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Abstract
We present a new theoretical analysis of local superlinear convergence of classical
quasi-Newton methods from the convex Broyden class. As a result, we obtain a signif-
icant improvement in the currently known estimates of the convergence rates for these
methods. In particular, we show that the corresponding rate of the Broyden–Fletcher–
Goldfarb–Shanno method depends only on the product of the dimensionality of the
problem and the logarithm of its condition number.

Keywords Quasi-Newton methods · Convex Broyden class · DFP · BFGS ·
Superlinear convergence · Local convergence · Rate of convergence

Mathematics Subject Classification 90C53 · 90C30 · 68Q25

1 Introduction

We study local superlinear convergence of classical quasi-Newtonmethods for smooth
unconstrained optimization. These algorithms can be seen as an approximation of the
standard Newton method, in which the exact Hessian is replaced by some operator,
which is updated in iterations by using the gradients of the objective function. The two
most famous examples of quasi-Newton algorithms are the Davidon–Fletcher–Powell
(DFP) [1,2] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [3–7] methods,
which together belong to the Broyden family [8] of quasi-Newton algorithms. For
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an introduction into the topic, see [9] and [10, Chapter 6]. See also [11] for the dis-
cussion of quasi-Newton algorithms in the context of nonsmooth optimization.

The superlinear convergence of quasi-Newton methods was established as early as
in 1970s, firstly by Powell [12] and Dixon [13,14] for the methods with exact line
search, and then by Broyden, Dennis and Moré [15] and Dennis and Moré [16] for
the methods without line search. The latter two approaches have been extended onto
more general methods under various settings (see, e.g., [17–25]).

However, explicit rates of superlinear convergence for quasi-Newton algorithms
were obtained only recently. The first results were presented in [26] for the greedy
quasi-Newton methods. After that, in [27], the classical quasi-Newton methods were
considered, for which the authors established certain superlinear convergence rates,
depending on the problem dimension and its condition number. The analysis was
based on the trace potential function, which was then augmented by the logarithm of
determinant of the inverseHessian approximation to extend the proof onto the general
nonlinear case.

In this paper, we further improve the results of [27]. For the classical quasi-Newton
methods, we obtain new convergence rate estimates, which have better dependency on
the condition number of the problem. In particular, we show that the superlinear con-
vergence rate of BFGS depends on the condition number only through the logarithm.
As compared to the previous work, the main difference in the analysis is the choice of
the potential function: now the main part is formed by the logarithm of determinant
of Hessian approximation, which is then augmented by the trace of inverse Hessian
approximation.

It is worth noting that recently, in [28], another analysis of local superlinear conver-
gence of the classical DFP and BFGS methods was presented with the resulting rate,
which is independent of the dimensionality of the problem and its condition number.
However, to obtain such a rate, the authors had to make an additional assumption that
the methods start from a sufficiently good initial Hessian approximation. Without this
assumption, to our knowledge, their proof technique, based on the Frobenius-norm
potential function, leads only to the rates, which are weaker than those in [27].

This paper is organized as follows. In Sect. 2, we introduce our notation. In Sect. 3,
we study the convex Broyden class of quasi-Newton updates for approximating a
self-adjoint positive definite operator. In Sect. 4, we analyze the rate of convergence
of the classical quasi-Newton methods from the convex Broyden class as applied
to minimizing a quadratic function. On this simple example, where the Hessian is
constant, we illustrate the main ideas of our analysis. In Sect. 5, we consider the
general unconstrained optimization problem. Finally, in Sect. 6, we discuss why the
new superlinear convergence rates, obtained in this paper, are better than the previously
known ones.

2 Notation

In what follows, E denotes an n-dimensional real vector space. Its dual space, com-
posed of all linear functionals on E, is denoted by E

∗. The value of a linear function
s ∈ E

∗, evaluated at a point x ∈ E, is denoted by 〈s, x〉.
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For a smooth function f : E → R, we denote by ∇ f (x) and ∇2 f (x) its gradient
and Hessian, respectively, evaluated at a point x ∈ E. Note that ∇ f (x) ∈ E

∗, and
∇2 f (x) is a self-adjoint linear operator from E to E∗.

The partial ordering of self-adjoint linear operators is defined in the standard way.
We write A1 � A2 for A1, A2 : E → E

∗, if 〈(A2 − A1)x, x〉 ≥ 0 for all x ∈ E, and
H1 � H2 for H1, H2 : E∗ → E, if 〈s, (H2 − H1)s〉 ≥ 0 for all s ∈ E

∗.
Any self-adjoint positive definite linear operator A : E → E

∗ induces in the spaces
E and E

∗ the following pair of conjugate Euclidean norms:

‖h‖A := 〈Ah, h〉1/2, h ∈ E, ‖s‖∗
A := 〈s, A−1s〉1/2, s ∈ E

∗. (1)

When A = ∇2 f (x), where f : E → R is a smooth function with positive definite
Hessian, and x ∈ E, we prefer to use notation ‖ · ‖x and ‖ · ‖∗

x , provided that there is
no ambiguity with the reference function f .

Sometimes, in the formulas, involving products of linear operators, it is convenient
to treat x ∈ E as a linear operator from R to E, defined by xα = αx , and x∗ as a
linear operator from E

∗ to R, defined by x∗s = 〈s, x〉. Likewise, any s ∈ E
∗ can

be treated as a linear operator from R to E
∗, defined by sα = αs, and s∗ as a linear

operator from E to R, defined by s∗x = 〈s, x〉. In this case, xx∗ and ss∗ are rank-one
self-adjoint linear operators from E

∗ to E and from E
∗ to E, respectively, acting as

follows: (xx∗)s = 〈s, x〉x and (ss∗)x = 〈s, x〉s for x ∈ E and s ∈ E
∗.

Given two self-adjoint linear operators A : E → E
∗ and H : E

∗ → E, we
define the trace and the determinant of A with respect to H as follows: 〈H , A〉 :=
Tr(H A), and Det(H , A) := Det(H A). Note that H A is a linear operator from E

to itself, and hence, its trace and determinant are well defined by the eigenvalues
(they coincide with the trace and determinant of the matrix representation of H A
with respect to an arbitrary chosen basis in the space E, and the result is independent
of the particular choice of the basis). In particular, if H is positive definite, then
〈H , A〉 and Det(H , A) are, respectively, the sum and the product of the eigenvalues
of A relative to H−1. Observe that 〈·, ·〉 is a bilinear form, and for any x ∈ E, we
have 〈Ax, x〉 = 〈xx∗, A〉. When A is invertible, we also have 〈A−1, A〉 = n and
Det(A−1, δA) = δn for any δ ∈ R. Also recall the following multiplicative formula
for the determinant: Det(H , A) = Det(H ,G) · Det(G−1, A), which is valid for any
invertible linear operator G : E → E

∗. If the operator H is positive semidefinite, and
A1 � A2 for some self-adjoint linear operators A1, A2 : E → E

∗, then 〈H , A1〉 ≤
〈H , A2〉 and Det(H , A1) ≤ Det(H , A2). Similarly, if A is positive semidefinite and
H1 � H2 for some self-adjoint linear operators H1, H2 : E∗ → E, then 〈H1, A〉 ≤
〈H2, A〉 and Det(H1, A) ≤ Det(H2, A).

3 Convex Broyden Class

Let A and G be two self-adjoint positive definite linear operators from E to E∗, where
A is the target operator, which we want to approximate, and G is its current approx-
imation. The Broyden class of quasi-Newton updates of G with respect to A along a
direction u ∈ E \ {0} is the following family of updating formulas, parameterized by
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a scalar τ ∈ R:

Broydτ (A,G, u) = φτ

[
G − Auu∗G+Guu∗A

〈Au,u〉 +
( 〈Gu,u〉

〈Au,u〉 + 1
)

Auu∗A
〈Au,u〉

]

+ (1 − φτ )
[
G − Guu∗G

〈Gu,u〉 + Auu∗A
〈Au,u〉

]
,

(2)

where

φτ := φτ (A,G, u) := τ
〈Au,u〉

〈AG−1 Au,u〉
τ

〈Au,u〉
〈AG−1Au,u〉 +(1−τ)

〈Gu,u〉
〈Au,u〉

. (3)

If the denominator in (3) is zero, we left both φτ and Broydτ (A,G, u) undefined. For
the sake of convenience, we also set Broydτ (A,G, u) = G for u = 0.

In this paper, we are interested in the convex Broyden class, which is described
by the values of τ ∈ [0, 1]. Note that for all such τ the denominator in (3) is always
positive for any u �= 0, so both φτ and Broydτ (A,G, u) are well defined; moreover,
φτ ∈ [0, 1]. For τ = 1, we have φτ = 1, and (2) becomes the DFP update; for τ = 0,
we have φτ = 0, and (2) becomes the BFGS update.

Remark 3.1 Usually the Broyden class is defined directly in terms of the parameter
φ. However, in the context of this paper, it is more convenient to work with τ instead
of φ. As can be seen from (66), τ is exactly the weight of the DFP component in the
updating formula for the inverse operator.

A basic property of an update from the convex Broyden class is that it preserves
the bounds on the eigenvalues with respect to the target operator.

Lemma 3.1 (see [27, Lemma 2.1]) If 1
ξ
A � G � ηA for some ξ, η ≥ 1, then, for any

u ∈ E, and any τ ∈ [0, 1], we have 1
ξ
A � Broydτ (A,G, u) � ηA.

Consider the measure of closeness of G to A along direction u ∈ E \ {0}:

ν(A,G, u) := 〈(G − A)G−1(G − A)u, u〉1/2
〈Au, u〉1/2

(1)= ‖(G − A)u‖∗
G

‖u‖A
. (4)

Let us present two potential functions, whose improvement after one update from the
convex Broyden class can be bounded from below by a certain nonnegative monoton-
ically increasing function of ν, vanishing at zero.

First, consider the log-det barrier

V (A,G) = ln Det(A−1,G). (5)

It will be useful when A � G. Note that in this case V (A,G) ≥ 0.

Lemma 3.2 Let A,G : E → E
∗ be self-adjoint positive definite linear operators,

A � G � ηA for some η ≥ 1. Then, for any τ ∈ [0, 1] and u ∈ E \ {0}:

V (A,G) − V (A,Broydτ (A,G, u)) ≥ ln

(
1 + (τ

1

η
+ 1 − τ)ν2(A,G, u)

)
.
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Proof Indeed, denoting G+ := Broydτ (A,G, u), we obtain

V (A,G) − V (A,G+)
(5)= ln Det(G−1+ ,G)

(67)= ln
(
τ

〈Au,u〉
〈AG−1Au,u〉 + (1 − τ)

〈Gu,u〉
〈Au,u〉

)

= ln
(
1 + τ

〈A(A−1−G−1)Au,u〉
〈AG−1Au,u〉 + (1 − τ)

〈(G−A)u,u〉
〈Au,u〉

)
.

(6)

Since1 0 � G − A � (1 − 1
η
)G, we have

(G − A)G−1(G − A) �
(
1 − 1

η

)
(G − A) � 1

1 + 1
η

(G − A) � G − A. (7)

Therefore, denoting ν := ν(A,G, u), we can write that

〈(G − A)u, u〉
〈Au, u〉

(7)≥ 〈(G − A)G−1(G − A)u, u〉
〈Au, u〉

(4)= ν2,

and, since A(A−1 − G−1)A = G − A − (G − A)G−1(G − A), that

〈A(A−1−G−1)Au,u〉
〈AG−1Au,u〉 = 〈(G−A−(G−A)G−1(G−A))u,u〉

〈AG−1Au,u〉
(7)≥ 1

η
〈(G−A)G−1(G−A)u,u〉

〈AG−1Au,u〉
≥ 1

η
〈(G−A)G−1(G−A)u,u〉

〈Au,u〉
(4)= 1

η
ν2.

Substituting the above two inequalities into (6), we obtain the claim. �
Now consider another potential function, the augmented log-det barrier:

ψ(G, A) := ln Det(A−1,G) − 〈G−1,G − A〉. (8)

As compared to the log-det barrier, this potential function is more universal since
it works even if the condition A � G is violated. Note that the augmented log-det
barrier is in fact the Bregman divergence, generated by the strictly convex function
d(A) := − ln Det(B−1, A), defined on the set of self-adjoint positive definite linear
operators from E to E

∗, where B : E → E
∗ is an arbitrary fixed self-adjoint positive

definite linear operator. Indeed,

ψ(G, A) = − ln Det(B−1, A) + ln Det(B−1,G) − 〈−G−1, A − G〉
= d(A) − d(G) − 〈∇d(G), A − G〉 ≥ 0.

(9)

Remark 3.2 The idea of combining the trace with the logarithm of determinant to form
a potential function for the analysis of quasi-Newton methods can be traced back to
[29]. Note also that in [27], the authors studied the evolution of ψ(A,G), i.e. the
Bregman divergence was centered at A instead of G.

1 This is obvious when G − A is nondegenerate. The general case follows by continuity.
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Lemma 3.3 For any real α ≥ β > 0, we have α + 1
β

− 1 ≥ 1, and

α − ln β − 1 ≥
√
3

2+√
3
ln
(
α + 1

β
− 1

)
≥ 6

13 ln
(
α + 1

β
− 1

)
. (10)

Proof We only need to prove the first inequality in (10) since the second one follows

from it and the fact that
√
3+2√
3

= 1 + 2√
3

≤ 1 + 7
6 = 13

6 (since 2 ≤ 7
2
√
3
).

Let β > 0 be fixed, and let ζ1 : (1 − 1
β
,+∞) → R be the function, defined by

ζ1(α) := α −
√
3

2+√
3
ln
(
α + 1

β
− 1

)
. Note that the domain of ζ1 includes the point

α = β since β ≥ 2 − 1
β

> 1 − 1
β
. Let us show that ζ1 increases on the interval

[β,+∞). Indeed, for any α ≥ β, we have

ζ ′
1(α) = 1 −

√
3

2+√
3

1
α+ 1

β
−1

> 1 − 1
α+ 1

β
−1

= α+ 1
β
−2

α+ 1
β
−1

≥ β+ 1
β
−2

α+ 1
β
−1

≥ 0.

Thus, it is sufficient to prove (10) only in the case when α = β. Equivalently, we
need to show that the function ζ2 : (0,+∞) → R, defined by the formula ζ2(α) :=
α − ln α − 1−

√
3

2+√
3
ln
(
α + 1

α
− 1

)
, is nonnegative. Differentiating, we find that, for

all α > 0, we have

ζ ′
2(α) = 1 − 1

α
−

√
3

2+√
3

1− 1
α2

α+ 1
α
−1

= (
1 − 1

α

) (
1 −

√
3

2+√
3

1+ 1
α

α+ 1
α
−1

)

= (
1 − 1

α

) α+ 1
α
−1−(2

√
3−3)(1+ 1

α
)

α+ 1
α
−1

= (
1 − 1

α

) α−2(
√
3−1)+(

√
3−1)2 1

α

1+ 1
α
−1

= (
1 − 1

α

) (
√

α−(
√
3−1) 1√

α
)2

α+ 1
α
−1

.

Hence, ζ ′
2(α) ≤ 0 for 0 < α ≤ 1, and ζ ′

2(α) ≥ 0 for α ≥ 1. Thus, the minimum of ζ2
is attained at α = 1. Consequently, ζ2(α) ≥ ζ2(1) = 0 for all α > 0. �

It turns out that, up to some constants, the improvement in the augmented log-det
barrier can be bounded from below by exactly the same logarithmic function of ν,
which was used for the simple log-det barrier.

Lemma 3.4 Let A,G : E → E
∗ be self-adjoint positive definite linear operators,

1
ξ
A � G � ηA for some ξ, η ≥ 1. Then, for any τ ∈ [0, 1] and u ∈ E \ {0}:

ψ(G, A) − ψ(Broydτ (A,G, u), A) ≥ 6

13
ln

(
1 + (τ

1

ξη
+ 1 − τ)ν2(A,G, u)

)
.

Proof Indeed, denoting G+ := Broydτ (A,G, u), we obtain

〈G−1 − G−1+ , A〉 (66)= τ
[ 〈AG−1AG−1Au,u〉

〈AG−1Au,u〉 − 1
]

+ (1 − τ)
[ 〈AG−1Au,u〉

〈Au,u〉 − 1
]
,
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and

Det(G−1+ ,G)
(67)= τ

〈Au, u〉
〈AG−1Au, u〉 + (1 − τ)

〈Au, u〉
〈Gu, u〉 .

Thus,

ψ(G, A) − ψ(G+, A)
(8)= 〈G−1 − G−1+ , A〉 + ln Det(G−1+ ,G)

= τα1 + (1 − τ)α0 + ln(τβ−1
1 + (1 − τ)β−1

0 ) − 1 = α − ln β − 1,
(11)

where we denote α1 := 〈AG−1AG−1Au,u〉
〈AG−1Au,u〉 , β1 := 〈AG−1Au,u〉

〈Au,u〉 , α0 := 〈AG−1Au,u〉
〈Au,u〉 , β0 :=

〈Au,u〉
〈Gu,u〉 , α := τα1 + (1− τ)α0, β := (τβ−1

1 + (1− τ)β−1
0 )−1. Note that α1 ≥ β1 and

α0 ≥ β0 by the Cauchy–Schwartz inequality. At the same time, τβ1 + (1− τ)β2 ≥ β

by the convexity of the inverse function t �→ t−1. Hence, we can apply Lemma 3.3 to
estimate (11) from below. Note that

α + 1
β

− 1 = τ
〈(A+AG−1AG−1A)u,u〉

〈AG−1Au,u〉 + (1 − τ)
〈(G+A)u,u〉

〈Au,u〉 − 1

= 1 + τ
〈(G−A)G−1AG−1(G−A)〉

〈AG−1Au,u〉 + (1 − τ)
〈(G−A)G−1(G−A)u,u〉

〈Au,u〉
≥ 1 + (τ 1

ξη
+ 1 − τ)

〈(G−A)G−1(G−A)u,u〉
〈Au,u〉

(4)= 1 + (τ 1
ξη

+ 1 − τ)ν2(A,G, u). �

The measure ν(A,G, u), defined in (4), is the ratio of the norm of (G − A)u,
measured with respect to G, and the norm of u, measured with respect to A. It is
important that we can change the corresponding metrics to G+ and G, respectively,
by paying only with the minimal eigenvalue of G relative to A.

Lemma 3.5 Let A,G : E → E
∗ be self-adjoint positive definite linear operators such

that 1
ξ
A � G for some ξ > 0. Then, for any τ ∈ [0, 1], any u ∈ E \ {0}, and

G+ := Broydτ (A,G, u), we have

ν2(A,G, u) ≥ 1

1 + ξ

〈(G − A)G−1+ (G − A)u, u〉
〈Gu, u〉 .

Proof From (66), it is easy to see that G−1+ Au = u. Hence,

〈(G−A)G−1+ (G−A)u,u〉
〈Gu,u〉 = 〈GG−1+ Gu,u〉

〈Gu,u〉 + 〈Au,G−1+ Au〉
〈Gu,u〉 − 2

〈Gu,G−1+ Au〉
〈Gu,u〉

= 〈GG−1+ Gu,u〉
〈Gu,u〉 + 〈Au,u〉

〈Gu,u〉 − 2.
(12)
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Since 1 − t ≤ 1
t − 1 for all t > 0, we further have

〈GG−1+ Gu,u〉
〈Gu,u〉

(66)= τ
[
1 − 〈Au,u〉2

〈Gu,u〉〈AG−1Au,u〉 + 〈Gu,u〉
〈Au,u〉

]

+ (1 − τ)
[( 〈AG−1Au,u〉

〈Au,u〉 + 1
) 〈Gu,u〉

〈Au,u〉 − 1
]

≤
( 〈AG−1Au,u〉

〈Au,u〉 + 1
) 〈Gu,u〉

〈Au,u〉 − 1.

(13)

Denote ν := ν(A,G, u). Then,

ν2
(4)= 〈(G−A)G−1(G−A)u,u〉

〈Au,u〉 = 〈Gu,u〉
〈Au,u〉 + 〈AG−1Au,u〉

〈Au,u〉 − 2. (14)

Consequently,

(1 + ξ)ν2 ≥
( 〈AG−1Au,u〉

〈Au,u〉 + 1
)

ν2

(14)=
( 〈AG−1Au,u〉

〈Au,u〉 + 1
) 〈Gu,u〉

〈Au,u〉 + 〈AG−1Au,u〉2
〈Au,u〉2 − 〈AG−1Au,u〉

〈Au,u〉 − 2
(13)≥ 〈GG−1+ Gu,u〉

〈Au,u〉 + 〈AG−1Au,u〉2
〈Au,u〉 − 〈AG−1Au,u〉

〈Au,u〉 − 1.

(15)

Thus,

(1 + ξ)ν2 − 〈(G−A)G−1+ (G−A)u,u〉
〈Gu,u〉

(12)= (1 + ξ)ν2 − 〈GG−1+ Gu,u〉
Gu,u〉 − 〈Au,u〉

〈Gu,u〉 + 2
(15)≥ 〈AG−1Au,u〉2

〈Au,u〉2 − 〈AG−1Au,u〉
〈Au,u〉 − 〈Au,u〉

〈Gu,u〉 + 1

≥ 〈AG−1Au,u〉2
〈Au,u〉2 − 2 〈AG−1Au,u〉

〈Au,u〉 + 1 ≥ 0,

where we have used the Cauchy–Schwartz inequality 〈Au,u〉
〈Gu,u〉 ≤ 〈AG−1Au,u〉

〈Au,u〉 . �

4 Unconstrained Quadratic Minimization

Let us study the convergence properties of the classical quasi-Newton methods from
the convex Broyden class, as applied to minimizing the quadratic function

f (x) := 1

2
〈Ax, x〉 − 〈b, x〉, (16)

where A : E → E
∗ is a self-adjoint positive definite linear operator, and b ∈ E

∗.
Let B : E → E

∗ be a fixed self-adjoint positive definite linear operator, and let
μ, L > 0 be such that

μB � A � LB. (17)

Thus, μ is the strong convexity parameter of f , and L is the constant of Lipschitz
continuity of the gradient of f , both measured relative to B.

Consider the following standard quasi-Newton process for minimizing (16):
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Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:

1. Update xk+1 = xk − G−1
k ∇ f (xk).

2. Set uk = xk+1 − xk and choose τk ∈ [0, 1].

3. Compute Gk+1 = Broydτk
(A,Gk, uk).

(18)

For measuring its rate of convergence, we use the norm of the gradient, taken with
respect to the Hessian:

λk := ‖∇ f (xk)‖∗
A

(1)= 〈∇ f (xk), A
−1∇ f (xk)〉1/2.

It is known that the process (18) has at least a linear convergence rate of the standard
gradient method:

Theorem 4.1 (see [27, Theorem 3.1]) In scheme (18), for all k ≥ 0:

A � Gk � L

μ
A, λk ≤

(
1 − μ

L

)k
λ0. (19)

Let us establish the superlinear convergence. According to (19), for the quadratic
function, we have A � Gk for all k ≥ 0. Therefore, in our analysis, we can use
both potential functions: the log-det barrier and the augmented log-det barrier. Let us
consider both options. We start with the first one.

Theorem 4.2 In scheme (18), for all k ≥ 1, we have

λk ≤
[

2∏k−1
i=0 (τi

μ
L + 1 − τi )1/k

(
e
n
k ln L

μ − 1
)]k/2√ L

μ
· λ0. (20)

Proof Without loss of generality, we can assume that ui �= 0 for all 0 ≤ i ≤ k.
Denote Vi := V (A,Gi ), νi := ν(A,Gi , ui ), pi := τi

μ
L + 1 − τi , gi := ‖∇ f (xi )‖∗

Gi
for any 0 ≤ i ≤ k. By Lemma 3.2 and (19), for all 0 ≤ i ≤ k − 1, we have
ln(1 + piν2i ) ≤ Vi − Vi+1. Summing up, we obtain

k−1∑
i=0

ln(1 + pkν2k ) ≤ V0 − Vk
(19)≤ V0

(18)= V (A, LB)

(5)= ln Det(A−1, LB)
(17)≤ ln Det( 1

μ
B−1, LB) = n ln L

μ
.

(21)
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Hence, by the convexity of function t �→ ln(1 + et ), we get

n
k ln

L
μ

(21)≥ 1
k

k−1∑
i=0

ln(1 + piν2i ) = 1
k

k−1∑
i=0

ln(1 + eln(pi ν
2
i ))

≥ ln
(
1 + e

1
k

∑k−1
i=0 ln(pi ν2i )

)
= ln

(
1 +

[
k−1∏
i=0

piν2i

]1/k)
.

(22)

But, for all 0 ≤ i ≤ k − 1, we have ν2i ≥ 1
2

〈(Gi−A)G−1
i+1(Gi−A)ui ,ui 〉

〈Giui ,ui 〉 = 1
2
g2i+1

g2i
by

Lemma 3.5, (19), and since Giui = −∇ f (xi ), Aui = ∇ f (xi+1) − ∇ f (xi ). Hence,∏k−1
i=0 ν2i ≥ 1

2k
g2k
g20
, and so n

k ln
L
μ

(22)≥ ln

(
1 + 1

2

[∏k−1
i=0 pi

]1/k [ gk
g0

]2/k)
. Rearranging,

we obtain gk ≤
[

2∏k−1
i=0 p1/ki

(e
n
k ln L

μ − 1)

]k/2
g0. It remains to note that λk ≤

√
L
μ

· gk
and g0 ≤ λ0 in view of (19). �

Remark 4.1 As can be seen from (21), the factor n ln L
μ
in (20) can be improved up to

ln Det(A−1, LB) = ∑n
i=1 ln

L
λi
, where λ1, . . . , λn are the eigenvalues of A relative

to B. This improved factor can be significantly smaller than the original one if the
majority of the eigenvalues λi are much larger than μ.

Let us briefly present another approach, which is based on the augmented log-det
barrier. The resulting efficiency estimate will be the same as in Theorem 4.2 up to
a slightly worse absolute constant under the exponent. However, this proof can be
extended onto general nonlinear functions.

Theorem 4.3 In scheme (18), for all k ≥ 1, we have

λk ≤
[

2∏k−1
i=0 (τi

μ
L + 1 − τi )1/k

(
e
13
6

n
k ln L

μ − 1
)]k/2√ L

μ
· λ0.

Proof Without loss of generality, we can assume that ui �= 0 for all 0 ≤ i ≤ k. Denote
ψi := ψ(Gi , A), νi := ν(A,Gi , ui ), pi = τi

μ
L + 1 − τi , gi := ‖∇ f (xi )‖∗

Gi
for all

0 ≤ i ≤ k. By Lemma 3.4 and (19), for all 0 ≤ i ≤ k − 1, we have 6
13 ln(1+ piν2i ) ≤

ψi − ψi+1. Hence,

6
13

k−1∑
i=0

ln(1 + piν2i ) ≤ ψ0 − ψk
(9)≤ ψ0

(18)= ψ(LB, A)

(8)= ln Det(A−1, LB) − 〈 1
L B

−1, LB − A〉 (17)≤ n ln L
μ
,

(23)

and we can continue exactly as in the proof of Theorem 4.2. �
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5 Minimization of General Functions

In this section, we consider the general unconstrained minimization problem:

min
x∈E f (x), (24)

where f : E → R is a twice continuously differentiable function with positive definite
second derivative. Our goal is to study the convergence properties of the following
standard quasi-Newton scheme for solving (24):

Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:

1. Update xk+1 = xk − G−1
k ∇ f (xk).

2. Set uk = xk+1 − xk and choose τk ∈ [0, 1].

3. Denote Jk = ∫ 1
0 ∇2 f (xk + tuk)dt .

4. Set Gk+1 = Broydτk
(Jk,Gk, uk).

(25)

Here, B : E → E
∗ is a self-adjoint positive definite linear operator, and L is a positive

constant, which together define the initial Hessian approximation G0.
We assume that there exist constants μ > 0 and M ≥ 0, such that

μB � ∇2 f (x) � LB, (26)

∇2 f (y) − ∇2 f (x) � M‖y − x‖z∇2 f (w) (27)

for all x, y, z, w ∈ E. The first assumption (26) specifies that, relative to the oper-
ator B, the objective function f is μ-strongly convex and its gradient is L-Lipschitz
continuous. The second assumption (27) means that f is M-strongly self-concordant.
This assumption was recently introduced in [26] as a convenient affine-invariant alter-
native to the standard assumption of the Lipschitz second derivative and is satisfied
at least for any strongly convex function with Lipschitz continuous Hessian (see [26,
Example 4.1]). Themain facts, whichwe use about strongly self-concordant functions,
are summarized in the following lemma (see [26, Lemma 4.1]):

Lemma 5.1 For any x, y ∈ E, J := ∫ 1
0 ∇2 f (x + t(y − x))dt, r := ‖y − x‖x :

(
1 + Mr

2

)−1

∇2 f (x) � J �
(
1 + Mr

2

)
∇2 f (x), (28)

(
1 + Mr

2

)−1

∇2 f (y) � J �
(
1 + Mr

2

)
∇2 f (y). (29)
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Note that for a quadratic function, we have M = 0.
For measuring the convergence rate of (25), we use the local gradient norm:

λk := ‖∇ f (xk)‖∗
xk

(1)= 〈∇ f (xk),∇2 f (xk)
−1∇ f (xk)〉1/2. (30)

The local convergence analysis of the scheme (25) is, in general, the same as the
corresponding analysis in the quadratic case. However, it is much more technical due
to the fact that, in the nonlinear case, the Hessian is no longer constant. This causes a
few problems.

First, there are now several different ways how one can treat theHessian approxima-
tion Gk . One can view it as an approximation to the Hessian ∇2 f (xk) at the current
iterate xk , to the Hessian ∇2 f (x∗) at the minimizer x∗, to the integral Hessian Jk ,
etc. Of course, locally, due to strong self-concordancy, all these variants are equiv-
alent since the corresponding Hessians are close to each other. Nevertheless, from
the viewpoint of technical simplicity of the analysis, some options are slightly more
preferable than others. We find it to be the most convenient to always think of Gk as
an approximation to the integral Hessian Jk .

The second issue is as follows. Suppose we already know what is the connection
between our current Hessian approximation Gk and the actual integral Hessian Jk ,
e.g., in terms of the relative eigenvalues and the value of the augmented log-det barrier
potential function (8). Naturally, we want to know how these quantities change after
we update Gk into Gk+1 at Step 4 of the scheme (25). For this, we apply Lemma 3.1
and Lemma 3.4, respectively. However, the problem is that both of these lemmas will
provide us only with the information on the connection between the update result
Gk+1 and the current integral Hessian Jk (which was used for performing the update),
not the next one Jk+1. Therefore, we need to additionally take into account the errors,
resulting from approximating Jk+1 by Jk .

For estimating the errors, which accumulate as a result of approximating one Hes-
sian by another, it is convenient to introduce the following quantities2:

rk := ‖uk‖xk , ξk := eM
∑k−1

i=0 ri ( ≥ 1), k ≥ 0. (31)

Remark 5.1 The general framework of our analysis is the same as in the previous
paper [27]. The main difference is that now another potential function is used for
establishing the rate of superlinear convergence (Lemma 5.4). However, in order to
properly incorporate the new potential function into the analysis, many parts in the
proof had to be appropriately modified, most notably the part, related to estimating
the region of local convergence. In any case, the analysis, presented below, is fully
self-contained and does not require the reader first go through [27].

We analyze the method (25) in several steps. The first step is to establish the
bounds on the relative eigenvalues of the Hessian approximations with respect to
the corresponding Hessians.

2 We follow the standard convention that the sum over the empty set is defined as 0, so ξ0 = 1. Similarly,
the product over the empty set is defined as 1.
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Lemma 5.2 For all k ≥ 0, we have

1

ξk
∇2 f (xk) � Gk � ξk

L

μ
∇2 f (xk), (32)

1

ξk+1
Jk � Gk � ξk+1

L

μ
Jk . (33)

Proof For k = 0, (32) follows from (26) and the fact that G0 = LB and ξ0 = 1. Now
suppose that k ≥ 0, and that (32) has already been proved for all indices up to k. Then,
applying Lemma 5.1 to (32), we obtain

1

ξk

(
1 + Mrk

2

) Jk � Gk �
(
1 + Mrk

2

)
ξk

L

μ
Jk . (34)

Since (1+Mrk
2 )ξk ≤ ξk+1 by (31), this proves (33) for the index k.ApplyingLemma3.1

to (34), we get 1
ξk (1+ Mrk

2 )
Jk � Gk+1 � (1 + Mrk

2 )ξk
L
μ
Jk , and so

Gk+1
(29)�

(
1 + Mrk

2

)2
ξk

L
μ
∇2 f (xk+1)

(31)� ξk+1
L
μ
∇2 f (xk+1),

Gk+1
(29)� 1(

1+ Mrk
2

)2
ξk

∇2 f (xk+1)
(31)� 1

ξk+1
∇2 f (xk+1).

This proves (32) for the index k + 1, and we can continue by induction. �
Corollary 5.1 For all k ≥ 0, we have

rk ≤ ξkλk . (35)

Proof Indeed,

rk
(31)= ‖uk‖xk (35)= 〈∇ f (xk),G

−1
k ∇2 f (xk)G

−1
k ∇ f (xk)〉1/2

(32)≤ ξk〈∇ f (xk),∇2 f (xk)−1∇ f (xk)〉1/2 (30)= ξkλk . �

The second step in our analysis is to establish a preliminary version of the linear
convergence theorem for the scheme (25).

Lemma 5.3 For all k ≥ 0, we have

λk ≤ √
ξkλ0

k−1∏
i=0

qi , (36)

where

qi := max

{
1 − μ

ξi+1L
, ξi+1 − 1

}
. (37)
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Proof Let k, i ≥ 0 be arbitrary. By Taylor’s formula, we have

∇ f (xi+1)
(25)= ∇ f (xi ) + Jiui

(25)= Ji (J
−1
i − G−1

i )∇ f (xi ). (38)

Hence,

λi+1
(30)= 〈∇ f (xi+1),∇2 f (xi+1)

−1∇ f (xi+1)〉1/2
(29)≤

√
1 + Mri

2 〈∇ f (xi+1), J
−1
i ∇ f (xi+1)〉1/2

(38)=
√
1 + Mri

2 〈∇ f (xi ), (J
−1
i − G−1

i )Ji (J
−1
i − G−1

i )∇ f (xi )〉1/2.
(39)

Note that −(ξi+1 − 1)J−1
i

(33)� J−1
i − G−1

i

(33)�
(
1 − μ

ξi+1L

)
J−1
i . Therefore,

(J−1
i − G−1

i )Ji (J
−1
i − G−1

i )
(37)� q2i J

−1
i

(28)� q2i

(
1 + Mri

2

)
∇2 f (xi )

−1.

Thus, λi+1 ≤
(
1 + Mri

2

)
qiλi in view of (39) and (30). Consequently,

λk ≤ λ0

k−1∏
i=0

(
1 + Mri

2

)
qi ≤ λ0

k−1∏
i=0

e
Mri
2 qi

(31)= √
ξkλ0

k−1∏
i=0

qi . �

Next, we establish a preliminary version of the theorem on superlinear convergence
of the scheme (25). The proof uses the augmented log-det barrier potential function
and is essentially a generalization of the corresponding proof of Theorem 4.3.

Lemma 5.4 For all k ≥ 1, we have

λk ≤
⎡
⎣ 1 + ξk∏k−1

i=0 (τi
μ

ξ2i+1L
+ 1 − τi )1/k

(
e
13
6

n
k ln

(
ξ

ξk+1
k+1

L
μ

)
− 1

)⎤
⎦
k/2√

ξk
L

μ
· λ0. (40)

Proof Without loss of generality, assume that ui �= 0 for all 0 ≤ i ≤ k. Denote
ψi := ψ(Gi , Ji ), ψ̃i+1 := ψ(Gi+1, Ji ), νi := ν(Ji ,Gi , ui ), pi := τi

μ

ξ2i+1L
+ 1 − τi ,

and gi := ‖∇ f (xi )‖∗
Gi

for any 0 ≤ i ≤ k.
Let 0 ≤ i ≤ k − 1 be arbitrary. By Lemma 3.4 and (33), we have

6

13
ln
(
1 + piν

2
i

)
≤ ψi − ψ̃i+1 = ψi − ψi+1 + Δi , (41)

where
Δi := ψi+1 − ψ̃i+1

(8)= 〈G−1
i+1, Ji+1 − Ji 〉 + ln Det(J−1

i+1, Ji ). (42)
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Note that Ji � (1 + Mri
2 )−1∇2 f (xi+1) � (1 + Mri

2 )−1(1 + Mri+1
2 )−1 Ji+1 in view

of (29) and (28). In particular, Ji � e− M
2 (ri+ri+1) Ji+1 � (1 − M

2 (ri + ri+1))Ji+1.
Therefore, Ji+1 − Ji � M

2 (ri + ri+1)Ji+1, and so

k−1∑
i=0

〈G−1
i+1, Ji+1 − Ji 〉 ≤ M

2

k−1∑
i=0

(ri + ri+1)〈G−1
i+1, Ji+1〉

(33)≤ n M
2

k−1∑
i=0

ξi+2(ri + ri+1)
(31)≤ nξk+1

M
2

k−1∑
i=0

(ri + ri+1)

≤ nξk+1M
k∑

i=0
ri

(31)= nξk+1 ln ξk+1.

Consequently,
k−1∑
i=0

Δi
(42)≤ nξk+1 ln ξk+1 + ln Det(J−1

k , J0). (43)

Summing up (41), we thus obtain

6
13

k−1∑
i=0

ln(1 + piν2i ) ≤ ψ0 − ψk +
k−1∑
i=0

Δi
(9)≤ ψ0 +

k−1∑
i=0

Δi

(8)= ln Det(J−1
0 , LB) − 〈 1

L B
−1, LB − J0〉 +

k−1∑
i=0

Δi

(43)≤ ln Det(J−1
k , LB) − 〈 1

L B
−1, LB − J0〉 + nξk+1 ln ξk+1

(26)≤ n ln L
μ

+ nξk+1 ln ξk+1 = n ln
(
ξ

ξk+1
k+1

L
μ

)
.

By the convexity of function t �→ ln(1 + et ), it follows that

13
6

n
k ln

(
ξ

ξk+1
k+1

L
μ

)
≥ 1

k

k−1∑
i=0

ln(1 + piν2i ) = 1
k

k−1∑
i=0

ln(1 + eln(pi ν
2
i ))

≥ ln
(
1 + e

1
k

∑k−1
i=0 ln(pi ν2i )

)
= ln

(
1 +

[
k−1∏
i=0

piν2i

]1/k)
.

(44)

At the same time, ν2i ≥ 1
1+ξi+1

〈(Gi−Ji )G
−1
i+1(Gi−Ji )ui ,ui 〉

〈Giui ,ui 〉 = 1
1+ξi+1

g2i+1

g2i
in view of

Lemma 3.5, (33) and since Giui = −∇ f (xi ), Jiui = ∇ f (xi+1) − ∇ f (xi ).

Hence, we can write
∏k−1

i=0 ν2i ≥ g2k
g20

∏k−1
i=0

1
1+ξi+1

(31)≥ 1
(1+ξk )

k
g2k
g20
. Consequently,

13
6

n
k ln(ξ

ξk+1
k+1

L
μ
)

(44)≥ ln

(
1 +

∏k−1
i=0 p1/ki
1+ξk

[
gk
g0

]2/k)
. Rearranging, we obtain that gk ≤

[
1+ξk∏k−1
i=0 p1/ki

(e
13
6

n
k ln(ξ

ξk+1
k+1

L
μ

) − 1)

]k/2
g0. But λk ≤

√
ξk

L
μ

· gk by (32), and g0 ≤ λ0 in

view of (26) and the fact that G0 = LB. �
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In the quadratic case (M = 0), we have ξk ≡ 1 (see (31)), and Lemmas 5.2 and 5.3
reduce to the already known Theorem 4.1, and Lemma 5.4 reduces to the already
known Theorem 4.2. In the general case, the quantities ξk can grow with iterations.
However, as we will see in a moment, by requiring the initial point x0 in the scheme
(25) to be sufficiently close to the solution, we can still ensure that ξk stay uniformly
bounded by a sufficiently small absolute constant. This allows us to recover all the
main results of the quadratic case.

To write down the region of local convergence of (25), we need to introduce one
more quantity, related to the starting moment of superlinear convergence3:

K0 :=
⌈

1

τ
4μ
9L + 1 − τ

8n ln
2L

μ

⌉
, τ := sup

k≥0
τk ( ≤ 1). (45)

For DFP (τk ≡ 1) and BFGS (τk ≡ 0), we have, respectively,

KDFP
0 =

⌈
18nL

μ
ln

2L

μ

⌉
, KBFGS

0 =
⌈
8n ln

2L

μ

⌉
. (46)

Now we are ready to prove the main result of this section.

Theorem 5.1 Suppose that, in scheme (25), we have

Mλ0 ≤ ln 3
2( 3

2

) 3
2

max

{
μ

2L
,

1

K0 + 9

}
. (47)

Then, for all k ≥ 0,

2

3
∇2 f (xk) � Gk � 3L

2μ
∇2 f (xk), (48)

λk ≤
(
1 − μ

2L

)k √3

2
· λ0, (49)

and, for all k ≥ 1,

λk ≤
[

5

2
∏k−1

i=0 (τi
4μ
9L + 1 − τi )1/k

(
e
13
6

n
k ln 2L

μ − 1
)]k/2√3L

2μ
· λ0. (50)

Proof Let us prove by induction that, for all k ≥ 0, we have

ξk ≤ 3

2
. (51)

3 Hereinafter, �t� for t > 0 denotes the smallest positive integer greater or equal to t .
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Clearly, (51) is satisfied for k = 0 since ξ0 = 1. It is also satisfied for k = 1 since

ξ1
(31)= eMr0

(35)≤ eξ0Mλ0
(31)= eMλ0

(47)≤ 3
2 .

Now let k ≥ 0, and suppose that (51) has already been proved for all indices up
to k + 1. Then, applying Lemma 5.2, we obtain (48) for all indices up to k + 1.

Applying now Lemma 5.3 and using for all 0 ≤ i ≤ k the relation qi
(37)= max{1 −

μ
ξi+1L

, ξi+1 − 1} (51)≤ max{1 − 2μ
3L , 1

2 } ≤ 1 − μ
2L , we obtain (49) for all indices up to

k + 1. Finally, if k ≥ 1, then, applying Lemma 5.4 and using that ξ
ξi+1
i+1

(51)≤ ( 32 )
3
2 =

3
2

√
3
2 ≤ 3

2 (1 + 1
4 ) = 15

8 ≤ 2 for all 0 ≤ i ≤ k, we obtain (50) for all indices up to k.
Thus, at this moment, (48) and (49) are proved for all indices up to k + 1, while (50)
is proved only up to k.

To finish the inductive step, it remains to prove that (51) is satisfied for the index
k + 2, or, equivalently, in view of (31), that M

∑k+1
i=0 ri ≤ ln 3

2 . Since M
∑k+1

i=0 ri ≤
M
∑k+1

i=0 ξiλi ≤ 3
2M

∑k+1
i=0 λi in view of (35) and (51), respectively, it suffices to

show that 3
2M

∑k+1
i=0 λi ≤ ln 3

2 .
Note that

3

2
M

k+1∑
i=0

λi
(49)≤

(
3

2

) 3
2

Mλ0

k+1∑
i=0

(
1 − μ

2L

)i ≤
(
3

2

) 3
2 2L

μ
Mλ0. (52)

Therefore, if we could prove that

3

2
M

k+1∑
i=0

λi ≤
(
3

2

) 3
2

(K0 + 9)Mλ0, (53)

then, combining (52) and (53), we would obtain

3

2
M

k+1∑
i=0

λi ≤
(
3

2

) 3
2

min

{
2L

μ
, K0 + 9

}
Mλ0

(47)≤ ln
3

2
,

which is exactly what we need. Let us prove (53). If k ≤ K0, in view of (49), we have
3
2M

∑k+1
i=0 λi ≤ ( 3

2

) 3
2 (k+2)Mλ0 ≤ ( 3

2

) 3
2 (K0+2)Mλ0, and (53) follows. Therefore,

from now on, we can assume that k ≥ K0. Then4,

3
2M

k+1∑
i=0

λi = 3
2M

(
K0−1∑
i=0

λi + λk+1

)
+ 3

2M
k∑

i=K0

λi

(49)≤ ( 3
2

) 3
2 (K0 + 1)Mλ0 + 3

2M
k∑

i=K0

λi .

4 We will estimate the second sum using (50). However, recall that, at this moment, (50) is proved only up
to the index k. This is the reason why we move λk+1 into the first sum.
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It remains to show 3
2M

∑k
i=K0

λi ≤ ( 3
2

) 3
2 8Mλ0. We can do this using (50).

First, let us make some estimations. Clearly, for all 0 < t < 1, we have et =∑∞
j=0

t j
j ! ≤ 1 + t + t2

2

∑∞
j=0 t

j = 1 + t(1 + t
2(1−t) ). Hence, for all 0 < t ≤ 1, we

obtain e
13t
48 − 1 ≤ 13t

48 (1 + 13
48

2(1− 13
48 )

) = 13t
48 · 83

70 ≤ 13t
48 · 6

5 = 13t
40 , and so

[
5

2t

(
e
13t
48 − 1

)]1/2
≤
√

5

2t
· 13t
40

=
√
13

16
≤ 11

12
. (54)

At the same time, 11
12 = 1 − 1

12 ≤ e− 1
12 . Hence,

( 11
12

)K0
√

L
μ

(45)≤ ( 11
12

)8 ln 2L
μ

√
L
μ

≤ e− 2
3 ln

2L
μ

√
L
μ

=
(
2L
μ

)− 2
3
√

L
μ

= 2− 2
3

(
L
μ

)− 1
6 ≤ 2− 2

3 ≤ 2
3 .

(55)

Thus, for all K0 ≤ i ≤ k, and p := τ
4μ
9L + 1 − τ

(45)≤ ∏i−1
j=0(τi

4μ
9L + 1 − τi )

1/i :

λi
(50)≤

[
5
2p

(
e
13
6

n
i ln

2L
μ − 1

)]i/2√
3L
2μ · λ0

(45)≤
[

5
2p

(
e
13p
48 − 1

)]i/2√
3L
2μ · λ0

(54)≤ ( 11
12

)i √ 3L
2μ · λ0

= ( 11
12

)i−K0 ( 11
12

)K0
√

3L
2μ · λ0

(55)≤ ( 11
12

)i−K0 2
3 ·

√
3
2 · λ0.

Hence, 3
2M

∑k
i=K0

λi ≤ ( 32 )
3
2 Mλ0 · 2

3

∑k
i=K0

( 1112 )
i−K0 ≤ ( 32 )

3
2 8Mλ0. �

Remark 5.2 In accordance with Theorem 5.1, the parameter M of strong self-
concordancy affects only the size of the region of local convergence of the process (25),
and not its rate of convergence. We do not know whether this is an artifact of the anal-
ysis or not, but it might be an interesting topic for future research. For a quadratic
function, we have M = 0, and so the scheme (25) is globally convergent.

The region of local convergence, specified by (47), depends on the maximum of
two quantities: μ

L and 1
K0

. For DFP, the 1
K0

part in this maximum is in fact redundant,
and its region of local convergence is simply inversely proportional to the condition
number: O

(
μ
L

)
. However, for BFGS, the 1

K0
part does not disappear, and we obtain

the following region of local convergence:

Mλ0 ≤ max

{
O
(μ

L

)
, O

(
1

n ln 2L
μ

)}
.

Clearly, the latter region can be much bigger than the former when the condition
number L

μ
is significantly larger than the dimension n.
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Remark 5.3 The previous estimate of the size of the region of local convergence,
established in [27], was O(

μ
L ) for both DFP and BFGS.

Example 5.1 Consider the functions

f (x) := f0(x) + μ

2
‖x‖2, f0(x) := ln

(
m∑
i=1

e〈ai ,x〉+bi

)
, x ∈ E,

where ai ∈ E
∗, bi ∈ R, i = 1, . . . ,m, μ > 0, and ‖ · ‖ is the Euclidean norm, induced

by the operator B. Let γ > 0 be such that

‖ai‖∗ ≤ γ, i = 1, . . . ,m,

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. Define

πi (x) := e〈ai ,x〉+bi
∑m

j=1 e
〈a j ,x〉+b j

, x ∈ E, i = 1, . . . ,m.

Clearly,
∑m

i=1 πi (x) = 1, πi (x) > 0 for all x ∈ E, i = 1, . . . ,m. It is not difficult to
check that, for all x, h ∈ E, we have5

〈∇ f0(x), h〉 =
m∑
i=1

πi (x)〈ai , h〉 ≤ γ.

〈∇2 f0(x)h, h〉 =
m∑
i=1

πi (x)〈ai − ∇ f0(x), h〉2

=
m∑
i=1

πi (x)〈ai , h〉2 − 〈∇ f0(x), h〉2 ≤ γ 2‖h‖2,

D3 f0(x)[h, h, h] =
m∑
i=1

πi (x)〈ai − ∇ f0(x), h〉3
≤ 2γ ‖h‖〈∇2 f0(x)h, h〉 ≤ 2γ 3‖h‖3.

Thus, f0 is a convex functionwith γ 2-Lipschitz gradient and (2γ 3)-Lipschitz Hessian.
Consequently, the function f is μ-strongly convex with L-Lipschitz gradient, (2γ 3)-
Lipschitz Hessian, and, in view of [26, Example 4.1], M-strongly self-concordant,
where

L := γ 2 + μ, M := 2γ 3

μ3/2 .

Let the regularization parameter μ be sufficiently small, namely μ ≤ γ 2. Denote

Q := γ 2

μ
≥ 1. Then, Q ≤ L

μ
≤ 2Q, M = 2Q3/2, so, according to (47), the region of

5 D3 f0(x)[h, h, h] = d3

dt3
f0(x + th)

∣∣
t=0 is the third derivative of f along the direction h.
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local convergence of BFGS can be described as follows:

λ0 ≤ max

{
O

(
1

Q5/2

)
, O

(
1

nQ3/2 ln(4Q)

)}
. �

6 Discussion

Let us compare the new convergence rates, obtained in this paper for the classical DFP
and BFGS methods, with the previously known ones from [27]. Since the estimates
for the general nonlinear case differ from those for the quadratic one just in absolute
constants, we only discuss the latter case.

In what follows, we use our standard notation: n is the dimension of the space, μ
is the strong convexity parameter, L is the Lipschitz constant of the gradient, and λk
is the local norm of the gradient at the kth iteration.

For BFGS, the previously known rate (see [27, Theorem 3.2]) is

λk ≤
(
nL

μk

)k/2

λ0. (56)

Although (56) is formally valid for all k ≥ 1, it becomes useful6 only after

K̂BFGS
0 := nL

μ
(57)

iterations. Thus, K̂BFGS
0 can be thought of as the starting moment of the superlinear

convergence, according to the estimate (56).
In this paper, we have obtained a new estimate (Theorem 4.2):

λk ≤
[
2
(
e
n
k ln L

μ − 1
)]k/2√ L

μ
· λ0. (58)

Its starting moment of superlinear convergence can be described as follows:

KBFGS
0 := 4n ln

L

μ
. (59)

Indeed, since et ≤ 1
1−t = 1 + t

1−t for any t < 1, we have, for all k ≥ KBFGS
0 ,

e
n
k ln L

μ − 1 ≤
n
k ln

L
μ

1 − n
k ln

L
μ

(59)≤
n
k ln

L
μ

1 − 1
4

= 4n

3k
ln

L

μ
. (60)

6 Indeed, according to Theorem 4.1, we have at least λk ≤ (1 − μ
L )kλ0 for all k ≥ 0.
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At the same time, for all k ≥ KBFGS
0 :

√
L

μ
= e

1
2 ln

L
μ

(59)≤ e
k
8 = (e

1
4 )k/2 ≤

(
4

3

)k/2

≤
(
3

2

)k/2

. (61)

Hence, according the new estimate (58), for all k ≥ KBFGS
0 :

λk
(60)≤

(
8n

3k
ln

L

μ

)k/2
√

L

μ
· λ0

(61)≤
(
4n

k
ln

L

μ

)k/2

λ0 (
(59)≤ λ0). (62)

Comparing the previously known efficiency estimate (56) and its starting moment of
superlinear convergence (57) with the new ones (62), (59), we thus conclude that we
manage to put the condition number L

μ
under the logarithm.

For DFP, the previously known rate (see [27, Theorem 3.2]) is

λk ≤
(
nL2

μ2k

)k/2

λ0

with the following starting moment of the superlinear convergence:

K̂DFP
0 := nL2

μ2 . (63)

The new rate, which we have obtained in this paper (Theorem 4.2), is

λk ≤
[
2L

μ

(
e
n
k ln L

μ − 1
)]k/2√ L

μ
· λ0. (64)

Repeating the same reasoning as above, we can easily obtain that the new starting
moment of the superlinear convergence can be described as follows:

KDFP
0 := 4nL

μ
ln

L

μ
, (65)

and, for all k ≥ KDFP
0 , the new estimate (64) takes the following form:

λk ≤
(
4nL

μk
ln

L

μ

)k/2

λ0 (
(65)≤ λ0).

Thus, compared to the old result, we have improved the factor L2

μ2 up to
L
μ
ln L

μ
. Interest-

ingly enough, the ratio between the old starting moments (63), (57) of the superlinear
convergence of DFP and BFGS and the new ones (65), (59) have remained the same,
L
μ
, although the both estimates have been improved.
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It is also interesting whether the results, obtained in this paper, can be applied
to limited-memory quasi-Newton methods such as L-BFGS [30]. Unfortunately, it
seems like the answer is negative. The main problem is that we cannot say anything
interesting about just a few iterations of BFGS. Indeed, according to our main result,
after k iterations of BFGS, the initial residual is contracted by the factor of the form
[exp( nk ln L

μ
) − 1]k . For all values k ≤ n ln L

μ
, this contraction factor is in fact bigger

than 1, so the result becomes useless.

7 Conclusions

We have presented a new theoretical analysis of local superlinear convergence of clas-
sical quasi-Newton methods from the convex Broyden class. Our analysis has been
based on the potential function involving the logarithm of determinant of Hessian
approximation and the trace of inverse Hessian approximation. Compared to the pre-
vious works, we have obtained new convergence rate estimates, which have much
better dependency on the condition number of the problem.

Note that all our results are local, i.e. they are valid under the assumption that the
starting point is sufficiently close to aminimizer. In particular, there is no contradiction
between our results and the fact that the DFP method is not known to be globally
convergent with inexact line search (see, e.g., [31]).

Let us mention several open questions. First, looking at the starting moment of
superlinear convergence of the BFGS method, in addition to the dimension of the
problem, we see the presence of the logarithm of its condition number. Although typi-
cally such logarithmic factors are considered small, it is still interesting to understand
whether this factor can be completely removed.

Second, all the superlinear convergence rates, which we have obtained for the
convex Broyden class in this paper, are expressed in terms of the parameter τ , which
controls the weight of the DFP component in the updating formula for the inverse
operator. At the same time, in [27], the corresponding estimates were presented in
terms of the parameter φ, which controls the weight of the DFP component in the
updating formula for the primal operator. Of course, for the extreme members of the
convex Broyden class, DFP and BFGS, φ and τ coincide. However, in general, they
could be quite different. We do not know if it is possible to express the results of this
paper in terms of φ instead of τ .

Finally, in all the methods, which we considered, the initial Hessian approximation
G0 was LB, where L is the Lipschitz constant of the gradient, measured relative to the
operator B. We always assume that this constant is known. Of course, it is interesting
to develop some adaptive algorithms, which could start from any initial guess L0 for
the constant L , and then somehow dynamically adjust the Hessian approximations in
iterations, yet retaining all the original efficiency estimates.
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Appendix

Lemma A.1 Let A,G : E → E
∗ be self-adjoint positive definite linear operators, let

u ∈ E be nonzero, and let τ ∈ R be such that G+ := Broydτ (A,G, u) is well defined.
Then,

G−1+ = τ
[
G−1 − G−1Auu∗AG−1

〈AG−1Au,u〉 + uu∗
〈Au,u〉

]

+ (1 − τ)
[
G−1 − G−1Auu∗+uu∗AG−1

〈Au,u〉 +
( 〈AG−1Au,u〉

〈Au,u〉 + 1
)

uu∗
〈Au,u〉

]
,

(66)
and

Det(G−1+ ,G) = τ
〈Au, u〉

〈AG−1Au, u〉 + (1 − τ)
〈Gu, u〉
〈Au, u〉 . (67)

Proof Denote φ := φτ (A,G, u). According to Lemma 6.2 in [27], we have

Det(G−1,G+) = φ
〈AG−1Au, u〉

〈Au, u〉 + (1 − φ)
〈Au, u〉
〈Gu, u〉

(3)=
[
τ

〈Au, u〉
〈AG−1Au, u〉 + (1 − τ)

〈Gu, u〉
〈Au, u〉

]−1

.

This proves (67) since Det(G−1+ ,G) = 1
Det(G−1,G+)

. Let us prove (66). Denote

G0 := G − Guu∗G
〈Gu, u〉 + Auu∗A

〈Au, u〉 , s := Au

〈Au, u〉 − Gu

〈Gu, u〉 . (68)

Note that

G+
(2)= G0 + φ

[ 〈Gu, u〉Auu∗A
〈Au, u〉2 + Guu∗G

〈Gu, u〉 − 〈Auu∗G + Guu∗A
〈Au, u〉

]

= G0 + φ〈Gu, u〉ss∗. (69)

Let IE and IE∗ be the identity operators in E and E
∗. Since G0u = Au, we have

[(
IE − uu∗A

〈Au,u〉
)
G−1

(
IE∗ − Auu∗

〈Au,u〉
)

+ uu∗
〈Au,u〉

]
G0

=
(
IE − uu∗A

〈Au,u〉
)
G−1

(
G0 − Auu∗A

〈Au,u〉
)

+ uu∗A
〈Au,u〉

(68)=
(
IE − uu∗A

〈Au,u〉
)
G−1

(
G − Guu∗G

〈Gu,u〉
)

+ uu∗A
〈Au,u〉 = IE.
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Hence, we can conclude that

G−1
0 =

(
IE − uu∗A

〈Au,u〉
)
G−1

(
IE∗ − Auu∗

〈Au,u〉
)

+ uu∗
〈Au,u〉

= G−1 − G−1Auu∗+uu∗AG−1

〈Au,u〉 +
( 〈AG−1Au,u〉

〈Au,u〉 + 1
)

uu∗
〈Au,u〉 .

Thus, we see that the right-hand side of (66) equals

H+ := G−1
0 − τ

[
〈AG−1Au, u〉uu∗

〈Au, u〉2 + G−1Auu∗AG−1

〈AG−1Au, u〉 − G−1Auu∗ + uu∗AG−1

〈Au, u〉

]

= G−1
0 − τ 〈AG−1Au, u〉ww∗, (70)

where

w := G−1Au

〈AG−1Au, u〉 − u

〈Au, u〉 . (71)

It remains to verify that H+G+ = IE. Clearly,

〈AG−1Au, u〉G0w
(71)= G0G−1Au − 〈AG−1Au,u〉G0u〈Au,u〉
(68)= Au − 〈Au,u〉Gu

〈Gu,u〉
(68)= 〈Au, u〉s.

(72)

Hence,

〈AG−1Au, u〉〈G0w,w〉 (72)= 〈Au, u〉〈s, w〉 (71)= 〈Au,u〉〈s,G−1Au〉
〈AG−1Au,u〉 − 〈s, u〉

(68)= 〈Au,u〉
〈AG−1Au,u〉

( 〈AG−1Au,u〉
〈Au,u〉 − 〈Au,u〉

〈Gu,u〉
)

= 1 − 〈Au,u〉2
〈AG−1Au,u〉〈Gu,u〉 .

(73)

Consequently,

〈Gu,u〉
〈Au,u〉 H+G0ww∗G0

(70)= 〈Gu,u〉
〈Au,u〉 (G

−1
0 − τ 〈AG−1Au, u〉ww∗)G0ww∗G0

= 〈Gu,u〉
〈Au,u〉 (1 − τ 〈AG−1Au, u〉〈G0w,w〉)ww∗G0

(73)= 〈Gu,u〉
〈Au,u〉

(
1 − τ + τ

〈Au,u〉2
〈AG−1Au,u〉〈Gu,u〉

)
ww∗G0

=
[
τ

〈Au,u〉
〈AG−1Au,u〉 + (1 − τ)

〈Gu,u〉
〈Au,u〉

]
ww∗G0.

(74)

Thus,

H+G+ (69)= H+(G0 + φ〈Gu, u〉ss∗)
(72)= H+

(
G0 + φ

〈AG−1Au,u〉2
〈Au,u〉

〈Gu,u〉
〈Au,u〉G0ww∗G0

)

(74)= H+G0 + φ
〈AG−1Au,u〉2

〈Au,u〉
[
τ

〈Au,u〉
〈AG−1Au,u〉 + (1 − τ)

〈Gu,u〉
〈Au,u〉

]

(3)= H+G0 + τ 〈AG−1Au, u〉ww∗G0
(70)= IE. �
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