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The Bayesian Central Limit Theorem (BCLT) for finite-dimensional
models, also known as the Bernstein – von Mises Theorem, is a primary mo-
tivation for the widely-used Laplace approximation. But currently the BCLT
is expressed only in terms of total variation (TV) distance and lacks non-
asymptotic bounds on the rate of convergence that are readily computable in
applications. Likewise, the Laplace approximation is not equipped with non-
asymptotic quality guarantees for the vast classes of posteriors for which it
is asymptotically valid. To understand its quality and real-problem applica-
bility, we need finite-sample bounds that can be computed for a given model
and data set. And to understand the quality of posterior mean and variance
estimates, we need bounds on divergences alternative to the TV distance. Our
work provides the first closed-form, finite-sample bounds for the quality of
the Laplace approximation that do not require log concavity of the posterior
or an exponential-family likelihood. We bound not only the TV distance but
also (A) the Wasserstein-1 distance, which controls error in a posterior mean
estimate, and (B) an integral probability metric that controls the error in a
posterior variance estimate. We compute exact constants in our bounds for a
variety of standard models, including logistic regression, and numerically in-
vestigate the utility of our bounds. And we provide a framework for analysis
of more complex models.

1. Introduction.

1.1. Motivation. Researchers and practitioners who use statistical inference for solving
real-world problems need good point estimates and uncertainties. Bayesian inference pro-
vides a way of obtaining those through expectations calculated with respect to the posterior
distribution – and in particular through the posterior mean and variance. Such expectations
are, however, often intractable or costly to compute, which forces users to use approxima-
tions. An easy and fast way approach is to approximate the posterior by a suitably cho-
sen Gaussian distribution. This is known at the Laplace approximation in the approximate
Bayesian inference literature. As we describe below, in Subsection 1.3, it is grounded in the
celebrated Bernstein–von Mises theorem. Laplace approximation is a commonly used tool
in many communities [26, 33]. Studies have shown its appealing empirical performance, for
instance in the context of Bayesian neural networks [9]. Widely applicable, computable and
rigorously justified theoretical guarantees on the quality of the Laplace approximation are,
however, still not available in the literature. This leaves researchers and practitioners using
it unable to tell with high confidence whether their inference is robust enough for their pur-
poses. Moreover, convergence in the Bernstein–von Mises theorem is normally expressed in
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terms of the total variation distance. Likewise, the Laplace approximation is typically justified
by the fact that the total variation distance between the rescaled posterior and the Gaussian
vanishes in the limit. The total variation distance, however, does not control the difference
of means or the difference of covariances in general. At the same time, exactly those quan-
tities are most often reported by users of approximate Bayesian inference. Practitioners and
researchers therefore need finite sample guarantees on the quality of Laplace approximation,
expressed not only in terms of the total variation distance but also in terms of metrics that
control the error in mean and covariance approximation.

1.2. Our contribution. Our work provides the first closed-form, fully computable, finite-
sample bounds for the Laplace approximation that do not require the likelihood to come from
an exponential family or the posterior to be log-concave . We quantify the control not only
over the total variation distance but also

• the Wasserstein-1 distance, which controls the difference of means
• another integral probability metric that bounds the difference of covariances.

Our bounds are computable without access to the true parameter or integrals with respect
to the posterior. They are expressed in terms of the data and work under any distribution of
the data, also when the model is misspecified. In particular, our results are fully applicable to
models involving generalized likelihoods and the resulting generalized posteriors (see [4, 29,
6]). Our assumptions on the generalized likelihood and the prior are standard and no stronger
than the assumptions of the classical poofs of the Bernstein–von Mises Theorem, for instance
Le Cam’s one (see [14, Section 1.4] for details). We compute our bounds explicitly for a
variety of Bayesian models, including logistic regression with Student’s t prior.

Our contribution lies also in our proof techniques. In order to control the discrepancy inside
a ball around the maximum likelihood estimator (MLE) or the maximum a posteriori (MAP),
we use the log-Sobolev inequality or Stein’s method. In order to control the discrepancy over
the rest of the parameter space, we carefully bound the tail growth using standard assumptions
of the Bernstein–von Mises Theorem. We believe that this approach to proving computable
non-asymptotic bounds could be extended so as to cover more general statistical models
satisfying the conditions of the local asymptotic normality (LAN) theory [22, Chapters 1-3].
We consider this, however, a separate problem and leave it for future work.

1.3. Laplace approximation and the Bernstein–von Mises theorem. The foundations of
Laplace approximation date back to the work on Laplace [24] (see [25] for an English trans-
lation and [1] for an intuitive discussion). It was originally introduced as a method of approx-
imating integrals of the form

Int(n) :=

∫
K
e−nf(x)dx, n ∈N,

where K is a subset of Rd and f is a real-valued function on Rd. Suppose that x∗ ∈K is a
strict global maximizer of f on K . Heuristically, under appropriate smoothness assumptions
on f , we can use Taylor’s expansion to obtain:

f(x)≈f(x∗) + f ′(x∗)(x− x∗) +
1

2
(x− x∗)T f ′′(x∗)(x− x∗)

=f(x∗) +
1

2
(x− x∗)T f ′′(x∗)(x− x∗).

We therefore have:

Int(n)≈
∫
K

exp
[
−nf(x∗)− n

2
(x− x∗)T f ′′(x∗)(x− x∗)

]
dx
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As a result, heuristically, up to a constant not depending on K , Int(n) can be approximated
by the integral of the density of the Gaussian measure with mean x∗ and covariance matrix
given by 1

nf
′′(x∗)−1. Now, suppose that e−nf(x) is an unnormalized posterior density, i.e.

that Πn(·)∝ e−nf(·) for some posterior Πn. Writing Πn for the posterior probability measure
and θ̄n for the posterior mode (i.e. the maximum a posteriori or MAP), the above statement
suggests that

Πn ≈N (θ̄n,
(
log(Πn)′′(θ̄n)

)−1
),(1.1)

where N (µ,Σ) denotes the normal law with mean µ and covariance Σ. The computation of
the mean and covariance of the above Gaussian is in the majority of cases easy numerically. It
can be achieved using standard optimization schemes and does not require access to integrals
with respect to the posterior, the normalizing constant of the posterior density or the true
parameter. This is why Laplace approximation is a popular tool in approximate Bayesian
inference.

While the above heuristic considerations may be turned into rigorous statements under cer-
tain conditions, a proper probabilistic grounding for the Laplace approximation is provided
by the Bernstein–von Mises (BvM) theorem. As described in numerous classical references,
including [14, Section 1.4] or [38, Section 10.2], the BvM theorem says that under mild as-
sumptions on the likelihood and the prior, the posterior distribution converges to a Gaussian
law in the following sense. Suppose that θ̃n is distributed according to the posterior, obtained
after observing n data points. Let θ0 be the true parameter, θ̂n be the MLE and I(·) be the
Fisher information matrix. Let TV denote the total variation distance and let the function
L(·) return the law of its argument. Then, if the model is well-specified and certain regularity
conditions are satisfied,

TV
(
L
(√

n(θ̃n − θ̂n)
)
,N (0, I(θ0)−1)

)
P−→ 0, as n→∞,(1.2)

where n is the number of data and the convergence occurs in probability with respect to the
law of the data.

While the model being well-specified is a crucial assumption in the above statement, the
authors of [23] proved its modified version, under model misspecification. The main differ-
ence is in the limiting covariance matrix. Specifically, in this context, the authors assume the
model is of the form θ 7→ pθ and the observations are sampled from a density p0 that is not
necessarily of the form pθ0

for some θ0. They show that under certain regularity conditions,

TV
(
L
(√

n(θ̃n − θ̂n)
)
,N (0, V (θ∗)−1)

)
P−→ 0, as n→∞,(1.3)

where θ∗ minimizes the Kullback-Leibler divergence θ 7→
∫

log(p0(x)/pθ(x))p0(x)dx and
V (θ∗) is minus the second derivative of this map, evaluated at θ∗.

Let us now denote by Ln the generalized log-likelihood. A closer look at the classical
proofs, including Le Cam’s one (see e.g. [14, Section 1.4]), or more recent ones, including
that of [29, Appendix B], reveals that, under standard regularity conditions:

TV

L(√n(θ̃n − θ̂n)
)
,N

0,

[
−L

′′
n(θ̂n)

n

]−1
 P−→ 0, as n→∞,(1.4)

no matter if the model is well-specified or not. It is known that under mild assumptions the
MLE θ̂n and the maximum a posteriori (MAP) θ̄n get arbitrarily close to each other as the
number of data n goes to infinity. Similarly, denoting by Ln the logarithm of the posterior
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density, Ln and Ln get arbitrarily close as n goes to infinity. It can be shown, in a similar
fashion to (1.4), that under standard regularity assumptions,

TV

L(√n(θ̃n − θ̄n)
)
,N

0,

[
−L

′′
n(θ̄n)

n

]−1
 P−→ 0, as n→∞.(1.5)

Equation (1.5) gives a rigorous justification and meaning to the Laplace approximation (1.1)
and (1.4) provides its alternative version. The approximating covariance in both (1.5) and
(1.4) is computable without access to the posterior normalizing constant or the true parameter.

The recent paper [29] proves almost sure versions of the statements (1.2) and (1.3) for a
large collection of commonly used models. Naturally, similar almost sure convergence state-
ments can be obtained for the approximations appearing in (1.4) and (1.5). Below, in Sections
2 and 4, we shall provide computable finite-sample bounds on the total variation distances
appearing in (1.4) and (1.5). We will also prove analogous bounds on the 1-Wasserstein dis-
tance and another metric that controls the difference of covariances. Our bounds depend on
the data and are computable in applications, for real data-sets. Apart from that, they can be
used to quantify the convergence in probability appearing in (1.4) and (1.5), or the analogous
almost sure convergence, when it occurs.

1.4. Setup, assumptions and notation. Our setup and assumptions are similar to those
found for instance in [29]. We fix n ∈ N and study probability measures on Rd having
Lebesgue densities of the form:

Πn(θ) = eLn(θ)π(θ)/zn,(1.6)

where π :Rd→R is a Lebesgue probability density function, Ln :Rd→R and zn ∈R+ is
a suitable normalizing constant. Throughout the paper, we call π the prior density (or simply
the prior), Ln the generalized log-likelihood and Πn the generalized posterior. By

Ln(θ) := log (Πn(θ))

we denote the generalized log-posterior and let:

θ̂n := arg max
θ∈Rd

Ln(θ), θ̄n = arg max
θ∈Rd

Ln(θ),

whenever those quantities exist. If those quantities are unique, we call θ̂n the maximum likeli-
hood estimator (MLE) and θ̄n the maximum a posteriori (MAP). For any twice-differentiable
function f :Rd→R, we let f ′ stand for its gradient and f ′′ for its Hessian. We shall write

Jn(θ) =−L
′′
n(θ)

n
, J̄n(θ) =−L

′′
n(θ)

n
,

whenever those expressions make sense (i.e. when the Hessians exist). For any three times
differentiable function f :Rd→R, we will also write f ′′′ for its third (Frechét) derivative,
defined as the following multilinear 3-form on Rd:

f ′′′(θ)[u, v,w] =

d∑
i,j,k=1

∂f

∂θi∂θj∂θk
(θ)uivjwk.

The norm ‖ · ‖∗ of this third derivative will be defined in the following way:

‖f ′′′(θ)‖∗ := sup
‖u‖≤1,‖v‖≤1,‖w‖≤1

∣∣f ′′′(θ)[u, v,w]
∣∣ ,



GAUSSIAN APPROXIMATION OF THE POSTERIOR 5

where ‖ · ‖ denotes the Euclidean norm, as it will throughout the paper. We will also let
λmin(θ̂n) be the minimal eigenvalue of Jn(θ̂n) and λmin(θ̄n) be the minimal eigenvalue of
J̄n(θ̄n). Throughout the paper ‖ · ‖op will denote the operator (i.e. spectral) norm, 〈·, ·〉 will
be the Euclidean inner product and θ̃n will always denote a random variable distributed
according to the generalized posterior measure with density (1.6). N (µ,Σ) will denote the
normal distribution with mean µ and covariance Σ and function L(·) will return the law of
its argument. Id×d will always denote the d-dimensional identity matrix.

Our bounds will be derived for two types of approximations. The first type is what we
call the MLE-centric approach. Within this approach, L(

√
n(θ̃n − θ̂n)) is approximated by

N (0, Jn(θ̂n)−1). On the other hand, what we call the MAP-centric approach is the approxi-
mation of L(

√
n(θ̃n − θ̄n)) by N (0, J̄n(θ̄n)−1). The bounds we obtain are on the following

distances:

1. The Total Variation (TV) distance, which, for two probability measures ν1 and ν2 on a
measurable space (Ω,F) is defined by

TV (ν1, ν2) := sup
A∈F
|ν1(A)− ν2(A)|

2. The Wasserstein-1 distance, which, for probability measures ν1 and ν2 and the set
Γ(ν1, ν2) of all couplings between them, is defined by

W1(ν1, ν2) := inf
γ∈Γ(ν1,ν2)

∫
‖x− y‖dγ(x, y).

Kantorovich duality (see, e.g. [40, Theorem 5.10]) provides an equivalent definition. Let
‖ · ‖L return the Lipschitz constant of the input. Then

W1(ν1, ν2) = sup
f Lipschitz:
‖f‖L=1

|Eν1
f −Eν2

f | .

3. The following integral probability metric which, for Y1 ∼ ν1 and Y2 ∼ ν2 is defined by

sup
v:‖v‖≤1

∣∣∣E 〈v,Y1〉2 −E 〈v,Y2〉2
∣∣∣ .

1.4.1. Assumptions made throughout the paper. Now we list the assumptions that we will
need to prove our finite-sample bounds and define constants used therein. We will present
those assumptions which will stand for both approaches described above and others, which
are divided between those relevant for the MLE and MAP approach. We reiterate that the
conditions we require are similar to the classical assumptions of the Bernstein–von Mises
theorem, as given in [14, 29].

The first fundamental assumption that will be used throughout the paper is the following:

ASSUMPTION 1. There exists a unique MLE θ̂n. There also exists a real number δ > 0
such that the generalized log-likelihood Ln is three times differentiable inside {θ : ‖θ− θ̂n‖ ≤
δ}. For the same δ > 0 there exists a real number M2 > 0, such that:

sup
‖θ−θ̂n‖≤δ

‖L′′′n (θ)‖∗

n
≤M2.(1.7)

Moreover, we make the following assumption on the prior:
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ASSUMPTION 2. For the same δ > 0 as in Assumption 1, there exists a real number
M̂1 > 0, such that

sup
θ:‖θ−θ̂n‖<δ

∣∣∣∣ 1

π(θ)

∣∣∣∣≤ M̂1.

REMARK 1.1. Note that for Assumption 2 to be satisfied, it suffices to assume that π is
continuous and positive in the δ-ball around θ̂n.

1.4.2. Additional assumptions in the MLE-centric approach. Besides Assumptions 1 and
2, in the MLE-centric approach, we have the following assumptions:

ASSUMPTION 3. For the same δ > 0 and M2 > 0 as in Assumption 1,

λmin(θ̂n)> δM2.(1.8)

REMARK 1.2. If Jn(θ̂n) is positive definite and Assumption 1 is satisfied then one can
adjust the choice of δ so that both (1.7) and (1.8) hold. This is because decreasing the value
of δ in Assumption 1 does not lead to an increase in the value of M2. At the same time,
decreasing the value of δ in Assumption 2, while keeping M2 fixed, decreases the right-hand
side of (1.8).

ASSUMPTION 4. For the same δ > 0, as in Assumption 1, there exists κ > 0, such that

sup
θ:‖θ−θ̂n‖>δ

Ln(θ)−Ln(θ̂n)

n
≤−κ.

REMARK 1.3. Assumption 4 ensures that any local maxima of Ln achieved outside of
the δ-ball around the MLE do not get arbitrarily close to the global maximum achieved at the
MLE.

ASSUMPTION 5. For the same δ as in Assumption 1, there exists real numbers M1 > 0

and M̃1 > 0, such that

sup
θ:‖θ−θ̂n‖≤δ

∥∥∥∥π′(θ)π(θ)

∥∥∥∥≤M1 and sup
θ:‖θ−θ̂n‖≤δ

|π(θ)| ≤ M̃1.

REMARK 1.4. Note that for Assumption 5 to be satisfied, it suffices that π is continuously
differentiable and positive inside the δ-ball around θ̂n.

1.4.3. Assumptions in the MAP-centric approach. In the MAP-centric approach we keep
Assumptions 1 and 2 and additionally assume the following:

ASSUMPTION 6. There exists a unique MAP θ̄n. There also exists a real number δ̄ > 0,
such that the log-prior, logπ, is three times differentiable inside {θ : ‖θ− θ̄n‖ ≤ δ̄}. Moreover,
for the same δ̄, there exists a real number M2 > 0, such that

sup
θ:‖θ−θ̄n‖≤δ̄

‖L′′′n (θ)‖∗

n
≤M2

ASSUMPTION 7. For the same δ̄ > 0 and M2 > 0 as in Assumption 6,

λmin(θ̄n)> δ̄M2.
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REMARK 1.5. Assumption 6 is very similar to Assumption 1. The difference is that we
now consider a ball around the MAP rather than the MLE and we require additional differ-
entiability of the prior density inside this ball. Assumption 7 is an analogue of Assumption 3
for the MAP-centric approach.

ASSUMPTION 8. For the same δ̄ > 0, as in Assumption 6, there exists κ̄ > 0, such that

sup
θ:‖θ−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

Ln(θ)−Ln(θ̂n)

n
≤−κ̄.

REMARK 1.6. Assumption 8 is very similar to Assumption 4. Note that for the vast
majority of commonly used parametric models and data generating distributions, ‖θ̂n − θ̄n‖,
which appears in the expression for the radius of the ball, will tend to 0 as n→∞, almost
surely.

1.5. Structure of the paper. In Section 2 we present our results on the MAP-centric ap-
proach. In Section 3, we discuss the related work and compare our results to the existing
non-asymptotic studies of the Bernstein–von Mises Theorem and the Laplace approxima-
tion. In Section 4 we present results analogous to those of Section 2, yet focused on the
MLE-centric approach. We also present a bound in dimension one which controls the differ-
ence of expectations of general test functions, going beyond quadratic ones. In Section 5 we
show how to compute our bounds for the (non-log-concave) posterior in the logistic regres-
sion model with Student’s t prior. We also present plots of our bounds computed numerically
in this case. Moreover, we numerically compare our control over the difference of means and
the difference of variances to the ground truth for some conjugate prior models. In Section
6 we present conclusions of our work. All the proofs of the results of Sections 2 and 4 are
postponed to the appendix.

2. Main results. In this section we present our bounds on the quality of Laplace ap-
proximation in the MAP-centric approach, as described in Subsection 1.4. This approach is
arguably the most popular one among users of Laplace approximation. The proofs of the re-
sults from this section are presented in Appendices A and B. A discussion of our bounds can
be found in Subsection 2.5 below. Our bounds in the MLE-centric approach will be presented
below, in Section 4.

2.1. Additional notation. Before we state the results, we introduce additional notation
that will make presentation of the bounds more concise. We let

R1(n, δ) :=
(
Jn(θ̂n) + (δM2/3)Id×d

)−1
; R2(n, δ) :=

(
Jn(θ̂n)− (δM2/3)Id×d

)−1
;

R̄1(n, δ̄) :=
(
J̄n(θ̄n) + (δ̄M2/3)Id×d

)−1
R̄2(n, δ̄) :=

(
J̄n(θ̄n)− (δ̄M2/3)Id×d

)−1
.

2.2. Control over the total variation distance. We start with a bound over the total vari-
ation distance.

THEOREM 2.1. Suppose that Assumptions 1, 2 and 6 – 8 hold and retain the notation

theoreof. Suppose that max

{
‖θ̂n − θ̄n‖,

√
Tr(J̄n(θ̄n)−1)

n

}
< δ̄ and

√
Tr[R1(n,δ)]

n < δ. Let TV
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denote the total variation distance. Then:

TV
(
L
(√

n
(
θ̃n − θ̄n

))
,N (0, J̄n(θ̄n)−1)

)
≤A1n

−1/2 + 2 exp

[
−1

2

(
δ̄
√
n−

√
Tr
[
J̄n(θ̄n)−1

])2

λmin(θ̄n)

]
+A2n

d/2e−nκ̄,

where

A1 =

√
3 Tr

[
J̄n(θ̄n)−1

]√
M2

4

√√√√(λmin(θ̄n)/M2 − δ̄
)(

1− exp

[
−1

2

(
δ̄
√
n−

√
Tr
[
J̄n(θ̄n)−1

])2

λmin(θ̄n)

]) ;

A2 =
2M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

2.3. Control over the Wasserstein-1 distance. Now, we bound the 1-Wasserstein dis-
tance, which is known to control the difference of means.

THEOREM 2.2. Suppose that Assumptions 1, 2 and 6 – 8 hold and retain the notation

theoreof. Suppose that max

{
‖θ̂n − θ̄n‖,

√
Tr(J̄n(θ̄n)−1)

n

}
< δ̄ and

√
Tr[R1(n,δ)]

n < δ. Let W1

denote the Wasserstein-1 distance. Then:

W1

(
L
(√

n
(
θ̃n − θ̄n

))
,N (0, J̄n(θ̄n)−1)

)
≤B1n

−1/2 +B3

[
B2 +

√
n

∫
‖u−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

‖u− θ̄n‖π(u)du

]
nd/2e−nκ̄

+

(
δ̄
√
n+

√
2π

λmin(θ̄n)
+B2

)
exp

[
−1

2

(
δ̄
√
n−

√
Tr
(
J̄n(θ̄n)−1

))2

λmin(θ̄n)

]
,

where

B1 :=

√
3 Tr

[
J̄n(θ̄n)−1

]
2
(
λmin(θ̄n)/M2 − δ̄

)√√√√(1− exp

[
−1

2

(
δ̄
√
n−

√
Tr
[
J̄n(θ̄n)−1

])2

λmin(θ̄n)

]) ;

B2 :=

∣∣det
(
R̄1(n, δ)

)∣∣−1/2 ∣∣det
(
R̄2(n, δ)

)∣∣1/2√Tr
[
R̄2(n, δ)

]
1−exp

[
−1

2

(
δ̄
√
n−
√

Tr
[
R̄1(n, δ)

])2[∥∥R̄1(n, δ)
∥∥
op

]−1
];

B3 :=
M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

2.4. Control over the difference of covariances. Finally, we upper bound an integral
probability metric that lets us control the difference of covariances.
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THEOREM 2.3. Suppose that Assumptions 1, 2 and 6 – 8 hold and retain the nota-

tion theoreof. Suppose that max

{
‖θ̂n − θ̄n‖,

√
Tr(J̄n(θ̄n)−1)

n

}
< δ̄ and

√
Tr[R1(n,δ)]

n < δ. Let

Zn ∼N (0, J̄n(θ̄n)−1). Then:

sup
v:‖v‖≤1

∣∣∣∣E[〈v,√n(θ̃n − θ̄n)〉2
]
−E

[
〈v,Zn〉2

]∣∣∣∣
≤

3Tr
[
J̄n(θ̄n)−1

]
C1

4
(
λmin(θ̄n)/M2 − δ̄

)2 n−1 +

√
3Tr
[
J̄n(θ̄n)−1

]
C1(

λmin(θ̄n)/M2 − δ̄
) n−1/2

+

(
δ̄2n+

√
2π

λmin(θ̄n)

)
exp

[
−1

2

(
δ̄
√
n−

√
Tr
(
J̄n(θ̄n)−1

))2

λmin(θ̄n)

]

+ nd/2+1e−nκ̄C3

∫
‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

‖u− θ̄n‖2π(u)du

+C2

{
exp

[
−1

2

(
δ̄
√
n−

√
Tr
(
J̄n(θ̄n)−1

))2

λmin(θ̄n)

]
+C3n

d/2e−nκ̄

}
for

C1 :=
Tr
[
J̄n(θ̄n)−1

](
1− exp

[
−1

2

(
δ̄
√
n−

√
Tr
[
J̄n(θ̄n)−1

])2

λmin(θ̄n)

])

C2 :=

∣∣det
(
R̄1(n, δ)

)∣∣−1/2 ∣∣det
(
R̄2(n, δ)

)∣∣1/2 Tr
[
R̄2(n, δ)

]
1−exp

[
−1

2

(
δ̄
√
n−
√

Tr
[
R̄1(n, δ)

])2[∥∥R̄1(n, δ)
∥∥
op

]−1
]

C3 :=
M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

2.5. Discussion of the bounds. We make some remarks about the bounds and their ap-
plicability is approximate inference:

REMARK 2.4. The quantities A1,A2,A3,B1,B2,B3,C1,C2,C3 appearing in the above
bounds depend on n but, for models and data generating distributions that satisfy the assump-
tions of the Bernstein–von Mises theorem (as in [14]), they are bounded in n. In particular,
they are almost surely bounded in n, as long as the constants M2,M2, M̂1 are bounded from
above and κ̄ is bounded from below by a positive number and the data are i.i.d. (without any
other assumption on their distribution). Therefore, our bounds are to be expected to vanish as
n→∞ at the rate of 1√

n
for the majority of common modelling setups. We reiterate that our

bounds are fully non-asymptotic and computable.

REMARK 2.5. In the typical applications, the bounds in Theorems 2.1 - 2.3 depend on
the data. One can assume the data come from a certain distribution, should that be of interest.
It is then straightforward to use our bounds in order to quantify the speed of almost sure con-
vergence or convergence in probability of the distances between the prior and the Gaussian.
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In order to do this, one only needs to control the speed of the relevant mode of convergence
of our bounds, which, in most cases, should be achievable using standard results, similar to
those quantifying the rate of convergence in the law of large numbers.

REMARK 2.6. Assumption saying that max

{
‖θ̂n − θ̄n‖,

√
Tr(J̄n(θ̄n)−1)

n

}
< δ̄ and√

Tr[R1(n,δ)]
n < δ appearing in the Theorems above is an assumption on the size of n

and the choice of δ̄. Indeed, as long as the MLE and MAP converge to the same
limit (which is true in the majority of commonly used modelling setups), we expect

max

{
‖θ̂n − θ̄n‖,

√
Tr(J̄n(θ̄n)−1)

n

}
to go to zero as n→∞. We similarly expect

√
Tr[R1(n,δ)]

n

to go to zero. Moreover
√

Tr[R1(n,δ)]
n < δ will be satisfied if

√
Tr(Jn(θ̂n)−1)

n < δ, which might
be an easier condition to check.

REMARK 2.7. Our bound on the total variational distance provides quality guarantees
on the approximate computation of posterior credible sets. Indeed, suppose, for instance, that
one is interested in finding a value bα, such that

P

(
‖θ̃n − θ̄n‖ ≤

bα√
n

)
≥ 1− α,

for a fixed value α. Let A(n) denote the value of our upper bound in Theorem 2.1. If n is
sufficiently large and A(n) is smaller that α, then one could choose bα = b̃α, such that

P

(
‖N (0, J̄n(θ̄n)−1)‖ ≤ b̃α

)
= 1− α+A(n).

Our bound implies that:∣∣∣∣∣P
(
‖θ̃n − θ̄n‖ ≤

b̃α√
n

)
−P

(
‖N (0, J̄n(θ̄n)−1)‖ ≤ b̃α

)∣∣∣∣∣≤A(n)

and so

P

(
‖θ̃n − θ̄n‖ ≤

b̃α√
n

)
≥ 1− α.

REMARK 2.8. Our bound on the Wasserstein 1-distance controls the difference of means
in the Laplace approximation, in the following way. The upper bound in Theorem 2.2 controls√
n‖E[θ̃n]− θ̄n‖. In order to obtain an upper bound on ‖E[θ̃n]− θ̄n‖, one simply needs to

divide our bound from Theorem 2.2 by
√
n.

REMARK 2.9. Theorem 2.3 together with Theorem 2.2 let us control the difference of
covariances. Suppose, for instance, that we are interested in the operator norm of the differ-
ence of the posterior covariance matrix and the covariance matrix of the Gaussian Laplace
approximation. Let B(n) denote the value of our bound from Theorem 2.2 and let C(n) be
the value of our bound from Theorem 2.3. Then, for Zn ∼N

(
0, J̄n(θ̄n)−1

)
∥∥∥∥Cov(θ̃n)− J̄n(θ̄n)−1

n

∥∥∥∥
op

=
1

n
sup

v:‖v‖≤1

∣∣∣∣E〈v,√n(θ̃n −Eθ̃n)〉2
−E 〈v,Zn〉2

∣∣∣∣
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TABLE 1
Very brief summary of related results. See the text for full details.

Present work [32] [37] [21] [10] [36] [42]

True parameter not needed Y N Y Y Y Y N
Global log-concavity not needed Y Y N N N N Y

Generic priors / likelihoods Y N N Y Y N N
Explicit bounds (no order notation) Y Y Y Y N Y Y

Controls TV distance Y Y Y N Y Y Y
Controls means and variances Y Y Y Y N N N

≤ 1

n
sup

v:‖v‖≤1

∣∣∣∣E〈v,√n(θ̃n − θ̄n)〉2
−E 〈v,Zn〉2

∣∣∣∣
+

1

n
sup

v:‖v‖≤1

∣∣∣∣E〈v,√n(θ̃n − θ̄n)〉2
−E

〈
v,
√
n
(
θ̃n −Eθ̃n

)〉2
∣∣∣∣ .

Now, note that

sup
v:‖v‖≤1

∣∣∣∣E〈v,√n(θ̃n − θ̄n)〉2
−E

〈
v,
√
n
(
θ̃n −Eθ̃n

)〉2
∣∣∣∣

= sup
v:‖v‖≤1

∣∣∣E[〈v,√n(Eθ̃n − θ̄n)〉〈v,√n(2θ̃n −Eθ̃n − θ̄n
)]〉∣∣∣

= sup
v:‖v‖≤1

∣∣∣〈v,√n(Eθ̃n − θ̄n)〉〈v,√n(2Eθ̃n −Eθ̃n − θ̄n
)〉∣∣∣

≤n‖Eθ̃n − θ̄n‖2

≤B(n)2.

Therefore, ∥∥∥∥Cov(θ̃n)− J̄n(θ̄n)−1

n

∥∥∥∥
op

≤ 1

n

(
B(n)2 +C(n)

)
.

3. Related work. A number of recent papers have studied the non-asymptotic properties
of the Laplace approximation and the Bernstein von-Mises theorem for Bayesian posteriors.
In this section we contrast the present work with these analyses in terms of the computability
of the bounds, strength of the results, and restrictiveness of the assumptions. A brief summary
of the differences can be found in table 1.

A non-asymptotic analysis of the Bernstein–von Mises (BvM) Theorem has previously
been performed in [32]. The aim and focus of that analysis is however significantly different
from that of the present paper. In [32] the authors consider semiparametric inference and
prove results whose purpose it is to provide insight into the critical dimension of the parame-
ter for which the BvM Theorem (of the form (1.2) or (1.3)) holds. The authors concentrate on
determining how large the dimension of the parameter may be in relation to the sample size
while ensuring the BvM Theorem stays true. In contrast, we work with parametric inference
and our goal is to provide computable guarantees on the quality of Laplace approximation, of
the form of (1.4) or (1.5) and analogous forms for a variety of divergences. We aim for our re-
sults to be available to practitioners who approximate an intractable posterior by a Gaussian
law and wish to know how good this approximation is. Apart from those key distinctions,
there are other important differences between the two papers:
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• While the authors of [32] only prove their bounds for the non-informative and the Gaussian
prior, our results hold for a variety of priors satisfying mild assumptions.

• Computing the bounds in [32] requires the knowledge of the true parameter, which is the
object of inference. Our bounds, on the other hand, are computable without access to it and
without access to any statistics of the posterior. This makes our bounds readily applicable
and computable in real-life applications, in which the true parameter is unknown and the
posterior often intractable.

• The results of [32] provide control over the total variation distance and the difference of
means and the norm of the difference of variances. Our bounds also provide control over
all those quantities and, in addition, control the difference of expectations of any Lipschitz
function (via the 1-Wasserstein distance). Moreover, as we show in Section 4, for one-
dimensional problems, we control the difference of expectations of a much larger class of
functions.

Similarly, the accuracy of Bernstein–von Mises Gaussian approximation (analogous to
(1.2) and (1.3)) in non-parametric models has been studied in [37]. The key assumptions
used there are log-concavity of the expectation of the likelihood (or generalized likelihood)
with respect to the law of the data and a Gaussian prior. The authors also consider the case of
a Gaussian likelihood combined with a more general yet still log-concave prior. We make no
such assumptions in the present paper. In fact, Section 5 contains examples of commonly used
models involving non-log-concave priors and posteriors, for which our bounds are explicitly
computable. The reason we can avoid imposing the assumption of log-concavity is that all
we need to control the tail behaviour of the posterior is the assumption of the strict optimality
of the MLE or MAP (Assumptions 4 or 8). This is much weaker than assuming log-concavity
or strong unimodality of the posterior. Moreover, the authors of [37] compute their bounds
explicitly only under further assumptions controlling the third and the fourth derivative of
the log-likelihood. In comparison, our setup and techniques only require control of the third
derivative.

Furthermore, the recent preprints [21, Section 6.1], [10] and [36] have offered ways of ob-
taining guarantees on the quality of Laplace approximation under log-concavity of the pos-
terior. In [21, Proposition 6.1] the authors assume that the posterior is strongly log-concave
and obtain a computable bound on the 1- and 2-Wasserstein distances between the posterior
and the approximating Gaussian. Their bounds thus control the difference of means and the
difference of convariances. In [21, Proposition 6.2] the authors relax the assumption on the
posterior to weak log-concavity. However, the bound they obtain serves as an indication of
the asymptotic rate of convergence and is not computable in practice, for finite data. The
main differences between [21, Section 6.1] and our paper are the following:

• Our bounds hold and are fully computable for general posteriors satisfying assumptions
analogous to the classical assumptions of the Bernstein von-Mises theorem (see e.g. [29,
Section 4] for a recent reference or [14, Section 1.4] for a more classical one). In particular,
we do not require (weak or strong) log-concavity of the posterior. Indeed, we compute our
bounds explicitly for several examples of commonly used non-log-concave posteriors in
Section 5. This is in contrast to [21, Section 6.1].

• Apart from controlling the difference of means and variances, we control additionally the
total variation distance, which yields guarantees on an approximate computation of credi-
ble sets. This is not provided by [21, Section 6.1].

In [10], the author assumes weak, yet strict log-concavity of the posterior. As their main result
[10, Theorem 5], they obtain a bound on the Kullback-Leibler (KL) divergence between
the posterior and the Gaussian approximation. In their bound, only the leading terms are
computable, while the higher order terms are presented using the big-O notation and not
computable in practice. The main differences to our work are the following:
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• Our results do not assume log-concavity of the posterior, as explained above and illustrated
by the examples in Section 5.

• All of the terms in our bounds are explicitly computable and thus our bounds and fully
usable in practice.

• The KL divergence upper-bounded in [10, Theorem 5] is known not to control the differ-
ence of means or the difference of variances in general (see [20, Propositions 3.1 and 3.2]).
We, in contrast, control the difference of means, via the 1-Wasserstein distance, and the
difference of variances, via another suitably chosen integral probability metric.

Moreover, in [36] the author assumes a Gaussian prior and a log-concave likelihood, which
yields a strongly log-concave posterior. They relax this assumption only in a very specified
case of a nonlinear inverse problem with a certain "warm start condition". Their bounds are
on the total variation distance. They also provide a bound on the difference of means - yet this
bound involves generic abstract constants and it is not clear to us whether it is computable in
applications. Our bounds differ from those derived in [36] in the following ways:

• The array of priors our bounds are available for is much wider than just the Gaussian
family. All we require is differentiability, boundedness and boundedness away from zero
of the prior density in a small neighbourhood around the MAP or the MLE.

• The array of likelihoods our bounds are available for includes a wide array of commonly
used non log-concave ones. As a result, our results work without assuming (weak or strong)
log-concavity of the posterior.

• We derive bounds on the Wasserstein-1 distance and a metric controlling the difference
of convariances, in addition to bounds on the total variation distance. Our bound on the
difference of means is explicit and computable and so are all the other bounds in our
paper.

Besides, the recent work [42] derives a Berry-Esseen-type bound on the total variation
distance between the posterior and the approximating normal in the approximately linear
regression model. The focus and aim of the paper is to control the coverage errors of credible
rectangles. The suitable bound obtained by the authors requires access to the true parameter
value. Because the focus of our work is on the quality of the Laplace approximation, we apply
techniques that yield bounds computable without access to the (unknown) true parameter and
valid for a wide variety of models going beyond (approximate) linear regression. Moreover,
as already mentioned, we control not only the total variation distance but also other metrics
that are important for applications.

In addition, we mention the concurrent work [13] which has provided bounds on the Gaus-
sian approximation of the posterior for i.i.d. data coming from a regular k-parameter expo-
nential family. The results of the present paper do not make any assumption about the true
distribution of the data and cover generalized likelihoods not coming from exponential fami-
lies.

Finally, it is worth noting that bounds similar to ours are not widely available for approx-
imate Bayesian inference techniques in general. Indeed, they are not available at all for the
popular variational inference methods [5, 41]. In the area of Markov Chain Monte Carlo
methods, progress has recently been made on deriving convergence guarantees for the Un-
adjusted Langevin Algorithm under different sets of assumptions on the tail growth of the
target distribution [7, 2, 11]. However, the popular Metropolis-adjusted Langevin Algorithm
and Hamiltonian Monte Carlo are not equipped with such guarantees beyond the case of log-
concave targets. Flexible and computable post-hoc checks measuring a discrepancy between
the empirical distribution of a sample and the target distribution are given by graph and kernel
Stein discrepancies. Graph Stein discrepancies [16, 15] can be computed by solving a linear
program. They metrize weak convergence and control the difference of means for distantly-
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dissipative targets. They are however not known to control the difference of variances. Graph
diffusion Stein discrepancies [15] have been shown to posess the same properties under a
slightly weaker (yet technical) assumption of the underlying diffusion having a sufficiently
rapid Wasserstein decay rate. The fast and popular kernel Stein discrepancies [8, 27, 30, 17]
metrize weak convergence for certain choices of kernels and for distantly-dissipative targets.
They are, however, currently not known to control the difference of means or the difference
of variances. In comparison, we derive control over the rate of weak convergence and the
differences of means and variances under interpretable assumptions, which do not require
any particular tail behavior of the target posterior.

4. Further results. In this section we present some further results on the quality of
Laplace approximation in the MLE-centric approach. The proofs of Theorems 4.1-4.3 can be
found in Appendices A and C. The proof of Theorem 4.4 can be found in Appendices A and
D.

4.1. Additional notation. We first introduce additional notation:

R1(n, δ) :=
(
Jn(θ̂n) + (δM2/3)Id×d

)−1
; R2(n, δ) :=

(
Jn(θ̂n)− (δM2/3)Id×d

)−1
;

4.2. Control over the TV distance in the MLE-centric approach. We start by controlling
the total variation distance.

THEOREM 4.1. Suppose that Assumptions 1-5 hold. Suppose that√
Tr[Jn(θ̂n)−1]

n < δ and let TV denote the total variation distance. We have the following upper
bound:

TV
(
L
(√

n
(
θ̃n − θ̂n

))
,N (0, Jn(θ̂n)−1)

)
≤D1n

−1/2 +D2n
d/2e−nκ + 2 exp

−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

 ,
where

D1 :=

√
3 Tr

[
Jn(θ̂n)−1

]√
M̃1M̂1M2

4

√√√√(λmin(θ̂n)
M2

− δ
)(

1− exp

[
−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

])

+
M1

√
M̃1M̂1

2

√
λmin(θ̂n)− δM2

;

D2 :=
2M̂1 |det (R1(n, δ))|−1/2

(2π)d/2
{
1−exp

[
−1

2

(
δ
√
n−

√
Tr [R1(n, δ)]

)2[
‖R1(n, δ)‖op

]−1
]} .

4.3. Control over the 1-Wasserstein distance in the MLE-centric approach.
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THEOREM 4.2. Suppose that Assumptions 1-5 hold. Suppose moreover that√
Tr[Jn(θ̂n)−1]

n < δ and letW1 denote the 1-Wasserstein distance. We have the following upper
bound:

W1

(
L
(√

n
(
θ̃n − θ̂n

))
,N (0, Jn(θ̂n)−1)

)
≤E1n

−1/2 +E3

[
E2 +

∫
‖u‖>δ

‖u‖π(u+ θ̂n)du

]
nd/2e−nκ

+

(
δ
√
n+

√
2π

λmin(θ̂n)
+E2

)
exp

−1

2

(
δ
√
n−

√
Tr
(
Jn(θ̂n)−1

))2

λmin(θ̂n)

 ,
where

E1:=

√
3 Tr

[
Jn(θ̂n)−1

]
M̃1M̂1

2
(
λmin(θ̂n)/M2 − δ

)√√√√(1− exp

[
−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

])

+
M1M̃1M̂1

λmin(θ̂n)− δM2

;

E2 :=
M̂1M̃1 |det (R1(n, δ))|−1/2 |det (R2(n, δ))|1/2

√
Tr [R2(n, δ)]

1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
] ;

E3:=
M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

4.4. Control over the difference of covariances in the MLE-centric approach.

THEOREM 4.3. Suppose that Assumptions 1-5 hold. Suppose that√
Tr[Jn(θ̂n)−1]

n < δ. Let Zn ∼N (0, Jn(θ̂n)−1). We have that

sup
v:‖v‖≤1

∣∣∣∣E[〈v,√n(θ̃n − θ̂n)〉2
]
−E

[
〈v,Zn〉2

]∣∣∣∣
≤ (F1)2 n−1 + F1F3n

−1/2 +
M̃1 |det(R2(n, δ))|1/2 Tr [R2(n, δ)]

(2π)d/2
(F2)2nd/2e−nκ

+

(
δ2n+

√
2π

λmin(θ̂n)
+ M̃1 |det(R2(n, δ))|1/2 Tr [R2(n, δ)]F2

)

· exp

−1

2

(
δ
√
n−

√
Tr
(
Jn(θ̂n)−1

))2

λmin(θ̂n)


+

F2

(2π)d/2

[∫
‖u‖>δ

‖u‖2π(u+ θ̂n)du

]
nd/2+1e−nκ,
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where

F1 :=

√
3 Tr

[
Jn(θ̂n)−1

]
M̃1M̂1

2
(
λmin(θ̂n)/M2 − δ

)√√√√(1− exp

[
−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

])

+
M1M̃1M̂1

λmin(θ̂n)− δM2

;

F2:=
M̂1 |det (R1(n, δ))|−1/2

1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
] ;

F3 :=

2

√
Tr
[
Jn(θ̂n)−1

]
√√√√1− exp

[
−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

] .

Finally, we have the following bound, which works for pretty arbitrary test functions, but
only in dimension one:

THEOREM 4.4. Assume that we study a univariate posterior, i.e. that d= 1. Let σ2
n :=

Jn(θ̂n)−1. Suppose that Zn ∼ N (0, σ2
n). Then, for any function g : R→ R, which is inte-

grable with respect to the posterior and with respect to N (0, σ2
n),∣∣∣E[g(√n(θ̃n − θ̂n)

)]
−E [g(Zn)]

∣∣∣
≤2M̃1M̂1√

2πσ2
n

∫ δ
√
n

−δ
√
n
|ug(u)|

[(
M1 +

3

δ

)
e−C

(1)
n u2 − 3

δ
e−C

(2)
n u2

]
du · n−1/2

+
2

√
C

(4)
n

(
M̃1M̂1

)2 (
M1 + 3

δ

)∫ δ√n
−δ
√
n
|g(u)|e−C(2)

n u2

du

C
(1)
n π

√
σ2
n

(
1− 2e−δ2nC

(4)
n

) (
M1 + 3

δ

C
(1)
n

− 3

δC
(2)
n

)
· n−1/2

+

∣∣∣∣∣
∫
|u|>δ

√
n
g(u)

e−u
2/(2σ2

n)√
2πσ2

n

du

∣∣∣∣∣+ M̂1

√
C

(4)
n

∫
|u|>δ |g(u

√
n)|π(u+ θ̂n)du

√
π
{

1− 2 exp
[
−C(4)

n δ2n
]} · n1/2e−nκ

+
M̂1M̃1

√
C

(4)
n

∫
|t|≤δ

√
n |g(t)|e−C(2)

n t2dt

√
π
{

1− 2 exp
[
−C(4)

n δ2n
]}

2e−δ
2n/(2σ2

n) +
M̂1

√
C

(4)
n n1/2e−nκ

√
π
(

1− 2 exp
[
−C(4)

n δ2n
])
 ,

for

C(1)
n =

1

2σ2
n

− δM2

3
> 0; C(2)

n =

(
1

2σ2
n

− δM2

6

)
> 0;

C(3)
n =

(
1

2σ2
n

+
δM2

3

)
> 0; C(4)

n =

(
1

2σ2
n

+
δM2

6

)
> 0.
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(a) Posterior mean (b) Posterior variance

Fig 1: Poisson likelihood with gamma prior and exponential data (MAP-centric approach)

REMARK 4.5. The proof of Theorem 4.4 can easily be modified in order to yield analo-
gous bounds on the quality of approximation in the MAP-centric approach, as described in
Section 1.4 and presented in Section 2.

5. Example applications. Now, we present some examples of our bounds computed for
different models.

5.1. Our bounds work under misspecification: Poisson likelihood with gamma prior and
exponential data. First, we look at a one-dimensional conjugate model, for which we can
compare our bounds on the difference of means and the difference of variances to the ground
truth. We consider a Poisson likelihood and a gamma prior with shape equal to 0.1 and rate
equal to 3. Our data are generated from the exponential distribution with mean 10. Figures
1a and 1b show good control over the difference of means and the difference of variances
provided by our bounds (in the MAP-centric approach) for sample sizes between around
200. More detail on how one can compute the constants appearing in the bounds can be
found in Appendix E.

5.2. Our bounds work for non log-concave posteriors: Weibull likelihood with inverse-
gamma prior. Now, we consider another conjugate model and compare our bounds to the
ground truth. In this case, the posterior is not log-concave. In our experiment, we set the
shape of the Weibull to 1

2 and we make inference about the scale. The prior is inverse-gamma
with shape equal to 3 and scale equal to 10. The data are Weibull with shape 1/2 and scale 1.
Figures 2a and 2b demonstrate that our bounds on the difference of means and the difference
of variances (in the MAP centric approach) get close to the true difference of means and the
true difference of variances for sample sizes in low thousands. More detail on how one can
compute the constants appearing in the bounds can be found in Appendix E.

5.3. Our bounds work for multivariate heavy-tailed posteriors: logistic regression with
Student’s t prior.

5.3.1. Setup. Suppose X1, . . . ,Xn ∈ Rd and Y1, . . . , Yn ∈ {−1,1}. We will study the
following log-likelihood:

Ln(θ) := Ln (θ| (Yi)ni=1 , (Xi)
n
i=1) =−

n∑
i=1

log
(

1 + e−X
T
i θYi

)
.(5.1)
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(a) Posterior mean (b) Posterior variance

Fig 2: Weibull likelihood with inverse-gamma prior (MAP-centric approach)

For a covariance matrix Σ, a vector µ ∈ Rd and hyperparameter ν > 0, we consider a d-
dimensional Student’s t prior on θ, given by

π(θ) =
Γ((ν + d)/2)

Γ(ν/2)νd/2πd/2|Σ|1/2

[
1 +

1

ν
(θ− µ)TΣ−1(θ− µ)

]−(ν+d)/2

.(5.2)

Combining the log-likelihood given by (5.1) with the prior given by (5.2) yields a posterior
that is known not to be log-concave. Moreover, for certain data sets the posterior is heavy
tailed. An easy one-dimensional example of such a data-set is one for which XiYi > 0 for all
i. Let us first focus on calculating the constants appearing in the bounds of Section 2.

5.3.2. Calculating Jn(θ̂n) and J̄n(θ̄n). Note that:

Jn(θ̂n) =
1

n

n∑
k=1

eX
T
k θ̂nYk

(1 + eX
T
k θ̂nYk)2

Xk (Xk)
T ;

J̄n(θ̄n) =
1

n

n∑
k=1

eX
T
k θ̄nYk

(1 + eX
T
k θ̄nYk)2

Xk (Xk)
T

+
ν + d

2νn

[
1 +

1

ν
(θ̄n − µ)TΣ−1(θ̄n − µ)

]−1 (
Σ−1 + diag

(
Σ−1

))
− ν + d

2ν2n

[
1 +

1

ν
(θ̄n − µ)TΣ−1(θ̄n − µ)

]−2

·
[(

Σ−1 + diag
(
Σ−1

))
(θ̄n − µ)

] [(
Σ−1 + diag

(
Σ−1

))
(θ̄n − µ)

]T
.

5.3.3. Calculating M1, M̃1 and M̂1. Note that

π′(θ) =
Γ((ν + d)/2)

Γ(ν/2)νd/2πd/2|Σ|1/2

(
−ν + d

2

)[
1 +

1

ν
(θ− µ)TΣ−1(θ− µ)

]−(ν+d)/2−1

·
[

1

ν

(
Σ−1 + diag

(
Σ−1

1,1, . . . ,Σ
−1
d,d

))]
(θ− µ).(5.3)
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It follows from the expressions (5.2) and (5.3) that

sup
θ:‖θ−θ̂‖<δ

|π(θ)| ≤ Γ((ν + d)/2)

Γ(ν/2)νd/2πd/2|Σ|1/2
=: M̃1;

sup
θ:‖θ−θ̂‖<δ

1

|π(θ)|
≤ sup
θ:‖θ−θ̂‖<δ

Γ(ν/2)νd/2πd/2|Σ|1/2

Γ((ν + d)/2)

[
1 +

1

νλmin(Σ)
‖θ− µ‖2

](ν+d)/2

≤Γ(ν/2)νd/2πd/2|Σ|1/2

Γ((ν + d)/2)

[
1 +

2δ2 + 2‖θ̂− µ‖2

νλmin(Σ)

](ν+d)/2

=: M̂1;

sup
θ:‖θ−θ̂‖<δ

‖π′(θ)‖
|π(θ)|

= sup
θ:‖θ−θ̂‖<δ

(
ν + d

2

) ∥∥∥ 1
ν

(
Σ−1 + diag

(
Σ−1

1,1, . . . ,Σ
−1
d,d

))
(θ− µ)

∥∥∥[
1 + 1

ν (θ− µ)TΣ−1(θ− µ)
]

≤
(
ν + d

2

) (δ + ‖θ̂− µ‖
)∥∥∥Σ−1 + diag

(
Σ−1

1,1, . . . ,Σ
−1
d,d

)∥∥∥
ν

≤
(ν + d)

(
δ+ ‖θ̂− µ‖

)
νλmin(Σ)

=:M1.

5.3.4. Calculating M2 and M2. Note that, for all θ ∈Rd,

L′′′n (θ) [u1, u2, u3] =

n∑
i=1

Y 3
i

d∑
j,k,l=1

eX
T
i θYi

(
eX

T
i θYi − 1

)
(
1 + eX

T
i θYi

)3 X
(j)
i X

(k)
i X

(l)
i u

(j)
1 u

(k)
1 u

(l)
1

and therefore, for all θ ∈Rd,

1

n
‖L′′′n (θ)‖ ≤ 1

n

n∑
k=1

‖Xk‖3
eX

T
k θYk

∣∣∣eXT
k θYk − 1

∣∣∣(
1 + eX

T
k θYk

)3 ≤ 1

6
√

3n

n∑
k=1

‖Xk‖3 =:M2.(5.4)

Now, a straightforward calculation reveals that, for ‖u‖ ≤ 1,‖v‖ ≤ 1,‖w‖ ≤ 1 and any θ ∈
R
d, and δ̄ ≤ 1,

sup
‖θ−θ̄n‖≤δ̄

∣∣∣∣∣∣
d∑

i,j,k=1

(
∂3

∂θj∂θi∂θk
logπ(θ)

)
uivjwk

∣∣∣∣∣∣
≤ sup
‖θ−θ̄n‖≤δ̄

{
3(ν + d)

[ν + (θ− µ)TΣ−1(θ− µ)]2
∥∥Σ−1 + diag(Σ−1)

∥∥2

op
‖θ− µ‖

+
2(ν + d)

[ν + (θ− µ)TΣ−1(θ− µ)]3
∥∥Σ−1 + diag(Σ−1)

∥∥3

op
‖θ− µ‖3

}

≤3(ν + d)

ν2

∥∥Σ−1 + diag(Σ−1)
∥∥2

op

(
1 + ‖θ̄n − µ‖

)
+

2(ν + d)

ν2

∥∥Σ−1 + diag(Σ−1)
∥∥3

op

(
1 + ‖θ̄n − µ‖

)3
.
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Combining this with (5.4), we obtain

1

n

∥∥∥L′′′n (θ̄n)
∥∥∥≤ 1

6
√

3n

n∑
k=1

‖Xk‖3 +
3(ν + d)

ν2 n

∥∥Σ−1 + diag(Σ−1)
∥∥2

op

(
1 + ‖θ̄n − µ‖

)
+

2(ν + d)

ν3 n

∥∥Σ−1 + diag(Σ−1)
∥∥3

op

(
1 + ‖θ̄n − µ‖

)3
=:M2.(5.5)

5.3.5. Calculating κ and κ̄. Note that Ln is strictly concave. Therefore,

sup
θ:‖θ−θ̂n‖>δ

Ln(θ)−Ln(θ̂)

n
≤ sup
θ:‖θ−θ̂n‖=δ

Ln(θ)−Ln(θ̂)

n

≤ sup
θ:‖θ−θ̂n‖=δ

{
−1

2

(
θ− θ̂n

)T
Jn(θ̂n)

(
θ− θ̂n

)}
+
M2δ

3

2

≤− 1

2
λmin(θ̂n)δ2 +

M2δ
3

2
=:−κ.

SinceM2 in (5.4) provides a uniform bound on 1
n‖L

′′′
n (θ)‖ over θ ∈Rd, a similar calculation

shows:

sup
θ:‖θ−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

Ln(θ)−Ln(θ̂n)

n

≤− 1

2
λmin(θ̂n)

(
δ̄− ‖θ̂n − θ̄n‖

)2
+
M2

(
δ̄− ‖θ̂n − θ̄n‖

)3

2
=:−κ̄.

5.3.6. Finding appropriate values of δ and δ̄. In order to apply our results in the MLE-
centric approach, we need √√√√Tr

[
Jn(θ̂n)−1

]
n

< δ <
λmin(θ̂n)

M2
.(5.6)

This assumption also ensures that κ from Subsection 5.3.5 is positive. In the MAP-centric
approach also require

max

‖θ̂n − θ̄n‖,
√

Tr
(
J̄n(θ̄n)−1

)
n

< δ̄ <
λmin(θ̄n)

M2

,

which also ensures that κ̄ from Subsection 5.3.5 is positive. Such choices of δ̄ and δ will be
available for sufficiently large n. In order to choose the appropriate concrete values of δ̄ and
δ one can run a numerical optimization scheme.

5.3.7. Summing up. The bounds from Sections 2 and 4 may be computed using
M2,M2, κ, κ̄ derived above. The MLE θ̂n and θ̄n can be easily obtained numerically, us-
ing built-in R or Python packages for global optimization. As there is a certain degree of
choice for δ and δ̄, the choice therof may also be optimized numerically, using the same
packages.

In order to improve on the bounds, one can also run a numerical optimizer in order to derive
tighter values of M2 and M2 than those we derive analytically here. A robust (yet slow)
approach to doing this is via grid search, combined with the mean value theorem and a bound
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(a) Posterior mean (b) Posterior covariance

Fig 3: 5-dimensional logistic regression with t prior (MAP-centric approach)

on the fourth derivative of the log-likelihood (or log-posterior). Another option is to run a
faster built-in global optimizer to derive the maximum of the third derivative inside a ball
around the MLE (or MAP). What is gained in terms of speed is lost in terms of robustness.
Nevertheless, this might be a useful approach for users of our bounds. Figures 3a and 3b
present our bounds obtained using this approach. The experiments were performed for the 5-
dimensional logistic regression with Student’s t prior with mean zero and identity convariance
matrix. The data we used came from logistic regression with parameter (1,1,1,1,1). Figures
3a and 3b demonstrate that our bounds on the 1-Wasserstein distance and the 2-norm of the
difference of variances go well below the approximate values of the mean and 2-norm of
the covariance, respectively, for reasonably moderate sample sizes. Therefore, our bounds
go well below the true values of the mean and the norm of the covariance, for moderate
sample sizes. This indicates that they are applicable for practitioners who wish to assess how
confident they should be in their mean and variance estimates.

6. Conclusions and future work. We provide bounds on the quality of the Laplace ap-
proximation which are computable and hold under the standard assumptions of the Bernstein
– von Mises Theorem. A crucial question is one about the tightness of our bounds. Our proof
technique relies mainly on using the log-Sobolev inequality inside a ball around the MLE
or MAP. It would be useful to investigate whether using the log-Sobolev inequality inside
another convex region around the MLE/MAP could produce tighter bounds. A crucial ques-
tion would also be whether this alternative convex region would still be such that for many
commonly used Bayesian models the posterior satisfies the log-Sobolev inequality inside it.
Another interesting question is whether, for multivariate posteriors, we could derive bounds
on more general integral probability metrics, in a way similar to our univariate Theorem 4.4.
This is to a certain extent a question about the applicability of Stein’s method in dimension
greater than one for measures truncated to a bounded convex set. So far we have struggled
to find enough theory that would support it but we hope such theory will be provided in the
future.
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APPENDIX A: INTRODUCTORY ARGUMENTS

A.1. Introduction. In order to prove the results of this paper, we let g : Rd→ R and
consider:

DMLE
g :=

∣∣∣E[g(√n(θ̃n − θ̂n)
)]
−EZn∼N (0,Jn(θ̂n))−1) [g(Zn)]

∣∣∣ ;(A.1)

DMAP
g :=

∣∣∣E[g(√n(θ̃n − θ̄n)
)]
−EZ̄n∼N (0,J̄n(θ̄n))−1)

[
g(Z̄n)

]∣∣∣ .(A.2)

The following lemma will be useful in the sequel:
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LEMMA A.1. Let Z ∼N (0,Σ). Then, for any t > 0,

P

[
‖Z‖ −

√
Tr(Σ)≥

√
2‖Σ‖op t

]
≤ e−t;(A.3)

P

[
‖Z‖2 − Tr(Σ)≥ 2

√
Tr (Σ2) t+ 2‖Σ‖op t

]
≤ e−t.(A.4)

PROOF. The proof follows an argument similar to the one of [39, page 135]. Specifically,
(A.4) comes from [19, Proposition 1]. In order to prove (A.3), we note that

P

[
‖Z‖ −

√
Tr(Σ)≥

√
2‖Σ‖op t

]
=P

[
‖Z‖2 − Tr(Σ)≥ 2‖Σ‖op t+ 2

√
2Tr (Σ)‖Σ‖op t

]
≤P

[
‖Z‖2 − Tr(Σ)≥ 2

√
Tr (Σ2) t+ 2‖Σ‖op t

]
≤ e−t.

A.2. Initial decomposition of the distances DMLE
g and DMAP

g . Now, let

hMLE
g (u) := g(u)− n−d/2

CMLE
n

∫
‖t‖<δ

√
n
g(t)Πn(n−1/2t+ θ̂n)dt,

hMAP
g (u) := g(u)− n−d/2

CMAP
n

∫
‖t‖<δ̄

√
n
g(t)Πn(n−1/2t+ θ̄n)dt,

for

CMLE
n := n−d/2

∫
‖u‖≤δ

√
n

Πn(n−1/2u+ θ̂n)du(A.5)

CMAP
n := n−d/2

∫
‖u‖≤δ̄

√
n

Πn(n−1/2u+ θ̄n)du.

Note that, for

FMLE
n :=

∫
‖u‖≤δ

√
n

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

(2π)d/2
du,(A.6)

we have

DMLE
g

=

∣∣∣∣∣∣
∫
Rd

hMLE
g (u)

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

(2π)d/2
du

−n−d/2
∫
‖u‖>δ

√
n
hMLE
g (u)Πn(n−1/2u+ θ̂n)du

∣∣∣∣∣
≤ 1

FMLE
n

∣∣∣∣∣∣
∫
‖u‖≤δ

√
n
hMLE
g (u)

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

(2π)d/2
du

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
‖u‖>δ

√
n
hMLE
g (u)


√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

(2π)d/2
− n−d/2 Πn(n−1/2u+ θ̂n)

du
∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∫
‖u‖≤δ

√
n
g(u)

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

FMLE
n (2π)d/2

du

− n−d/2

CMLE
n

∫
‖u‖≤δ

√
n
g(u)Πn(n−1/2u+ θ̂n)du

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
‖u‖>δ

√
n
hMLE
g (u)


√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

(2π)d/2
− n−d/2 Πn(n−1/2u+ θ̂n)

du
∣∣∣∣∣∣

=:IMLE
1 + IMLE

2 .

(A.7)

In a similar manner, for

FMAP
n :=

∫
‖u‖≤δ̄

√
n

√
|det J̄n(θ̄n)|e−uT J̄n(θ̄n)u/2

(2π)d/2
du,(A.8)

we have

DMAP
g

≤

∣∣∣∣∣
∫
‖u‖≤δ̄

√
n
g(u)

√
|det J̄n(θ̄n)|e−uT J̄n(θ̄n)u/2

FMAP
n (2π)d/2

du

− n−d/2

CMAP
n

∫
‖u‖≤δ̄

√
n
g(u)Πn(n−1/2u+ θ̄n)du

∣∣∣∣∣
+

∣∣∣∣∣
∫
‖u‖>δ̄

√
n
hMAP
g (u)

[√
|det J̄n(θ̄n)|e−uT J̄n(θ̄n)u/2

(2π)d/2
− n−d/2 Πn(n−1/2u+ θ̄n)

]
du

∣∣∣∣∣
=:IMAP

1 + IMAP
2 .

(A.9)

A.3. Controlling term IMLE
2 . Note that

IMLE
2 ≤

∣∣∣∣∣∣∣∣
∫
‖u‖>δ

√
n
g(u)

n−d/2Πn(n−1/2u+ θ̂n)−

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2

du

∣∣∣∣∣∣∣∣
+
n−d/2

CMLE
n

∫
‖t‖≤δ

√
n
|g(t)|Πn(n−1/2t+ θ̂n)dt

·

∣∣∣∣∣∣∣∣
∫
‖u‖>δ

√
n

n−d/2Πn(n−1/2u+ θ̂n)−

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2

du

∣∣∣∣∣∣∣∣
=:IMLE

2,1 + IMLE
2,2 .
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Now, for ‖t‖< δ
√
n, Assumption 1 implies that∣∣∣∣Ln(n−1/2t+ θ̂n)−Ln(θ̂n) +

1

2
tT I(θ̂n)t

∣∣∣∣≤ 1

6
n−1/2M2‖t‖3 ≤

δM2

6
‖t‖2.(A.10)

Therefore, under Assumptions 1, 2 and 4, and using the notation of Section 2.1,∫
‖u‖>δ

√
n
|g(u)|n−d/2Πn(n−1/2u+ θ̂n)du

=

∫
‖u‖>δ

√
n |g(u)|π(n−1/2u+ θ̂n)eLn(n−1/2u+θ̂n)du∫
Rd
π(n−1/2t+ θ̂n)eLn(n−1/2t+θ̂n)dt

≤

∫
‖u‖>δ

√
n |g(u)|π(n−1/2u+ θ̂n)eLn(n−1/2u+θ̂n)du∫

‖t‖≤δ
√
n π(n−1/2t+ θ̂n)eLn(n−1/2t+θ̂n)dt

=

∫
‖u‖>δ

√
n |g(u)|π(n−1/2u+ θ̂n)eLn(n−1/2u+θ̂n)−Ln(θ̂n)du∫

‖t‖≤δ
√
n π(n−1/2t+ θ̂n)eLn(n−1/2t+θ̂n)−Ln(θ̂n)dt

(A.10)

≤
e−nκ

∫
‖u‖>δ

√
n |g(u)|π(n−1/2u+ θ̂n)du∫

‖t‖≤δ
√
n π(n−1/2t+ θ̂n)e−tT (Jn(θ̂n)+(δM2/3)Id×d)t/2dt

≤
nd/2e−nκM̂1 |det (R1(n, δ))|−1/2 ∫

‖u‖>δ |g(u
√
n)|π(u+ θ̂n)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) ,(A.11)

if n > Tr[R1(n,δ)]
δ2 , where the last inequality follows from Lemma A.1. Therefore, if n >

Tr[R1(n,δ)]
δ2 and if Assumptions 1, 2 and 4 are satisfied,

IMLE
2,1 ≤

∣∣∣∣∣∣∣∣
∫
‖u‖>δ

√
n
g(u)

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2
du

∣∣∣∣∣∣∣∣
+

nd/2e−nκM̂1 |det (R1(n, δ))|−1/2 ∫
‖u‖>δ |g(u

√
n)|π(u+ θ̂n)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(A.12)

Now, under Assumptions 1 – 5,

n−d/2

CMLE
n

∫
‖t‖≤δ

√
n
|g(t)|Πn(n−1/2t+ θ̂n)dt

≤
M̂1M̃1

∫
‖t‖≤δ

√
n |g(t)|eLn(n−1/2t+Ln)−Ln(θ̂n)dt∫

‖u‖≤δ
√
n e

Ln(n−1/2u+θ̂n)−Ln(θ̂n)du

≤
M̂1M̃1

∫
‖t‖≤δ

√
n |g(t)|e−

1

2
tT (Jn(θ̂n)−M2δ

3
Id×d)tdt∫

‖u‖≤δ
√
n e
−uT (Jn(θ̂n)+(δM2/3)Id×d)u/2du
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≤
M̂1M̃1 |det (R1(n, δ))|−1/2 ∫

‖t‖≤δ
√
n |g(t)|e−

1

2
tT (Jn(θ̂n)−M2δ

3
Id×d)tdt

(2π)d/2
{

1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]} ,(A.13)

where the last inequality follows from Lemma A.1. A bound on I2,2 can be obtained by
combining (A.13) with (A.12) applied to g = 1. Indeed, we thus obtain:

IMLE
2,2 ≤

M̂1M̃1 |det (R1(n, δ))|−1/2 ∫
‖u‖≤δ

√
n |g(u)|e−

1

2
uT (Jn(θ̂n)−M2δ

3
Id×d)udu

(2π)d/2
{

1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]}

·

{
exp

−1

2

(
δ
√
n−
√

Tr
[
Jn(θ̂n)−1

])2[∥∥∥Jn(θ̂n)−1
∥∥∥
op

]−1


+
nd/2e−nκM̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
,

(A.14)

where we used Lemma A.1. A bound on IMLE
2 is obtained by adding together the bounds on

IMLE
2,1 (A.12) and IMLE

2,2 (A.14).

REMARK A.2. Note that, for g, such that |g| ≤ U , for some U > 0, we have that

n−d/2

CMLE
n

∫
‖t‖≤δ

√
n
|g(t)|Πn(n−1/2t+ θ̂n)dt≤ U.

Therefore, for |g| ≤ U , the same argument as above yields a simpler bound:

IMLE
2,2 ≤U

{
exp

−1

2

(
δ
√
n−
√

Tr
[
Jn(θ̂n)−1

])2[∥∥∥Jn(θ̂n)−1
∥∥∥
op

]−1


+
nd/2e−nκM̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
.

A.4. Controlling term IMAP
2 . Note that

IMAP
2 ≤

∣∣∣∣∣∣
∫
‖u‖>δ̄

√
n
g(u)

n−d/2Πn(n−1/2u+ θ̄n)−

√∣∣det J̄n(θ̄n)
∣∣e−uT J̄n(θ̄n)u/2

(2π)d/2

du

∣∣∣∣∣∣
+
n−d/2

CMAP
n

∫
‖t‖≤δ̄

√
n
|g(t)|Πn(n−1/2t+ θ̄n)dt

·

∣∣∣∣∣∣
∫
‖u‖>δ̄

√
n

n−d/2Πn(n−1/2u+ θ̄n)−

√∣∣det J̄n(θ̄n)
∣∣e−uT J̄n(θ̄n)u/2

(2π)d/2

du

∣∣∣∣∣∣
=:IMAP

2,1 + IMAP
2,2 .
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Note that, using Assumptions 1, 2 and 8, a calculation similar to (A.11), yields

∫
‖u‖>δ̄

√
n
|g(u)|n−d/2Πn(n−1/2u+ θ̄n)du

=

∫
‖v−θ̄n‖>δ̄

∣∣g (√n(v− θ̄n)
)∣∣ Πn(v)dv

≤

∫
‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

∣∣g (√n(v− θ̄n)
)∣∣ π(v)eLn(v)dv∫

Rd
π(t)eLn(t)dt

≤

∫
‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

∣∣g (√n(v− θ̄n)
)∣∣ π(v)eLn(v)−Ln(θ̂n)dv∫

‖t−θ̂n‖≤δ π(t)eLn(t)−Ln(θ̂n)dt

≤
nd/2e−nκ̄

∫
‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖

∣∣g (√n(v− θ̄n)
)∣∣π(v)dv∫

‖t‖≤δ
√
n π(n−1/2t+ θ̂n)e−tT (Jn(θ̂n)+(δM2/3)Id×d)t/2dt

≤
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2 ∫

‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖
∣∣g (√n(v− θ̄n)

)∣∣π(v)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) ,

if n > Tr[R1(n,δ)]
δ2 , where the last inequality follows from Lemma A.1. Therefore, under as-

sumptions 1, 2 and 8 and if n > Tr[R1(n,δ)]
δ2 ,

IMAP
2,1 ≤

∣∣∣∣∣∣
∫
‖u‖>δ̄

√
n
g(u)

√∣∣det J̄n(θ̄n)
∣∣e−uT J̄n(θ̄n)u/2

(2π)d/2
du

∣∣∣∣∣∣
+
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2 ∫

‖v−θ̂n‖>δ̄−‖θ̂n−θ̄n‖
∣∣g (√n(v− θ̄n)

)∣∣π(v)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(A.15)

Now, under Assumptions 1, 2 and 6 – 8,

n−d/2

CMAP
n

∫
‖t‖≤δ̄

√
n
|g(t)|Πn(n−1/2t+ θ̄n)dt

≤

∫
‖t‖≤δ̄

√
n |g(t)|eLn(n−1/2t+θ̄n)−Ln(θ̄n)dt∫

‖u‖≤δ̄
√
n e

Ln(n−1/2u+θ̄n)−Ln(θ̄n)du

≤

∫
‖t‖≤δ̄

√
n |g(t)|e−

1

2
tT
(
J̄n(θ̄n)−M2 δ̄

3
Id×d

)
t
dt∫

‖u‖≤δ̄
√
n e
−uT (J̄n(θ̄n)+(δ̄M2/3)Id×d)u/2du

≤

∣∣det
(
R1(n, δ̄)

)∣∣−1/2 ∫
‖u‖≤δ̄

√
n |g(u)|e−

1

2
uT
(
J̄n(θ̄n)−M2 δ̄

3
Id×d

)
u
du

(2π)d/2

{
1−exp

[
−1

2

(
δ̄
√
n−
√

Tr
[
R1(n, δ̄)

])2[∥∥R1(n, δ̄)
∥∥
op

]−1
]} ,(A.16)
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where the last inequality follows from Lemma A.1. A bound on IMAP
2,2 can be obtained by

combining (A.16) with (A.15) applied to g = 1. Indeed, we obtain:

IMAP
2,2 ≤

∣∣det
(
R1(n, δ̄)

)∣∣−1/2 ∫
‖u‖≤δ̄

√
n |g(u)|e−

1

2
uT
(
J̄n(θ̄n)−M2 δ̄

3
Id×d

)
u
du

(2π)d/2

{
1−exp

[
−1

2

(
δ̄
√
n−
√

Tr
[
R1(n, δ̄)

])2[∥∥R1(n, δ̄)
∥∥
op

]−1
]}

·

{
exp

[
−1

2

(̄
δ
√
n−
√

Tr
[
J̄n(θ̄n)−1

])2[∥∥J̄n(θ̄n)−1
∥∥
op

]−1
]

+
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
,

(A.17)

where we applied Lemma A.1.

REMARK A.3. As in Remark A.2, our bound gets simpler if |g| ≤ U , for some U > 0.
In that case, instead of (A.17), we can write:

IMAP
2,2 ≤U

{
exp

[
−1

2

(̄
δ
√
n−
√

Tr
[
J̄n(θ̄n)−1

])2[∥∥J̄n(θ̄n)−1
∥∥
op

]−1
]

+
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
.

APPENDIX B: PROOFS OF THEOREMS 2.1-2.3

Throughout this section we adopt the notation of Section A. In all the proofs below, we
wish to control the quantity DMAP

g of (A.2) for all functions g which satisfy certain pre-
scribed criteria. In the proof of Theorem 2.1, we look at funcitons g which are indicators of
measurable sets, in the proof of Theorem 2.2 we look at 1-Lipschitz funcitons g and in the
proof of Theorem 2.3 at those which are of the form g(x) = 〈v,x〉2 for some v ∈Rd with
‖v‖ = 1. In order to prove Theorems 2.1 – 2.3, we will bound terms IMAP

2 and IMAP
1 of

(A.9) separately.

B.1. Proof of Theorem 2.1.

B.1.1. Controlling term IMAP
2 . We wish to obtain a uniform bound on IMAP

2 for all
functions g which are indicators of measurable sets. Every indicator function is upper-
bounded by one, so we can use Remark A.3 to obtain:

IMAP
2,2 ≤ exp

[
−1

2

(̄
δ
√
n−
√

Tr
[
J̄n(θ̄n)−1

])2[∥∥J̄n(θ̄n)−1
∥∥
op

]−1
]

+
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(B.1)
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Similarly, since |g| ≤ 1, we can use (A.15) and Lemma A.1 to obtain:

IMAP
2,1 ≤ exp

[
−1

2

(̄
δ
√
n−
√

Tr
[
J̄n(θ̄n)−1

])2[∥∥J̄n(θ̄n)−1
∥∥
op

]−1
]

+
nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(B.2)

From (B.1) and (B.2), it follows that

IMAP
2 ≤2 exp

[
−1

2

(̄
δ
√
n−
√

Tr
[
J̄n(θ̄n)−1

])2[∥∥J̄n(θ̄n)−1
∥∥
op

]−1
]

+
2nd/2e−nκ̄M̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(B.3)

B.1.2. Controlling term IMAP
1 using the log-Sobolev inequality. For any probability

measure µ, let [µ]B0(δ̄
√
n) denote its restriction (truncation) to the ball of radius δ̄

√
n around

0. Let KL (·‖·) denote the Kullback-Leibler divergence (i.e. the relative entropy, see e.g. [3,
Section 1.6.1]).

Note that, by Assumption 6, for t such that ‖t‖<
√
nδ̄, we have

−n−1L
′′
n(θ̄n + n−1/2t)� J̄n(θ̄n)− δ̄M2Id×d �

(
λmin(θ̄n)− δ̄M2

)
Id×d.

This means that, inside the convex set {t ∈Rd : ‖t‖ <
√
nδ̄}, the density of

√
n(θ̃n − θ̄n)

is
(
λmin(θ̄n)− δ̄M2

)
-strongly log-concave (see e.g. [34]). Let FMAP

n be given by (A.8).

Using the Bakry-Emery criterion, we have that
[
L
(√

n
(
θ̃n − θ̄n

))]
B0(δ̄

√
n)

satisfies the

log-Sobolev inequality (see, e.g. [35, Appendix A] for a summary of all those results). By
combining the log-Sobolev inequality with Pinsker’s inequality (see, e.g. [28, Theorem 2.16])
we obtain that, for all functions g, which are indicators of measurable sets,
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≤
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(B.4)

as long as n >
Tr[J̄n(θ̄n)−1]

δ̄
2 , where the last inequality follows from Lemma A.1.

B.1.3. Conclusion. The result now follows from adding together bounds (B.3) and (B.4).

B.2. Proof of Theorem 2.2.

B.2.1. Controlling term IMAP
2 . Now we wish to control IMAP

2 uniformly over all func-
tions g which are 1-Lipschitz. Let us fix a function g that is 1-Lipschitz and WLOG set
g(0) = 0. In that case |g(u)| ≤ ‖u‖ and, using the notation of Section A and equation (A.15),
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This means that
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Now, using (A.17), we have
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Adding together bounds (B.7) and (B.8) now yields a bound on IMAP
2 .

B.2.2. Controlling term IMAP
1 using the log-Sobolev inequality and the transportation-

information inequality. As in Subsection B.1.2, we shall use the log-Sobolev inequality for
the measure
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(see [31, Theorem 1] or [18]), which lets us upper bound the 1- and 2-Wasserstein distances
by a constant times the Fisher divergence. Let W2(·, ·) denote the 2-Wasserstein distance and
W1(·, ·) denote the 1-Wasserstein distance. We have that
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(B.9)

as long as n >
Tr[J̄n(θ̄n)−1]

δ̄
2 , where the last iequality follows from Lemma A.1.

B.2.3. Conclusion. The result now follows from adding together bounds (B.7), (B.8) and
(B.9).
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B.3. Proof of Theorem 2.3.

B.3.1. Controlling term IMAP
2 . Now we wish to control IMAP

2 uniformly over all func-
tions g which are of the form g(u) = 〈v,u〉2 for some v ∈Rd with ‖v‖= 1. Such functions
satisfy the following property: |g(u)| ≤ ‖u‖2. Using the notation of Section A and equation
(A.15), we therefore have that:
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where we have used Lemma A.1. This means that
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Now, using (A.17), we have
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·
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(B.13)

A bound on IMAP
2 now follows from adding up the bounds (B.12) and (B.13).

B.3.2. Controlling term IMAP
1 using the log-Sobolev inequality and the transportation-

information inequality. Note that calculation (B.9) yields that

W2

([
L
(√

n
(
θ̃n − θ̄n

))]
B0(δ̄

√
n)
,
[
N (0, J̄n(θ̄n)−1)

]
B0(δ̄

√
n)

)

≤
√

3 Tr
[
J̄n(θ̄n)−1

]
M2

2
(
λmin(θ̄n)− δ̄M2

)√√√√n

(
1− exp

[
−1

2

(
δ̄
√
n−

√
Tr
[
J̄n(θ̄n)−1

])2

λmin(θ̄n)

]) .
(B.14)

Now, let us fix two random vectors: X ∼
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if n >
Tr[Jn(θ̂n)−1]

δ2 and the final bound on IMAP
1 may be obtained by using (B.14).

B.3.3. Conclusion. The result now follows by combining (B.15) with (B.14) and then
summing together with (B.12) and (B.13).

APPENDIX C: PROOFS OF THEOREMS 4.1 – 4.3

Throughout this section we adopt the notation of Section A. In all the proofs below, we
wish to control the quantity DMLE

g of (A.1) for all functions g which satisfy certain pre-
scribed criteria. In the proof of Theorem 2.1, we look at functions g which are indicators of
measurable sets, in the proof of Theorem 2.2 we look at 1-Lipschitz functions g and in the
proof of Theorem 2.3 at those which are of the form g(x) = 〈v,x〉2 for some v ∈Rd with
‖v‖ = 1. In order to prove Theorems 4.1 – 4.3, we will bound terms IMLE

2 and IMAP
1 of

(A.7) separately.

C.1. Proof of Theorem 4.1.

C.1.1. Controlling term IMLE
2 . We wish to obtain a uniform bound on IMLE

2 for all
functions g which are indicators of measurable sets. Every indicator function is upper-
bounded by one, so we can use Remark A.2 to obtain:
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Similarly, since |g| ≤ 1, we can use (A.12) and Lemma A.1 to obtain
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C.1.2. Controlling term IMLE
1 using the log-Sobolev inequality. We shall proceed as we

did in Subsection B.1.2. For any probability measure µ, let [µ]B0(δ
√
n) denote its restriction

(truncation) to the ball of radius δ
√
n around 0. Let KL (·‖·) denote the Kullback-Leibler

divergence (i.e. the relative entropy, see e.g. [3, Section 1.6.1]).
Note that, by Assumption 1, for t such that ‖t‖<

√
nδ, we have
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perturbation principle, we therefore have that
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)
(see, e.g. [35, Appendix A] for

a summary of all those results). By combining the log-Sobolev inequality with Pinsker’s in-
equality (see, e.g. [28, Theorem 2.16]) we obtain that, for all functions g, which are indicators
of measurable sets,
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(C.2)

as long as n >
Tr[Jn(θ̂n)−1]

δ2 , where we have used Lemma A.1.

C.1.3. Conclusion. The result now follows by adding together the bounds (C.1) and
(C.2).

C.2. Proof of Theorem 4.2.

C.2.1. Controlling term IMLE
2 . Now we wish to control IMLE

2 uniformly over all func-
tions g which are 1-Lipschitz and WLOG set g(0) = 0. It follows that |g(u)| ≤ ‖u‖ and,
using the notation of Section A and equation (A.12),

IMLE
2,1 ≤

∫
‖u‖>δ

√
n
‖u‖

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2
du

+
nd/2+1/2e−nκM̂1 |det (R1(n, δ))|−1/2 ∫

‖u‖>δ ‖u‖π(u+ θ̂n)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

A calculation similar to (B.6) reveals that

∫
‖u‖>δ

√
n
‖u‖

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2
du

≤

(
δ
√
n+

√
2π

λmin(θ̂n)

)
exp

−1

2

(
δ
√
n−

√
Tr
(
Jn(θ̂n)−1

))2

λmin(θ̂n)


and so

IMLE
2,1 ≤

(
δ
√
n+

√
2π

λmin(θ̂n)

)
exp

−1

2

(
δ
√
n−

√
Tr
(
Jn(θ̂n)−1

))2

λmin(θ̂n)


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+
nd/2+1/2e−nκM̂1 |det (R1(n, δ))|−1/2 ∫

‖u‖>δ ‖u‖π(u+ θ̂n)du

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .(C.3)

Now, using (A.14), we obtain

IMLE
2,2 ≤

M̂1M̃1 |det (R1(n, δ))|−1/2 |det (R2(n, δ))|1/2
√

Tr [R2(n, δ)]

1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]

·

{
exp

−1

2

(
δ
√
n−
√

Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)


+

nd/2e−nκM̂1 |det (R1(n, δ))|−1/2

(2π)d/2

(
1−exp

[
−1

2

(
δ
√
n−
√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
.(C.4)

Adding together bounds (C.3) and (C.4) yields a bound on IMLE
2 .

C.2.2. Controlling term IMLE
1 using the log-Sobolev inequality and the transportation-

information inequality. As in Subsection C.1.2, we shall use the log-Sobolev inequality for
the measure

[
L
(√

n
(
θ̃n − θ̂n

))]
B0(δ

√
n)

. A consequence of the log-Sobolev inequality is

that we can apply the transportation-information inequality for
[
L
(√

n
(
θ̃n − θ̂n

))]
B0(δ

√
n)

(see [31, Theorem 1] or [18]), which lets us upper bound the 1- and 2-Wasserstein distances
by a constant times the Fisher divergence. Let W2(·, ·) denote the 2-Wasserstein distance and
W1(·, ·) denote the 1-Wasserstein distance. We have that

IMLE
1 ≤W1

([√
n
(
θ̃n − θ̂n

)]
B0(δ

√
n)
,
[
N (0, Jn(θ̂n)−1)

]
B0(δ

√
n)

)
≤W2

([√
n
(
θ̃n − θ̂n

)]
B0(δ

√
n)
,
[
N (0, Jn(θ̂n)−1)

]
B0(δ

√
n)

)

≤ M̃1M̂1

λmin(θ̂n)− δM2

·

√√√√√∫
‖u‖≤δ

√
n

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

FMLE
n (2π)d/2

∥∥∥∥∥Jn(θ̂n)u+
L′n(n−1/2u+ θ̂n)√

n

∥∥∥∥∥
2

du

+
M̃1M̂1

√
n
(
λmin(θ̂n)− δM2
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·
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√
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√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2
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n (2π)d/2

∥∥∥∥∥π′(n−1/2u+ θ̂n)
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∥∥∥∥∥
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Taylor
≤ M̃1M̂1M2

2
√
n
(
λmin(θ̂n)− δM2

)
√√√√∫

‖u‖≤δ
√
n

√
|detJn(θ̂n)|e−uTJn(θ̂n)u/2

FMLE
n (2π)d/2

‖u‖4 du

+
M1M̃1M̂1

√
n
(
λmin(θ̂n)− δM2

)
≤

√
3 Tr

[
Jn(θ̂n)−1

]
M̃1M̂1M2

2
(
λmin(θ̂n)− δM2

)√√√√n

(
1− exp

[
−1

2

(
δ
√
n−

√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

])

+
M1M̃1M̂1

√
n
(
λmin(θ̂n)− δM2

) .
(C.5)

C.2.3. Conclusion. The result now follows from adding together the bounds (C.3), (C.4)
and (C.5).

C.3. Proof of Theorem 4.3.

C.3.1. Controlling term IMLE
2 . Now we want to control IMLE

2 uniformly over all func-
tions g which are of the form g(u) = 〈v,u〉, for some v ∈Rd with ‖v‖= 1. For such func-
tions we have that |g(u)| ≤ ‖u‖2. Using the notation of Section A and equation (A.12), we
have that

IMLE
2,1 ≤

∫
‖u‖>δ

√
n
‖u‖2

√∣∣∣detJn(θ̂n)
∣∣∣e−uTJn(θ̂n)u/2

(2π)d/2
du

+
nd/2+1e−nκM̂1 |det (R1(n, δ))|−1/2 ∫

‖u‖>δ ‖u‖
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(
1−exp
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2
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δ
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√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
]) .

A calculation similar to (B.11) reveals that
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≤

(
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√
2π

λmin(θ̂n)

)
exp
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(
δ
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√
Tr
(
Jn(θ̂n)−1

))2

λmin(θ̂n)


and so

IMLE
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(
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(
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+
nd/2+1e−nκM̂1 |det (R1(n, δ))|−1/2 ∫
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1−exp
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‖R1(n, δ)‖op

]−1
]) .(C.6)

Now, using (A.14), we obtain

IMLE
2,2 ≤M̂1M̃1 |det (R1(n, δ))|−1/2 |det (R2(n, δ))|1/2 Tr [R2(n, δ)]

1−exp
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(
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√

Tr [R1(n, δ)]
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‖R1(n, δ)‖op
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]

·
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Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)
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2
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√

Tr [R1(n, δ)]
)2[
‖R1(n, δ)‖op

]−1
])
}
.(C.7)

Adding together bounds (C.6) and (C.7) yields a bound on IMLE
2 .

C.3.2. Controlling term IMLE
1 using the log-Sobolev inequality and the transportation-

entropy inequality. Note that calculation (C.5) yields that

W2

([√
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(
θ̃n − θ̂n

)]
B0(δ

√
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,
[
N (0, Jn(θ̂n)−1)

]
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√
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)
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[
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]
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(
λmin(θ̂n)− δM2

)√√√√n
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1− exp
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√
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])2
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+
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(
λmin(θ̂n)− δM2

) .
(C.8)

An argument similar to the one that led to (B.15) yields:

IMLE
1 ≤W2
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L
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θ̃n − θ̂n

))]
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√
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,
[
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√
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√
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[
N (0, Jn(θ̂n)−1)
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√
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)

·
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]
√√√√(1− exp

[
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(
δ
√
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√
Tr
[
Jn(θ̂n)−1

])2

λmin(θ̂n)

]) ,(C.9)

and the final bound on IMLE
1 follows from (C.8).



GAUSSIAN APPROXIMATION OF THE POSTERIOR 41

C.3.3. Conclusion. The result now follows from combining (C.8) and (C.9) and adding
together with (C.6) and (C.7).

APPENDIX D: PROOF OF THEOREM 4.4

In this section, we concentrate on the univariate context (i.e. on d = 1). We shall apply
Stein’s method, in the framework described in [12, Section 2.1]. Before we do that, however,
let us recall that we want to upper-bound the quantity DMLE

g given by (A.1) for all functions
g for which all the two expectations in (A.1) exist. Recall the definition of CMLE

n from (A.5)
and let:

h(t) = hMLE
g (t) = g(t)− n−1/2

Cn

∫ δ
√
n

−δ
√
n
g(u)Πn(n−1/2u+ θ̂n)du.(D.1)

We can repeat the calculation leading to(A.7), without dividing the first term after the first
inequality by FMLE

n . We then obtain:

DMLE
g ≤

∣∣∣∣∣
∫ δ
√
n

−δ
√
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h(u)

e−t
2/(2σ2

n)√
2πσ2
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∣∣∣∣∣
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2/(2σ2
n)√

2πσ2
n

− n−1/2Πn(n−1/2u+ θ̂n)

]∣∣∣∣∣
=: Ĩ1 + Ĩ2.

We will bound Ĩ1 and Ĩ2 separately.

D.1. Controlling term Ĩ2. Note that Ĩ2 is the same as IMLE
2 defined by (A.7), for d= 1.

We will use the calculations leading to (A.12) and (A.13). Instead of using Lemma A.1, we
will, however, apply the standard one-dimensional Gaussian concentration inequality, which
says that, for Zn ∼N

(
0, σ2

n

)
,

P
[
|Zn|> δ

√
n
]
≤ 2e−δ

2n/(2σ2
n).

We obtain

Ĩ2 ≤
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√
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(
1
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√
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1− 2 exp
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(
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]}}.(D.2)

D.2. Controlling term Ĩ1 using Stein’s method. As mentioned above, in this section
we will use Stein’s method in the framework on [12, Section 2.1]. Note that, by integration
by parts, for all continuous functions f : [−δ

√
n, δ
√
n]→ R which are differentiable on

(−δ
√
n, δ
√
n) and satisfy f(−δ

√
n) = f(δ

√
n), we have∫ δ

√
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−δ
√
n
f ′(t)
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dt=
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2πσ2

n

dt(D.3)
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Now, for our function h, given by (D.1), let

f(t) :=

{
1

Πn(n−1/2t+θ̂n)

∫ t
−δ
√
n h(u)Πn(n−1/2u+ θ̂n)du, if t ∈ (−δ

√
n, δ
√
n)

0, otherwise.
(D.4)

Note that f is continuous on [−δ
√
n, δ
√
n], differentiable on (−δ

√
n, δ
√
n) and f(−δ

√
n) =

f(δ
√
n) = 0. Moreover, on (−δ

√
n, δ
√
n), f solves the Stein equation associated to the dis-

tribution of
√
n
(
θ̃n − θ̂n

)
for test function h, as described in [12, Section 2.1]. In other

words,
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d
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√
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Now, by Taylor’s theorem, we obtain that, for some c ∈ (0,1),
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+
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L′′′n (θ̂n + c1n

−1/2u)

]
· exp

[
−Ln(θ̂n)− t√

n
L′n(θ̂n)− t2

2n
L′′n(θ̂n)− t3

6n3/2
L′′′n (θ̂n + c2n

−1/2t)

]
dtdu

≤ M̃1M̂1M2

2
√

2πσ2
nn

∫ 0

−δ
√
n
|h(u)|e−u2/(2σ2

n)eδM2u2/6

∫ 0

u
t2eδM2t2/6 dtdu

≤ 3M̃1M̂1

δ
√

2πσ2
n n

∫ 0

−δ
√
n
|uh(u)|

(
e
−
(

1

2σ2
n
− δM2

3

)
u2

− e−
(

1

2σ2
n
− δM2

6

)
u2

)
du.

By a similar argument,

Ĩ1,2 ≤
3M̃1M̂1

δ
√

2πσ2
n n

∫ δ
√
n

0
|uh(u)|

(
e
−
(

1

2σ2
n
− δM2

3

)
u2

− e−
(

1

2σ2
n
− δM2

6

)
u2

)
du.

Ĩ1,3 ≤
M̃1M̂1M1√

2πσ2
n n

∫ 0

−δ
√
n
|uh(u)|e−

(
1

2σ2
n
− δM2

3

)
u2

du.

Ĩ1,4 ≤
M̃1M̂1M1√

2πσ2
n n

∫ δ
√
n

0
|uh(u)|e−

(
1

2σ2
n
− δM2

3

)
u2

du.

Therefore,

Ĩ1 ≤
2M̃1M̂1

(
M1 + 3

δ

)√
2πσ2

n n

∫ δ
√
n

−δ
√
n
|uh(u)|e−

(
1

2σ2
n
− δM2

3

)
u2

du

− 6M̃1M̂1

δ
√

2πσ2
n n

∫ δ
√
n

−δ
√
n
|uh(u)|e−

(
1

2σ2
n
− δM2

6

)
u2

du.(D.6)

Now, by Taylor’s expansion:

n−1/2

CMLE
n

∣∣∣∣∣
∫ δ
√
n

−δ
√
n
g(t)Πn(n−1/2t+ θ̂n)dt

∣∣∣∣∣≤
∫ δ√n
−δ
√
n
|g(t)|Πn(n−1/2t+ θ̂n)dt∫ δ√n

−δ
√
n

Πn(n−1/2u+ θ̂n)du
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≤M̃1M̂1

∫ δ√n
−δ
√
n
|g(t)|e−(1/(2σ2

n)−δM2/6)t2dt∫ δ√n
−δ
√
n
e−(1/(2σ2

n)+δM2/6)u2du

≤ M̃1M̂1

√
1

2σ2
n

+ δM2

6

∫ δ√n
−δ
√
n
|g(t)|e−(1/(2σ2

n)−δM2/6)t2dt
√

2π
(
1− 2e−δ2n(1/(2σ2

n)+δM2/6)
) .(D.7)

Equations (D.6) and (D.7), together with a standard expression for the normal first absolute
moment now yield that

Ĩ1 ≤
2M̃1M̂1√

2πσ2
n n

∫ δ
√
n

−δ
√
n
|ug(u)|

[(
M1 +

3

δ

)
e
−
(

1

2σ2
n
− δM2

3

)
u2

− 3

δ
e
−
(

1

2σ2
n
− δM2

6

)
u2

]
du

+
2
√

1
2σ2
n

+ δM2

6

(
M̃1M̂1

)2 (
M1 + 3

δ

)∫ δ√n
−δ
√
n
|g(u)|e−(1/(2σ2

n)−δM2/6)u2

du(
1

2σ2
n
− δM2

3

)
π
√
σ2
n

(
1− 2e−δ2n(1/(2σ2

n)+δM2/6)
)√

n

·

 M1 + 3
δ

1
2σ2
n
− δM2

3

− 3

δ
(

1
2σ2
n
− δM2

6

)
 .(D.8)

D.3. Conclusion. The final bound now follows from (D.2) and (D.8).

APPENDIX E: MORE DETAIL ON THE EXAMPLES

E.1. Calculations for Example 5.1.

E.1.1. The MLE-centric approach. LetX1, . . . ,Xn ≥ 0 be our data and assume that their
sum is positive. We have

Ln(θ) =−nθ+ (log θ)

(
n∑
i=1

Xi

)
−

n∑
i=1

log (Xi!)

The MLE is given by θ̂n =Xn := 1
n

∑n
i=1Xi. Also,

L′n(θ) =−n+
nXn

θ
, L′′n(θ) =−nXn

θ2
, L′′′n (θ) =

2nXn

θ3
.

We have σ2
n := Jn(θ̂n)−1 = θ̂2

n/ Xn =
∣∣Xn

∣∣.
Now, for c ∈ (0,1) and δ = cθ̂n, we have that for θ ∈ (θ̂n−δ, θ̂n+δ) =

(
Xn − cXn,Xn + cXn

)
,

|L′′′n (θ)|
n

=
2Xn

|θ|3
≤ 2

(1− c)3
(
Xn

)2 =:M2

Moreover, for θ, such that
∣∣∣θ− θ̂n∣∣∣> δ = cXn, i.e. for θ >Xn + cXn or θ <Xn − cXn,

Ln(θ)−Ln(θ̂n)

n
≤max

{
Ln((1 + c)Xn)−Ln(Xn)

n
,
Ln((1− c)Xn)−Ln(Xn)

n

}
≤Xn ·max{log(1 + c)− c, log(1− c) + c}= [log(1 + c)− c]Xn =:−κ.

We also need to make sure that Jn(θ̂n)> δM2, i.e. that 1
Xn

> 2c
(1−c)3Xn

, which is true for all
0< c≤ 0.229.
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Now, the gamma prior with shape α and rate β satisfies

π′(θ) =
βα

Γ(α)

[
(α− 1)θα−2e−βθ − βθα−1e−βθ

]
.

Note that, for α< 1,

sup
θ∈((1−c)Xn,(1+c)Xn)

|π′(θ)| ≤ βα

Γ(α)
e−β(1−c)XnX

α−2
n (1− c)α−2

[
(1− α) + β(1− c)Xn

]
sup

θ∈((1−c)Xn,(1+c)Xn)

|π(θ)| ≤ βα

Γ(α)
(1− c)α−1X

α−1
n e−β(1−c)Xn

sup
θ∈((1−c)Xn,(1+c)Xn)

1

|π(θ)|
≤ Γ(α)

βα
(1 + c)1−αX

1−α
n eβ(1+c)Xn .

Finally, the bounds in the MLE-centric approach are computed under the assumption√
Tr[Jn(θ̂n)−1]

n < δ. In our case, it says
√

Xn

n < cXn, i.e. that c > 1√
nXn

. Therefore, assum-

ing 1√
nXn

< 0.299, letting c ∈
(

1√
nXn

,0.229

]
, and assuming the shape α of the gamma

prior is smaller than one, we can set

a) δ = cXn

b) M1 = (1− c)α−2(1 + c)1−αX
−1
n e2βcXn

[
(1− α) + β(1− c)Xn

]
c) M̃1 = βα

Γ(α)(1− c)α−1X
α−1
n e−β(1−c)Xn

d) M̂1 = Γ(α)
βα (1 + c)1−αX

1−α
n eβ(1+c)Xn

e) M2 = 2
(1−c)3(Xn)2

f) Jn(θ̂n) =X
−1
n

g) κ= [c− log(1 + c)]Xn.

The concrete choice of c may be optimized numerically.

E.1.2. The MAP-centric approach. Let us still assume α< 1. We note that

Ln(θ) =−nθ+ n(log θ)Xn −
n∑
i=1

log(Xi!) + α log(β)− log(Γ(α)) + (α− 1) log θ− βθ;

L
′
n(θ) =−n+

nXn

θ
+

(α− 1)

θ
− β = 0 iff θ = θ̄n :=

nXn + (α− 1)

(n+ β)
;

L
′′
n(θ) =−nXn + α− 1

θ2
and so J̄n(θ̄n) =

(n+ β)2

n(nXn + α− 1)
;

L
′′′
n (θ) = 2

nXn + α− 1

θ3

and so for c̄ ∈ (0,1), δ̄ = c̄θ̄n and θ ∈ (θ̄n− δ̄, θ̄n + δ̄) =
(
(1− c̄)θ̄n, (1 + c̄)θ̄n

)
, we have that

1

n
|L′′′n (θ)| ≤ 2(n+ β)3

n(nXn + α− 1)2(1− c̄)3
=:M2.

Now, we require that J̄n(θ̄n)> δ̄M2, which means that

(n+ β)2

n(nXn + α− 1)
>

2c̄(n+ β)2

n(nXn + α− 1)(1− c̄)3
, which holds for c̄ ∈ (0,0.229], if nXn > 1− α.
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We’ll also want to make sure that δ̄ = c̄nXn+(α−1)
n+β ≥ ‖θ̄n − θ̂n‖ = βXn+1−α

n+β . Assuming

that nXn > 1 − α, this translates to c̄ ≥ 1
n ·

βXn+1−α
Xn+(α−1)/n

. Moreover, we require that δ̄ =

c̄nXn+(α−1)
n+β >

√
1

nJ̄n(θ̄n)
=
√

nXn+α−1
(n+β)2 , which is equivalent to saying that c̄ >

√
1

nXn+α−1
.

Finally, the value of κ̄ may be obtained in the following way:

κ̄ :=−max

{
− δ̄ + ‖θ̄n − θ̂n‖+ θ̂n log

(
θ̂n + δ̄− ‖θ̄n − θ̂n‖

θ̂n

)
,

δ̄− ‖θ̄n − θ̂n‖+ θ̂n log

(
θ̂n − δ̄+ ‖θ̄n − θ̂n‖

θ̂n

)}

=−Xn

{
β − c̄n+ (1− α)(1 + c̄)/Xn

n+ β
+ log

(
1 +

c̄n− β − (1− α)(1 + c̄)/Xn

n+ β

)}
.

Therefore, in addition to the values we listed at the end of Subsection E.1.2, we have the
following. We assume that α< 1, nXn > 1−α and max

{√
1

nXn+α−1
, 1
n ·

βXn+1−α
Xn+(α−1)/n

}
<

0.229. We let c̄ ∈
(

1
n ·

βXn+1−α
Xn+(α−1)/n

,0.229
]
. Then

i) δ̄ = c̄nXn+(α−1)
(n+β)

ii) J̄n(θ̄n) = (n+β)2

n(nXn+α−1)

iii) M2 = 2·(n+β)3

(1−c̄)3n(nXn+α−1)2

iv) κ̄=−Xn

{
β−c̄n+(1−α)(1+c̄)/Xn

n+β + log
(

1 + c̄n−β−(1−α)(1+c̄)/Xn

n+β

)}
.

E.2. Calculations for Example 5.2: the MAP-centric approach. Let k be the shape of
the Weibull and let X1, . . . ,Xn ≥ 0 be our data. Our log-likelihood is given by:

Ln(θ) = n [log(k)− log(θ)] + (k− 1)

n∑
i=1

log(Xi)−
∑n

i=1X
k
i

θ

E.2.1. Calculating θ̂n and Jn(θ̂n). Now

L′n(θ) =−n
θ

+

∑n
i=1X

k
i

θ2
, L′′n(θ) =

n

θ2
−

2
∑n

i=1X
k
i

θ3

The MLE is θ̂n =
∑n
i=1X

k
i

n =:Xk(n). We have that

Jn(θ̂n) =− 1

θ̂2
n

+
2

θ̂2
n

=
1

θ̂2
n

.

E.2.2. Calculating M2. Now, note that

L′′′n (θ) =
6
∑n

i=1X
k
i − 2nθ

θ4
, L(4)

n (θ) =
6nθ− 24

∑n
i=1X

k
i

θ5
, L(5)

n (θ) =
120

∑n
i=1X

k
i − 24nθ

θ6
.

Therefore, for 0< θ < 2θ̂n, L′′′n is decreasing and positive. This means that, if we let 0< δ <

θ̂n, then

sup
θ∈(θ̂n−δ,θ̂n+δ)

|L′′′n (θ)|
n

≤ L′′′n (θ̂n − δ)
n

=:M2.
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E.2.3. Calculating M̂1. Now, for a given shape α> 0 and scale β > 0,

π(θ) =
βα

Γ(α)

(
1

θ

)α+1

exp (−β/θ) , π′(θ) =
βα exp (−β/θ)

Γ(α)θα+2

(
−α− 1 +

β

θ

)
and it follows that, for θ > β

α+1 , 1
π(θ) is increasing and it is decreasing otherwise. Therefore:

sup
θ∈(θ̂n−δ̂,θ̂n+δ)

∣∣∣∣ 1

π(θ)

∣∣∣∣≤max

{
1

π(θ̂n − δ)
,

1

π(θ̂n + δ)

}
=: M̂1.

E.2.4. Calculating θ̄n and J̄n(θ̄n). Now

Ln(θ) = n [log(k)− log(θ)] + (k− 1)

n∑
i=1

log(Xi)−
∑n

i=1X
k
i

θ
− (α+ 1) log(θ)− β

θ
.

Therefore,

Ln(θ)′ =−n
θ

+

∑n
i=1X

k
i

θ2
− α+ 1

θ
+
β

θ2

Ln(θ)′′ =
n

θ2
−

2
∑n

i=1X
k
i

θ3
+
α+ 1

θ2
− 2β

θ3

and the MAP θ̄n is given by

(n+ α+ 1)θ̄n = β +

n∑
i=1

Xk
i ⇔ θ̄n =

β +
∑n

i=1X
k
i

n+ α+ 1
.

Moreover,

J̄n(θ̄n) =− 1

θ̄2
n

+
2
∑n

i=1X
k
i

nθ̄3
n

− α+ 1

nθ̄2
n

+
2β

nθ̄3
n

.

E.2.5. Calculating M̄2. Now, note that

L
′′′
n (θ) =−2n

θ3
+

6
∑n

i=1X
k
i

θ4
− 2(α+ 1)

θ3
+

6β

θ4
, L

(4)
n (θ) =

6n

θ4
−

24
∑n

i=1X
k
i

θ5
+

6(α+ 1)

θ4
− 24β

θ5
.

Therefore L′′′n is increasing if and only if

6(n+ α+ 1)θ > 24

(
β +

n∑
i=1

Xk
i

)
⇔ θ > 4θ̄n

This means that, for δ̄ ∈
(
0, θ̄n

)
and θ ∈ (θ̄n − δ̄, θ̄n + δ̄), L′′′n is decreasing and

sup
|θ−θ̄n|<δ̄

|L′′′n (θ)|
n

≤ |L
′′′
n (θ̄n − δ̄)|

n
=:M2.

E.2.6. Calculating κ̄. Now, note that, for θ < θ̂n, Ln, is increasing and otherwise it’s
decreasing. This means that,

sup
|θ−θ̂n|>δ̄−|θ̂n−θ̄n|

Ln(θ)−Ln(θ̂n)

n

≤max

{
Ln(θ̂n − δ̄+ |θ̂n − θ̄n|)−Ln(θ̂n)

n
,
Ln(θ̂n + δ̄− |θ̂n − θ̄n|)−Ln(θ̂n)

n

}
=:−κ̄.
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E.2.7. Constraints on δ̄ and δ. Finally, we need the derive the constraints on δ̄. We first

assume that 0< δ̄ < θ̄n. We also suppose that δ̄ >max

(
‖θ̄n − θ̂n‖, 1√

nJ̄n(θ̄n)

)
and condi-

tions on how large n needs to be for this to hold are easy to obtain numerically. We also
require δ̄ < λ(θ̄n)

M2
. Looking closer at this last condition, we require that:

δ̄ < λmin(θ̄n)
(
θ̄n − δ̄

)4 [(−2− 2α+ 2

n

)(
θ̄n − δ̄

)
+ 6

(
β

n
+ θ̂n

)]−1

Letting 0< δ̃ := θ̄n − δ̄ < θ̄n, we therefore require

δ̃+ λmin(θ̄n)δ̃4

[(
−2− 2α+ 2

n

)
δ̃ + 6

(
β

n
+ θ̂n

)]−1

> θ̄n

which is equivalent to:

δ̃ + δ̃4λmin(θ̄n)

(
2 +

2α+ 2

n

)−1 [
3θ̄n − δ̃

]−1
> θ̄n.

This condition will be satisfied if

δ̃ + δ̃4λmin(θ̄n)

(
2 +

2α+ 2

n

)−1 [
3θ̄n
]−1

> θ̄n.(E.1)

The left-hand side of (E.1) is increasing in δ̃ and is clearly strictly greater than θ̄n for δ̃ =

θ̄n. This means that there exists a choice of δ̄ that yields δ̄ < λmin(θ̄n)

M1
and the set of such

choices can be obtained by solving (E.1) numerically. Finally, in order to make sure that the
condition on δ is satisfied, we just need to check numerically how large n needs to be so that
δ > 1√

nJn(θ̂n)
.
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