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Abstract

This paper evaluates caps on the commissions that food delivery platforms (e.g., Do-

orDash) charge to restaurants. Commission caps benefit restaurants that partner with

platforms, all else equal. This may entice restaurants to join platforms, thereby ben-

efitting consumers who value variety in platforms’ restaurant listings. A reduction in

platform commissions may also lead restaurants to lower their prices, further benefit-

ting consumers. But commission caps may lead platforms to raise their consumer fees,

thereby reducing consumer ordering on platforms and consequently platforms’ value

to restaurants. The net effects of caps on restaurant and consumer welfare are thus

uncertain. To estimate caps’ effects, I assemble data on consumer restaurant orders,

restaurants’ platform adoption, and platform fees. An initial analysis of the data sug-

gests that caps raise platforms’ consumer fees, reduce consumer ordering on platforms,

and lead restaurants to join platforms. To analyze these effects and their welfare impli-

cations, I develop a model of platform pricing, restaurant pricing, platform adoption by

restaurants, and consumer ordering. Counterfactual simulations using the estimated

model imply that commission caps bolster restaurant profits, but they do so at the

expense of consumers and platforms. I estimate a total welfare reduction of caps equal

to 6.2% of participant surplus from platforms.
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1 Introduction

The effects of policies on platform markets generally depend on equilibrium responses of all market

participants connected by the affected platforms. This paper provides an empirical evaluation of

a particular class of policies targeting a platform market: commission caps in the food delivery

industry. Many US cities have capped the commissions that food delivery platforms (e.g., DoorDash

and Uber Eats) charge to restaurants. Commission caps have effects on the welfare of restaurants

and consumers that depend on countervailing responses of these two groups of market participants.

These responses, which reflect the multi-sided nature of the food delivery industry, complicate the

analysis of commission caps relative to that of price controls in standard one-sided markets. Caps

may entice restaurants to join platforms, which would benefit consumers who value the breadth of

platforms’ restaurant networks. Restaurants may also reduce their prices in response to a reduction

in commissions. But commission caps may lead platforms to raise the fees that they charge to

consumers. This would harm consumers. It would also reduce consumer ordering on platforms

and consequently the value of platform membership to restaurants. The net effects of caps on

restaurant and consumer welfare are thus uncertain.

This paper empirically assesses the net effects of commission caps on consumer welfare, restaurant

profits, platform profits, and total welfare. To this end, I assemble data characterizing the US food

delivery industry. These data include a panel of consumers’ restaurant orders placed on platforms,

from restaurants on their premises, and on restaurants’ websites or apps. This panel provides

consumer locations at the ZIP-code level as well as item-level prices. I supplement this panel

with monthly data on estimated platform sales and average platform fees charged to consumers at

the ZIP-code level, as well as the universe of restaurants listed on each major delivery platform.

Last, I personally collect data on platform order characteristics from the websites of leading food

delivery platforms. These characteristics include fees, estimated waiting times, delivery addresses,

and restaurant identifiers for hundreds of thousands of potential deliveries across 14 large US

metropolitan areas.

As a first pass, I compute difference-in-differences estimates of caps’ effects. Estimates exploiting

the staggered rollout of caps across municipalities suggest that caps raised fees by 9–22% across

platforms, reduced the number of orders placed on platforms by 6%, and induced a 4.0 percentage-

point increase in the share of restaurants that join at least one platform; for context, about half

of restaurants belonged to a platform in January 2020. These estimates suggest that commission

caps harm consumers by prompting platform fee hikes, but that these harms are mitigated by an

increase in the selection of restaurants available on platforms. The fact that platform sales fall

suggests that the harms to consumers from fee increases exceed consumers’ benefits from increased

restaurant variety on platforms.

I subsequently develop a model of the food delivery industry with which to quantify commission

caps’ welfare effects, to assess mechanisms contributing to these effects, and to evaluate alternative

policies intended to bolster restaurant profitability. In the model, platforms first set commission

rates. Next, restaurants choose which platforms to join to optimize profits in a discrete game

of incomplete information. After joining platforms, restaurants set profit-maximizing prices that

may differ between direct-from-restaurant orders and orders placed on platforms. Platforms set fees
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charged to consumers in each ZIP code at the same time as restaurant set their prices. They do so

to maximize their profits given constant marginal costs for fulfilling orders. Finally, each consumer

chooses whether to order a restaurant meal, from which nearby restaurant to order, and whether to

use a platform in ordering. Consumers’ choices depend on platform fees, restaurant prices, and the

number of nearby restaurants on each platform. This model captures network externalities affecting

both sides of the platform market. In particular, consumers are more likely to choose a platform

with a wide variety of restaurants: when a new restaurant joins a platform, consumers with strong

tastes for the restaurant become more likely to order from the platform. Additionally, restaurants

earn higher profits from joining a platform that is more popular among consumers (all else equal)

because their incremental sales are higher from joining such a platform. Heterogeneity in consumer

tastes for platforms influences how consumers substitute between platforms and the alternative of

ordering directly from a restaurant. Consumers who are highly polarized in their tastes for platform

ordering, for example, are unlikely to substitute between ordering from a platform and ordering

directly from a restaurant.

The estimation procedure has multiple steps. The first step is maximum likelihood estimation of

the consumer choice model. In the next step, I estimate platforms’ and restaurants’ marginal costs

from their respective first-order conditions for optimal pricing. The subsequent step is estimation

of the model of platform adoption by restaurants using a generalized method of moments (GMM)

estimator. This GMM estimator selects parameters controlling the average fixed costs of platform

adoption to match market-specific choice frequencies. In addition, the estimator selects the param-

eters governing restaurants’ substitution patterns between subsets of platforms to match empirical

covariances between measures of platform uptake by restaurants and a shifter of the profitability

of platform adoption.

The main parameters of interest in the consumer choice model are those that govern consumer

price sensitivity, network externalities, and patterns of consumer substitution. The endogeneity

of platforms’ fees and restaurant networks—both of which depend on local unobserved tastes for

platforms—poses a challenge for the estimation of price sensitivity and network externalities. I

address the endogeneity of prices and restaurant networks using platform/metro-area fixed effects;

consequently, I rely on variation in fees and restaurant locations within a metro area to estimate

price sensitivity and network externalities. This variation owes in part to variation in commission

cap policies across municipalities within metro areas. My approach for estimating substitution

patterns exploits the panel structure of the estimation sample, which characterizes how consumers

switch between alternatives across orders.

I use the estimated model to compare equilibria with and without a 15% commission caps in various

large metro areas. Counterfactual simulations imply that commission caps raise restaurant profits,

reduce consumer welfare, and reduce platform profits. The sum of caps’ effects on these components

of total welfare is negative. The increase in restaurant profits across metro areas is 3.0% of the

sum of participant surplus (i.e., the effect of platforms’ availability on the sum of consumer welfare

and restaurant profits, which is positive). The total welfare loss is 6.2% of participant surplus.

Consumer welfare falls by 5.3% of participant surplus; this welfare loss exceeds the platform profit

losses from a cap of 3.9% of participant surplus. Although consumers pay more for food delivery

orders under commission caps, they benefit from the increased selection of restaurants available on
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platforms. Failing to account for the expansion in the variety of restaurants available on delivery

platforms owing to a commission cap would lead the researcher to overstate the cap’s harms to

consumers by 70%. The fact that restaurants compete away many of their direct gains from

the commission cap in ways that benefit consumers—i.e., by joining more platforms and possibly

reducing their prices—mitigates the harms of the cap to consumers. Even after accounting for

restaurants’ platform adoption and price responses, however, harms to consumers from a cap

exceed harms to platforms and benefits to restaurants.

One distributional rationale for a cap is that caps transfer surplus from platforms to local restau-

rants; this rationale is well founded in that caps boost restaurant profits at the expense of platform

profits, but it does not acknowledge that consumers in large part pay for caps’ benefits to restau-

rants. Alternative policies may obtain the increases in restaurant profits from a cap without caps’

negative effects on total welfare. One such policy is a tax on platforms’ commission revenues whose

proceeds are remitted to restaurants: under an appropriately selected tax rate, this policy achieves

the increase in restaurant profitability associated with a commission cap without a reduction in

total welfare. Although a tax induces platforms to reduce commissions and raise consumer fees,

these responses are small for a tax that is designed to provide as large a benefit to restaurants as a

15% cap. The small scale of responses to the tax mean that it does little to undermine consumer

welfare and platform participation.

In addition to evaluating commission caps, I evaluate a common premise for commission caps:

that platforms reduce restaurant profits. Such a reduction is possible given costs of joining plat-

forms and commission charges, but platforms may also benefit restaurants by raising the number

of orders from restaurants. Counterfactual simulation of a restaurant industry without platforms

suggests that roughly half of restaurant orders placed on platforms would not be placed if plat-

forms were eliminated. Additionally, platforms provide significant value to consumers; eliminating

them reduces consumer welfare by almost $70 annually per capita on average across metro areas.

Restaurant profits, however, increase by over $18 per capita a year on average across markets when

platforms are abolished. These results explain the paradoxical coincidence of restaurants’ voluntary

platform membership with complaints that platforms reduce restaurant profitability: competitive

pressures lead restaurants to join platforms even though restaurants would be collectively better

off under industry-wide collusion not to join platforms.

1.1 Related literature

My paper makes several contributions to the empirical platforms literature.1 First, it provides

an empirical analysis of decentralized pricing between platforms’ end users (i.e., consumers and

restaurants) in a platform competition model. Pricing on food delivery platforms is decentralized

in that sellers—not platforms—set the prices of menu items.2 The pricing model most similar

1This literature often calls these markets two-sided markets or platform markets. I use these terms interchange-
ably. For overviews of the theory of multi-sided markets, see Rochet and Tirole (2006), Rysman (2009), and Jullien
et al. (2021).

2The most popular US ride-hailing platforms (Uber and Lyft) use centralized pricing. See Chen et al. (2019),
Rosaia (2020), Buchholz et al. (2020), Cook et al. (2021), Cohen et al. (2016), Ming et al. (2020) for analysis of
ride-hailing platforms with centralized pricing, and Gaineddenova (2022) for analysis of a ride-hailing platform with
decentralized pricing.
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to my own is that of Robles-Garcia (2022). Robles-Garcia (2022) studies mortgage brokerage in

the United Kingdom using a model with three pricing dimensions: brokers’ fees to households,

brokers’ commissions to lenders, and lenders’ interest rates. A difference between our settings is

that UK mortgage lenders charge the same rates for brokered and non-brokered mortgages whereas

restaurants typically charge higher prices on platforms. Other papers that empirically analyze a

platform’s prices charged to two sides of a market include Argentesi and Filistrucchi (2007), Ho

and Lee (2017), and Jin and Rysman (2015).

I also provides a novel approach for modelling network externalities relative to existing empirical

studies of platform. Numerous papers estimate network externalities using quasi-experimental

research designs (e.g., Farronato et al. 2020 and Cao et al. 2021). In the literature that estimates

network externalities in structural models, Lee (2013)’s modelling approach is closest to my own.

Rather than directly specify demand for platforms by one side of a market as a function of the other

side’s platform usage—e.g., Rysman (2004), Kaiser and Wright 2006, Fan 2013, Ivaldi and Zhang

2020, and Sokullu 2016—Lee (2013) explicitly models the dependence of buyers’ preferences and

of sellers’ profits on sellers’ and buyers’ platform participation, respectively. I proceed similarly. A

novelty of my model is that seller-to-buyer network externalities stem from heterogeneous tastes

for restaurants: a consumer is more likely to order from a platform that offers a broad variety of

restaurants covering whatever the consumer is in the mood to order.

A recent literature assesses the welfare and distributional implications of digital platforms; see,

for example, Castillo (2022), Calder-Wang (2022), Schaefer and Tran (2020), and Farronato and

Fradkin (2022). I contribute to this literature by estimating effects of commission caps and of food

delivery platforms on the distribution of surplus between restaurants and consumers belonging to

different groups (i.e., different age groups and martial statuses).

There is extensive research on price controls,3 but limited research on their application in multi-

sided markets other than payment card markets. See Schmalensee and Evans (2005) for an overview

of payment card interchange fee regulation, and Rysman 2007, Carbó-Valverde et al. 2016, and

Huynh et al. 2022 for empirical studies of payment cards as platforms. Evans et al. (2015),

Manuszak and Wozniak (2017), Kay et al. (2018), and Wang (2012) study caps on debit card

interchange fees in the United States whereas Chang et al. (2005) study interchange fee regulation

in Australia. Carbó-Valverde et al. (2016) studies reductions in interchange fees in Spain. Unlike

these papers, I develop and estimate a model to study the welfare effects of price controls. Li

et al. (2020) similarly develop a model to study welfare effects of caps on interchange fees; their

approach differs from mine in that they calibrate a model of a monopolist platform.

Economic research on food-delivery commission caps is, to the best of my knowledge, limited to Li

and Wang (2021). Li and Wang (2021) study the effects of caps on restaurant sales and delivery

fees using a difference-in-differences research design. I complement their work by additionally

estimating welfare effects of commission caps, and by conducting difference-in-differences analysis

of platforms’ sales, platform fees in addition to delivery fees, and platform adoption by restaurants.4

3See, for example, Chapelle et al. (2019) for an analysis of rent controls in Paris and Diamond et al. (2019) for
an analysis of rent controls in San Francisco; Giberson (2011) for a discussion of price gouging laws in the United
States; and Ghosh and Whalley (2004) for an analysis of price controls on rice in Vietnam.

4Food delivery platforms added new consumer fees in response to commission caps. In Chicago, for example,
DoorDash added a “Chicago Fee” to consumers’ bills for delivery orders after that city introduced a commission cap
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There is little other economic research on the food delivery industry; other papers include Chen

et al. (2022), Lu et al. (2021), and Feldman et al. (2022). Reshef (2020) also studies network

externalities on a food ordering platform (Yelp).5 My paper also relates to work on pass-through

of restaurants’ costs. Allegretto and Reich (2018) find that restaurants pass through almost all of

their cost increases from minimum wage laws into menu prices. Additionally, Cawley et al. (2018)

find that restaurants in Boulder, Colorado passed through about 70% of a tax on sugar-sweetened

drinks into prices.

1.2 Roadmap

The remainder of my paper proceeds as follows. Section 2 provides background on the US food

delivery industry and introduces my data. Section 3 presents empirical facts that I glean from

my data and that inform my modelling choices. Section 4 develops the model. Section 5 outlines

my estimation procedure. Section 6 reports the results of this estimation procedure. Section 7

describes my counterfactual analyses and presents their results.

2 Data and background

2.1 Industry background

The largest food delivery platforms in the United States are DoorDash, Uber Eats, Grubhub,

and Postmates. Uber completed its acquisition of Postmates in December 2020, but did not

immediately integrate Postmates into Uber Eats following this acquisition. These platforms have

remained the largest US delivery platforms from the beginning of 2020 on through 2021; no new

food delivery platforms of national significance emerged during this time period. Food delivery

platforms facilitate deliveries of meals from restaurants to consumers, and they earn their revenue

from payments collected from both consumers and restaurants. In the remainder of this paper, I

refer to the prices that platforms charge to consumers as “fees,” the prices that platforms charge

to restaurants as “commissions,” and the prices that restaurants charge to consumers for menu

items simply as “prices.” The following schematic equations summarize these prices:

Consumer Bill = p+ c

Restaurant Revenue = (1− r)p

Platform Revenue = rp+ c,

where p is the price charged by the restaurant for the menu items purchased by the consumer, c is

the fee, and r is the commission. Commission caps constrain platforms to choose r ≤ r̄. Average

basket subtotals before fees, tips, and taxes were $25 at DoorDash and $28 at Uber Eats and

Grubhub in Q2 2021. As shown by Online Appendix Figure O.1, order sizes exhibit moderate

policy.
5Additional papers analyzing Yelp include Luca and Reshef (2021) and Luca (2016), which study consumer

reviews.
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variation within platforms but are similarly distributed across platforms. About half of all orders

are between $15 and $35 before fees, tips, and taxes.

Throughout this paper, I assume that the commission rates for all leading platforms were 30% in

areas without active commission caps. Both Uber Eats and Grubhub charged 30% commissions

in 2021. DoorDash’s full-service membership tier featured a commission rate of 30% in April

2021.6 Postmates did not publicly disclose its commission rates. I cannot rule out the possibility

of restaurants negotiating commissions rates below those publicly advertised, but I do not analyze

such negotiation because I do not observe contracts between restaurants and platforms.

Each platform charges consumers various fees that together constitute the overall consumer fee c.

The principal fee is the delivery fee, which varies across restaurants, time, delivery distances, and

delivery addresses. Delivery fees do not, however, depend on which items the consumer orders from

a particular restaurant. Other fees include service fees and regulatory response fees that vary across

municipalities but are typically constant within a municipality for an extended period of time. An

example of a service fee is that charged by Uber Eats in my sample period, which amounted to 15%

of an order’s subtotal, but could not fall below $2.50 or exceed $4.50. An example of a regulatory

response fee is the “Chicago Fee” of $2.50 per order that DoorDash introduced in Chicago when

that city enacted its commission cap of 15%. Platforms’ service fees are often proportional to an

order’s value, but the other fees do not depend on the order value. In addition, platforms have

responded to commission caps by adjusting their fixed fees rather than their service fees. These

observations motivate my choice to treat platform consumer fees as fixed amounts rather than ad

valorem rates throughout this paper.

Restaurants that adopt food delivery platforms control their menus and prices on these platforms.

These prices need not equal prices charged by the restaurant for orders placed directly from the

restaurant. Additionally, restaurants typically make an active choice to be listed on platforms

rather than be listed by a platform without consent.7 It is common for restaurant locations

belonging to the same chain to nonetheless belong to different sets of online platforms.

Several other features of the food delivery industry warrant mention. Although I focus on con-

sumers and restaurants, delivery orders also involve couriers. Couriers can deliver for multiple

platforms simultaneously. I do not explicitly model couriers in this paper; instead, I specify that

platforms incur constant marginal costs to deliver meals to consumers that capture platforms’

compensation of drivers. These costs remain fixed as the number of delivery orders varies. My

assumption of constant marginal costs is justified by the assumption that food delivery platforms

are price takers in local labour markets. Additionally, some platforms offer subscription plans

that allow users to pay fixed fees to reduce per-transaction delivery fees, although these plans do

not reduce regulatory response fees. Data on subscriptions is lacking and subscription plans do

not waive the regulatory response fees introduced in response to the commission caps that this

paper studies. I therefore ignore subscription plans for the remainder of my paper. Food delivery

6Restaurants belonging to the other tiers, which had commission rates of 15% and 25%, received limited marketing
services and smaller delivery areas.

7Some food delivery platforms list restaurants without their consent. When the consumer places an order from
this restaurant, a courier for the delivery platform places the order at the restaurant on the consumer’s behalf and
then delivers the order to the consumer. This practice has decreased in popularity in recent years, and has been
outlawed in several jurisdictions including California and Seattle. See Mayya and Li (2021) for a study of the practice
of platforms listing restaurants without their consent.
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platforms direct consumers toward restaurants using recommendation and search algorithms.8 I

abstract away from these algorithms in this paper.

Many local governments introduced commission caps after the beginning of the US COVID-19

pandemic. Figure 1 displays the share of the US population residing in a jurisdiction subject

to a commission cap. This figure shows that the introduction of caps was staggered over time.

Over 70 local governments had enacted commission caps by June 2021, at which point about 60

million people lived in jurisdictions with caps. Most caps limited commissions to 15%, although

some limited commissions to other levels between 10% and 20%. The first commission caps were

introduced as emergency measures in response to the initial US outbreak of COVID-19, which

led governments to prohibit in-premises dining at restaurants. Restaurants subsequently shifted

from dine-in services to take-out and delivery services. These emergency measures had either fixed

expiration dates or expiry conditions.9 As the COVID-19 pandemic progressed and debate about

platforms’ pricing practices garnered public attention, several jurisdictions made their commission

caps permanent: San Francisco made its cap permanent in July 2021, New York City in August

2021, and Minneapolis in December 2021. The leading food delivery platforms have brought

legal action against San Francisco and New York City in response to their permanent caps. To

understand the effects of the caps on platforms’ price structures, note that the average basket

subtotal in 2021 was below but not far from $30 for each major delivery platform. A commission

cap limiting a platform’s commission rate from 30% to 15% would reduce the platform’s revenue

from a $30 order by $4.50 absent a change in the platform’s fees charged to consumers. For

context, platforms’ average fees collected from consumers were generally between $4.00 and $6.00

from January 2020 to April 2021 (see Appendix Figure 17).

Figure 2 reports monthly average spending on food delivery platform orders in 2020–2021, indexed

to January 2020. Usage of online food delivery platforms increased threefold between January and

May 2020 as the US COVID-19 outbreak began.10 Spending on delivery platform orders remained

elevated relative to pre-pandemic levels even as in-premises dining re-opened in the summer of

2020 and governments relaxed public health measures throughout 2021.

Appendix Figure 17 reports the average fee paid by consumers and commissions charged to restau-

rants per transaction on each platform for each month from January 2020 to April 2021 in regions

that had a commission cap in place as of May 1, 2021 and in those that did not. This figure illus-

trates that price structures skewed toward restaurant commissions before the initial US COVID-19

outbreak and throughout the pandemic in regions that did not implement commission caps. The

disparity in charges paid by consumers and restaurants, however, contracted through 2020–2021

due to the introduction of commission caps.

2.2 Data

Transactions data. My study uses several sources of data characterizing the food delivery indus-

try. First, I use a consumer panel provided by the data provider Numerator covering 2019–2021.

8See Huang (2021) for analysis food delivery platforms’ search algorithms.
9Massachusetts’s legislation introducing a state-wide cap, for example, specified that this cap would expire upon

the end of the state’s state of emergency declared in response to the COVID-19 pandemic.
10See Oblander and McCarthy (2021) for analysis of the effects of the COVID-19 pandemic on consumer ordering.
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Figure 1: Share of US population in jurisdictions with commission caps
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Figure 2: Food delivery platform spending, 2020–2021
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Notes: this plot reports indexed average monthly spending on orders placed on DoorDash, Uber Eats, Grubhub, and
Postmates in the Numerator panel described in Section 2.2.

Panelists report their purchases to Numerator through a mobile application that integrates with

email applications to collect and parse email receipts. Panelists also submit photographs of offline

receipts to the mobile application. My study uses the records in this dataset that originate from

restaurant purchases, whether they are placed on food delivery platforms or directly from restau-

rants. The orders placed directly from restaurants include orders placed at a brick-and-mortar

restaurant locations, online orders for pick-ups, and delivery orders. At the panelist level, these

data report ZIP code of residence and various demographic variables. At the level of a transaction,

they report basket subtotal and total, the time of the transaction, the delivery platform on which

the order was placed (if any), and often the restaurant from which the order was placed. These

data also describe each item purchased in a given transaction, including an item identifier and

item prices. The demographic composition of Numerator’s core panel is close to that of the United

States adult population as measured with census data. In addition, market shares computed from

these data are similar to those computed from an external dataset of payment card transactions;

see Appendix E for more information regarding this comparison.

The market definition that I use throughout this paper is a Core-Based Statistical Area (CBSA).

CBSAs are defined by the U.S. Census Bureau as collections of counties comprising metropolitan

areas, and I often call CBSAs “metros.” Although the Numerator data include restaurant orders

from across the United States, I focus on the markets listed by Table 1 because these are the

markets for which I have detailed fee data. Table 1 reports the number of unique consumers in the
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Figure 3: Restaurant membership by platform
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Notes: this figure shows the number of restaurants that belong to each major food delivery platform in each month
from January 2020 to May 2021.

consumer panel recording at least one restaurant order in Q2 2021 in the markets that I study in

my primary analysis. The table also reports the number of restaurant transactions in the consumer

panel for each metro in Q2 2021.

Table 1: Observation counts for consumer panel by metro, Q2 2021

CBSA # consumers # transactions

Atlanta-Sandy Springs-Roswell, GA 4629 41775
Boston-Cambridge-Newton, MA-NH 1840 12399
Chicago-Naperville-Elgin, IL-IN-WI 6084 52415
Dallas-Fort Worth-Arlington, TX 4867 43101
Detroit-Warren-Dearborn, MI 2593 19074
Los Angeles-Long Beach-Anaheim, CA 7268 55500
Miami-Fort Lauderdale-West Palm Beach, FL 3860 30285
New York-Newark-Jersey City, NY-NJ-PA 10632 72803
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3904 26130
Phoenix-Mesa-Scottsdale, AZ 2827 22392
Riverside-San Bernardino-Ontario, CA 2779 20686
San Francisco-Oakland-Hayward, CA 1780 11074
Seattle-Tacoma-Bellevue, WA 1657 11225
Washington-Arlington-Alexandria, DC-VA-MD-WV 3488 28987
Total 58208 447846

Notes: this table reports the number of distinct panelists with at least one recorded restaurant order (“# consumers”)
and the total number of recorded restaurant orders (“# transactions”) in the Numerator panel from April to June
2021.

I supplement the Numerator data with platform/ZIP/month-level estimates of order volumes and

average fees. Edison, a data provider, provides these estimates for each month from January 2020

to May 2021.11 These estimates are based on a large panel of email receipts with information

on delivery orders.12 This dataset also includes data on average basket subtotals (i.e., the dollar

value of food ordered excluding platform fees and taxes), average delivery fees, average service

fees, average taxes, and average tips for each ZIP/month pair. I use these estimates to scale

predicted orders in the Numerator panel to the market level. Estimates of nationwide spending

on restaurants, which I obtain from scaling up the Numerator panel using the Edison data, are

11I use ZIP rather than ZCTA as shorthand for “ZIP code tabulation area” in this paper.
12The panel includes 2,516,994 orders for an average of about 148,000 orders a month.
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very similar to estimates of food purchased away from home in the Consumer Expenditure Survey

(CEX). The Edison sales estimates also imply DoorDash revenues that are close to those reported

in the company’s earnings reports, and market shares that are close to those estimated using an

external panel of payment cards.13

Platform adoption I obtain data characterizing restaurants’ platform adoption decisions from the

data provider YipitData. These data provide a comprehensive record of restaurants in the United

States that were listed on each of DoorDash, Uber Eats, Grubhub, and Postmates in each month

from January 2020 to May 2021. Figure 3 displays the total number of restaurants listed on each

of these platforms for each month in the data.14 The data provided by YipitData include only

restaurants that have joined at least one online platform. I construct a dataset on offline-only

restaurants from the Data Axle (formerly Infogroup) dataset of business locations, which reports

a comprehensive listing of United States business locations for 2021. In 2021, 28% of restaurant

locations belonged to a chain with at least 100 locations, and 24% belonged to a chain with at

least 500 locations. Note that I estimate my consumer choice model on data from April 2021 to

June 2021 (i.e., Q2 2021). Because I do not have data on restaurant platform adoption decisions

in June 2021, I use the May 2021 platform adoption data for both May 2021 and June 2021.

Platform pricing I collect data on platform fees in 2021. As explained in Section 2.1, these fees have

three main components: delivery fees, service fees, and regulatory response fees. My procedure

for collecting these data involves drawing from the set of restaurants in a ZIP and inquiring about

terms of a delivery to an address in the ZIP. The address is obtained by reverse geocoding the

geographical coordinates of the ZIP’s centroid into a street address. Other variables that I record

while collecting data on these fees include the time of delivery, the delivery address, the restaurant’s

address, restaurant characteristics, and the estimated waiting time. I repeat this procedure across

many points in time for ZIPS in the 14 large metropolitan areas in the United States enumerated in

Table 1. I followed an analogous procedure to collect data on service fees and regulatory response

fees; this procedure involves entering delivery addresses near the centroid of ZIPs in the markets

listed by Table 1, randomly choosing a restaurant from the landing page displayed after entering

the delivery address, and inquiring about terms of a delivery from the restaurant to the chosen

13The Edison transactions dataset’s ZIP code/platform/month-level estimates of expenditures at DoorDash, Uber
Eats, Grubhub, and Postmates sum to $33.6 billion for 2020. These platforms account for 11.2% of all restaurant
spending by Numerator panelists who linked their mobile email applications with Numerator’s data-collection appli-
cation. These estimates together imply restaurant spending of $2296 per consumer unit (CU) as defined by the CEX;
the CEX reports 131 million CUs, which is a household definition, in the US in 2020. The CEX estimate of food
spending away from home per CU in 2020 was $2375. Average restaurant spending among Numerator panelists falls
below the CEX estimate. These panelists’ household restaurant expenditures (defined as the product of individual
restaurant expenditure and household size) averaged $1346 in 2020; failure of panelists to upload all receipts could
account for this discrepancy. Note that the Edison transactions dataset also accurate estimates of DoorDash’s rev-
enue that accord with DoorDash’s earning reports. Summing the product of sales and average fees (i.e., the sums of
average delivery and service fees) across ZIP codes and months in each of Q4 2020 and Q1 2021, I obtain estimates of
$935 million and $1.2 billion for DoorDash’s revenue in these quarters. DoorDash’s earnings reports claim revenues
of $970 million and $1.1 billion for Q4 2020 and Q1 2021, respectively. See Figure O.4 in Online Appendix O.2 for
a comparison of the Edison transactions data with an external payment card panel.

14The data report whether a restaurant is listed without having an agreement with the platform or whether it
is partnered with the platform. For each platform, I plot only restaurants that are partnered with the platform.
In addition, I consider only restaurants that are partnered with a platform as having adopted that platform in my
empirical analysis.
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Table 2: Description of platform pricing data, Q2 2021

Delivery fees data Service/reg. response fees data

Platform # obs.
Avg. delivery Avg. wait

# obs.
Avg. service Avg. regulatory

fee ($) time (mins) fee (%) response fee ($)

DD 40437 2.18 29.16 3066 0.14 0.41
Uber 48062 1.93 41.64 4838 0.15 0.55
GH 688428 2.93 41.71 - - -
PM 2915 4.95 41.43 2915 0.20 0.53

Notes: the order-level dataset of fees charged by Postmates includes information on both delivery fees and fixed fees.
This explains why the number of observations for these two sort of fees coincide in the table.

Table 3: Decomposition of delivery fee variation

Variance DD Uber GH PM

Across CBSAs 0.36 0.67 0.51 1.86
Across ZIPs within CBSA 0.47 1.12 1.33 4.33
Within ZIP 1.89 5.87 5.72 2.96

Notes: this table reports the variance decomposition

Var(dfk) = Var(E[dfk|m])︸ ︷︷ ︸
Across CBSAs

+ E[Var(E[dfk|z]|m)]︸ ︷︷ ︸
Across ZIPs within CBSA

+E[Var(dfk|z)]︸ ︷︷ ︸
Within ZIP

,

for delivery fee measurements dfk, CBSAs m, and ZIP codes z. The table uses all delivery measurements from ZIPs
with at least two recorded delivery fees.

delivery address. Table 2 provides observation counts and sample means for the platform pricing

datasets for Q2 2021. Section 2.3 describes how I address my lack of data on Grubhub’s service

and regulatory response fees.

Delivery fees vary across metros and across ZIPs within a given metro. They vary to an even

greater extent within ZIPs. Table 3 reports a variance decomposition of delivery fees for the three

largest platforms that documents this fact.

I supplement the data described above with five-year American Community Survey (ACS) esti-

mates of demographics at the ZIP code tabulation area level from 2014–2019. I use these data to

study the dependence of platforms’ fees on local demographics and the effect of local demograph-

ics on restaurants’ platform adoption decisions. Additionally, I manually construct a dataset of

commission caps that indicates the jurisdiction enacting each cap as well as the start date and end

date of the cap. I conducted a search of online news articles to construct this dataset. This search

identified 72 distinct commission caps on March 28, 2021, the same date that NBC News reported

that it had discovered 68 commission caps across the United States. To characterize places that

adopt commission caps, I regress an indicator for a commission cap on local characteristics; the

results, which appear in Online Appendix Table O.1, reveal that places with a higher Democratic

vote share in the 2016 presidential election, with a higher population density, and with a more

educated population are more likely to enact commission caps.
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2.3 Fee indices

I construct measures of platform fees to analyze platform pricing. The consumer fee index cfz for

each pair of a platform f and a ZIP z is defined by

cfz = DFfz + SFfz +RRfz, (1)

where DFfz is a measure of platform f ’s delivery fees in ZIP z, SFfz is a measure of platform f ’s

service fee in z’s municipality, and RRfz is the regulatory response fee charged by f in z. The

remainder of this section describes the construction of these three terms.

The delivery fee measure DFfz is the expected delivery fee charged by platform f in ZIP z condi-

tional on a set of fixed order characteristics:

DFfz = E[dfkfz|xk = x̄, f, z], (2)

where dfkfz is the delivery fee charged on order k on platform f in ZIP z, xk are observable

characteristics of order k, and x̄ is a vector of order characteristics that is fixed across platforms f

and ZIPs z. Variation in DFfz reflects systematic differences in delivery fees across platforms and

regions for an order with the same xk characteristics.15 It is important to include a rich set of order

characteristics in xk so that the fee indices do not reflect differences in the selection of restaurants

across platforms and regions. In practice, the observable characteristics that I include in xk are

time of day and day of week, a cubic in the delivery distance, and indicator variables for various

restaurant cuisines and restaurant chain indicators. I estimate (2) using a k-fold cross-validated

Lasso (with k = 10), which is a penalized regression estimator intended to prevent overfitting in

the presence of high-dimensional regressors. The high-dimensional regressors in my setting include

a rich set of controls for geography. Appendix A discusses my procedure for estimating (2) in

detail.

Note that my delivery fees data include expected waiting times as reported by platforms. I compute

waiting time indices Wfz in the same manner as the delivery fee indices D̂F fz after substituting

platforms’ waiting times for the delivery fees dfkfz in the expressions above.

The service and regulatory response fee measures SFfz and RRfz are straightforwardly defined. I

define SFfz as platform f ’s median service fee in ZIP z’s municipality. Service fees are generally

proportional to their corresponding order’s subtotal; I use a subtotal of $30 to compute service

fees in practice, given that average subtotals are close to $30 in my data. Recall that my fee data

does not include service fees for Grubhub. This omission is not critical given that Grubhub did not

enact regulatory response fees aside from a fee of $1 per order in California.16 It does, however,

limit my information on Grubhub’s service fees. I use the Edison transactions data to overcome

15In practice, delivery fees vary widely within CBSAs. Tables O.2 and O.3 report estimates from regressions of
delivery fees dfkfz on region fixed effects, a cubic in the delivery distance, and a wide range of order characteristics
and geographical characteristics. The regions are either CBSAs or counties. The results show that there remains a
high level of unexplained variation in delivery fees within a CBSA or county: the R2 values from the regressions are
generally low. These results also indicate meaningful variation in average fees across places within a CBSA: several
delivery address characteristics correlate with delivery fees within a region, and replacing CBSA fixed effects with
county fixed effects significant increases the explanatory power of the regressions.

16This fee was introduced in response to legislation mandating that platforms provide certain benefits to couriers.
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this limitation. These data include the average service fee, average order value before taxes and

fees, and estimated sales at the level of a ZIP/platform. The median and the sales-weighted mean

of ZIPs’ ratios of average service fees to average order value before taxes and fees are both 0.10. I

therefore use 10% as Grubhub’s service fee in computing SFfz.
17 Regulatory response fees apply

to entire municipalities, so I compute RRfz by identifying all regulatory response fees in my data

and then taking the sum of such fees charged by platform f in ZIP z’s municipality.

3 Eight empirical facts

In this section, I present facts characterizing the food delivery industry that inform my modelling

decisions.

3.1 Commission caps raise platforms’ consumer fees and lower platform order volumes

I estimate effects of commission caps on platforms’ consumer fees and platform order volumes using

two-way fixed effects (TWFE) regressions. The estimating equation for platform f is

yfzt = ψfz + φft︸ ︷︷ ︸
ZIP and month

fixed effects

+ βfxxzt︸ ︷︷ ︸
Treatment

+ βfCCzt︸ ︷︷ ︸
COVID control

+εfzt, (3)

where yfzt is an outcome variable for platform f in ZIP z for month t, ψfz are platform/ZIP fixed

effects, φft are platform/month fixed effects, xzt is a measure of ZIP z’s commission cap policy

during t, Czt is the number of new COVID-19 cases in ZIP z’s county as a fraction of the county’s

population in month z, and εzft is an unobservable assumed to be mean independent of xzt. Last,

the βfx parameters measure responses of the outcome variable to commission caps. The outcome

yfzt is either the log of platform f ’s average fee in ZIP z in month t or the log of platform f ’s

number of orders in z during t.18 I control for the number of COVID-19 cases in (3) because the

severity of COVID-19 may affect both changes in these outcomes and a jurisdiction’s decision to

enact a commission cap. The treatment variable xzt is an indicator for z having a commission

cap of 15% or lower. I estimate the effects of commission caps of 15% or lower because 15% has

been the most popular level of caps in the United States, and I focus on analysis of these caps. I

exclude ZIPs where caps greater than 15% took effect from my TWFE analysis. Online Appendix

O.5 provides results for an alternative specification in which the treatment group contains ZIPs

with any commission cap and the control group contains all remaining US ZIPs. These results are

similar to those for my baseline specification. The primary identifying assumption underlying my

TWFE approach is that, conditional on trends in the local severity of COVID-19, the outcome

17I explored using separate Grubhub service fee rates for different geographical regions, but the ratio of average
service fee to average order value in the Edison transactions data exhibits little systematic variation across geography.

18My panel of platform/ZIP/month-level sales and fee estimates includes variables reporting average order values
including fees, tips and taxes; average order values excluding fees, tips, and taxes (i.e., average basket subtotals);
average tips; and average taxes. I obtain my measure of average fees by subtracting the last three of these variables
from the first. I conduct difference-in-differences analysis to assess the effect of commission caps on basket subtotals;
see Table O.11 in the Online Appendix. The estimated effects are generally statistically insignificant, and they vary
in sign. This suggests that there is no strong, systematic effect of caps on basket subtotals. This in turn suggests
that the positive effects of caps on platforms’ consumer fees reported in this section do not reflect increases in fees
that are proportional to basket subtotals on account of a rise in subtotals.
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Figure 4: Effects of commission caps on DoorDash fees and order volumes

(a) Effects on log fees
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(b) Effects on log number of orders
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Notes: this figure reports estimates of commission caps’ effects on DoorDash’s log average fees and log order volumes
from a variant of 3 wherein the effect βfx varies by the month relative to the implementation of a commission cap.
I estimate these effects by OLS.

variable in places that enacted commission caps would have followed the same trend as in places

that never enacted commission caps if commission caps counterfactually had not been imposed in

the former places.

Recent research in econometrics—e.g., de Chaisemartin and D’Haultfœuille (2020)—highlights

problems affecting TWFE estimators in settings with heterogeneous treatment effects and staggered

treatment. To check the robustness of my findings, I additionally estimate fee and order responses

to commission caps using the estimator of Callaway and Sant’Anna (2021), who develop estimators

for average treatment effects on the treated that are robust to heterogeneous treatment effects.

The Callaway and Sant’Anna (2021) estimator yields similar estimates to those from my TWFE

estimator; see Tables O.4 in Online Appendix O.5

Table 4: Responses to commission caps (fees and order volumes)

Outcome
Platform Log fees Log # orders

Total - -0.06
(0.01)

DD 0.20 -0.06
(0.02) (0.01)

Uber 0.09 -0.05
(0.02) (0.01)

GH 0.12 0.07
(0.06) (0.02)

Notes: this table reports estimates of the effects βfz in (3) of a commission cap of 15% or less on either (i) log average
fees or (ii) the log of the number of orders. Each estimator is computed on a ZIP/month level panel, and each ZIP is
weighted by its population. I compute each estimator separately for each of DoorDash (DD), Uber Eats (Uber), and
Grubhub (GH). I also run each analysis using total sales summed across platforms as the outcome variable; these
results are provided by the “Total” rows. I do not include results for Postmates because I lack data on Postmates
fees across the sample period.
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Table 4 provides estimated effects of commission caps on the log of platform fees and on the log

of the number of orders for each of DoorDash (DD), Uber Eats (Uber), and Grubhub (GH). I also

estimate the effects of commission cap on the total number of sales on these platforms; the “Total”

row provides these estimates. Commission caps raised average fees by 0.9–0.20 log points across

platforms, which amounts to 9–22% increases in fees. DoorDash’s estimated fee increase represents

about one-third of the average revenue that DoorDash loses on an order from the introduction of a

15% commission cap. Commission caps reduce the number of orders on the two largest platforms,

DoorDash and Uber Eats, by about 5% and 7%, respectively; caps, however, raise orders on

Grubhub. The fact that commission caps had substantial positive effects on fees while having

relatively small—and possibly positive—effects on sales could owe to the fact that commission

caps attracted restaurants to join platforms, as I discuss in a subsequent paragraph.

Figure provides event-study estimates of a comission cap’s effects at various points in time before

and after the introduction of the cap. I estimated these effects by OLS applied to a variant of 3

wherein the effect βfx varies by time until the imposition of a commission cap.19 The figure provides

these estimates for DoorDash, the largest delivery platform. There is not evidence of pre-trends in

DoorDash’s fees or order volumes in places that introduced commission caps. Additionally, Figure

suggests that platforms responded to commission caps with fee hikes almost immediately. Online

Appendix O.5 provides additional event study plots from TWFE regressions and the Callaway and

Sant’Anna (2021)/Sant’Anna and Zhao (2020) estimator. These plots similarly show a lack of fee

and sales pre-trends in ZIPs that introduced commission caps.

Online Appendix O.5 provides results for a continuous treatment variable xzt defined to be equal

to the level of the commission cap in place in ZIP z in month t, or to 0.30 if no cap is in effect.

This appendix also reports results from analyses that exclude observations for months before July

2020. These results are intended to assuage concerns that acute disruptions from the onset of the

COVID-19 pandemic affect my results. By July 2020, prohibitions on on-premises dining had been

lifted in every US state. The results of the post-July 2020 analyses are similar to those reported

by Table 4. Table O.8 in the Online Appendix provides estimates of the effects of commission caps

on (i) service fees proportional to basket subtotals and (ii) fixed fees, including delivery fees and

regulatory response fees. These estimates constitute evidence that commission caps raised fixed

fees but not service fee rates. Last, Table O.11 in the Online Appendix reports estimates of (3)

with the log the average basket subtotal before fees, tips, and taxes as the outcome variable. I do

not find a significant effect of commission caps on basket subtotals.

Modelling implication. Platforms’ consumer fees are endogenously determined in my model,

and they may respond to commission caps.

19In particular, this variant is

yfzt = ψfz + φft +

τ̄∑
τ=−τ̄

βfxτxz,t−τ + β+
fx

∑
τ>τ̄

xz,t−τ + β−fx
∑
τ<−τ̄

xz,t−τ + βfcCzt + εfzt,

The treatment variable xz,t−τ equals one if and only if a commission cap was first imposed in ZIP z in month t− τ .
Figure 3.1 plots estimates of the βfxτ coefficients, with the horizontal axis providing values of τ . The β+

fx and β−fx
parameters are effects of a commission cap introduced over τ̄ months in the past and over τ̄ months in the future,
respectively. I set τ̄ = 10 in practice.
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3.2 Commission caps induce restaurant uptake of platforms

Commission caps may also affect restaurants’ platform membership decisions. I use a difference-

in-differences approach mirroring that in Section 3.1 to estimate restaurants’ platform adoption

responses to commission caps. Although my data include the universe of restaurants on delivery

platforms at a monthly frequency, my data on all US restaurants—including those that do not

belong to a platform—are recorded at an annual frequency. I therefore estimate TWFE regressions

at an annual level with platform adoption measures as outcomes. The estimating equation is

yzt = ψz + φt︸ ︷︷ ︸
ZIP and month

fixed effects

+ βxxzt︸ ︷︷ ︸
Treatment

+ β′CCzt︸ ︷︷ ︸
COVID control

+εzt, (4)

where ψz are ZIP fixed effects, φt are time-period fixed effects, and xzt is an indicator for whether

a commission cap of 15% or lower is active in ZIP z during time period t. Additionally, the vector

Czt includes both (i) the number of new COVID-19 cases per capita in ZIP z’s county in time

period t and (ii) the cumulative number of COVID-19 cases per capita in ZIP z’s county by time

period t. The two time periods are January 2020 and January 2021. The sample includes (i)

treated ZIPs where commission caps of 15% or lower were imposed between January and June

2020 and (ii) control-group ZIPs that did not have commission caps by the second period. The two

outcomes yzt are (i) the share of restaurants belonging to at least one platform and (ii) the average

number of platforms that a restaurant in the ZIP joins. The identifying assumption required for

the consistent estimation of βx is that ZIPs in places with caps would have experienced the same

trends in platform adoption as ZIPs in places without caps if the former places counterfactually

never had caps. Online Appendix O.5 provides results for platform-specific adoption shares as

outcome variables and for a continuous treatment variable.

Table 5: Effects of commission caps on restaurants’ platform adoption

(a) Difference-in-differences estimates

Share online # platforms joined

0.040 0.099
(0.003) (0.006)

(b) Within-metro estimates

Share online # platforms joined

0.070 0.207
(0.004) (0.011)

Notes: Table 5a reports OLS estimates of βx in (4). The two time periods on which I estimate (4) are January 2020
and January 2021. The outcome yzt is the share of restaurants in the ZIP that belong to at least one platform. The
sample includes ZIPs that either belonged to (i) a municipality wherein a municipality came into effect between the
beginning of January 2020 and the end of June 2020 (treated group) or (ii) a municipality in which a cap was not
imposed by the end of May 2021 (control group). Each ZIP is weighted by its average number of restaurants across
the two time periods.

Table 5b table reports results from ZIP-level regressions of the share of restaurants in a ZIP that have adopted at
least one online platform in May 2021 on an indicator for whether a commission cap applied in the ZIP. It also
reports results for an analogous regression wherein the average number of platforms joined by a restaurant in the
ZIP is the outcome variable. Each ZIP is weighted by its number of restaurants. The tables report standard errors
in parentheses.
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Table 5a provides ordinary least squares estimates of βx in (4). These results suggest that com-

mission caps lead to a 4.0 percentage-point increase in the share of restaurants belonging to at

least one delivery platform and an increase of 0.099 in the average number of delivery platforms

to which a restaurant belongs.

To assess the robustness of my difference-in-differences estimates, I also estimate the effects of

commission caps on platform adoption using cross-sectional variation between municipalities within

a metro area that differ in their commission cap policies. The underlying identification assumption

is that the unobservable propensity for restaurants to join platforms does not differ within a metro

area between places with and without commission caps. I estimate effects of commission caps

using within-metro variation by regressing the share of restaurants in a ZIP belonging to at least

one platform on metro fixed effects and on an indicator for a cap of 15% or less being effect.

Table 5b provides the results of this regression for May 2021. The results suggest that commission

caps induce a 7.0 percentage-point increase in the share of restaurants that belong to at least

one platform. These effects are somewhat similar to those that I estimate using a difference-in-

differences approach as reported in Table 5a.

Modelling implication. Platform adoption by restaurants is endogenous and depends on com-

mission rates in my model.

3.3 Consumers place more orders on platforms that attract new restaurants

Network externalities exerted by restaurants on consumers influence the effects of commission caps.

To assess the relevance of such network externalities, I estimate the elasticity βNE of platform sales

with respect to restaurant variety by OLS with the estimating equation

log sfzt︸ ︷︷ ︸
Log sales

t = ψfz + ψft︸ ︷︷ ︸
ZIP and month

fixed effects

+ βNE log Jfzt︸ ︷︷ ︸
Network externalities

+εfzt, (5)

where sfzt are platform f ’s sales in ZIP z in month t, Jfzt is the number of restaurants on platform

f within five miles of ZIP z in month t, and ψfz and ψft are platform/ZIP and platform/month

fixed effects, respectively. The unobservable εfzt is assumed to be mean independent of Jfzt

conditional on the fixed effects ψfz and ψft. This assumption allows for restaurants to respond to

time-invariant local demand disturbances, which are captured by ψfz, and to national time-varying

demand disturbances, which are captured by ψft. The assumption does not, however, allow for

restaurants’ platform adoption to respond to local monthly demand deviations. This may be a

valid restriction when frictions in the platform adoption process prevent restaurants from suddenly

joining platforms. This research design follows that of Natan (2021), who discusses the underlying

identifying assumptions in greater detail.

In addition to estimating (5), I estimate a model with metro area fixed effects on a cross section of

ZIPs. Rather than relying on assumptions about adoption trends over time, this approach requires

common unobserved shifters of demand and platform adoption to be constant within a metro.

Online Appendix O.6 provides results from this approach, which are similar to those that I obtain

for (5).
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Table 6: Restaurant-to-consumer network externalities (difference-in-differences estimates)

Pooled Separate

Log # restaurants 0.12 -
(0.02) -

Log # chain restaurants - 0.09
- (0.02)

Log # non-chain restaurants - 0.08
- (0.02)

Notes: this table reports ordinary least squares estimates of the parameter βNE in (5). The second column provides
estimates of βNE

chain and βNE
non-chain in (6). Chain restaurants are those that belong to a chain that had at least 100

locations across the US in 2021. I estimate the model on a panel of ZIPs from April 2020 to May 2021. I include all
ZIPs located within a CBSA.

The first column of Table 6 reports the estimate of βNE, which suggests the empirical relevance

of network externalities exerted by restaurants on consumers. The second column provides OLS

estimates of βNE
chain and βNE

non-chain in

log sfzt = ψfz + ψft + βchain
NE log Jchain

fzt + βnon-chain
NE log Jnon-chain

fzt + εfzt, (6)

where Jchain
fzt (Jchain

fzt ) is the number of chain (non-chain) restaurants on platform f within 5 miles

of ZIP z in month t. Chain restaurants are those that belong to a chain that had at least 100

locations across the US in 2021. Consumer responses to these two sorts of restaurants are similar

in magnitude.

Modelling implication. The number of restaurants available on the platform affects platforms’

sales in my consumer choice model. There is not clear evidence of a difference in consumer respon-

siveness to chain and non-chain restaurants, and I do not distinguish between chain and non-chain

restaurants in my model.

3.4 Both consumers and restaurants multihome

I assess the extent of multihoming in the food delivery industry by computing measures of consumer

and restaurant multihoming. I define a measure of consumer multihoming for each pair of platforms

f and f ′ that equals the share of pairs of consecutive orders placed on a platform made by the

same consumer that contain a purchase from f among those that also contain a purchase from f ′.

To illustrate this multihoming measure, suppose that I observed one consumer buy from DoorDash

across two consecutive orders and that I observed a second consumer purchase from DoorDash and

then Uber Eats. Then, the multihoming measure for f = Uber Eats and f ′ = DoorDash among

these two consumers would be one half.20 I characterize restaurant multihoming by computing the

20Another measure of consumer multihoming is the average Herfindahl–Hirschman index of a consumer’s shares
of orders made across platforms:

¯HHI =
∑
i

ni∑
i′ ni′

F∑
f=1

s2
if ,

where ni is the number of orders that consumer i placed on platforms and sif is the share of those orders that the
consumer placed on platform f . Among consumers residing in the 14 markets on which my study focuses during
the second quarter of 2021, ¯HHI equals 0.86, which indicates a high degree of purity in consumers’ platform-choice
sequences. Additionally, Figure 16 in the appendix reports the average number of platforms from which a panelist
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Table 7: Multihoming in the food delivery industry, April 2021

(a) Consumers of delivery platforms

Platform
Share of Share of pairs also

consecutive-order pairs including an order from...
including an order from DD Uber GH PM

DD 0.53 1.00 0.13 0.06 0.02
Uber 0.42 0.17 1.00 0.06 0.02
GH 0.16 0.21 0.16 1.00 0.01
PM 0.04 0.24 0.24 0.06 1.00

(b) Restaurants listed on delivery platforms

Platform
Share Share of restaurants

listed on also listed on...
platform DD Uber GH PM

DD 0.34 1.00 0.55 0.50 0.33
Uber 0.27 0.68 1.00 0.57 0.39
GH 0.24 0.71 0.65 1.00 0.38
PM 0.14 0.79 0.76 0.65 1.00

Notes: Table 7a reports, for each pair of platforms f and f ′, the share of pairs of consecutive orders placed by
the same consumer in April 2021 that include an order from f ′ among those that contain an order from f . Table
7b reports the share of restaurants on each major delivery platform that also belong to each other major delivery
platform for April 2021.

share of restaurants listed on each platform that are also listed on each other platform. Table 7

reports the results, which show that both consumers and restaurants multihome.

Although consumers sometimes switch between platforms, it is more common for consumers to

order from the same platform across consecutive orders. Explanations for repeated ordering from

a platform include state dependence—that is, an effect of the consumer’s ordering history on the

consumer’s contemporaneous ordering decision—and persistent tastes for platforms. Persistent

tastes for platforms introduce serial correlation into consumers’ ordering choices even when previous

orders have no effect on the consumer’s contemporaneous order, holding all else equal. To assess

the relevance of state dependence, I compare the numbers of switches between platforms that

consumers make in consecutive platform-intermediated orders with and without shuffling each

consumer’s sequence of orders. Persistent tastes do not induce serial dependence in a consumer’s

sequence of choices (conditional on the consumer) whereas state dependence does introduce serial

dependence. Thus, similarity of dynamics between the original and shuffled choice sequences would

suggest a low degree of state dependence. Appendix Table 24 presents the results of this analysis

for choice sequences with a fixed number of purchases from a fixed number of platforms. Shuffling

choice sequences has little effect on the average number of switches they contain; in fact, shuffling

generates choice sequences with slightly less switching, whereas we would expect more switching

in the shuffled sequences if state dependence was important. These results suggest that persistent

tastes play a larger role than state dependence in explaining repeat purchasing. This observation

informs my choice to include persistent heterogeneous tastes but not state dependence in my

model.

has ordered after placing t orders, for t = 1, . . . , 30.
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Modelling implication. My model allows for both consumer and restaurant multihoming. Addi-

tionally, repeat ordering from a platform arises in my model due to unobserved taste heterogeneity

rather than state dependence.

3.5 Restaurants that join a platform tend to remain on the platform

Figure 5: Persistence of restaurants’ platform memberships

(a) Platform membership in April 2021 among restau-
rants belonging to platforms in previous month
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(b) Share of restaurants on each platform among
restaurants on the platform in September 2020
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Notes: Figure 5a reports the share of restaurants on each platform in April 2021 among (i) all restaurants and (ii)
among restaurants that belonging to the platform in the previous month, March 2021. Figure 5b reports the share of
restaurants on each platform in each month from September 2020 to May 2021 among all restaurants that belonged
to the platform in September 2020.

Figure 5a plots the share of restaurants on each major platform in April 2021 among restaurants

on all platforms and among restaurants on the platform in March 2021. The figure shows that

restaurants that were previously on the platform are more likely to belong to the platform than

restaurants that were not on the platform. Figure 5b plots the share of restaurants on each

platform in each month from September 2020 to May 2021 among restaurants that belonged to the

platform in September 2020. The figure shows that, even eight months on, a significant majority

of restaurants on a platform are still listed on the platform. These figures suggest that restaurants

may exhibit state dependence in their choice of platforms. Consequently, a platform may be able

to boost its future profitability by enrolling new restaurants. Platforms may take the effects of

their restaurant networks on future profitability into account when setting commissions.

Modelling implication. My model of platform commission-setting accounts for platforms’ dynamic

pricing incentives by including the sizes of platforms’ restaurant networks in platforms’ objective

functions.

3.6 Restaurants charge higher prices for platform-intermediated orders than for direct orders

Each leading delivery platform allows restaurants to post prices on the platform that differ from the

restaurant’s prices for direct orders and from the restaurant’s prices on other platforms. I use my
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Table 8: Markups of restaurant prices on food delivery platforms

Platform
Common Platform-specific
markup markups

Online 0.24 -
(0.01) -

DD - 0.28
- (0.09)

Uber - 0.27
- (0.01)

GH - 0.23
- (0.01)

Notes: this table reports estimates of the ϑf parameters in (7). I estimate the equation via an ordinary least
squares regression of log menu prices on platform indicator variables after transforming both variables by the within
transformation (i.e., by subtracting off their within-item ι mean values across transactions) to purge the fixed effects
ϕι from (7). The estimation sample includes item-level transactions in Q2 2021. Classical asymptotic standard errors
appear in parentheses.

item-level transactions data to estimate the average markups of restaurant menu items on delivery

platforms relative to their direct-from-restaurant prices. This procedure involves estimating

log pιft︸ ︷︷ ︸
Log price

= ϕι︸︷︷︸
Item fixed effect

+ ϑf︸︷︷︸
Mean markup

+ ειft, (7)

where ι is a menu item, f is a platform, and t is a transaction. Additionally, pιft is an observed

menu price, ϕι are menu-item fixed effects, and ειft captures both measurement error and item-level

deviations from the mean log markup ϑf of prices on platform f . I assume that E[ειft|ι, f ] = 0,

which requires that measurement error in log pιft is uncorrelated with platform f conditional on

a menu item. I normalize ϑ0 = 0 for the platform f = 0 that represents direct-from-restaurant

ordering. To understand why I interpret ϑf as a mean log markup of prices on platform f , note

that

E[log(pιft/pι0t) | ι, f ] = ϑf .

I estimate (7) by OLS on data from Q2 2021. Table 8 reports estimates of ϑf when (i) ϑf = ϑ for

a constant ϑ across all platforms f and (ii) when ϑf varies across platforms. This table implies

that prices on online platforms are about 27% higher than those for direct orders on average, and

that this markup does not vary considerably across platforms. Online Appendix O.4 additionally

reports distributions of the markups of platform prices, and compares menu items’ prices across

platforms. This appendix shows that markups are concentrated between 0% and 50%, and that

price variation among platforms is small.

To obtain the menu price measures that I use in estimating my model, I estimate mean differences

in menu items’ prices across platforms and restaurant locations using a Lasso regression with item

fixed effects. The regression equation differs from (7) in that it allows markups of restaurants’

prices on platforms to vary across markets and restaurant locations belonging to different subsets

of platforms. Appendix B provides the details of this procedure. The price measures I obtain

systematically vary between the direct and platform-intermediated ordering channels, but not

between platforms. Additionally, I do not find evidence of differences in restaurant prices on
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platforms between areas with and without commission caps using my item fixed-effects approach.

One explanation for this finding is that the menu items purchased across platforms and restaurant

locations in my data are mostly sold by large chain restaurants. Chains may practice uniform or

zone pricing; that is, they may not condition their prices on local demand and cost conditions,

including the presence of a local commission cap.21 Uniform and zone pricing could significantly

limit price responses to a commission cap given that 56% of orders placed on the four leading food

delivery platforms were from chains with at least 100 locations, and 48% were from chains with at

least 500 locations in the first half of 2021. Using manually collected data on restaurant prices that

includes prices at independent restaurants, I find that the relative markups of restaurant prices

on platforms (i.e., prices on platforms divided by direct-from-restaurant prices) are about seven

percentage points lower on average in places with commission caps.22 Commission caps of 15% cut

commission rates in half, but a seven percentage point reduction in restaurant prices markups on

platforms is far less than one-half of the markups reported by Table 8. If markups of restaurants’

prices on platforms mostly result from pass-through of commissions, this suggests that restaurant

prices do not fully respond to commission caps. In fact, my model predicts that commission

caps reduce the markups of prices on platforms relative to direct-order prices by over one-half.

Motivated by the fact that caps have a limited effect on restaurant prices in practice, I evaluate

commission caps with and without restaurant price responses in my model-based analysis.

Modelling implication. I model restaurant price-setting for both direct orders and platform-intermediated

orders. This pricing model allows for incomplete pass-through of commissions.

3.7 Platform market shares vary across metropolitan areas

Figure 6a plots each major platform’s share of spending on food delivery platforms in Q2 2021 for 14

large US metropolitan areas. Additionally, Figure 6a plots the share of restaurant orders placed on

a food delivery platform rather than directly from a restaurant in the same time period for the same

metros. Both platforms’ market shares and the relative significance of platforms vary across metros;

this variation could owe to cross-metro differences in demographics, in restaurant membership

of platforms, local tastes for food delivery platforms unexplained by demographics or platform

adoption by restaurants (e.g., local taste differences explained by platform advertising).

Modelling implication. Platform sales in my model depends on local consumer demographics,

the local selection of restaurants on platforms, and local unobserved tastes for platforms.

3.8 Younger consumers are more likely to use delivery platforms

To determine which consumer characteristics explain usage of food delivery platforms, I regress an

indicator for whether a restaurant order was placed on a delivery platform (rather than directly

from a restaurant) on various consumer characteristics. These characteristics include indicator

variables for age groups, educational attainment levels, racial/ethnic backgrounds, marital statuses,

21See DellaVigna and Gentzkow (2019) and Adams and Williams (2019) for evidence of uniform and zone pricing
in retail.

22See Appendix B for details of this analysis.
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Figure 6: Market shares, Q2 2021
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(a) Market shares among leading platforms
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(b) Online platform shares of restaurant expenditure

Notes: Panel (a) reports CBSA-specific shares of expenditure on DoorDash, Uber Eats, Grubhub, and Postmates
orders in the Numerator panel for Q2 2021. Panel (b) reports CBSA-specific shares of expenditure on the four
leading delivery platforms out of all expenditure on restaurant orders in the Numerator panel for Q2 2021.

employment statuses, household sizes, income groups, and gender. Figure 7 plots several of the

coefficients from this regression. Younger consumers are much likelier to order from food delivery

platforms than older consumers. Additionally, married consumers are less likely to use platforms

than single consumers, the reference group for marital status in the regression.

Figure 7: Demographics of food delivery users
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Notes: this figure displays estimated coefficients and 95% confidence intervals from a linear probability model
regression of an indicator for a restaurant order being placed on one of the leading four food delivery platforms
on month fixed effects and demographic variables using Numerator data from 2021. Note that 5.5% of orders are
placed on delivery platforms in the estimation sample. The following regressors were included in the regression,
although their coefficients are omitted from the plot: gender indicator, employment status indicators, household size
indicators, income group indicators. The sample size is 8,188,362.

If restaurants respond to changes in the profitability of joining delivery platforms, then an increase

in tastes for platform ordering among restaurants’ potential consumers should induce restaurants

to join platforms. To assess this hypothesis, I regress the share of restaurants in a ZIP that

belonged to at least one delivery platform in April 2021 on the share of the population within five

miles of the ZIP that belongs to various age groups, educational attainment groups, and marital
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Figure 8: Demographic correlates of restaurant platform adoption
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Notes: this figure displays estimated coefficients and 95% confidence intervals for a ZIP-level regression with the
share of restaurants listed on at least one of the major four food delivery platforms as the dependent variable in and
various demographic characteristics of the area around the ZIP as regressors. These regressors include: the share of
the population in the various age groups specified in the figure; the share of the population over 18 years of age with
the various levels of educational attainment specified in the figure; and the share of the population over 15 years
of age with the various levels of educational attainment specified in the figure. The regression also includes month
and CBSA fixed effects. Additionally, each ZIP is weighted by the number of restaurants in the ZIP. I estimate the
regression on data for April and May 2021.

status groups.23 Figure 8 displays the results. Restaurants in areas with high population shares

of younger people are more likely to join platforms than restaurants nearby many people over the

age of 55: a share of people over 65 years of age that is 10 percentage points (p.p.) higher at the

expense of people under 20 years of age is associated with a 9.7 p.p. lower share of restaurants

that join online platforms. Additionally, the share of restaurants on platforms is lower in areas

with more married people. In April 2021, over 40% of restaurants did not belong to any platform,

and about 10% belong to all online platforms. Appendix Figure 15 reports the distribution of

restaurants across subsets of platforms.

Modelling implication. I include age and marital status as shifters of consumer tastes in my

model. Additionally, I use the population of young consumers nearby a restaurant as a shifter of

restaurants’ platform adoption decisions in estimating my model.

4 Model

4.1 Summary of model

To analyze the welfare effects of commission caps and the economic forces shaping these effects,

I develop a model of the food delivery industry. This model features consumers who place orders

from nearby restaurants through platforms. An order involves the sale of a representative menu

item from a restaurant to a consumer. The platforms include online platforms as well as the direct

platform f = 0, which represents the consumer’s alternative of ordering directly from a restaurant.

23I use ZIP-level estimates from the 2019 American Community Survey to construct the regressors included in this
regression.
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Each restaurant j charges a price pjf to a consumer who places an order from the restaurant on

platform f . Each consumer and each restaurant belongs to a metro m, each of which is further

partitioned into ZIPs z. Each ZIP contains a fixed number of consumers and a fixed number of

restaurants.

Formally, I develop a sequential game to which I equip a perfect Bayesian equilibrium solution

concept. Competition in each metro area is a separate game. Each game’s players are platforms

and restaurants. Platforms are characterized by market-specific marginal costs, and their strate-

gic variables are consumer fees and restaurant commission rates. Platforms in the model do not

charge either side of the market fixed fees for access to the platform. Restaurants differ in their geo-

graphical locations and in disturbances affecting their platform adoption decisions. Their strategic

variables are platform adoption and prices.

The game has four stages. In the first stage, platforms choose their commission rates. When a

consumer orders from a restaurant j on a platform f , the platform collects a flat fee cfz from the

consumer and a commission of pjfrfz from the restaurant, where pjf is restaurant j’s price on

platform f and rfz is platform f ’s commission rate for ZIP z. The first stage of the model features

simultaneous commission setting by platforms, whose commission rates constitute a Nash equi-

librium. I capture dynamic incentives in commission setting by including the size of a platform’s

restaurant network—which affects a platform’s future profitability—in the platform’s objective

function. Restaurants subsequently choose which platforms to join in response to these commis-

sion rates. Upon joining platforms, restaurants choose prices to charge for direct orders and for

orders from each platform. These prices also depend on platform commissions; in general, restau-

rants partially pass through their commission charges to consumers by setting higher prices on

platforms. Platforms set their consumer fees concurrently as restaurants set prices. Last, con-

sumers place orders. I specify that platforms set commissions before restaurants join platforms

because leading food delivery platforms advertise commission rates to restaurants considering plat-

form membership. Platforms’ contracts with restaurants do not prevent them from changing their

fees after restaurants have joined platforms — this underlies my decision to specify that platforms

set consumer fees after restaurants join platforms. Leading platforms, for example, often immedi-

ately add new fees after municipalities adopt commission caps. Restaurants are also free to adjust

their prices on platforms, which motivates my decision to include restaurant pricing in the final

strategic stage of my model.

Although I capture many complex features of the food delivery industry with my model, I abstract

away from other features. First, restaurants in the same ZIP do not systematically differ in their

appeal to consumers or their costs of platform adoption. Reducing restaurant heterogeneity to some

extent is necessary for tractability of the restaurant platform adoption and pricing games, although

I plan on extending the model to feature multiple discrete types of restaurants (e.g., chain versus

independent restaurants, downmarket versus upscale restaurants). This extension is conceptually

straightforward. Another way in which I simplify reality with my model is by specifying that

platforms’ consumer fees do not depend on basket subtotals (i.e., the dollar value of food ordered

before fees and taxes). In reality, platforms charge delivery fees and regulatory response fees that

do not depend on the subtotal in addition to service fees that do depend on the basket subtotal.

Given that I study commission caps, and that platforms adjusted their fees in response to caps
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by introducing fixed regulatory response fees, I specify consumer fees as fixed, i.e., independent

of the basket subtotal.24 Last, my model is static whereas platforms may face dynamic pricing

incentives in reality. Nonetheless, I capture platforms’ dynamic incentives in setting commissions

in a reduced-form way as described in the preceding paragraph.

The remainder of this section details the stages summarized above in backwards order.

4.2 Consumer choice

Consumer i contemplates ordering a restaurant meal at T occasions each month. In each occasion

t ∈ {1, . . . , T}, the consumer chooses whether to order a meal from a restaurant or to otherwise

prepare a meal. When consumer i orders from a restaurant, the consumer chooses both a restaurant

j and a food delivery platform f ∈ F from which to place the order. For notational convenience,

I represent the alternative not to order from a restaurant as the outside restaurant j = 0. Let

Gj ⊆ F denote the set of platforms on which restaurant j 6= 0 is listed; I call the set Gj restaurant

j’s platform portfolio. The consumer chooses a restaurant/platform pair (j, f) among pairs for

which (i) restaurant j is within five miles of consumer i’s ZIP of residence and (ii) f ∈ Gj to

maximize

vijft =

ψif − αipjf + ηi + γνijt, j 6= 0

γνi0t, j = 0,

where ψif is consumer i’s taste for platform f , pjf is restaurant j’s price on platform f , ηi is a

taste for dining at restaurants that is unobservable to the econometrician, and νijt is consumer i’s

idiosyncratic taste for restaurant j in ordering occasion t. Consumer i’s tastes νijt are mutually

independent across restaurants and ordering occasions, and they are also independent of all other

random variables in the model. The relative magnitude of γ governs the importance of consumer

i’s tastes for restaurants relative to the consumer’s tastes for platform-specific payoffs. As I explain

in greater detail below, it also controls the extent of restaurant-to-consumer network externalities.

Additionally, αi is consumer i’s price sensitivity, which I specify as

αi = α+ αLowIncLowInci,

where LowInci is an indicator for whether the consumer’s household income is below $40,000.

I specify consumer i’s tastes ψif for platform f as

ψif = δfm − αicfz − τWfz + λ′fdi + ζif .

for platforms f 6= 0. I normalize ψi0 = 0 for all i. Here, δfm is a parameter governing the mean

taste of consumers in market m for platform f ; cfz is platform f ’s fee to consumers in ZIP z; Wfz

is platform f ’s waiting-time index in ZIP z; and di is a vector of consumer characteristics. The

characteristics included in di are (i) an indicator for the consumer being younger than 35 years

of age, and (ii) an indicator for the consumer being married. Additionally, ζif are consumer i’s

24See Table O.8 in the Online Appendix for difference-in-differences evidence that platforms adjusted their fixed
fees but not their proportional service fees in response to commission caps. Also note that the introduction of fixed
“regulatory response fees” was an especially salient response of platforms to caps.

27



persistent idiosyncratic tastes for platform f . I specify ζif as

ζif = ζ†i + ζ̃if ,

where ζ†i ∼ N(0, σ2
ζ1) and ζ̃if ∼ N(0, σ2

ζ2) independently of all else. The ζ†i unobservable governs

consumer i’s taste for the online ordering channel whereas ζ̃if governs consumer i’s particular

taste for platform f . Note that the parameters σζ1 and σζ2 are random coefficients in the style of

Berry et al. (1995) on channel and platform indicators. As noted above, the relative magnitude of

γ governs the extent of network externalities. This point is especially clear when the νijt are iid

draws from a mean-zero type 1 extreme value distribution (as I assume in my empirical application)

and the component Vi(Gj , pj) := maxf∈Gj [ψif − αipjf ] of consumer i’s utility from restaurant j’s

platform portfolio does not depend on pj . In this case,

max
j 6=0

vijt = max
G∈2F :{0}∈G

Vi(G) + ηi + γ log Ji(G) + γν̃i(G), (8)

where νi(G) is a mean-zero type 1 extreme value random variable that is independently distributed

across G, and Ji(G) is the number of restaurants available to i that belong to platform portfolio

G. Equation (8) re-expresses the consumer’s choice of restaurant as a choice among types of

restaurants, with each type defined by a platform portfolio G. The contribution of the log number

of restaurants on G to the consumer’s payoff from choosing G relative to the contribution of the value

from platforms Vi(G) is determined by the ratio of γ to the parameters that control the magnitude

of Vi(G). To build intuition for the dependence of network externalities on γ, note that a platform

cannot attract consumers by offering more restaurants when consumers like all restaurants equally,

i.e., γ = 0. When γ is large, consumers are particular in their tastes for restaurants, and a platform

can attract consumers who love a restaurant by enticing that restaurant to join the platform.

The model outlined above yields tractable choice probabilities even when Vi(Gj , pj) depends on

menu prices that vary across restaurants. This is because the consumer’s choice of restaurant can

generally be reformulated as a choice between platform portfolios and, since the sets of restaurants

joining the various platform portfolios are disjoint, the consumer’s tastes for each of these sets are

mutually independent of each other as long as the νijt unobservables are mutually independent of

each other across j. Online Appendix O.8, which derives expressions for choice probabilities in the

model, illustrates the tractability of my approach.

I specify consumer i’s taste for restaurant meals ηi conditional on all market and consumer char-

acteristics as

ηi = µηm + λ′ηdi + η†i ,

where µηm governs average tastes for restaurant dining in market m, di are characteristics of con-

sumer i, and η†i is consumer i’s persistent unobserved taste for restaurant dining. I assume that the

η†i random variable is independent of all other random elements in the model and to be distributed

as η†i ∼ N(0, σ2
η). Consumers’ basic propensities to order from restaurants become increasingly het-

erogeneous as ση is increased, which limits the substitutability of ordering and not ordering.

The parameters of my model are only identified in relation to each other, as changing the scale of

consumer utilities does not affect consumer choice. The scale normalization that I use in estimating
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my model is γ = 1. My model’s predictions do not depend on this normalization.

4.3 Restaurant pricing and platform fee setting

Each restaurant chooses the price of its menu item after all restaurants have joined platforms.

Restaurants simultaneously set their prices across platforms to maximize their respective profits.

Platforms concurrently set their consumer fees cfz to maximize their profits. A caveat is that Uber

Eats and Postmates, which are both owned by Uber, set their fees to maximize their joint profits.

The solution concept of the combined restaurant pricing and platform fee-setting game is Nash

equilibrium.

I first describe restaurant pricing. Let p∗jf (Gj ,Jm,−j) denote the equilibrium price set by restaurant

j on platform f when Jm denotes the platform portfolio choices of all restaurants in metro m. The

equilibrium prices solve

p∗j = arg max
pj

∑
f∈Gj

[(1− rf )pjf − κjf ]Sjf (Jm, pj , p∗−j),

where κjf is restaurant j’s marginal cost of fulfilling an order placed on platform f , p−j are the

prices of all restaurants in j’s market excluding j, and Sjf are restaurant j’s sales on platform

f . These sales also depend on the platform’s fees cfz, which I suppress in the notation. Online

Appendix O.8 provides an expression for sales Sjf , which is obtained by summing over j’s sales on

f in each ZIP within range of j. I restrict attention to equilibria in which all restaurants sharing

a ZIP z and a platform portfolio G charge the same prices.

The multi-sided markets literature—e.g., Rochet and Tirole (2006)—recognizes that transfers be-

tween end-users of platforms can make the division of a platform’s prices between sides of end-users

irrelevant. This situation is commonly described as the neutrality of the price structure. In the

food delivery setting, neutrality would arise if restaurants completely passed on platform com-

mission charges to consumers through their prices. Restaurant price adjustments, however, do

not imply neutrality in my setting. To understand why, note that the first-order condition in the

restaurant’s pricing problem is

0 = (1− rf )Sjf + [(1− rf )p∗jf − κjf ]
∂Sjf
∂pjf

+
∑
g 6=f

[(1− rg)p∗jg − κjf ]
∂Sjg
∂pjf

. (9)

This yields a markup of

(1− rf )p∗jf − κjf = aj + bj(1− rf ), (10)

where aj measures the effect of changes in pjf on j’s sales on other platforms, and bj is the inverse

semi-elasticity of restaurant j’s sales on platform f with respect to its price at f .25 Equation (10)

governs how restaurants adjust their markups for sales on platforms f in response to platform f ’s

25The quantities aj and bj are defined by

aj =

(
∂Sjf
∂pjf

)−1∑
g 6=f

[(1− rg)p∗jg − κjf ]
∂Sjg
∂pjf

, bj =

(
∂Sjf
∂pjf

)−1

Sjf .
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commission rate rf . This markup adjustment implies imperfect pass-through of commissions to

prices and therefore the non-neutrality of the price structure.26

The optimal markup of a restaurant only on platform f that charges commission rate rf is approx-

imately γ/α in the simplified case in which all consumers share a price sensitivity αi = α. This

expression is intuitive in that a restaurant’s market power is increasing in the extent of restaurant

differentiation γ and decreasing in consumer price sensitivity α. Online Appendix O.10 establishes

this approximation, and it provides additional analysis of optimal pricing.

I now consider platform fee setting. Each platform f ’s profits in a ZIP z depend on their constant

marginal costs mcfz of fulfilling deliveries in ZIP z. These costs include payments to drivers and

costs of interfacing with consumers and restaurants. Platform marginal costs may vary across

locations due to differences in going rates for delivery couriers across regions, which in turn reflect

differences in local costs of labour, automobile insurance, and fuel. Interregional differences in the

regulation of benefits owed to delivery drivers provide another source of cost variation. California’s

Proposition 22, for example, requires platforms to pay delivery drivers $0.30 per mile driven to

cover expenses related to their employment. I do not allow, however, platforms’ marginal costs to

depend on the number of orders placed on platforms. The assumption underlying this restriction

is that platforms are price takers in local labour markets that determine the going wage rates for

delivery couriers. A platform f ’s profits from sales in ZIP z are

Λfz = sfz(cz,Jm)︸ ︷︷ ︸
Sales

×

 cfz︸︷︷︸
Consumer

fee

+ rfz︸︷︷︸
Restaurant
commission

p̄∗fz︸︷︷︸
Average restaurant

price in z on f

− mcfz︸ ︷︷ ︸
Marginal

cost

 , (11)

where sfz are platform f ’s sales in ZIP z and Jm is the configuration of restaurants in metro

m across platform portfolios. The quantity p̄∗fz is the sales-weighted average price charged by

a restaurant for a sale on f in ZIP z. DoorDash and Grubhub choose cfz in each ZIP z to

maximize Λfz, whereas Uber Eats and Postmates set their fees in ZIP z to maximize Λfz +

Λf ′z, where f denotes Uber Eats and f ′ denotes Postmates. In the stage-game equilibrium, each

platform maximizes its relevant profit measure simultaneously, with this simultaneity extending to

the optimality of restaurants’ prices.

4.4 Restaurant choice of platform portfolio

Restaurants choose which platforms to join in a positioning game in the spirit of Seim (2006). In

this model, restaurants simultaneously choose which platforms to join to maximize sums of their

expected profits and idiosyncratic choice disturbances. These disturbances represent mispercep-

tions of the profitability of platform adoption or managers’ non-pecuniary motives for platform

26The markup adjustment generally depends on responses of aj and bj to rf , but these objects’ responses do not
completely counteract the direct effect of rf on the markup as suggested by (10).
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adoption. A restaurant j’s expected profits from joining platform portfolio G are

Πj(G, Pm) = EJm,−j

∑
f∈G

[(1− rfz))p
∗
jf (G,Jm,−j)− κjf ]Sjf (G,Jm,−j , p

∗) | Pm


︸ ︷︷ ︸

:=Π̄j(G,Pm)

−Km(G). (12)

The expectation in (12) is taken over rivals’ platform adoption decisions Jm,−j , which are unknown

to restaurant j at the time of its portfolio choice. The distribution of these decisions are determined

by the probabilities Pm = {Pk(G) : k,G} with which rival restaurants k choose each platform

portfolio G. Additionally, Km(G) is j’s fixed cost of joining portfolio G. This fixed cost applies to

all restaurants in market m that join G. I assume that restaurants correctly anticipate the prices

pjf and fees cfz that obtain for any realized configuration Jm of restaurants across portfolios in

the downstream pricing and fee-setting game.

Restaurant fixed costs Km(G) do not represent payments to platforms. Instead, they include fixed

costs undertaken in contracting with delivery platforms; in maintaining the restaurant’s listing

and menu on the delivery platform; in interacting with delivery platforms regarding payments and

customer service matters; in maintaining a logistical system for receiving and processing orders

placed online; and in training staff to interface with delivery platforms. An alternative to modelling

fixed costs that apply to platform portfolios G is to specify a fixed cost for each platform f and

to obtain the cost of adopting each portfolio G by summing these platform-specific costs across

all platforms f ∈ G. I prefer my approach because it allows for economies of scale in platform

adoption. The investments required to accept orders on one delivery platform—e.g., training staff

to interface with platforms and setting up stations for delivery order pick-ups—may reduce the

costs of joining additional delivery platforms.

Restaurant j’s choice of platform portfolio maximizes the sum of its expected profits and a distur-

bance ωj(G) that represents either (i) the restaurant’s idiosyncratic misperceptions of the profitabil-

ity of platform adoption or (ii) non-pecuniary motives for joining food delivery platforms:

Gj = arg max
G:0∈G

[Πj(G, Pm) + ωj(G)] . (13)

The maximum in (13) is taken over all platform portfolios that involve joining the offline platform.

This eliminates the possibility of restaurants choosing not to accept orders directly from consumers.

To rule out the possibility of shifting all fixed costs by an identical amount without affecting choices,

I normalize Km({0}) to zero. An equilibrium in the platform portfolio choice model is a sequence

of probabilities P ∗m = {P ∗j (G) : j,G} such that

P ∗j (G) = Pr

(
G = arg max

G′
Πj(G′, P ∗m) + ωj(G′)

)
(14)

for all restaurants j in market m and for all platform portfolios G. Note that the right-hand

side of (14) is the probability that restaurant j’s best response to rivals’ choice probabilities P ∗m
is to join platform portfolio G. Thus, an equilibrium is defined as a sequence of portfolio choice

probabilities that arise when restaurants’ best responses to each other’s choice probabilities give

rise to these choice probabilities. Note that condition (14) defines P ∗m as a fixed point. As long as
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the mapping from P ∗m to the right-hand side of (14) is continuous—as holds under my parametric

assumptions—Brouwer’s fixed point theorem ensures the existence of an equilibrium. Formally,

the solution concept of the game is quantal response equilibrium (McKelvey and Palfrey 1995);

in a quantal response equilibrium, restaurants’ best responses to their rivals’ platform adoption

probabilities give rise to those adoption probabilities (i.e., adoption probabilities constitute a fixed

point).

I specify restaurants’ platform adoption disturbances as

ωj(G) =
∑
f∈G

σrcω
rc
jf + σωω̃j(G), (15)

where ωj(G) are mean-zero type 1 extreme value random variables drawn independently across j

and G. Additionally, the ωrcjf are standard normal random variables drawn independently across

restaurant j and platform f . The parameter σω governs the variability of portfolio-specific idiosyn-

cratic disturbances, whereas σrc governs the extent to which platform portfolios are differentially

substitutable based on their constituent platforms. The specification in (15) makes the choice

model a random coefficients logit model in the style of Berry et al. (1995). The random coefficients

σrcω
rc
jf in the model are on indicators 1{f ∈ G} for platform membership of a portfolio. In the

absence of random coefficients, the probability that a restaurant diverts to a platform portfolio

upon leaving its initial portfolio does not depend on the extent to which the new portfolio overlaps

with the initial one. To illustrate, consider a model that does not feature random coefficients

in which the expected profits net of the Km(G) fixed costs are equal across platform portfolios.

Suppose that a restaurant in this setting initially belongs to DoorDash and Uber Eats before Uber

Eats exits the restaurant’s market. This restaurant would be as likely to switch to the portfolio

containing only Grubhub as to the portfolio containing only DoorDash upon this exit. This is a

strong restriction given that the restaurant’s initial choice of DoorDash could reflect a favourable

assessment of DoorDash; a model with random coefficients permits this possibility through the

ωrcjf deviates that reflect restaurants’ idiosyncratic assessments of platforms. Failing to capture

differential substitution among portfolios based on their constituent platforms could bias the re-

sults of counterfactual analysis assessing fee caps. This possibility for bias owes in part to the role

of random coefficients in making portfolios that contain one platform f better substitutes than

the non-adoption portfolio G = {0} for multihoming portfolios containing f . Under higher values

of σrc, increasing the profitability of platform adoption induces greater substitution from single-

homing to multihoming relative to substitution from the alternative of joining now platforms (i.e.,

G = {0}) to multihoming. These patterns of substitution have different implications for consumer

welfare.

Although the existence of an equilibrium in restaurants’ platform adoption game is guaranteed, this

equilibrium may not be unique. In practice, I am unable to find multiple equilibria at my estimated

parameters.27 See the appendix of Seim (2006) for a discussion of the uniqueness properties of

27In each metro area in my data, I compute equilibria using the algorithm outlined in Online Appendix O.10 from
the following initial choice probabilities: (i) the ZIP-specific empirical frequencies of restaurants’ platform portfolio
choices, (ii) probability one of restaurants choosing not to join any platform, (iii) probability one of restaurants
choosing to join all platforms, and (iv) the ZIP-specific empirical frequencies of restaurants’ platform portfolio
choices randomly shuffled between portfolios within each ZIP. I find the same equilibrium in each market using each
of these initial choice probabilities.
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equilibria in positioning games of the sort that I specify.

Note that my model may be interpreted as an incomplete information game wherein the ωj(G)

disturbances are fixed cost shocks privately known to j. This is the interpretation suggested by

Seim (2006), who studies Bayesian-Nash equilibria of an incomplete information positioning game.

A Bayesian-Nash equilibrium of the Seim (2006) incomplete information game is equivalent to a

quantal response equilibrium of a normal form game with expected profits Πj(G, Pm) as payoffs and

without private fixed-cost shocks. I prefer the quantal response interpretation because it avoids

an interpretation of the ωj(G) disturbances as structural fixed-cost shocks that remain privately

known in equilibrium. In conducting welfare analysis, I do not count the ωj(G) toward restaurant

profits.

I conclude this section by justifying my use of a Seim (2006) positioning game for restaurants’

platform adoption. Equilibria in this game are easier to find than Nash equilibria in complete

information games. Complete information entry games also suffer from problems related to multi-

plicity of Nash equilibria reflecting non-uniqueness in the identities of players that take particular

actions. Given that an equilibrium in my setting is determined by a choice probability common

to all restaurants of a particular type (as defined by ZIP z), I circumvent this problem of non-

uniqueness in identities. One critique of positioning games in the spirit of Seim (2006) is that they

give rise to ex post regret: after players have realized their actions, some players would generally

like to change their actions in response to other players’ actions. This is not a considerable problem

in my setting because the large number of restaurants leaves little uncertainty in each restaurant’s

payoffs from joining a platform portfolio Gj .28

4.5 Platform commission setting

The first stage of the model is platform commission setting. Taking as fixed other platforms’

commission rates, each platform’s commission rate maximizes a weighted sum of (i) the platform’s

expected profits and (ii) the expected size of the platform’s network of restaurants. I include this

second term in platforms’ objective function to address the omission of dynamic pricing incentives

from my measure of platform profits. If restaurants exhibit state dependence in the platforms

with which they sign contracts to join (i.e., if they are more likely to belong to a platform to

which they belonged historically), then a platform’s future profitability increases when it induces

a restaurant to join a platform. Rather than account for this effect in a fully structural manner,

I take a reduced-form approach by specifying that platforms value the size of their networks in

addition to their static profits in setting their commission rates. Model parameters hfm govern the

extent to which platforms value their restaurant networks. This approach has precedent. Castillo

(2022) specifies a ride-hailing platform’s objective function as a weighted sum of current platform

profits, rider surplus, and driver surplus rather than explicitly modelling long-run platform profits.

Gutiérrez (2022) similarly specifies Amazon’s objective function as a weighted sum of Amazon’s

profits, consumer surplus, and seller surplus, including terms for consumer and seller surplus to

28Formally, for any sequence of choice probabilities {PJ,m}∞J=1 indexed by the number of restaurants J , the
difference between the share of restaurants joining each platform portfolio (as encoded in Jm) and Pz(Gj) converges
to zero almost surely due to the strong law of large numbers. This suggests that for a large number of restaurants,
the integrand in the definition of Π̄j is approximately constant across Jm,−j draws, thus leaving little scope for ex
post regret.
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capture unmodelled dynamic considerations. Additionally, Wang et al. (2022) propose a system

for restaurant recommendation that has been adopted by Uber Eats. Their system balances the

interests of restaurants, consumers, and couriers in making recommendations. The adoption of

this system suggests that Uber Eats—and perhaps other platforms—value end users’ interests in

addition to their short-term profits in making strategic decisions.

The expected profits of platform f in metro m at the time of commission setting are

Λ̄fm(rm) =
∑
z∈Zm

EJm [Λfz | P ∗m(rm)] , (16)

where Λfz are the ZIP-specific profits defined in (11) and Zm is the set of all ZIPs in metro m. The

rm vector includes all platforms’ commissions in metro m, and P ∗m(rm) are choice probabilities from

an equilibrium in restaurants’ platform adoption. The expectation is taken over the equilibrium

distribution of restaurants’ platform portfolio choices Jm, which are governed by the P ∗m(rm)

platform adoption probabilities. The problem of a single-platform firm f is then

max
rfm

[
Λ̄fm(rm) + hfmJf (rm)

]
, (17)

where Jf (rm) is the expected number of restaurants that adopt platform f in metro m and hfm

are model parameters. The problems of Uber Eats and Postmates, which are jointly owned, differ

from (17) in that these platforms’ objective functions are sums of Λ̄fm(rm) + hfmJf (rm) over

f ∈ {Uber Eats,Postmates}.

5 Estimation

5.1 Estimation of the consumer choice model

My estimation procedure features a step for each stage of my model. In the first step, I estimate

the consumer choice model using a maximum likelihood estimator. This estimator maximizes the

likelihood of consumers’ observed sequences of platform choices conditional on observed covariates.

Each consumer i ∈ {1, . . . , n} in my data places Ti ≤ T orders from restaurants, with Ti varying

across i. Recall that T is the maximum number of ordering occasions in my model. In practice,

I treat each panelist/month pair in my data as a separate consumer, and I set T to the 99th

percentile of the number of monthly orders placed by a panelist in Q2 2021. This quantity is

T = 20. I include consumers who place at least one restaurant order in Q2 2021 in my estimation

sample, but I exclude consumers who place over T orders in a month.

My estimator’s objective function is

 L(θ, Yn, Xn) =

n∑
i=1

log

∫ Ti∏
t=1

`(fit | xi, wm(i),Ξi; θ)×
T∏

t=Ti+1

`0(xi, wm(i),Ξi; θ)dH(Ξi; θ)

 , (18)

where Yn = {fit : i, 1 ≤ t ≤ Ti} contains each consumer i’s selected platform fit across ordering

occasions t. Similarly, Xn = {xi, wm(i) : 1 ≤ i ≤ n} contains observable consumer characteristics
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xi and characteristics wm(i) of consumer i’s metro area m(i) that affect consumer i’s ordering

decisions. The xi vector includes consumer i’s ZIP, age, marital status, and household income.

The wm vector includes the configuration of restaurants across platform portfolios in each ZIP of

market m as well as the platform fees cfz, waiting times Wfz, and restaurant prices pjf in market

m. The random vector Ξi includes the persistent channel tastes ζ†i , the persistent platform tastes

ζ̃if , and the unobservables η†i governing tastes for restaurant orders. The taste unobservables Ξi

are distributed according to the distribution function H, which depends on the model parameters

θ. Additionally, `(f | x,Ξ; θ) is the probability that a consumer chooses to order from platform f

given explanatory variables x, taste unobservables Ξ, and model parameters θ, whereas `0(x,Ξ; θ)

is the probability that the consumer does not order from a restaurant given these conditioning

variables. Online Appendix O.8 provides expressions for ` and `0.

Under my chosen parametric assumptions, ` and `0 have closed forms: they are sums of products of

logit choice probabilities. Integrals of logit-type choice probabilities over continuously distributed

unobserved heterogeneity Ξi, however, generally lack closed forms. My case is no exception: the

integral in (18) has no closed form. I approximate this integral by simulation with 300 draws of

Ξi for each consumer i in my sample. Last, estimating my model on data from all markets and

including platform/metro fixed effects δfm and metro-specific tastes µηm for restaurant orders is

computationally difficult due to the large number of parameters involved. I limit the number of

parameters by estimating the model on data from the largest three metros: those of New York

City, Los Angeles, and Chicago. I subsequently estimate the δfm and µηm parameters for each

remaining metro m by maximizing the likelihood function (18) as computed on data from metro

m with respect to these parameters. In doing so, I hold fixed the other model parameters at their

estimated values.

Identification. A primary identification concern in demand estimation is price endogeneity owing

to unobserved demand shifters that affect firms’ pricing incentives. The standard solution to

the price endogeneity problem, which follows Berry et al. (1995), is to use instrumental variables

that shift prices without shifting structural demand unobservables. In this approach, demand

for each product in each market is assumed to be affected by a scalar unobservable interpretable

as unobserved product quality that affects demand through a linear index. I make a similar

assumption in my specification of the platform taste indices ψi, with the similarity stemming

from the fact that my δfm fixed effects are market-specific unobservable tastes for platforms. The

fact that I possess data with significant within-market variation allows me estimate the δfm as

parameters. The within-market variation in price in my data is partly attributable to variation in

commission cap policies and in local demographics within a market.

A concern related to price endogeneity in markets with network externalities is the endogeneity of

platforms’ networks. This problem arises in my setting because unobservables shifting demand for

platforms affect restaurants’ decisions to join platforms. The fixed effects approach with which I

address my price endogeneity problem also addresses this network endogeneity problem: I identify

effects of restaurants’ platform adoption decisions on concern ordering using variation in platforms’

networks of restaurants within a metro. Intramarket variation in the distribution of restaurants

across platform portfolios owes partly to variation in commission cap policies and local demograph-

ics within markets.
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The panel structure of my data permits the identification of the scale parameters σζ1, σζ2, and

ση governing heterogeneity in consumer tastes for platforms and restaurant dining. Recall that

consumer i’s persistent unobserved tastes for platform f are ζif = ζ†i + ζ̃if , where ζ†i ∼ N(0, σζ1)

and ζ̃if ∼ N(0, σζ2). When σζ1 is large, consumers are polarized in their tastes for ordering

through platforms. This leads consumers to either repeatedly order meals through platforms or

repeatedly order meals directly from restaurants. Repetition in the choice to order through a

platform is consequently informative about the value of σζ1. Similarly, a large value of σζ2 implies

that consumers are highly polarized in their tastes for individual platforms. This leads consumers

to repeatedly choose the same food delivery platform when using a platform to order a meal.

Conversely, when σζ2 is low, consumers do not have strong idiosyncratic preferences for platforms,

and are more likely to switch between delivery platforms. Thus, repetition in platform choice

is informative about the value of σζ2. Last, ση controls polarization among consumers in tastes

for restaurant dining. When consumers are highly polarized in their tastes for restaurant meals,

they tend to either frequently order from restaurants or rarely order from restaurants. Thus,

heterogeneity across consumers in the number of orders placed from restaurants is informative

about the value of ση. Note that state dependence alternatively explains persistence in consumer

ordering; my model rules out this possibility.

Market size. The consumer choice model presented by Section 4.2 yields predictions of sales given

counts of consumers in each ZIP. I set the number of consumers in each ZIP so that my model

implies platform sales equal to those that I observe in my data. Appendix C explains this procedure

in detail.

5.2 Estimation of restaurant marginal costs

The profits of a restaurant j that adopts platform portfolio Gj are∑
f∈Gj

[(1− rf )pj0 − κjf ]Sjf (Jm, p), (19)

where Sjf are restaurant j’s sales on platform f , Jm are the platform adoption decisions of all

restaurants in market m, and p contains the prices of all restaurants in market m. In (19) and what

follows, I introduce the commission r0 of the direct-from-restaurant platform and set it to zero for

expositional convenience. The first-order condition for restaurant profit maximization is


(1− rf1)Sjf1

(1− rf2)Sjf2

...

(1− rfk)Sjfk


︸ ︷︷ ︸

=S̃j

+



∂Sjf1
∂pjf1

∂Sjf2
∂pjf1

. . .
∂Sjfk
∂pjf1

∂Sjf1
∂pjf2

∂Sjf2
∂pjfd

. . .
∂Sjfk
∂pjf2

...
...

. . .
...

∂Sjf1
∂pjfk

∂Sjf2
∂pjfk

. . .
∂Sjfk
∂pjfk


︸ ︷︷ ︸

=∆p




(1− rf1)pjf1

(1− rf2)pjf2

...

(1− rfk)pjfk


︸ ︷︷ ︸

=p̃j

−


κjf1

κjf2

...

κjfk


︸ ︷︷ ︸

=κ̃j


= 0, (20)
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where Gj = {f1, . . . , fk}. Solving for marginal costs yields

κ̃j = p̃j + ∆−1
p S̃j . (21)

Equation (21) provides the basis of my estimation of restaurant marginal costs. My estimation

procedure begins with the computation of the right-hand side of (21) at the estimated parameters

of the consumer choice model and the observed restaurant prices. I compute this quantity for each

restaurant j in a market m. In addition, I assume that

κjf =

κdirect
z , f = 0

κplatform
z , f 6= 0,

where κdirect
z is a restaurant’s cost of preparing a meal for a direct order and κplatform

z is the cost

of preparing a meal for a platform order. Marginal costs of preparing platform orders may differ

from those for direct orders due to differences in the packaging of delivery orders and to costs of

communicating with delivery platforms. Both commissions and higher costs could explain a gap

between prices for platform-intermediated orders and those for direct orders. Additionally, the

greater the extent to which a difference in costs explains this gap, the less scope there remains for

commission reductions to narrow the gap. The costs κjf that I recover from (21) generally differ

across restaurants within a particular platform f due to sampling error in my estimates of the

consumer choice model parameters. In light of these differences, I use the cross-restaurant average

of the κj0 costs recovered from (21) as my estimator of κdirect
z . I similarly use the average κjf

recovered from (21) across pairs of platforms f 6= 0 and restaurants j locating on these platforms

as my estimator of κplatform
z .

5.3 Estimation of platform marginal costs

I estimate platform marginal costs from first-order conditions for the optimality of platforms’

consumer fees. This procedure follows the standard approach for estimating marginal costs in

the differentiated products literature following Berry et al. (1995). Within a ZIP z, platforms’

consumer fees solve the following system of first-order conditions:

(H�∆c)(cz + rm � pz −mcz) + sz = 0,

where cz is a vector containing each platform’s consumer fee in ZIP z, rm is a vector containing

each platform’s commission rate, pz is a vector including the sales-weighted average restaurant

price in the ZIP on each platform f , and mcz is a vector containing each platform f ’s marginal

cost mcfz. The vector sz similarly contains each platform f ’s sales in z. The � operator denotes

entry/component-wise multiplication.29 Letting F denote the number of online platforms, ∆c is

an F × F matrix whose (f, f ′) entry is ∂sf/∂cf ′z. The H matrix also has dimension F × F ; its

29My exposition follows Conlon and Gortmaker (2020).
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(f, f ′) entry indicates whether f and f ′ have the same owner.30 Therefore,

mcz = cz + rm � pz + (H�∆c)
−1sz. (22)

I estimate mcz by substituting the observables cz, rm, and pz and ∆c and sc as evaluated at the

estimated consumer choice model parameters into the right-hand side of (22).

5.4 Estimation of parameters governing platform adoption by restaurants

I estimate the parameters Km and Σ = (σω, σrc) governing restaurants’ platform adoption decisions

using a conditional choice probability generalized method of moments (CCP-GMM) estimator.

Recall that, as stated by (13), restaurants choose platform portfolios to maximize their profits

given beliefs that are consistent with actual choice probabilities. The first stage of my estimation

procedure involves estimating restaurants’ CCPs as a function of state variables affecting their

profits. The second stage involves setting restaurants’ choice probabilities to the estimated CCPs

and subsequently fitting the model’s prediction of restaurants choices to observed choices. A

desirable feature of CCP estimators is that they do not require finding an equilibrium for each

trial parameter vector considered by an estimation algorithm. Singleton (2019) similarly uses a

CCP estimator to estimate a model of firm positioning based on that of Seim (2006).

For the CCP stage of the CCP-GMM estimator, I specify restaurants’ conditional probabilities of

joining platform portfolios as a multinomial logit, and I estimate the parameters of this logit by

maximum likelihood. The covariates that I include in the logit are: the population of the region

within five miles of the restaurant; the number of restaurants within five miles of the restaurant;

municipality fixed effects; an indicator for a commission cap being in effect in the restaurant’s

area; and the shares of the population within five miles that are under 35 years of age, married,

both under 35 years of age and married, and that have an annual household income under $40,000.

I also include interactions of the overall population with the population shares of demographic

groups and with the total number of restaurants.

Given first-stage CCPs P̂m, it is straightforward to compute each restaurant’s probability of joining

a platform portfolio G for a trial value of parameter values θadopt, where θadopt includes the common

fixed costs of platform adoption {Km(G)}G,m as well as the Σ parameters. I estimate θadopt using

a GMM estimator.31 Defining this GMM estimator requires some new notation. Let nJ be the

number of restaurants in the estimation sample, and let GnJ denote the nJ -vector of observed

platform portfolio choices. Additionally, let Πe
nJ

denote a nJ × nG matrix whose (j, k) entry is

30When the platforms are ordered as DoorDash, Uber Eats, Grubhub, and then Postmates, H is given by

H =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

 .
31I do not use a maximum likelihood estimator on account of the finite-sample problems of maximum likelihood

estimation, which are well documented in the industrial organization literature on entry games. These problems
relate to the fact that the maximum likelihood objective function highly penalizes the assignment of near-zero
probabilities to outcomes that occur in the data; see Pakes et al. (2007) and Collard-Wexler (2013) for more detailed
explanations. Both of these papers use estimators that fit the model to aggregated data moments rather than
predictions for individual observations. By using a GMM estimator, I take a similar approach.
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equal to restaurant j’s expected variable profits from selecting the kth platform portfolio Gk. Here,

nG is the number of platform portfolios. Last, let Dj be the log of the population under the

age of 35 residing within five miles of j. I use Dj as a shifter of the profitability of platform

adoption.

My GMM estimator is based on moment conditions that match the model’s predictions to the data.

The first set of moment conditions match the model’s predictions of aggregated choice probabilities

to empirical frequencies. These conditions involve the functions

gmG(Gj ,Πe
j , Dj ; θ

adopt) = 1{m(j) = m}
(
Q(G,Πe

j ; θ
adopt)− 1{Gj = G}

)
∀m,G,

where m(j) is restaurant j’s market and

Q(G,Πe
j ; θ

adopt) = Pr

(
G = arg max

G′

[
Π̄j(G′, P̂m)−Km(G) + ωj(G)

]
| θadopt

)
is the probability that restaurant j chooses platform portfolio G. Note that, when θadopt

0 are the

true model parameters and Πe
j is computed using restaurants’ true conditional choice probabilities,

the law of iterated expectations implies E[gmG(Gj ,Πe
j , Dj ; θ

adopt
0 )] = 0. The corresponding sample

moment conditions are
1

nJ

nJ∑
j=1

gmG(Gj ,Πe
j , Dj ; κ̂) = 0 ∀m,G. (23)

I target the Σ parameters that govern substitution patterns by including additional moment con-

ditions. Each of these moment conditions equalizes the covariance of Dj and a measure of platform

adoption as computed on the estimation sample and as predicted by the model. The two measures

of platform adoption that I use are (i) an indicator for whether the restaurant joins any online

platform and (ii) the number of online platforms that a restaurant joins. These moment conditions

are based on the functions

gω,1(Gj ,Πe
j , Dj ; θ

adopt) = Dj ×
(
1{Gj 6= {0}} − (1−Q({0},Πe

j ; θ
adopt))

)
gω,2(Gj ,Πe

j , Dj ; θ
adopt) = Dj ×

(
|Gj | −

∑
G
|G| ×Q(G,Πe

j ; θ
adopt)

)
,

where |G| is the cardinality of set G. When θadopt
0 are the true model parameters that generate Gj ,

and when Πe
j is computed using the true CCPs,

E[gω(Gj ,Πe
j , Dj ; θ

adopt
0 )] = 0. (24)

The sample moment conditions corresponding to (24) are

1

nJ

nJ∑
j=1

gω,k(Gj ,Πe
j , Dj ; κ̂) = 0, k ∈ {1, 2}. (25)

Increasing σω makes restaurants less responsive to expected profits when choosing which plat-

forms to join. Given that a higher population of young people—who are especially likely to enjoy
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platforms—boosts the profit gains from joining platforms, a larger covariance between Dj and plat-

form adoption suggests a smaller value of σω. The moment conditions in (24) are also informative

about σrc because responses of the share of restaurants on platforms and of the average number of

portfolios joined differentially depend on σω and σrc. Increasing σrc makes platform portfolios with

more overlap more substitutable, and portfolios with less overlap less substitutable. This means

that restaurants that do not belong to any platform are more likely to substitute to a portfolio

with one platform than one with multiple platforms when σrc is high. Thus, for a fixed increase in

the share of restaurants belonging to at least one online platform, the average number of platforms

joined increases by less when σrc is larger.

A natural alternative to using the moment condition (24) in the GMM estimation would be to

replace the profit shifter Dj with estimated profits. This approach is problematic when expected

profits are mismeasured. Such mismeasurement could owe to both sampling error in my demand

estimates and to misspecification error. Whereas the relationships between restaurant decisions and

expected profit estimates are attenuated by measurement error, the relationship between restaurant

decisions and local demographics is unlikely to be attenuated as long as the American Community

Survey precisely estimates regional demographics. Matching an attenuated empirical relationship

between platform adoption and prices may yield an underestimate of restaurants’ responsiveness

to the profitability of platform adoption, i.e., an overestimate of σω.32

The sample moment condition corresponding to (24) is

1

nJ

nJ∑
j=1

gω(Gj ,Πe
j , Dj ; κ̂) = 0. (26)

My estimator κ̂ is the vector of parameter values that solves equations (23) and (26). Given that

that the number of equations across (23) and (26) is equal to the number of parameters that I

estimate, it is generally possible to solve these equations exactly.

5.5 Estimation of restaurant-network weights in platform objective functions

Recall that a single-platform firm f in metro m sets its commission rate rfm to maximize

Λ̄fm(rm) + hfmJfm(rm),

Manipulating the first-order condition for this problem yields

hfm = −
(
∂Jf
∂rfm

)−1 ∂Λ̄fm
∂rfm

. (27)

32An analogy to the linear regression model illustrates this point. In the linear regression setting, the OLS
estimator equalizes the covariance between the dependent variable and the regressor with the covariance between
the model’s fitted value and the regressor. This estimator is subject to attenuation bias when the regressor is
mismeasured. The instrumental variables estimator instead equalizes the covariance between the dependent variable
and an instrumental variable with the covariance between the model’s fitted value and the instrument. When the
instrument is independent of the measurement error in the regressor, this estimator is not subject to attenuation
bias. In my setting, the variable Dj plays the role of an instrumental variable that shifts the profitability of
platform adoption (given that younger people are more likely to use online food delivery) without suffering from the
mismeasurement problems plaguing my measure of expected profits.
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I assume that Uber Eats and Postmates set their commissions to maximize their joint profits.

Letting f denote Uber Eats and f ′ denote Postmates, the analogous expression to (27) for joint

profit maximization between two platforms is

[
hfm

hf ′m

]
= −

 ∂Jfm
∂rfm

∂Jf ′m
∂rfm

∂Jfm
∂rf ′m

∂Jf ′m
∂rf ′m

−1
 ∂

¯
Λf

∂rfm
+

∂
¯
Λf ′

∂rfm

∂
¯
Λf

∂rf ′m
+

∂
¯
Λf ′

∂rf ′m

 .
I estimate the hfm parameters using a plug-in estimator that I compute by substituting estimates

obtained in the earlier steps of my estimation procedure into Λ̄fm and Jfm in place of their

associated true parameters.

6 Estimation results

6.1 Parameter estimates for consumer choice model

Table 9 reports estimates of consumer choice model parameters. Recall the scale normalization

that γ = 1, which implies that all estimates are interpretable as ratios over γ. Several estimates

are noteworthy. First, the scale parameter σζ1 of persistent idiosyncratic tastes for online ordering

is large, indicating significant dispersion across consumers in tastes for online ordering. The scale

parameter of idiosyncratic tastes σζ2 is smaller but also sizeable, suggesting that consumers are

divided by both overall taste for online ordering and by tastes for specific platforms. Additionally,

the estimated demographic effects λfage and λfmarried imply that—as suggested by Figure 7—young

and unmarried consumers prefer delivery platforms relative to older and married consumers. The

parameters ληyoung and ληmarried govern differences in tastes for restaurant orders between demo-

graphic groups; we see that young consumers and unmarried consumers have lower tastes for

restaurant orders that are not placed on platforms. In addition, the fact that αLowInc is positive in-

dicates that low-income consumers are more price-sensitive than their higher-earning counterparts,

although this difference in price sensitivity is small. Consumers are estimated to prefer platforms

with lower waiting times, as the estimated disutility τ of waiting time (in hours) is positive and

statistically significant. Last, the large estimate of ση suggests limited substitutability between

restaurant ordering and at-home dining.

To assess the reasonableness of my estimates and to understand ordering behaviour, I check my

estimates’ implications for substitution patterns. First, Table 10 provides the shares of consumers

substituting to each platform and to making no purchase among those who substitute away from

a platform f upon a uniform increase in f ’s consumer fees. The estimates show that, across

platforms, between 25% and 40% of platforms’ consumers who substitute away from ordering on a

platform no longer place any restaurant order. An additional 24–34% switch to ordering directly

from a restaurant whereas the remainder switch to ordering from a different platform.

Next, I compute price elasticities that account for variation in fees across ZIPs. Each of these

elasticities is a percentage change in a platform f ’s sales from a uniform price increase by platform
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Table 9: Selected estimates of consumer choice model parameters

Parameter Estimate SE

α 0.228 0.003
αLowInc 0.009 0.001
σζ1 3.38 0.02
σζ2 1.67 0.01
τ 0.97 0.08
λDD

young 1.19 0.02

λDD
married -0.87 0.02
λUber

young 1.06 0.02

λUber
married -1.07 0.02
λGH

young 0.70 0.02

λGH
married -0.63 0.02
λPM

young 0.89 0.03

λPM
married -1.98 0.03
ση 2.110 0.005
ληyoung -0.68 0.01
ληmarried 0.18 0.01

Notes: this table reports estimates of the parameters of the consumer choice model. Estimates of the platform/metro
fixed effects δfm and the metro fixed effects µηm in consumer tastes for restaurant dining are omitted from the table.

f ′ in a metro m that is a percentage of the average fee charged by f ′ in m.33 Table 11 reports

estimates of these elasticities for the Chicago metro area; the estimated own-fee elasticities range

from -0.96 to -3.05 across platforms. Note that, unlike in the case of one-sided markets, elasticities

under one in absolute value do not contradict profit maximization under non-negative marginal

costs. This is because the effective marginal cost that platforms consider in setting consumer fees

are marginal costs net of restaurant commissions.

I similarly define network elasticities as the percentage change in platforms’ sales in response to

a uniform percentage increase in the number of new restaurants on platform f across ZIPs in

a metro m.34 Table 12 reports the resulting estimates of network elasticities of demand for the

Chicago metro area. Network externalities are substantial: a percentage increase in the number of

33Formally, I compute

εcm,ff ′ =
c̄f ′m
sfm

∂sfm(cf ′m + h)

∂h

∣∣∣∣
h=0

,

where cf ′m is a vector of the consumer prices charged by f ′ in m; c̄fm is f ’s average consumer fee across ZIPs in m;
sfm are platform f ’s sales in m; and I have suppressed the dependence of sfm on all variables except the consumer
prices charged by platform f ′. These elasticities are standard price elasticities in the case in which there is a single
ZIP in the market m.

34Two challenges arise in defining these elasticities: (i) numbers of restaurants are subject to integer constraints,
which complicates differentiation, and (ii) restaurants may multihome, which requires me to specify the nature in
which I add new restaurants to platform f . I address these challenges by defining network externalities as the
percentage change in platforms’ sales in a market m in response to the addition of one restaurant to each ZIP
that belongs solely to platform f and to the offline platform. I scale the measure by multiplying by the number
of restaurants that belong to f in m so that the elasticities are interpretable as percentage responses in sales to a
percentage increase in the number of restaurants on platform f . Formally, the elasticity of f ’s sales with respect to
the network on f ′ is

εJm,ff ′ =

(
s′fm − sfm

sfm

)
/

(
J ′f ′m − Jf ′m

Jf ′m

)
,

where Jf ′m and J ′f ′m are the number of restaurants on f ′ before and after the addition of one restaurant on f ′ to
each ZIP, and s′fm are f ’s sales after the addition of these new restaurants.
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restaurants on a platform leads to a 0.48–1.10% increase in ordering on that platform.

Table 10: Between-platform diversion ratios for the Chicago metro

Quantity response for...
Platform No purchase Direct DD Uber GH PM

DD 0.40 0.34 -1.00 0.17 0.07 0.02
Uber 0.38 0.31 0.21 -1.00 0.07 0.02
GH 0.30 0.29 0.22 0.17 -1.00 0.02
PM 0.25 0.24 0.24 0.19 0.09 -1.00

Notes: this table reports the share of consumers who substitute to each platform and to making no purchase among
those who substitute away from a platform f upon a uniform increase in f ’s consumer fee. Formally, the table
reports

dff ′ =

(
∂sfm(cf ′m + h)

∂h

∣∣∣∣
h=0

)
/

(
− ∂sf ′m(cf ′m + h)

∂h

∣∣∣∣
h=0

)
where cf ′m is a vector of the consumer fees charged by f ′ across all ZIPs within m; sfm are alternative f ’s sales in
m; and I have suppressed the dependence of sfm on all variables except the consumer prices charged by platform f ′.
The sales of the no-purchase alternative are defined as the number of ordering occasions in which the consumer makes
no purchase. Each column provides diversion ratios dff ′ for a particular alternative f whereas each row provides
diversion ratios dff ′ for a particular platform f whose consumer fees increase across m.

Table 11: Price elasticities of demand for the Chicago metro

Quantity response for...
Platform DD Uber GH PM

DD -0.99 0.23 0.29 0.39
Uber 0.14 -0.96 0.20 0.28
GH 0.07 0.08 -1.26 0.13
PM 0.03 0.03 0.04 -3.05

Notes: this table reports percentage sales responses to a percentage uniform increase in platform fees in the Chicago
CBSA. Computation of these responses are discussed in the main text.

Table 12: Network elasticities of demand for the Chicago metro

Quantity response for...
Platform DD Uber GH PM

DD 0.48 -0.13 -0.15 -0.16
Uber -0.11 0.58 -0.13 -0.14
GH -0.07 -0.08 0.74 -0.09
PM -0.03 -0.03 -0.03 1.10

Notes: this table reports percentage sales responses to a percentage uniform increase in number of restaurants on
each platform in the Chicago CBSA. Computation of these responses are discussed in the main text.

Figure O.12 in Online Appendix O.11 reports average sales differences between restaurants that

belong to online platforms versus those that only fulfill orders directly from consumers. The figure

shows that, on average across ZIPs and relative to restaurants that do not belong to any platform,

the sales of a restaurant that joins DoorDash, the most popular platform, are 29% higher.

6.2 Estimates of restaurant marginal costs

Table 13 describes the restaurant markups implied by my estimates of κjf . Restaurants’ markups

on platforms are much larger where commission caps are in effect. Their markups for direct orders
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are about a fifth of their prices. Additionally, the estimated costs for direct orders and platform-

intermediated orders are similar; they differ by only one cent on average across ZIPs.35

Table 13: Restaurant markups ($)

Means ± std. dev. across ZIPs by channel, policy

Channel No cap Cap

Direct 4.34±0.02 4.33±0.02
Platform 1.96±0.15 3.60±0.12

Notes: the table describes markups (1−rf )pjf−κjf across ZIPs separately for direct orders (for which the commission
rate is r0 = 0) and platform-intermediated orders, and also separately for ZIPs with commission caps and those
without caps. Note that the average price for a direct-from-restaurant order is $21.89 (standard deviation: $1.17).

6.3 Estimates of platform marginal costs

Table 14 describes the estimated cross-ZIP distribution of platform marginal costs of fulfilling

orders. It also reports the implied cross-ZIP distributions of platform markups cfz+rfmp̄
∗
fz−mcfz.

Courier compensation is the primary component of platform marginal costs. As of September 2022,

DoorDash’s website stated that “Base pay from DoorDash to Dashers ranges from $2–$10+ per

delivery depending on the estimated duration, distance, and desirability of the order”; (“Dashers”

is DoorDash’s name for its couriers).36 This level of courier pay seems consistent with the estimated

interquartile range of DoorDash’s marginal costs of $7.08 to $9.72.

Table 14: Estimates of platforms’ marginal costs ($)

Platform
Marginal costs Markup

Mean 25th %ile Median 75th %ile Mean 25th %ile Median 75th %ile

DD 8.20 7.08 8.79 9.72 5.90 5.38 5.86 6.43
Uber 8.08 6.95 8.04 9.13 5.83 5.44 5.84 6.22
GH 9.39 7.40 9.87 10.94 4.52 4.26 4.58 4.91
PM 13.98 11.86 14.21 15.72 4.79 4.27 4.80 5.37

6.4 Estimates of restaurant platform adoption model

Table 15 reports estimates of the parameters governing platform adoption by restaurants. In

interpreting these parameters, note that the average expected variable profits of a restaurant that

joins no online platform across ZIPs in my sample is roughly $12,500 a month. Given that I set the

market size so that platform sales equal their observed sales for April 2021, my fixed cost estimates

are interpretable as costs incurred to join platform portfolios for that month. The three lowest of

the estimated fixed costs Km(G) are those for platform portfolios including a single platform, which

is to be expected if joining multiple platforms is more costly than joining a single one. I compute

the standard errors reported by Table 15 using the bootstrap procedure described in Appendix

D. The estimated scale parameter of restaurants’ idiosyncratic ω̃j(G) disturbances of joining the

platforms in G is about $650, which implies a standard deviation of about $834. This is smaller

35Figure O.16 in Online Appendix O.7 reports the distribution of the estimated difference κplatform
z −κdirect

z , which
concentrates in [-$2.00, $2.00].

36See https://help.doordash.com/consumers/s/article/How-do-Dasher-earnings-work.
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than the fixed costs of joining platform portfolios. The parameter σrc, which controls the variance

of random coefficients on platform membership of portfolios, is statistically significant.

Table 15: Estimates of restaurant platform adoption parameters ($’000s/month)

Parameter Estimate SE

σω 0.65 0.04
σrc 0.34 0.03
Fixed cost: DD 1.45 0.07
Fixed cost: Uber 1.52 0.07
Fixed cost: GH 2.34 0.10
Fixed cost: PM 1.56 0.08
Fixed cost: DD, Uber 2.32 0.11
Fixed cost: DD, GH 2.33 0.11
Fixed cost: DD, PM 2.00 0.08
Fixed cost: Uber, GH 2.29 0.12
Fixed cost: Uber, PM 3.04 0.15
Fixed cost: GH, PM 2.97 0.14
Fixed cost: DD, Uber, GH 2.68 0.11
Fixed cost: DD, Uber, PM 3.12 0.15
Fixed cost: DD, GH, PM 3.05 0.14
Fixed cost: Uber, GH, PM 2.99 0.14
Fixed cost: All 1.89 0.06

Notes: the table reports estimates of parameters governing restaurants’ platform adoption decisions and, in the
“SE” column, their standard errors as computed using the bootstrap procedure described in Appendix D. The table
reports these parameters in thousands of dollars. The “Fixed cost” parameters are cross-metro averages of fixed
costs of joining the various platform portfolios. The platforms included in the portfolio corresponding to each row
are indicated in the “Parameter” column.

6.5 Estimates of restaurant-network weights in platform objective functions

Table 16 provides medians and interquartile ranges of the cross-metro distribution of my estimates

of the weights hfm that platforms place on their restaurant networks in setting commission rates.

These estimates suggest that platforms’ dynamic considerations in commission-setting are signif-

icant — beyond the benefit of a restaurant on a platform’s contemporaneous profits, platforms

value the addition of a restaurant to their network by $850–$1044 on median across metros.

Table 16: Estimates of restaurant-network weights ($)

(a) Cross-metro distribution of estimated weights

Platform
Quantile

25% Median 75%
DD 740 850 979
Uber 550 606 671
GH 966 1059 1066
PM 992 1044 1195

(b) Standard errors for cross-metro median weights

Platform SE
DD 44
Uber 30
GH 34
PM 67

Notes: this table reports medians of the estimated hfm weights taken across metros m for each leading platform m.
I compute standard errors for median weights across metros using the bootstrap procedure described in Appendix
D.
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7 Counterfactual analysis

This section uses my model to evaluate commission caps. It also evaluates alternative policies

intended to bolster restaurant profitability, and the impact of delivery platforms on the restaurant

industry. I evaluate commission caps by comparing baseline equilibria without commission caps to

equilibria under caps. Rather than perform this section’s counterfactual analyses on the full metro

areas on which I estimate my model, I perform them on the core municipality of each metro area

and, in the case of New York’s metro area, on Manhattan. Limiting attention to metro areas’ core

subregions reduces the computational cost of computing equilibria.

I compute equilibria in my model’s various stage games using a combination of algorithms that

Online Appendix O.10 describes in detail. To summarize, I find equilibria in restaurant prices and

platforms’ consumer fees by iterating on equations implied by first-order conditions for optimal

pricing; I find equilibria in restaurants’ platform adoption game by iterating on the fixed-point

condition (14), using the realized ZIP-specific distributions of restaurants across platform portfolios

as an initial value for the probabilities Pm; and I find equilibria in restaurants’ commission-setting

game using a Newton algorithm.

7.1 Evaluation of 15% commission caps

Table 17: Welfare effects of 15% commission cap (% of platform revenue)

(a) Restaurant price response

Outcome Mean SE Median SE Min. Max.

Consumer welfare (fees/prices only) -3.62 0.06 -3.83 0.07 -4.18 -2.67
Consumer welfare (total) -2.24 0.06 -2.30 0.09 -2.68 -1.45
Restaurant profits 1.25 0.04 1.13 0.08 0.04 2.65
Platform variable profits -1.64 0.05 -1.66 0.07 -2.05 -1.01
Total welfare -2.63 0.10 -2.31 0.11 -3.83 -1.77

(b) No restaurant price response

Outcome Mean SE Median SE Min. Max.

Consumer welfare (fees/prices only) -25.88 0.08 -28.75 0.23 -31.73 -18.47
Consumer welfare (total) -22.40 0.09 -24.78 0.32 -28.58 -14.48
Restaurant profits 9.20 0.08 7.81 0.21 4.07 15.60
Platform variable profits -18.34 0.12 -21.00 0.45 -23.09 -11.51
Total welfare -31.54 0.20 -33.48 0.62 -41.48 -21.80

Notes: all welfare and profit figures are expressed as shares of platform revenues in the absence of commission caps.
The “(fees/prices only)” row gives the change in dollarized expected utility relative to the baseline equilibrium when
fees and prices are set to their levels in an equilibrium under the commission cap while restaurants’ platform adoption
probabilities are held fixed at their values in the baseline equilibrium. The “(Total)” column provides the dollarized
difference in expected utility between equilibria under commission caps and baseline equilibria. I compute the means
and medians across regions wherein I simulate commission caps, and I weight each region by its population. I
compute standard errors using a bootstrap procedure with 100 replicates.

Table 17 summarizes annual welfare effects of commission caps as shares of platform revenue in

baseline equilibria without commission caps. Table 17a reports results for the case in which restau-

rant prices respond to commission caps whereas Table 17b reports results for the case in which
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Table 18: Fee and price effects of a 15% commission cap

Outcome Mean Median Min. Max.

Fee 5.25 5.36 4.48 5.74
Restaurant price -4.72 -4.83 -5.22 -3.94
Net change 0.52 0.53 0.50 0.55

Fees (fixed prices) 4.28 4.34 3.68 4.68

Notes: the table summarizes market-level average effects of a 15% commission cap on (i) platform fees (ii) restau-
rants prices for platform orders in each market in dollar terms across markets. The market-level effects that are
summarized by means (unweighted), medians (unweighted), minima, and maxima are sales-weighted averages taken
across platforms and restaurants. The “Fees (fixed prices)” row reports average effects of a 15% commission cap on
fees in a scenario in which restaurants cannot adjust their prices upon the imposition of the cap.

restaurant prices are held fixed at their levels in the baseline equilibrium. The “Consumer welfare

(total)” row describes the overall effects of caps on consumer welfare, whereas the “Consumer wel-

fare (fees/prices only)” row describes effects of a cap that do not account for changes in restaurant

membership of platforms.

Caps boost restaurant profits while reducing total welfare. This finding holds regardless of whether

restaurant prices respond to commission caps. Both consumers and platforms suffer from commis-

sion caps, and their losses are similar in magnitude. A failure of restaurants to optimally adjust

their prices upon the imposition of a commission cap magnifies the welfare effects of the cap; the

estimated median effect of a cap on consumer welfare is over 10 times greater when restaurant

prices do not respond to the cap. Note that, per order placed on a platform in the baseline equi-

librium, the the mean consumer welfare loss is $0.28, the mean restaurant profit gain is $0.15, the

mean platform profit loss is $0.20, and the mean total welfare loss is $0.33. When restaurant prices

do not adjust, these figures are $2.72 for consumer welfare losses, $1.09 for restaurant profit gains,

$2.24 for platform profit losses, and $3.87 for total welfare losses.

Figure 9 plots the effects of commission caps on consumer welfare, restaurant profits, and platform

profits as a share of participant surplus from delivery platforms, defined here as the sum of consumer

surplus and of restaurant surplus from platforms.37 The figure shows that commission caps reduce

consumer surplus by over 5% of total surplus from food delivery platforms, raise restaurant profits

by about 3% of total surplus, and reduce platform profits by about 4% of total surplus. Summing

over these effects, total welfare falls by over 6% in the metro areas that I study when they all

impose commission caps.

Recall that I estimate the effects of caps with and without restaurant price adjustments because I

do not observe large price adjustments to commission caps in my data. The lack of observed price

adjustment may reflect uniform or zone pricing by restaurants, or uncertainty about the longevity

of caps. Given that commission charges primarily explain why restaurants charge higher prices on

platforms (recall that I do not find a meaningful difference between average restaurant marginal

costs for platform-intermediated and direct-from-restaurant orders), I expect that a permanent

national commission cap would eventually induce a restaurant price response as occurs in the

37As detailed in Section 7.5, I use my model to estimate the participant surplus associated with delivery platforms,
i.e., the difference in joint consumer and restaurant welfare between an economy with platforms (and no commission
caps) and one without platforms. Online Appendix O.7 provides an analogue of Figure 9 that reports caps’ welfare
effects as a share of the sum of participant surplus from platforms and platforms’ variable profits.
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Figure 9: Welfare effects of 15% commission cap relative to participant surplus from platforms
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Notes: this figure plots the ratio of the welfare effects on consumer welfare, restaurant profits, and platform profits
of a 15% commission cap (as reported in Table 17a) and the total surplus from food delivery platforms. Participant
surplus from platforms is the effect of platforms’ availability on the sum of consumer welfare and restaurant profits
(i.e., the “Total welfare: upper bound” row in Table 21). I add both welfare effects of caps and participant surplus
across metro areas to obtain the quantities reported in the figure. Note that the figure provides cumulative welfare
changes when consumers’ changes are considered first, then restaurants, and then platforms.

setting whose results appear in Table 17a. The results suggest that restaurants would benefit from

colluding to maintain their prices at pre-cap levels upon a commission cap’s introduction. These

higher prices, however, reduce consumer welfare. They also reduce platform profits partly because

platform sales experience a greater decline when restaurants do not reduce their prices on platforms

once a cap is introduced.

Another noteworthy result presented by Table 17 is that failing to account for the benefit to

consumers of increased restaurant uptake of platforms leads the researcher to dramatically overstate

consumer welfare losses from commission caps. Indeed, the loss in consumer welfare across markets

is about 70% greater when this benefit is not accounted for, as a comparison of the “Consumer

welfare (fees/prices only)” and “Consumer welfare (total)” rows of Table 17a reveals.

Table 18 summarizes the average effects of commission caps on fees and prices. This table summa-

rizes metro-level sales-weighted averages taken across platforms and restaurants. The “Restaurant

price” row describes effects on the prices that restaurants post on platforms, not on their prices for

direct-from-restaurant orders. Caps raise platform fees by between $4.48 and $5.74. The resulting

increase in the consumer’s cost of placing an order, however, is offset by a decrease in restaurants’

prices on delivery platforms. Indeed, a comparison of the tables shows that the overall cost of

ordering, defined as the sum of the platform’s fee and the restaurant’s price, increases by about 50

cents for each market/platform pair.

The effects of commission caps on consumer welfare depend on consumer characteristics. Figure

10 reports the ratio of the mean welfare loss from a 15% commission cap among consumers in
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various demographic groups relative to the overall mean consumer welfare loss. Young consumers

and unmarried consumers experience greater-than-average losses due to their greater usage of food

delivery platforms.

Figure 11 plots commission caps’ effects on (i) the number of orders placed on platforms and

(ii) the share of restaurants joining a platform across metros. The models’ predicted effects are

similar to the difference-in-differences estimates of commission caps’ effects as reported by Section

3 Additionally, the figure shows that differences in caps’ effects on restaurant uptake of platforms

largely explain differences in effects on ordering among metro areas.

Figure 10: Heterogeneity in consumer losses from commission caps
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Notes: this table reports ratios of the mean welfare loss among consumers in various demographic groups from a 15%
commission cap over the overall mean welfare loss from a 15% commission cap. The mean is taken over consumers
across the 14 markets that I analyze.

Figure 11: Cross-metro comparison of commission caps’ sales and platform adoption effects
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lines, and the R2 of the regression is displayed in the lower right corner.
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7.2 Alternative commission caps

Negative effects of 15% commission caps on consumer welfare and total welfare do not rule out

positive effects of capping commissions at higher or lower levels. To determine how the effects

of alternative caps compare to those of 15% caps, I compute equilibria under caps from 0% to

29% and compare them to the baseline equilibrium wherein commission rates equal 30%. Figure

12 provides results for the Los Angeles. Lowering the cap level monotonically raises restaurant

profits while lowering platform profits, consumer welfare, and total welfare. This finding applies

to all of the metro areas that I analyze. Thus, the signs of the estimated welfare effects of the

15% commission cap do not depend on the 15% level of the cap, but instead broadly apply to

commission caps.

Figure 12: Welfare effects of alternative commission caps in Los Angeles
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Notes: this plot provides welfare effects of cappping commissions at levels between 30% and 0% as a share of total
platform revenue in the baseline equilibrium.

7.3 Taxing commissions

It is plausible that policies other than commission caps could increase restaurant profits with more

favourable overall welfare effects than caps. One such policy is a tax on platform commissions

whose revenues are remitted to restaurants. Besides directly providing revenue to restaurants, a

commission cap penalizes commissions as a revenue source for platforms relative to consumer fees,

which could lead platforms to reorient their price structures away from commissions and toward

fees. The tax that I consider is a share t of a platform’s commission earnings. Recalling the

expression for platform f ’s profits in (16), platform f ’s tax obligations are

t×
∑
z∈Zm

rfz p̄
∗
fzsfz.

I set the tax rate t so that the government’s revenue from the tax absent a pricing response by

platforms is equal to restaurants’ profit gains from a 15% commission cap. This yields t = 1.8%

for Los Angeles, the city on which I focus my analysis of a commission tax.

Table 19 provides effects of a 15% commission cap and the commission tax relative to the baseline
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equilibrium for Los Angeles. Note that the sum of the change in restaurant profits and the change

in government revenue is similar for each policy. Consumers and platforms, however, are better off

under the tax. Although a tax alters platform pricing incentives, it does not do so as dramatically

as a cap; responses in fees and commissions to a tax are relatively small, and thus reductions in

consumers’ platform orders and consumer welfare are small. Thus, when the government transfers

proceeds from a commission tax to restaurants, the tax can lead to a comparable increase in

restaurant profits as a cap with more favourable overall welfare effects.

Table 19: Comparison of commission cap and commission tax

Change in... Cap Tax

Avg. consumer fee ($) 5.62 0.60
Avg. commission rate (p.p.) -15.00 -1.36

Avg. platforms adopted (%) 4.58 0.43
Shr. adopting a platform (p.p.) 1.93 0.18

Platform orders (%) -3.17 -0.26

Restaurant profits ($ p.c.) 3.18 0.26
Platform profits ($ p.c.) -2.45 -2.10
Consumer welfare ($ p.c.) -3.25 -0.25
Government revenue ($ p.c.) 0.00 2.79
Total welfare ($ p.c.) -2.53 0.69

Notes: welfare changes are reported in dollars per resident of the all changes in dollars per market resident over the
age of 18 on an annual basis, which I denote by “$ p.c.” The table compares the effects of policies in Los Angeles.
“Avg. consumer fee” and “Avg. commission rate” are averages of fees and commissions, respectively, taken across
platforms with weights equal to platforms’ sales in the baseline equilibrium. “Avg. platforms adopted” gives the
change in the average number of online platforms that a restaurant in the market adopts. “Shr. adopting a platform”
gives the percentage point change in the share of restaurants that join at least one online platform. The symbol
“(%)” appearing after a variable’s name indicates that the table provides the percentage rather than absolute change
in that variable.

7.4 Value of multihoming

Restaurants are free to multihome across food delivery platforms. This freedom may reduce restau-

rant profits in two ways. First, platforms have a greater competitive pressure to lower commission

rates when the restaurants that the low commissions attract are exclusive to the platform. Second,

a prohibition on multihoming would directly reduce restaurant membership on delivery platforms

and thereby weaken restaurants’ competitive pressures to join platforms, which entails fixed adop-

tion costs and commission charges. To assess the impact of multihoming, I compare the baseline

equilibrium with one in which restaurants cannot accept orders on more than one platform. Table

20 summarizes this comparison for Los Angeles. A ban on multihoming slightly reduces equilib-

rium platform commissions, and dramatically reduces restaurant uptake of platforms. Not only

do restaurants join fewer platforms, but fewer restaurants join any platform whatsoever. This is

because the multihoming prohibition’s direct effect of removing multihoming restaurants from plat-

forms reduces restaurants’ competitive pressures to join platforms. That is, the prohibition’s effects

are amplified by the strategic complementarity of platform membership. Restaurant profits increase

when multihoming is banned, although total welfare experiences a much larger decline.
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Table 20: Effects of multihoming prohibition

Outcome Effect

Avg. consumer fee ($) 0.61
Avg. commission rate (p.p.) -1.39

Avg. platforms adopted (%) -76.15
Shr. adopting a platform (p.p.) -27.36

Platform orders (%) -43.95

Restaurant profits ($ p.c.) 5.22
Platform profits ($ p.c.) -28.51
Consumer welfare ($ p.c.) -18.46
Total welfare ($ p.c.) -41.75

Notes: welfare changes are reported in dollars per resident of the all changes in dollars per market resident over
the age of 18 on an annual basis, which I denote by “$ p.c.” The table evaluates a multihoming prohibition in Los
Angeles.

7.5 Effects of online platforms on the restaurant industry

Although food delivery platforms offer a valuable service to consumers, the effect of platforms

on restaurant profitability is a priori ambiguous. Platforms raise restaurant sales, but sales on

platforms may cannibalize restaurants’ commission-free sales made directly to consumers. Platform

membership also entails fixed costs. To evaluate the effects of platforms on the restaurant industry,

I consider a counterfactual in which platforms are eliminated. Savings on platform fixed costs

should be accounted for in an analysis of the overall welfare effects of eliminating platforms. Rather

than estimate fixed costs, I compute welfare outcomes under two scenarios: (i) platform fixed costs

are equal to zero, and (ii) platform fixed costs are equal to platform variable profits. Changes

in total welfare under these scenarios provide sharp lower and upper bounds on the total welfare

effects of eliminating platforms when both platform profits and platform fixed costs are non-

negative.

My estimates of the welfare and profit effects of eliminating platforms account for differential reli-

ability and costs between deliveries made by restaurants’ own delivery services and those delivered

by online platforms. Consumers may prefer to receive deliveries from platforms rather than restau-

rants’ own delivery services because deliveries from platforms may be more reliable than deliveries

made directly by restaurants. These preferences impart a positive effect of delivery platforms

on consumer welfare. My model captures these preferences through the δfm fixed effects, which

are common across consumers in a market, and the consumers’ idiosyncratic ζif . Additionally,

restaurants may face differential costs of fulfilling orders that they deliver themselves versus those

delivered through platforms. My model partially accounts for these differential costs through the

Km(G) fixed costs of platform adoption, which are net of the fixed costs of not joining any online

platform, and the differential marginal costs of fulfilling orders directly versus those placed on

platforms.

Figure 13 reports the cross-metro distribution of changes in the number of orders placed at restau-

rants in an economy without food delivery relative to the number of orders placed on platforms in

the baseline equilibrium. This plot shows that in about half of cases, a restaurant order placed on

a platform is no longer placed when platforms are eliminated. Thus, platforms have a substantial
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market expansion effect. Table 21 summarizes the welfare effects of eliminating food delivery plat-

forms.38 Even though platforms boost restaurant order volumes, they reduce restaurant profits.

This reflects that platform adoption boosts a restaurant’s profits largely at the expense of its rivals.

This situation is analogous to a firm’s ability to profit from undercutting its rival’s prices despite

the fact that an industry-wide agreement to sustain high prices could raise the sum of firm prof-

its. My results suggest that restaurant collusion against platform membership would be profitable

for restaurants. Eliminating platforms, however, comes at a substantial cost to consumers and

eliminates platforms’ profits.

Figure 13: Effects of eliminating delivery platforms on restaurant orders

Change in restaurant orders (%)

−60 −55 −50 −45 −40 −35

Notes: this figure reports the effects of eliminating delivery platforms on restaurant orders across metros. The
reported changes are relative to platform orders in the baseline equilibrium. The plotted points are the cross-metro
minimum effect, the 0.25, 0.50, and 0.75 quantiles of the effects across metros, and the cross-metro maximum effect.

Table 21: Welfare effects of eliminating delivery platforms (dollars per capita, annual)

Outcome Mean Median Min. Max.

Consumer welfare -66.98 -69.09 -103.04 -29.80
Restaurant profits 17.88 18.58 6.52 34.62
Platform variable profits -58.06 -58.23 -94.26 -29.12
Total welfare: lower bound -107.16 -98.88 -178.44 -50.72
Total welfare: upper bound -49.10 -41.76 -84.17 -21.60

Notes: this table summarizes effects of abolish food delivery platforms across markets using cross-market medians
(unweighted), minima, and maxima. All welfare figures are transformed to annualized dollars per capita by dividing
total welfare changes for April 2021 by markets’ populations as estimated by the 2019 American Community Survey
and multiplying these monthly per capita amounts by 12.

8 Conclusion

This paper evaluates restrictions on food delivery platforms’ commission charges to restaurants

using a model of platform competition and a rich collection of datasets characterizing the US

food delivery industry. My model captures the responses that drive the effects of caps: responses

restaurants’ platform adoption decisions, of restaurant prices, and of platform fees. These responses

in turn depend on the network externalities that consumers and restaurants exert on each other.

My model is novel in the empirical literature on platform pricing in that it includes pricing between

the end users of a platform (i.e., restaurant pricing to consumers) and that it nests a positioning

model to capture endogenous platform membership by restaurants. Several aspects of my results

38See Online Appendix O.11 for market-specific results.
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are noteworthy: caps boost restaurant profits while reducing consumer welfare and platform profits;

a failure of restaurants to adjust their prices upon the imposition of a cap magnifies the effects of

caps; and consumer welfare losses are significantly larger when network externalities are not taken

into account. Additionally, a tax on commissions leads to a comparable gain in restaurant profits

without the negative overall welfare effects of a commission cap.

This study raises several directions for future research. First, platforms may charge agents mem-

bership fees in addition to transaction fees. Since the sample period considered by my paper, food

delivery platforms have increasingly marketed subscription plans that allow consumers to pay flat

fees to reduce their per-transaction delivery fees. Platforms could similarly charge restaurants

membership fees in addition to (or in place of) commissions. The implications of these alternative

price structures is a promising topic for future research. Another direction for future research in-

volves the role of payments between platforms’ end users, and the effects of these payments—and

any platform policies that limit them—on platform markets. The role of such payments has been

analyzed by the theoretical literature on multi-sided markets, and my paper provides an empiri-

cal demonstration of these payments’ importance. Indeed, price setting allows restaurants to pass

through changes in platforms’ commissions to their prices, and my model suggests that commission

caps may induce restaurant price reductions that offset platforms’ consumer fee increases. I expect

that the effects reported in this study, for example, would differ significantly if platforms limited

restaurant to charge the same prices on platforms as they do for direct-from-restaurant orders.

Last, my study holds fixed the population of restaurants. Changes in restaurants’ profitability,

however, are likely to affect restaurants’ entry and exit decisions. I leave the extension of my

model to account for restaurant entry and exit as a topic for future research.
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Appendices

A Delivery fee measures

I estimate the conditional expectation in (2) using a linear regression of the form

dfkfz = x′kβf + w′zµf + φxdist
k wdens

z + εkfz, (28)

where wz are characteristics of ZIP z and xdist
k and wdens

z are scalar components of xk and wz,

respectively, that are explained at the end of this paragraph. Additionally, εkfz is an unobservable

that is mean-independent of xk and wz, f , and z.

The observable characteristics included in wz are municipality indicators; county indicators; CBSA

indicators; local density defined as the population within five miles of ZIP z; and several variables
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measuring the demographic composition of the area within five miles of z.39 Last, xdist
k is the

delivery distance for order k and wdens
z is the local density of z; I included variables’ interaction in

(28) to capture the possibility that the cost of increasing an order’s distance depends on population

density due to traffic congestion. It is important to include a rich set of geographical features so

that the fee indices flexibly capture fee differences across geography.

There are several problems in estimating (28) by ordinary least squares (OLS): OLS is prone to

overfitting in settings with many regressors, and using OLS would require a somewhat arbitrary

selection of a noncollinear set of geographical indicators to include in wz. I therefore use the Lasso

to estimate (28).40 The Lasso estimator minimizes the sum of squared residuals plus the L1 norm

of the coefficient vector times a penalization parameter. The use of the Lasso may be justified by

its reduction of overfitting relative to OLS and its compatibility with collinear regressors. In my

setting, the Lasso provides a data-driven method for selecting geographical indicators for inclusion

in wz based on their relevance in predicting delivery fees. I select the value of the penalization

parameter using k-fold cross validation, with k = 10.

Upon estimating the parameters (βf , µf , φf ) of (28) with a Lasso estimator separately for each

platform f , I compute the delivery fee measure D̂F fz as

D̂F fz = x̄′β̂f + w′zµ̂f + φ̂f x̄
dist
k wdens

z .

I set x̄ to the average xk across all orders in my sample. Additionally, I estimate each regression

on observations recorded in the second quarter of 2021.

B Restaurant price measures

This appendix describes the construction of the restaurant price measures that I use in estimating

my model. I define a measure pfGz for each combination of a platform f , a platform portfolio G
(that is, a subset of the online platforms), and a ZIP z. Variation in the pfGz measures across

platforms, platform portfolios, and ZIPs reflects variation in the price of a fixed menu item offered

by a restaurant chain across platforms, across ZIPs z, and across restaurant locations with different

platform portfolios G. I estimate a menu item’s relative price across platforms, locations on different

platform portfolios, and locations in different regions using a Lasso regression with item fixed effects

and log price as the dependent variable. The Lasso selects which interactions of platform, platform

portfolio, and geography are empirically relevant in explaining menu items’ prices. With menu

items’ relative prices in hand, I obtain absolute prices by fixing the price of an order from Uber

Eats in the New York City metro area from a restaurant that belongs only to Uber Eats to the

average size of an Uber Eats order in New York before fees and taxes.

I now describe the construction of the restaurant price measures in detail. Let ι denote a menu item

and t denote a transaction. Additionally, let f and m denote the platform and metro, respectively,

of the transaction in question. Similarly, let G denote the platform portfolio of the restaurant from

39These variables include the shares of the population in various age groups, the share of the population over 15
years of age that is married, and the shares of the population over 18 years of age having achieved various levels of
educational attainment.

40See Tibshirani (1996) for explication of the Lasso.
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which the consumer placed an order. Consider the equation

log pιfGmt = ϕι + ϑfGm + ειfGmt, (29)

where pιfGmt is the observed transaction price of the item ι, ϕι are item fixed effects and ϑfGm

are platform/platform portfolio/metro fixed effects. I interpret the ειfGmt as measurement error.

When ειt = 0 yields, we have (suppressing the transaction subscript)

pιfGm
pιf ′G′m′

= eϑfGm−ϑf ′G′m′ . (30)

Thus, the ϑ fixed effects provide the relative price of a menu item on a particular combination of

platform, platform portfolio, and metro to the price of the same item on any other combination of

these three variables.

Defining price indices in levels at the level of a platform, platform portfolio, and metro triple

requires fixing one of the pιfGm prices; once such a price is fixed, (30) and the ϑ fixed effects allow

me to compute pιfGm for all remaining (f,G,m) triples. In practice, I fix the price of an order on

Uber Eats from a restaurant that belongs only to Uber Eats in New York City’s metro area to the

average basket size for an order from Uber Eats in New York City’s metro area. Note that Uber

Eats is the largest delivery platform in New York City’s metro area, which is the largest metro

area in the United States. This average basket size is $29.50.

I estimate the ϑ fixed effects in (29) using the Lasso. In particular, I specify ϑ as a linear combi-

nation of fixed effects for interactions of platforms, platform portfolios, and metros:

ϑfGm = Υf + ΥG + Υm + ΥfG + Υfm + ΥGm + ΥfGm. (31)

I then estimate the Υ parameters using the Lasso. Note that the collinearity of the fixed effects

does not preclude the application of the Lasso, which selects the granularity of the fixed effects to

manage a bias/variance trade-off. I select the penalization parameter entering the Lasso objective

function using 10-fold cross-validation. Rather than estimate (29) directly, I estimate the equation

after applying the within transformation xιt 7→ xιt − (1/Tι)
∑

t′ xιt′ to both sides of the equation,

where Tι is the number of transactions for item ι and the sum is taken over all transactions of

item ι. The within transformation removes the item-level fixed effects ϕι from (29). I estimate the

transformed equation via the Lasso on all transactions in the Numerator data in the second quarter

of 2021 that were placed in one of the 14 metro areas on which my paper’s analysis focuses. This

yields estimates Υ̂ of the the Υ fixed effects appearing in (31). I substitute these Υ̂ estimates into

(29) in the place of the Υ parameters to obtain estimates ϑ̂ of the ϑ fixed effects. My restaurant

price indices are then

pfGm = pf0G0m0e
ϑfGm−ϑf0G0m0 ,

where f0 denotes Uber Eats, G0 denotes the platform portfolio containing no online platform

other than Uber Eats, and m0 is the New York City metro area. As suggested above, pf0G0m0 =

$29.50.

I now discuss several caveats in the computation of the indices. First, I lack item-level data on

Postmates orders. Consequently, I set the price indices for Postmates equal to those for Uber
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Eats. In particular, when f1 is Postmates and f0 is Uber Eats, I set pf1Gm = pf0G∗m, where G∗

is equal to G with membership of Postmates and Uber Eats interchanged. That is, G∗ includes

Postmates (Uber Eats) if and only if G includes Uber Eats (respectively, Postmates), and G and

G∗ each contain DoorDash and Grubhub if and only if the other set does. Another concern is that

restaurant prices depend on the presence of a commission cap. I do not detect a difference in menu

items’ prices on online platforms between areas with and without commission caps using my item

fixed-effects approach. One explanation for this finding is that most of the items that I observe

being purchased repeatedly across platforms, and can therefore use in an analysis with item fixed

effects, are sold by chain restaurants. Chains may practice uniform or zone pricing; that is, they

may not condition their prices on local demand and cost conditions, including the presence of a

local commission cap. Uniform and zone pricing policies by chain retailers have been documented

in the industrial organization literature; see DellaVigna and Gentzkow (2019) and Adams and

Williams (2019). I alternatively check for a difference between restaurants’ prices on platforms

between areas with and without commission caps by manually collecting data on restaurant prices.

In particular, I randomly drew 20 and 10 restaurants on each of DoorDash and Uber Eats in each

CBSA, respectively and found the price of an item from their menu on each delivery platform

to which they belong. I also found the price of the same item for direct-from-restaurant orders.

Collecting these data manually between July 21 and August 18, 2021 yielded a dataset of 593 prices

for menu items on platforms for which a direct-from-restaurant price is available. A platform/menu

item level regression of the ratio of the platform-intermediated price to the direct-from-restaurant

price on an indicator for a commission cap being in place with platform and CBSA fixed effects

included yields a coefficient of -7.02% (standard error: 2.94%) on the commission cap indicator.

I adjust my estimated markup of platform-intermediated prices over direct-from-restaurant prices

by this amount in computing my restaurant price measures. In particular, I set the restaurant

price index for online platform f , platform portfolio G, and metro m to

pcap
fGm = p0Gm

[
pfGm
p0Gm

− 0.0702

]
for ZIPs z where commission caps are in effect.

Figure 14 displays the median and interquartile range of restaurant price indices across metros m

and portfolios G for each platform f . Table 22 reports results from a regression of the price indices

pfGm on platform indicators and the number of online platforms in G. Together, Figure 14 and

Table 22 show that there is a systematic difference between direct-order prices and online platform

prices, but not between the prices charged by restaurants across different online platforms.

Table 22: Comparison of restaurant price indices

Estimate SE

Intercept 29.68 0.41
Platform: direct -7.30 0.33
Platform: Grubhub -0.94 0.37
Platform: Uber 0.08 0.37
Platform portfolio size 0.03 0.13

Notes: this table provides estimates from an ordinary least squares regression of the restaurant price indices pfGm on
(i) platform f indicators and (ii) the number of online platforms included in G. DoorDash is the omitted platform.
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Figure 14: Restaurant price indices (medians and interquartile ranges)
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Notes: Panel (b) reports the median and interquartile range of each platforms’ price indices divided by the respective
direct price indices.

C Market size

I set the number of consumers in each ZIP and distribution of these consumers’ demographic types

(i.e., their ages, marital statuses, and incomes) using a combination of the Edison platform/ZIP-

level estimates of sales volumes, the Numerator panel, and the 2019 American Community Survey

(ACS). For each metro m, I tentatively set the number of consumers in each ZIP to the ACS

estimate of the ZIP’s population. I then set the distribution of consumers across demographic

types equal to the distribution among Numerator panelists residing in the ZIP. For ZIPs with

fewer than 10 Numerator panelists, I instead set the distribution equal to that in the collection

of ZIPs within five miles of the ZIP in question. Next, I compute an equilibrium in restaurant

prices conditional on observed platform adoption decisions, fees, and commissions in April 2021.

The ratio of the number of platform orders in the market from the Edison transactions dataset

for April 2021 to the expected number of platform orders in this equilibrium provides the factor

by which I multiply each ZIP’s number of consumers. After scaling up the tentative number of

consumers in each ZIP by this market-level factor, my model’s predictions of metro-level sales

align with the Edison estimates. As noted in Section 2.2, the Edison sales estimates align with

DoorDash’s earnings reports and the Consumer Expenditure Survey.

D Bootstrap procedure

This appendix describes the bootstrap procedure that I use to compute standard errors. This

procedure has features of the parametric bootstrap and of the nonparametric bootstrap. The

parametric part involves drawing from the estimated asymptotic distribution of the consumer choice

model estimates and using these draws as inputs in later stages of estimation. The nonparametric

part primarily involves sampling with replacement from the population of restaurants. Recall that

I estimate my consumer choice model via maximum likelihood. I estimate the asymptotic variance

of my maximum likelihood estimator using the outer product of the gradients estimator. I then take

B = 100 draws from the associated estimate of the asymptotic distribution of Z =
√
n(θ̂cons−θcons

0 ),

where θcons
0 is the true choice model parameter vector, θ̂cons is the maximum likelihood estimator,
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Figure 15: Distribution of restaurants across platform sets, April 2021
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(b) Identities of adopted platforms

Notes: this figure plots the distribution of restaurants across sets of portfolios (e.g., joining no online platform,
joining only DoorDash, joining Uber Eats and Grubhub) in the 14 markets listed in Table 1 in April 2021. Deeper
shades indicate sets that include more platforms.

and n is the sample size. Let Zb denote the bth draw, and let θ̂cons,b = θ̂cons + n−1/2Zb. I

estimate restaurants’ and platforms’ marginal costs, call them m̂cb under each θ̂cons,b. For each

b, I also take a standard bootstrap draw of restaurants within each market, where each market

is defined by its ZIP and its platform portfolio choice. Let J b denote the bth draw. I proceed

to estimate the parameters of restaurants’ platform adoption game at {θ̂cons,b,J b, m̂cb} for each

b. This procedures yields estimates θ̂adopt,b of the parameters of restaurants’ platform adoption

game for each bootstrap replicate b. The standard errors that I report for these parameters are the

standard deviations of the parameters across bootstrap replicates. I similarly estimate the weights

hfm at {θ̂b, m̂cb, θ̂adopt,b} for each b, which yields estimates ĥbfm of these weights for each b. Last,

I solve for equilibria at each b and take the standard deviation of outcomes across replicates b to

obtain the standard errors for results from counterfactual simulations.

E Additional data description

This appendix provides additional descriptive analyses of my study’s data. First, Table 23 decom-

poses the four major platforms’ fee indices into their constituent components as specified by the

main text: indices of delivery fees, service fees, and regulatory response fees.

Table 23: Decomposition of average fees

Fee DoorDash Uber Eats Grubhub Postmates

Delivery 1.87 1.58 2.91 3.43
Service 4.36 4.50 3.00 6.35
Regulatory Response 0.18 0.27 0.17 0.08

Notes: the table reports average components of platforms’ fee indices in dollars. each figure in the table is an
unweighted average taken over ZIPs.
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Figure 16: Average cumulative numbers of platforms used by consumers
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Notes: this figure displays, for t = 1, . . . , 30, the average number of unique delivery platforms from which a consumer
in the Numerator panel has placed an order through their first to tth order from a food delivery platform. I use data
from April to June 2021 for the 14 markets on which I focus my paper’s analysis to produce this figure. The average
for t is taken over all Numerator panelists in this data subset who made at least t orders from April to June 2021.
The vertical bars provide 95% confidence intervals for the estimated means.

Table 24: Evaluation of state dependence

# transactions # unique # switches # switches
N

(τ) (k) Mean 95% CI (Shuffled data)

3 2 1.36 1.34 1.37 1.33 4708
4 2 1.71 1.69 1.72 1.65 4728
4 3 2.59 2.55 2.64 2.50 429

Notes: the “# switches” columns report the average number of switches between online platforms among consumers
buying from k unique platforms within τ orders from online platforms. The “# switches (Shuffled data)” column
report average numbers of switches as defined above as when each consumer’s purchasing sequence is randomly
shuffled. I conducted the analysis on Numerator data from the 14 markets listed in Table 1 in Q2 2021.

Sources of within-market fee variation. I assess the drivers of within-market variation in fees by

regressing ZIP/platform-level fees on an indicator for the presence of a commission cap and demo-

graphic characteristics of the ZIP. I run these regressions first including only platform fixed effects

and then including fixed effects for all platform/market pairs. This second regression is useful

for understanding whether commission caps and demographic differences provide variation in fees

within markets. Table 25 provides the results. Even after including platform/CBSA fixed effects

and thereby limiting ourselves to within-market variation in fees, the presence of a commission cap

provides variation in fees. Additionally, the demographic variables included as controls provide

variation in fees: areas with higher proportions of young people and married people tend to have

lower fees, as do areas with higher population densities.
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Figure 17: Platforms’ average fees and commissions in regions with and without a commission cap
as of May 2021
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(b) Average prices per transaction: cap
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(c) Average prices as shares of subtotal: no cap
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(d) Average prices as shares of subtotal: cap

Notes: this figure describes the average per-order restaurant commission and the average per-order consumer fee
charged by platforms. The average restaurant commissions are obtained by multiplying estimated average order
subtotals at the ZIP level in the Edison transactions data by (i) 0.30 if no commission cap is in effect and (ii) the
level of the active commission cap if a commission cap is in effect, and by then averaging across ZIPs, using the
number of orders placed in each ZIP as weights. The average consumer fees are obtained by averaging the ZIP-level
estimate of the average consumer fee in the Edison data across ZIPs, using the number of orders placed in each ZIP as
weights. The figure provides these average restaurant commissions and consumer fees for each month from January
2020 to April 2021 both (i) in absolute terms and (ii) as a share of the order subtotal. In addition, the figure plots
average commissions and average consumer fees separately for regions with and without active commission caps in
May 2021.
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Table 25: Source of within-market fee variation

(a) Platform fixed effects

Variable Estimate SE

Cap 0.67 0.03
Share age under 35 -2.52 0.19
Share married -2.19 0.15
Population density -0.69 0.03

(b) Platform/CBSA fixed effects

Variable Estimate SE

Cap 0.28 0.03
Share age under 35 -1.66 0.15
Share married -1.98 0.12
Population density -0.47 0.02

Notes: these tables provide results from regressions on a dataset of fees in ZIPs within the markets analyzed by my
study. Each of the N = 17220 observations is a platform/ZIP pair. “Cap” indicate the presence of a 15% commission
rate in the ZIP. “Share under 35” is the share of the population within five miles of the ZIP that is under 35 years
of age. “Share married” is the share of the population within five miles of the ZIP that is married. “Population
density” is the population (in millions) of the area within five miles of the ZIP. Panel (a) reports the results of a
regression with platform indicators included as regressors whereas Panel (b) reports the results of a regression with
indicators for platform/CBSA pairs as regressors.
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