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Abstract: Hamiltonian Monte Carlo (HMC) is a widely used sampler, known for its ef-
ficiency on high dimensional distributions. Yet HMC remains quite sensitive to the choice
of integration time. Randomizing the length of Hamiltonian trajectories (RHMC) has been
suggested to smooth the Auto-Correlation Functions (ACF), ensuring robustness of tun-
ing. We present the Langevin diffusion as an alternative to control these ACFs by inducing
randomness in Hamiltonian trajectories through a continuous refreshment of the velocities.
We connect and compare the two processes in terms of quantitative mixing rates for the 2-
Wasserstein and L2 distances. The Langevin diffusion is presented as a limit of Randomised
Hamiltonian dynamics achieving the fastest mixing rate for strongly log-concave targets.
We introduce a robust alternative to HMC built upon these dynamics, named Metropolis
Adjusted Langevin Trajectories (MALT). Studying the scaling limit of MALT, we obtain
optimal tuning guidelines similar to HMC, and recover the same scaling with respect to the
dimension without additional assumptions. We illustrate numerically the efficiency of MALT
compared to HMC and RHMC.
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1. Introduction

We consider the problem of sampling approximately from a probability distribution on Rd with
smooth density Π with respect to Lebesgue’s measure. A widely used method for tackling this
problem consists of building a discrete time Markov chain targeting the stationary distribution
corresponding to Π, for which updates can be sampled exactly through a tractable algorithm. These
recursive sampling methods are commonly referred to as Markov Chain Monte Carlo (MCMC)
algorithms. Beyond providing an approximate sampling solution by drawing a long run of the
Markov chain, these algorithms also enable the approximation of intractable expectations with
respect to Π. Indeed, empirical averages built upon random samples drawn from a Markov chain
are convergent estimators of such expectations by the ergodic theorem. MCMC algorithms are
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powerful tools for providing numerical approximations to statistical models involving intractable
integrals. The use of MCMC algorithms is now particularly spread in Bayesian statistics for in-
stance, where the goal is to approximate estimators defined as moments of a high-dimensional
posterior distribution.

When the dimension d gets large, efficient sampling algorithms often rely on discretizations of
Markov processes built upon the gradient of the logarithm of Π. This family of MCMC algorithms
is commonly referred to as gradient-based samplers. In general, the resulting discrete time Markov
chain has a biased stationary distribution induced by the discretization. A common way to adjust
the bias of the stationary distribution is to apply the Metropolis-Hastings correction; see [36, 51].
This correction was applied to various discretized Markov processes and lead to several algorithms,
among the most prominent algorithms are the Metropolis Adjusted Langevin Algorithm (MALA)
and Hamiltonian Monte Carlo (HMC); see [4, 26, 67]. Unadjusted sampling approximations can be
controlled by solving a trade-off between running the chain long enough to get close enough to the
stationary measure, while choosing a time-step small enough in order to control the discretization
error. Solving this tradeoff with respect to log-concave target densities Π has received a lot of
attention lately; see [21, 22, 28, 29, 27, 40] for the overdamped Langevin diffusion, [19, 24, 23, 46,
55, 68] for the Langevin diffusion, and [8, 12, 9, 18, 47, 48, 49] for Hamiltonian dynamics. One
limitation of unadjusted samplers is that whenever the discretization error scales polynomially
with the time-step, the number of gradient evaluations required to reach a given precision will
increase polynomially with the precision level at best. For Metropolis-adjusted samplers however,
a logarithmic scaling with respect to the precision level is achievable as soon as the Markov chain
is geometrically ergodic. In this work, we focus on Metropolis adjusted samplers. An extensive
comparison between adjusted and unadjusted samplers is beyond the scope of our study.

Assessing and comparing the sampling efficiency of Metropolis adjusted samplers with respect to
the dimension was initiated by the study of scaling limits, established in [5, 62, 65, 64] among
others. These results suggest that the number of iterations required to reach a given accuracy
scales as d1/3 for MALA and d1/4 for HMC, improving the scaling of order d obtained for the
standard Random Walk Metropolis algorithm (RWM). Non-asymptotic bounds for the mixing
times of Metropolis adjusted samplers were investigated more recently; see [17, 20, 31, 42]. It
is now well established that in a typical application gradient-based samplers can outperform the
others in terms of computational cost for high dimensional target distributions. However, their lack
of robustness to tuning is often a major issue for their practical implementations. The challenge
of developing gradient-based samplers that combine high dimensional efficiency and robustness
to tuning has received a particular interest lately; see [11, 37, 45, 74]. The focus of our work is
motivated by this main challenge, and is in line with these recent studies.

Throughout this work, the target density Π is assumed to be positive everywhere. It can therefore
be expressed in terms of a function Φ : Rd → R satisfying

∫
Rd exp{−Φ(y)}dy <∞, as follows

Π(x) ∝ exp{−Φ(x)}, x ∈ Rd.

The function Φ is called the potential. For any vector x ∈ Rd we denote |x| , (x>x)1/2 its
Euclidean norm. We assume that Φ satisfies the following smoothness assumption.

Assumption 1. The potential Φ ∈ C1(Rd) has a Lipschitz gradient

∃M > 0, |∇Φ(x)−∇Φ(y)| ≤M |x− y|, x,y ∈ Rd.

Among the family of gradient-based MCMC algorithms, HMC is often presented as a state-of-the-
art sampler for high dimensional targets, justified by its gold standard d1/4 scaling with respect
to dimension; see [5]. The HMC algorithm and many of its variations are built upon a system of
Ordinary Differential Equations (ODE), known as Hamiltonian dynamics. The solution of these
deterministic dynamics at time t ≥ 0 is composed by a position Xt ∈ Rd and a velocity V t ∈ Rd
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(a.k.a momentum). These correspond to the solution of the ODE

d

[
Xt

V t

]
=

[
V t

−∇Φ(Xt)

]
dt. (1)

These dynamics preserve the extended measure on R2d characterized by the density

Π∗(x,v) ∝ exp{−Φ(x)− |v|2/2}, (x,v) ∈ R2d.

We use the notations Π and Π∗ to refer both to the densities and to their corresponding probability
distributions, when the context is clear. The density Π∗ on R2d is the product of two marginal
densities, corresponding to independent position and velocity drawn respectively from Π and
from a standard Gaussian distribution. Therefore, approximate sampling from Π∗ directly yields
approximate sampling from Π by simply restricting our attention to the positions of the random
draws. The distribution Π∗ is invariant in the sense that if (X0,V 0) ∼ Π∗ than (Xt,V t) ∼ Π∗
for any t ≥ 0. Yet the trajectories driven by Hamiltonian dynamics are both deterministic and
periodic, as they follow the contours of the density Π∗. Consequently, the trajectories cannot be
ergodic without introducing random updates, this point is discussed further in the sequel.

In general no closed form solutions are available and the Hamiltonian trajectories need to be
approximated by a tractable discretization. Many such discretizations have been proposed and
studied, the most well-known is probably the Störmer-Verlet integrator (a.k.a leapfrog method),
defined as follows. For a time-step h > 0, let θh : (x0,v0) 7→ (x1,v1) such that

v1/2 = v0 − (h/2)∇Φ(x0)

x1 = x0 + hv1/2

v1 = v1/2 − (h/2)∇Φ(x1).

A Hamiltonian trajectory of length T > 0 is then approximated by following L = bT/hc suc-
cessive leapfrog steps. This approximation corresponds to the Lth-composition of the Störmer-
Verlet update, denoted θLh , θh ◦ · · · ◦ θh. The Störmer-Verlet integrator preserves several prop-
erties of Hamiltonian dynamics; see [56]. In particular, it is known to be time reversible. Let
ϕ(x,v) , (x,−v) stands for the flip of velocity. Time reversibility means that flipping the velocity
along the trajectory reduces to going backwards in time, or equivalently, that the map ϕ ◦ θLh is
an involution.

The hybrid, or Hamiltonian Monte Carlo algorithm was first introduced in [26]. It consists of
proposing a Hamiltonian trajectory of length T > 0, approximated with the leapfrog method
for a step-size h > 0, faced with a Metropolis accept-reject test. The velocity is updated by a
fresh standard Gaussian draw at the start of each trajectory, inducing the randomness necessary
to produce an ergodic sampler. This principle was later extended in [39] to allow for partial
momentum refreshments through the choice of a persistence parameter α ∈ [0, 1) (a.k.a cosines of
the angle of refreshment). The resulting algorithm, called Generalized Hamiltonian Monte Carlo
(GHMC), is presented explicitly hereafter; see Algorithm 1. It reduces to the standard HMC
algorithm for α = 0.

The Metropolis-Hastings kernel is known to be a reversible Markov kernel with respect to its
invariant measure. The notion of time reversibility for an (approximate) Hamiltonian trajectory is
different from the notion of reversibility for a Markov chain (a.k.a detailed balance). Yet the two
notions can be related when the Markov kernel is composed with a momentum flip (a.k.a skew
detailed balance); see [3, Proposition 3.5] for explicit definitions. Essentially: in Algorithm 1 the
proposal trajectory is decomposed as θLh = ϕ ◦ ϕ ◦ θLh so that the involution ϕ ◦ θLh is faced with
a Metropolis accept-reject. When composing with ϕ the output of the test, overall, a momentum
flip occurs whenever a move is rejected. In practice, this is of little importance when choosing
α = 0 (HMC), in which case momentum flips are erased by full refreshments of the velocity,
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Algorithm 1: Generalized Hamiltonian Monte Carlo

Input : Starting point (X0,V 0) ∈ R2d, number of MCMC samples N ≥ 1, step-size h > 0, integration
time T ≥ h, and persistence α ∈ [0, 1).

1 Set L← bT/hc
2 for n← 1 to N do

3 draw ξ ∼ Nd(0d, Id) and refresh the momentum V ′ ← αV n−1 +
√

1− α2ξ

4 propose a Hamiltonian trajectory (Xn,V n)← θLh (Xn−1,V ′)

5 compute the energy difference ∆← Φ(Xn)− Φ(Xn−1) + (|V n|2 − |V ′|2)/2
6 draw a uniform random variable U on (0, 1)
7 if U > exp{−∆} then
8 reject and flip the momentum (Xn,V n)← (Xn−1,−V ′)
9 end

10 end

11 return (X1,V 1), · · · , (XN ,V N ).

ensuring reversibility of the Markov kernel; see [2, Remark 13]. However, as soon as α ∈ (0, 1)
the momentum is only partially refreshed, and reversibility is no longer ensured. Beyond these
technicalities, perhaps one of the most natural question concerning Algorithm 1 is the following.

Q1. How should we choose T > 0, h > 0 and α ∈ [0, 1) in practice?

In the sequel, we give an overview of the main solutions proposed in the literature. We also
highlight several problems often encountered when tuning (G)HMC. In particular, we explain
why providing a simple answer to Q1 is unfeasible. We first discuss the choice of the persistence
parameter α ∈ [0, 1), then we discuss optimal scaling results established for the time-step h > 0,
finally we focus on the choice of integration time T > 0.

By construction, larger values of α induce more persistence in successive trajectories when ac-
cepted, but momentum flips are also erased more partially, causing backtracking upon rejection.
The resulting trade-off was discussed and investigated in [39, 41]. The authors highlight the fact
that no significant advantage over HMC was established, mainly due to the perturbations in the
dynamics induced by momentum flips. For this reason, GHMC had limited success and the choice
α = 0 was often considered as a default solution. This was even more upsetting as one original
objective in [39] was to choose α→ 1 as T = h→ 0 in order to converge to a Langevin diffusion.
Several variants of Algorithm 1 were proposed with a similar purpose [13, 59, 63, 69]. To over-
come the perturbations induced by the momentum flips, these analyses required considering small
enough time-steps to ensure a negligible amount of rejections. Connections between these frame-
works and our methodology are discussed further below; see (2). This upset motivated several
authors to suggest variations of GHMC in the purpose of reducing the number of flips/rejections
to facilitate the exploration of the space; see [15, 71, 75]. These suggestions are broadly related
to delayed rejection methods, introduced in [35, 54, 72]; see [60] for recent developments. Reduc-
ing flips/rejections in these samplers always comes at the price of a higher number of proposals,
inducing another trade-off to solve in terms of computational cost. An explicit comparison with
these approaches is beyond the scope of our study.

A simple solution for tuning h > 0 was proposed in [5], relying on a scaling limit of the HMC
algorithm. The study of scaling limits for Metropolis adjusted samplers is often referred in the
literature as optimal scaling; see [5, 62, 65, 64]. These works are devoted to an asymptotic study
of the acceptance rate when d → ∞ for product form targets. The independence assumption,
although quite unrealistic, happens to be useful for illustrating the connections between the choice
of the time-step h > 0 and the behavior of the Metropolis accept-reject test. In particular for
HMC, choosing h = `T d

−1/4 for a constant `T > 0 corresponds to a phase-transition regime in
which the acceptance probability converges to a non-trivial value a(`T ) ∈ (0, 1). The simplicity of
the mathematical framework allows for an explicit optimization of several measures of efficiency
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(e.g. the expected square jump distance) with respect to the constant `T . The optimal constant
`∗T corresponds to an asymptotic acceptance probability a(`∗T ) close to 65%. This result yields a
simple way of choosing h in practice by calibrating the average acceptance probability. Given its
simplicity, this strategy was widely adopted for tuning the time-step of HMC, even for distributions
far beyond the original mathematical framework. As useful as it may be, this solution answers Q1
only partially, since the optimal scaling problem in [5] is studied conditionally on T > 0 and for a
single value of α = 0.

The choice of integration time T > 0 is particularly challenging. The sampling efficiency of HMC
is known to be quite sensitive to this choice, which motivated many authors to propose and study
several tuning solutions; see [6, 7, 11, 37, 38, 56, 70, 76]. We first illustrate how challenging the
tuning problem for T > 0 can be, even in a simple Gaussian framework. We consider Gaussian
potentials of the form Φ(x) =

∑d
i=1 x

2
i /(2σ

2
i ) with heterogeneous scales σ1, · · · , σd. In this frame-

work, the ODE (1) has an explicit solution, known as the harmonic oscillator. We denote ρi(T ) the
Auto-Correlation Function (ACF) of the ith component of XT . Direct computations of the ACFs
yield ρi(T ) = cos(T/σi) for i = 1, · · · , d. These functions are periodic with arbitrary bandwidths,
therefore the map T 7→ maxi |ρi(T )| can be arbitrarily erratic and close to 1. In other words, choos-
ing T > 0 to control the worst ACF can be rather difficult, if not impossible. This phenomenon
was discussed in [56, Section 3.2] and in [11, 37] more recently, it is further illustrated in Section 2.
This main issue relates to the periodicity of Hamiltonian dynamics, and therefore extends beyond
the Gaussian framework. Since one cannot hope to get a satisfactory solution for fixed T > 0,
a recurrent strategy suggested in the literature consists of drawing randomly a new integration
time at each iteration, therefore inducing an averaging effect on the correlations. In the Gaussian
framework, drawing T from an exponential distribution with rate λ > 0 yields expected ACFs of
the form E[ρi(T )] = σ2

i /(σ
2
i + λ−2); see [11]. Each of these average ACFs are controlled by the

average ACF of the largest scale maxi σi, furthermore they vanish monotonously as the average in-
tegration time λ−1 goes to infinity. Other choices of distribution have been suggested; e.g. uniform
in [6, 37, 76]. In Section 3, we consider Hamiltonian trajectories with exponentially distributed
integration times updated by Gaussian refreshments. This piecewise deterministic Markov process
is referred to as (exact) Randomized HMC; [11, 25]. Its discretization yields an analogue of Al-
gorithm 1, for which T is drawn at each iteration from the exponential distribution with rate λ,
while L = bT/hc is updated accordingly.

Finally, several authors have proposed adaptive tuning strategies for variations of HMC; see [37,
38, 70, 76]. Among these, the No-U-Turn Sampler (NUTS) introduced in [38] can be implemented
with quite limited tuning by the user, and it is now widely used in statistical software; see [16]. In
particular, NUTS enables automatic selection of T > 0 in the goal of maximizing the Euclidean
jump distance while maintaining skew detailed balance. Since the objective criterion being a global
metric, the sampler cannot provide mixing guarantees for individual components. We highlight
that, intrinsically, adaptive tuning does not guarantee control of the worst ACF. This control can
however be obtained when adaptive tuning is combined with a randomized strategy; see [37]. An
extensive comparison with adaptive algorithms is also beyond the scope of our study.

In this work we focus on an alternative strategy to introduce randomness in the Hamiltonian
trajectories. This strategy consists of updating the Hamiltonian trajectories with a continuous
refreshment of the velocities induced by a Brownian motion (W t)t≥0 on Rd. The resulting process
is referred in the molecular dynamics’ literature as Langevin diffusion (a.k.a kinetic, geometric,
underdamped, or second order Langevin). Under Assumption 1, the Langevin diffusion can be
defined as the strong solution of the following Stochastic Differential Equation (SDE), with respect
to a damping parameter γ ≥ 0 (a.k.a friction).

d

[
Xt

V t

]
=

[
V t

−∇Φ(Xt)

]
dt+

[
0d

−γV t dt+
√

2γ dW t

]
. (2)

The Langevin diffusion preserves Π∗ as well. Contrary to Hamiltonian dynamics, the randomness
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induced by the Brownian motion yields ergodicity of the Langevin diffusion as soon as γ > 0.
Quantitative rates of convergence were established for various damping regimes; see [24, 32]. The
study of this process in the literature is sometimes restricted to its highly overdamped limit
obtained by letting γ → ∞ while rescaling the time as X̄t = Xγt; see [57]. The organization of
the article is presented hereafter.

• In Section 2, we show that a positive damping enables control of the worst ACF of a Langevin
trajectory, without need of randomizing the integration time.

• In Section 3, we present the Langevin diffusion as a limit of Randomized HMC that achieves
faster exponential mixing rate for strongly log-concave targets. We prove the convergence
of the generators, and derive quantitative bounds on the 2-Wasserstein mixing time and
on the autocorrelations of L2(Π). In particular, the rate obtained for Randomized HMC is
optimized when α→ 1 and matches the rate obtained for the Langevin diffusion. Our results
extend and interpolate the rates established in [24] and [25].

• In Section 4, we introduce a sampler built upon Metropolis Adjusted Langevin Trajectories
(MALT). Our approach is different from [13, 39, 59, 63, 69] in the sense that the Metropolis
correction is applied to the whole trajectory of the Langevin diffusion. In particular, MALT
yields a robust extension of HMC, in which momentum flips are erased by full Gaussian
refreshments for any choice of friction γ ≥ 0.

• In Section 5, we establish optimal scaling limits for MALT. Our study extends the results of
[5] to any choice of friction γ ≥ 0. Similarly to HMC, we show that the d1/4 scaling and the
65.1% acceptance rate are optimal without further assumptions.

• In Section 6, we compare MALT to several variants of Hamiltonian Monte Carlo, and illus-
trate its robustness through numerical experiments.

2. Control of the worst autocorrelation

The efficiency of HMC is known to be quite sensitive to the choice of integration time T > 0,
especially under heterogeneity of scales. In this section we show how randomness induced in a
Langevin trajectory yields robustness to the choice of integration time T > 0. We illustrate
this phenomenon in the framework of independent centered Gaussians with arbitrary standard
deviations σ1, · · · , σd, i.e. Φ(x) =

∑d
i=1 x(i)2/(2σ2

i ). This setting was discussed several times
for Hamiltonian dynamics; see [11, 37, 56]. In this section, we highlight that choosing a positive
damping γ enables control of the worst ACF.

In the Gaussian context, the Langevin diffusion reduces to an Ornstein-Uhlenbeck process defined
through an independent system of SDEs for t ≥ 0 and 1 ≤ i ≤ d by

d

[
Xt(i)
V t(i)

]
= −Ai,γ

[
Xt(i)
V t(i)

]
dt+

[
0√

2γ dW t(i)

]
, Ai,γ ,

[
0 −1
σ−2
i γ

]
.

It is well-known that Ornstein-Uhlenbeck SDEs admit explicit solutions; see [34]. For any square
matrix A we denote its matrix exponential eA ,

∑∞
k=0 Ak/k!. We derive the solution correspond-

ing to the ith component of a trajectory of length T > 0:[
XT (i)
V T (i)

]
= e−TAi,γ

[
X0(i)
V 0(i)

]
+

∫ T

0

e−(T−t)Ai,γ

[
0√

2γ dW t(i)

]
. (3)

We define T 7→ ρi,γ(T ) the ACF corresponding to the ith component of the position at stationarity.
We also denote A(i, j) the (i, j)th element of A. By construction, we have

ρi,γ(T ) , Corr(XT (i),X0(i)) = E[XT (i)X0(i)]/σ2
i = e−TAi,γ (1, 1).
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The computation of this ACF follows from an eigen-value decomposition of Ai,γ . Denoting ωi,γ ,
|(γ/2)2 − (1/σi)

2|1/2, this computation yields

ρi,γ(T ) =


e−γT/2

(
cos (Tωi,γ) + (γ/(2ωi,γ)) sin (Tωi,γ)

)
if 0 ≤ γ < 2/σi

e−T/σi
(
1 + T/σi

)
if γ = 2/σi

e−γT/2
(

cosh (Tωi,γ) + (γ/(2ωi,γ)) sinh (Tωi,γ)
)

if γ > 2/σi.

(4)

Choosing γ = 0 yields the periodic ACFs of Hamiltonian dynamics, i.e. ρi,0(T ) = cos(T/σi).
When γ > 0, the Langevin diffusion becomes ergodic and the correlations ρi,γ(T ) vanish as
T → +∞. The exponential rate of convergence is maximized for γ = 2/σi. This choice of friction
corresponds to a phase transition. In the underdamped regime, i.e. when 0 < γ < 2/σi, the complex
eigenvalues of Ai,γ induce an oscillatory behavior in the convergence of ρi,γ(T ). In the overdamped
regime, i.e. when γ ≥ 2/σi, the eigen-values of Ai,γ are real numbers and the convergence of the
ACFs is monotonous. In Figure 1 and Figure 2, we plot ρi,γ(T ) as a function of the duration
T > 0, respectively with fixed scale σi = 1 for different values of damping γ ≥ 0, and with
fixed γ ∈ {0, 2} for different component’s scales σi > 0. As illustrated on Figure 1 for a fixed
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scale σi, although the long term convergence to zero is optimized for γ = 2/σi, on the short run
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the ACF of a Hamiltonian trajectory (γ = 0) decays faster than any other choice of γ > 0. In
particular, it reaches zero the soonest, i.e. for T = σiπ/2. Hamiltonian dynamics can therefore
produce low correlated samples faster than Langevin dynamics for one particular component.
Under heterogeneity of scales however, choosing the length T of a Hamiltonian trajectory to
control the ACF of a particular scale σi can result in very high correlations for other scales. The
left part of Figure 2 illustrates that the worst ACF can become arbitrarily erratic and close to
one in absolute terms. In other words, choosing T to simultaneously control all the correlations
of Hamiltonian dynamics can be next to impossible. The right part of Figure 2 illustrates that,
if the damping parameter is chosen as γ = 2/σi for a given i ∈ {1, · · · , d}, then the ACF of any
smaller component’s scale σj < σi is always dominated by the ith ACF. This observation suggests
a simple tuning rule to control uniformly the correlations over σ1, · · · , σd: first choose γ = 2/σmax

according to the maximum scale σmax , maxi σi, then select T in order to control the ACF
corresponding to σmax. For this choice of damping, the ACF corresponding to the largest scale
yields a monotonously vanishing upper bound over all the correlations. This property highlights
that the tuning problem of the integration time T is easier to solve for Langevin dynamics than
for Hamiltonian dynamics.

We note that a similar control of the correlations can be obtained with Randomized HMC, for
which a uniform bound relates the worst ACF to the largest scale; see [11]. In Section 3, we connect
this approach to the Langevin diffusion and compare their exponential mixing rates quantitatively.
We also extend their robustness beyond the Gaussian framework by establishing uniform bounds
on the correlations for strongly log-concave targets.

3. Quantitative exponential mixing rates

To obtain simultaneous control of the ACFs of Hamiltonian dynamics, the main approach sug-
gested in the literature consists of drawing at random the length of each Hamiltonian trajectory.
With this approach, ACFs are averaged over multiple trajectories. The smoothing effect induced
can enable control of the worst ACF, depending on the distribution chosen; see [11, 37, 56]. In this
work we consider exponentially distributed integration times with rate λ > 0. With the term Ran-
domized HMC we will refer to the piecewise deterministic Markov process driven by Hamiltonian
dynamics, refreshed with persistence α ∈ [0, 1) by independent standard Gaussian momentums
(ξk)k∈N, at random jumping times driven by a homogeneous Poisson process (N t)t≥0 with rate
λ ≥ 0. Under Assumption 1, Randomized HMC can be defined as the strong solution of the
following jump-type SDE.

d

[
Xt

V t

]
=

[
V t

−∇Φ(Xt)

]
dt+

[
0d(

αV t− +
√

1− α2ξNt−
− V t−

)
dN t

]
. (5)

In the sequel, we connect Randomized HMC to the Langevin diffusion, and compare the two in
terms of exponential mixing rates with respect to the 2-Wasserstein distance and the L2(Π∗)-norm.
These metrics are defined as follows. The 2-Wasserstein distance between any two probability
measures ν and ν′ on an Euclidean space is given by

W2(ν, ν′) , inf{E[|X −X ′|2]1/2,X ∼ ν,X ′ ∼ ν′}.

We denote L2(Π∗) , {f : R2d → R,
∫
f2dΠ∗ < ∞} the set of square integrable functions with

respect to Π∗. For any such f and g, the scalar product and the norm on L2(Π∗) are respectively de-
fined by 〈f, g〉 ,

∫
fg dΠ∗ and ‖f‖ , 〈f, f〉1/2. We also denote L0

2(Π∗) , {f ∈ L2(Π∗),
∫
fdΠ∗ =

0} the set of centered functions in L2(Π∗). Some of our results directly relate to the actual target
Π, marginal distribution of Π∗. To this end, for any ν probability measure on R2d, we denote νx
its marginal probability measure defined on Borel sets A of Rd by νx(A) , ν(A× Rd). Similarly,
we denote L0

2(Π) , {f ∈ L0
2(Π∗), f(x,v) = f(x,0d), (x,v) ∈ R2d} the set of functions in L0

2(Π∗)
that depend only on the position. We use the notation Pt for any Markov kernel characterized by
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a SDE on R2d; e.g. solution of (2) or (5). Any such kernel can be defined on Borel sets A of R2d

by
Pt((x,v), A) , P((Xt,V t) ∈ A | (X0,V 0) = (x,v)), (x,v) ∈ R2d.

Let νPt stand for the distribution of (Xt,V t) starting from (X0,V 0) ∼ ν. For any f ∈ L2(Π∗)
define

Ptf(x,v) , E[f(Xt,V t) | (X0,V 0) = (x,v)], (x,v) ∈ R2d.

The main arguments of this section rely on establishing useful relationships between the infinites-
imal generators of Randomized HMC and the Langevin diffusion. We denote C∞c (R2d) the set
of smooth functions with compact support on R2d, and LH the infinitesimal generator of Hamil-
tonian dynamics (a.k.a Liouville operator). This generator is formally defined on test functions
f ∈ C∞c (R2d) such that for any (x,v) ∈ R2d

LHf(x,v) , v>∇xf(x,v)−∇Φ(x)>∇vf(x,v).

In addition, we introduce the following generators corresponding to two types of momentum re-
freshments. The generator RPP

α refers to discrete refreshments with persistence α ∈ [0, 1) with
jumps characterized by a standard Poisson Process. The generator RBM refers to continuous re-
freshments induced by a standard Brownian motion. These generators are formally defined for
ξ ∼ Nd(0d, Id) by

RPP
α f(x,v) , E

[
f(x, αv +

√
1− α2ξ)

]
− f(x,v)

RBMf(x,v) , −v>∇vf(x,v) + tr(∇2
vf(x,v)).

The generator of Randomized HMC with rate λ ≥ 0 and persistence α ∈ [0, 1) is denoted as LRH
λ,α

while the generator of the Langevin diffusion with damping γ ≥ 0 is denoted as LLD
γ . Built upon

the two types of refreshment introduced, explicit definitions for these generators are as follows

LRH
λ,α , LH + λRPP

α

LLD
γ , LH + γRBM.

Given that LH is a common element of these two generators, their proximity depends only on the
proximity of the two generators of refreshment, and therefore does not rely on any assumption
with respect to the potential function. Convergence of the Randomized HMC generator towards
the generator of the Langevin diffusion is shown in Proposition 1 for test functions f ∈ C∞c (R2d).
The convergence is established with respect to the supremum norm ‖f‖∞ , sup |f |. A proof of
this result is derived in Appendix A.1.

Proposition 1. If λ = 2γ
1−α2 then ∀f ∈ C∞c we have ‖LRH

λ,αf − LLD
γ f‖∞ → 0 as α→ 1.

Proposition 1 describes the Langevin diffusion as a limit of Randomized HMC. Convergence of the
generators holds when the persistence α → 1 while the refreshment rate λ = 2γ/(1 − α2) → ∞.
Intuitively, the more partial and frequent the refreshments by a Poisson Process become, the closer
they get from continuous refreshments induced by a Brownian motion. Convergence of infinitesimal
generators is a powerful tool to establish weak convergence of Markov processes; see [33]. Detailed
implications of this result in terms of weak convergence of Randomized HMC are beyond the scope
of this work. We now connect and compare the two processes in terms of exponential mixing rates.

Several sufficient conditions to ensure geometric ergodicity of Randomized HMC with respect to
the total variation distance have been derived in [11, Theorem 3.9]. These conditions are similar to
the ones proposed in [50] to ensure geometric ergodicity of the Langevin diffusion. More precisely,
in [11] the authors show that similar Lyapunov functions can be derived for Randomized HMC and
for the Langevin diffusion. However, the minorization condition established for Randomized HMC
relies on an alternative approach to account for discontinuities of the sample paths. Beyond these
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qualitative results, we are not aware of any quantitative comparison between the exponential
mixing rates of the two processes prior to this work. Yet, quantitative mixing rates have been
established for the Langevin diffusion in [24], and for Randomized HMC in [25]. In these works,
explicit bounds on the mixing rates are derived with respect to the 2-Wasserstein distance, and
extended to the L2(Π∗)-norm for Randomized HMC. These rates are established for strongly-log
concave targets admitting sufficiently smooth densities with respect to Lebesgue’s measure. The
class of target distributions considered corresponds to potential functions satisfying Assumption 2.

Assumption 2. The potential Φ ∈ C2(Rd), such that for some constants M ≥ m > 0

mId � ∇2Φ(x) �MId, x ∈ Rd.

Under Assumption 2, exponential mixing rates of the Langevin diffusion with respect to the 2-
Wasserstein distance have been established for various damping regimes in [24, Theorem 1]. In
particular, by choosing γ =

√
M +m, an exponential decay of the form e−rt with rate r =

m/
√
M +m is obtained. For Randomized HMC, exponential mixing rates for every persistence

α ∈ [0, 1) have been derived in [25, Theorem 3]. In particular, the following mixing rate and
refreshment intensity are suggested:

r =
(1 + α)m

2
√
M +m

− αm3/2

4(M +m)
, λ =

1

1− α2

(
2
√
M +m− (1− α)m√

M +m

)
. (6)

In the case of full momentum refreshments (α = 0), the mixing rate obtained for Randomized HMC
reduces to r = (m/2)/

√
M +m. We remark that the mixing rate established in [24, Theorem 1]

for the Langevin diffusion is faster by a factor two. In addition, the mixing rate of Randomized
HMC increases as α → 1 while λ → ∞. This observation suggests that any discrete refreshment
strategy can be improved by choosing more frequent and partial refreshments. In particular, it
supports the intuition that continuous refreshments induced by a Brownian motion may enable
faster mixing than discrete refreshments induced by a Poisson process. Yet as α→ 1, the bound of
[25, Theorem 3] does not match the bound of [24, Theorem 1]. More precisely, the mixing rate of
Randomized HMC converges to a value strictly lower than m/

√
M +m. In Theorem 1, we show

that the mixing rate of Randomized HMC can be sharpened for any α ∈ (0, 1) without additional
assumption. In particular, we establish a bound that matches the mixing rate of the Langevin
diffusion as α→ 1.

Theorem 1. Suppose that Assumption 2 holds. Let Pt be the Markov transition kernel of Ran-

domized HMC, solution of (5), with persistence α ∈ [0, 1) and refreshment intensity λ = 2
√
M+m

1−α2 .
Then there exist C,C ′ ≤ 1.56 such that for any t > 0

W2((νPt)x,Π) ≤ Ce−rtW2(νx,Π), ν = νx ⊗Nd(0d, Id)

‖Ptf‖ ≤ C ′e−rt‖f‖, f ∈ L0
2(Π)

with an exponential rate of mixing

r =
(1 + α)m

2
√
M +m

.

A proof of Theorem 1 is derived in Appendix A.2. The rate of convergence obtained increases as
α → 1, while its limit coincides with the rate m/

√
M +m established in [24, Theorem 1] for the

Langevin diffusion. Compared to (6), the mixing rate is strictly faster for any α ∈ (0, 1), although
the two rates get relatively close for large condition number M/m→∞. Similarly to [24, 25], our
analysis is based on a synchronous coupling construction. More precisely, we study the distance
between two copies of the process starting from different values, synchronized with the same
Poisson process and Gaussian refreshments. This construction is relatively standard, although
deriving sharp convergence rates relies on a carefully chosen twist of the metric to optimize the
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2-Wasserstein contraction. The main argument in the proof relies on establishing uniform bounds
on the coupling generator for which we obtain sufficient and necessary conditions in Appendix A.3;
see (20). In particular, the refreshment intensity λ = 2

√
M +m/(1 − α2) is chosen in order to

maximize the exponential rate of convergence under a sharper constraint; see (37). Remarkably,
this refreshment intensity coincides with the interpolation curve in Proposition 1 for γ =

√
M +m.

Restricting our attention to the actual target Π rather than Π∗ is useful for obtaining small explicit
constants C,C ′ defined in Appendix A.2; see (23) and (31).

Finally, we establish convergence of the Langevin diffusion with respect to the L2(Π∗)-norm in
Proposition 2. This result is a consequence of the 2-Wasserstein convergence previously derived in
[24, Theorem 1]. This extension is achieved by following similar arguments compared to the ones
used for Randomized HMC in Theorem 1. A sketch of proof is presented in Appendix A.4.

Proposition 2. Suppose that Assumption 2 holds. Let Pt be the Markov transition kernel of the
Langevin diffusion, solution of (2), with friction γ >

√
M . Then there exist C ′ ≤ 1.56 such that

for any t > 0 and any function f ∈ L0
2(Π) that depends only on position

‖Ptf‖ ≤ C ′e−rt‖f‖ ,

with an exponential rate of mixing

r =
m ∧ (γ2 −M)

γ
.

The mixing rate in Proposition 2 is a continuous function of γ2 that increases on (M,M + m]
and decreases on [M + m,∞). The optimum is therefore achieved for γ =

√
M +m and yields

r = m/
√
M +m. This rate coincides with the limit of the rate obtained in Theorem 1 as α→ 1.

As illustrated in Section 2, a positive damping can enable uniform control of the ACFs for the
Langevin diffusion. Our result extends this property beyond the Gaussian framework; i.e. to any
target Π satisfying Assumption 2. Indeed for any f : Rd → R such that

∫
f2dΠ ∈ (0,∞), the

map g(x,v) , (f(x) −
∫
fdΠ)/(

∫
f2dΠ)1/2 defined for (x,v) ∈ R2d is such that g ∈ L0

2(Π) and
‖g‖ = 1, therefore Proposition 2 applies:

Corr(f(Xt), f(X0)) = 〈g,Ptg〉 ≤ ‖g‖‖Ptg‖ ≤ C ′e−rt. (7)

Combined together, our results describe the Langevin diffusion as a limit of Randomized HMC
achieving the fastest exponential mixing rate, for strongly log-concave targets with smooth enough
densities. This observation motivates the construction and study of samplers directly based on the
Langevin dynamics rather than the Hamiltonian dynamics.

4. Metropolis Adjusted Langevin Trajectories

We introduce a Metropolis adjusted sampler built upon a standard time discretization of the
Langevin diffusion. We explain its foundations and establish connections with previous approaches
aiming for the Langevin diffusion; see [13, 14, 39, 59, 63, 69]. Compared to these approaches, the
Metropolis correction is applied to a whole Langevin trajectory of length T > 0. This mechanism
allows us to get rid of the perturbations induced by momentum flips, by performing full refresh-
ments of the velocity at the start of each trajectory. We describe this sampler as an extension of
HMC, for which we advocate the use of a positive friction to enable robust tuning of the integra-
tion time T > 0. We present this extension as an alternative to GHMC, one for which the tuning
question is arguably more natural and easier to answer.

For any time-step h > 0, we introduce η = e−γh/2. We also let ξ, ξ′ ∼ Nd(0d, Id) be independent.
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Starting from (x0,v0) ∈ R2d, we consider the following discretization

v′0 = ηv0 +
√

1− η2ξ (O)

v1/2 = v′0 − (h/2)∇Φ(x0) (B)

x1 = x0 + hv1/2 (A)

v′1 = v1/2 − (h/2)∇Φ(x1) (B)

v1 = ηv′1 +
√

1− η2ξ′ (O)

The updates denoted by the letters O, B and A correspond to exact solutions of a splitting of
(2) into three parts. These are respectively referred in the literature as momentum refreshment,
acceleration and free transport parts of the Langevin dynamics; see [43]. The BAB composition
reduces to the Störmer-Verlet update introduced in Section 1. Combined with an infinitesimal
momentum refreshment as h→ 0, the OBABO composition yields a natural time discretization of
the Langevin diffusion, built as an extension of the Leapfrog integrator for Hamiltonian dynamics.
For this reason, this splitting scheme has received a significant interest; see [13, 14, 55, 63, 69].
Several other splittings of the Langevin diffusion have been proposed and studied; see [1, 68]. This
work focuses on the OBABO update in order to preserve several properties of the Störmer-Verlet
update, useful for constructing a Metropolis correction. On the principle, our construction could
rely on other integrators, as long as these are time-reversible and volume preserving; see [13].

For any γ > 0, the distribution of z1 = (x1,v1) given z0 = (x0,v0) admits a positive density
z1 7→ qh,γ(z0, z1) with respect to Lebesgue’s measure on R2d. This density is formally defined
as the product of the two conditional densities corresponding to the Gaussian distributions of x1

given (x0,v0) and v1 given (x0,v0,x1). The case γ = 0 reduces to considering the deterministic
Störmer-Verlet update θh. The OBABO update characterizes a Markov kernel defined for any
Borel set A of R2d by

Qh,γ(z0, A) ,

{ ∫
A
qh,γ(z0, z1)dz1 if γ > 0

δθh(z0)(A) if γ = 0.

For any distribution ν0 on R2d, starting from z0 ∼ ν0 we define the numerical Langevin trajectory
for i ≥ 1 by

zi ∼ Qh,γ(zi−1, .) (8)

We refer to the synchronized processes (Zt)t≥0 and (zi)i≥0 for the respective solutions of (2) and
(8), starting from Z0 = z0 ∼ ν0 with identical momentum refreshments. This synchronization is
formally ensured in the OBABO update by considering ξ = ξ0,h/2 and ξ′ = ξh/2,h such that for
t > s ≥ 0

ξs,t ,

√
2γ

1− e−γ(t−s)

∫ t

s

e−γ(t−u)dW u. (9)

In Proposition 3, we show that numerical Langevin trajectories built upon recursive OBABO
updates are strongly accurate. Similar results have been proposed and discussed in [10, 13].

Proposition 3. Suppose that Assumption 1 holds. Let (Zt)t≥0 and (zi)i≥0 be the respective
solutions of (2) and (8), synchronized with respect to (9). For any fixed d ≥ 1, T > 0 and γ ≥ 0,
there exists C > 0 such that for any square integrable start Z0 ∼ ν0 on R2d and any t, h ∈ (0, T ](

E[|Zbt/hch − zbt/hc|2]
)1/2 ≤ C (1 + E[|Z0|2]

)1/2
h.

Proposition 3 ensures that, measured by the L2-norm, the numerical error of approximating
Langevin trajectories with the OBABO update scales at worst linearly with the time-step h > 0.
Beyond its natural interpretation, this claim is used to establish several results in Section 5. A
detailed proof is therefore derived in Appendix B.1.
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We introduce a Metropolis correction applied to numerical Langevin trajectories of length T > 0.
This correction involves a local numerical error, defined for h > 0 and x,y ∈ Rd by

Eh(x,y) , Φ(y)− Φ(x)− 1

2
(y − x)> (∇Φ(y) +∇Φ(x)) +

h2

8

(
|∇Φ(y)|2 − |∇Φ(x)|2

)
. (10)

Composed by L = bT/hc steps, a Langevin trajectory (x0,v0), ..., (xL,vL) ∈ R2d is drawn from
(8). The trajectory is faced with an accept-reject test to compensate for the total error

∆(x0, ...,xL) ,
L∑
i=1

Eh(xi−1,xi). (11)

Applied to the positions in the OBABO discretization, the local error Eh reduces to the energy
difference induced by the Störmer Verlet update. Indeed the BAB composition yields

Eh(x0,x1) = Φ(x1)− Φ(x0) +
1

2
(|v′1|2 − |v′0|2) = − log

(
Π∗(x1,v

′
1)

Π∗(x0,v′0)

)
. (12)

The total error ∆ corresponds to the sum of energy differences incurred by the Leapfrog integrator
(disregarding the partial velocity refreshments). Therefore, it can be interpreted as the error of
approximating the Hamiltonian part of Langevin dynamics. Each numerical Langevin trajectory
is finally accepted with probability 1 ∧ exp{−∆}. The resulting algorithm, named Metropolis
Adjusted Langevin Trajectories (MALT), is presented hereafter; see Algorithm 2.

Algorithm 2: Metropolis Adjusted Langevin Trajectories

Input : Starting point (X0,V 0) ∈ R2d, number of MCMC samples N ≥ 1, step-size h > 0, integration
time T ≥ h, and friction γ ≥ 0.

1 Set L← bT/hc
2 for n← 1 to N do
3 draw a full refresh of the momentum V ′ ∼ Nd(0d, Id)

4 set (x0,v0)← (Xn−1,V ′) and ∆← 0
5 for i← 1 to L do
6 draw an OBABO update step (xi,vi) ∼ Qh,γ((xi−1,vi−1), .)


Propose a
Langevin
trajectory.7 update the energy difference ∆← ∆ + Eh(xi−1,xi)

8 end
9 set (Xn,V n)← (xL,vL)

10 draw a uniform random variable U on (0, 1)
11 if U > exp{−∆} then
12 reject and flip the momentum (Xn,V n)← (Xn−1,−V ′)
13 end

14 end

15 return (X1,V 1), · · · , (XN ,V N ).

From (11) and (12), we see that the total energy error ∆ in Algorithm 1 and Algorithm 2 coincide
when γ = α = 0. In other words, MALT is an extension of HMC to any choice of friction
γ ≥ 0. We also observe that computing ∆ involves the gradients of x0, · · · ,xL which are already
computed when proposing the Langevin trajectory. In that sense, running MALT does not require
more gradient evaluations than running HMC. In Proposition 4, we show that MALT defines a
reversible Markov kernel with respect to Π. We recall that a kernel P is reversible with respect to
Π if for any Borel sets A,B of Rd∫

B

Π(dx)P(x, A) =

∫
A

Π(dx)P(x, B).

Proposition 4. For any γ ≥ 0 and T ≥ h > 0, the sequence (Xi)i≥0 in Algorithm 2 defines a
Markov chain characterized by a kernel P reversible with respect to Π.



Riou-Durand & Vogrinc / Metropolis Adjusted Langevin Trajectories 14

A proof is derived in Appendix B.2. The claim is known for HMC; see [2, Remark 13]. For γ > 0,
the result follows from remarking that the acceptance ratio exp{−∆} in Algorithm 2 is the product
of the single step acceptance ratios obtained in [13, Eq 5.13]. Our analysis is more generally built
upon a Markov kernel on the space of trajectories z0:L , (z0, · · · , zL). In particular, the kernel is
shown to be reversible with respect to the extended measure

µ(dz0:L) , Π∗(dz0)

L∏
i=1

Qh,γ(zi−1,dzi). (13)

We highlight that reversibility is ensured only when full momentum refreshment are performed at
the start of each trajectory. In particular, momentum flips are completely erased in Algorithm 2
whereas this is not the case in Algorithm 1 if α > 0. The length of the trajectories T > 0 in MALT
is an additional degree of freedom compared to one-step Metropolis corrections aiming for the
Langevin diffusion; see [13, 14, 39, 59, 63, 69]. We argue that applying a Metropolis correction to
whole Langevin trajectories improves flexibility of tuning and simplifies the study of its Markov
kernel. In particular, we present MALT as an extension of HMC for which the tuning of T > 0
can be made robust by choosing a positive friction γ > 0. This property is illustrated in Section 2
and Section 3 by deriving uniform bounds on the ACFs of the Langevin diffusion. It is further
supported by Proposition 5, in which we show that MALT is ergodic in total variation for any
T ≥ h > 0 if a positive friction γ > 0 is chosen. The total variation between two measures ν, ν′ on
Rd is denoted as ‖ν − ν′‖TV , sup{|ν(A)− ν′(A)|, A Borel set of Rd}.

Proposition 5. Let P be the Markov kernel of the chain (Xi)i≥0 in Algorithm 2, and suppose
that γ > 0. Then for any T ≥ h > 0 and for Π-almost every x ∈ Rd we have

lim
n→∞

‖δxPn −Π‖TV = 0 .

A proof is derived in Appendix B.3. For any γ > 0, the measure µ defined in (13) admits a
positive density with respect to Lebesgue’s measure, ensuring Π-irreducibility and aperiodicity of
the Markov kernel. Beyond their convergence in total variation, ergodic chains satisfy a strong
law of large numbers; see [66, Eq 6]. We argue that a positive friction simplifies considerably the
study of MALT’s ergodicity. Convergence in total variation has been established for HMC in [30,
Theorem 2] under Assumption 1 with Lipschitz constant M > 0, provided that T ≥ h > 0 satisfy(

1 + hM1/2ω(hM1/2)
)bT/hc

< 2, ω(s) = (1 + s/2 + s2/4). (14)

We highlight that a positive choice of friction in Algorithm 2 avoids this restrictive condition.
This fact illustrates further MALT’s robustness with respect to tuning. We denote that ergodicity
has also been established for Randomized HMC in [44], as soon as T > 0 is drawn such that
P(bT/hc = 1) > 0. The study of geometric ergodicity for Algorithm 2 is beyond the scope of our
study.

5. Optimal scaling

In this section, we consider the problem of tuning the time step h > 0 in MALT for any choice
of friction γ ≥ 0 and integration time T > 0. Our study connects to several results known as
optimal scaling ; see [64] and [65] for initial results on RWM and MALA and [5] for HMC. One
goal of these works is to derive scaling limits of Metropolis adjusted algorithms as the dimension d
goes to infinity. The obtained results rely on assuming that the target distribution has a product
form; i.e. that the components are IID. Although simplistic, this framework enables the study
of the accept-reject mechanism for high-dimensional targets. This study provides simple tuning
guidelines of the time step to obtain a non-trivial acceptance rate. This result is convenient for
assessing the number of gradient evaluations to reach a certain integration time, as a scaling of
the dimension. We consider here the following assumption:
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Assumption 3. The potential satisfies Φ(x) =
∑d
i=1 φ(x(i)) for some φ ∈ C4(R), with uniformly

bounded derivatives φ(k) for k = 2, 3, 4, and
∫
R x

8 exp(−φ(x))dx <∞.

We highlight that the smoothness and integrability conditions above are similar, although slightly
weaker, than those suggested in [5, Proposition 5.5] for HMC. Under Assumption 3, the asymptotic
dynamics of MALT can be described in terms of independent components of the Langevin diffusion
defined in (2). Throughout this section, we denote (Xt, Vt) ∈ R2 for the solution of a single
component of (2) initiated at stationarity: (X0, V0) ∼ e−φ ⊗ N (0, 1). The d-dimensional chain
generated by MALT has a potential satisfying Assumption 3, corresponding to a marginal potential
φ (independent of the dimension). The product form of the target together with the proposal
density enforces a product structure also on the proposal. In other words, the components of the
numerical Langevin trajectories proposed are also independent and identically distributed. We
denote µx(A) , µ({x0:L ∈ A}) the marginal measure of x0:L , (x0, · · · ,xL) characterized by
(13). For any fixed choice of physical time T and friction γ we establish asymptotic normality of
the total energy difference.

Theorem 2. Suppose that Assumption 3 holds. Choose h = `d−1/4 for some constant ` > 0. For
any T > 0 and γ ≥ 0, let L = bT/hc and x0:L ∼ µx. Then as d→∞

∆(x0:L) ⇒ N
(1

2
`4Σ, `4Σ

)
,

such that for S(x, v) , 1
12v

3φ(3)(x) + 1
4vφ

′′(x)φ′(x) we have

Σ = E
[(∫ T

0

S(Xt, Vt)dt
)2
]
.

The proof is given in Appendix C.1. It relies on extending the optimal scaling framework for
Metropolis-Hastings methods recently introduced in Section 3 of [73] to also include algorithms
based on trajectories, such as HMC and MALT. This is achieved through the study of the asymp-
totic properties of the total energy difference ∆, or equivalently the log Metropolis-Hastings rates
−∆, as they are called in [73]. Establishing strong accuracy of the trajectories for the function S
is crucial. Our analysis relies on approximating S by a sum of Lipschitz functions for which strong
accuracy follows by Proposition 3. Next, we use Theorem 2 to deliver guidelines for the tuning of
MALT. We generalize the results discussed in Sections 3 and 4 of [5] so that they also hold for
non-negative friction γ. In the special case of γ = 0 we recover the results on HMC.

Proposition 6. Under the assumptions of Theorem 2 the following statements hold:

(i) The acceptance rate satisfies, with Ψ denoting the CDF of a standard Gaussian

E
[
1 ∧ e−∆(x0:L)

]
d→∞−−−→ a(`) , 2Ψ

(
−`

2
√

Σ

2

)
.

(ii) Let f : R → R be locally Lipschitz such that |f(x) − f(y)| ≤ C(|y| + |x|)|x − y| for some

C > 0. Denote Υf , E
[
(f(XT )− f(X0))

2
]
. Then

E
[(
f(Xn+1(1))− f(Xn(1))

)2] d→∞−−−→ Υfa(`) .

(iii) Set X ′T = XT1[0,a(`)](U) +X01(a(`),1](U) for a uniform random variable U . Then

(Xn(1),Xn+1(1)) ⇒ (X0, X
′
T ) .
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Point (i) identifies the asymptotic average acceptance rate under the h = `d−1/4 scaling. Note
that h = `d−1/4 is the only decay rate of the time-step that will lead to a non-trivial distributional
limit in Theorem 2 and to a non-trivial limiting average acceptance rate. Any other decay rate
will lead to a limiting acceptance rate of either zero or one (to see this formally check proof of
Proposition 7). This result for general friction γ is exactly the same as for the HMC case γ = 0
studied in Section 3.3 of [5].

Apart from extending the results from the HMC case to any choice of friction, point (ii) generalizes
Section 3.4 of [5] where only the mean function is considered. The result describes the asymptotic
lag-one autocorrelation of different functions which can be used as heuristic indicators of the
performance of MALT. For the mean function, it corresponds to the asymptotic expected squared
jump distance, a performance criterion often used for adaptive tuning of MCMC methods (see
[61])). Under Assumption 3 we can guarantee this for functions growing as fast as quadratic but
with a stronger moment condition we could extend this further for functions that grow more
rapidly.

Point (iii) is again an extension of the results in HMC case, studied in Section 3.5 of [5]. It
describes the limiting behavior of each marginal coordinate of the chain generated by MALT (with
other coordinates integrated out with respect to the stationary measure). If MALT is initiated in
stationarity and only a single coordinate is observed, then its behavior can be described in terms
of a Langevin trajectory and an independent coin. Like in the HMC case (and unlike the RWM
and MALA cases) it is important to know that the rest of the coordinates are in stationarity, as a
single coordinate is not Markovian with respect to its own filtration, not even asymptotically. [5,
Section 4] considers two measures of efficiency for HMC, the number of successful transitions per
gradient evaluation and the expected squared jump distance per gradient evaluation. maximizing
the first one is equivalent to minimizing the computational cost of a single accepted transition,
while maximizing the second will also prioritizes schemes which move further.

Number of successful transitions per gradient evaluation is proportional to the acceptance rate
and inversely proportional to the number of steps L = bT/hc. For a fixed T this corresponds
to maximizing hE

[
1 ∧ e−∆(x0:L)

]
. Similar reasoning holds for other measures of efficiency. We

will consider the following measures of efficiency. For f as in Proposition 6(ii) we define expected
squared f -distance per gradient evaluation as

1

L
E
[(
f
(
Xn+1(1)

)
− f (Xn(1))

)2]
,

If we set f to be linear we recover the expected squared jump distance per gradient evaluation as in
[5]. This efficiency measure is proportional to the Dirichlet form of MALT evaluated at f divided
by the length of the trajectory. For fixed T and γ the efficiency measures corresponding to different
functions f asymptotically differ from each other only by a factor that is independent of the time-
step. Hence, optimizing any of them is asymptotically equivalent. We are now in position to show
that the step-size decay rate d−1/4 is optimal according to any of these asymptotic measures.

Proposition 7. Let the Assumption 3 be satisfied and let f be as in Proposition 6(ii). Let T, ` > 0
and γ ≥ 0 be constants. Let h→ 0 be a sequence of time-steps and L = bT/hc. If either d1/4h→ 0
or d1/4h→∞, then

d1/4 × 1

L
E
[(
f
(
Xn+1(1)

)
− f (Xn(1))

)2] d→∞−−−→ 0 .

If d1/4h→ ` for some ` ∈ (0,∞), then for eff(`) , `a(`) we have

d1/4 × 1

L
E
[(
f
(
Xn+1(1)

)
− f (Xn(1))

)2] d→∞−−−→ Υf × eff(`) .

There exists a unique optimal `∗ maximizing eff(`∗), for which the corresponding optimal accep-
tance rate equals

a(`∗) ≈ 0.651 .
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This extends the optimal scaling results in Section 4 of [5] to MALT. The guidelines for tuning
MALT are the same as for HMC:

Scale the step h ∝ d−1/4 and tune it to accept 65.1% of proposals.

It is remarkable that the optimal choice of ` does not depend on the function f considered, nor
the distribution Π. The same is however, not true for the choices of T and γ. Using Proposition 7
we can deduce that for an appropriate constant C ≈ 0.619 we have eff(`∗) = CΣ−1/4. This implies
that the smaller the Σ the larger time-steps optimized sampler takes. However, the constants Υf

also depend on T and γ and as a consequence the choice of T and γ such that the corresponding
`∗(T, γ) maximizes an efficiency measure depends greatly on the choice of that efficiency measure
(in terms of f). The findings are not consistent (and are even contradictory) across a simple
selection of functions f even in the case of the standard Gaussian potential.

For a standard Gaussian marginal potential φ(x) = x2

2 we have φ′(x) = x, φ′′(x) = 1 and φ(3) = 0.
The identity d(X2

t ) = 2XtdXt = 2XtVt, the stationarity of (Xt, Vt) and Isserlis’ theorem imply

Σγ,T =
1

16
E

(∫ T

0

VtXtdt

)2
 =

1

64
E
[(
X2
T −X2

0

)2]
=

1

32

(
E[X4

0 ]− E[X2
0X

2
T ]
)

=
1

16

(
E[X2

0 ]2 − E[X0XT ]2
)

=
1

16

(
1− ρ2

γ(T )
)
,

where ργ(T ) = Corr(X0,XT) follows formula (4) with σi = 1.

The rescaled optimal time-step `∗γ(T ) is proportional to (1−ρ2
γ(T ))−1/4. We remark that the map

T 7→ `∗γ(T ) fluctuates a lot for small friction especially for high correlated samples: for γ = 0 it
even diverges for any T = kπ, k ∈ N. At the contrary, the map T 7→ `∗γ(T ) fluctuates less as γ
increases, and becomes monotonously decreasing as soon as γ ≥ 2. This suggests that the joint
tuning of ` and T is more stable when choosing a positive friction.

6. Numerical illustrations

In this section, we illustrate how a positive choice of friction in MALT can improve robustness of
tuning of the integration time. Integrated Auto-Correlations (IAC) can be quite erratic functions
of T > 0 for HMC; see [11]. These can be smoothed when averaged over multiple draws of T with
Randomized HMC. Our study supports the idea that MALT yields an alternative to tackle the
lack of robustness of HMC with respect to tuning. We also discuss similarities and discrepancies
with the Randomized HMC approach. For HMC, we argue that an optimal integration time T > 0
with respect to the Euclidean square jump distance can yield arbitrary poor mixing for small
components. To tackle the problem, we advocate the use of a stronger measure of efficiency: the
worst Effective Sample Size (ESS) among the d components.

Let (Xn)n≥0 be a real random sequence such that that E[Xn] and E[XnXn+k] do not depend on
n. Let f be a square integrable function. We consider the estimator of E[f(X0)] defined by

f̂N =
1

N

N∑
n=1

f(Xn).

We assume that the following IAC series converges absolutely

IACf = 1 + 2

∞∑
n=1

Corr(f(Xn), f(X0)).
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The variance of f̂N is equivalent to (IACf/N)×V(f(X0)) as N →∞. In our framework, (Xn)n≥1

are one-dimensional functionals of successive trajectories with integration time T > 0 (or mean
integration time T for RHMC). The unit cost of generating each variable is considered proportional
to the number of gradient evaluations, therefore proportional to the integration time. To reduce
the variance of f̂N , one can either increase N or increase T to reduce IACf (T )/N . Both solutions
having linear costs, increasing T is only profitable if it allows for decreasing IACf (T ) at least
linearly. This motivates the optimization of a rescaled ESS per integration time

ESSf (T ) ∝ (T × IACf (T ))−1.

In the sequel, we compare MALT, RHMC and HMC in terms of (coordinate-wise) worst ESS per
integration time for various functions. Our investigation is composed by explicit computations
and numerical comparisons, first on a Gaussian distribution, second on a unimodal Gaussian
mixture, third on a multivariate Student’s distribution. Heterogeneity of scales is considered in
each example.

6.1. Gaussian distribution

Assume that Φ(x) =
∑d
i=1 x(i)2/(2σ2

i ), similarly to Section 2. We first study and compare the
efficiencies of exact trajectories in MALT, RHMC and HMC, for estimating the mean and variance.
The chains built upon these successive trajectories are obtained by letting h→ 0 in Algorithm 2
for MALT and HMC. For RHMC we consider the sequence of positions evaluated at the jumping
times of the continuous time process (5) with full refreshments.

From (3), there exist ci,γ(T ) > 0 and IID vectors (ξn)n≥1 ∼ Nd(0d, Id) such that successive
Langevin trajectories are defined as follows, starting from X0 ∼ Π

Xn(i) = ρi,γ(T )Xn−1(i) + ci,γ(T )ξn(i) (15)

The sequence (Xn(i))n≥0 is an autoregressive process with root ρi,γ(T ). By Isserlis’ theorem, any
Gaussian vector (X1, X2) ∈ R2 is such that Corr(X2

1 , X
2
2 ) = (Corr(X1, X2))2 therefore

Corr(Xn(i),X0(i)) = (ρi,γ(T ))n

Corr((Xn(i))2, (X0(i))2) = (ρi,γ(T ))2n
(16)

When γ = 2/σmax for MALT, the worst ACFs are achieved for the largest scale σmax , maxi σi.
These ACFs for the mean and variance correspond to ρmax(T ) and ρ2

max(T ) where

ρmax(T ) , e−T/σmax(1 + T/σmax).

For HMC (γ = 0), the worst ACFs for the mean and variance are respectively

umax(T ) , max
1≤i≤d

cos(T/σi), wmax(T ) , max
1≤i≤d

cos2(T/σi).

The RHMC sequence with full refreshments is defined as follows. Let (τn)n≥1 be random integration
times, drawn IID from the exponential distribution with rate λ > 0. We denote T = E[τ1] = λ−1

the average duration of each Hamiltonian trajectory. Starting from Y 0 ∼ Π, the solution is

Y n(i) = cos

(
τn
σi

)
Y n−1(i) + σi sin

(
τn
σi

)
ξn(i). (17)

Proposition 8. The sequence (Y n(i))n≥0 defined by (17) is not jointly Gaussian. Moreover

Corr(Y n(i),Y 0(i)) = E [cos (τ1/σi)]
n

=(ri(T ))n, ri(T ) ,
σ2
i

σ2
i + T 2

,

Corr((Y n(i))2, (Y 0(i))2) = E
[
cos2 (τ1/σi)

]n
=(si(T ))n, si(T ) ,

σ2
i + 2T 2

σ2
i + 4T 2

.



Riou-Durand & Vogrinc / Metropolis Adjusted Langevin Trajectories 19

Proof. Direct computations are derived for σi = 1. Denote Yn = Y n(i) and ξn = ξn(i).

Corr(Yn, Y0) =E[cos(τn)Yn−1Y0] = E[cos(τ1)]Corr(Yn−1, Y0) = E[cos(τ1)]n

an , Corr(Y 2
n , Y

2
0 ) = Corr

((
cos2(τn)Y 2

n−1 + sin2(τn)ξ2
n + 2 cos(τn) sin(τn)Yn−1ξn

)
, Y 2

0

)
= (1/2)

(
E[cos2(τ1)]E[Y 2

n Y
2
0 ] + E[sin2(τ1)]E[ξ2

nY
2
0 ]− 1

)
= (1/2)

(
E[cos2(τ1)](2an−1 + 1) + E[sin2(τ1)]− 1

)
= an−1E[cos2(τ1)] = E[cos2(τ1)]n

Computing the moments of the exponential distribution yields E[cos(τ1)] = 1/(1 + λ−2) while

E[cos2(τ1)] = (1/2)E[cos(2τ1) + 1] =
1

2

(
1

1 + 4λ−2
+ 1

)
=

1 + 2λ−2

1 + 4λ−2

In particular (ri(T ))2 6= si(T ), therefore (Y n(i))n≥0 cannot be jointly Gaussian, otherwise Isserlis’
theorem would yield a contradiction.

Proposition 8 for RHMC show that the worst ACFs of the mean and variance are respectively

rmax(T ) ,
1

1 + (T/σmax)2
, smax(T ) ,

1 + 2(T/σmax)2

1 + 4(T/σmax)2
.

Proposition 8 also highlights some similarities and discrepancies between RHMC and MALT. In
both cases, the worst ACFs are controlled by the largest scale. Yet, we observe that rmax has a
quadratic decay to 0 while smax → 1/2 as T →∞. This lack of convergence for the square function
has been noticed in [37] for uniformly drawn integration times as well. In particular, both rmax

and smax decay slower than ρmax and ρ2
max as T →∞. This ordering is reversed for small values of

T however. Numerically, we obtain that ρmax < rmax for T > 5.1 while ρ2
max < smax for T > 0.8.

We now consider the problem of optimizing the worst ESS per time over d = 50 components
with heterogeneous variances σ2

i = i/d. In Figure 3, we compare MALT, RHMC, and HMC for
estimating the mean with %f ∈ {ρmax, rmax, umax}, and the variance with %f ∈ {ρ2

max, smax, wmax}.
We normalize the worst ESS per time as a proportion of the efficiency achieved for an isotropic
target with an ideal HMC sampler as T = π/2 (independent samples). For f(x) = x and f(x) = x2,
(16) and Proposition 8 show that the nth autocorrelations are of the form %nf , the worst ESS
corresponds to

ESSf (T ) =
π

2T

(
1− %f (T )

1 + %f (T )

)
.

Figure 3 shows that both MALT and RHMC yield smooth efficiencies with respect to T . We
highlight that none of these efficiencies depend on the number of components whereas the efficiency
of HMC becomes more and more erratic as d increases. This phenomenon is illustrated for d = 50
components, as opposed to the ideal efficiency obtained for an isotropic target (independent of
d). On (π/2, 3π/2), ideal HMC produces negatively correlated samples yielding super-efficient
estimators of the mean, but sub-optimal estimators of the variance. We observe that RHMC
achieves a better efficiency than MALT for estimating the mean whereas this ordering is reversed
when estimating the variance. Proposition 8 indicates that the dashed pink lines of RHMC can be
interpreted as smoothed versions of the dotted grey lines of ideal HMC, which explains intuitively
the differences observed between f(x) = x and f(x) = x2. This discrepancy is illustrated more
generally between odd and even functions in the sequel.

The sensitivity of MALT to the choice of friction is investigated numerically. We observe that any
γ ∈ [1/σmax, 2/σmax] achieves a similar efficiency, roughly optimized for γ ≈ 1.5/σmax. Intuitively
the worst ESS per time is optimized in a slightly underdamped regime to adapt to the finite length
of the trajectories. We focus on the discrete approximation and consider the problem of choosing
a (mean) number of steps L to ensure a relatively good efficiency for every function. The time
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Fig 3. Gaussian distribution. Worst ESS per integration time for estimating the mean and variance (resp. left
and right). The dotted grey lines correspond to an ideally preconditioned HMC sampler (isotropic target). The
dot-dashed blue lines correspond to MALT for γ = 2/σmax. The dashed pink lines correspond to Randomized HMC
with full refreshments. The solid green lines correspond to HMC.

step h = 0.20 is chosen to obtain acceptance rates slightly above 65% for MALT for a friction
γ = 1.5/σmax. The same measure of efficiency is interpreted as ESS per gradient evaluation by
setting T = Lh. In the sequel, L is chosen to optimize the worst efficiency between f(x) = x and
f(x) = x2. Figure 3 indicates that the efficiency of HMC is quite sensitive to small variations
of T whereas these have little impact on the efficiency of MALT and RHMC. This problem is
emphasized by the time discretization: in our example, the worst ESS for f(x) = x2 is negligible
for every value of L > 1 with HMC.

In Table 1, worst ESS per gradient evaluation are compared numerically between MALT, RHMC,
and HMC for various choices of functions. The choice L = 1 is optimal for HMC, which reduces to
MALA. We also illustrate the efficiency of HMC for L = 3. Monte Carlo estimates are computed
on a sample of size N = 106.

Table 1
Gaussian distribution. Worst ESS per gradient evaluation for various odd/even functions.

odd even

f(x) x x3 sgn(x) sin(x) x2 x4 e−|x| cos(x)

MALT: L = 8 0.25 0.31 0.31 0.27 0.40 0.42 0.43 0.40
RHMC: L = 5 0.40 0.43 0.45 0.41 0.29 0.31 0.31 0.29
HMC: L = 3 0.19 0.25 0.26 0.21 0.00 0.00 0.00 0.00

MALA (L = 1) 0.06 0.08 0.09 0.07 0.12 0.12 0.16 0.13

Table 1 highlights that MALT and RHMC are more robust than HMC or MALA in terms of
worst ESS. Neither MALT nor RHMC dominates the other for every function, yet MALT achieves
slightly higher ESS for even functions while the ordering is reversed for odd functions.

6.2. Gaussian mixture

For a ∈ Rd and a positive definite matrix Σ ∈ Rd×d, we consider the mixture of Nd(a,Σ) and
Nd(−a,Σ) with equal weights. Noting b = Σ−1a, we define the potential and its derivatives for
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x ∈ Rd

Φ(x) =
1

2
|x− a|2Σ−1 − log

(
1 + exp(−2x>b)

)
∇Φ(x) = Σ−1x− b+ 2b

(
1 + exp(−2x>b)

)−1

∇2Φ(x) = Σ−1 − 4bb> exp(−2x>b)
(
1 + exp(−2x>b)

)−2

The target is strongly log-concave if |a|Σ−1 < 1. In that case, the bound 0 ≤ eu/(1 + eu)2 ≤ 1/4
shows that Assumption 2 holds with constants m = (1 − |a|2Σ−1)/σmax(Σ) and M = 1/σmin(Σ),
where σmin(Σ) and σmax(Σ) denote the smallest and largest eigen-values of Σ. Heterogeneity of
scales is introduced among d = 50 components such that Σ = diag1≤i≤d(σ

2
i ) where σ2

i = i/d. The

distance between the centers of the mixture is set by a(i) =
√
i/(2d) to obtain |a|Σ−1 = 1/2. In

Figure 4 and Table 2, we compare numerically the worst ESS per gradient evaluation for MALT,
RHMC and HMC for a time step h = 0.20 on samples of size N = 106. The friction in MALT
is chosen empirically as γ = 1/σmax, while the number of steps in Table 2 is chosen in order to
optimize the worst efficiency between f(x) = x and f(x) = x2. Similarly to the Gaussian example,
the optimal number of steps for HMC is L = 1 (i.e. MALA). We compute the efficiency of HMC for
L = 3 as well. Figure 4 and Table 2 show that MALT and RHMC both achieve higher efficiency
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Fig 4. Gaussian mixture. Worst ESS per gradient evaluation for estimating the mean and variance (resp. left
and right). The dotted grey lines correspond to an ideally preconditioned HMC sampler (isotropic: Σ = Id). The
dot-dashed blue lines correspond to MALT for γ = 1/σmax. The dashed pink lines correspond to Randomized HMC
with full refreshments. The solid green lines correspond to HMC.

Table 2
Gaussian mixture. Worst ESS per gradient evaluation for various odd/even functions.

odd even

f(x) x x3 sgn(x) sin(x) x2 x4 e−|x| cos(x)

MALT: L = 8 0.27 0.32 0.31 0.27 0.36 0.37 0.38 0.36
RHMC: L = 4 0.35 0.38 0.41 0.36 0.29 0.29 0.33 0.29
HMC: L = 3 0.17 0.23 0.24 0.19 0.00 0.00 0.00 0.00

MALA (L = 1) 0.06 0.08 0.09 0.07 0.11 0.13 0.16 0.12

than HMC and MALA, on a unimodal Gaussian mixture. Supported by Section 3, this observation
confirms that MALT and RHMC have robustness properties on strongly log-concave targets as
well. A similar discrepancy between odd and even functions is observed when comparing MALT
and RHMC.
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6.3. Student’s distribution

For a positive definite matrix Σ ∈ Rd×d, we consider the Student’s distribution with k ≥ 1 degrees
of freedom. The potential and its gradient are defined for x ∈ Rd by

Φ(x) =
(k + d)

2
log
(
k + |x|2Σ−1

)
∇Φ(x) = Σ−1x(k + d)

(
k + |x|2Σ−1

)−1

The target has k−1 moments. In particular, Assumption 2 does not hold while Assumption 1 does.
For any k > 2, the covariance matrix is proportional to Σ. Heterogeneity of scales is introduced
among d = 50 components by setting Σ = diag1≤i≤d(σ

2
i ) where σ2

i = i/d. In Figure 5 and Table 3,
we compare numerically the worst ESS per gradient evaluation for MALT, RHMC and HMC on a
Student with k = 20 degrees of freedom for a time step h = 0.20. The friction in MALT is chosen
empirically as γ = 1/σmax, while the number of steps in Table 3 is chosen in order to optimize the
worst efficiency between f(x) = x and f(x) = x2. Here the optimal number of steps for HMC is
L = 3. We also compute the efficiency of MALA.
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Fig 5. Student’s distribution. Worst ESS per gradient evaluation for estimating the mean and variance (resp. left
and right). The dotted grey lines correspond to an ideally preconditioned HMC sampler (isotropic: Σ = Id). The
dot-dashed blue lines correspond to MALT for γ = 1/σmax. The dashed pink lines correspond to Randomized HMC
with full refreshments. The solid green lines correspond to HMC.

Table 3
Student’s distribution. Worst ESS per gradient evaluation for various odd/even functions.

odd even

f(x) x x3 sgn(x) sin(x) x2 x4 e−|x| cos(x)

MALT: L = 8 0.25 0.30 0.29 0.28 0.33 0.37 0.26 0.33
RHMC: L = 5 0.35 0.37 0.40 0.37 0.24 0.26 0.28 0.25
HMC: L = 3 0.17 0.19 0.24 0.20 0.18 0.19 0.17 0.18

MALA (L = 1) 0.05 0.07 0.08 0.07 0.09 0.08 0.14 0.11

Figure 5 and Table 3 give an illustration of the robustness of MALT and RHMC on a distribution
with polynomial tails. We observe that heterogeneity of scales in the covariance matrix have
slightly less impact on the worst ESS of HMC, although its performance still breaks down in higher
dimension. When comparing MALT and RHMC: apart from one example, a similar discrepancy
between odd and even functions is observed.

7. Conclusion

In this work we have investigated several tuning problems for HMC, known to be quite sensitive
to the choice of integration time. In particular, we have highlighted that Hamiltonian trajectories
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of fixed length fail to control the worst coordinate ACF under heterogeneity of scales. One main
solution suggested in the literature consists of randomizing the length of Hamiltonian trajectories.
The Langevin diffusion is presented as an alternative to introduce randomness in Hamiltonian
trajectories, through a continuous momentum refreshment of the velocities. Our analysis shows
that a positive damping enables control of the worst ACF, ensuring robustness of tuning. We
present the Langevin diffusion as a limit of Randomized HMC achieving the fastest mixing rate
for strongly log-concave distributions. Our results motivate the construction of a sampler built
upon this diffusion, named Metropolis Adjusted Langevin Trajectories (MALT).

We present MALT as a robust extension to HMC for which the tuning question is arguably easier
to answer than for GHMC. The efficiency of MALT relies on the choice of three parameters: the
integration time T > 0, the time-step h > 0, and the damping parameter γ ≥ 0. The tuning of these
parameters appears to be easier than answering Q1 in Section 1 for GHMC for several reasons. As
highlighted in Section 2, a positive damping enables control of the worst ACF simplifying the choice
of integration time T . Contrary to a positive persistence α ∈ (0, 1) in GHMC, momentum flips are
erased by full refreshments for any damping in MALT. Finally, an optimal scaling guideline for
tuning the time-step is provided for any choice of friction. In particular, our study shows that the
d1/4 scaling of [5] is recovered without additional assumption. Tuning the parameters of MALT can
be guided by simple rules. Just as for HMC, the time-step may be tuned to achieve approximately
65% acceptance rate. The choice of the damping parameter can be guided by quantitative mixing
rates for the Langevin diffusion. An accurate tuning can rely on a graphical control of the worst
ACF. We advocate the use of the worst ESS per gradient evaluation as a measure of efficiency.
The choice of integration time for a positive damping appears to be much easier than for HMC
since the autocorrelations vanish with T →∞.

Our contributions motivate the study of adaptive tuning solutions for MALT, together with further
comparisons with HMC and its variations, both from a theoretical and numerical viewpoint. These
questions will be investigated in future works.
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Appendix A: Proofs of the quantitative mixing rates

A.1. Proof of Proposition 1

Let f ∈ C∞c . By assumption there is a constant B > 0 such that: f and its derivatives are zero
on the complement of the compact set S(B) , {(x,v) ∈ R2d : |x| ∨ |v| ≤ B}, and for any
(x,v) ∈ S(B) we have |∇vf(x,v)| ≤ B and ∇2

vf(x,v) � BId. We denote β =
√

1− α2 and
assume that β ∈ (0, 1/2]. Let ξ ∼ Nd(0d, Id), and define

gξ(β) , f
(
x,
√

1− β2v + βξ
)
− f(x,v).

We remark that for any (x,v) /∈ S(2B + |ξ|) we have gξ(β) = 0 for any β ∈ (0, 1/2]. Taylor’s
theorem ensures that there is a function β 7→ Rξ(β) such that

gξ(β) = gξ(0) + βg′ξ(0) + (β2/2)g′′ξ (0) + (β2/2)Rξ(β).



Riou-Durand & Vogrinc / Metropolis Adjusted Langevin Trajectories 24

We have Rξ(β)→ 0 almost surely as β → 0 and for any β ∈ (0, 1/2] there exists a random variable
δξ ∈ (0, β] such that Rξ(β) = g′′ξ (δξ)− g′′ξ (0). Direct computations yields

g′ξ(β) =

(
− β

(1− β2)1/2
v + ξ

)>
∇vf

(
x,
√

1− β2v + βξ
)

g′′ξ (β) =− 1

(1− β2)3/2
v>∇vf

(
x,
√

1− β2v + βξ
)

+

(
− β

(1− β2)1/2
v + ξ

)>
∇2
vf
(
x,
√

1− β2v + βξ
)(
− β

(1− β2)1/2
v + ξ

)
.

Furthermore for λ = 2γ
1−α2 , we have

‖LRH
λ,αf − LLD

γ f‖∞ = γ‖(2/(1− α2))RPP
α f −RBMf‖∞.

For any deterministic square matrix A we have E[ξ>Aξ] = tr(A). This yields

(2/(1− α2))RPP
α f(x,v) =(2/β)E[g′ξ(0)] + E[g′′ξ (0)] + E[Rξ(β)]

=− v>∇vf(x,v) + E[ξ>∇2
vf(x,v)ξ] + E[Rξ(β)]

=RBMf(x,v) + E[Rξ(β)].

We see that ‖LRH
λ,αf −LLD

γ f‖∞ → 0 as soon as E[Rξ(β)] converges to zero uniformly over (x,v) ∈
R2d. This condition is satisfied because Rξ(β) can be uniformly dominated by an integrable random
variable, i.e.

|Rξ(β)| ≤|g′′ξ (δξ)|+ |g′′ξ (0)|
≤2
(
8|v|B + (|v|+ |ξ|)2B

)
1(x,v)∈S(2B+|ξ|)

≤2
(
16B2 + 8B|ξ|+ (2B + 2|ξ|)2B

)
.

By Taylor’s theorem Rξ(β) → 0 almost surely as β → 0. The claim of the Proposition follows
from applying the dominated convergence theorem.

A.2. Proof of Theorem 1

The proof relies on establishing a contraction rate for a twisted Wasserstein distance between two
copies of Randomized HMC. The coupling is synchronized with the same homogeneous Poisson
process (N t)t≥0 with rate λ, and the same independent standard Gaussian refreshments (ξk)k∈N.
Let us denote for any t ≥ 0 the two processes Zt , (Xt,V t) and Z ′t , (X ′t,V

′
t), defined through

the following system of SDEs:

dV t = −∇Φ(Xt)dt+
(√

1− α2ξNt
− (1− α)V t

)
dN t, dXt = V tdt,

dV ′t = −∇Φ(X ′t)dt+
(√

1− α2ξNt
− (1− α)V ′t

)
dN t, dX ′t = V ′tdt.

(18)

Let ν and ν′ be any two probability measures on R2d. We initialize the two processes form an
arbitrary coupling (Z0,Z

′
0) ∼ ζ such that Z0 ∼ ν, Z ′0 ∼ ν′. Both copies are Randomized HMC

processes, yet we remark that the joint process (Zt,Z
′
t) is also a Markov process. We denote

LCouple
λ,α its joint infinitesimal generator, characterized by the system of SDEs (18) for j ∈ {1, 2}.

The main arguments of this proof rely on a uniform bound on the generator LCouple
λ,α applied to a

twisted distance between the coupled processes, established in Lemma 1. This bound is proven in
Appendix A.3. The twist of the metric is determined by three real numbers a, b, c such that

A ,

(
aId bId
bId cId

)
� 0d×d. (19)
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For any such positive definite matrix A and any vector z ∈ R2d, we denote |z|A , (z>Az)1/2

its A-norm. For any q ≥ 1, we define the (q,A)-Wasserstein metric between any two probability
measures ν and ν′ on R2d by

Wq,A(ν, ν′) , inf{E[|X −X ′|qA]1/q,X ∼ ν,X ′ ∼ ν′}.

Lemma 1. The values a = 2(M +m)/(1 + α), b =
√
M +m and c = 2 are such that the matrix

A defined in (19) is positive definite. Moreover almost surely for t ≥ 0, we have

LCouple
λ,α |Zt −Z ′t|2A ≤ −2r|Zt −Z ′t|2A, r =

(1 + α)m

2
√
M +m

. (20)

An application of Grönwall’s inequality to Lemma 1 yields contraction for the twisted L2-norm.
We obtain for any t ≥ 0

E[|Zt −Z ′t|2A] ≤ e−2rtE[|Z0 −Z ′0|2A]. (21)

Taking square roots and considering the infimum over the couplings (Z0,Z
′
0) ∼ ζ such that

Z0 ∼ ν, Z ′0 ∼ ν′ yields
W2,A(νPt, ν′Pt) ≤ e−rtW2,A(ν, ν′) (22)

Establishing the 2-Wasserstein convergence for the Euclidean distance follows from unfolding the
twist of the metric. We consider the inequality (21) for a particular coupling (Z0,Z

′
0) ∼ ζ with

marginals ν = νx⊗Nd(0d, Id) and ν′ = Π∗ = Π⊗Nd(0d, Id) defined as follows. We start from V 0 =
V ′0 ∼ Nd(0d, Id), independently drawn from an arbitrary coupling of the positions (X0,X

′
0) ∼ ζx

such that X0 ∼ νx and X ′0 ∼ Π. We remark that for any x,v ∈ Rd we have

c(a|x|2 + 2bx>v + c|v|2) = (ac− b2)|x|2 + |bx+ cv|2 ≥ (ac− b2)|x|2.

Combining this inequality with (21) yields

E
[∣∣Xt −X ′t

∣∣2] ≤ c

ac− b2
E
[∣∣Zt −Z ′t∣∣2A] ≤ ce−2rt

ac− b2
E
[∣∣Z0 −Z ′0

∣∣2
A

]
.

Using that V 0 − V ′0 = 0 the last term can be substituted by

E
[∣∣Z0 −Z ′0

∣∣2
A

]
= aE

[∣∣X0 −X ′0
∣∣2] .

Taking square roots and considering the infimum over the couplings (X0,X
′
0) ∼ ζx such that

X0 ∼ νx and X ′0 ∼ Π yields

W2((νPt)x,Π) ≤ Ce−rtW2(νx,Π), C ,

√
ac

ac− b2
.

In particular, (Π∗P
t)x = Π for any t > 0 because Π∗ is invariant. A direct computation of the

constant C yields
C =

√
4/(3− α) ≤

√
2. (23)

We now extend the convergence to the L2(Π∗)-norm using a similar sketch of proof as for [25,

Theorem 3]. We introduce (Pt)∗ and (LCouple
λ,α )∗ the respective adjoints of Pt and LCouple

λ,α . These
adjoints are characterized by the distribution of Randomized HMC ran backwards in time. In
a weak sense, the backward dynamics are similar to the forward dynamics up to a flip of the
drift term. In Lemma 2 we present a uniform bound on the adjoint generator, similar to the one
obtained in Lemma 1 for the forward process. The twist of the metric differs to take into account
the change of sign in the velocities. It is determined by

A′ ,

(
aId −bId
−bId cId

)
� 0d×d. (24)
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Lemma 2. The values a = 2(M +m)/(1 + α), b =
√
M +m and c = 2 are such that the matrix

A′ defined in (24) is positive definite. Moreover almost surely for t ≥ 0, we have

(LCouple
λ,α )∗|Zt −Z ′t|2A′ ≤ −2r|Zt −Z ′t|2A′ , r =

(1 + α)m

2
√
M +m

. (25)

The result of Lemma 2 can be derived following the same arguments used for [25, Theorem 3],
its proof is therefore omitted. Similarly to (21) and (22), this result yields a (2,A′)-Wasserstein
contraction for the adjoint (Pt)∗. For any ν, ν′ two probability measures of R2d

W2,A′(ν(Pt)∗, ν′(Pt)∗) ≤ e−rtW2,A′(ν, ν
′). (26)

For f : R2d → R we introduce the Lipschitz norm with respect to A as

‖f‖Lip,A , sup
z1 6=z2

|f(z1)− f(z2)|
|z1 − z2|A

.

Using the dual formulation of the (1,A)-Wasserstein distance, for any measures ν, ν′ on R2d

W2,A(ν, ν′) ≥W1,A(ν, ν′) = sup
‖f‖Lip,A≤1

∫
f d(ν − ν′).

Let z1, z2 ∈ R2d. We combine this dual formulation with (22) and (26) for ν = δz1
and ν′ = δz2

.
In particular for any f, g such that ‖f‖Lip,A ≤ 1 and ‖g‖Lip,A′ ≤ 1 we obtain

|Ptf(z1)−Ptf(z2)| ≤e−rt|z1 − z2|A
|(Pt)∗g(z1)− (Pt)∗g(z2)| ≤e−rt|z1 − z2|A′

(27)

We also note that [25, Equation (4.12)] yields

|z1 − z2|A′ ≤ (C ′)2|z1 − z2|A, C ′ ,

(
ac+ b2 + 2

√
acb2

ac− b2

)1/4

. (28)

Let f ∈ L0
2(Π). By definition, f depends only on the position therefore ‖f‖Lip,A = ‖f‖Lip,A′ .

Applying successively (27) with g = Ptf and (28) yields

‖(Pt)∗Ptf‖Lip,A′ ≤e−rt‖Ptf‖Lip,A′ ≤ (C ′)2e−rt‖Ptf‖Lip,A

≤(C ′)2e−2rt‖f‖Lip,A = (C ′)2e−2rt‖f‖Lip,A′ .
(29)

We refer to the proof of [58, Proposition 30] with κ = 1 − (C ′)2e−2rt for any t > log(C ′)/r. We
argue that (Pt)∗Pt is a reversible kernel with spectral radius at most (C ′)2e−2rt on the Lipschitz
functions of L0

2(Π). This subset being dense, the spectral radius extends to every function of L0
2(Π).

Noting 〈, 〉 for the scalar product in L0
2(Π∗), we obtain that for any f ∈ L0

2(Π)

‖Ptf‖2 = 〈f, (Pt)∗Ptf〉 ≤ ‖f‖‖(Pt)∗Ptf‖ ≤ (C ′)2e−2rt‖f‖2. (30)

The second claim of the Theorem follows from taking square roots. A direct computation of C ′

yields

C ′ =

(
5 + α+ 4

√
1 + α

3− α

)1/4

≤ (3 + 2
√

2)1/4 ≤ 1.56. (31)
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A.3. Proof of Lemma 1

In the sequel, we denote Ht the d× d matrix defined by

Ht ,
∫ 1

0

∇2Φ(sXt + (1− s)X ′t)ds.

Taylor’s theorem yields ∇Φ(Xt)−∇Φ(X ′t) = HtX̃t, and mId � Ht �MId by Assumption 2. For
the purpose of computations, we make repeated use of the shorthand notations X̃t , Xt −X ′t,
and Ṽ t , V t−V ′t in the following. From (18) we rewrite (X̃t, Ṽ t)t≥0 as a stochastic jump process
driven by the following SDE

dṼ t = −HtX̃tdt− (1− α)Ṽ tdN t

dX̃t = Ṽ tdt

Applying the product rule to this SDE yields

d|X̃t|2 = 2X̃
>
t Ṽ tdt

dX̃
>
t Ṽ t = (−X̃>t HtX̃t + |Ṽ t|2)dt− (1− α)X̃

>
t Ṽ tdN t

d|Ṽ t|2 = −2X̃
>
t HtṼ tdt− (1− α2)|Ṽ t|2dN t.

Letting a, c > 0 and b ∈ R such that ac− b2 > 0, we consider the positive definite matrix

A ,

(
aId bId
bId cId

)
.

Applying the generator LCouple
λ,α on |Zt −Z ′t|2A = a|X̃t|2 + 2bX̃

>
t Ṽ t + c|Ṽ t|2 yields

LCouple
λ,α |Zt −Z ′t|2A = 2aX̃

>
t Ṽ t − 2bX̃

>
t HtX̃t − 2b(1− α)λX̃

>
t Ṽ t + 2b|Ṽ t|2

− 2cX̃
>
t HtṼ t − c(1− α2)λ|Ṽ t|2

=− (Zt −Z ′t)> St (Zt −Z ′t)

where

St ,

(
2bHt (b(1− α)λ− a)Id + cHt

(b(1− α)λ− a)Id + cHt (c(1− α2)λ− 2b)Id

)
.

The inequality LCouple
λ,α |Zt −Z ′t|2A ≤ −2r|Zt −Z ′t|2A is therefore satisfied whenever St − 2rA is a

positive semi-definite matrix. By diagonalizing each block of this last matrix in the same basis, we
obtain necessary and sufficient conditions for ensuring that its 2d eigen-values are simultaneously
non-negative: St − 2rA � 0 iff for each eigen-value σ of Ht, we have

−2ra+ 2bσ ≥ 0 (32)

−2rc+ c(1− α2)λ− 2b ≥ 0 (33)

[−2rb+ b(1− α)λ− a+ ch]2 ≤ [−2ra+ 2bσ][−2rc+ c(1− α2)λ− 2b] (34)

The inequalities (32), (33) and (34) ensure that the two diagonal elements and the determinant
of the 2 × 2 submatrix corresponding to a given eigen-value σ (composed by the corresponding
diagonal elements of each block), are non-negative. To solve these inequalities, we first choose a, b, c
such that the constraints (32) and (34) are saturated for the less favorable choice of eigen-value
σ, then we check that (33) holds for the resulting values of a, b, c.

Without loss of generality we fix c = 2, and then choose a such that (32) is an equality when
σ = m. Consequently, b is also fixed since both sides of (34) must be zero when σ = m, we get{

2ra = 2bm
2rb = b(1− α)λ− a+ 2m

⇔
{
a = 2m/s
b = 2r/s

, s , 1− r

m
((1− α)λ− 2r). (35)
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For any real numbers x, y, z, w such that xz > 0 and w/z = y/x = m the map σ 7→ (xσ−y)2/(zσ−
w) is increasing when σ > m. As a consequence, (34) holds for any σ ∈ [m,M ] iff it holds for
σ = M . This condition is satisfied whenever

[2(M −m)]2 ≤ [2b(M −m)][2((1− α2)λ− 2r)− 2b]

⇔ M −m ≤ b((1− α2)λ− 2r − b)
⇔ M +m ≤ a+ α(1− α)λb− b2

where the last equivalence follows from substituting b((1−α)λ− 2r) by a− 2m, in line with (35).
By multiplying both sides by s2, we conclude that (34) holds for any h ∈ [m,M ] iff

(M +m)s2 − (2m+ 2α(1− α)λr)s+ 4r2 ≤ 0. (36)

Moreover, the set of solutions s ∈ R to (36) is non-empty only when

16r2(M +m)− (2m+ 2α(1− α)λr)2 ≤ 0. (37)

For the purpose of computations, we parametrize the refreshment angle, intensity, and the expo-
nential convergence rate with respect to x, y ≥ 0 such that

α(1− α)λ = x
√
M +m, r = y

(
m√

M +m

)
.

Plugging this parametrization into (37) simplifies to

16y2m2 − (2m+ 2yxm)2 ≤ 0 ⇔ 16y2 − (2 + 2yx)2 ≤ 0

⇔ (4y − 2− 2yx)(2x+ 2 + 2yx) ≤ 0

⇔ y(2− x) ≤ 1.

We remark that the largest exponential convergence rate is obtained by choosing y = 1/(2 − x)
for 0 ≤ x < 2. This choice saturates (37), therefore (36) now has a unique positive solution that
fixes the choice of δ, indeed

s =
m+ α(1− α)λr

M +m
⇔ 1− r

m
((1− α)λ− 2r) = 1− (M − α(1− α)λr)

(M +m)

⇔ yx(M +m)− 2αym) = αM − αyxm
⇔ x(M +m)− (2− x)αM + xαm = 2αm

⇔ x(M +m+ αM + αm) = 2αm+ 2αM

⇔ x = 2α/(1 + α).

We remark therefore that x ∈ [0, 1) because α ∈ [0, 1). Since the constraint (36) is also saturated,
we know (33) holds for any x ∈ [0, 1) because (1 − α2)λ − 2r − b = (M −m)/b is non-negative.
Moreover, direct computations of s and r in (35) yields explicit values for a, b, c as follows:

a = 2(M +m)/(1 + α), b =
√
M +m, c = 2. (38)

Both a and c are positive, therefore A is positive definite for any α ∈ [0, 1) since

ac− b2 = (M +m)(3− α)/(1 + α) > 0.

A.4. Proof of Proposition 2

For a = γ2, b = γ and c = 2, consider the matrices

A ,

(
aId bId
bId cId

)
, A′ ,

(
aId −bId
−bId cId

)
.
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Denote the forward Langevin processes (Zt)t≥0 and (Zt)t≥0, solutions of (2) coupled with the
same Brownian motion. We refer to the proof of [24, Proposition 1] (for v = 0), which obtains

d

dt
|Zt −Z ′t|2A ≤ −2r|Zt −Z ′t|2A.

We remark that a similar inequality can be proven for the backward processes, with respect to the
A′-norm. Applying Gronwall’s inequality then yields both

W2,A(νPt, ν′Pt) ≤ e−rtW2,A(ν, ν′)

W2,A′(ν(Pt)∗, ν′(Pt)∗) ≤ e−rtW2,A′(ν, ν
′)

The claim of the proposition follows from using the exact same arguments as in the proof of
Theorem 1 starting from (26); see Appendix A.2. The same constant C ′ = (3 + 2

√
2)1/4 ≤ 1.56 is

obtained for any choice of friction.

Appendix B: Proofs of the properties of MALT

B.1. Proof of Proposition 3

We refer to a generic theorem established in [53, Theorem 1.1]. The claim of the proposition follows
from checking that sufficient conditions to invoke this theorem are satisfied. This task reduces to
establishing local accuracy for the numerical Langevin trajectories. We introduce a few notations
before stating these conditions, established in Lemma 3.

For any t ≥ 0, i ≥ 0 and any function f such that f(Zt, zi) is integrable, we denote the conditional
expectation starting from z0 by Ez0 [f(Zt, zi)] , E[f(Zt, zi) |Z0 = z0]. Whenever f(Zt, zi) is
square integrable, we denote the L2-norm from z0 by ‖f(Zt, zi)‖z0

L2
, Ez0 [f(Zt, zi)

2]1/2.

Lemma 3. (Local accuracy) Suppose that Assumption 1 holds. For any fixed d ≥ 1, T > 0 and
γ ≥ 0, there exists C > 0 such that for any h ∈ (0, T ] and z0 = (x0,v0) ∈ R2d

|Ez0 [Zh − z1]| ≤ C(1 + |z0|2)1/2h2(
Ez0 [|Zh − z1|2]

)1/2 ≤ C(1 + |z0|2)1/2h3/2

Combined with [53, Theorem 1.1], this result yields the claim of the proposition. The proof of
Lemma 3 is derived hereafter. The density Π ∝ e−Φ is integrable, therefore the potential Φ ∈
C1(Rd) has a minimum, which is also a zero of ∇Φ. In other words there exists x∗ ∈ arg min Φ
such that ∇Φ(x∗) = 0d, and we denote D , |x∗|. Assumption 1 ensures that for any x ∈ Rd, we
have |∇Φ(x)| ≤M(|x|+D). We make repeated use of this bound in the sequel.

We set d ≥ 1, T > 0 and γ ≥ 0 to be fixed for the rest of the proof. We first show that the constant
A , (1 + 2T (dγ +M2D2))e(2M2+2)T is such that for any z0 = (x0,v0) ∈ R2d and t ∈ (0, T ]

Ez0 [|Zt|2] ≤ A(1 + |z0|2). (39)

For f(x,v) = |x|2 + |v|2, Young’s inequality applied to the generator L yields

Lf(x,v) = −2〈γv +∇Φ(x),v〉+ 2〈v,x〉+ 2dγ

≤ −2γ|v|2 + (|∇Φ(x)|2 + |v|2) + (|x|2 + |v|2) + 2dγ

≤ (2M2 + 2)f(x,v) + 2(dγ +M2D2)

Dynkin’s formula applies to the norm-like function f ; see [52, Theorem 1.1] for a justification. For
a = 2M2 + 2 and b = 2(dγ +M2D2) this bound yields

Ez0 [f(Zt)] = f(z0) +

∫ t

0

Ez0 [Lf(Zs)]ds ≤ (bt+ f(z0)) + a

∫ t

0

Ez0 [f(Zs)]ds.
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Grönwall’s inequality in its integral form yields Ez0 [f(Zt)] ≤ (bt+ f(z0))eat, and (39) follows for
A = (1 + bT )eaT .

We apply the inequality (39) in the sequel to bound the local errors between Zh and z1. To this
end, we write down their respective explicit solutions. Integrating the Langevin SDE defined in
(2) yields the following solution; see [10, Lemma 7.1, eqs 43, 44].

V h = e−γhv0 − h∇Φ(x0)−
∫ h

0

((h− s)∇2Φ(Xs)V s + (1− e−γ(h−s))∇Φ(Xs))ds+Gh

Xh = x0 + hv0 −
∫ h

0

(h− s)(∇Φ(Xs) + γV s)ds+
√

2γ

∫ h

0

(h− s)dW s

where

Gh ,
√

2γ

∫ h

0

e−γ(h−s)dW s.

Define ξ = ξ0,h/2 and ξ′ = ξh/2,h with respect to (9). The OBABO update unfolds as

v1 = η
(
ηv0 +

√
1− η2ξ − h∇Φ(x0)− (h/2)(∇Φ(x1)−∇Φ(x0))

)
+
√

1− η2ξ′

x1 = x0 + h(ηv0 +
√

1− η2ξ)− (h2/2)∇Φ(x0) (40)

From (9) we obtain that Gh =
√

1− η2(ηξ+ξ′). As a result, the difference between the Langevin
solution and the OBABO update yields

V h − v1 =− h(1− η)∇Φ(x0) +
h

2
(∇Φ(x1)−∇Φ(x0))−

∫ h

0

(h− s)∇2Φ(Xs)V sds

+

∫ h

0

(1− e−γ(h−s))∇Φ(Xs)ds

Xh − x1 =h(1− η)v0 +

∫ h

0

(h− s)[∇Φ(x0)−∇Φ(Xs)− γV s]ds+G′h

where

G′h ,
√

2γ

∫ h

0

(h− s)dW s − h
√

1− η2ξ.

Young’s inequality yields

E[|G′h|2] ≤ 2d(2γh3/3 + γh3) ≤ 4dγh3.

The vector G′h is centered. Applying Jensen’s and Young’s inequalities yields the decompositions

|Ez0 [Zh − z1]| ≤ ‖V h − v1‖z0

L2
+ ‖Xh − x1 −G′h‖

z0

L2
(41)(

Ez0 [|Zh − z1|2]
)1/2 ≤ √2

(
‖V h − v1‖z0

L2
+ ‖Xh − x1 −G′h‖

z0

L2
+ h3/2

√
4dγ

)
(42)

The claim of Lemma 3 follows from bounding the two norms on the right hand sides. For any
s ∈ (0, h], we have ‖Zs‖z0

L2
≤
√
A(1 + |z0|2)1/2 by (39). Minkowski’s inequality yields

‖V h − v1‖z0

L2
≤ (γh2M/2)(|x0|+D) + (h2M/2) (|v0|+ ‖ξ‖L2

+ (h/2)(|x0|+D))

+

∫ h

0

(h− s)M‖V s‖z0

L2
ds+ γ

∫ h

0

(h− s)M(‖Xs‖z0

L2
+D)ds

≤ (h2M/2)

[
(γ +

√
T/2)(|x0|+D) + |v0|+

√
d+ (1 + γ) sup

0≤s≤h
‖Zs‖z0

L2

]
≤ (M/2)

[
(2γ +

√
T )(1 +D) + 2(1 +

√
d) + (1 + γ)

√
A
]

(1 + |z0|2)1/2h2
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‖Xh − x1 −G′h‖
z0

L2
≤ (γh2/2)|v0|+

∫ h

0

(h− s)
(
M |x0|+M‖Xs‖z0

L2
+ γ‖V s‖z0

L2

)
ds

≤ (h2/2)

[
γ|v0|+M |x0|+ (M + γ) sup

0≤s≤h
‖Zs‖z0

L2

]
≤ (1/2)

[
(γ +M)(1 +A1/2)

]
(1 + |z0|2)1/2h2

As a result, for B , 2M(γ +
√
T/2)(1 +D) + 2M(1 +

√
d) + (γ + γM +M)A1/2 we obtain

‖V h − v1‖z0

L2
+ ‖Xh − x1 −G′h‖

z0

L2
≤ B(1 + |z0|2)1/2h2.

Plugging this bound into the decompositions (41) and (42), we get for any h ∈ (0, T ]

|Ez0 [Zh − z1]| ≤ B(1 + |z0|2)1/2h2(
Ez0 [|Zh − z1|2]

)1/2 ≤ (
√

2TB +
√

8dγ)(1 + |z0|2)1/2h3/2

This yields the claim of Lemma 3 for C = B ∨ (
√

2TB +
√

8dγ).

B.2. Proof of Proposition 4

We introduce Γ(B) , P(ξ ∈ B), where ξ ∼ Nd(0d, Id), defined for any Borel set B of Rd. We also
define the Gibbs update, corresponding to the conditional distribution of µ given x0.

G(z0:L,dz
′
0:L) , δx0

(dx′0)Γ(dv′0)

L∏
i=1

Qh,γ(zi−1,dzi) (43)

The Gibbs kernel G is reversible with respect to µ by construction. Built upon a determinis-
tic proposal of the backward trajectory β(z0:L) , (ϕ(zL), ϕ(zL−1), · · · , ϕ(z0)), we introduce a
Metropolis update defined for any Borel set A of R2d(L+1)

M(z0:L, A) , (1 ∧ e−∆(x0:L))δβ(z0:L)(A) + (1− 1 ∧ e−∆(x0:L))δz0:L
(A).

The Metropolis kernel M is also reversible with respect to µ. For γ = 0, this follows from (11),
(12) and [2, Theorem 3]. For γ > 0 the distribution µ admits a density with respect to Lebesgue’s
measure. From (11) and [13, Eq 5.13] we obtain that the corresponding density µ is such that

−∆(x0:L) =

L∑
i=1

log

(
Π∗(zi)qh,γ(ϕ(zi), ϕ(zi−1))

Π∗(zi−1)qh,γ(zi−1, zi)

)
= log

(
µ(β(z0:L))

µ(z0:L)

)
. (44)

Finally, we consider the cycle K = GMG defined on Borel sets A of R2d(L+1)

K(z0:L, A) ,
∫

G(z0:L,dz
′
0:L)M(z′0:L,dz

′′
0:L)G(z′′0:L, A).

The palindromic structure of K = GMG ensures reversibility with respect to µ. Since the tran-
sition G(z0:L, .) only depends on the starting position x0 ∈ Rd and Π is the marginal of µ, we
obtain that P(x0, A) , K(z0:L, A×Rd(2L+1)) defines marginally a Markov kernel on Rd, reversible
with respect to Π. In particular, the distribution of (Xn)n≥0 in Algorithm 2 coincides with the
distribution of a Markov chain generated by P.

B.3. Proof of Proposition 5

The claim of the proposition follows from establishing that P is both Π-irreducible and aperiodic;
see [66, Theorem 4]. We prove these two results here. For any γ > 0 and any position x0 ∈ Rd,
the kernel G in (43) defines a density with respect to Lebesgue’s measure on Rd(2L+1)

g(x0, (v0, z1:L)) , ψ(v0)

L∏
i=1

qh,γ(zi−1, zi).
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By definition, this conditional density is positive everywhere, and ∆(x0:L) < ∞ for any x0:L ∈
Rd(L+1). Subsequently, for any Borel set A of Rd such that Π(A) > 0, we have

P(x0, A) ≥
∫
g(x0, (v0, z1:L))(1 ∧ e−∆(x0:L))d(v0, z1:L) > 0 (45)

Since P(x0, A) > 0 for any x0 ∈ Rd and any A such that Π(A) > 0, we conclude that P is
Π-irreducible. Suppose now that P is periodic. Then there exist two disjoint sets A1, A2 with
Π(A1) > 0 and Π(A2) > 0 such that P(x0, A2) = 1 for any x0 ∈ A1. However (45) implies that
P(x0, A1) > 0 for any such x0 ∈ A1, yielding a contradiction. We conclude that P is aperiodic.

Appendix C: Proofs of optimal scaling

C.1. Proof of Theorem 2

Analogously to (10) and (11) denote for x, y ∈ R

εh(x, y) = φ(y)− φ(x)− y − x
2

(φ′(y) + φ′(x))− h2

8

(
φ′(y)2 − φ′(x)2

)
(46)

and for x0:L ∈ RL+1

∆h(x0:L) =

L∑
i=1

εh(xi−1, xi) . (47)

The product structure of the potential assumed in Assumption 3 enforces a product structure also
on the associated total energy differences in the following sense

∆(x0:L) =

d∑
j=1

∆h,j(x0:L(j)) , (48)

where ∆h,j(x0:L(j)) are IID copies of a random variable ∆h(x0:L) given by a single component
of the Langevin trajectory x0:L, with respect to the one-dimensional potential φ (initiated in
stationarity).

To prove that total energy difference random variables ∆(x0:L) satisfy a form of CLT, we use an
extension of the framework introduced in [73, Section 3]. More precisely, Theorem 2 is as a direct
application of [73, Theorem 8]. To invoke it, we need to understand the asymptotic behavior of a
single component of the Langevin trajectory as the dimension increases. Specifically, we need to
verify the following two conditions:

Proposition 9. Let T > 0, γ ≥ 0 and ` > 0 and take a sequence of time-steps h → 0 and
L = bT/hc. Assume the one-dimensional potential φ satisfies Assumption 3 and let x0 ∼ Π. Then

(i)

1

h4
E
[
∆2
h(x0:L)

] h→0−−−→ Σ = E

(∫ T

0

S(Xt, Vt)dt

)2


(ii)
1

h4
E
[
∆2
h(x0:L)1∆h>h

] h→0−−−→ 0 .

A proof is given is Appendix C.2.

Some care is required to justify that the results of [73, Section 3] do actually carry over from
the classical Metropolis-Hastings setting to MALT. The results of [73, Section 3] concern objects
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called log Metropolis-Hastings random variables that are related to the Kullback-Leibler diver-
gence between the forward Π(dx)q(x, dy) and reverse Π(dy)q(y,dx) transition kernels. The total
energy difference random variables defined here are a generalisation, they can also be related to
the Kullback-Leibler divergence between the forward distribution µ(z0:L) and the skew-backward
distribution µ(β(z0:L)).

The proofs of [73, Section 3] depend entirely on the symmetry property of log-MH random variables
featured in the following proposition. They do not rely on the exact definition of log-MH random
variables, only on their symmetric property. Therefore, the only thing we need to do in order to
extend the results to the trajectory setting is to verify this symmetry is still satisfied, the proofs
from that point on remain literally the same.

Proposition 10. Let ∆(x0:L) be a total energy difference function of MALT and abbreviate
xL:0 = (xL, . . . ,x0). Then

(i) ∆(x0:L) = −∆(xL:0).

(ii) Let f : R→ R be a measurable functions such that f ◦∆ is integrable with respect to µ. Then
Eµ[f(−∆)e−∆] = Eµ[f(∆)].

Proof. Part (i) of the proposition is immediate from (10) and (11). To establish Part (ii) we split
the cases γ > 0 and γ = 0. In the positive friction case, by (44) the measure µ has a positive
density with respect to Lebesgue measure on R2d(L+1) such that

µ(z0:L)e−∆(x0:L) = µ(β(z0:L)) .

Combining this equality to the change of variable z′0:L = β(z0:L) with unit Jacobian, we obtain

Eµ[|f(−∆(x0:L))|e−∆(x0:L)] =

∫
R2d(L+1)

|f(−∆(x0:L))|e−∆(x0:L)µ(z0:L)dz0:L

=

∫
R2d(L+1)

|f(∆(xL:0))|µ(β(z0:L))dz0:L

=

∫
R2d(L+1)

|f(∆(x′0:L))|µ(z′0:L)dz′0:L < ∞ .

This ensures that the quantity E[f(−∆(x0:L))e−∆(x0:L)] is integrable. Repeating the calculation
without the absolute values yields the desired identity. Now, when γ = 0 the measure µ is charac-
terized by the density Π∗ on R2d. Each trajectory is a deterministic function of its starting point
z0:L = (z0, · · · ,θLh (z0)). We apply the change of variable z′0 = ϕ ◦ θLh (z0) with unit Jacobian.
Denote z′0:L = (z′0, · · · ,θ

L
h (z′0)) and remark that time-reversibility of the Leapfrog update yields

z′0:L = (ϕ ◦ θLh (z0), · · · , ϕ(z0)). Since ϕ leaves Π∗ invariant, we obtain

Eµ[|f(−∆(x0:L))|e−∆(x0:L)] =

∫
R2d

|f (−∆ (x0:L))| e−∆(x0:L)Π∗(z0)dz0

=

∫
R2d

|f (∆ (xL:0))|Π∗(θLh (z0))dz0

=

∫
R2d

|f (∆ (x′0:L))|Π∗(z′0)dz′0 < ∞ .

Again, the same calculation without absolute values establishes the desired identity.

C.2. Proof of Proposition 9

The center of the proof for both (i) and (ii) is showing that

1

h2
∆h(x0:L) =

∫ T

0

S(Xt, Vt)dt + Rh , (49)
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where the reminder Rh satisfies E[R2
h]→ 0 as h→∞. This is done by approximating the leading

terms of a Taylor’s expansion of ∆h(x0:L) over the entire Langevin trajectory and controlling the
square expectations of the error terms. For this task we need to extend strong accuracy results
(see Proposition 3) beyond Lipschitz functions. This is enabled by the following lemma proven in
Appendix C.3.

Lemma 4. Let T > 0, γ ≥ 0 and h ∈ (0, 1] and take L so that hL ≤ T . Assume the one-
dimensional potential φ satisfies Assumption 3 and let x0 ∼ Π. There exists constants A1, A2, A3, A4 >
0 independent of the choices of h and L such that following statements hold:

(i)
max

0≤i≤L
max(E[x8

i ],E[v8
i ]) ≤ A1 ,

(ii)

E
[(
φ′(xL)2 − φ′(XhL)2

)2] ≤ A2h ,

(iii)

sup
1≤i≤L

E

((xi − xi−1

h

)3

− V̂ 3
i−1

)2
 ≤ A3h ,

(iv)

sup
1≤i≤L

E
[(
V 3

(i−1)h − v
3
i−1

)2
]
≤ A4h

2/3 .

To show (49) we transform the expression in (47) into the desired form. The sum of third terms
of (46) terms appearing in (47) can be dealt with using Itô’s lemma∫ T

0

Vtφ
′′(Xt)φ

′(Xt)dt =

∫ T

0

∂

∂x

(
1

2
φ′(Xt)

2

)
dXt =

1

2

(
φ′(XT )2 − φ′(X0)2

)
.

Since x0 = X0, this implies that

E
[( L∑

i=1

(
φ′(xi)

2 − φ′(xi−1)2
)
− 2

∫ T

0

Vtφ
′′(Xt)φ

′(Xt)dt
)2
]

= E
[(
φ′(xL)2 − φ′(x0)2 − φ′(XT )2 + φ′(X0)2

)2]
≤ 2E

[(
φ′(xL)2 − φ′(XhL)2

)2]
+ 2E

[(
φ′(XT )2 − φ′(XhL)2

)2] h→0−−−→ 0 .

(50)

The first term vanishes by Lemma 4 (ii). The second vanishes because hL → T , the function φ′

is M -Lipschitz (grows at most linearly) and Xt is a stationary process with continuous paths and
finite fourth moments.

To control the rest of (47) we take advantage of [73, Lemma A.2.] and the fundamental theorem

of calculus. For each 1 ≤ i ≤ L we rewrite using
∫ 1

0
(1− 2u)du = 0

φ(xi)− φ(xi−1)− 1

2
(xi − xi−1) (φ′(xi) + φ′(xi−1)

=
1

2
(xi − xi−1)2

∫ 1

0

(1− 2u)φ′′(xi−1 + u(xi − xi−1))du

=
1

2
(xi − xi−1)3

∫ 1

0

(1− 2u)u

∫ 1

0

φ(3)(xi−1 + su(xi − xi−1))dsdu .
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Noting that
∫ 1

0
(1−2u)udu = − 1

6 , we can relate this to a term expressed with Langevin dynamics:

φ(xi)− φ(xi−1)− 1

2
(xi − xi−1) (φ′(xi) + φ′(xi−1) +

1

12
h3V 3

(i−1)hφ
(3)(X(i−1)h)

= Ri,1 + Ri,2 + Ri,3 ,
(51)

where

Ri,1 =
1

2

(
(xi − xi−1)3 − h3v3

i−1

) ∫ 1

0

(1− 2u)u

∫ 1

0

φ(3)(xi−1 + su(xi − xi−1))dsdu

Ri,2 =
1

2
h3
(
v3
i−1 − V 3

(i−1)h

)∫ 1

0

(1− 2u)u

∫ 1

0

φ(3)(xi−1 + su(xi − xi−1))dsdu

Ri,3 =
1

2
h3V 3

(i−1)h

∫ 1

0

(1− 2u)u

∫ 1

0

(
φ(3)(xi−1 + su(xi − xi−1))− φ(3)(X(i−1)h)

)
dsdu .

We will show that of the k = 1, 2, 3 we have

1

h6
sup

1≤i≤L
E[R2

i,k]
h→0−−−→ 0 . (52)

For the first two term Ri,1 and Ri,2 we use boundedness of φ(3) together with respectively points
(iii) and (iv) of Lemma 4. For the last term Ri,3 we first use Cauchy’s inequality (recall E[V 12

(i−1)h]

is finite since Vt is a stationary standard Gaussian process) together with Jensen’s inequality,
Fubini’s theorem and the fact that both φ(3) and φ(4) are bounded.

E
[(
φ(3)(xi−1 + su(xi − xi−1))− φ(3)(X(i−1)h)

)4
]

≤ 8‖φ(4)‖∞‖φ(3)‖3∞
(
E
[∣∣xi−1 −X(i−1)h

∣∣]+ E [|xi − xi−1|]
)
.

Then use Proposition 3 and Lemma 4 (iii) and (iv) to control this bound as follows:

E[|xi−xi−1|] ≤ E
[
(xi − xi−1)

6
]1/6

= E
[(

(xi − xi−1)
3 − h3v3

i−1 + h3
(
v3
i−1 − V 3

(i−1)h

)
+ h3V 3

(i−1)h

)2
]1/6

≤ 3h
(
E
[(

((xi − xi−1)/h)
3 − v3

i−1

)2]
+ E

[(
v3
i−1 − V 3

(i−1)h

)2]
+ E

[
V 6

(i−1)h

])1/6

Finally, paths of (Xt, Vt) are almost surely continuous and therefore Riemann integrable. Hence
almost surely

h

L∑
i=1

V 3
(i−1)hφ

(3)(X(i−1)h)
h→0−−−→

∫ T

0

V 3
t φ

(3)(Xt)dt .

Since hL → T , φ(3) is bounded and Vt is standard Gaussian for all t, the convergence also holds
in L2-sense

E

(h L∑
i=1

V 3
(i−1)hφ

(3)(X(i−1)h)−
∫ T

0

V 3
t φ

(3)(Xt)dt

)2
 h→0−−−→ 0 .

Combining this convergence with (51) and (52), we obtain as h→ 0

1

h4
E
[( L∑

i=1

(
φ(xi)− φ(xi−1)− 1

2
(xi − xi−1)(φ′(xi) + φ′(xi−1))

)
−
∫ T

0

V 3
t φ

(3)(Xt)dt
)2
]
→ 0
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which, combined with (50), yields (49). Point (i) follows by integrating

1

h4
E
[
∆2
h(x0:L)

]
= E

(∫ T

0

S(Xt, Vt)dt

)2
− 2E

[
Rh

∫ T

0

S(Xt, Vt)dt

]
+ E

[
R2
h

]
where the last two terms vanish as h→ 0 (use Cauchy’s inequality for the middle term).

Proof of point Proposition 9(ii) uses similar arguments. Recall that Vt is a stationary Gaussian and
that by Assumption 3 there exists constants M,D such that ‖φ′′‖∞ ≤M and |φ′(x)| ≤M(|x|+D).
Note that by Assumption 3, Jensen’s inequality and Fubini’s theorem

E

[(∫ T

0

S(Xt, Vt)dt
)4
]
≤
∫ T

0

E
[
S(Xt, Vt)

4
]

dt

= 4

∫ T

0

E
[

1

124
V 12
t φ(3)(Xt)

4 +
1

44
V 4
t φ
′′(Xt)

4φ′(Xt)
4

]
dt

≤ T

3443
‖φ(3)‖4∞E[V 12

t ] +
T

43
M4E[V 8

t ]1/2E
[
(M(|Xt|+D))8

]1/2
<∞.

This and (49) show

1

h4
E
[
∆2
h(x0:L)1∆h(x0:L)>h

]
= E

[(∫ T

0

S(Xt, Vt)dt
)2

1∆h(x0:L)>h

]
+ E

[
R2
h1∆h(x0:L)>h

]
+ 2E

[
Rh

(∫ T

0

S(Xt, Vt)dt

)
1∆h(x0:L)>h

]
.

The last two terms vanish since E[R2
h] → 0. The first term vanishes by a combination of Cauchy

and Markov inequalities together with part (i)

E
[(∫ T

0

S(Xt, Vt)dt
)2

1∆h(x0:L)>h

]
≤
(
E
[(∫ T

0

S(Xt, Vt)dt
)4
]
P
(
∆2
h(x0:L) > h2

))1/2

≤ hE

[(∫ T

0

S(Xt, Vt)dt
)4
]1/2(

1

h4
E
[
∆2
h(x0:L)

])1/2
h→0−−−→ 0 .

C.3. Proof of Lemma 4

A uniform control of the distance between the numerical Langevin trajectory and the Langevin
diffusion is given by Proposition 3, which extends trivially to functional values along the trajecto-
ries for all Lipschitz functions. Point (i) allows us to extend these findings for functions that are
not globally Lipschitz but do not grow to rapidly. This is then done for specific functions required
for the analysis of MALT in points (ii), (iii) and (iv).

The proof of (i) we use a ”discrete Grönwall’s inequality”. We will show that for 0 ≤ i ≤ L − 1
and some constants A,B > 0

max
(
E[x8

i+1],E[v8
i+1], B

)
≤ (1 +Ah)×max

(
E[x8

i ],E[v8
i ], B

)
. (53)

Iterating this inequality and using h ≤ T/L and the inequality (1 + t) ≤ et gives us the following
uniform bound, valid for all 0 ≤ i ≤ L:

max
(
E
[
x8
i

]
,E
[
v8
i

]
, B
)
≤ (1 +Ah)i ×max

(
E
[
x8

0

]
,E
[
v8

0

]
, B
)

≤ (1 +AT/L)L ×max
(
E
[
x8

0

]
,E
[
v8

0

]
, B
)

≤ eAT ×max
(
E
[
x8

0

]
,E
[
v8

0

]
, B
)
.
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This establishes (i) with A1 = eAT max
(
E
[
x8

0

]
,E
[
v8

0

]
, B
)
, which is finite by Assumption 3, as

the Langevin trajectory is initiated in stationarity.

Assumption 3 implies that φ′ is M -Lipschitz and grows at most linearly: |φ′(x)| ≤M(|x|+D) for
appropriate constants M,D, so that (φ′(x))8 ≤ 8M8(|x|8 +D8).

First, we deal with the bound on the eighth moment of the position. We use the Multinomial
theorem to expand the expression of x8

i+1 in the OBABO update (40). We then separate the zero-
order term with respect to h from the rest and use the Hölder’s inequality to bound them. Note
that the number of terms is fixed and finite and recall that we are assuming h < 1. Using the fact
that φ′ grows at most linearly, we get for appropriate constants A′, B′ > 0

E[x8
i+1] = E

[(
xi + he−γh/2vi + h

√
1− e−γhξi −

h2

2
φ′(xi)

)8
]

≤ E[x8
i ] +

∑
j1+j2+j3+j4=8

j1<8

hj2+j3+2j4

(
8

j1, j2, j3, j4

)
E
[
|xi|j1 |vi|j2 |ξi|j3 |φ′(xi)|j4

]

≤ E[x8
i ] + (8!)h

∑
j1+j2+j3+j4=8

j1<8

(
E
[
x8
i

]j1 E [v8
i

]j2 E [ξ8
i

]j3 E [φ′(xi)8
]j4)1/8

≤ E[x8
i ] +A′hmax

(
E[x8

i ],E[v8
i ], B′

)
.

(54)

We derive a similar identity for the update of the velocities where we use Multinomial theorem to
expand the expression of v8

i+1 in the OBABO update (40). Note that since ξi, ξi+1 are standard
Gaussian and independent of each other and of vi, there exists a standard Gaussian ξ′i that is
independent of vi and satisfies e−γh/2

√
1− e−γhξi +

√
1− e−γhξi+1 =

√
1− e−2γhξ′i. Also note

that the inequality 1− e−t ≤ t implies that
√

1− e−2γh <
√

2γh. We separate the zero-order and
half-order terms with respect to h and bound the remaining terms using the Lipschitz property of
φ′ and (54). The half-order term vanishes since E[ξ′i] = 0. For appropriate constants A,A′, B > 0
we get

E[v8
i+1] = E

[(
e−γhvi − hφ′(xi)−

h

2
(φ′(xi+1)− φ′(xi)) +

√
1− e−2γhξ′i

)8
]

≤ E[v8
i ] + 8e−7γh

√
1− e−2γhE

[
v7
i

]
E [ξ′i]

+ A′
∑

j1+j2+j3+j4=8

j2+j3+
1
2 j4≥1

hj2+j3+
1
2 j4E

[
|vi|j1 |φ′(xi)|j2 |φ′(xi+1)− φ′(xi)|

j3 |ξ′i|j4
]

≤ E[v8
i ] + Ahmax

(
E
[
x8
i

]
,E
[
v8
i

]
, B
)
.

(55)

Together, (54) and (55) imply (53) and establish (i).

We obtain (ii) from combining: (i), the Lipschitz property of φ′ and Cauchy’s inequality

E
[(
φ′(xL)2 − φ′(XhL)2

)2]
= E

[
(φ′(xL)− φ′(XhL))

2
(φ′(xL) + φ′(XhL))

2
]

≤ E
[
|φ′(xL)− φ′(XhL)| (|φ′(xL)|+ |φ′(XhL)|)3

]
≤ M4 × E

[
|xL −XhL| (|xL|+ |XhL|+ 2D)

3
]

≤ M4 × E
[
|xL −XhL|2

] 1
2 × E

[
(|xL|+ |XhL|+ 2D)

6
] 1

2

≤ A2h .
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The final bound follows for an appropriate constant by Proposition 3 and (i).

To show (iii) consider the following bound for a, b ∈ R

(a3 − b3)2 = (a− b)2(a2 + ab+ b2)2

= (a− b)2((a− b)2 + 3(a− b)b+ 3b2)2

≤ 3(a− b)6 + 27(a− b)4b2 + 27(a− b)2b4 .

Fix 1 ≤ i ≤ L. Insert a = h−1(xi − xi−1) and b = vi−1 in the above bound together with Hölder’s
inequality gives us

E
[(
h−3(xi − xi−1)3 − v3

i−1

)2] ≤ 27E
[(
h−1(xi − xi−1)− vi−1

)6]1/3 E [v6
i−1

]2/3
+ 27E

[(
h−1(xi − xi−1)− vi−1

)6]2/3 E [v6
i−1

]1/3
+ 3E

[(
h−1(xi − xi−1)− vi−1

)6]
.

Hence, it is sufficient to show that for an appropriate constant A′3 > 0

E
[(
h−1(xi − xi−1)− vi−1

)6] ≤ A′3h
3 .

Using the linear growth of φ′ and the inequality 1− e−t ≤ t

E
[(
h−1(xi − xi−1)− vi−1

)6]
= E

[(
(e−γh/2 − 1)vi−1 +

√
1− e−γhξ0 −

h

2
φ′(xi−1)

)6]
≤ 6(γh/2)6E

[
v6
i−1

]
+ 6(γh)3E

[
ξ6
0

]
+

3h6

32

[
φ′(xi−1)6

]
≤ A′3h

3 .

To prove (iv) consider the following bound for a, b ∈ R

(a3 − b3)2 = (a− b)2(a2 + ab+ b2)2

≤ (a− b)2(|a|+ |b|)4 ≤ (a− b)2/3(|a|+ |b|)16/3 .

Fix 1 ≤ i ≤ L. Inserting a = V(i−1)h and b = vi−1 in the above bound together with Hölder’s
inequality gives us

E
[(
V 3

(i−1)h − v
3
i−1

)2
]
≤ E

[(
V(i−1)h − vi−1

)2]1/3 E [(|V(i−1)h|+ |vi−1|
)8]2/3

.

Proposition 3 implies that E
[(
V(i−1)h − vi−1

)2] ≤ A′4h
2 for an appropriate constant. Point (i)

together with the stationarity of process Vt ensure the right factor is bounded.

C.4. Proofs of miscellaneous results

Proof of Proposition 6. (i) This is a direct consequence of weak convergence in Theorem 2 applied
to the Lipschitz function t → 1 ∧ et. We use Proposition 2.4 in [64] to evaluate E[1 ∧ eY ] for a
normal random variable Y on R.

(ii) By independence of the coordinates and the product structure (48)

E
[(
f(Xn+1(1))−f(Xn(1))

)2]
= E

[
(f(xL(1))− f(x0(1)))

2
1 ∧ e−

∑d
j=1 ∆h,j

]
= E

[
(f(xL(1))− f(x0(1)))

2
(

1 ∧ e−
∑d
j=1 ∆h,j − 1 ∧ e−

∑d
j=2 ∆h,j

)]
+ E

[
(f(xL(1))− f(x0(1)))

2
]
E
[
1 ∧ e−

∑d
j=2 ∆h,j

]
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We first show that the second term vanishes with increasing d. Using Cauchy’s inequality and the
fact that t 7→ 1 ∧ et is 1-Lipschitz we argue

E
[(
f(xL(1))−f(x0(1))

)2(
1 ∧ e−

∑d
j=1 ∆h,j − 1 ∧ e−

∑d
j=2 ∆h,j

)]
≤ E

[
(f(xL(1))− f(x0(1)))

4
]1/2

E
[
∆2
h,j

]1/2
≤ C2E

[
(xL(1)− x0(1))

8
]1/4

E
[
(|xL(1)|+ |x0(1)|)8

]1/4
E
[
∆2
h,j

]1/2
.

The first two factors are finite by Lemma 4(i) and the third converges to zero by Proposition 9.

Hence, as E
[
1 ∧ e−

∑d
j=2 ∆h,j

]
→ a(`) by (i), we only need to show

E
[
(f(xL(1))− f(x0(1)))

2
]

d→∞−−−→ E
[
(f(XT )− f(X0))

2
]
.

Note that for every dimension d there exists a Langevin diffusion Zt linked to the numerical
Langevin trajectory z0:L via (9). This ensures x0 = X0 and implies that

E
[
(f(xL(1))− f(x0(1)))

2
]

= E
[
(f(xL(1))− f(XT (1)) + f(XT (1))− f(X0(1)))

2
]

= 2E [(f(XT )− f(X0)) (f(xL(1))− f(XT (1)))]

+ E
[
(f(XT )− f(X0))

2
]

+ E
[
(f(xL(1))− f(XT (1)))

2
]
.

We will show that the last term vanishes. By Cauchy’s inequality that means, that the mixed term
vanishes as well. By another Cauchy inequality and the bound |A−B| ≤ |A|+ |B|

E
[
(f(xL(1))− f(XT (1)))

2
]
≤ C2E

[
(xL(1)−XT (1))

2
(|xL(1)|+ |XT (1)|)2

]
≤ C2E

[
|xL(1)−XT (1)| (|xL(1)|+ |XT (1)|)3

]
≤ C2

(
E
[

(xL(1)−XT (1))
2 ]E[ (|xL(1)|+ |XT (1)|)6 ])1/2

The first factor vanishes by Proposition 3 and the second is bounded by Lemma 4.

(iii) Again we synchronise the Langevin diffusion with the numerical Langevin trajectory via (9),
hence Xn(1) = x0(1) = X0. We will prove that

E
[
f(Xn+1(1))

] d→∞−−−→ E [f(X ′T )]

for an arbitrary bounded Lipschitz function f . By Portmanteau theorem this implies the result.

Note that since the function t 7→ 1 ∧ et is 1-Lipschitz, Proposition 9 guarantees

P
(
U is between 1 ∧ e−

∑d
j=1 ∆h,j and 1 ∧ e−

∑d
j=2 ∆h,j

)
≤ E

[∣∣∣1 ∧ e−∑d
j=1 ∆h,j − 1 ∧ e−

∑d
j=2 ∆h,j

∣∣∣] ≤ E [|∆h|]
d→∞−−−→ 0 .

Since f is bounded this implies that∣∣∣E [f(xL(1))1
U≤1∧e−

∑d
j=1

∆h,j

]
− E

[
f(xL(1))1

U≤1∧e−
∑d
j=2

∆h,j

]∣∣∣ d→∞−−−→ 0

and ∣∣∣E [f(x0(1))1
U>1∧e−

∑d
j=1

∆h,j

]
− E

[
f(x0(1))1

U>1∧e−
∑d
j=2

∆h,j

]∣∣∣ d→∞−−−→ 0 .
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Finally, this gives us

lim
d→∞

E
[
f(Xn+1(1))

]
= lim
d→∞

(
E
[
f(xL(1))1

U≤1∧e−
∑d
j=1

∆h,j

]
+ E

[
f(x0(1))1

U>1∧e−
∑d
j=1

∆h,j

])
= lim
d→∞

(
E
[
f(xL(1))1

U≤1∧e−
∑d
j=2

∆h,j

]
+ E

[
f(x0(1))1

U>1∧e−
∑d
j=2

∆h,j

])
= lim
d→∞

(
E [f(xL(1))]P

[
U ≤ 1 ∧ e−

∑d
j=2 ∆h,j

]
+ E [f(x0(1))]P

[
U > 1 ∧ e−

∑d
j=2 ∆h,j

])
= E [f(XT )] a(`) + E [f(X0)] (1− a(`)) = E [f(X ′T )] .

The first equality holds by construction of the accept-reject test, the third by the product form
assumption and the fourth by Proposition 3 and point (i).

Proof of Proposition 7. The proof relies on a similar argument as in the proof of [74, Theorem 3].
We first establish that

E
[(
f(Xn+1(1))− f(Xn(1))

)2]
= E

[
(f(xL(1))− f(x0(1)))

2
1 ∧ e−

∑d
j=1 ∆h,j

]
≤ 2E

[
(f(xL(1))− f(x0(1)))

2
]
E
[
1 ∧ e−

∑d
j=2 ∆h,j

]
.

(56)

The statement without the factor of two is apparent if ∆h,1 is positive. If it is negative we use
Proposition 10 and it is crucial that the expression (f(xL(1))−f(x0(1))2 is symmetric with respect
to the start x0(1) and end xL(1) point of the trajectory:

E
[
(f(xL(1))− f(x0(1)))

2
1 ∧ e−

∑d
j=1 ∆h,j1(−∞,0](∆h,1)

]
≤ E

[
(f(xL(1))− f(x0(1)))

2
1 ∧ e−

∑d
j=2 ∆h,je−∆h,11[0,∞)(−∆h,1)

]
= E

[
(f(x0(1))− f(xL(1)))

2
1 ∧ e−

∑d
j=2 ∆h,j1[0,∞)(∆h,1)

]
≤ E

[
(f(xL(1))− f(x0(1)))

2
1 ∧ e−

∑d
j=2 ∆h,j

]
.

As h → 0 we have E[(f(xL(1))− f(x0(1)))
2
] → Υf ; see proof of Proposition 6(ii). Moreover, if

d1/4h → 0, then d1/4hE[1 ∧ exp{−
∑d
j=2 ∆h,j}] → 0 as d increases, since the acceptance rate is

bounded by one. Assume now d1/4h→∞. By [73, Theorem 7], Proposition 9 implies that

E [∆h]

E [∆2
h]

h→0−−−→ 1

2
.

We split the probability space with respect to the event Ad =
{∑d

j=2 ∆h,j ≥ d−1
2 E[∆h]

}
. Using

the convergence above and Proposition 9 with dh4 →∞ we obtain:

lim sup
d→∞

d1/4hE
[
1 ∧ e−

∑d
j=2 ∆h,j1Ad

]
≤ lim sup

d→∞
d1/4he−

d−1
2 E[∆h]

≤ lim sup
d→∞

d1/4he−
d
5E[∆2

h] = lim sup
d→∞

d1/4he−
dh4

5 h−4E[∆2
h] ≤ lim sup

d→∞
d1/4he−dh

4 Σ
6 = 0 .

On the complement Acd we use Chebyshev’s inequality in addition

lim sup
d→∞

d1/4hE
[
1 ∧ e−

∑d
j=2 ∆h,j1Acd

]
≤ lim sup

d→∞
d1/4hP(Acd)

= lim sup
d→∞

d1/4hP
( d∑
j=1

(E[∆h,j ]−∆h,j) ≥
d− 1

2
E[∆h]

)
≤ lim sup

d→∞
d1/4h

4dVar[∆h]

d2E[∆h]2
≤ lim sup

d→∞
d1/4h

17

dE[∆2
h]
≤ lim sup

d→∞

18

Σ

1

d3/4h3
= 0 .
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The last two conclusions together with (56) show the sub-optimality of scaling of time-step h
different to d−1/4. We conclude that d−1/4 scaling is optimal by noting that the claimed non-zero
limit is achieved in the case when d1/4h→ ` by Proposition 6(ii).

Finally, to optimize over the choice of ` note that the function ` 7→ 2`Ψ
(
− 1

2`
2
√

Σ
)

is smooth

and converges to zero both as ` → 0 and ` → ∞. Since it is positive, its maximum must be
attained at a stationary point. Substituting s = `2

√
Σ/2 we can find stationary points of s 7→

23/2Σ−1/4
√
sΨ(−s) which is equivalent to finding solutions of 1

2 = sψ(−s)
Ψ(−s) , where ψ is the density

of the standard Gaussian. There exists a unique solution s∗ since the function s 7→ sψ(−s)
Ψ(−s) is

strictly increasing. Hence, eff(`) attains its greatest value at a specific value `∗ =
√

2s∗Σ−1/4 that
corresponds to an average acceptance rate 2Ψ(−s∗), which turns out to numerically equal 0.651
to three decimal places. It also implies that

eff(`∗) = 23/2
√
s∗Ψ(−s∗)× Σ−1/4 ≈ 0.619219× Σ−1/4 .
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