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Abstract

I show that the returns from sustainable investing are strongly driven by price pressure from flows
towards sustainable funds, causing high realized returns that do not reflect high expected returns.
Using a structural model, I estimate investors’ ability to accommodate the demand from sustainable
funds, which is given by their elasticity of substitution between stocks. I show that every dollar
flowing from the market portfolio into sustainable mutual funds increases the aggregate value of
green stocks by $0.4. The price pressure from flows supports the effectiveness of impact investing
by lowering green firms’ cost of capital. In the absence of flow-driven price pressure, sustainable
funds would have underperformed the market from 2016 to 2021. To this end, I develop a new
measure of total capital flows into managed portfolios. The price pressure from total ESG flows is
highly correlated with empirically observed returns, both in the time-series and in the cross-section.
I support the structural estimates with reduced-form evidence, showing that index inclusions and
mandate-driven portfolio additions by sustainable mutual funds significantly boost the prices of
green stocks.
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1 Introduction

Over the past decade, the sustainable investment industry has grown drastically. The high demand for

sustainable investments has fueled the emergence of new funds that incorporate environmental, social,

and governance (ESG) criteria into their investment decisions. Despite the enormous growth in the

ESG investment industry, both the price impact and the expected returns of sustainable investing are

widely debated. Academic and practitioner views on the expected returns from sustainable investments

are often diametrically opposed. The pervasive theoretical view is that if investors have a preference

for sustainability, the additional utility gained by investing sustainably should be perfectly offset

by lower expected returns. Investors bid up the price of sustainable companies, and risk-adjusted

expected returns must unambiguously be lower. In other words, investors cannot do well by doing

good. Empirically, however, sustainable funds have performed well in recent years suggesting that

ESG-concerned investors are in fact doing well by doing good. At the same time, the extent to

which sustainable investors can impact prices is highly debated. For every buyer there is a seller.

Hence, divesting from oil companies simply implies a change in ownership towards funds without a

sustainability mandate. The impact of sustainable investing therefore depends on how much prices

have to change in order to induce other investors to hold the divested oil shares.

This paper reconciles the price impact and realized returns of sustainable investing. I show that

the high realized returns from sustainable investing are primarily driven by the price impact of flows

towards sustainable funds. Flows towards ESG funds - regardless of whether they are motivated

by growing ESG concerns or past fund performance - create buying pressure on the stocks that the

funds overweight. This buying pressure affects prices, if the market’s willingness to accommodate the

demand by substituting between stocks is finite. In other words, if the aggregate demand curve for

green stocks is downward-sloping, then ESG flows increase the price of green stocks. In equilibrium,

the price impact of flows towards ESG funds is driven by two factors: The deviation of ESG funds from

the market portfolio and the aggregate willingness to substitute between stocks (henceforth, elasticity

of substitution). If the investors holding green stocks substitute elastically between stocks, then the

price pressure due to ESG flows has a negligible impact. Small price changes induce investors to

rebalance their portfolios by substituting away from the overpriced green stocks. On the other hand,

if the holders of green assets do not aggressively rebalance their portfolios, i.e. if they are inelastic,

then flows have a large price impact. I show that institutions’ ability to accommodate ESG demand
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is limited as their elasticity of substitution between stocks is low. Thus, flow-driven trades by ESG

funds have a large impact on prices, both in the cross-section of individual ESG stocks and in the

time-series of ESG portfolio returns. Therefore, the realized returns from sustainable investing over

the past decade have a large flow-driven component. The outperformance of ESG funds should hence

not be interpreted as expected outperformance going forward.

I start by identifying a set of 551 sustainable mutual funds (henceforth ESG funds) by matching

their names with a list of sustainability keywords. Using data on mutual funds’ portfolio holdings,

I then construct a representative ESG portfolio that pools the holdings of ESG mutual funds. The

representative ESG portfolio outperformed the aggregate mutual fund portfolio with a significant 5-

factor alpha of 1.51% annually. Exposure to the Green Factor by Pástor et al. (2021) does not explain

the outperformance. The ESG portfolio’s deviations from the aggregate mutual fund portfolio are a

revealed preference measure of how sustainable a stock is (perceived to be). I define ‘green’ stocks

as the ones overweighted by ESG funds relative to other mutual funds. Thus, in this paper ‘green’

refers to all dimensions of sustainability, not only environmental concerns. Quantifying the flow-driven

component of the realized returns from the ESG portfolio requires a measure of total ESG flows. To

this end, I propose a new measure of capital flows into managed portfolios. The measure includes the

portfolio tilts of all institutional investors and is constructed by projecting fund-specific holdings onto

managed portfolios in the portfolio-weight as opposed to the return space. Total institutional flows

into the ESG portfolio amounted to $1.3 trillion, which dwarfs the flows into ESG mutual funds of

$350 billion.1

In order to quantify price impact of ESG flows, I estimate a structural model that jointly matches

flows and realized returns along the lines of Koijen and Yogo (2019). I use the estimation proposed by

van der Beck (2022), which identifies elasticities from investors’ trades, as opposed to their portfolio

holdings in levels. The model allows for estimating institutions’ elasticity of substitution between green

and other stocks. I use demand shocks from dividend reinvestments by Schmickler and Tremacoldi-

Rossi (2022) as an instrument to address the endogeneity of prices in the elasticity estimation.2 I

show that the estimates are robust to an alternative identification that uses changes in benchmarking

intensities by Pavlova and Sikorskaya (2022) as an exogenous shock to supply. The estimated elastic-

1See Morningstar’s 2021 Sustainable Funds U.S. Landscape Report.
2Starting with Edmans et al. (2012), flow-induced trades by mutual funds have been commonly used as exogenous

demand shocks to identify causal relationships. See Wardlaw (2020) for a summary of the literature. Note, that the
instrument used in this paper is immune to the Wardlaw-critique (see van der Beck (2022) for details).
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ities can be combined with ownership shares into a cross-sectional multiplier matrix. The multiplier

matrix is the cross-sectional pendant to the macro multiplier in Gabaix and Koijen (2021). I find

that, ceteris paribus, a 1% demand shock for a green stock leads to a 1.11% percent increase in the

price of that stock. Furthermore, cross-elasticities suggest that as money is flowing out of the fossil

fuel industry, investors substitute towards green stocks, creating positive spillover effects.

I apply the model to the assess the flow-driven component in the realized returns of green stocks.

The price pressure due to a $1 flow into the ESG portfolio funds is given by the product of the multiplier

matrix and the deviation of the ESG portfolio from market weights. I show that every dollar flowing

from the market portfolio into the representative ESG portfolio increases the aggregate value of green

stocks by $0.4. I then compute the counterfactual realized returns if the total ESG flows were instead

invested in the market portfolio. The price pressure from ESG flows accounts for virtually all of the

outperformance of the ESG portfolio over the market portfolio in recent years. In the absence of ESG

flows, the ESG portfolio would have underperformed the market with an annualized 5-factor alpha of

-0.3%. This suggests that, in the absence of flow-driven price pressure, investors would have had to

pay a premium for investing according to their ESG preferences. Moving to the cross-section, I show

that green stocks with higher flow-driven demand had significantly higher abnormal returns. The

average price impact implied from cross-sectional regressions is 1.17, which is strikingly close to the

structural estimate of 1.11. Furthermore, the stocks with higher multipliers implied by the structural

model indeed have a higher price impact in the cross-section, i.e. they are more affected by ESG

demand.

Lastly, I provide reduced-form evidence on the price pressure of ESG demand from inclusions in

the Vanguard 4Good index, as in Berk and van Binsbergen (2022). I show that not all inclusions are

followed by index-tracking mutual funds. However, the inclusions that are followed by index trackers

are associated with significantly higher returns. The price impact implied by the index inclusions is

1.69, which is close to the structurally estimated ESG multiplier. I then show how to decompose

ESG mutual funds’ portfolio additions into a mandate-driven and a fundamental component, which

extends the concept of ESG index inclusions to a broader set of stocks. The mandate-driven portfolio

additions across ESG mutual funds represent non-fundamental shocks to ESG demand and are signifi-

cantly related to contemporaneous returns, controlling for changes in fundamentals and known return

predictors. The magnitude of the estimated price impact is once again in line with the structural

multiplier. Lastly, I show that there is substantial heterogeneity in the price impact of different ESG
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mutual funds - both in terms of magnitude and direction. Many ‘sustainable’ mutual funds deviate

very little from S&P500 weights. Others positively affect the aggregate market capitalization of the

fossil fuel industry. I outline how the model can be used to distinguish ESG funds by their true impact

on green firms’ cost of capital rather than by flamboyant fund prospectuses.

Related Literature

The empirical evidence on the realized returns from ESG investing over the past two decades is

mixed and tends to depend on the sustainability measure, time horizon, and asset universe under

investigation. Hong and Kacperczyk (2009) find that stocks in the tobacco, alcohol, and gaming

industry (i.e. sin stocks) outperform other stocks. Bolton and Kacperczyk (2021a) and Bolton and

Kacperczyk (2021b) find evidence for a carbon premium, implying that high-emission stocks have

higher returns after controlling for known risk factors. Similarly, Hsu et al. (2020) find significant

outperformance of high chemical emission stocks versus low ones.3 Except for Hong and Kacperczyk

(2009), who argue for a taste-based explanation along the lines of Fama and French (2007), these

papers suggest that sustainable firms offer hedges against adverse climate events and hence require

lower returns in equilibrium.

Conversely, many papers show that sustainable stocks had higher realized returns than other stocks.

Edmans (2011) shows that a portfolio of firms with high employee satisfaction has a significantly

positive alpha. In et al. (2020) find that an ESG portfolio, which longs low emission and shorts high

emission stocks earns a significantly positive annualized alpha of 3.5–5.4%. Similarly, Görgen et al.

(2020) find that from 2010 to 2017 brown (high carbon) firms performed worse than green firms on

average. Hong et al. (2019) find that the risk of drought negatively predicts a country’s stock returns.

These papers typically propose under-reaction as a reason why sustainability is associated with a

positive return premium. Pedersen et al. (2020) propose an equilibrium model with green preferences

and ESG scores that are informative about stocks’ risk and return. Their model shows that green

stocks can have higher returns if ESG scores positively predict returns in a way that has not been

appreciated by all investors. In support of the under-reaction hypothesis, Derrien et al. (2021) find

that analysts downgrade their earnings forecast in response to negative ESG incidents. Glossner (2021)

shows that ESG incidents predict future ESG incidents and that the stock market underestimates the

3Other papers documenting a positive return premium on brown investments in equities, bonds, real estate, and
option markets include Faccini et al. (2021), Huynh and Xia (2021), Seltzer et al. (2022), Bernstein et al. (2019), Baldauf
et al. (2020), Painter (2020), Goldsmith-Pinkham et al. (2021) and Ilhan et al. (2021).
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adverse value effects of negative poor ESG practices. Glossner (2021) also suggests that ESG mutual

funds benefit from the under-reaction to ESG news. Similarly, I argue that ESG mutual funds benefit

from flow-driven price pressure on green stocks.

The theories developed in Pástor et al. (2021) and Pedersen et al. (2020) imply that the expected

returns of green stocks should be lower than for brown stocks as investors have a taste for green assets.

However, if green preferences (e.g. via climate concerns) strengthen unexpectedly over the estimation

horizon, green stocks may have higher realized returns than brown firms. Alternatively, if climate risks

increase unexpectedly, the hedging benefits of holding green stocks improve, which pushes up their

price, resulting in higher realized returns. Thus unexpected shifts in the aggregate demand for green

assets may drive a wedge between expected and realized returns. This divergence between realized and

expected returns may explain the strong ambiguity in the empirical findings mentioned above. In a

follow-up paper, Pastor, Stambaugh and Taylor (henceforth PST, 2022) regress the realized returns of a

green-minus-brown (GMB) factor onto several proxies of unexpected shocks to climate concerns. They

then approximate the wedge between expected and realized factor returns as the return component

explained by green demand. As one particular proxy for green demand (by investors rather than

consumers) they use flows to ESG mutual funds and find no significant correlation to contemporaneous

GMB returns. However, ESG flows may not directly target the GMB portfolio. Instead, they flow into

the aggregate ESG mutual portfolio, the returns of which are highly significantly correlated to total

ESG flows. It is important to note, that this interpretation of the relationship between green demand

and realized returns is slightly different from the mechanism proposed in this paper. In PST (2022),

ESG demand only correlates with returns as long as it represents aggregate shifts in green preferences

(or equivalently, wealth-weighted individual tastes as in Fama and French (2007)). Thus, if flows to

green funds were driven by e.g. past return performance instead of growing climate concerns, prices

would remain unchanged. Similarly, ESG demand shocks for individual stocks have negligible price

effects as they do not change the exposure to common risk factors and have little impact on aggregate

market risk.4 Nevertheless, despite the different interpretations of the correlation between flows and

returns, this paper shares the objective of measuring how the demand for green stocks affects the

wedge between realized and expected returns. The joint endogeneity of prices and holdings makes

identifying the causal relationship between demand shocks and realized returns extremely difficult.

Simple regressions of returns onto flows are typically biased as the number of endogenous variables

4See Petajisto (2009) for a simple calibration.
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affecting both demand and prices are countless. Hence, this paper circumvents direct regressions of

returns onto flows and instead estimates the coefficient linking flows to returns within a structural

model. Perhaps most closely related is the paper by Berk and van Binsbergen (2022), who calibrate the

potential impact of ESG divestment in a frictionless CAPM world. They argue that the equilibrium

price impact of sustainable investing is negligible because the high return correlation between green and

brown stocks makes them strong substitutes. Therefore, inducing other investors to hold brown stocks

requires little price concessions. Petajisto (2009), however, shows that the price impact implied by the

CAPM greatly underestimates the estimates from the index inclusion literature. In other words, the

frictionless mean-variance benchmark considerably overestimates investors’ elasticity of substitution

between stocks. I directly estimate demand elasticities from holdings data and show that the market’s

elasticity of substitution between green and brown stocks is indeed very low. Thus investors require

large price concessions to accommodate the flow-driven trades by ESG funds. Using index inclusion

as in Berk and van Binsbergen (2022), I find that the stocks purchased by ESG index trackers have

significantly higher contemporaneous returns.

The paper also relates to the extensive literature on demand-driven price pressure. Shleifer (1986)

shows that index inclusion leads to positive realized returns as a result of buying pressure by index

funds. Coval and Stafford (2007), Frazzini and Lamont (2008), Edmans et al. (2012) and Lou (2012)

find evidence for cross-sectional price pressure resulting from mutual funds’ flow-driven trades. More

recently, Parker et al. (2020) find that the rebalancing of target date funds affects both the cross-

section of realized returns and the aggregate stock market. Using a Morningstar ratings reform as an

instrument, Ben-David et al. (2020) show that demand pressures affect the cross-section of realized

style returns. Similarly, I show that mandate-driven portfolio additions by ESG funds affect individual

stock returns. More closely related, Gabaix and Koijen (2021) use a structural approach to estimate

the multiplier linking flows and aggregate stock market returns. They find that a $1 unexpected flow

raises the value of the aggregate equity market by around $5. Using aggregate dividend reinvestments

as an instrument, Hartzmark and Solomon (2021) find, that even expected uninformed flows into and

out of the aggregate stock market have a price multiplier of 1.5 to 2.3. Pavlova and Sikorskaya (2022)

introduce a new measure, Benchmarking Intensity, which quantifies the fraction of a stock’s total

market cap that is held by benchmarked investors. They show that changes in a stock’s Benchmarking

Intensity are an effective change in supply that is significantly related to contemporaneous returns

around the Russell 1000/2000 cutoff. They find that institutional trades have a price multiplier of
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1.5. As a robustness check, I use changes in Pavlova and Sikorskaya’s Benchmarking Intensity as

an instrument to identify investors’ demand elasticities. The resulting ESG multipliers are strikingly

similar to the flow-based identification. The estimated elasticities furthermore exhibit the same cross-

sectional patterns.

Lastly, this paper relates to the growing literature on demand system asset pricing following the

influential work by Koijen and Yogo (henceforth KY, 2019). KY (2019) present a structural model that

estimates investor-specific demand curves from quarterly 13F filings and links the estimated demand

coefficients to equilibrium asset prices. In a follow-up paper, Koijen et al. (2022) estimate investors’

demand for environmental scores and show that long-term investors, passive funds, and banks benefit

the most from growing climate concerns. Similarly, Noh and Oh (2022) regress institutional portfolio

weights onto ESG-Scores and show that ESG demand predicts firm-level improvements in Co2 emis-

sions.5 In this paper, I refrain from explicitly estimating investors’ green preferences as there are many

unobserved characteristics correlated with ESG-Scores that drive demand. A technology fund, for ex-

ample, has an inherently high preference for sustainability simply because tech stocks tend to have

higher ESG-Scores. A valid identification of green preferences, therefore, requires exogenous variation

in ESG-Scores uncorrelated with investors’ unobservable investment mandates and portfolio tilts. Van

der Beck (2022) proposes identifying the demand elasticities in KY (2019) from investors’ trades, that

is changes in their portfolios, as opposed to their cross-sectional holdings. This alleviates the concern

of slow-moving unobservable variables (such as investment mandates) that drive investors’ holdings

in the cross-section and are correlated with prices. The estimation in changes furthermore allows

identifying elasticities with existing instruments from the reduced-form literature on price pressure.6

This paper uses the estimation from van der Beck (2022) to identify the substitutability of green and

brown stocks and links it to the realized returns from ESG investing.

The remainder of this paper is structured as follows. Section 2 describes the data. In Section 3, I

construct the representative ESG portfolio. Section 4 briefly outlines the structural model and esti-

mates the markets’ willingness to substitute between stocks. Section 5 uses the model to quantify the

5A growing number of papers applies the framework by KY (2019) to estimate the impact of counterfactual experi-
ments on equilibrium asset prices. Han et al. (2021) evaluate the impact of mutual fund risk shifting on the beta anomaly.
Bretscher et al. (2020) estimate a demand system for corporate bonds. Jiang et al. (2020) use the demand system to
decompose the variation in the US net foreign asset position into its underlying determinants. Van der Beck and Jaunin
(2021) investigate the impact of retail traders on the equity market through the demand system approach. Haddad et al.
(2021) suggest that the elasticity in KY (2019) is potentially endogenous as investors strategically update their elasticity
in response to the aggregate elasticity.

6E.g. Index inclusions by Shleifer (1986), mutual fund fire sales by Coval and Stafford (2007), flow-driven trades by
Lou (2012), and dividend reinvestments by Schmickler and Tremacoldi-Rossi (2022) and Hartzmark and Solomon (2021).
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impact of aggregate ESG flows on the time-series of ESG returns. Section 6 investigates stock-specific

flows and the cross-section of ESG returns. Section 7 provides robustness tests and applications.

Section 8 concludes.

2 Data and Variable Construction

A Prices and Fundamentals

Stock price data on common ordinary shares (share code 10 and 11) traded on the NYSE, AMEX and

Nasdaq (exchange code 1, 2 and 3) are from CRSP. Accounting data are from Compustat. Stocks are

indexed by n. Stock n’s market equity as of date t is denoted by Pt,n. I normalize shares outstanding

to 1, such that prices and market equity coincide. I construct the stock-specific characteristics book

equity, market beta, profitability, investment, idiosyncratic volatility, turnover, momentum and indus-

try affiliation.7 For industry classifications, I use the Fama and French 12 industries. I furthermore

construct monthly cash dividends (distribution code 1000-1399) by summing over payment dates from

CRSP’s daily security file. Sin stocks are defined following Hong and Kacperczyk (2009) as compa-

nies involved in the production of alcohol, tobacco and gaming. I further define controversial stocks

following MSCI’s exclusionary screens as companies in the biotech, firearms, oil, military and cement

industry. Because a firm’s sustainability is difficult to quantify and because ratings across providers

often diverge strongly (see Berg et al. (2019)), I construct an objective measure using portfolio tilts

of ESG mutual funds (see next section). As a robustness check, I also use Co2 emissions and ESG

Scores from Refinitiv as a measure of a firm’s greenness.

B Holdings and Flows

In the US, institutional investment managers who have discretion over $100M or more in designated

13F securities must report their respective holdings via quarterly SEC 13F filings. I obtain institution-

level holdings from 2010 to 2021 from Thomson’s Institutional Holdings Database (s34 file). The hold-

ings data are subsequently merged with characteristics data from CRSP and Compustat.8 Institutions

are indexed by i. I define institution i’s quantity demanded Qit,n in stock n at time t as the shares held

normalized by shares outstanding.9 Institution-level and mutual fund portfolio weights wit,n =
Qit,nPt,n

Ait

7See Appendix Section D.5 for details on the construction of these variables.
8See KY (2019) for further details on the construction of the database.
9Formally Qit,n =

Shares Heldi
t,n

Shares Outstandingt,n
, where Shares Heldit,n is the number of shares reported in i’s 13F Filing.
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are constructed as the dollar holdings in each stock (price times shares held) divided by their assets

under management Ait. An institution’s assets under management are given by the sum of its dollar

holdings. In order to ensure market clearing, I follow KY (2019) and construct a household sector as

the residual shares outstanding not held by 13F institutions.10

Monthly data on mutual funds’ holdings, net returns and total net assets, as well as other fund-

specific characteristics are obtained from the CRSP survivorship-bias-free mutual fund database. For

over 90% of all mutual funds, CRSP provides holdings at a higher frequency than Thomson’s Quarterly

Mutual Fund Holdings Database (s12 file). I construct mutual fund portfolios using both databases

and opt for CRSP holdings when moving to a higher frequency. For all mutual funds, I compute flows

as f it =
Ait−Ait−1(1+rit)

Ait−1
where Ait are the fund’s total net assets and rit is the monthly return between

t− 1 and t as reported on CRSP.

3 ESG Mutual Funds

A Identifying ESG Mutual Funds

I use fund names from CRSP’s Mutual Fund Database to identify a comprehensive set of ESG mutual

funds. To this end, I match fund names with a list of sustainability keywords and identify 551 ESG

funds. Specifically, I define a mutual fund to be an ‘ESG fund’ if its name contains at least one (or

any abbreviation) of a list of sustainability keywords.11 Appendix Section A.1 reports the largest 30

identified ESG funds as well as robustness checks to the identification of the ESG label. I then match

the ESG funds with their quarterly and monthly stock holdings from both CRSP and Thomson’s

Mutual Fund Holdings Database (s12 file). Table 1 provides summary statistics on the sample of ESG

funds and their aggregate portfolio.

[Table 1 about here.]

From 2010 to 2021 the average ESG fund held around 200 stocks in its portfolio. The average assets

have remained relatively stable and only increased in recent years to $630 Million. The fifth column

of Table 1 reports the total number of ESG name changes in a given year. Out of the sample of ESG

10Furthermore, institutions with less than $10 million under management or without any holdings in the inside and/or
outside assets are attributed to the household sector, which therefore includes households, small asset managers, and
other non-13F institutions.

11The list of sustainability keywords used is: Environment, social, governance, green, sustainable, responsible, SRI,
ESG, climate, clean, carbon, impact, fair, gender, solar, earth, renewable, screen, ethical, conscious, CSR, thematic. See
Appendix Section A.1 for details
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funds, 99 went from ‘non-ESG’ to ‘ESG’ by changing their name to include a sustainable keyword

while leaving the fund and portfolio identifier unchanged. The column ‘Excess Flows’ reports the

average flow into ESG funds in excess of the average flow into non-ESG funds. Over the past 5 years,

the ESG funds received around 2-3% higher quarterly inflows than other funds. Appendix Section

A.2 provides an in-depth analysis of ESG flows controlling for fund characteristics, performance, and

portfolio holdings. In a difference-in-difference setting using, I show that having an ESG keyword in

the fund-name buys additional quarterly inflows of 1.8%.

B The Representative ESG portfolio

Using Thomson’s Mutual Fund Holdings Database (s12 file), I construct the aggregate portfolio held

by the sample ESG mutual funds. To this end, let QESGt,n =
∑

i∈IESG Q
i
t,n denote the aggregate

holdings of the set of identified ESG funds mutual funds IESG. The representative ESG mutual fund’s

portfolio weights are given by ESG funds’ total dollar holdings divided by their aggregate assets under

management. Formally

wESGt,n =
Pt,nQ

ESG
t,n∑N

n=1 Pt,nQ
ESG
t,n

(1)

By using weights instead of dollar holdings, the representative ESG portfolio (henceforth ESG portfo-

lio) is invariant to the number of identified funds, as long as the sample is representative of the average

ESG fund. The three rightmost columns of Table 1 report summary statistics on the aggregate ESG

portfolio. Total assets grew from $30 to $233 billion. At the same time, the fraction of total ESG

assets that track an ESG index has also steadily increased to 50%. To what extent do the aggregated

holdings across ESG funds reflect the market portfolio? Note, that as more money is flowing into ESG

funds, the ESG and the market portfolio converge by construction. In the limit, all money is invested

in ESG funds and the ESG portfolio coincides with the market portfolio. ‘Active Share’ is defined

as the deviation of the ESG portfolio from the aggregate mutual fund portfolio (henceforth market

portfolio). The ESG portfolio tilts around 70% of its assets away from the market portfolio. However,

in the most recent years, the active share has declined to 57%.12 Despite portfolio heterogeneity across

ESG funds, their main portfolio tilts go in similar directions. Therefore, while the set of identified

ESG funds depends on the kind and amount of keywords used, the aggregate portfolio is extremely

robust to different subsets of ESG funds. Appendix Section A.1 provides a detailed investigation of the

12Formally, active share is defined as the deviation of the 1
2

∑
n∈Ni |wESGt,n − wMF

t,n | where wESGt,n are the aggregate

portfolio weights across all ESG funds and wMF
t,n is the aggregate portfolio of all mutual funds.
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robustness of the ESG portfolio. Using the ESG portfolio, I construct a revealed-preference measure

τt,n of investors’ green tastes for a stock given by

τt,n = wESGt,n − wMF
t,n (2)

where wMF
t,n is the aggregate mutual fund portfolio, which is constructed as in (1) but summing over all

mutual funds instead of the subset of ESG funds. Empirically wMF
t,n is extremely close to the market

capitalization-weighted portfolio, so that defining τt,n in excess of market weights leaves all results

of the paper unchanged. Stocks with a higher τt,n are perceived to be more sustainable as they are

overweighted by the representative ESG portfolio. Note, that the revealed preference measure τt,n

is also a zero-investment long-short portfolio, that is long $1 in the ESG portfolio and short $1 in

the aggregate mutual fund portfolio. I define stocks with τt,n > 0 as green stocks and stocks with

τt,n < 0 as other (non-green) stocks. This revealed-preference measure is available for all stocks at a

monthly frequency over a large time horizon. It furthermore does not rely on subjective sustainability

metrics or third-party ESG scores. τt,n is therefore a more objective representation of the market’s

perception of sustainability. Note, that the purpose of this paper is not to identify a measure of true

sustainability, but to assess the cross-sectional price distortions due to ESG flows. The most adequate

measure of sustainability is hence the measure that people implicitly use when they invest sustainably.

In Appendix Section A.1, I confirm that τt,n is robust to the subset of ESG funds used for its

computation. I compute two different ESG portfolios using random (non-overlapping) subsets of funds

and show that the corresponding τt,n are highly cross-sectionally correlated (ρ > 60%). A thorough

investigation of the difference between true and perceived sustainability is beyond the scope of this

paper, which addresses the distortion of realized returns due to ESG tastes, regardless of whether

they are correct or not. I nevertheless confirm that τt,n is significantly related to commonly used

sustainability metrics. The ESG portfolio significantly tilts towards stocks with high ESG scores and

underweights sin stocks, stocks in the fossil fuel industry, and high Co2 emitters.13

C Realized ESG Returns

Next, I investigate the realized performance of the ESG portfolio wESGt,n , the aggregate mutual fund

portfolio wMF
t,n , and the long-short ESG portfolio τt,n = wESGt,n − wMF

t,n . The portfolios are rebalanced

13See Appendix Section A.3 for details.
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quarterly based on the funds’ SEC filings.14 Table 2 reports the annualized returns and alphas of the

portfolios.

[Table 2 about here.]

The first two columns report the annualized returns of the market portfolio and the ESG portfolio.

Between 2016 and 2021 the ESG portfolio had a significant 2% higher annualized return than the

market portfolio. The four right columns report the returns and alphas of the long-short ESG portfolio

τt ∈ RN . The returns of τt will henceforth be referred to as ESG returns. Intuitively, one would expect

significantly negative alphas capturing the taste premium investors are willing to give up in order to

invest according to their ESG preferences. However, long-short returns and alphas are significantly

positive. From 2016 to 2021, the long-short ESG portfolio had a significant annual CAPM alpha of

2.4%.15 The last column controls for PST’s (2022) Green Factor, as well as the Carhart 4-Factors. The

alpha merely drops to 1.5% and remains significant with t-Statistic of 2.01. Overall, Table 2 suggests

that investors have been rewarded instead of penalized for investing according to their ESG preferences.

The weights in the long-short ESG portfolio τt can be interpreted as a measure of investors’ perception

of sustainability. Thus, regardless of their true sustainability, the stocks that investors deemed more

sustainable tended to have higher returns than others.

Despite the apparent outperformance of the ESG portfolio, the goal of this paper is not to add to the

debate about whether or why sustainable investing has higher or lower expected returns in equilibrium.

This paper tries to answer the question of how, ceteris paribus, the cross-section of realized returns

responds to flows to the ESG portfolio. Thus we can assess, to what extent the realized returns from

sustainable investing have been driven by flows towards sustainable funds. However, total flows in the

ESG portfolio are not directly observable. The next section shows how to construct aggregate ESG

flows from institutional portfolio holdings.

D Measuring Total Flows in the ESG Portfolio

Total flows into the ESG portfolio are difficult to observe. According to Morningstar, labelled ESG

mutual funds held $350 billion in total assets, which was less than 1% of the total $37 trillion held

14The portfolios are not necessarily tradeable as funds usually delay their SEC report by up to 45 days.
15Note, that these are not the true returns an investor would have achieved by investing in the asset-weighted portfolio

of (ESG) mutual funds because of fees and because many of these funds trade actively within quarters.
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by all ETFs and Mutual funds in the US.16 However, this does not include the (unobservable) ESG

tilts of other mutual funds, investment advisors, pension funds, banks, insurance companies, and other

institutions. Therefore, the flows into labelled ESG mutual funds only represent a small subset of total

ESG flows. In order to get a sense of total ESG flows, I use 13F filings to estimate each institution’s

‘ESG share’. Here, I merely present the main procedure. Technical details are delegated to Appendix

B. For simplicity, I omit the institution and quarter labels i and t. I project each 13F institution’s

portfolio wn in the cross-section onto a set of S managed portfolios wsn:

∀i, t : wn =

S∑
s=1

βswsn + an (3)

The managed portfolios are constructed such that the weights add up to 1 across all stocks currently

held by the institution N i. For example, the ‘managed’ market-weighted portfolio (s = Mkt) is given

by wMkt
n = Pn/

∑
n∈N i Pn. The residual an from the projection is an active zero-cost long-short

portfolio in the spirit of Cremers and Petajisto (2009).17 Thus the coefficients βst sum to 1 and can

be interpreted as the asset shares of managed portfolios within institution i. The coefficient on the

ESG-managed portfolio, βESG, measures the institution’s ESG share. I then compute the total ESG

flow as the sum of institution-specific ESG flows

FESGt+1 =
I∑
i=1

Ai,ESGt+1 −Ai,ESGt (1 +RESGt+1 ) (4)

where Ai,ESGt = βi,ESGt Ait are the total assets of institution i allocated to the ESG portfolio at time

t and RESGt+1 is the return on the ESG portfolio. This measure of total ESG flows is highly robust to

controlling for different managed portfolios in the estimation of βi,ESGt .18 Figure 1 plots the total flow

into the ESG portfolio from 2012 to 2022.

[Figure 1 about here.]

Total ESG flows have increased rapidly since 2017 and amount to approximately $1.3 trillion as of

2022, which far exceeds the flows into explicitly labelled ESG mutual funds. Having constructed total

16See Morningstar’s 2021 Sustainable Funds U.S. Landscape Report. The assets of labelled ESG funds from the
previous section are of a similar magnitude.

17In fact, 1/2
∑
n∈Ni |an| and the active share in Cremers and Petajisto (2009) coincide if an = wn−wMkt

n . This is the

case if the coefficient on the market portfolio βMkt is equal to 1 and the coefficients on all other managed portfolios are
equal to 0.

18See Appendix B for details.
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ESG flows, we are now in the position to assess their impact on the realized returns of the ESG

portfolio. The key difficulty in measuring flow-driven price impact lies in the joint endogeneity of

prices and demand, which prevents simple regressions of realized returns onto flows. The next section

introduces a structural approach to estimating the price impact of ESG flows.

4 A Structural Model of Price Pressure

A Setup and Variable Definitions

This section provides a structural approach to estimating the link between demand shocks and prices.

The setup closely follows van der Beck (2022). Here, I merely state the variables and main structural

estimation equations. There are N stocks indexed by n = 1, ..., N and T time periods t = 1, ..., T .

Shares outstanding are normalized to 1 such that the price of a stock, Pt,n, coincides with market

equity. Lowercase letters denote logs (if not otherwise specified) and one-period changes in variables

are denoted by ∆xt = xt − xt−1. There are I investors indexed by i = 1, ..., I that hold a subset

N i ⊂ N of all stocks. Qit ∈ R
N i

denotes the vector of shared held by i. The optimal portfolio

Qit = f i(Pt, Vt) is a function of the vector of current stock prices Pt ∈ RN and a collection of other

exogenous observable and unobservable variables Vt (such as the assets under management, interest

rate, fundamentals, or investment constraints). An investor’s elasticity of demand with respect to the

price (henceforth elasticity of demand) is defined as the percentage change in holdings when the price

of a stock increases by 1 %. Formally,

ζit,n = −
∂Qit,n/Q

i
t,n

∂Pt,n/Pt,n
(5)

Similarly, the cross-elasticity of demand is given by ζit,nm = − ∂Qit,n/Q
i
t,n

∂Pt,m/Pt,m
and measures how much of

n investor i sells when m’s price increases by 1%.19 The stock-specific and cross elasticities can be

stacked in an N i × N i elasticity matrix ζit for every investor. The aggregate elasticity of demand is

defined as the ownership-weighted sum of the investor-specific elasticity matrices,

ζt =
I∑
i=1

diag(Qit)ζ
i
t (6)

19Note, that for m = n the cross-elasticities ζit,nn are equal to stock-specific elasticities ζit,n.
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with elements equal to ζt,nm =
∑I

i=1Q
i
t,nζ

i
t,nm. Stocks that are primarily held by passive index funds

(with ζit = 0) have a low aggregate elasticity. The distribution of ownership, therefore, affects the

aggregate elasticity. For example, the rise of passive investing increases the ownership of less elastic

investors which drives down the aggregate elasticity, unless the active investors substantially increase

their elasticity (see Haddad et al. (2021)).

Lastly, let ∆dt,n denote a demand shock for n between t and t+1, expressed as a fraction of shares

outstanding. The demand shock could be flow-induced purchases of green stocks by an ESG fund or

the inclusion of a stock in an ESG index and the corresponding purchases by index trackers.

B Demand-Driven Price Impact

Now assume that an ESG fund receives large inflows and proportionally expands its existing positions

resulting in an exogenous demand shock ∆dt ∈ RN . Equilibrium prices adjust in order to accommo-

date the demand shock resulting in realized log returns ∆pt ∈ RN . Proposition 1 in van der Beck

(2022) shows that a first order approximation to ∆pt for a large class of models (including e.g. the

CAPM or Demand System Approach to Asset Pricing) is given by

∆pt =Mt∆dt + εt (7)

whereMt ∈ RN×N is a price pressure matrix equal to the inverse of the market’s aggregate elasticity

of demand

Mt = ζ−1
t . (8)

See van der Beck (2022) for a proof. εt captures other sources of return variation such as factor

exposures or fundamental news and is orthogonal to the demand shock ∆dt. As the focus of this

paper is purely empirical, equation (7) can also be viewed as an assumption as in Greenwood and

Thesmar (2011). The link between demand shocks and prices is given by the inverse of the market’s

elasticity of demand Mt, henceforth referred to as the multiplier matrix. The more elastic investors

are (i.e. the larger the diagonal elements in ζit), the less prices of green stocks have to move, in order

to accommodate the demand shocks from flows to ESG funds. Cross-elasticities drive the off-diagonal

elements in Mt and are responsible for flow-induced spill-over effects to other stocks. If investors

accommodate flow-driven price pressure on green stocks primarily by substituting towards brown

industries, the relative price impact of ESG investing may be negligible.
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Example. In order to bolster intuition for the importance of cross-elasticities, consider the following

simplified example: There are two stocks, a green stock g and a brown stock b with equal market

capitalization, and a representative investor with a 2×2 elasticity matrix. Her demand elasticities

with respect to g and b are the same, i.e. ζg = ζb. Also, her elasticity of substitution is the same

moving from g to b and vice versa, i.e. ζb,g = ζg,b. Now assume that there is an exogenous ESG

flow in g and b equal to $1 and -$1 respectively. The flow-driven price pressure (7), is given by[
ζg −ζg,b
−ζg,b ζg

]−1[
1
−1

]
. The difference in market capitalization of g and b after the demand shock is

given by 2
ζg+ζg,b

.20 First, the greater the stock-specific elasticity (i.e. the more willing the investor

is to sell green and buy brown shares) the smaller the price impact. Second, the greater the cross-

elasticity (i.e investors’ substitution towards brown stocks as a result of the price increase of the green

stock) the smaller the equilibrium price impact. The equilibrium impact of ESG investing, therefore,

depends on i) how willing the arbitrageurs are to provide green shares and ii) which stocks they

substitute towards.

C Structural versus Reduced-Form Estimation

As outlined above (and expressed in detail in van der Beck (2022)) the matrix Mt, which links

demand shocks and the cross-section of realized returns, can be obtained structurally from investors’

demand elasticities. Before diving into estimating elasticities from holdings data, it is worth stepping

back and asking whether a structural estimation is truly necessary. One could imagine a much simpler

identification from directly regressing realized ESG returns onto demand shocks similar to PST (2022).

For example, Pavlova and Sikorskaya (2022) regress returns onto changes in benchmarking intensities

and obtain a multiplier of around 1.5. After all, estimating demand elasticities via regressions of

demand onto prices is subject to the same endogeneity concerns that contaminate regressions of prices

onto demand: Both are jointly determined in equilibrium. Assume, that we had access to non-

fundamental demand shocks for green stocks ∆dt from e.g. a stock’s inclusion in an ESG index as in

Berk and van Binsbergen (2022).21 The shocks could be used to directly estimate the multiplier using

(7) as a linear regression. Nevertheless, there are three distinct benefits of the structural approach.

First, it gives rich insights into the underlying investor-specific determinants of the flow multiplier.

20To see this, note that the difference in market equity between the green and brown stock is given by

[ 1 −1 ]
[

ζg −ζg,b
−ζg,b ζg

]−1[
1
−1

]
=

2(ζg−ζg,b)

ζ2g−ζ2g,b
= 2

ζg+ζg,b
.

21See Shleifer (1986), Coval and Stafford (2007) or Schmickler and Tremacoldi-Rossi (2022) for other examples of
non-fundamental demand shocks
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Second, one can obtain stock-specific and time-varying effects even if we estimate a scalar elasticity for

every investor. Because the ownership Qit,n varies across stocks and time, ownership-weighted sums

across elasticities
∑I

i=1Q
i
t,nζ

i vary across stocks and time. Third, one can use a large cross-section

of holdings data over a long history to identify ζt as opposed to the small number of potential ESG

demand shocks.

Lastly, note that the elasticities themselves are not deep parameters and could be a function of

trading costs, risk aversion, or investment constraints. The model and its estimation are therefore

‘semi-structural’. Understanding the drivers of demand elasticities and in particular downward-sloping

demand curves is an important avenue for future research.

D Estimating Elasticities

As in van der Beck (2022), I define institutions’ demand as ∆qit,n = logQit,n−logQit−1,n ≈ ∆Qit,n/Q
i
t−1,n.

Thus ∆qit,n simply measures the percentage change in shares held by institution i in stock n between

two quarters. Similarly, percentage changes in the price are given by ∆pt,n = logPt,n − logPt−1,n ≈

∆Pt,n/Pt−1,n. These variable definitions directly emerge from the definition of the elasticity (5). Up

to a first order, an investor’s demand elasticity can be obtained from regressions of trades ∆qit,n onto

log returns ∆pt,n.

∆qit,n = −ζi∆pt,n + εit,n (9)

where εit,n captures demand shocks due to e.g. fundamentals, flows or trading constraints. The

reduced-form specification essentially corresponds to a first difference estimator of the logit demand

specification in KY (2019). van der Beck (2022) provides a detailed investigation of the relationship

between the two estimators, which is summarized in Appendix D.3 of this paper. Note, that the

scalar regression coefficient ζi is a reduced-form approximation of an investor’s elasticity, which does

not ensure that the investor’s total assets remain unchanged. Appendix D.3 shows how to incorporate

(9) in a logit framework that satisfies the budget constraint and allows constructing the full time-

varying elasticity matrix ζit ∈ RN×N from the scalar regression coefficient ζi and portfolio holdings.

E Identification

A causal identification of demand elasticities requires exogenous variation in prices that is orthogonal

to the investor’s own demand shocks. In other words, we can use the exogenous demand shocks
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of one investor to identify the elasticity of another investor. As for every buyer there is a seller,

exogenous demand shocks by one investor can essentially be viewed as shifting the supply curve. The

literature has proposed a variety of potential instruments such as index inclusions, mutual fund flows

or dividend reinvestments.22 An advantage of estimating elasticities via trades (instead of holdings as

in KY (2019)) is that essentially all of the instruments from the event-study literature on price pressure

can be re-employed to identify demand elasticities. Van der Beck (2022) uses flow-driven trades by

mutual funds as an exogenous shock to identify elasticities. Many mutual funds scale their existing

holdings in response to in- and outflows (see Lou (2012)). Aggregating the flow-driven trades across all

mutual funds provides exogenous cross-sectional demand shocks under the (strong) assumption that

the flows were not driven by the funds’ underlying fundamentals. To address these concerns, van der

Beck (2022) constructs surprise flows by orthogonalizing the cross-sectional of mutual funds flows with

respect to the funds’ underlying holdings and characteristics.23 However, it remains unclear whether

a simple orthogonalization provides true exogenous flow shocks. In this paper, I take one step further

and construct exogenous flow shocks from dividend reinvestments as in Schmickler and Tremacoldi-

Rossi (2022). I closely follow their construction of dividend-induced mutual fund trades. Let Dt,n

denote stock n’s dividends per share paid in quarter t. For every fund i, I construct dividend flow df it

as the total dividend payout across all stocks in the portfolio relative to assets under management:

df it =
∑
n∈N i

Dt,nQ
i
t−1,n/A

i
t−1 (10)

In appendix C.13, I show that mutual funds tend to proportionally reinvest aggregate dividend payouts

in their existing portfolios.24. The hypothetical trading in stock n due to reinvested dividend flows is

given by df itQ
i
t−1,n. I construct an instrument for each investor i by summing the dividend-induced

trades (DIT ) by all other mutual funds,

DIT−it,n =
∑

j∈MF,j 6=i
df jtQ

j
t−1,n (11)

Note, that the dividend announcement date of stock n, which contains fundamental information, often

lies in the same quarter as the dividend payment. To avoid including the fundamental news coming

22See Chang et al. (2015), Lou (2012), and Schmickler (2020) for respective examples.
23Similarly, Schmickler (2020) constructs high-frequency flow shocks to address contemporaneous return chasing in

mutual fund flows.
24Chen (2020) arrives at a similar result
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from n’s own dividend announcement, I construct DITt,n using df it,−n =
∑

m 6=nDt,mQ
i
t,m/A

i
t instead

of df it .
25

Having constructed investor-specific instruments, the elasticities can be obtained in a simple two-

stage least squares procedure. Let ∆p̂it denote the fitted value from regressing returns onto the

investor-specific instrument f−it,n. The second stage regression of investor-specific trades ∆qit onto the

investor-specific instrumented return ∆p̂it allows identifying their demand elasticities ζit . Formally, for

every investor the two stages are given by:

1st Stage: ∆pit,n = θiDIT−it,n + εit,n

2nd Stage: ∆qit,n = −ζi∆p̂it,n + εit,n

(12)

where εit,n =
∑K

k=1Xt,n,kβ
i
k + uit,n includes the control variables log book equity, profitability, in-

vestment, and market beta. The trading due to aggregate dividend flows DIT−it,n is plausibly more

exogenous than ordinary flow-induced trading. The drawback of this instrument is, however, that we

cannot obtain negative demand shocks as dividends are strictly positive. Thus the identified elasticities

only capture how stock price increases affect demand. As a robustness check, Appendix C.4 reports

the estimated elasticities identified from flow-shock induced trading, which can take on both positive

and negative values. I also explore the stability of the estimates by using changes in ‘Benchmarking

Intensity’ (BMI) by Pavlova and Sikorskaya (2022) as an alternative instrument in the first stage. The

next section and Appendix Section C.3 provide further details.

F The Multiplier Matrix

I estimate ζi over the panel of quarterly holdings from 2010 to 2021.26 The multiplier matrix M ∈

R
N×N is given by the inverse of the aggregate (ownership-weighted) elasticity. I omit the time t

subscript for notational simplicity. The diagonal elements of M are the stock-specific multiplier

effects. The n-th diagonal element Mn,n = ∆pn
∆dn

measures the price impact of demand shocks for n

onto the price of n. The off-diagonal elements are the spillover effects to other stocks. In particular,

Mm,n = ∆pm
∆dn

measures the price impact of demand shocks for n onto the price of m. Let NG ⊂ N

denote the subset of green stocks. We are interested in the price impact of demand shocks for green

stocks NG onto the cross-section of all stocks N . Omitting the time subscript, one can partition the

25See Schmickler and Tremacoldi-Rossi (2022).
26The estimated investor-specific coefficients are reported in Appendix Table D.16.
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multiplier matrix into submatrices by green (g ∈ NG) and other (b /∈ NG) stocks as

M =


Mgg Mgb

Mbg Mgb

 . (13)

The important elements are Mgg and Mbg, which capture the effect of green demand shocks onto

green stocks (gg) and of green demand shocks onto non-green stocks (bg) respectively. 27 Intuitively,

Mgg measures by how much the prices of other green stocks go up when the demand for any green

stock increases by 1%. Mbg measures by how much the prices of non-green stocks increase. The

diagonal elements of Mgg are the direct stock-specific effects of green demand, i.e. the price increase

of n as a response to a 1% demand shock for n.28 The cross-multipliers among green stocks are a

key determinant of the spillover effects of ESG demand. If market participants accommodate the

demand for green stocks by substituting towards other green stocks, the relative repricing of green

versus brown stocks due to ESG flow may be strongly amplified.

Table 3 summarizes the elements of the multiplier matrix Mt. The first column reports the

direct impact of ESG demand, i.e. the diagonal elements of Mgg. The remaining columns report the

cross-multipliers, i.e. the spillover effects onto other green and non-green stocks.

[Table 3 about here.]

The average multiplier of the demand for green stocks is around 1.11, implying that (on average) a

1% increase in the demand for a green stock leads to a 1.11% increase in the price of that stock.

The stock-specific multiplier is positive for all stocks because demand is downward-sloping for all

investors.29 This is the key channel through which continued capital flows into green firms can lead

to high realized returns. Among the cross-multipliers, there is great heterogeneity across stocks which

implies that the spillover effects of ESG demand shocks are highly nontrivial. Notably, there are more

positive spillover effects of ESG demand towards other green stocks than towards non-green stocks.

On average, a positive demand shock for a green stock leads to a price increase in roughly 40% of all

other green stocks.

27Formally, letting NB = N − NG denote the number of non-green stocks, the dimensions of the matrices are given

by Mgg ∈ RN
G×NG

, Mbb ∈ RN
B×NB

, Mgb ∈ RN
G×NB

and Mbg ∈ RN
B×NG

.
28Note, that because ownership shares Qit,n vary across stocks, the elasticity matrix is not symmetrical. Therefore
Mgb and Mbg are different objects.

29Unlike in KY (2019), this is not an assumption. The estimation in changes yields downward-sloping demand curves
for all investors without a coefficient constraint. See van der Beck (2022) for details.
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How sensitive are the multiplier estimates to an alternative identification? In Appendix Section C.3

I identify investor-specific elasticities using an alternative instrument, namely changes in benchmarking

intensity (BMI) by Pavlova and Sikorskaya (2022). A stock’s BMI measures the fraction of the total

market capitalization held by benchmarked investors. Changes in BMI reduce the effective supply

of a stock and can be used to identify investor-specific elasticities. The multipliers obtained from

the BMI-based elasticities are of strikingly similar magnitude. Using the alternative identification, a

1% demand shock for the average green stock raises its price by 1.17%. As a final robustness check,

Appendix Section C.4 estimates investor-specific elasticities from surprise-flow induced trading as in

van der Beck (2022). Using surprise-flows as an instrument, I estimate that a 1% demand shock for

the average green stock raises its price by 2.78%.

5 The Aggregate Impact of ESG Flows

Having estimated the market’s willingness to accommodate ESG demand we are now in the position

to estimate the impact of flows on the realized returns from ESG investing.

A ESG Flow Multiplier

What is the impact on valuations, if investors reallocate $1 from the market portfolio towards the ESG

portfolio? A $1 ESG flow translates into stock-specific demand shocks given by τt,n = wESGt,n − wMF
t,n .

Equation (7) then implies, that the equilibrium change in prices ∆PESGt+1 ∈ RN due to ESG flows is

simply

∆PESGt+1 =Mtτt. (14)

Note, that the net flows are equal to zero as
∑N

n=1 τt,n = 0. One could alternatively model nonzero net

equity flows, as inflows to ESG funds could also come from e.g. households that were not previously

invested in the stock market. Such flows would affect both aggregate stock market and ESG returns.

As the focus of this paper lies on the excess returns of ESG funds (over the aggregate mutual fund

portfolio), net-zero flows are a more suitable way of modelling ESG demand.

Summing the flow-induced change in market equity across all green stocks yields the aggregate

dollar impact of a one-dollar ESG flow on all green firms (or at least the ones perceived to be green).30

30Note, that (7) is expressed in percentage terms (i.e. the return ∆pt+1,n resulting from a demand shock in percent
of shares outstanding). It can also be expressed in terms of dollar terms by multiplying by prices Pt,n (which are equal
to market equities due to the normalization). Let NG ⊂ N denote the subset of green stocks (for which τt,n > 0). The
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This effect will henceforth be referred to as the ESG flow multiplier. The ESG flow multiplier is driven

by two components: First, flows play a stronger role in cross-sectionally inelastic markets with a low

aggregate demand elasticity for green stocks and therefore a high multiplier matrixMt. Intuitively, if

price inelastic investors (i.e. investors with a low ζt,n) are the main shareholders of green stocks (i.e.

they have a high ownership Qit,n), then aggregate elasticity for green stocks is low and prices have to

adjust a lot in order to accommodate flow-induced demand. Second, the impact of ESG flows depends

on the deviation of the ESG portfolio from the market portfolio τt,n. If ESG funds’ deviation from the

aggregate mutual fund portfolio is negligible, then flows towards sustainable funds have no impact on

the price regardless of the multiplier effect Mt.

[Figure 2 about here.]

Panel (a) of Figure 2 plots the ESG flow multiplier over time. The ESG flow multiplier is around 0.5

and has declined to 0.3 in recent years. Thus, withdrawing $1 from the market portfolio and investing

it in the ESG portfolio leads to an increase in green stocks’ aggregate market capitalization of around

$0.3-0.5. The decline in the ESG multiplier is directly related to the decline in the active share of the

ESG portfolio in recent years. As the ESG portfolio moves closer to the market portfolio, net zero

ESG flows lead to smaller demand shocks and therefore a smaller price impact. While arguably more

objective than third-party ESG scores, using τt,n as a measure of sustainability remains a subjective

choice. In order to provide a broader perspective on the efficacy of ESG investing, I also compute the

impact of a divestment strategy that divests $1 from a value-weighted portfolio of all fossil companies.

Panel (b) of Figure 2 plots the impact of the divestment strategy on the aggregate market capitalization

of fossil fuel and green companies. Every dollar withdrawn from the fossil fuel industry reduces its

aggregate market capitalization by $1-1.2. These estimates suggest that divestment strategies can have

a large effect on stock prices and therefore firms’ cost of capital. Even though green stocks are not

directly affected by the divestment strategy, their aggregate value is affected via spillover effects. This

underlines the importance of accounting for the off-diagonal elements in Mt. As market participants

accommodate the demand shock from the divestment strategy by buying fossil fuel companies they

simultaneously buy green companies (potentially to maintain a constant industry exposure). This

exerts price pressure on the latter resulting in positive spillover effects.

total impact on green stocks then given by
∑
n∈G ∆PESGt+1,n where ∆PESGt+1,n are the stock-specific entries of ∆PESGt+1 .
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B Counterfactual ESG Returns in the Absence of Flows

The ESG flow multiplier paired with the large ESG flows of $1.3 trillion suggest that the flow-driven

demand for green stocks has potentially large aggregate pricing implications. In order to assess the

quantitative return distortion from total ESG flows, FESGt+1 , I conduct a simple simulation. I simulate

counterfactual realized ESG returns if the quarterly flows to ESG funds FESGt+1 were instead reinvested

in the aggregate mutual fund portfolio wMF
t .31 Table 4 reports the counterfactual ESG returns in the

absence of flow-driven price pressure.

[Table 4 about here.]

The first row reports the empirically observed annualized ESG return, which is defined as the excess

return of the ESG portfolio over the aggregate mutual fund portfolio τt = wESGt − wMF
t . The second

row reports the counterfactual ESG return without price pressure from flows towards labelled ESG

mutual funds. The raw return and alphas drop by merely 10 basis points. The impact of capital

flows towards specifically labelled sustainable mutual funds is therefore negligible. Without the price

pressure from total ESG flows, however, the raw return and alphas drop by 200 basis points and are

all zero. Thus, when assessing the impact of ESG investing, it is important to account for the ESG

tilts by all institutions, including large investment advisors, banks, and pensions funds. The results

emphasize the sizeable gap between realized and expected returns from ESG investing that is driven

by total sustainable flows. Taking the estimates at face value, this suggests that without a continued

flow to the ESG portfolio, ESG investing does not have positive abnormal returns. In other words, it

is the price pressure from ESG flows that made ‘doing well by doing good’-investing possible.

C ESG Flows and Returns: Reduced-Form Evidence

The structural approach presented above allows for circumventing the issue that flows and returns

are jointly endogenous. Within the model, ESG flows have a large impact on ESG returns. This

result is based on three findings: Large flows towards the ESG portfolio (FESGt+1 ), a low elasticity of

substitution between green and brown firms (Mt), and a considerable deviation of the ESG portfolio

from the market portfolio (τt). If ESG returns are truly flow-driven, then aggregate ESG flows should

31A first order approximation of the simulated price pressure from $X net-zero ESG flows is given by ∆P sim
t =

Mt(w
ESG
t − wMF

t ) ∗ $X. The counterfactual returns in the absence of price pressure are then given by rcft,n = rt,n −
∆P sim

t+1,n/Pt,n. Counterfactual ESG returns are then given by
∑N
n=1 r

cf
t,nτt,n. See Appendix D.4 for details.
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be correlated to realized ESG returns. Figure 3 plots the quarterly flow into the ESG portfolio along

with the excess return on the ESG portfolio.

[Figure 3 about here.]

The correlation between quarterly ESG flows and returns is 74%. While this correlation is by no

means causal evidence for flow-driven price pressure, it is nevertheless strikingly high. Notably, PST

(2022) find that ESG returns and flows into labelled ESG mutual funds are not significantly correlated.

Table 5 replicates their result and provides further evidence on the potential importance of flows in

explaining ESG returns.

[Table 5 about here.]

I first regress ESG returns on the total ESG flow and the flow to labelled ESG mutual funds separately.

Both measures of ESG flows are significantly related to ESG returns with an R2 of 29%. Note that

simple regressions of the returns onto flows cannot identify price pressure: Beliefs about the climate,

the fundamentals of ESG firms, and positive feedback trading, drive both flows into ESG funds, as

well as the return on their underlying assets. I merely present these correlations as suggestive evidence

for a potential link between ESG flows and returns. The second set of columns replicates the findings

of PST (2022). I regress their GMB factor return onto total ESG flows, ESG mutual fund flows, and

instrumented flows using quarterly lags. Confirming their results, I find no significant relationship

between GMB returns and ESG flows. This underlines the importance of computing the suitable flow

into the object of interest. It is unclear whether flows to ESG mutual funds are indeed directed at the

GMB portfolio. While many investors follow the MSCI ESG ratings used in PST (2022), the direction

of ESG flows critically depend on how the ratings are used to construct portfolio weights. Thus ESG

flows may not directly target the GMB portfolio. I circumvent this issue by investigating flows and

returns of the same portfolio (wESGt ).

6 The Cross-Sectional Impact of ESG Flows

This section puts the hypothesis of flow-driven ESG returns to a stronger test. If flow-driven purchases

by institutions drive aggregate ESG returns, they should also affect the cross-section of ESG returns.

In other words, green stocks that experience higher flow-driven demand should exhibit higher realized

returns in the cross-section.
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A Stock-Specific ESG Flows and Returns

While the flows into individual within the ESG portfolio are not directly observable, they can be

approximated by aggregating the flow-driven trades of all investors. Total flow-driven trades in stock

n are given by

∆dt+1,n =
I∑
i=1

Qit,nf
i
t+1 (15)

where I includes mutual funds and other 13F institutions (banks, pension funds, insurance companies

etc.). f it+1 is the flow (relative to lagged assets) into investor i and Qit,n the lagged ownership in stock

n. Precise data on flow-driven trades are only available for mutual funds. Because SEC 13F forms are

filed at the management company level, flows towards ESG funds within a manager are difficult to

capture.32 Appendix B provides a detailed description on how to approximate flow-driven trades for

13F institutions. Note that because Qit,n are ownership shares, ∆dt+1,n can be interpreted as demand

shocks in percent relative to shares outstanding. Thus a flow-driven demand shock of ∆dt+1,n = 0.01

implies a 1% increase in the demand for the stock. If flows affect the cross-section of ESG returns,

then ∆dt,n should be significantly related to the cross-section of ESG returns. Let ∆pt+1,n denote the

quarterly return on stock n. I compute abnormal returns αt+1,n by cross-sectionally orthogonalizing

returns with respect to market beta, log market equity, log market-to-book ratio, profitability and

investment.33 I then compute the cumulative flow-driven demand ∆dn and abnormal returns for

every stock ∆pn by summing over the sample period from 2016 to 2021.

B Price Pressure in the Cross-Section of ESG stocks

The structural model predicts that flow-driven price pressure is given by multiplying the vector of

flow-driven demand shocks ∆dt by the multiplier matrixMt. Thus, the model implies a 1:1 mapping

betweenMt∆dt and the cross-section of realized ESG returns. Panel (a) of Figure 4 plots the abnormal

returns on all green stocks along with the flow-driven price pressure. I fit a linear regression through the

scatter points, which shows that the cross-section of green returns is significantly related to flow-driven

price pressure (t-Statistic > 7). Furthermore, both value- and equal-weighted regression lines are close

to the diagonal. This is strong evidence in favor of the overall magnitude of the demand elasticities

32For example, a $1 billion exogenous flow from the Vanguard S&P500 ETF to the Vanguard FTSE Social Index Fund
would only show up as a demand shock for greener stocks in Vanguard’s aggregate share holdings while leaving its total
assets under management unchanged.

33Formally, I run the quarterly cross-sectional regressions of log returns rt+1,n onto lagged characteristics Xk
t,n and

extract the residual: rt+1,n = β0
t +

∑K
k=1 β

k
tX

k
t,n + ∆pt+1,n.
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obtained from holdings data.34 On average, the multiplier matrixMt correctly maps the cross-section

of demand shocks into the realized return space. Panel (b) of Figure 4 plots the price pressure (M∆d)

for all green stocks against their abnormal return αn. Once again, the cross-section of abnormal ESG

returns is significantly related to price pressure with a t-statistic of 5.25. We furthermore cannot reject

the null hypothesis that the slopes of the fitted lines are different from the diagonal.

[Figure 4 about here.]

C Testing different Elasticity Estimates

The flow-driven demand shocks allow for a more granular test of the price impact implied by demand-

based asset pricing models. Note, that equation (7) is a first-order approximation to the demand shock

in a large class of models, including the Demand System Approach to Asset Pricing by KY (2019).35

We can test different elasticity estimates by comparing the cross-section of flow-driven ESG returns

to the price pressure obtained from different multipliers Mt.

[Table 6 about here.]

Panel (a) of Table 6 compares the regression slope and R2 across different multipliers. The first column

regresses the cross-section of abnormal ESG returns αn onto the raw flow-driven demand shocks ∆dn,

which implies a diagonal multiplier matrix equal to the identity matrix. The slope coefficient is 1.13

with a t-statistic of 6.84. This implies that a 1% demand shock for a green stock increases its price

by 1.13%. The average multiplier across all green stocks obtained from the structural model is 1.11,

which is strikingly close to the reduced-form estimate. Raw flow-driven demand furthermore explains

around 4% of the cross-section of ESG returns. The second column regresses the cross-section of

abnormal returns onto demand shocks scaled by the multiplier matrix as in Figure 4. The explained

variation of the cross-section of ESG returns rises to 5%. This does not necessarily imply that the

additional information contained in the stock-specific and cross-elasticities is small. It rather confirms

that the cross-section of individual stock returns is driven by unobservable latent demand shocks

unrelated to flow-driven demand (see KY (2019)). The third column uses the elasticity matrix obtained

using the methodology in KY (2019). Recall that they identify elasticities using portfolio holdings in

levels, whereas this paper identifies elasticities from quarterly trades (i.e. changes in portfolios). The

34If true multipliers were significantly higher than the model-implied estimates (i.e. investors respond more strongly
to price changes than implied by the model) then the slope of the regression line would be much steeper.

35See van der Beck (2022) for details.
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regression slope drops to 0.49 (t-Statistic of 7.22) which implies that the price pressure estimated from

holdings in levels is slightly too large. This may be owed to the endogeneity problem of identifying

elasticities from holdings as opposed to trades.36

Lastly, I provide a simple test of whether the stock-specific multipliers, i.e. the diagonal elements

in M contain additional information about price pressure beyond traditional characteristics. To this

end, let αn
∆dn

denote a primitive measure of stock-specific price pressure. It is the abnormal return

on stock n from 2016 to 2022 divided by the cumulative flow-driven demand ∆dn. I regress αn
∆dn

in the cross-section onto the stock-specific multipliers, Mn, controlling for log market equity and

market beta. Panel (b) of Table 6 reports the estimated coefficients. The price impact of flow-driven

demand in cross-section of green stocks is significantly larger for smaller stocks. More importantly,

it is significantly positively related to the stock-specific price impact implied by the structural model

(with a t-Statistic of 3.6).

7 Applications and Robustness Tests

A ESG Index Inclusion

The structural approach presented in this paper allows for circumventing the issue that ESG flows

and returns are jointly endogenous. It is nevertheless reassuring if the structural estimates are at

least to some extent backed by simple reduced-form evidence, such as demand shocks from ESG index

inclusions. A well-known ESG index is the FTSE USA 4 Good Index (henceforth 4G index). Berk

and van Binsbergen (2022) use a stock’s membership in the FTSE USA 4 Good Index as a proxy

for aggregate ESG demand and find that there are no price effects associated with inclusion in the

index. They conclude that impact investing does not affect firms’ cost of capital. However, it is

unclear how much money is actually flowing into the stocks added to the index. In other words, are

the assets indexed to the 4G Index large enough to generate meaningful demand shocks based on its

reconstitution?

To further investigate this, I construct mutual fund demand ∆qMF
t,n as the change in ownership by

mutual funds for every stock n and quarter t. Table 7 reports regressions in the style of Berk and van

Binsbergen (2022). ∆I4G
t,n is a variable equal to 1 in the quarter of inclusion in the 4G Index, -1 in the

quarter of exclusion, and 0 otherwise. I first regress index flow onto ∆I4G
t,n including the controls used

36See van der Beck (2022) for details.
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in Berk and van Binsbergen (2022).37 Addition to 4G Index is associated with a significant increase

in total mutual fund ownership of 1.3 percent. In other words, when a stock is included in the 4G

Index, mutual funds contemporaneously purchase 1.3 percent of the stock’s shares outstanding (on

average). This suggests that the 4G Index is sufficiently widely followed such that reconstitutions

cause meaningful shocks to index investor demand. The third column of the table replicates the

specification in Berk and van Binsbergen (2022) at a quarterly frequency by regressing quarterly

stock returns onto ∆I4G
t,n . As in their study, the coefficient is insignificant and very small, suggesting

that the ESG flows do not generate meaningful price pressure. However, for only 56% of all index

reconstitutions, mutual fund flow ∆qMF
t,n has the same sign as ∆I4G

t,n .38 In order to identify relevant

(i.e. widely followed) reconstitution events, I use ownership changes of index trackers. I interact the

4G index reconstitutions with a dummy variable equal to 1 if the demand by index trackers has the

same sign as the reconstitution.39 The coefficient on the interaction term is large and statistically

significant. This suggests that ESG index inclusion has a strong effect on prices, as long as mutual

funds actually purchase the stock when it is included. In other words, conditional on inclusion in the

4G index, the demand by index trackers has a large impact on the prices of green firms. Furthermore,

the implied price impact is in line with the multiplier obtained from the structural model. In the

quarter of inclusion in the 4G index, the stocks followed by index trackers receive a 3.13% demand

shock by mutual funds and experience 5.3% higher return, which implies an ESG demand multiplier

of 5.3
3.2 = 1.69.

[Table 7 about here.]

B Mandate-Driven Portfolio Reconstitutions

Mutual fund purchases based on additions and deletions from the 4G Index represent a small set

of potentially exogenous ESG demand shocks. In this section, I generalize the idea of ESG index

inclusion to construct a larger set of exogenous ESG demand shocks. In order to disentangle non-

fundamental from fundamental ESG demand, it will be useful to define two kinds of demand shocks:

37Because additions and deletions are encoded as 1 and -1 respectively, I refer to all index reconstitutions as additions.
38From 2012 to 2021 and using quarterly data, I obtain 342 reconstitution events of the 4G index, conditional on the

stock already being in the FTSE USA Index. For 192/342=56% out of these events, the aggregate ownership change of
mutual funds has the same sign as the reconstitution.

39In particular, I a construct investor-demand dummy 1Demand equal to 1 if the sign of index fund flow during the
reconstitution quarter is the same as the sign of the reconstitution ∆I4G

t,n . Index fund flow is defined as the change in
ownership by index trackers. To identify index funds, I use the label ‘Pure Index Fund’ provided by the CRSP mutual
fund database, which are mutual funds with an index-fund flag equal to ‘D’.
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Intensive and extensive. Intensive demand shocks are changes in the shares held by an investor that

do not originate from or result in zero holdings. Extensive demand shocks are portfolio additions and

deletions, i.e. changes in shares held originating from or resulting in zero holdings. A key difference

between the two is that extensive demand shocks likely contain an exogenous (non-fundamental)

component that is related to the investment mandate of the fund. For example, an ESG investor may

include a stock in her portfolio once the company’s Co2 Emissions fall below the industry median.

Similarly, a value fund includes a stock if it falls in the top quintile of book to market ratios. While not

all of the extensive demand shock is non-fundamental (Co2 emissions dropped because of a change

in production which affects profits) at least part of it is driven by the fund’s exogenous portfolio

constraint: “Buy the bottom 50% of Co2 emitters”. Let ∆Q⊥t,n denote the total amount of shares

purchased due to specific ESG mandates and portfolio constraints. Because ∆Q⊥t,n is orthogonal to

fundamental news, a significant relationship with contemporaneous returns rt,n would confirm that

non-fundamental ESG demand affects prices. Appendix Section B.3 shows how to construct ∆Q⊥t,n

from mutual funds’ extensive and intensive trades.

In order to test whether non-fundamental ESG demand impacts prices, I estimate panel regressions

of quarterly returns onto ∆Q⊥t,n controlling for known return predictors such as market beta, size,

value, profitability, and investment. Table 8 reports the estimated coefficients on ∆Q⊥t,n for different

specifications.

[Table 8 about here.]

The coefficient on ∆Q⊥t,n is highly statistically significant with a t-Statistic of 11.02. Note, that ∆Q⊥t,n

only captures the exogenous demand shocks of labelled ESG mutual funds, which represent a subset

of all ESG investors. If we scale ∆Q⊥t,n by the inverse market share of labelled ESG funds relative

to total ESG assets, we can identify the structural parameter linking exogenous ESG demand and

prices.40 The coefficient on scaled ∆Q⊥t,n is 0.95, which implies that when ESG funds purchase 1% of

a company’s shares outstanding, the price increases by roughly 0.95%. The implied multiplier is 0.95

which is close to the estimate from the structural model of 1.11. I also sort ∆Q⊥t,n into quartiles by

absolute values and assign dummy variables equal to 1 if ∆Q⊥t,n in the respective quartile is positive and

-1 if ∆Q⊥t,n in the respective quartile is negative. The results show that stocks with higher mandate-

driven ESG demand experience stronger price pressure. The coefficient on ∆Q⊥t,n is significant across

40Formally, total ∆Q⊥t,n = SESGt ∆Q⊥,Total
t,n where Q⊥,Total

t,n is total mandate-driven ESG demand and SESGt is the

market share of labelled ESG mutual funds. Thus Q⊥,Total
t,n = 1

SESG
t

∆Q⊥t,n.
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all specifications. Thus ESG investors’ trades that are driven by portfolio constraints and investment

mandates have a significant impact on prices. Furthermore, the magnitudes are consistent with the

elasticities estimated from holdings data.

C Impact-Investing at the Fund Level

The interaction between the multiplier matrixMt and fund-specific deviations from the market port-

folio allows for assessing the efficacy of impact-investing at the fund level. A fund’s impact is driven

by its deviation from the market portfolio and by the extent to which the deviations are concentrated

towards inelastic stocks.41 A fund’s ability to affect green firms’ cost of capital is strongly limited, if

it overweights stocks that are held by elastic investors and by investors who respond by substituting

towards brown stocks. Green stocks that are associated with a high multiplier are best suited for

impact investing as flows induce a large realized return and hence a lower cost of capital. Also, note

thatMt is an N ×N matrix that accounts for flow-driven spillover effects to all stocks. If the market

accommodates green demand primarily by substituting towards other green stocks, thenMt,gg is high,

causing an amplified relative price impact. Table 9 reports the impact of a $1 flow from the market

portfolio towards the largest ESG mutual funds averaged over the past 5 years.

[Table 9 about here.]

There is great heterogeneity in the funds’ impact on green stocks. A $1 flow to the Calvert

Social Investment Fund boosts the aggregate value of green stocks by $0.82. In contrast, the same

flow towards the Vanguard FTSE Social Index Fund raises the value of green stocks by only $0.39.

Furthermore, many sustainable funds unintentionally boost the value of fossil fuel companies. A $1

flow towards the iShares MSCI USA ESG ETF increases the aggregate value of fossil fuel companies

by 0.03$ and decreases the value of green stocks by 0.04$. On the one hand, this heterogeneity is

owed to the fact that there is no objective measure of a fund’s true sustainability. Asset managers use

different sustainability metrics, which often diverge substantially (see Berg et al. (2019) and Berg et al.

(2021)). On the other hand, funds differ strongly in their deviation from the market portfolio. Some

funds, such as the Vanguard FTSE Social Index Fund or the iShares MSCI USA ESG ETF, deviate

very little from S&P500 index weights and hence primarily serve as a way for investors to feel good

about themselves without having a true impact. Surprisingly, flows towards many sustainable funds

41Formally, fund i’s impact is given by Mtw
i
t,n − wMF

t,n . These are the cross-sectional price changes due to a 1 dollar
from from the aggregate mutual fund portfolio towards i.
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raise the aggregate valuation of fossil fuel companies. Even though an ESG fund may underweight

an industry as a whole, by tilting towards more inelastic stocks it can positively affect the aggregate

valuation of that industry. Similarly, if the fund tilts towards stocks that have high cross-elasticities

with underweighted stocks it unintentionally boosts the valuation of the wrong companies. Overall

table 9 emphasizes that while sustainable flows do impact firms’ realized returns and cost of capital,

the choice of the appropriate fund is crucial to affect change in the preferred direction.

8 Conclusion

This paper investigates the extent to which the realized returns from ESG investing are owed to

price-pressure arising from flows towards sustainable funds. Flow-driven price pressure is the product

of sustainable funds’ deviation from the market portfolio and the market’s elasticity of substitution

between stocks. I find that every dollar flowing from the market portfolio towards the ESG portfolio

increases the aggregate value of green firms by $0.4. As a result, ESG funds would have likely

underperformed the market in the absence of flow-driven price pressure on green stocks. Thus, one

should be careful when using the realized outperformance of sustainable investments in recent years to

judge their expected outperformance going forward.While the low aggregate elasticity of substitution is

worrying for the overall stability and efficiency of equity markets, it supports the effectiveness of impact

investing. Flows towards green funds that invest in cross-sectionally inelastic stocks substantially

reduce the cost of capital of the firms in the funds’ portfolios. As the framework allows quantifying

the effect of flows on green firms’ cost of capital, it enables differentiating sustainable funds by an

objective real-impact criterion.

The large impact of flows on realized ESG returns does not necessarily affect expected ESG returns

going forward. Assessing the extent to which expected returns are affected by past demand pressures is

non-trivial as it depends on the transitory versus permanent nature of ESG flows. If ESG inflows are

expected to be permanent, then the permanent flow leads to a permanently higher valuation of green

stocks. Thus, the reduction in expected returns due to flow-induced price pressure is relatively small.

If, however, ESG inflows unexpectedly revert, the realized future return may be strongly negative.

The question, whether ESG funds will receive outflows in the future ultimately depends on whether

ESG flows are performance- or taste-based. It is likely that at least some flows to ESG funds are

driven by past performance rather than true shifts in green preferences. Even if none of the flows to
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ESG funds are performance-driven, green preferences fluctuate over time and may well decline during

bad economic times.
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Figure 1: Total ESG Flow
The figure plots the total flow into the ESG portfolio from 2012 to 2022. I compute the ESG flow for each 13F
institution as the return-adjusted change in ESG-assets under management and then then sum across all institutions. I
report rolling 4-quarter averages and plot the cumulative sum of all flows since 2012. The dotted line plots the ESG flow
when controlling for exposures to 12 (Fama-French) industry portfolios in the estimation of βESGt .
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Figure 2: ESG Flow Multiplier
The figure plots the ESG flow multiplier, i.e. the aggregate change in market cap in green stocks due to a $1 ESG flow.
Formally, the aggregate effect of ESG flows on green stocks is given by

∑
n∈NG ∆PESGt+1,n where ∆PESGt = Mtτt is the

vector of price changes following the $1 ESG flow. The dotted line reports the ESG multiplier without cross-spillover
effects (setting the diagonal elements inM to 0. Panel (b) plots the impact of a divestment strategy that divests $1 from
a value-weighted portfolio of all fossil companies. The black line shows the direct impact on the aggregate valuation of
fossil fuel companies. The green line shows the indirect spillover effects to green stocks.
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Figure 3: Aggregate ESG Flows and Returns
The figure plots the quarterly excess return on the ESG portfolio τt = wESGt − wMF

t against the quarterly ESG flow
FESGt+1 measured in percent relative to the total stock market capitalization. I plot rolling 4-quarter averages of returns
and flows.
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Figure 4: ESG Demand in the Cross-Section of ESG Returns
The figure reports binned scatter plots of the cross-section of ESG returns against flow-driven price pressure Mt∆dt,n.
For each stock, I compute the cumulative price pressure and returns from 2016 to 2022. Panel (a) plots price pressure
against raw cumulative returns ∆pn. Panel (b) plots price pressure against abnormal returns αn obtained from cross-
sectional regressions of returns onto known predictors.
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Table 1: ESG Funds Summary Statistics
The table reports yearly averages of quarterly metrics describing the sample of ESG funds. The first 5 columns report
statistics at the ESG fund level. Excess Flows measure the average quarterly flow across all ESG funds in excess of the
average quarterly flow across non-ESG funds. The number of name changes captures the total number of funds that
change their name in a given year by including an ESG keyword. The last 3 columns report statistics for the aggregated
portfolio of all ESG funds. Index ESG funds are ESG funds that directly track (or are based on) an index. The fraction
of indexed AUM is computed as index ESG funds’ total AUM relative to the total AUM of all ESG funds. Active share
(Cremers and Petajisto (2009)) is computed as the deviation of the ESG portfolio wESGt,n from market capitalization
weights wmt,n, i.e. 1

2

∑
n |w

ESG
t,n − wmt,n|. For all other variables, I report the average across quarters within a given year.

ESG Fund-Level Statistics Aggregate Statistics on wESGt

Year # Funds Avg. #
Stocks

Avg. AUM
($ Billion)

Excess
Flows (%)

# Name
Changes

AUM ($
Billion)

% Indexed
AUM Active Share

2010 89 95 0.34 0.54 2 30.60 0.11 0.71

2011 82 128 0.38 -1.26 0 31.17 0.13 0.70

2012 88 139 0.28 -0.69 2 25.02 0.16 0.70

2013 83 119 0.34 0.73 1 28.82 0.17 0.69

2014 88 115 0.43 -0.55 3 37.66 0.19 0.67

2015 101 133 0.36 -0.45 3 36.80 0.24 0.68

2016 117 153 0.31 0.35 6 36.62 0.25 0.67

2017 158 153 0.30 2.21 7 48.03 0.21 0.65

2018 199 147 0.32 1.46 19 63.19 0.22 0.63

2019 237 149 0.34 2.09 16 79.71 0.28 0.61

2020 288 165 0.43 3.24 19 126.68 0.40 0.56

2021 368 156 0.63 2.23 21 233.48 0.50 0.57
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Table 2: ESG Returns
The table reports annualized average returns and alphas from 2016 to 2021. The two left columns report average
annualized returns on the market portfolio wMF

t and the representative ESG portfolio wESGt . The three right columns
report the annualized alphas of the long-short ESG portfolio τt = wESGt − wMF

t . The ESG portfolios are rebalanced
quarterly. Alphas are computed with respect to the CAPM, the CAPM plus the Green Factor in PST (2022), and the
Carhart 4-factor model plus the Green Factor. The standard errors are robust to heteroskedasticity and autocorrelation.

Long-Short ESG Portfolio (τt,n)

Mutual Fund
Portfolio wMF

t

ESG Portfolio
wESGt

Return α
(CAPM)

α
(CAPM + Green)

α
(CH4 + Green)

2012-2022

Return (%) 15.57 16.37 0.72 0.96 0.48 0.42

t-statistic 3.20 3.41 1.57 2.03 1.01 0.90

2016-2022

Return (%) 16.98 19.11 2.01 2.40 1.87 1.51

t-statistic 2.05 2.36 2.91 3.47 2.55 2.01
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Table 3: The Elements of Multiplier Matrix
The table summarizes the stock-specific and cross-elements of the multiplier matrix for green demand shocks. The first
column reports the stock-specific multipliers, i.e. the percent increase in price of a green stock following a 1% increase in
demand for that stock. The other columns report the off-diagonal elements of the multiplier matrix, i.e. cross-multipliers,
which capture spillover effects to other stocks. Cross-multipliers are separated into spillover effects within green stocks
(Mgg) and from green stocks to brown stocks (Mbg).

Cross-Multipliers (×104)

Mg Mgg Mbg

Mean 1.11 -0.86 -1.40

Std. (0.1) (9.66) (8.40)

10th Pctl. 1.01 -2.30 -3.23

Median 1.09 -0.05 -0.12

90th Pctl. 1.25 0.43 0.36

Fraction Positive
Spillovers 38% 32%
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Table 4: Counterfactual ESG Returns without Flow-Driven Price Pressure
The table reports the true (empirically observed) realized returns of the long-short ESG portfolio τt and the counterfactual
returns observed in the absence of price pressure from i) labelled ESG mutual fund flows and ii) total ESG flows. I report
raw returns and alphas with respect to the CAPM, the CAPM plus the Green Factor from PST (2022), and the Carhart
4-Factor Model plus the Green Factor.

Return α
(CAPM)

α
(CAPM + Green)

α
(CH4 + Green)

True Returns: Empirically Observed

Return (%) 2.01 2.40 1.87 1.51

t-statistic 2.91 3.47 2.55 2.01

Counterfactual Returns: In Absence of
Flows from labelled ESG Mutual Funds

Return (%) 1.92 2.32 1.78 1.42

t-statistic 2.78 3.35 2.43 1.90

Counterfactual Returns: In Absence of
Total ESG Flows

Return (%) 0.04 0.57 -0.05 -0.30

t-statistic 0.05 0.77 -0.07 -0.38
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Table 5: The Correlation of ESG Flows and Returns
The table reports regressions of the form

RESGt = α+ βFESGt + εt

where RESGt is an ESG return and FESGt a measure of ESG flows. The first set of columns uses the τ -portfolio under 1)
total ESG flows and 2) labelled ESG mutual fund flows. The second set of columns uses quarterly GMB (green-minus-
brown) factor returns PST (2022). In specification (3) I instrument for the ESG flow by its lag FESGt−1 as in PST (2022).
The first stage t-Statistic is 7.6. I only report IV results for ESG mutual fund flows, as the relevance condition does
not hold for total ESG flows. For all specifications except for (3), I use rolling 4-quarter average flows. T-statistics are
reported in parentheses. Significance at the 90, 95 and 99% confidence levels is indicated by *,**,*** respectively.

ESG Return τt GMB Factor Returns (PST, 2022)

(1) (2) (1) (2) (3)

const -0.00 -0.00 0.02 0.02 0.02

(-1.00) (-0.21) (2.17) (2.66) (2.15)

Total ESG Flow 2.47*** 1.46

(3.45) (1.46)

ESG Mutual Fund Flow 47.65*** 6.01

(3.40) (0.08)

IV (lagged Flow) 15.46

(0.24)

R2 0.29 0.29 0.01 0.00 -
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Table 6: The Cross-Section of ESG Returns and different Elasticity Measures
Table (a) reports the slope coefficient β1 and R2 of regressions of the following form

αn = β0 + β1Pressuren + εn

where Pressuren is 1) raw demand ∆dn, 2) demand multiplied by the multiplier matrix estimated in this paper, and 3)
demand multiplied by the multiplier matrix estimated in KY (2019). Panel (b) plots the coefficient estimates of a panel
regression of price impact αn

∆dn
onto the diagonal elements of the elasticity matrix, controlling for log market equity and

beta. T-statistics are reported in parentheses.

(a) Comparing Multiplier Estimates

Raw
Demand

Demand ×
Multiplier

Demand ×
KY-

Multiplier

∆dn M∆dn MKY∆dn

∆αn 1.13 1.09 0.44

(6.84) (7.28) (5.90)

R2 0.04 0.05 0.03

(b) Price Pressure in the Cross-Section

Price Impact αn/∆dn

const 1.809

(1.418)

diag M 2.813***

(3.598)

Log ME -0.211***

(-4.488)

Beta 0.154

(1.313)
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Table 7: How much money is following the FTSE 4 Good Index?
The table reports different regressions in the style of Berk and van Binsbergen (2022). ∆I4G

t,n is equal to 1 in the quarter
of inclusion in the FTSE 4 Good Index, -1 in the quarter of exclusion, and 0 otherwise. I4G

t,n is a dummy equal to 1 in all
quarters after inclusion. ∆It,n and It,n are defined equivalently, but for the FTSE USA index. The stocks in the FTSE
4 Good Index are a strict subset of the stocks in the FTSE USA index. 1Demand is a dummy equal to 1 if aggregate
purchases by index mutual funds have the same sign as the ∆I4G

t,n . The first two columns use quarterly mutual fund flow
as a dependent variable. Columns three and four use quarterly stock returns. T-statistics are in parentheses. Standard
errors are double clustered at the stock and year-month level. Significance at the 90, 95 and 99% confidence levels is
indicated by *,**,*** respectively.

Mutual Fund Flow ∆qMF
t,n Quarterly Returns ∆pt,n

(1) (2) (1) (2)

const 0.002 0.002 0.047** 0.047**

(1.64) (1.64) (2.43) (2.43)

In,t -0.001 -0.001 -0 -0.001

(-0.93) (-1.01) (-0.06) (-0.10)

I4G
n,t -0.001 -0.001 -0.005 -0.005

(-1.2) (-1.18) (-0.8) (-0.78)

∆In,t -0.001 -0.001 -0.001 -0.001

(-0.51) (-0.54) (-0.03) (-0.04)

∆I4G
n,t 0.013*** -0.007* 0.009 -0.062*

(4.5) (-1.91) (0.29) (-1.75)

∆I4G
n,t × 1Demand 0.032*** 0.115**

(4.52) (2.21)
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Table 8: Price Impact of Non-Fundamental ESG Demand
The table reports the results of panel regressions of quarterly returns onto non-fundamental ESG demand ∆Q⊥t,n. Specifi-
cation (1) uses the raw ∆Q⊥t,n, which are mandate-driven portfolio additions by labelled ESG mutual funds. Specification
(2) scales ∆Q⊥t,n by the inverse market share of labelled ESG funds relative to total ESG assets. Specification (3) includes
changes in fundamentals as additional controls. Specification (4) splits ∆Q⊥t,n into quartile dummies. Robust t-Statistics
are reported in parentheses. Significance at the 90, 95 and 99% confidence levels is indicated by *,**,*** respectively.

Quarterly Returns

(1) (2) (3) (4)

∆Q⊥ 58.95***

(11.02)

∆Q⊥ Scaled 0.95*** 0.88***

(10.44) (9.88)

1(∆Q⊥ Quartile 1) -0.008***

(-3.240)

1(∆Q⊥ Quartile 2) 0.001

(0.250)

1(∆Q⊥ Quartile 3) 0.001

(0.330)

1(∆Q⊥ Quartile 4) 0.026***

(13.150)

Fundamental Controls Yes Yes Yes Yes

Changes in Fundamentals No No Yes No

Time FE Yes Yes Yes Yes
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Table 9: Flow Impact at the Fund Level
The table reports the impact of a $1 flow towards some of the largest ESG mutual funds in the US. I compute the impact
at every quarter and then average across quarters from 2016 to 2021. I report the impact on green stocks for which
τt,n > 0, as well as fossil fuel and sin stocks. The second column reports the funds’ active deviation from the S&P 500
computed as 1

2

∑
n |w

i
t,n − wSPt,n |.

Impact of 1$ Flow onto...

Deviation from
S&P500

Green
Stocks

Fossil Fuel
Stocks Sin Stocks

TIAA-CREF Funds: Social Choice Equity Fund 0.546 0.272 0.013 -0.008

Calvert Social Investment Fund 0.819 0.613 -0.006 -0.010

Putnam New Opportunities Fund 0.762 0.173 -0.052 -0.027

Vanguard FTSE Social Index Fund 0.391 0.098 -0.047 -0.030

Calvert Social Index Fund 0.339 0.097 -0.041 -0.021

Virtus Small-Cap Sustainable Growth Fund 0.971 -0.105 0.052 0.016

iShares FTSE KLD 400 Social Index Fund 0.594 0.313 -0.000 -0.015

Brown Advisory Winslow Sustainability Fund 0.833 0.432 -0.006 -0.009

iShares MSCI USA ESG ETF 0.515 -0.043 0.030 0.007
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Appendix A The ESG Portfolio

A.1 Robustness of the ESG portfolio

The ESG portfolio is constructed using ESG mutual funds’ portfolio holdings. To this end, I identify

a large set of ESG mutual funds via their fund name as reported by CRSP. A mutual fund is an

ESG fund if its name contains at least one (or any abbreviation) of a list of sustainability keywords

:Environment, social, governance , green, sustainable, responsible, SRI, ESG, climate, clean, carbon,

impact, fair, gender, solar, earth, renewable, screen, ethical, conscious, CSR, thematic. The total list

of keywords is much larger. For brevity, this list excludes all keywords that are not actually used in

funds’ names. Figure A.10 plots the 30 largest ESG funds and their assets under management as of

December 2021.

Table A.10: Largest 30 ESG Funds
The table the largest 30 ESG funds and their assets under management identified by the list of sustainability keywords.
Assets under management are reported in billion USD.

Fund Name Assets

iShares ESG Aware MSCI USA ETF 25.70

Vanguard FTSE Social Index Fund 16.79

TIAA-CREF Social Choice Equity Fund 7.75

iShares ESG Aware MSCI EAFE ETF 7.62

Brown Advisory Sustainable Growth Fund 7.38

Core Impact Bond Fund 7.27

Putnam Sustainable Leaders Fund 6.82

Calvert Impact Fund 6.75

Vanguard ESG US Stock ETF 6.50

iShares ESG Aware MSCI EM ETF 6.22

US Sustainability Core 1 Portfolio 5.86

iShares Global Clean Energy ETF 5.61

Calvert US Large-Cap Core Resp. Index Fund 5.26

iShares MSCI USA ESG Select ETF 4.82

iShares ESG MSCI USA Leaders ETF 4.31

Fund Name Assets

iShares MSCI KLD 400 Social ETF 4.20

Xtrackers MSCI USA ESG Leaders Equity ETF 4.14

Sustainable Equity Fund 3.86

International Sustainability Core 1 Portfolio 3.47

CCM Community Impact Bond Fund 3.40

Vanguard ESG International Stock ETF 3.17

Calvert Small Cap Fund 3.06

Invesco Floating Rate ESG Fund 2.86

FT Clean Edge Green Energy Index Fund 2.82

Pax Global Environmental Markets Fund 2.74

Invesco Solar ETF 2.73

AB Sustainable Global Thematic Fund 2.65

Pax Sustainable Allocation Fund 2.62

Calvert Bond Fund 2.49

PIMCO Total Return ESG Fund 2.46

Note, that the ESG portfolio wESGt is scale-invariant and does not depend on the number of

identified ESG funds. Its representativeness therefore only depends on whether the subset of ESG

funds identified via the list of keywords is represenative of the total ESG fund population. In other

words, how stable is wESGt for different samples of ESG funds. At every quarter, I sort the sample of

ESG funds by their assets under management and split the sample in two groups based on whether

a fund has an odd or even rank. I then aggregate the holdings for the two groups and compute two
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representative ESG portfolios wESG,event and wESG,oddt . The two portfolios are therefore computed

using two different (non-overlapping) subsets of funds. I also define two measures of greenness τ event

and τ oddt as the deviation of wESG,event and wESG,oddt from the aggregate mutual fund portfolio wMF
t .42.

Figure A.5 plots the quarterly cross-sectional correlation of the two ESG portfolios and the two taste

measures. I plot both raw (i.e. equal-weighted) correlations, and market cap-weighted correlations.

Figure A.5: Representativeness of the ESG Portfolio
Panel (a) plots quarterly cross-sectional correlations between wESG,event and wESG,oddt . Panel (b) plots the quarterly
cross-sectional correlations between τevent and τoddt , which are deviations of the ESG portfolios from the aggregate
mutual fund portfolio wESGt . I compute both equal-weighted and market cap-weighed correlations and plot 3-month
rolling averages of the cross-sectional correlation coefficients.
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The two ESG portfolios are highly correlated with correlations above 90% for the later part of the

sample. This correlation is not just by driven the common tilt towards the aggregate mutual fund

portfolio. The ESG portfolio’s deviations from the aggregate mutual fund portfolio, τ event and τ oddt ,

are also highly correlated with an average correlation above 50%. Market-cap weighted correlations

are slightly higher implying that there is stronger agreement among ESG funds for larger stocks.

A.2 Investor Preference for ESG Labels

In light of the large flows to sustainable funds in recent years, a natural question that arises is whether

including an ESG keyword in the fund title leads to increased inflows. In other words, can fund

managers effectively buy additional flows by simply changing their fund’s name?

Let 1iESG,t denote a dummy variable equal to 1 if fund i has an ESG keyword in its name at date

t. As a first preliminary test, I regress the panel of quarterly aggregated flows onto 1iESG,t controlling

42Formally τevent = wESG,event − wMF
t and τoddt = wESG,oddt − wMF

t
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for lagged flows, fund size, fund performance, portfolio tilts and factor exposures. Panel (a) of Table

A.11 reports the estimated coefficient on the ESG dummy across different specifications.

Table A.11: ESG Labels and Flows
The table reports the results to panel regressions of quarterly flows onto ESG indicators from 2010 to 2020. Panel (a)
reports the coefficient on the ESG dummy equal to 1 if fund i has an ESG keyword in its name as of time t. The first
column reports the specification without any controls except quarter fixed effects. The second column includes fund-level
controls given by log assets under management, annual return, Sharpe ratio, Fama and French 3-Factor alpha, and flows
lagged up to 9 quarters. The third column includes portfolio-level controls given by exposure to momentum, value and
size factors as well as characteristic scores for momentum, value, size and greenness. Panel (b) reports the coefficients
to the three dummy variables indicating whether a fund is an ESG fund at some point in the sample (1iESG), whether it
changed its name to an ESG title at some point in the sample, and whether a previously non-ESG fund added an ESG
keyword to its title (δiESG,t). Standard errors across specifications are clustered at the fund level. Significance at the
99%, 95% and 90% level is indicated with ***,**,* respectively.

(a) ESG Fund Indicator 1i
ESG,t

Flows f it+1

(1) (2) (3)

1
i
ESG,t 0.041*** 0.023*** 0.020***

(0.005) (0.003) (0.003)

Time FE Yes Yes Yes

Fund Controls No Yes Yes

Ptfl. Controls No No Yes

(b) Name Change δiESG,t

Flows f it+1

(1) (2) (3)

1
i
ESG 0.047*** 0.025*** 0.022***

(0.006) (0.004) (0.004)

1
i
treat -0.074*** -0.038*** -0.032***

(0.008) (0.004) (0.005)

δiESG,t 0.021** 0.021*** 0.018**

(0.009) (0.006) (0.008)

Time FE Yes Yes Yes

Fund Controls No Yes Yes

Ptfl. Controls No No Yes

The estimates reveal that having an ESG keyword in the title leads significantly larger quarterly

flows of 2%. Given that average quarterly flows are of the same magnitude, the flow gains from being

regarded as an ESG fund are extremely large. The flow gain remains large and statistically significant

at any reasonable confidence levels despite controlling for various fund-level characteristics including

the lagged fund return, Sharpe ratio, Fama and French 3-Factor alpha, fund size (log assets under

managament) and lagged flows up to 8 quarters. I also control for portfolio exposures to momentum,

value and size obtained from regressing monthly fund returns onto factor returns. Lastly, I control for

fund-level characteristic scores as in Lettau et al. (2018), which are portfolio-weighted averages of the

stock characteristics.43

Nevertheless, it is possible (although unlikely) that ESG funds differ from other funds along some

other dimension not captured by directly observable fund characteristics or common risk exposures and

portfolio tilts. To address remaining endogeneity concerns, I use funds’ name changes as exogenous

43For every fund, I compute scores for greenness, value, size and momentum.
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variation in ESG titles. As mentioned in the previous section, 88 out of the 551 identified ESG funds

have changed their name at some point between 2010 and 2020 by including an ESG keyword in the

title. The name changes can be used akin to a difference-in-difference estimator in order to control for

unobservable flow heterogeneity at the fund level. More formally, note that one can decompose the

ESG dummy 1iESG,t into three sub-variables: i) A dummy 1iESG equal to 1 if the fund had an ESG

keyword in the title at some point between 2010 and 2020, ii) a treatment dummy 1itreat equal to 1

if the fund switched to an ESG title at some point between 2010 and 2020, and iii) a time-varying

indicator δiESG,t equal to 1 after a previously non-ESG fund added an ESG keyword to its title. Any

flow heterogeneity from having an ESG keyword in the title that is driven by some unobservable fund-

level fixed effect is captured by 1iESG and 1itreat, such that δiESG,t captures the pure effect of the name

change. Panel (b) reports the estimates across different specifications. Despite having very few name

changes in the sample, the coefficient on the name change indicator 1iESG is statistically significant

and roughly equal to 2%. Thus controlling for various fund-level characteristics, changing the fund’s

name to include an ESG keyword boosts quarterly flows by 2%. Note, that the treatment dummy

1
i
treat is significantly negative. Thus funds with strong outflows seem to have a greater incentive to

include trending ESG keywords in their name, which significantly alleviates subsequent outflows. This

is an interesting avenue for further research.

A.3 Perceived versus True Sustainability

Do sustainable mutual funds invest sustainably? As already suggested in table 1, the ESG portfolio

wESGt tilts over 50% of its assets away from the aggregate mutual fund portfolio wMF
t . However, this

does not imply that ESG funds (in aggregate) tilt towards truly sustainable stocks. The difficulty in

answering the question about true sustainability lies in the lack of an objective definition. Particularly

the social and governance component of ESG investing may strongly depend on personal preferences

and ethical convictions. While the environmental component may be more easily objectifiable (e.g.

via Co2 Emission data), it is still subject to large variations in preferences. For example, is the

least polluting company among all fossil fuel companies a sustainable company? Analyzing, which

companies are truly sustainable lies beyond the scope of this paper. I nevertheless assess whether the

ESG portfolio’s deviations from the market portfolio align with a set of sustainability characteristics.

To this end, I estimate two regressions. The first is a panel OLS regression of τt,n onto the sustainability

characteristics. The second is a probit regression of a greenness dummy 1τ>0 (which is equal to 1,
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if the stock is overweighted by the ESG portfolio) onto the same set of sustainability characteristics.

As sustainability characteristics, I use Refinitiv ESG Scores, a Co2 emissions indicator, a sin stock

dummy, a fossil fuel industry dummy and a Vanguard 4 Good dummy equal to 1, if the stock is in

the Vanguard 4 good index. The Co2 emissions indicator is equal to 1 at time t, if the stock is in the

highest decile of Co2 scope 1 emissions across all stocks in the sample. I furthermore control for log

market equity, market beta and volatility in both specifications. Table A.12 reports the results.

Table A.12: ESG tastes and sustainability characteristics
The table reports the results of two regressions. The first is a panel regression including time fixed effects of τt,n onto
different sustainability characteristics. The second is a probit regression of a greenness dummy 1τ>0 (which is equal
to 1, if the stock is overweighted by the ESG portfolio) onto the same set of sustainability characteristics. The control
variables in all specifications are log market equity, market beta and volatility. *,**,*** denote significance at the 90, 95
and 99% confidence level.

Sustainability Characteristics

ESG Score High Co2
Emissions Sin Stock Fossil Fuel Vanguard 4

Good Index Controls R2

Panel Regression τt,n

Coefficient 0.21*** -0.21*** -0.58*** -0.21*** 0.51*** Yes 5.92%

t-stat 11.01 -16.28 -13.57 -11.80 39.05

Probit Regression 1τ>0

Coefficient 0.78*** -0.33*** -0.47*** -0.14*** 0.46*** Yes 5.53%

t-stat 28.83 -23.20 -9.82 -5.39 41.88

The coefficients on virtually all sustainability characteristics are highly significant with the right

sign. The ESG portfolio tilts significantly towards stocks with high ESG scores as well as stocks

that are in the Vanguard 4 Good Index. It significantly underweights sin stocks, stocks in the fossil

fuel industry and high Co2 emitters. This is strong evidence, that ESG funds (on aggregate) do tilt

towards what may be labelled as objective sustainability. Kim and Yoon (2022), Liang et al. (2021)

and Gibson et al. (2022), on the other hand, show that investors who are part of the Principles for

Responsible Investment initiative do not have better ESG scores. The opposing results underline the

above-mentioned concerns that treating readily available scores by ESG ratings providers as objective

or true sustainability is problematic. Recent evidence furthermore suggests, that ESG scores by ratings

providers are inflated by greenwashing and empty sustainability claims (see Yang (2021) and Bams

and van der Kroft (2022)).
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Appendix B Measuring ESG Flows

B.1 Aggregate ESG Flows

Price pressure in aggregate ESG returns is driven by flows towards the ESG portfolio wESGt . Total

cumulative flows into labelled ESG mutual funds from Section 3 amount to roughly $175 billion as of

December 2021. However, the flows into labelled ESG do not include the (unobservable) ESG tilts of

other mutual funds, large investment advisors, pension funds, banks, insurance companies, and other

institutions. Unfortunately, precise data on flows are only available for mutual funds. 13F institutions

report their holdings at the management company level. Thus flows towards ESG funds within a

manager show up as active trades ait+1 instead of flow-driven trades Qitf
i
t+1. To illustrate this point,

consider the following simple example.

Example. Manager i manages two investment funds, an ordinary index fund and an ESG fund that

overweights green stocks and underweights brown stocks. Between t and t + 1 investors withdraw

money from the index fund and invest it in the ESG fund provided by the same manager. Thus total

flows f it+1 are 0, but the manager buys some green stocks (∆Qt+1,green > 0) and sells some brown

stocks (∆Qt+1,brown < 0). In the aggregated 13F holdings, these trades only show up as active trades

ait+1, even though they are purely flow-driven.

In order to address this issue I propose decomposing 13F institutions’ portfolios into different fund-

level portfolios via a simple cross-sectional projection. For simplicity of notation, I am dropping the

fund superscripts i. For every 13F-quarter pair, I am projecting the portfolio weights onto a set of

s = 1, ..., S managed portfolios (or individual funds)

min
{βst }Ss=1

||wt,n −
S∑
s=1

βstw
s
t,n||2

s.t. 0 ≤ βst ≤ 1 ∀s = 1, ..., S

(16)

Thus βst are the wealth-shares of individual funds belonging to institution i and wst,n their corresponding

portfolios. As a set of managed portfolios wst,n, I choose the equal-weighted portfolio wEt,n = 1/N i,

the market cap-weighted portfolio wMkt
t,n = Pt,n/

∑
n∈N i Pt,n and the ESG portfolio wESGt,n . (16) is

essentially equal to a constrained cross-sectional regression of portfolio weights wt,n onto a constant

(the equal-weighted portfolio wEt,n) and characteristics (the other managed portfolios). The managed

portfolios are constructed such that the weights sum to 1 across the institution’s current holdings N i.
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This implies rescaling the ESG portfolio wi,ESGt,n = wESGt,n /
∑

n∈N i wESGt,n such that
∑

n∈N i wESGt,n =

1. The residual from the projection at,n = wt,n −
∑S

s=1 β
s
tw

s
t,n is a long-short active portfolio that

is orthogonal to the managed portfolios wst,n. The inclusion of the equal-weighted portfolio wEt,n

furthermore ensures that at,n is a net-zero investment portfolio, i.e.
∑N

n∈N i at,n = 0. The active

deviation relative to the managed portfolios (as a fraction of total assets) is given by

Active Sharet =
1

2

∑
n∈N i

|at,n| (17)

Thus the projection of a fund’s weights onto managed portfolios can be viewed as an extension to the

‘Active Share’ proposed by Cremers and Petajisto (2009). If the coefficient on the market portfolio

βMkt
t is equal to 1 and the coefficients on all other managed portfolios are equal to 0, then at,n =

wt,n − wMkt
t,n and the two measures of activeness coincide.

Because the weights in the zero-cost portfolio sum to 0, and all the managed portfolio weights

wst,n sum to 1 respectively, it must hold that
∑S

s=1 β
s
t = 1. The coefficients βet , β

m
t and βESGt can

therefore be interpreted as the wealth shares of the individual funds wEt,n, wmt,n and wESGt,n within the

management company i. Figure B.6 summarizes the ESG tilt across 13F investors. Panel (a) plots

the equal- and value-weighted average ESG tilt across all 13F institutions from 2012 to 2022. The

value-weighted ESG tilt βESGt steadily grew from 7 to 18% in the past 10 years. As a robustness check,

I also add 12 Fama-French industry portfolios to the projection (16). The aggregate ESG tilt and the

corresponding total flows to the ESG portfolio are unaffected by controlling for industry exposures.
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Figure B.6: ESG Tilts across 13F Investors
Panel (a) plots the average equal- and value-weighted ESG tilt βESGt across all 13F institutions. Formally, I compute
1
I

∑I
i=1 β

i,ESG
t and

∑I
i=1 v

i
tβ
i,ESG
t where vit = Ait/

∑I
i=1 A

i
t are AUM-weights. Panel (b) plots the fraction of Closet-ESG

investors, both in terms of number of institutions and in terms of assets. Closet-ESG investors are defined as investors
with an ESG-share of over 50%. The grey lines report values obtained when controlling for industry exposures in the
estimation of βESGt .
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Using the investor-specific ESG tilts βi,ESGt and their total assets under management Ait, we can

compute the total ESG assets held by investor i as Ai,ESGt = Aitβ
i,ESG
t . Following the literature on

mutual fund flows, I define the flow in the ESG portfolio of investor i as the change in ESG assets in

excess of the valuation gains due to ESG returns. Formally,

F i,ESGt+1 = Ai,ESGt −Ai,ESGt (1 +RESGt+1 ) (18)

where RESGt+1 is the return on the ESG portfolio. Note that empirically, this return may differ across

investors because 13F institutions hold different subsets of stocks N i ⊆ N . Summing across all

investors yields the total flow by 13F investors in the ESG portfolio.

Lastly, note that the ESG tilt βESGt allows distinguishing 13F investors by their tilt towards

sustainable stocks. I define ‘Closet-ESG’ investors as 13F institutions that hold over 50% of their

assets in the ESG portfolio (i.e. βESGt > 0.5). Between 2016 and 2021, the total number Closet-ESG

funds grew from 8 to 133. Panel (b) plots the number of Closet-ESG funds and their total assets. The

fraction of assets held by Closet-ESG funds increased over tenfold over the past 10 years.
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B.2 Stock-Specific ESG Flows

If one had access to the flows and holdings of all investors i = 1, ..., I, one could decompose each in-

vestor’s trades ∆Qit+1,n into a flow-driven and an information-related component as in e.g. Greenwood

and Thesmar (2011) or Lou (2012):

∆dit+1,n = f it+1Q
i
t,n︸ ︷︷ ︸

Flow-Driven Demand

+ ait+1,n︸ ︷︷ ︸
Active Demand

(19)

However, the only investor group for which we have precise data on both flows f it+1 and holdings

Qit,n at the fund level are mutual funds. 13F institutions only report quarterly holdings Qit,n. As

mentioned above, the aggregation of 13F holdings across funds within a management company makes

it difficult to construct flow-driven trades for 13F investors. However, we can approximate the flow-

driven trades in green stocks using the investor-specific flows in the ESG portfolio F i,ESGt+1 and the

corresponding weights wi,ESGt .44 For each 13F institution that is not a mutual fund, I construct

f it+1 = F i,ESGt+1 /Ai,ESGt as the relative flow to the ESG portfolio and Qit,n = (wi,ESGt Ai,ESGt )/Pt,n as

the corresponding stock-specific holdings within the ESG portfolio. Total flow-driven demand for each

green stock is given by summing the flow-driven demand across all mutual funds and 13F investors.

In order to avoid double-counting we I omit all 13F institutions that are classified as mutual funds

using the corrected type codes from KY (2019).

∀n ∈ NG : ∆dt+1,n =
I∑
i=1

Qit,nf
i
t+1 (20)

where NG ⊂ N denotes the subset of green stocks. Because shares outstanding are normalized to 1,

Qit,n are ownership shares and ∆dt+1,n are demand shocks in percent relative to shares outstanding.

Lastly, note that one could construct ∆dt+1,n for alternative subsets of stocks by decomposing 13F

holdings into other managed portfolios and computing the within-manager flow to the portfolio of

interest.

44Recall that the ESG portfolio weights are investor-specific because I normalize them within each investor’s universe
wi,ESGt,n = wESGt,n /

∑
n∈Ni w

ESG
t,n .
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B.3 Extracting Non-fundamental ESG Demand

Let 1Xt,n denote indicator variables equal to 1 if a trade between t − 1 and t is an extensive trade.45

Let ∆QXt,n denote extensive green demand. It is the sum of all extensive trades in stock n by ESG

mutual funds between t− 1 and t:

∆QXt,n =
∑

i∈IESG
1
X
t,n(Qit,n −Qit−1,n) (21)

Similarly, the intensive green demand is given by ∆QIt,n =
∑

i∈IESG(1 − 1Xt,n)(Qit,n − Qit−1,n). As

described above, the goal is to extract the mandate-driven (i.e. non-fundamental) component of ∆QXt,n.

Under the assumption that all fundamental information contained in extensive trades is also present

in intensive trades, we can extract the mandate-driven component from extensive green demand QXt,n.

To this end, I cross-sectionally orthogonalize extensive green demand with respect to intensive green

demand,

∀t : ∆QXt,n = βt∆Q
I
t,n + Controls+ ∆Q⊥t,n (22)

where Controls includes changes in book equity, total assets and profitability between t−1 and t. One

could argue, that intensive trades by ESG funds do not capture all of the fundamental information

in extensive trades. I therefore also orthogonalize with respect to total intensive trades (i.e. trades

summed across all investors and not just ESG funds). This should eliminate any variation in ESG

funds’ extensive trades that is driven by fundamental information. The residual from the regressions,

∆Q⊥t,n, is the component of ESG funds’ purchases that is exclusively driven by exogenous portfolio

constraints or mandates. That is, it is a proxy for non-fundamental ESG demand. However, because

∆Q⊥t,n is constructed using only a subset of all ESG investors, regressions of returns onto ∆Q⊥t,n do not

capture structural parameters. In order to approximate total mandate-driven ESG demand, let SESGt

denote the wealth share of labelled ESG mutual funds relative to total ESG assets AESGt . Figure B.7

plots SESGt over time.

45Formally

1
X
t,n =

{
0 if Qt−1,n = 0 or Qt,n = 0

1 otherwise
.
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Figure B.7: Wealth Share of Labelled ESG Mutual Funds
The figure reports the wealth share of labelled ESG mutual funds as a fraction of total ESG assets AESGt . Total ESG
assets are constructed as the sum of individual investors’ ESG holdings Ai,ESGt from Section 3.
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The figure suggests that demand from labelled ESG mutual funds is roughly 2% of total ESG

demand. Total mandate-driven ESG demand can be approximated as 1
SESGt

∆Q⊥t,n. The coefficient

obtained from regressions of returns onto total mandate-driven ESG demand should then reveal the

structural parameter. Lastly, note that for simplicity of exposition, the estimation is split into the

construction of ∆Q⊥t,n and regressions of returns onto ∆Q⊥t,n. This is equivalent to simple regressions

of returns onto the raw ∆QXt,n, controlling for intensive trades ∆QIt,n.

Appendix C Identification

C.1 Dividend Reinvestments

Do mutual funds reinvest total dividend payout in their existing portfolio? I assess the extent to

which mutual funds invest a stock’s dividend payout in all other stocks within their portfolios. Let

∆qit,n = Qit,n/Q
i
t−1,n− 1 denote the percentage change in shares held between two quarters. If mutual

funds reinvest dividend payouts across their entire portfolio, then ∆qit,n should be significantly related
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to the dividend flow from all other stocks df it,−n. I test this in a pooled regression given by

∆qit,n = θdf it,−n + Controls+ εit,n (23)

where Controls includes a constant, time fixed effects, total fund flows f it and log returns ∆pt,n. Table

C.13 reports the coefficient estimates across different specifications.

Table C.13: Dividend Reinvestments
The table reports the estimated coefficients from the pooled regression of trades ∆qit,n onto dividend flows from other
stocks df it,−n. Standard errors robust to heteroskedasticity and autocorrrelation are reported in parentheses. Significance
at the 90, 95 and 99% confidence levels is indicated by *,**,*** respectively.

Quarterly trades ∆qit,n
(1) (2) (3) (4) (5) (6)

Dividend Flow df it,−n 4.88*** 5.83*** 2.52*** 2.44*** 1.21** 1.91***

(0.807) (0.836) (0.545) (0.408) (0.502) (0.554)

Total Flow f it - - 0.61 0.67 0.27 0.21

- - (0.046) (0.035) (0.027) (0.025

Stock Return ∆pt,n - - -0.02 -0.03 -0.04 -0.04

- - (0.003) (0.003) (0.012) (0.018)

Div. per Share Dt,n - - - -0.01 0.02 -

- - - (0.001) (0.008) -

Quarter FE No Yes Yes Yes Yes Yes

Large Dividend Flow (df it,−n > 1%) No No No No Yes Yes

Exclude Dividend Stocks No No No No No Yes

The dividend-scaling coefficient θ is significantly positive across all specifications. Thus, on average

mutual funds reinvest their dividend payouts across all other stocks in their portfolios. Specification

(5) estimates the impact of large dividend flows that exceed 1% of the funds’ total assets. The

scaling coefficient is close to 1, suggesting that when funds receive large total dividend flows, they

proportionately scale up all their existing positions. Specification (6) excludes dividend paying stocks.

While this greatly reduces the number of observations, the dividend scaling coefficient remains highly

statistically significant. Lastly, note the effect of total relative flows f it on quarterly trades is highly

statistically significant across all specifications. The estimated coefficient is comparable in magnitude

to Lou (2012). Mutual funds scale their existing portfolio holdings in response to both, total in- and

outflows, and total payouts from dividends.
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C.2 Instrument Relevance

The significant relationship between flow-driven purchases and contemporaneous returns (i.e. the

relevance of the instrument) has been shown at least since Lou (2012). Schmickler and Tremacoldi-

Rossi (2022) furthermore show that the trades induced by dividend flows are significantly related to

contemporaneous stock returns. This paper uses their instrument to identify exogenous price shocks

in the first stage. Recall, that the first stage regression is given by

∆pit,n = θiDIT−it,n + εit,n

where DIT−it,n is the dividend-based instrument and εit,m includes the control variables log book equity,

profitability, investment, and market beta. I estimate the first stage in a pooled panel regression for

the subset of stocks held by Thomson Reuters’ institutional type codes. Figure C.8 reports the t-

statistic of θi for each institutional type. The t-statistic exceed the critical weak-instrument threshold

of of 4.05 (see Stock and Watson, 2005) for all institutional types.

Figure C.8: Weak Instrument Test
The figure reports the t-statistic on the coefficient θi for each institutional type. The red dotted line indicates the weak
instrument threshold of 4.05 (see Stock and Watson, 2005).
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C.3 Identification using Benchmarking Intensity

The central object of the relationship between flow-driven demand and realized returns is investors’

elasticity of demand. The parameter estimates critically depend on a valid instrument, i.e. exogenous

variation in prices that is orthogonal to the investor’s own latent demand shocks. In this section

I explore the stability of the estimates to an entirely different instrument. In particular, I use the

benchmarking intensity by Pavlova and Sikorskaya (2022) as exogenous supply shocks to identify

investors’ demand elasticities. I kindly thank Anna Pavlova and Taisiya Sikorskaya for generously

sharing their data with me.

Benchmarking Intensity. If the aggregate demand for equities is downward-sloping, changes in the

supply of stocks can have significant price effects. These supply shifts can in turn be used to identify

investors’ demand elasticities. If benchmarked (or passive) investors increase their holdings in a given

stock, they are effectively reducing its supply. Pavlova and Sikorskaya (2022) construct each stock’s

benchmarking intensity as the AUM-weighted sum across index weights:

BMIt,n =

∑
xA

x
tw

x
t,n

Pt,n
(24)

where wxt,n is the portfolio weight of stock n in index x at time t and Axt is the total amount of exchange

traded funds’ and mutual funds’ assets benchmarked to index x. Changes in a stock’s benchmarking

intensity between two quarters, ∆BMIt,n, represent a change in the stock’s effective supply and may

be used as an exogenous shock to identify elasticities. However, changes in benchmarking intensity

may be driven by fundamental news (or price increases themselves) that cause index additions and

deletions. Pavlova and Sikorskaya (2022) address the potential endogeneity by only using changes

in benchmarking intensity across the Russell 1000/2000 cutoff. However, the amount of observations

around the Russell cutoff are not sufficient to estimate the structural model in Section 4. Despite

the potential endogeneity concerns, I therefore use the raw ∆BMIt,n across all stocks and quarters

to identify investor-specific demand elasticities. While this instrument is imperfect, it serves as a

useful robustness check that similar elasticity estimates can be obtained using a completely different

instrument from a separate study.
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Table C.14: Multiplier Matrix identified from Benchmarking Intensity
The table summarizes the price impact M of green demand onto green g and non-green stocks b. (i.e. diagonal and
off-diagonal elements of the multiplier matrixM) identified from from changes in Benchmarking Intensity ∆BMIt,n (see
Pavlova and Sikorskaya (2022).

Cross-Multipliers (×104)

Mg Mgg Mbg

Mean 1.17 -0.82 1.50

Std. (1.06) (29.48) (33.99)

10th Pctl. 0.35 -8.46 -6.27

Median 0.83 0.00 0.18

90th Pctl. 2.5 6.61 10.87

Fraction Positive
Spillovers 50% 61%

Table C.15 summarizes the impact of ESG demand shocks identified from changes in benchmarking

intensities. The estimates are close to the estimates identified from the flow-based instrument (see

Table 3). The average price impact of the demand for green stocks is 1.17% respectively. Recall, that

the multiplier identified from the flow-based instrument is 1.11%. Thus the multiplier identified via

benchmarking intensity is slightly higher but lie in the same ballpark.

C.4 Identification using Flow Shocks

Following van der Beck (2022), I construct an alternative instrument for each investor by aggregating

the surprise flow-induced trades by all other mutual funds,

f−it,n =
I∑
j 6=i

f j,⊥t+1Q
j
t,n (25)

where f j,⊥t+1 is the flow into fund j between t and t+ 1 orthogonalized for fund characteristics, holdings

and returns. In particular, I obtain the surprise flow f j,⊥t as the residual in cross-sectional regres-

sions of fund flows f jt onto fund characteristics. The characteristics are portfolio weighted greenness,

value, size, momentum, profitability, investment and idiosyncratic volatility as well as the funds’ own

contemporaneous returns. Thus the flow shocks are orthogonal to the fund’s portfolio tilts. This

addresses the endogeneity concern that flows are driven by fundamental news regarding the fund’s

underlying assets. See van der Beck (2022) for details.
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Table C.15: Multiplier Matrix identified from Flow Shocks
The table summarizes the price impact M of green demand onto green g and non-green stocks b. (i.e. diagonal and
off-diagonal elements of the multiplier matrix M) identified from flow shocks (see van der Beck (2022).

Cross-Multipliers (×104)

Mg Mgg Mbg

Mean 2.78 -16.56 -9.81

Std. (0.72) (62.99) (40.27)

10th Pctl. 1.81 -41.63 -24.23

Median 2.82 -3.68 -1.31

90th Pctl. 3.67 0.00 0.56

Fraction Positive
Spillovers 10% 21%

Appendix D Details on Estimation and Variable Construction

D.1 Pooling by Institutional Types

In order to pool investors into groups, I start by computing each investor’s active share as of quarter

t as

Active Shareit =
1

2

∑
n

|wit,n − wMt,n| (26)

which measures a fund’s deviation from holding a passive market portfolio. I define index funds as 13F

institutions with Active Shareit < 0.01. These are all investors who tilt less than 1% of their portfolio

away from passive market weights. For the remaining investors, I use Thomson’s institutional type

code labels, which split investors into banks, pension funds, investment advisors, insurance companies,

mutual funds and other. I divide the largest investor groups, investment advisors and mutual funds,

into activeness terciles based on their Active Shareit. The resulting groups are labelled rigid, medium

and elastic. I estimate group-specific demand curves using the two-step procedure in (12) by pooling

the observations of all institutions within a group.

D.2 Estimated Coefficients by Investor Type

I estimate elasticities over the panel of quarterly holdings from 2010 to 2020 including time fixed effects.

Table D.16 reports the estimated coefficients for all investors. The first row reports the estimates for

a pooled regression across all investors. The pooled elasticity is 1.05, which implies that on average
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institutions sell 1.05% of their holdings in a stock when the price increases by 1%.46 The remaining

rows report the elasticities obtained in a pooled estimation across institutional types. There is great

heterogeneity in the estimated elasticities ζi across types. ζi is the lowest for insurance companies and

large passive investment advisors investors such as Blackrock, Fidelity and Vanguard. Active mutual

funds are the most elastic investors with an elasticity of 3.2. The second column reports the elasticities

estimated from the cross-section of quarterly holdings Qit,n instead of trades ∆qit,n. The estimates are

considerably smaller for the majority of investors.

46Note. that ζi only approximates the true elasticity. The next section provides a thorough description on how to
structurally construct exact elasticities.
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Table D.16: Demand Curves by Investor Type
The table reports the estimated demand curves for different groups of investors. The trades ∆qit,n are pooled over stocks,
quarters and institutional types, such that one demand curve is estimated per investor group. Formally, the estimation
equation is given by

∀j = 1, ..., J : ∆qjt,n = −ζj∆p̂t,n + εt,n.

where ∆p̂t,n is the fitted return from dividend flow demand shocks and εt,n includes the control variables log book equity,
profitability, investment and market beta. Institutional types (split by active share) are denoted by j = 1, ...J and include
mutual funds, investment advisors, households, pension funds, insurance companies, and other 13F institutions. Standard
errors (in parentheses) are robust to heteroskedasticity and autocorrelation.

ζi Identified from Trades ∆qt,n ζi Identified from portfolio holdings Qt,n

van der Beck (2022) Koijen and Yogo (2019)

Pooled All

1.054 (0.033) 0.282 (0.001)

Pooled by Type

Mutual Funds

High Active Share 3.198 (0.305) 0.744 (0.004)

Medium Active Share 2.660 (0.298) 0.477 (0.004)

Low Active Share 1.296 (0.092) -0.142 (0.003)

Investment advisors

High Active Share 0.924 (0.120) 0.795 (0.002)

Medium Active Share 0.250 (0.103) 0.624 (0.001)

Low Active Share 0.424 (0.046) 0.521 (0.001)

Banks 1.292 (0.118) 0.238 (0.002)

Pension funds 0.838 (0.081) 0.322 (0.002)

Insurance companies 0.387 (0.168) 0.321 (0.003)

Other 13F Instiutions 0.039 (0.226) -0.415 (0.003)

Households 0.724 (0.244) 0.530 (0.009)

D.3 Incorporation in Logit Framework and Asset Substitution

Motivated by the fact that portfolio weights are log-normally distributed in the data, KY (2019)

propose (and microfound) a logit framework for the demand of investor i:

log δit,n = (1− ζi) logPt,n + εit,n (27)
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where δit,n = wit,n/w
i
t,0 is the portfolio weight relative to the weight in an outside asset wit,0 and

εit,n includes a constant, observable characteristics and a residual. The portfolio constraint that∑
n∈N i wit,n = 1− wit,0 implies that

wt,n =
δit,n

1 +
∑N

m=1 δ
i
t,m

. (28)

The logit framework ensures that portfolio holdings add up to total assets and that holdings cannot

be negative (as observed in the 13F filings). Note that we can rewrite log δit,n = logQit,n + logP it,n −

logwit,0A
i
t. Rearranging and taking first differences yields47

∆qit,n = −ζit∆pt,n + εit,n (29)

where εit,n = ∆ log(wit,0A
i
t) + ∆εit,n. The first-difference estimator has the distinct advantage of elim-

inating any time-invariant drivers of cross-sectional portfolio holdings that are correlated to prices.

In a simple simulation, van der Beck (2022) shows that (29) successfully eliminates the ommitted

variable bias from unobservable portfolio tilts that are slow-moving and correlated to the cross-section

of prices.

A first-order approximation of investor’s demand elasticity is given by the scalar regression coef-

ficient −∆qit,n
∆pt,n

= ζi. However, this measure of elasticity does not ensure that the investor’s portfolio

weights add up to 1, (or alternatively: that her assets Ait remain unchanged). In order to ensure that

the budget constraint holds we need to plug the estimated coefficient into (28). To this end, note that

logwit,n = logQit,n + logP it,n − logAit. Differentiating and rearranging yields the following elasticity

−
∂ logQit,n
∂ logPt,n

= ζi + wit,n(1− ζi)︸ ︷︷ ︸
Portfolio Constraint

. (30)

The elasticity is given by ζi plus a correction term, which ensures that portfolio weights add up to

1.48 Precisely because of the portfolio constraint, price changes have spillover effects to other stocks.

47KY (2019) actually propose re-estimating 27 over the cross-section of portfolio weights every quarter t resulting in
time-varying coefficients ζit . Empirically, however, the coefficients remain very stable in the time-series. Thus the cor-
rection term for time-varying coefficients in the first-difference estimator is small and can be ignored. In fact, estimating
constant demand coefficients ζi in a panel regression including time-fixed effects leads to essentially the same demand
curves (see van der Beck and Jaunin (2021) and ?)

48The correction term is negative, if the investor is very elastic ζi > 1. In this case the dollar holdings (not the number
of shares held!) in stock n is decreasing in price of n and we have to make a downward adjustment to the elasticity to
satisfy the portfolio constraint.
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Cross-elasticities are given by

−
∂ logQit,n
∂ logPt,m

= wim,t(1− ζi).49 (31)

We can stack the elasticities into an elasticity matrix −∂ logQit
∂ logP ′t

∈ RN×N given by

− ∂ logQit
∂ logP ′t

= ζiI + (1− ζi)1w′t, (32)

where I is the identity matrix and 1 is a vector of ones. Thus the logit framework allows transforming

the simple scalar regression coefficient ζi into a demand-elasticity matrix that accounts for spillover

effects across the entire cross-section of holdings.

D.4 Details on the Flow-Simulation

Let ∆P ESG-Flow
t+1 denote vector of price pressures (expressed in dollars) resulting from $X flow from the

market portfolio towards the ESG portfolio. Equation (7) implies that

∆P ESG-Flow
t+1 =Mt(w

ESG
t − wMF

t ) ∗ $X

Note, that (7) is expressed in percentage terms (i.e. the return ∆pt+1,n resulting from a demand shock

in percent of shares outstanding). It can also be expressed in terms of dollar terms by multiplying

by prices Pt,n (which are equal to market equities due to the normalization). The price pressure in

percentage terms for each stock n is given by

∆pESG-Flow
t+1,n =

∆P ESG-Flow
t+1,n

Pt,n

Note, that true (empirically observed) realized returns of the ESG portfolio are given by RESGt+1 =∑
n τt,nrt+1,n = τ ′trt+1. The structurally implied price pressure from $X ESG flows is given by

PressureESGt+1 =
N∑
n=1

τt,np
ESG-Flow
t+1,n

49Again, if ζi > 1 an increase in the price of stock m reduces the dollar holdings in stock m and the freed up cash is
invested in all other stocks, causing spillover effects proportional to the size of the shock to m given by wim,t.
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A first order approximation of the counterfactual ESG returns in the absence of flow-driven price

pressure is therefore given by

R̃ESGt+1 = RESGt+1 − PressureESGt+1

. Table D.17 reports the ESG portfolio’s counterfactually observed alpha in the absence of price

pressure arising from simulated sustainable flows of $10 and $25 billion quarterly.

Table D.17: ESG Alpha without Flow-driven Price Pressure
The table reports annualized long-short returns and alphas of the ESG portfolio from 2016 to 2021. On the left I report
the empirically observed alphas. On the right, I report the counterfactually observed alphas without the price pressure
from simulated sustainable flows. The long-short ESG portfolio τt is the zero-investment portfolio that goes long the ESG
portfolio wESGt and short the aggregate mutual fund portfolio wMF

t . Alphas are computed with respect to the CAPM,
the CAPM plus the Green Factor in PST (2022), and Carhart 4-factor model plus the Green Factor. The standard errors
are robust to heteroskedasticity and autocorrelation.

Return α
(CAPM)

α
(CAPM + Green)

α
(CH4 + Green)

True Returns: Empirically Observed

Return (%) 2.01 2.40 1.87 1.51

t-statistic 2.91 3.47 2.55 2.01

Counterfactual Returns: In Absence of
Flows of Simulated Flow $25B

Return (%) 0.66 1.05 0.5 0.12

t-statistic 0.86 1.36 0.6 0.14

The price pressure from quarterly ESG flows of $10 billion is already sufficient to account for

almost all of the outperformance of ESG funds. Furthermore, in the absence of $25 billion quarterly

ESG flows, the counterfactual returns and alphas of the ESG-taste portfolio are all negative. In

contrast, the realized (i.e. truly observed) returns and alphas are all significantly positive. These

results emphasize the sizeable gap between realized and expected returns from ESG investing that is

driven by flows to sustainable funds. This suggests that without continued flow to sustainable funds,

ESG investing may have negative alpha. In other words, it is the price pressure from ESG flows that

made ‘doing well by doing good’-investing possible.

D.5 Variable Construction

• Book Equity: Book equity is constructed following Fama and French. It is the book value of

stockholders’ equity, plus balance sheet deferred taxes and investment tax credit, minus the book
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value of preferred stock.

• Market beta: Stocks’ market betas are estimated in a regression of monthly returns over the

one-month T-bill. We use 60-month rolling windows and require a minimum of 24 months of

returns.

• Profitability: I use the Fama and French definition, i.e. revenues minus cost of goods sold,

interest expense, and selling, general, and administrative expenses divided by book equity for

the last fiscal year end in t− 1.

• Investment: Investment is the annual growth rate of assets computed as a log difference.

• Idiosyncratic volatility: Idiosyncratic volatility is computed as the monthly time series standard

deviation of residual returns. Residual returns are obtained from regressing daily returns onto

daily realization of the market, size and value factor.

• Turnover: Turnover is the total share volume in a given month (as reported on CRSP) divided

by the total shares outstanding.

• Momentum: Momentum is computed as the total return over the past 11-months, excluding the

most recent month.

• Sin Stocks: Tobacco and alcohol stocks are defined as belonging to the Fama and French SIC

classification groups 4 and 5 respectively. Gaming stocks are identified using NAICS codes 7132,

71312, 713210, 71329, 713290, 72112, and 721120.

• MSCI Controversial Stocks: Stocks in the biotech, firearms, oil, military and cement industry are

identified using SIC codes 2833–2836, 1300, 1310–1339, 1370–1382, 1389, 2900–2912, 2990–2999,

3240–3241, 3760–3769, 3795, 3480–3489 and NAICS codes 336992, 332992–332994.

• Co2 Emissions: Total Co2 Emissions are scaled by revenue. As the fraction of US stocks with

available Co2 emissions is relatively small, I compute an additional proxy for Co2 emissions which

fills missing observations with the median emissions within Fama and French 48 industries.
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