with respect to

ξt = (vt, εt) as required. Therefore, in any REE, the information generated by p̄t must be

equivalent to the information generated by ūt.

Proof of Proposition 5.

The existence and uniqueness of the FCE follows from the same reasoning as in the proof

of Proposition 1, and the policy function (28) is the same. Given that policy function, the
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closed-form expression in the proposition comes from evaluating the forecasts Eitui,t+j under

the new law of motion (11). To do so, first notice that (11) implies

Eitui,t+j = ρjθEitθt + ρjzEitzit = (ρjθ − ρ
j
z)Eitθt + ρjzuit, (48)

where the second equality uses zit = uit − θt to substitute out zit. Second, notice that

the vector ut = (u1t, . . . , unt) contains the same information as the vector (ūt, û1t, . . . , û2t),

where ūt ≡ 1
n

∑n
i=1 uit and ûit ≡ uit − ūt, since one can be obtained from the other by a

non-degenerate linear transformation. Moreover, the processes {û1t, . . . , ûnt} constructed in

this way are independent of {θt}, so

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (49)

Now it is necessary to compute E(θt|ūt). By (11),

ūt = θt + σεε̄t, θt = ρθθt−1 + σvvt, z̄t = ρz z̄t−1 + σεε̄t,

where ε̄t ≡ 1
n

∑n
i=1 εt is uncorrelated over time, with mean zero and variance 1/n. This

implies that the Wold factor associated with the spectral density of {ūt} is

h(L) =

√
ρθσ2

ε + ρznσ2
v

φn

(1− φL)

(1− ρθL)(1− ρzL)

where φ is defined in the proposition. Applying the Wiener-Kolmogorov filtering equations,

E(θt|ūt) =

[
σ2
v

(1− ρθL)(1− ρθL−1)
h(L−1)−1

]
+

h(L)−1ūt

=
φnσ2

v

ρθσ2
ε + ρznσ2

v

[
(1− ρzL−1)

(1− ρθL)(1− φL−1)

]
+

(1− ρθL)(1− ρzL)

(1− φL)
ūt.

=
(ρθ − φ)

(ρθ − ρz)
(1− ρzL)

(1− φL)
ūt, (50)

where the operator [ · ]+ projects onto the space spanned by non-negative powers of L, and

the third line uses the fact that

φnσ2
v

ρθσ2
ε + ρznσ2

v

(1− ρθρz)
(1− ρθφ)

=
(ρθ − φ)

(ρθ − ρz)

by definition of φ. Substitution of (48), (49), and (50) into the policy function (28) delivers
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the expression for ki,t+1 presented in the proposition.

Proof of Proposition 6.

Consider the equilibrium dynamics under full communication. By substituting the closed-

form expression 12 into the demand curve (2) and averaging across sections, it follows that

p̄t =

[
1− b1f0L

(1− λL)(1− φL)

(
ωθ(1− ρzL) + ωz(1− φL)

)]
ūt. (51)

To prove the proposition, it is sufficient to prove that the operator on the right side of this

equation is invertible into the past. Since 0 < φ < 1 and 0 < λ < 1, this holds if and only if

the characteristic equation

P(µ) = (µ− λ)(µ− φ)− b1f0(ωθ(µ− ρz) + ωz(µ− φ))

has no zeros outside the unit circle.

First, suppose that ρθ = ρz. Then the characteristic equation simplifies to

P(µ) = (µ− φ)

(
µ− λ− b1f

2
0βλρz

f2(1− βλρz)

)
,

which has both roots inside the unit circle, because

0 < λ+
b1f

2
0βλρz

f2(1− βλρz)
< λ+

(b1f
2
0 + f1)βλ

f2(1− βλ)
= 1

by definition of λ.

Second, suppose that ρθ 6= ρz. Then

P(0) = λφ+
b1f

2
0

f2

βλρθρz(1− βλφ)

(1− βλρθ)(1− βλρz)
> 0, P(φ) = −b1f

2
0

f2

βλ(ρθ − φ)(φ− ρz)
(1− βλρθ)(1− βλρz)

< 0,

and

P(1) = (1− λ)(1− φ)− b1f
2
0

f2

βλ

(1− βλρz)

[
(ρθ − φ)(1− ρz)

(1− βλρθ)
+ ρz(1− φ)

]

> (1− φ)

[
(1− λ)− b1f

2
0 + f1
f2

βλ(1− βλρθρz)
(1− βλρz)(1− βλρθ)

]
(using f1 ≥ 0 and ρθ < 1)

= (1− φ)
b1f

2
0 + f1
f2

β2λ2(1− ρθ)(1− ρz)
(1− βλ)(1− βλρθ)(1− βλρz)

> 0. (using 1− λ =
b1f20+f1

f2

βλ
1−βλ)
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Therefore, both zeros of P(µ) are inside the unit circle, and the operator on the right side

of (51) is invertible into the past. This proves that (uti, p̄
t) contains the same information

as (uti, ū
t), which, according to Proposition 5, is sufficient for each firm to implement its full

communication optimal plan.

Proof of Proposition 7.

Step 1. Prove that p̄t = A(L)ūt in any symmetric REE, with A(L) one-sided into the past.

The proof of this step is the same as in the proof of Proposition 3.

Step 2. Find the Wold representation of the observation vector sit = Γ(L)wit.

Collecting all disturbances into the vector εt ≡ (ε1t, . . . , εnt), the law of motion for sit

can be written in terms of the operator A(L) as follows:

sit =
1

(1− ρθL)(1− ρzL)

[
σv(1− ρzL) σε(1− ρθL)ι′i

σv(1− ρzL)A(L) σε(1− ρθL)A(L) 1
n
1′n

][
vt

εt

]

≡ 1

(1− ρθL)(1− ρzL)
Mi(L)et,

where ιi is a vector of zeros with a one in the i-th position, and 1n is an n-dimensional vector

of ones.

First notice that

Mi(L)Mi(L
−1)′ =

 ρθσ
2
ε+ρzσ

2
v

α (1− αL)(1− αL−1) ρθσ
2
ε+ρznσ

2
v

φn (1− φL)(1− φL−1)A(L−1)

ρθσ
2
ε+ρznσ

2
v

φn (1− φL)(1− φL−1)A(L) ρθσ
2
ε+ρznσ

2
v

φn (1− φL)(1− φL−1)A(L)A(L−1)


where α ∈ (min(ρθ, ρz),max(ρθ, ρz)) is the smaller zero of

(ρθσ
2
ε + ρzσ

2
v)α

2 −
(
σ2
ε(1 + ρ2θ) + σ2

v(1 + ρ2z)
)
α + (ρθσ

2
ε + ρzσ

2
v) = 0, (52)

and φ ∈ (min(ρθ, ρz),max(ρθ, ρz)) is the smaller zero of

(ρθσ
2
ε + ρznσ

2
v)φ

2 −
(
σ2
ε(1 + ρ2θ) + nσ2

v(1 + ρ2z)
)
φ+ (ρθσ

2
ε + ρznσ

2
v) = 0. (53)

Following the procedure described on pp.44-47 of Rozanov (1967), the Wold factor Γ(L)
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is given by

Γ(L) =
1√

1 + ϑ2

1

(1− ρθL)(1− ρzL)
×

 ϑ
√

ρθσ2
ε+ρzσ

2
v

α
σε(L− α)

ϑ
√

α
ρθσ2

ε+ρzσ
2
v

ρθσ
2
ε+ρznσ

2
v

φn
(1−φL)(L−φ)

(1−αL) A(L) + γ(L)

(54)

−
√

ρθσ2
ε+ρzσ

2
v

α
σε(1− αL)

−
√

α
ρθσ2

ε+ρzσ
2
v

ρθσ
2
ε+ρznσ

2
v

φn
(1−φL)(L−φ)

(L−α) A(L) + ϑγ(L)1−αL
L−α

 ,
where

ϑ ≡
√

α

ρθσ2
ε + ρzσ2

v

ρθσ
2
ε + ρznσ

2
v

φn

(1− αφ)(α− φ)

(1− α2)

A(α)

γ(α)
, (55)

and γ(L) is defined to be the univariate Wold factor that satisfies

γ(L)γ(L−1) = σ2
ε(n− 1)

α(ρθσ
2
ε + ρznσ

2
v)

φ(ρθσ2
ε + ρzσ2

v)

(1− φL)(1− φL−1)(1− ρθL)(1− ρθL−1)
(1− αL)(1− αL−1)

× A(L)A(L−1). (56)

Step 3. Find the equilibrium fixed-point equation A(L) = T [A(L)].

According to the structural model,

p̄t = ūt −
b1f

2
0

f2

L

(1− λL)

∞∑
j=1

(βλ)jĒtui,t+j, (57)

where 0 < λ < 1 is defined in Proposition 1. By the Hansen and Sargent (1981) formula,

∞∑
j=1

(βλ)jĒtui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
ūt.

Together these imply the fixed-point equation

A(L) = 1− b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
.
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Substituting the expression for Γ(L) in (54) into this equation and rearranging so that A(L)

only explicitly appears on the left, it follows that

A(L) =
(1− λL)(1− αL)(L− α)− b0Lψ(L)

(1− λL)(1− αL)(L− α) + b0(1− α2)ϑσ2
ε

√
α

ρθσ2
ε+ρzσ

2
v

(
1− 1

n

) (1−ρzL)(1−ρθL)2(L−ρθ)L
γ(L)(1−αL)

,

(58)

where

ψ(L) ≡ ϑ2(1− αL)(1− α(ρθ + ρz − ρθρzβλ) + ρθρz(α− βλ)L) (59)

+ (L− α)(ρθ + ρz − α− ρθρz(βλ+ (1− αβλ)L)),

and

b0 ≡ b(1− κ), b ≡ b1f
2
0βλ

f2(1− βλρθ)(1− βλρz)
, κ ≡ ϑ2

1 + ϑ2
.

From these definitions, it can be seen that b > 0 and 0 < κ < 1. A further important

property of the parameter b is that

b ≤ (1− λ)(1− βλ)

(1− βλρθ)(1− βλρz)
. (60)

To see this, note that by the definition of λ,

(1− λ)(1− βλ) =
(b1f

2
0 + f1)βλ

f2
>
b1f

2
0βλ

f2
= b(1− βλρθ)(1− βλρz).

Step 4. Prove that A(L) must be invertible.

First consider the case when ρθ = ρz ≡ ρ. Equations (52) and (53) imply that α = φ = ρ.

By (55), this implies that ϑ = 0, so (58) becomes

A(L) =
(1− λL)(1− αL)− bL[ρ− ρ2(βλ+ (1− αβλ)L)]

(1− λL)(1− αL)

=
1− [λ+ bρ(1− ρβλ)]L

1− λL
.

This operator is invertible because the moving average coefficient in the numerator is no

greater than one:

λ+ bρ(1− ρβλ) ≤ λ+
ρ(1− λ)(1− βλ)

(1− ρβλ)
=
λ(1− ρ) + ρ− ρβλ

1− ρβλ
≤ 1,

46



where the first inequality uses (60) and the second uses 0 < λ < 1. Therefore, for the

remainder of the proof it can be assumed that ρθ 6= ρz.

Second, note that when ρθ 6= ρz it must be that ϑ 6= 0. To see this, suppose to the

contrary that ϑ = 0, so that (58) becomes

A(L) =
(1− λL)(1− αL)− bL(ρθ + ρz − α− ρθρz(βλ+ (1− αβλ)L))

(1− λL)(1− αL)
.

By (55), ϑ = 0 implies A(α) = 0, since α 6= φ and γ(L) has no inside zeros. Therefore,

the polynomial in the numerator on the right side of this equation must have a zero at α.

Defining ρH ≡ max(ρθ, ρz) and ρL ≡ min(ρθ, ρz), and setting the numerator to zero,

0 = (1− αλ)(1− α2)− bα(ρH + ρL − α− ρHρL(βλ+ (1− αβλ)α))

≥ (1− αλ)(1− α2)− (1− λ)(1− βλ)

(1− βλρH)(1− βλρL)
α(ρH + ρL − α− ρHρL(βλ+ (1− αβλ)α)).

> (1− λ)(1− α2)− (1− λ)

(1− βλρL)
α(ρH + ρL − α− ρHρL(βλ+ (1− αβλ)α)),

where the first inequality follows from (60) and the fact that ρH + ρL− α− ρHρL(βλ+ (1−
αβλ)α) > 0, and the second inequality uses 0 < α < 1 and 0 < ρH < 1.

Multiplying both sides of this inequality by (1− βλρL)/(1− λ) > 0, it follows that

0 > (1− α2)(1− βλρL)− α(ρH + ρL − α− ρHρL(βλ+ (1− αβλ)α))

= (1− αρH)(1− ρL(α + (1− α2)βλ))

> (1− αρH)(1− α(α + (1− α2)βλ)) (taking ρL → α)

= (1− αρH)(1− α2)(1− αβλ) > 0,

which is a contradiction. Therefore, ρθ 6= ρz implies ϑ 6= 0, as claimed.

Third, let h(L) denote the univariate Wold factor that satisfies

h(L)h(L−1) = A(L)A(L−1). (61)

By (35),

γ(L) =

√
σ2
ε

n

α

φ

(
1− 1

n

)
(ρθσ2

ε + ρzσ2
v)

(ρθσ2
ε + ρznσ2

v)

(1− φL)(1− ρθL)

(1− αL)
h(L). (62)
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Substituting this expression into (58),

A(L) =
h(L)(1− λL)(1− αL)(L− α)− b0h(L)Lψ(L)

h(L)(1− λL)(1− αL)(L− α) + b0(1− α2)ϑσε

√
φ(n−1)

ρθσ2
ε+ρznσ

2
v

(1−ρzL)(1−ρθL)(L−ρθ)L
(1−φL)

.

(63)

Now, suppose to the contrary that A(L) is not invertible, so it has at least one inside

zero (which is not at the origin, since A(0) = 1). By (61), this means that h(L) has at least

one outside zero that is not shared by A(L). By (63), there are only three possibilities:

1. h(L) = 1−ρθL
L−ρθ

A(L)

2. h(L) = 1−ρzL
L−ρz A(L)

3. h(L) = (1−ρθL)(1−ρzL)
(L−ρθ)(L−ρz)

A(L).

These are the only possibilities because if h(1/r) = 0 and A(1/r) 6= 0 for any other |r| < 1,

then 1/r would be a zero of the numerator but not the denominator of (63). What remains

is to show that each of these three possibilities entails a contradiction.

Case 1. h(L) = 1−ρθL
L−ρθ

A(L).

Substituting this expression for h(L) into the fixed-point equation (42) and solving for

A(L) implies that

A(L) = 1− b0L[(1− φL)ψ(L) + (1− α2)ϑσ(1− ρzL)(L− ρθ)2]
(1− λL)(1− αL)(L− α)(1− φL)

,

where

σ ≡ σε

√
φ(n− 1)

ρθσ2
ε + ρznσ2

v

(64)

and ψ(L) is defined in (59).

Since A(L) must be one-sided, the numerator of the fraction on the right side of this

expression for A(L) must have a zero at L = α. This implies

ϑ =
−σ(1− αρz)(ρθ − α)2

(1− αφ)ψ1(α)
, (65)

where

ψ1(L) ≡ 1− α(ρθ + ρz − ρθρzβλ) + ρθρz(α− βλ)L (66)

ψ2(L) ≡ ρθ + ρz − α− ρθρzβλ− ρθρz(1− αβλ)L (67)
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so that (59) can be written as ψ(L) = ϑ2(1− αL)ψ1(L) + (L− α)ψ2(L).

In addition, the hypothesis that A(ρθ) = 0 and the fact that b0 = b/(1 +ϑ2) implies that

ϑ2 = − (ρθ − α)

(1− αρθ)
(1− λρθ)(1− αρθ)− bρθψ2(ρθ)

(1− λρθ)(ρθ − α)− bρθψ1(ρθ)
. (68)

Since ϑ2 > 0, it is necessary to restrict attention to parameter configurations for which the

right side of this equation is always positive.

Combining (65) and (68) and solving for b/(1− λρθ) implies

b

1− λρθ
=

1− αρθ
ρθ

(1− αφ)2ψ1(α)2 + σ2(1− αρz)2(ρθ − α)4

ψ2(ρθ)(1− αφ)2ψ1(α)2 + ψ1(ρθ)σ2(1− αρz)2(ρθ − α)3(1− αρθ)
. (69)

Using (60), it follows that

b

1− λρθ
≤ (1− λ)(1− βλ)

(1− βλρθ)(1− βλρz)(1− λρθ)
<

(1− λρθ)(1− βλρH)

(1− βλρθ)(1− βλρz)(1− λρθ)
=

1

1− βλρL
.

However, it can be verified that the right side of (69) is no less than 1/(1 − βλρL) for

all parameter configurations such that the right side of (68) is non-negative, which is a

contradiction.

Case 2. h(L) = 1−ρzL
L−ρz A(L).

Substituting this expression for h(L) into the fixed-point equation (63) and solving for

A(L) implies that

A(L) = 1− b0L[(1− φL)ψ(L) + (1− α2)ϑσ(1− ρθL)(L− ρθ)(L− ρz)]
(1− λL)(1− αL)(L− α)(1− φL)

.

As in the previous case, the requirements that A(L) be one-sided and that A(ρz) = 0 imply

the two equations

ϑ =
−σ(1− αρθ)(α− ρθ)(α− ρz)

(1− αφ)ψ1(α)
(70)

ϑ2 = − (ρz − α)

(1− αρz)
(1− λρz)(1− αρz)− bρzψ2(ρz)

(1− λρz)(ρz − α)− bρzψ1(ρz)
. (71)

Combining (70) and (71) and solving for b/(1− λρz) implies

b

1− λρz
=

1− αρz
ρz

(1− αφ)2ψ1(α)2 + σ2(1− αρθ)2(ρθ − α)2(ρz − α)2

ψ2(ρz)(1− αφ)2ψ1(α)2 + ψ1(ρz)σ2(1− αρθ)2(ρθ − α)2(ρz − α)(1− αρz)
. (72)
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As in the previous case, the left side of this equation is strictly less than 1/(1 − βλρL),

but the right side is not less than this value for any parameter configuration for which the

right side of (71) is non-negative. This is a contradiction.

Case 3. h(L) = (1−ρθL)(1−ρzL)
(L−ρθ)(L−ρz)

A(L). Substituting this expression for h(L) into the fixed-

point equation (63) and solving for A(L) implies that

A(L) = 1− b0L[(1− φL)ψ(L) + (1− α2)ϑσ(L− ρθ)2(L− ρz)]
(1− λL)(1− αL)(L− α)(1− φL)

.

The requirements that A(L) be one-sided and that A(ρz) = A(ρθ) = 0 imply the three

equations

ϑ =
−σ(ρθ − α)2(α− ρz)

(1− αφ)ψ1(α)
(73)

ϑ2 =
−(ρθ − α)

(1− αρθ)
(1− λρθ)(1− αρθ)− bρθψ2(ρθ)

(1− λρθ)(ρθ − α)− bρθψ1(ρθ)
(74)

ϑ2 =
−(ρz − α)

(1− αρz)
(1− λρz)(1− αρz)− bρzψ2(ρz)

(1− λρz)(ρz − α)− bρzψ1(ρz)
. (75)

It can be verified that it is not possible for the right sides of the second and third equations

to both be positive at the same time. Since ϑ2 > 0, this is a contradiction.

Alternatively, it is possible to derive a contradiction along the same lines as the previous

two cases, by combining the first and second expressions and solving for b/(1−λρθ) to obtain

b

1− λρθ
=

1− αρθ
ρθ

(1− αφ)2ψ1(α)2(ρθ − α) + σ2(ρθ − α)4(α− ρz)2(1− αρθ)
ψ2(ρθ)(1− αφ)2ψ1(α)2(ρθ − α) + ψ1(ρθ)σ2(ρθ − α)4(α− ρz)2(1− αρθ)

. (76)

And, it can be verified that the right side of (76) is no less than 1/(1 − βλρL) for all

parameter configurations such that the right side of (74) is non-negative, which contradicts

the fact that b/(1− λρθ) < 1/(1− βλρL) by (60).
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Proof of Proposition 8.

The proofs of the analogous versions of Propositions 1 and 4 are exactly the same as

before, just with the relevant parameters indexed by i. The only thing that remains is to

prove the analogous version of Proposition 2. By substituting the closed-form expression (5)

into the demand curve (15), and averaging across sectors,

p̄t =

[
1− 1

n

n∑
i=1

b1if0iωiL

(1− λiL)(1− φL)

]
ūt. (77)

To prove the proposition, it is sufficient to verify that the operator on the right side is

invertible into the past. Since 0 < φ < 1 and 0 < λi < 1, this is true if and only if

characteristic polynomial

P(µ) =
n∏
i=1

(µ− λi)(µ− φ)− 1

n

n∑
i=1

b1if0iωiµ
∏
j 6=i

(µ− λj)

has all n + 1 zeros inside the unit circle. Note first that signP(0) = (−1)n+1 because

0 < φ < 1 and 0 < λi < 1, and P(1) > 0 because

1− φ > ρ(1− φ/ρ)
1

n

n∑
i=1

b1if
2
0i(1− βiλi)

(b1if 2
0i + f1i)(1− βiλiρ)

=
1

n

n∑
i=1

b1if0iωi
1− λi

,

where the last equality uses the definitions of ωi and λi.

Next, arrange the sequence {λi}ni=1 such that λ1 ≤ λ2 ≤ · · · ≤ λn, and note that

P(λi) = − 1

n

n∑
i=1

b1if0iωiλi
∏
j 6=i

(λi − λj).

This implies that P(λ1) = 0 if λ1 = λ2 and signP(λ1) = (−1)n otherwise, so signP(λ1) 6=
signP(0). Similarly, signP(λn) = 0 if λn = λn−1 and signP(λn) = −1 otherwise, so

signP(λn) 6= signP(1). Finally, note that for i = 2, 3, . . . , n,

signP(λi) =

 0 λi = λi−1

− signP(λi−1) λi > λi−1

These observations demonstrate that P(µ) must have n + 1 zeros inside the unit interval.

Therefore, the operator on the right side of (77) is invertible into the past, proving the

analogous version of Proposition 2.
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Proof of Proposition 9.

The existence and the uniqueness of the FCE follows from the same reasoning as in the

proof of Proposition 1, and the policy function (28) is the same, except with the relevant

structural parameters now indexed by i. Given that policy function, the closed-form expres-

sion in (1) comes from evaluating the forecasts Eitui,t+j under the new law of motion (17).

To do so, first notice that (17) implies

Eitui,t+j = αiρ
jEitθt (78)

Second, notice that the vector ut = (u1t, . . . , unt) contains the same information as the vector

(ūt, û1t, . . . , û2t), where ūt ≡ 1
n

∑n
i=1

σ2
ε

σ2
εi
αiuit, σ

2
ε ≡ ( 1

n

∑n
i=1

α2
i

σ2
εi

)−1, and ûit ≡ uit−αiūt, since

one can be obtained from the other by a non-degenerate linear transformation. Moreover,

the processes {û1t, . . . , ûnt} constructed in this way are independent of {θt}, so

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (79)

Now it is necessary to compute E(θt|ūt). By (17), the law of motion for {ūt} is

ūt = θt + σεε̄t,

where ε̄t ≡ 1
n

∑n
i=1 εt is uncorrelated over time, with mean zero and variance 1/n. This

law of motion has the same form in the proof of Proposition 1, so the optimal forecast of

θt has the same form as well, and is given by (31) (with the appropriate re-definitions of φ

and ūt). Substitution of (78), (79), and (31) into the policy function (28) delivers the same

expression for ki,t+1 presented in Proposition 1, with the new expression for ωi reported in

this proposition.

Substituting this policy function into the demand curve and computing the appropriately

weighted average of prices across sectors implies a relationship of the form

p̄t =

[
1− 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

ω̃iL

(1− λiL)(1− φL)

]
ūt, (80)

where ω̃i ≡ ωi/αi > 0. To prove the analogous version of Proposition 2, it is sufficient to

verify that the operator on the right side is invertible into the past. Since 0 < φ < 1 and
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0 < λi < 1, this is true if and only if characteristic polynomial

P(µ) =
n∏
i=1

(µ− λi)(µ− φ)− 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i ω̃iµ

∏
j 6=i

(µ− λj)

has all n + 1 zeros inside the unit circle. Note first that signP(0) = (−1)n+1 because

0 < φ < 1 and 0 < λi < 1, and P(1) > 0 because

1− φ > ρ(1− φ/ρ)
1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

b1if
2
0i(1− βiλi)

(b1if 2
0i + f1i)(1− βiλiρ)

=
1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

ω̃i
1− λi

,

where the last equality uses the definitions of ω̃i and λi.

Next, arrange the sequence {λi}ni=1 such that λ1 ≤ λ2 ≤ · · · ≤ λn, and note that

P(λi) = − 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i ω̃iλi

∏
j 6=i

(λi − λj).

This implies that P(λ1) = 0 if λ1 = λ2 and signP(λ1) = (−1)n otherwise, so signP(λ1) 6=
signP(0). Similarly, signP(λn) = 0 if λn = λn−1 and signP(λn) = −1 otherwise, so

signP(λn) 6= signP(1). Finally, note that for i = 2, 3, . . . , n,

signP(λi) =

 0 λi = λi−1

− signP(λi−1) λi > λi−1

These observations demonstrate that P(µ) must have n + 1 zeros inside the unit interval.

Therefore, the operator on the right side of (80) is invertible into the past, proving the

analogous version of Proposition 2.

To prove the analogous version of Proposition 4, note that any REE of an economy with

sit = p̄t implies a relationship of the form[
1 +

1

n

n∑
i=1

σ2
ε

σ2
εi

αib1if0iLAi(L)

]
p̄t = ūt.

The fact that p̄t must be measurable with respect to ξt = (vt, εt) implies that the operator

on the left must always be invertible into the past. This proves that, in any REE, p̄t and ūt

contain the same information.
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Proof of Proposition 10.

Step 1. Find the Wold representation of the observation vector sit = Γ(L)wit.

In any symmetric REE, it is possible to write

(1− ρL)p̃t = A(L)vt + ση(1− ρL)B(L)ηt,

for some one-sided operators A(L) and B(L).18 In terms of theses operators, the equilibrium

law of motion of the observation vector sit = (uit, p̃t) is

sit =
1

1− ρL

[
σv 0 σε(1− ρL)

A(L) ση(1− ρL)B(L) 0

] vt

ηt

εit

 ≡ 1

1− ρL
M(L)eit.

First notice that

M(L)M(L−1)′ =

[
ρ
α
σ2
ε(1− αL)(1− αL−1) σvA(L−1)

σvA(L) A(L)A(L−1) + σ2
η(1− ρL)(1− ρL−1)B(L)B(L−1)

]

where α solves the quadratic equation

ρσ2
εα

2 − (σ2
v + σ2

ε(1 + ρ2))α + ρσ2
ε = 0, (81)

and satisfies the inequality 0 < α < ρ.

Following the procedure described on pp.44-47 of Rozanov (1967), the Wold factor Γ(L)

is given by

Γ(L) =
1√

1 + ϑ2

1

(1− ρL)


ϑ
√

ρ
α
σε(L− α) −

√
ρ
α
σε(1− αL)

ϑ
√

α
ρ
σv
σε

A(L)L

1− αL
+ γ(L) −

√
α
ρ
σv
σε

A(L)L

L− α
+ ϑγ(L)

1− αL
L− α

 .
(82)

where

ϑ ≡
√
α

ρ

σv
σε

αA(α)

(1− α2)γ(α)
(83)

18The fact that the operators A(L) and B(L) here are re-scaled versions of the operators in (19) is without
loss of generality, and is done only for analytical convenience.
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and γ(L) is defined to be the univariate Wold factor that satisfies

γ(L)γ(L−1) =
α

ρ

(1− ρL)(1− ρL−1)
(1− αL)(1− αL−1)

A(L)A(L−1)+σ2
η(1−ρL)(1−ρL−1)B(L)B(L−1). (84)

Step 2. Find the equilibrium fixed-point equation (A(L), B(L)) = T [(A(L), B(L))].

According to the structural model,

(1− ρL)p̃t = σvvt −
b1f

2
0

f2

(1− ρL)L

(1− λL)

∞∑
j=1

(βλ)jĒtui,t+j + ση(1− ρL)ηt, (85)

where λ is defined in Proposition 1. By the Hansen and Sargent (1981) formula,

∞∑
j=1

(βλ)jĒtui,t+j =
1

1− ρL
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

×

 σvvt

A(L)vt + ση(1− ρL)B(L)ηt

 .
Together these imply the fixed-point equation

[ A(L) ση(1− ρL)B(L) ] = [ σv 0 ] + [ 0 ση(1− ρL) ]

−b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ](Γ(L)− Γ(βλ))Γ(L)−1

[
σv 0

A(L) ση(1− ρL)B(L)

]
.

Substituting the expression for Γ(L) in (33) into this equation and rearranging so that

A(L) and B(L) only explicitly appear on the left, it follows that

A(L) = σv
(1− λL)(1− αL)(L− α)− b0L [ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)]

(1− λL)(1− αL)(L− α) + b0ϑσε(1− α2)
√

α
ρ
L(1−ρL)2(L−ρ)
(1−αL)γ(L)

(86)

B(L) =
γ(L)(1− λL)(1− αL)

γ(L)(1− λL)(1− αL) + b0(1− α2)ϑ
√

ρ
α
σε(1− ρL)L

. (87)

where

b0 ≡ b(1− κ), b ≡ b1f
2
0βλ

f2(1− βλρ)
, κ ≡ ϑ2

1 + ϑ2
.

From these definitions, it can be seen that b > 0 and 0 < κ < 1. A further important
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property of the parameter b is that

b < 1− λ. (88)

To see this, note that by the definition of λ in Proposition 1,

1− λ =
(b1f

2
0 + f1)βλ

f2(1− βλ)
>

b1f
2
0βλ

f2(1− βλρ)
= b.

Step 3. Suppose to the contrary that A(L) and B(L) are rational functions of L and re-write

the equilibrium fixed-point equation in terms of polynomials.

If A(L) and B(L) are rational functions of L, then it is possible to write

A(L) = σA
pA(L)

qA(L)
and B(L) = σB

pB(L)

qB(L)
(89)

where pi(L) and qi(L) are polynomials with no common zeros, qi(L) has no inside zeros, and

pi(0) = qi(0) = 1 for i = A,B. In terms of these polynomials, (84) becomes

γ(L)γ(L−1) =
α

ρ

(1− ρL)(1− ρL−1)
(1− αL)(1− αL−1)

1

qA(L)qA(L−1)qB(L)qB(L−1)
×

[
σ2
ApA(L)pA(L−1)qB(L)qB(L−1) + σ2

η

ρ

α
(1− αL)(1− αL−1)σ2

BpB(L)pB(L−1)qA(L)qA(L−1)
]

=
α

ρ

(1− ρL)(1− ρL−1)σ2
mm(L)m(L−1)

(1− αL)(1− αL−1)qA(L)qA(L−1)qB(L)qB(L−1)
,

where m(L) is a polynomial with no inside zeros, which satisfies

σ2
mm(L)m(L−1) = σ2

ApA(L)pA(L−1)qB(L)qB(L−1) (90)

+ σ2
η

ρ

α
(1− αL)(1− αL−1)σ2

BpB(L)pB(L−1)qA(L)qA(L−1),

m(0) = 1, and σm > 0. This implies that

γ(L) = σm

√
α

ρ

(1− ρL)m(L)

(1− αL)qA(L)qB(L)
. (91)

Substitution of this expression for γ(L) into (86) and (87), and re-arranging, produces the
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fixed-point equations

σA
pA(L)

qA(L)
= σv

m(L)(1− λL)(1− αL)(L− α)− b0m(L)L[ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)]

m(L)(1− λL)(1− αL)(L− α) + b0ϑ
σε
σm

(1− α2)qA(L)qB(L)L(1− ρL)(L− ρ)

(92)

σB
pB(L)

qB(L)
=

m(L)(1− λL)

m(L)(1− λL) + b0(1− α2)ϑ ρα
σε
σm
LqA(L)qB(L)

. (93)

Also, by (89), (91), and the definition of ϑ in (83),

ϑ =
σv
σε

α

1− αρ
σA
σm

pA(α)qB(α)

m(α)
. (94)

Step 4. Show that the fixed-point equation defined in terms of polynomials by (90), (92),

(93), and (94) does not have a solution.

The strategy here involves deriving a contradiction in each of several different cases.

But before doing so, it is helpful to simplify these four equations and make some general

observations that will be valid across all cases.

First,

σA = σv and σB = 1. (95)

This follows from evaluating both (92) and (93) at L = 0, using the fact that pA(0) =

qA(0) = pB(0) = qB(0) = 1.

Second, it will be established that

ϑ 6= 0. (96)

To see this, notice that (94) implies that it is only possible for ϑ = 0 if pA(α) = 0, since

qB(L) and m(L) have no inside zeros, and σA = σv by (95). Substituting ϑ = 0 into (92)

implies that
pA(L)

qA(L)
=

(1− λL)(1− αL)− b0L(ρ− α)

(1− λL)(1− αL)
.

So in order for pA(α) = 0, it must be that α is a zero of the polynomial in the numerator on
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the right; i.e. (1− αλ)(1− α2)− b0α(ρ− α) = 0. But this is a contradiction, because

(1− αλ)(1− α2)− b0α(ρ− α) = (1− αλ)(1− α2)− bα(ρ− α)

= [(1− αλ)− bαρ]− α2[(1− αλ)− b]

> (1− α2)[(1− αλ)− b] > 0. (by (38))

Now define the polynomial m̃(L) ≡ m(L)(1 − λL), and notice that m̃(L) has no inside

zeros. Comparing numerators and denominators in (93), any zeros of pB(L) or qB(L) must

be a zero of m̃(L), so

m̃(L) = pB(L)qB(L)m̃1(L) (97)

for some polynomial m̃1(L). This implies that pB(L) cannot have any inside zeros. Moreover,

any zeros of m̃1(L) must cancel on the numerator and denominator of (93), and therefore

must be contained in qA(L), so

qA(L) = m̃1(L)qA1(L) (98)

for some polynomial qA1(L). Using these definitions, (93) can be rewritten as

pB(L) = qB(L)− b0ϑ
σε
σm

(1− α2)
ρ

α
qA1(L)L, (99)

which implies that qB(L) and qA1(L) have no common zeros, since qB(L) and pB(L) do not.

Substituting (97), (98), and (99) into (92), and rearranging,

pA(L)(1− λL)

pB(L)m̃1(L)
= qA1(L)

N(L)

D(L)
, (100)

where

N(L) = (1− λL)(1− αL)(L− α)− b0L[ϑ2(1− αL)(1− αρ) + (L− α)(ρ− α)] (101)

D(L) = qB(L)(1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)qA1(L)L2. (102)

An important implication of (100) is that any inside zeros of D(L) must be shared by N(L).

This is because m̃(L) and qA1(L) have no inside zeros, by definition, and pB(L) has no inside

zeros, by (97). Also notice that in (101), degN(L) = 3.
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Finally, substituting (97), (98), and (100) into (90), and rearranging,

qB(L)qB(L−1)D(L)D(L−1) =
σ2
v

σ2
m

qA1(L)qA1(L
−1)qB(L)qB(L−1)N(L)N(L−1) (103)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)qA1(L)qA1(L
−1)D(L)D(L−1).

Using the results established so far, it is possible to consider the six cases in the tables

below, and derive a contradiction in each case. The numbers in the table correspond to the

numbers in the proof below.

qA1(1/α) 6= 0

qB(1/α)qB(1/λ) 6=0 qB(1/α)=0, qB(1/λ) 6=0 qB(1/α)6=0, qB(1/λ)=0 qB(1/α)=0, qB(1/λ)=0

1.1 1.2 1.3 1.4

qA1(1/α) = 0

qB(1/λ) 6= 0 qB(1/λ) = 0

2.1 2.2

First, notice that, by (103), if qA1(1/r) = 0 then

(1− α/r)D(r) = 0. (104)

The reason is that qB(1/r) 6= 0 because qB(L) and qA1(L) have no common roots by (99),

and qB(r) 6= 0 because qB(L) has no inside zeros, so (103) requires that D(r)D(1/r) = 0.

But by (102), D(1/r) = 0 only if r = α, so this requirement implies (104).

Case 1. If qA1(1/α) 6= 0, then qA1(1/r) = 0 implies that D(r) = 0. This means that D(L)

has an inside zero, which must be shared by N(L) to be consistent with (100). But then this

same argument can be repeated to show that the multiplicity of the zero r in D(L) and N(L)

is arbitrarily large, which contradicts the fact that degN(L) = 3. Therefore, qA1(L) = 1, so

(103) becomes

qB(L)qB(L−1)D(L)D(L−1) =
σ2
v

σ2
m

qB(L)qB(L−1)N(L)N(L−1) (105)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)D(L)D(L−1).
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From this equation, if qB(1/r) = 0, then

(1− α/r)(1− λ/r)D(r) = 0.

Now consider each possibility.

Case 1.1. If qB(1/α)qB(1/λ) 6= 0, then qB(1/r) = 0 implies D(r) = 0, so D(L) has an

inside zero. But then the same argument used above implies that the multiplicity of r in

N(L) is arbitrarily large, which is not possible. Therefore, qB(L) = 1, and (102) and (105)

become

D(L) = (1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)D(L)D(L−1).

If degD(L) = 2, then a comparison of degrees in (105) implies that 2 = max(3, 4),

which is a contradiction. Therefore, the leading coefficient of D(L) must vanish, i.e. α =

−b0ϑ σ2
v

σεσm
(1− α2), which implies that

D(L) = (1 + α2)L− α.

Therefore, degD(L) = 1, and its zero is r ≡ α/(1 + α2) < α. Since this is an inside zero,

(100) implies that N(r) = 0. Using (101), this implies that

κ = −(α− r) (1− λr)(1− αr)− br(ρ− α)

br[(1− αr)(1− αρ) + (α− r)(ρ− α)]
.

But by (38) and r < α, it follows that b < 1− λr, so

(1− λr)(1− αr)− br(ρ− α) > (1− λr)(1− ρr) > 0.

Therefore κ < 0, which is a contradiction.

Case 1.2. If qB(1/α) = 0 but qB(1/λ) 6= 0, then write qB(L) = (1− αL)qB1(L) for some
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polynomial qB1(L). Then (105) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (106)

+
σ2
η

σ2
m

(1− λL)(1− λL−1)D(L)D(L−1).

By this equation, qB1(1/r) = 0 implies D(r) = 0, and D(L) has an inside zero, which can be

used to produce a contradiction with degN(L) = 3. Therefore, qB1(L) = 1, and (102) and

(105) become

D(L) = (1− αL)2(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− λL)(1− λL−1)D(L)D(L−1).

From the first equation, degD(L) = 3. Then, a comparison of the degrees of the polynomials

in L on both sides of the second equation produces the contradiction 3 = max(3, 4).

Case 1.3. If qB(1/λ) = 0 but qB(1/α) 6= 0, then write qB(L) = (1− λL)qB1(L) for some

polynomial qB1(L). Then (105) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (107)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)D(L)D(L−1).

By this equation, qB1(1/r) = 0 implies D(r) = 0, and D(L) has an inside zero, which can

be used in (107) to produce a contradiction with degN(L) = 3. Therefore, qB1(L) = 1, and

(102) and (107) become

D(L) = (1− λL)(1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− αL)(1− αL−1)D(L)D(L−1).

From the first equation, degD(L) = 3. Then, a comparison of the degrees of the polynomials

in L on both sides of the second equation implies the contradiction 3 = max(3, 4).
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Case 1.4. If qB(1/λ) = 0 and qB(1/α) = 0, then write qB(L) = (1− αL)(1− λL)qB1(L)

for some polynomial qB1(L). Then (105) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) +

σ2
η

σ2
m

D(L)D(L−1).

This implies that qB1(L) = 1, since otherwise it can be shown that the inverse of any zero of

qB1(L) would be an inside zero of D(L) and N(L) of multiplicity greater than 3. Therefore,

D(L) = (1− λL)(1− αL)2(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

D(L)D(L−1).

The first equation implies that degD(L) = 4, and the second equation implies that all the

zeros of D(L) must cancel with zeros of N(L). But degN(L) = 3, so this is a contradiction.

Case 2. If qA1(1/α) = 0, then write qA1(L) = (1−αL)qA2(L) for some polynomial qA2(L).

Then D(L) = (1− αL)D1(L), where

D1(L) = qB(L)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)qA2(L)L2. (108)

By (103), qA2(1/r) = 0 implies D1(r) = 0, which can be used to produce a contradiction

with degN(L) = 3. Therefore, qA2(L) = 1 and (103) becomes

qB(L)qB(L−1)D1(L)D1(L
−1) =

σ2
v

σ2
m

N(L)N(L−1)qB(L)qB(L−1) (109)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2(1− λL)(1− λL−1)D1(L)D1(L
−1).

By this equation, qB(1/r) = 0 implies

(1− λ/r)D1(r) = 0.

Now consider each possibility.

Case 2.1. If qB(1/λ) 6= 0, then qB(1/r) = 0 implies D1(r) = 0, so D1(L) has an inside

zero, which can be used to produce a contradiction with degN(L) = 3. Therefore, qB(L) = 1,
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and (108) and (109) become

D1(L) = (L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D1(L)D1(L
−1) =

σ2
v

σ2
m

N(L)N(L−1) (110)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2(1− λL)(1− λL−1)D1(L)D1(L
−1).

The first equation implies that degD1(L) = 2, and a comparison of degrees in the second

equation implies that 2 = max(3, 5), which is a contradiction.

Case 2.2. If qB(1/λ) = 0, then write qB(L) = (1−λL)qB1(L) for some polynomial qB1(L).

Then (109) becomes

qB1(L)qB1(L
−1)D1(L)D1(L

−1) =
σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (111)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2D1(L)D1(L
−1).

If qB1(L) 6= 1, then this equation implies that D1(L) has an inside zero, which can be used

to show that N(L) has an inside zero of arbitrarily large multiplicity, which is not possible.

Therefore, it must be the case that qB1(L) = 1, so (102) and (111) become

D1(L) = (1− λL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D1(L)D1(L
−1) =

σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− αL)2(1− αL−1)2D1(L)D1(L
−1).

If degD1(L) = 2, then the second equation implies 2 = max(3, 4), which is a contradiction.

Therefore, the leading coefficient of D1(L) must vanish, i.e. λ = −b0ϑ σ2
v

σεσm
(1 − α2), which

implies that

D1(L) = (1 + αλ)L− α.

Therefore, degD1(L) = 1, and its zero is r ≡ α/(1 + αλ) < α. Since this is an inside zero,

(100) implies that N(r) = 0. Using (101), this implies that

κ = −(α− r) (1− λr)(1− αr)− br(ρ− α)

br[(1− αr)(1− αρ) + (α− r)(ρ− α)]
.
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But by (38) and r < α, it follows that b < 1− λr, so

(1− λr)(1− αr)− br(ρ− α) > (1− λr)(1− ρr) > 0.

Therefore κ < 0, which is a contradiction.
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