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Abstract

In studies based on longitudinal data, researchers often assume time-invariant unobserved
heterogeneity or linear-in-parameters conditional expectations. Violation of these assumptions
may lead to poor counterfactuals. I study the identification and estimation of a large class
of nonlinear grouped fixed effects (NGFE) models where the relationship between observed
covariates and cross-sectional unobserved heterogeneity is left unrestricted but the latter only
takes a restricted number of paths over time. I show that the corresponding “clusters” and the
nonparametrically specified link function can be point-identified when both dimensions of the
panel are large. I propose a semiparametric NGFE estimator and establish its large sample
properties in popular binary and count outcome models. Distinctive features of the NGFE
estimator are that it is asymptotically normal unbiased at parametric rates, and it allows for
the number of periods to grow slowly with the number of cross-sectional units. Monte Carlo
simulations suggest good finite sample performance. I apply this new method to revisit the so-
called inverted-U relationship between product market competition and innovation. Allowing
for clustered patterns of time-varying unobserved heterogeneity leads to a less pronounced
inverted-U relationship.
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1 Introduction

Unobserved heterogeneity is a prevalent feature of most reduced-form and structural work in eco-
nomics and other social sciences. Observational outcomes and explanatory variables of interest
typically correlate over time with factors unobserved to the researcher. This confounding problem
renders identification of key parameters of interest, such as average partial effects, difficult.

By sampling N individuals at T points in time, panel data offer opportunities to account for
latent structures embedded in low-dimensional manifolds (see, e.g., Bai, 2009; Wooldridge, 2010;
Hsiao, 2015; Moon and Weidner, 2019; Bonhomme, Lamadon, and Manresa, 2022).1 While ran-
dom effects approaches specify the conditional distribution of the unobserved heterogeneity given
covariates (up to a few parameters), fixed effects approaches leave this distribution unrestricted and
introduce instead many additional parameters. In particular, pooled linear regression with addi-
tively separable individual and time-specific effects has been widely used to control for unobserved
permanent heterogeneity and “common trends”. de Chaisemartin and D’Haultfœuille (2020) find
that 20% of applied papers published in the AER between 2010-12 have estimated such a regression.

The underlying two-way fixed effects model, however, is restrictive in at least two important
ways. First, it cannot accomodate nonlinearity and nonseparability in parameters that frequently
arise from economic theory and de facto imply heterogeneous partial effects (e.g., discrete choice,
point mass in outcome). Second, common trend assumptions may fail (see, e.g., Roth and Ram-
bachan, 2022) and the model does not capture more complicated patterns of time-varying unob-
served heterogeneity.

Jointly adressing these concerns is difficult. Standard differencing techniques or sufficient statis-
tics for the unobserved effects are generally lacking in nonseparable models. Allowing for unobserved
diverging trends creates a dimensionality challenge in identification and estimation, which reflects
Neyman and Scott (1948)’s well-known incidental parameters problem (even with large T ).

Among existing approaches, restricting the support of unobserved heterogeneity has recently
gained increasing attention as an interpretable, flexible, and economically meaningful dimension-
reduction device.2 Specifically, it often is plausible that individuals partition into a moderate number
of clusters such that all cluster members share the same path of unobserved heterogeneity over time
but the partition is unknown to the researcher. The problem becomes that of classifying a large
number of individuals into clusters and estimating a large number of nonseparable cluster-specific
time effects in “large-N, T” nonlinear panel models, where N and T jointly diverge to infinity.3

To the best of my knowledge, no result is known concerning the nonparametric identification of
many nonlinear models widely used in empirical research (e.g., random utility binary/ordered choice

1This echoes Occam’s razor principle and the “manifold hypothesis” (Goodfellow, Bengio, and Courville, 2016).
2Pioneering work includes Heckman and Singer (1984); Hahn and Moon (2010); Bonhomme and Manresa (2015).
3Such asymptotics have become increasingly popular in the last decades, given the growing availability of high-

frequency data (e.g., scanner, financial data). See, among others, Hahn and Newey (2004); Arellano and Hahn (2007);
Dhaene and Jochmans (2015); Fernández-Val and Weidner (2016); Chen, Fernández-Val, and Weidner (2021); Chen,
Rysman, Wang, and Wozniak (2022).
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models) in this setting.4 Furthermore, estimation and inference using recently proposed semipara-
metric estimators (e.g., interactive fixed effects) is quite challenging. Asymptotic distributions are
rarely available or must be bias-corrected using analytical or jackknife methods justified by asymp-
totic frameworks where N and T grow at the same rate (see Zeleneev, 2020; Chen, Fernández-Val,
and Weidner, 2021; Bonhomme, Lamadon, and Manresa, 2022). This gap in identification and
these limitations in semiparametric estimation are important. The distribution of idiosyncratic
error terms (e.g., random shocks in taste), together with common and fixed effects parameters, is a
building block for estimating counterfactual events and policy-relevant parameters such as average
causal effects. Unjustified parametric assumptions can be expected to deliver poor counterfactuals
in large panels. Also, T is often much smaller than N in practice.

In this paper, I address both of these concerns for a large class of nonseparable nonlinear grouped
fixed effects (NGFE hereafter) single-index static models for discrete outcomes. In the most simple
version, individual i ∈ {1, ..., N}’s outcome Yit ∈ Y at time period t ∈ {1, ..., T} given i’s covariates
history Xi1, ..., Xit, cluster membership gi ∈ {1, ..., G}, and cluster-specific effect αgit is such that

Pr (Yit = y | Xi1, ..., Xit, gi, αgit) = h (y,X ′
itβ + αgit) , (1)

where the common parameter β, the link function h(·, ·), the number of clusters G ≪ N , the cluster
memberships gi, and cluster-specific effects (αgt)g,t are unobserved to the econometrician and treated
as parameters to estimate. This class covers many important models of empirical interest such as
binary choice, ordered choice, and count data (see Section 2). Extensions to multinomial choice or
fully nonparametric models are discussed in the Appendix.

In this context, I make two contributions. My first contribution is to provide primitive conditions
under which all parameters of model (1) are point identified as N and T grow large. The proof
is constructive and relies on two steps. In a first step, I draw on an injectivity condition à la
Bonhomme, Lamadon, and Manresa (2022) (see their Assumption 2) to build test functions which
identify the sequence of latent clusterings {g1, ..., gN}N≥1 and number of clusters G from pairwise
comparisons of conditional probability functions identified by time variations in the data at the
individual level. The key idea is to circumvent the difficult (nonlinear and NP-hard) k-means
clustering problem by considering instead N(N − 1)/2 individuals-pairing testing problems.5 I
show that the injectivity condition holds if, for instance, clusters are “well separated”, there is
continuous local variation in a “special” regressor (not necessarily with large support), and the link
function is real-analytic (see, e.g., Krantz and Parks, 2002).6 In a second step, I resort to within-
cluster variation and apply a well-known result by Ichimura (1993) to identify the common slope

4While Fernández-Val and Weidner (2018) argue “most models are point identified with large T”, this paper gives
sufficient conditions for a large class of models.

5This idea is at the core of many “hierarchical” or “agglomerative” approaches proposed in the unsupervised
learning literature (e.g., DBSCAN clustering algorithm).

6Special regressors are widely used in econometrics (for discussion and examples see, e.g., Lewbel, 2014). There is
a trade-off between imposing (i) analyticity of the link function which allows to interpolate from bounded variation
in the regressors at the cost of a strong functional form assumption and (ii) the existence of a special regressor with
unbounded support.
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parameter β up to scale. Identification of cluster-specific time-varying effects and the unknown link
function then follows from leveraging compensating variations within and between clusters and a
monotonicity property.

My second contribution is to develop simple NGFE semiparametric estimators and establish their
large sample properties.7 I introduce a general M-estimation framework to estimating nonlinear
models with clusters of time-varying unobserved heterogeneity. Semiparametric NGFE estimators
are obtained by specializing the framework to models with a known link function and a known
number of clusters. These estimators maximize the likelihood of the data conditional on the latent
clustering and time-effects. Importantly, no tuning parameter is required. However, computation
can be cumbersome in large samples. In a companion paper (Mugnier, 2022), I show how combining
nuclear norm regularization with the pairwise differencing argument that serves as a foundation for
the present nonparametric identification analysis delivers a computationally trivial estimator for a
linear version of model (1), which enjoys more powerful statistical guarantees than Bonhomme and
Manresa (2015)’s grouped fixed effect estimator. In particular, the unknown number of clusters G
can be consistently estimated under a restricted eigenvalue condition and without prior knowledge of
an upper bound Gmax ≥ G (see Proposition 3.1 in Mugnier, 2022). Here, I instead propose a simple
heuristic, namely Lloyd (1982)’s algorithm described in Section 4.3, and show that it performs well in
various Monte Carlo experiments with moderate sample sizes and number of clusters (see Section 6).
From a theoretical viewpoint, and in contradistinction with popular fixed effects estimators such
as Chamberlain (1980); Rasch (1960) or Charbonneau (2017)’s conditional logit, NGFE estimators
can accomodate time-invariant regressors and do not drop individuals without any variation in
outcomes, thus exploiting the full sample variation. On the other hand, contrary to Bonhomme,
Lamadon, and Manresa (2022), I maintain the assumption that unobserved heterogeneity is discrete.
This assumption is key for the NGFE estimator to have only one optimization step and enjoy a
“perfect recovery” property: provided T grows at least as some power of N , the misclassification
probability tends to zero uniformly across individuals.8 As in the linear case (see Bonhomme and
Manresa, 2015), this result implies that, under additional regularity conditions, NGFE estimators of
the slope and cluster-specific effects are asymptotically equivalent to the infeasible oracle maximum
likelihood estimator (MLE) based on knowledge of the clustering. Remarkably, when T = o(N),
this oracle is asymptotically unbiased so that standard MLE inference yields tests and confidence
intervals with correct asymptotic level. When N/T → κ ∈ (0,+∞), existing results can be applied
to the oracle to derive analytical or jackknife bias correction methods for the slope and average
marginal effects estimates.9

I investigate the finite sample performance of NGFE estimators, as well as large-N, T estimators
of their variance, by means of Monte Carlo simulations. I compare the results with state-of-the-
art competing methods. I find that NGFE estimators perform quite well in settings they are

7Fully nonparametric estimation could follow the constructive identification argument. I do not pursue this avenue
here because it would require a lot of tuning parameters.

8A concentration inequality for martingale differences due to Lesigne and Volný (2001) is used to show this result.
9See, e.g., Hahn and Newey (2004), Arellano and Hahn (2007), and Chen, Fernández-Val, and Weidner (2021).
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meant for. In particular, in a static logit model with clustered time-varying correlated unobserved
heterogeneity, N = 90, T = 7, the NGFE estimator has the smallest bias and Root Mean Square
Error (RMSE) compared to both linear and nonlinear methods such as linear two-way fixed effects
(TWFE), Bonhomme and Manresa (2015)’s grouped fixed effects (GFE) Bonhomme, Lamadon,
and Manresa (2022)’s 2-step GFE, Fernández-Val and Weidner (2016)’s nonlinear TWFE, or Rasch
(1960); Chamberlain (1980)’s conditional MLE. It also has the best finite-sample 95% CI’s coverage
(84 to 86%) compared to the CMLE (less than 50%).10 It takes 10 seconds to compute on a
professional laptop, which is similar to that of competing clustering methods such as 2-step GFE.

Finally, I illustrate the practical usefulness of NGFE estimators by revisiting an influential paper
by Aghion, Bloom, Blundell, Griffith, and Howitt (2005). The authors investigate the relationship
between product market competition and innovation using a panel of seventeen UK industries (i)
that spans the last part of the twentieth century (t = 1973, ..., 1994). Their preferred specification
is a nonlinear Poisson regression model of the number of citation-weighted patents on “one minus
the Lerner index” that controls for multiplicatively separable industry and time effects. Their
results suggest a strong inverted-U relationship. Yet, there is no reason a priori to assume that
dynamic shocks driving both the production of patents and the market structure of industries
are common to all industries. When I estimate a NGFE model, I find a much flatter inverted-U
curve. This is due to the presence of clustered patterns of time-varying unobserved heterogeneity.
The data-driven clustering procedure reveals a permanently “high (resp. low)-innovation” cluster of
industries gathering “heavy (resp. light) sectors” such as automobile production, chemical products
(resp. manufacture of paper/paper products, textile industry), as well as transitioning “caching-
up” clusters of industries, including data and tech related sectors such as electrical and electronic
engineering or data processing equipment. These new results shed light on unobserved diverging
mechanisms that drive both the market structure and technological change across time. Cluster
memberships and clusters effects can be further used as dependent variables to guide the search of
key time-varying omitted variables determining both technological change and market structure.

Economics provides many other possible applications of NGFE models. Janys and Siflinger
(2021) find that young women engage into systematically divergent unobserved risky behaviors
over time that simultaneously affect the chance to have an abortion and that to develop mental
health disorders (a binary dependent outcome in the study). Deb and Trivedi (1997) control for
unobserved time-invariant discrete types of health risk. More generally, any limited dependent
variable model (e.g., ordered, multinomial logit) in which it is expected that the baseline level of
cross-sectional unobserved heterogeneity is not subject to the same trend across individuals (e.g.,
human capital accumulation, change in taste for different products in the long run) is a candidate.
The approach could also be applied to network data with clustered patterns of heterogeneity (e.g.,
gravity equations in trade), which I leave for further research (see Section B.3).

Overall, the theoretical results broaden the scope of application of GFE estimators and clustering
10Note that only Bonhomme, Lamadon, and Manresa (2022)’s estimator assumes a correctly specified model. This

paper does not provide inference tools. Comparison with Chen, Fernández-Val, and Weidner (2021)’s estimator is
left for further research.
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techniques in econometrics, complementing the available toolbox for applied economists interested
in assessing the robustness of their results to specification choices. Results from the empirical
applications confirm the usefulness of considering flexible specifications such as NGFE for modeling
unobserved heterogeneity.

This paper contributes to the large literature on nonseparable panel data models. Most previous
papers from this literature obtain (partial) identification results under fixed-T asymptotics. Point-
identification results with fixed T are scarce, even in a static simple binary choice model with unit-
specific unobserved effect (see, e.g., Chamberlain, 2010; Davezies, D’Haultfoeuille, and Mugnier,
2020). Some papers have leveraged the large-T dimension but otherwise rely on (additive) separa-
bility of the individual/time unobserved heterogeneity or parametrically specify the link function.11

In contrast, I alleviate the large-T dimension, cluster separation, and the single-index clustered
structure to show that all parameters of NGFE models can be (nonparametrically) point-identified
even with clustered time patterns of unobserved heterogeneity. I use the technique of compensat-
ing variations like D’Haultfoeuille, Hoderlein, and Sasaki (2021) and Mugnier and Wang (2022),
which does not necessarily require large support (see also Vytlacil and Yildiz, 2007). This paper
also contributes to the literature estimating semiparametric nonlinear large-N , large-T panel data
models with multiple fixed effects. Much previous work in the panel data literature has focused on
estimation of semiparametric factor-analytic type linear models while nonlinear models with inter-
active fixed-effects have only recently drawn considerable attention.12 Fernández-Val and Weidner
(2016), Graham (2017), and Charbonneau (2017) provide consistent and asymptotically normal
semiparametric estimators of the homogeneous slope coefficient (as well as average partial effects in
Fernández-Val and Weidner, 2016) in nonlinear TWFE models. In contrast to NGFE estimators,
Graham (2017) and Charbonneau (2017)’s conditioning estimators, by partialling out unobserved
effects, do not provide consistent estimates for them, and Fernández-Val and Weidner (2016) require
N/T → κ ∈ (0,+∞) to obtain statistical guarantees. Neither TWFE nor NGFE models are nested
one into another and the two approaches should therefore be seen as complementary. On the other
hand, some papers assume that clusters are known to the econometrician (see, e.g., Bester and
Hansen, 2016; Arkhangelsky and Imbens, 2018). Many papers allow for a latent clustered structure
but otherwise impose time-invariant or additively separable unobserved heterogeneity.13 Differently
from us, a line of research put the grouping assumption on the unknown slope coefficient (heteroge-
neous models), letting again the unobserved heterogeneity individual-specific and time-constant.14

Allowing for clustered patterns of time-varying unobserved heterogeneity in nonlinear models seems
11See, e.g., Vogt and Linton (2017); Zeleneev (2020); Mugnier and Wang (2022).
12For linear factor-type models, see, among many others, Bai (2003); Pesaran (2006); Bai (2009); Bonhomme and

Manresa (2015); Moon and Weidner (2015); Ke, Li, and Zhang (2016); Moon and Weidner (2017); Ando and Bai
(2017). For nonlinear ones, see, e.g., Chen, Fernández-Val, and Weidner (2021); Bonhomme, Lamadon, and Manresa
(2022); Ando and Bai (2022).

13See, e.g., Bryant and Williamson (1978); Hahn and Moon (2010); Saggio (2012); Bonhomme and Manresa (2015);
Su, Shi, and Phillips (2016); Vogt and Linton (2017); Gu and Volgushev (2019); Cheng, Schorfheide, and Shao (2021);
Yu, Gu, and Volgushev (2022).

14See, Boneva, Linton, and Vogt (2015); Su, Shi, and Phillips (2016); Su, Wang, and Jin (2019); Zhang, Wang,
and Zhu (2019); Gao, Xia, and Zhu (2020); Liu, Shang, Zhang, and Zhou (2020); Wang and Su (2021).
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to be a difficult and much less investigated problem that I address in this paper. The closest pa-
pers to ours are Chen, Fernández-Val, and Weidner (2021), Bonhomme, Lamadon, and Manresa
(2022), and Ando and Bai (2022). Chen, Fernández-Val, and Weidner (2021) extend Fernández-Val
and Weidner (2016)’s results to semiparametric nonlinear factor-analytic models under concavity
conditions. When the link function is parametrically specified, NGFE models are special cases of
their framework. In contrast, I consider an unknown link function, derive more primitive conditions
for point identification (e.g., monotonicity in place of log-concavity of the MLE), and allow T to
grow slowly with N in estimation. The two-step discretization approach developed in Bonhomme,
Lamadon, and Manresa (2022), albeit its remarkable generality, comes at a similar price. When
heterogeneity is discrete, it ressembles a Lloyd’s algorithm where the first clustering step would not
take advantage of improvement on the other parameters. Yet, in contrast to the NGFE approach
and to the best of my knowledge, no inference result is known for this method. Independently from
this paper, Ando and Bai (2022) generalize Bonhomme and Manresa (2015)’s semiparametric GFE
estimator to an exponential family of nonlinear grouped factor models with heterogeneous coeffi-
cients (including Probit, Logit, Poisson). As in this paper, they consider the MLE and their results
allow for heterogeneous coefficients. But their general framework imposes stronger restrictions (re-
quires larger T in the asymptotics), delivers

√
T -rate for the slope coefficient estimates (v.s.

√
NT

for the NGFE estimate of the common slope), and they do not provide nonparametric identifica-
tion results. A third strand of literature this paper contributes to is that of dimension reduction
methods applied to nonlinear panel data models. A surge of papers have leveraged state-of-the-art
statistical learning tools such as matrix completion devices and extensions of Tibshirani (1996)’s
Least Absolute Shrinkage Estimator (LASSO) estimator to tackle the problem of estimating a large
number of unobserved effects in parsimonious panel data models.15 A common unifying idea is to
exploit restrictions on the support of the unobserved heterogeneity, which echoes the concept of
sparsity in high-dimensional statistics,16 or (nonparametric) finite mixtures models and clustering
(see, e.g., Forgy, 1965; MacQueen, 1967; Lloyd, 1982; McLachlan and Peel, 2000).

In Section 2, I introduce the class of NGFE models. The main identification result is presented
in Section 3. In Section 4, I propose a general M-estimation framework, develop semiparametric
NGFE estimators, and discuss computational aspects. Section 5 provides large sample properties
in semiparametric binary choice models. Section 6 presents Monte Carlo results. Section 7 contains
the empirical application. Section 8 concludes. All proofs are collected in the appendix. For any
set A, I let A∗ := A\ {0} and |A| denote the cardinal of A. Henceforth, I denote by Supp(U) the
support of any random variable U .

15See, among others, Kock (2016); Kock and Tang (2019); Moon and Weidner (2019); Zeleneev (2020); Athey,
Bayati, Doudchenko, Imbens, and Khosravi (2021).

16See, e.g., the monograph by Giraud (2014) for a thorough introduction to the topic.
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2 Nonlinear Discrete Outcome Models With Unobserved
Clusters of Time-Varying Heterogeneity

Suppose to observe a random sample of balanced panel data {(Yit, X ′
it)′ : (i, t) ∈ N × T } with di-

mensions N := |N | and T := |T |.17 In many applications, N is an index for individuals or “units”,
and T indexes time periods or “unit members”. I consider the problem of modeling, for individ-
ual i ∈ N , the T -vector of discrete outcomes Yi = (Yit)′

t∈T in relation with its T × p matrix of
weakly exogeneous covariates Xi = (X ′

it)′
t∈T . The dependent variable Yit represent agents’ (choice)

decisions and Xit represent agents’ attributes over time and it is often plausible that time-varying
unobservables (to the econometrician) confound the “effect” of Xit on Yit.18. For instance, in the
empirical application, Yit ∈ N denotes the number of patents produced by industry i at time t and
Xit collects industry i’s characteristics at time t such as the level of product market competition.

With this purpose, I introduce below a class of nonlinear clustered or “grouped” fixed effects
(NGFE) models to flexibly incorporate time-varying patterns of unobserved heterogeneity. I let
Supp(Yit, Xit) = Y × Xi and assume that Y ⊂ R is at most countable and Xi ⊂ Rp for some fixed
p ∈ N∗. I assume that individual i ∈ N := {1, ..., N} at time t ∈ T := {1, ..., T} chooses Yit ∈ Y
given her weakly exogeneous covariates X t

i := (X ′
i1, ...X

′
it)′, her unobserved cluster membership

variable g0
i ∈ G0 := {1, ..., G0}, and unobserved time-varying cluster-specific effect α0

gt ∈ A ⊂ R
such that, for all y ∈ Y ,

Pr
(
Yit = y | Xi1, ..., Xit, g

0
i , α

0
g0

i t

)
= h0

(
y,X ′

itβ
0 + α0

g0
i t

)
, (2)

where β0 ∈ B ⊂ Rp in an unknown fixed parameter of interest, G0 ∈ N∗ is unknown but “small”
relative to N , and h0 ∈ H is an unknown link function from the set

H ⊂

h : Y × R → (0, 1) measurable,
∑
y∈Y

h(y, ·) = 1, and
∑
y∈Y

|y|h(y, ·) < ∞ a.e.

 .
The common parameter β0 is often of key interest in applications (e.g., ratios of marginal

utilities). For g ∈ G0, unobserved cluster-specific time effects (α0
g0t)t≥1 account for time-varying

unobserved heterogeneity shared by all members of cluster g, i.e., all individuals from the set{
j ∈ N : g0

j = g
}
. These effects are treated as fixed in the analysis but might be arbitrarily corre-

lated with Xit and confound β0. The contemporaneous covariates Xit and the unobserved effect α0
g0

i t

enter the response function as the combination of a linear single-index X ′
itβ

0 +α0
g0

i t
and an unknown

17Unbalanced panels can be accomodated easily under exogeneous attrition (i.e., missing-at-random). Endogeneous
attrition is beyond the scope of this paper. Throughout the main text, I rule out undirected graph (or network or
“pseudo-panel”) data for which there is no proper T and observations are indexed by pairs of indices (i, t) ∈ N 2 such
that (Yit, X ′

it)′ = (Yti, X ′
ti)′ for all (i, t) ∈ N 2. There is a vast literature on models of link formations and networks

(see, e.g., de Paula, 2020, for a recent review). I discuss a particular case in Appendix B.3.
18E.g., agents choose Xit depending on time-varying unobservables that also affect Yit before idiosyncratic shocks

are realized. One might also want to distinguish between state dependence and unobserved (time-varying) hetero-
geneity (see, e.g. Heckman, 1981).
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link function h0.19 Single index assumptions are common in the nonseparable panel data models
literature and serve mainly computational and interpretation purposes (relying on another smooth
index would not significantly change our subsequent results, but likely some identification assump-
tions). The link function h0 may encapsulate the conditional distribution of random idiosyncratic
shocks in latent variable utility choice models with exogeneous covariates. Note that (i) neither
the clustering nor the number of clusters is observed by the econometrician and (ii) the number of
possible assignments of N individuals into G0 clusters grows exponentially fast with N .

Model (2), although static (h is not indexed by time), complements models with additively
separable (and time-invariant) fixed effects that have been routinely employed in the empirical
microeconometric, industrial organisation, macroeconometric, innovation, and international trade
literature. I provide below some leading examples.

Example 1 (Binary outcome)

Yit = 1
{
X ′
itβ

0 + α0
g0

i t
− εit ≥ 0

}
,

where εit is independent from
(
X ′
i1, ..., X

′
it, g

0
i , α

0
g0

i t

)′
and distributed with (unknown) cumulative

distribution function (cdf) Ψ0. Then,

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
= 1 {y = 1} × Ψ0

(
X ′
itβ

0 + α0
g0

i t

)
+ 1 {y = 0} ×

[
1 − Ψ0

(
X ′
itβ

0 + α0
g0

i t

)]
.

Example 2 (Ordered outcome)

Yit =


0 if X ′

itβ
0 + α0

g0
i t

− εit < d0
1.

1 if d0
1 ≤ X ′

itβ
0 + α0

g0
i t

− εit < d0
2.

2 if X ′
itβ

0 + α0
g0

i t
− εit ≥ d0

2,

(3)

where d0
2 > d0

1, and εit is independent from
(
X ′
i1, ..., X

′
it, g

0
i , α

0
g0

i t

)′
and distributed with (unknown)

cdf Ψ0. Then,

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
=


1 − Ψ0

(
X ′
itβ

0 + α0
g0

i t
− d0

1

)
if y = 0.

Ψ0
(
X ′
itβ

0 + α0
g0

i t
− d0

1

)
− Ψ0

(
X ′
itβ

0 + α0
g0

i t
− d0

2

)
if y = 1.

Ψ0
(
X ′
itβ

0 + α0
g0

i t
− d0

2

)
if y = 2.

Example 3 (Count outcome) Y = {0, 1, 2, ...}. A Poisson parametrization specifies

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
= (λ0

it)
y exp (−λ0

it)
y! , (4)

19If h0 were known to the econometrician, model (2) would become a special case of the semiparametric nonlinear
factor models considered in Chen, Fernández-Val, and Weidner (2021).
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where λ0
it = exp

(
X ′
itβ

0 + α0
g0

i t

)
. Alternatively, h0 could encapsulate, e.g., the negative binomial

distribution.

I adopt the so-called “fixed effects” approach, treating realizations of the unobserved time effects
and group membership variables as unrestricted parameters to be estimated. I assume that G0 is
fixed and exogeneous. Policy parameters of interest such as average marginal effects often write as
functionals of β0, h0, α0 := (α0

11, ..., α
0
1T , ..., α

0
G01, ..., α

0
G0T )′ ∈ AG0T , and latent clustering structure

γ0 := (g0
1, ..., g

0
N)′ ∈ G0N . Hereafter, I focus on identification and estimation of the sequence of

parameters θ0
NT :=

(
G0, h0, β0′

, γ0′
, α0′

)′
∈ ΘNT , where I let

ΘNT =
+∞⋃
G=1

{G} × H × B × {1, ..., G}N × AGT .

While B is a finite-dimensional space, H is clearly not and the dimensions of both the discrete
set {1, ..., G}N and AGT grow with the sample size. This makes model (2) a high-dimensional
combinatorial semi-parametric nonseparable model.

Remark 1 It is straightforward to adapt the analysis to allow for cluster-specific slope coefficient
β0 :=

(
β0′

1 , ..., β
0′

G0

)′
such that

Pr
(
Yit = y | Xi1, ..., Xit, g

0
i , α

0
g0

i t
, β0

g0
i

)
= h0

(
y,X ′

itβ
0
g0

i
+ α0

g0
i t

)
, ∀y ∈ Y . (5)

I discuss this extension, as well as heterogeneous link functions, additional individual- and time-
specific effects, and grouped time-periods in Appendices B.1-B.3. Model (2) can also be extended
to allow for multimodal outcomes. The notation are more lengthy and would essentially follow the
same lines as in Mugnier and Wang (2022).

Remark 2 Model (2) extends Bonhomme and Manresa (2015) to nonparametric discrete choice
modeling. In contrast to Bonhomme, Lamadon, and Manresa (2022), the link function h0 is un-
known, the true underlying unobserved heterogeneity is discrete, and all parameters of the models
are considered as target parameters.

3 Large-N , Large-T Nonparametric Identification

In this section, I prove the nonparametric identification of θ0
NT in model (2) as N and T diverge

jointly to infinity. More specifically, I show that all parameters can be written as known functions of
quantities that are point identified from either or both the cross-sectional and longitudinal variation
in the data. Note that model (2) is related to nonseparable panel data models with latent factors
as it implies the following semiparametric regression equations:

1 {Yit = y} = h0
(
y,X ′

itβ
0 + α0

g0
i t

)
+ εit(y), ∀(i, t, y) ∈ ×N × T × Y , (6)
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where E
[
εit(y) | Xi, g

0
i , α

0
g0

i t

]
= 0, and

Yit =
∑
y∈Y

yh0
(
y,X ′

itβ
0 + α0

g0
i t

)
+ vit, ∀(i, t) ∈ ×N × T , (7)

where vit = ∑
y∈Y yεit(y) and, by linearity, E

[
vit | Xi, g

0
i , α

0
g0

i t

]
= 0. The representation given by (6)

is useful to identify the clustering structure, while the representation given by (7) allows to apply
results in Ichimura (1993) under appropriate dependence conditions that I now introduce.

Since both g0
i and α0

g0
i t

are unobserved, identification holds up to clusters relabeling only.20 It is
also necessary to impose location and scale normalizations, which I specify as

∥∥∥β0
∥∥∥ = 1 and α0

11 = 0,
where

∥∥∥ ·
∥∥∥ denotes the Euclidean norm.21 Identification is based on Assumptions 1-5 below.

Assumption 1 (Random sampling) There exist random vectors of fixed dimensions λ0
gt, µ0

g, ξ0
i

such that, letting λ0 :=
{
λ0
gt : (g, t)

}
, µ0 :=

{
µ0
g : g

}
, ξ0 := {ξ0

i : i}:

(a) (Y ′
i , X

′
i, g

0
i )

′ is i.i.d. across i ∈ N conditional on {α0, λ0, µ0}.

(b) For all i ∈ N :
(
Yit, X

′
it, α

0
g0

i t

)′

t≥2
is a strictly stationary strong mixing process with mixing

coefficients τi(·) conditional on g0
i , µ

0
g0

i
, ξ0
i . Let τ(·) = supi τi(·) satisfy τ(l) ≤ Cml with C > 0

and m ∈ (0, 1).

(c) For all t ∈ T : Y1t | X1t, g
0
1, α

0, λ0, µ0, ξ0 d= Y1t | X1t, g
0
1, α

0
g0

1t
.

Assumptions 1(a)-1(b) restrict cross-sectional and time dependence in the data. They allow for
flexible patterns of unconditional spatial and time-series correlations as captured by the clustering
latent structure α0, λ0, µ0 and individual-specific effects ξ0. Assumption 1(c) requires that λ0, µ0, ξ0

have no effect on the outcome after conditioning for the covariates, cluster membership and the
cluster-specific effects α0. In Appendix B.1, I discuss several extensions such as cluster-specific
slopes, individual-fixed and time-fixed effects which possibly affect all observed variables.22

Assumption 2 (Latent clustering) X := ⋂∞
i=1 Xi is not empty and:

(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all fixed (i, j) ∈ N 2, letting
ρi(x) : X 0 ∋ x 7→ Pr

(
Yi2 = y | Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

)
, ϕ (ρi, ρj) = 1

{
g0
i = g0

j

}
.

(b) For all g ∈ G0, almost surely Pr (g0
1 = g | α0, λ0, µ0, ξ0) > 0.

Assumption 2(a) requires clusters to be sufficiently well-separated in terms of individual-level con-
ditional probability functions. It is a low-level injectivity or “completeness”-type assumption à la
Bonhomme, Lamadon, and Manresa (2022) which ensures that latent variables are recoverable from

20This mirrors rotational invariance normalizations in interactive fixed effects models (see, e.g., Bai, 2009).
21These choices are, of course, arbitrary but normalizing

∥∥β0
∥∥ = 1 is standard in nonparametric single-index

models (see, e.g. Ichimura, 1993; Botosaru and Muris, 2017).
22In some application, it could be useful to allow for a non-scalar α0

gt. Estimation in semiparametric nonlinear
grouped factor models with many factors has recently been considered in Ando and Bai (2022).
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observed moments and leaves flexibility to the researcher for defining clusters of unobserved het-
erogeneity. In Appendix A.2, I provide sufficient conditions for Assumption 2(a) to hold, including
smoothness and the existence of a special regressor à la Honoré and Lewbel (2002) but (possibly)
without large support. For such a mapping to exist, the intuition is that whenever g0

i ̸= g0
j , the

conditional distributions α0
g2 | Xi2 = x, g0

i , µ
0
i , ξ

0
i and α0

g̃2 | Xj2 = x, g0
j , µ

0
j , ξ

0
j across x ∈ X 0 should

differ sufficiently (and the link function h0 should be sufficiently smooth to convey such a difference)
so as to trigger a difference in the integrated-out conditional outcome probabilities captured by ϕ.
In many application, ϕ(f, g) = 1 {f = g} makes sense (see, e.g., Vogt and Linton, 2017). Yet, the
setting is kept slightly more general as other clustering structures might be plausible. Assump-
tion 2(b) rules out asymptotically negligible clusters. Notice that allowing for an increasing number
of clusters or negligible clusters would need substantial changes to Assumption 1 (e.g., as the cross-
sectional identical distribution would not hold anymore). Note also that Assumption 2(a) could be
generalized to be based instead on the (possibly infinite dimensional) full conditional distribution
of the outcome.

Assumption 3 (Regularity and smoothness)

(a) Conditional on g0
i , µ

0
g0

i
, ξ0
i , Xi2 admits a uniformly continuous density function fXi2|g0

i ,µ
0
g0

i

,ξ0
i

such that 0 < δ ≤ infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i
(x) ≤ supx∈X 0 fXi2|g0

i ,µ
0
g0

i

,ξ0
i
(x) ≤ δ < ∞.

(b) Almost surely, E
(∥∥∥X12

∥∥∥2
| g0

1, α
0, λ0, µ0

)
is finite and E (X12X

′
12 | g0

1, α
0, λ0, µ0) is nonsingu-

lar.

(c) ∑y∈Y yh
0(y, ·) is differentiable on R and not constant on the support of X ′

itβ
0 + α0

g0
i t

.

Assumption 3 collects sufficient technical conditions that are useful to achieve point identification of
β0, α0 given that h0 is unknown, by relying on existing results in Ichimura (1993) for nonparametric
i.i.d. single index models. In particular, it requires continuous covariates (which could be relaxed
at the expense of heavier conditions) and invertibility of conditional Gram matrices.

Assumption 4 (Monotonicity) There exists y ∈ Y such that h0(y, v) is strictly monotonic in v.

Assumption 4 is a shape restriction which may be expected to hold at boundary points of Y
(e.g., outside option in random utility models, absence of trade, absence of patenting in a count
outcome model). Shape restrictions such as monotonicity have been routinely used to obtain point-
identification in nonseparable panel data models.23 This condition is weaker than log-concavity
assumptions found in the literature (see, e.g. Chen, Fernández-Val, and Weidner, 2021; Bonhomme,
Lamadon, and Manresa, 2022) that impose strongly unimodal densities (see Ibragimov, 1956).

23See, among many others, Klein and Spady (1993); Altonji and Matzkin (2005); Athey and Imbens (2006);
Evdokimov (2011); Mugnier and Wang (2022).
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Assumption 5 (Compensating variations) For all fixed (g, g̃, t), there exist x1, x2 ∈ X such
that

α0
g̃t + x′

1β
0 = α0

gt + x′
2β

0. (8)

Similarly, for all (g, t, t̃), there exist x3, x4 ∈ X such that

α0
gt̃

+ x′
3β

0 = α0
gt + x′

4β
0. (9)

Assumption 5 requires sufficient variation in the covariates and has the same flavor as the com-
pensating variations used in D’Haultfoeuille, Hoderlein, and Sasaki (2021) and Mugnier and Wang
(2022). As in the latter paper, it does not necessarily require a covariate with large support (it
depends on the joint support of covariates and the unobserved group-specific effects), and ensures
that there is overlap in the single index across unobserved clusters (not individuals) and periods.
Theorem 1 below is the main identification result of the paper. Let W 0

N =
(
1
{
g0
i = g0

j

})
(i,j)∈{1,...,N}2

.

Theorem 1 Let Assumptions 1-3(a) hold, and let N and T diverge jointly to infinity. Then,

1. (W 0
N)N∈N∗ and G0 are point identified.

2. If Assumptions 3(b)-5 further hold, then h0, β0, and (α0
gt)(g,t)∈G0×N∗ are point identified.

For the proof see Appendix A.1.

Remark 3 A key argument of the proof of Theorem 1 is to frame the identification of the clustering
γ0 up to cluster relabeling as the equivalent problem of recovering the lower (or uppper)-triangular
submatrix of the adjacency matrix W 0

N of the undirected graph GN = {V,E} whose set of vertices
V contains units i ∈ N and whose edges E contains all (i, j) ∈ N 2 such that g0

i = g0
j . Given the

clustering structure of the model, note that W 0
N has rank RN ≤ G0 which is also its number of

distinct rows because clusters form disconnected cliques in GN .24 In other words, it is easily seen
that identification of γ0 up to cluster relabeling is equivalent to identification of all sets C0(i) :={
j ∈ N : g0

j = g0
i

}
for i ∈ N . Such a characterization has two advantages: (i) it is invariant to

clusters relabeling and (ii) it reduces the NP-hard G0-mean clustering problem to that of solving
N(N − 1)/2 pairwise binary classification problems.25 Once the clustering γ0 has been identified for
all N , identification of G0 follows easily by letting N → ∞. Identification of β0 can be obtained
relying on within-cluster cross-sectional variation for a single cluster and time period and a result by
Ichimura (1993) for a large class of cross-sectional nonparametric single-index models. Identification
of cluster-specific effects and link function h0 relies on the compensating variations and monotonicity
of h0(y, ·) for some y ∈ Y.

24The related problem of “community detection” in networks has been widely studied in the statistical learning
literature, and in particular in the compressed sensing literature. I do not pursue adaptation of spectral clustering
techniques or recent development in Graph-cut problems for which very few asymptotic results in statistical settings
with complex structure of dependencies are known. See von Luxburg (2007); Wang and Su (2021).

25Building on this insight, Mugnier (2022) proposes computationally straightforward pairwise differencing estima-
tors for linear grouped fixed effects models. A similar-in-philosophy though different trick to break NP hardness is
the binary segmentation approach of Wang and Su (2021).

13



A natural nonparametric estimation approach follows from the constructive identification strategy.
Yet, it has the drawback of requiring a lot of nonparametric density estimation, i.e., a lot of tun-
ing parameters as it requires combining nonparametric estimators for many unknown conditionals
probabilities. This is similar to Gao, Li, and Xu (2022)’s approach in a pure network setting. I do
not pursue the theoretical analysis of an estimator of this type, because I aim at developing a simple
method for which inference tools are available. An open question is how the pairwise approach com-
pares to the bruteforce fully nonparametric maximum likelihood approach. I note that, for a class
of nonlinear (exponential) directed network models, the pairwise differencing approach developed
in Mugnier (2022) yields a convenient estimation procedure under conditional moment restrictions,
without requiring any nonparametric estimation, which reconciles computational simplicity and
powerful inference.

4 Semiparametric Estimation

In the first part of this section, I propose a general M-estimation framework accomodating nonlinear
models when the number of clusters, G0 ∈ N∗, is known to the researcher.26 In the second part, I
specialize the framework to cases where h0 ∈ H is further assumed to be known (e.g., Probit, Logit,
Poisson) to define semiparametric NGFE estimators. In the third part, I discuss computation.

4.1 A Generic M-Estimation Framework

Assume from now that G0 ∈ N∗ is known to the researcher, and suppose there exists a known
function ρ : Y × X × B × H × G0N × AG0T −→ R such that θ0

NT := (β0′
, h0, γ0′

, α0′)′ satisfies

θ0
NT = arg max

θ∈B×H×G0N ×AG0T

E
(

1
NT

N∑
i=1

T∑
t=1

ρ(Yit, Xit; θ) | γ, α
)
, (10)

where G0N = {1, ..., G0}N is the set of all partitions of {1, ..., N} into at most G0 clusters. Provided
it exists, the M-NGFE nonparametric estimator θ̂M

ρ := (β̂M′
, ĥM, γ̂M′

, α̂M′)′ of θ0
NT solves

θ̂M
ρ ∈ arg max

θ∈B×H×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

ρ(Yit, Xit; θ). (11)

Finding a suitable ρ-function, proving identification of θ0
NT (i.e., that eq. (10) holds), and deriving

the asymptotic properties of the sequence of θ̂M
ρ are certainly difficult problems beyond the scope

26Estimating G0 in nonlinear models with time-varying unobserved heterogeneity is a difficult problem that is
beyond the scope of the paper. See Chen, Fernández-Val, and Weidner (2021) for a discussion in some concave
nonlinear factor type models. An AIC or BIC-type criterion à la Bonhomme and Manresa (2015); Bai and Ng (2002)
could be employed but would require to know at least an upper bound on G0. Letting G0 grow slowly with N, T
could also be of interest but would require a different analysis that is beyond the scope of the paper. Note that
Bonhomme, Lamadon, and Manresa (2022) need the number of clusters to increase as they assume a (possibly)
continuous underlying unobserved heterogeneity.
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of the paper, each of them would require further assumptions. Moreover, computation of θ̂M
ρ is

generally infeasible because maximization problem (11) is a non-smooth non-concave optimization
problem with combinatorial optimization (due to the clustering part) over an infinite-dimensional
space (due to H). A practical solution to make the problem finite-dimensional is sieve-estimation
of h0 but this is beyond the scope of this paper. Instead, I focus on semiparametric versions where
h0 is assumed to be known and that are of practical interest in many empirical applications.

4.2 Semiparametric NGFE Estimators

From now on, I assume that h0 ∈ H is known (e.g., Logit, Probit, Poisson, etc.) and consider the
problem of estimating θ0

NT := (β0′
, γ0′

, α0′)′ in the semiparametric model (2) with known G0. The
semiparametric NGFE estimator of θ0

NT , denoted θ̂NGFE := (θ̂′, γ̂′, α̂′)′, is the M-NGFE estimator
θ̂M
ρ (once suppressing dependence on h) with ρ(Yit, Xit; θ) = ln h0 (Yit, X ′

itβ + αgit). In other words,
θ̂NGFE is solution to the following minimization problem:

θ̂NGFE ∈ arg min
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln h0 (Yit, X ′
itβ + αgit) , (12)

where the minimum is taken over all possible common parameters β, partitions γ = (g1, ..., gN)′

of the N individuals into G0 clusters, and cluster-specific time effects {αgt : (g, t)}. Note that the
NGFE estimator is a “classification likelihood” estimator. For given values of β and α, the optimal
cluster assignment for individual i is

ĝi(β, α) = arg min
g∈G0

1
NT

N∑
t=1

T∑
t=1

− ln h0 (Yit, X ′
itβ + αgt) , (13)

where the minimum g is taken in case of a non-unique solution. The NGFE estimator of (β0′
, α0′)′

in (12) can then be written as

(β̂, α̂) = arg min
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln h0
(
Yit, X

′
itβ + αĝi(β,α)t

)
, (14)

where ĝi(β, α) is given by (13).

4.3 Computation

The minimization problem (12) is not differentiable nor convex in θ. In particular, it may be subject
to the existence of local minima. Note that the number of partitions of N individuals into G0 clusters
increases steeply with N , making exhaustive search impossible.27 I propose the following simple

27The number of partitions of N objects into G0 disjoint and non-empty subsets is 1
N !
∑N

i=1(−1)N−i
(

N
i

)
NG0 ∝ G0N

G0! .
In fact the G0-means problem without regressors in a cross-sectional setting is NP-hard (see, e.g., Aloise, Deshpande,
Hansen, and Popat, 2009).
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algorithm which is an extension of the popular Lloyd (1982)’s algorithm for k-means, a “greedy”
algorithm providing a converging sequence of heuristic solutions in polynomial time.

Iterative Algorithm:

1. Let (β(0), α(0)) ∈ B × AG0T be some starting value. Set s = 0.

2. Compute for all i ∈ {1, ..., N}:

g
(s+1)
i = arg min

g∈G0

T∑
t=1

− ln h0
(
Yit, X

′
itβ

(s) + α
(s)
gt

)
. (15)

3. Compute:

(
β(s+1), α(s+1)

)
= arg min

(β,α)∈B×AG0T

N∑
i=1

T∑
t=1

− ln h0
(
Yit, X

′
itβ + α

g
(s+1)
i t

)
. (16)

4. Set s = s+ 1 and go to Step 2 (until numerical convergence).

Algorithm 1 alternates between two steps. In the “assignment” step, each individual i is assigned
to cluster gi whose vector of time effects minimizes individual’s i time-averaged log-likelihood given
the slope parameter. In the “update step”, β and α are computed using maximum likelihood
and controlling for interactions of cluster and time dummies. A potential issue is that the solution
depends on the chosen starting values. Drawing starting values at random and selecting the solution
that yields the lowest objective is a practical solution in low-dimensional problems. Finding a fast
approximation of NGFE for larger-scale problems and controlling its optimization error is left for
further research.28

5 Asymptotic Properties of Semiparametric NGFE Esti-
mators

In this section, I assume that θ0
NT := (β0′

, α0′
, γ0′)′ is identified (e.g., by Theorem 1) and derive the

asymptotic properties of semiparametric NGFE estimators. I consider an asymptotic framework
where N and T tend jointly to infinity but G0 does not grow with N and T . I focus on binary
choice models with grouped fixed effects as the leading case. Similar results can be obtained for
other models with strictly concave log-likelihood function (see Appendix B.4), but I stick to binary
choice models to keep the exposition simple. I abstract from optimization errors and study the
asymptotic behaviour of the exact sequence of estimates defined in eq. (12).

28Note that an algorithm similar to Algorithm 2 in Bonhomme and Manresa (2015) can be employed to improve
the trade-off between exploration and exploitation during the optimization process.
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5.1 Binary Choice Model With Grouped Fixed Effects

Consider the following data generating process:

Yit = 1
{
X ′
itβ

0 + α0
g0

i t
− εit ≥ 0

}
, i = 1, ..., N, t = 1, ..., T. (17)

For any Z := {Zit : (i, t)}, let Z(t)
− = {Zis : 1 ≤ i ≤ N, 1 ≤ s ≤ t} and Z(t)

+ = {Zis : 1 ≤ i ≤ N, t ≤ s ≤ T}.

Assumption 6
Eq. (17) holds and

(a) For all t:
(
X(t)

− , γ0, α0, ε
(t−1)
−

)
and ε

(t)
+ are independent.29

(b) The {εit : (i, t)} are identically distributed with known cumulative distribution function Ψ that
is fully supported on R, twicely continuously differentiable, strictly increasing, and such that
(ln Ψ)′′ < 0. Moreover, Ψ′ is symmetric around 0.

Assumption 6(a) is a weak exogeneity assumption, standard in the panel data literature, which
allows Xit to contain predetermined variables with respect to Yit. In particular, Xit can include lags
of Yit to accommodate dynamic models. This assumption does not restrict the correlation between
(γ0, α0) and {Xi : i}. Assumption 6(b) is standard in semiparametric panel discrete choice models
and yields strict concavity of the log-likelihood function under minimal amount of cluster-specific
and time-specific variation in the covariates (as assumed, e.g., in Fernández-Val and Weidner, 2016;
Bonhomme, Lamadon, and Manresa, 2022; Chen, Fernández-Val, and Weidner, 2021).30 The second
part of Assumption 6(b) is weak and is statisfied by the Probit (Ψ(u) =

∫ u
−∞(1/

√
2π)e−t2/2dt) and

Logit (Ψ(u) = 1/(1 + e−u)) distributions. Symmetry of Ψ is not necessary but it conveniently
simplifies notation in the proofs. Under Assumption 6, note that eq. (17) is a semiparametric NGFE
model (2) with known link function h0(y, z) = Ψ(z)1{y=1}(1−Ψ(z))1{y=0}. The corresponding NGFE
estimator writes

(β̂, γ̂, α̂) ∈ arg min
(β,γ,α)∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln Ψ (Qit (X ′
itβ + αgit)) , (18)

where Qit = 2Yit − 1.

5.2 Consistency

Consider the following assumption.

Assumption 7

(a) B and A are compact convex subsets of Rp and R, respectively.
29If one lag Yit−1 is included as regressor, I assume that Yi0 is observed and contained in X(t)

− . Higher-order
dependence can be accommodated similarly.

30See also, Pratt (1981).
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(b) There exists a constant M > 0 such that
∥∥∥Xit

∥∥∥ ≤ M almost surely.

(c) Let Xg∧g̃,t denotes the mean of Xit in the intersection of clusters g0
i = g, and gi = g̃. For all

partitions γ = {g1, ..., gN} ∈ ΓG0N , let ρ̂(γ) denote the minimum eigenvalue of the following
matrix:

1
NT

N∑
i=1

T∑
t=1

(Xit −Xg0
i ∧gi,t)(Xit −Xg0

i ∧gi,t)
′.

Then, plimN,T→∞ minγ∈ΓG0 ρ̂(γ) = ρ > 0.

Assumption 7(a) is standard in the context of M-estimation. Assumption 7(b) is for a matter of
convenience (it simplifies the proof). It strengthens Assumption 1(b) in Bonhomme and Manresa
(2015), and ensures (together with Assumption 7(a)) strong concavity of the log-likelihood function
and rules non-stationary covariates.31 Assumption 7(c) is the same noncollinearity condition as As-
sumption 1(g) in Bonhomme and Manresa (2015). It requires that Xit shows sufficient within-cluster
variation over time and across individuals, and is related to standard noncolinearity assumptions
encountered in the large-N , large-T panel data literature (see, e.g., Bai, 2009; Chen, Fernández-Val,
and Weidner, 2021; Vogt and Linton, 2017; Ando and Bai, 2022). It allows for time-invariant covari-
ates provided that they have a sufficiently rich support. As a special case highlighted in Bonhomme
and Manresa (2015), Assumption 7(c) is satisfied if Xit are discrete and, for all g, the conditional
distribution of Xi given g0

i = g has strictly more than G0 points of supports.

Theorem 2 (Consistency) Let Assumptions 6 and 7 hold. Then, as N and T tend to infinity:

1. β̂ p−→ β0.

2. 1
NT

∑N
i=1

∑T
t=1

(
α̂ĝit

− α0
g0

i t

)2 p−→ 0.

For the proof see Appendix A.3.
Theorem 2 shows that NGFE estimators of the common slope coefficient and cluster-specific

effects in NGFE binary choice models are both consistent.

5.3 Asymptotic Distribution

Consider the following assumption.

Assumption 8

(a) For all g ∈ G0: plimN→∞
1
N

∑N
i=1 1 {g0

i = g} = πg > 0.

(b) For all (g, g̃) ∈ G02 such that g ̸= g̃: plimT→∞
1
T

∑T
t=1(α0

gt − α0
g̃t

)2 = cg,̃g > 0.

31One could relax this assumption by allowing covariates to have sub-gaussian tails (see, e.g., Vershynin, 2019, for
a definition). I do not pursue this avenue in order to keep the exposition light. Moment conditions in Bonhomme
and Manresa (2015) also rule out non-stationary covariates.
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(c) There exist constants a > 0 and d > 0 and a sequence α(t) ≤ exp(−atd) such that, for all
i ∈ {1, ..., N} and (g, g̃) ∈ G02 such that g ̸= g̃,

{
α0
gt − α0

g̃t
: t
}

are strongly mixing processes
with mixing coefficients α(t).

Assumptions 8(a)-(c) are identical to Assumptions 2(a)-(c) in Bonhomme and Manresa (2015),
respectively. Assumption 8(a) ensures that no cluster is asymptotically negligible relative to the
others and that each cluster has a large number of observations in the population. This is equiva-
lent to the “strong factor” condition in approximate factor models (see, e.g., Assumption 1.(v) in
Chen, Fernández-Val, and Weidner, 2021). Assumption 8(b) imposes that the G0 clusters are well
separated in the population. As discussed in a recent work by Chetverikov and Manresa (2021),
departing from such an assumption seems quite difficult. Assumption 8(c) restricts the depen-
dence and tail properties of the processes (α0

gt − α0
g̃t

), which are assumed to be strongly mixing.
Assumption 8(d) is standard and requires a sufficient amount of variation in the covariates.

Assumption 8 allows me to rely on exponential inequalities for dependent processes (e.g., Rio,
2000) in order to bound misclassification probabilities, almost the same way as in the proof of
Theorem 2 in Bonhomme and Manresa (2015). The novelty here is that their assumption that the
idiosyncratic shock in the linear model is a strong mixing process is hidden in the parametric and
independence restrictions formulated in Assumption 6, the latter allowing to rely on exponential
inequalities for martingale differences (see, e.g., Lesigne and Volný, 2001) to control remainder terms
in the proofs (essentially the score).

Let (β̃, α̃) be such an infeasible version of the NGFE estimator where cluster membership gi,
instead of being estimated, is fixed to its population counterpart g0

i :

(β̃, α̃) = argmin
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln Ψ
(
Qit

(
X ′
itβ + αg0

i t

))
. (19)

This is the maximum likelihood estimator in the pooled regression of Yit on Xit and the interactions
of population cluster dummies and time dummies.

Assumptions 6, 7, and 8 provide conditions under which estimated cluster memberships con-
verge to their population counterparts, and the NGFE estimator defined in (18) is asymptotically
equivalent to the infeasible maximum likelihood estimator (β̃, α̃), when N and T tend to infinity
and N/T ν → 0 for some ν > 0 (see Lemma 7 in Appendix A.4.1). In particular, this allows T
to grow considerably more slowly than N . Because of invariance to relabeling of the clusters, the
results for cluster membership and cluster-specific effects are understood to hold given a suitable
choice of the labels (see the proof for details). Theorem 2 and eq. (53) crucially hinge on the restric-
tive assumption that the number of well-separated clusters G0 is known and fixed, but it could be
that consistent estimation of β̂ remains possible under weaker assumptions that would nonetheless
prevent consistent estimation of cluster memberships.32

Given Lemma 7, showing asymptotic normality of the NGFE estimator then reduces to the
32I thank Martin Weidner for pointing out this to me, something also discussed in Dzemski and Okui (2018).
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simpler problem of showing asymptotic normality of the infeasible (oracle) MLE (β̃, α̃). Let Z0
it =

X ′
itβ

0 + α0
g0

i t
. For all g ∈ G, all t ∈ {1, ..., T}, let X̃gt denote the projection of Xit on the space

spanned by the cluster membership variable under a metric weighted by (− ln Ψ)′′(QitZ
0
it):

X̃gt =
(

1
N

N∑
i=1

1
{
g0
i = g

}
(ln Ψ)′′(QitZ

0
it)
)−1 ( 1

N

N∑
i=1

1
{
g0
i = g

}
(ln Ψ)′′(QitZ

0
it)Xit

)
,

i.e., the weighted average of Xit for individuals {i : g0
i = g}. Also, let π̂gt denote the following

weighted average:

π̂gt = 1
N

N∑
i=1

1
{
g0
i = g

}
(− ln Ψ)′′(QitZ

0
it).

Assumption 9 below allows to characterize the asymptotic distribution of the infeasible MLE (β̃, α̃).

Assumption 9

(a) {Yit : (i, t)} are independent conditional on (X, γ0, α0).

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

(− ln Ψ)′′(QitZ
0
it)
[
Xit − X̃g0

i t

] [
Xit − X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
(− ln Ψ)′′(QitZ

0
it)
(
Xit − X̃g0

i t

)} {
Qit(− ln Ψ)′(QitZ

0
it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.

(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1
{
g0
i = g

}
1
{
g0
j = g

}
QitQjt(ln Ψ)′(QitZ

0
it)(ln Ψ)′(QjtZ

0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1
{
g0
i = g

}
Qit(ln Ψ)′(QitZ

0
it)

d−→ N (0, ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α, α0, is in the
interior of AG0T .

Assumption 9(a) rules out dynamic or feedbacks.
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Theorem 3 (Asymptotic Distribution) Let Assumptions 6-9 hold and let N and T tend to
infinity such that N/T → ∞ and, for some ν > 1, N/T ν → 0. Then:

√
NT (β̂ − β0) d−→ N

(
0,Σ−1

β

)
, (20)

and, for all (g, t),
√
N
(
α̂gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (21)

where Σβ, ωgt, and π̃gt are defined in Assumption 9.

For the proof see Appendix A.4.2.
Theorem 3 demonstrates that NGFE estimators in NGFE binary choice models achieve the

parametric
√
NT and

√
N rates of convergence and are free of Neyman and Scott (1948)’s incidental

parameters problem. The asymptotic regime N/T → 0 is needed since (i) there are time effects
and (ii) the model is nonlinear. These rates are in contrast with standard interactive fixed-effects
models (see, e.g. Bai, 2003, 2009; Ando and Bai, 2022) for which

√
N consistency of the time-varying

factors requires N/T 2 → 0 or more generally N/T → κ, 0 < κ < ∞, as it is assumed for instance
in Fernández-Val and Weidner (2016); Chen, Fernández-Val, and Weidner (2021). The intuition
behind this result is that the extreme sparsity of the factor loading structure in model (17) allows
NGFE estimators to achieve fast accurate classification of individuals, which reduces the estimation
problem to that of a standard nonlinear models with multidimensional time-varying fixed effect in
the limit.33 Consistent estimators of the asymptotic variances are given in Appendix C.

5.4 Average Partial Effects (APEs)

Under Assumption 6, if Xit,k, the kth element of Xit is binary, its partial effect on the conditional
probability of Yit is

∆(Xit, β
0, α0

g0
i t

) = Ψ(β0
k +X ′

it,−kβ
0
−k + α0

g0
i t

) − Ψ(X ′
it,−kβ

0
−k + α0

g0
i t

),

where β0
k is the kth element of β0, and Xit,−k and β0

−k include all elements of Xit and β0 except the
kth element. If Xit,k is continuous, the partial effect of Xit,k on the conditional probability of Yit is

∆(Xit, β
0, α0

g0
i t

) = β0
kΨ′(X ′

itβ
0 + αg0

i t
),

where Ψ′ is the derivative of Ψ. As discussed in Fernández-Val and Weidner (2016), if (Xit, g
0
i , (α0

gt)g∈G0)
is identically distributed over i but can be heterogeneously distributed over t, then E(∆it) = δ0

t and
33To see the factor-loading structure, note that model (17) can be written as Yit = 1 {X ′

itβ + λ′
ift − εit ≥ 0},

where λ′
i = (1

{
g0

i = 1
}

, ..., 1
{

g0
i = G0}) ∈

{
b ∈ {0, 1}G0

:
∑G0

g=1 bg = 1
}

and ft = (α0
gt)′

g∈G0 ∈ AG0 . If N/T → κ ∈
(0, +∞), similar arguments than Chen, Fernández-Val, and Weidner (2021) apply and bias-correction methods are
needed.
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δ0
NT = 1

T

∑T
t=1 δ

0
t changes only with T . If (Xit, g

0
i , (α0

gt)g∈G0) is identically distributed over i and
stationary over t, then E(∆it) = δ0

NT , and δ0
NT = δ0 does not change with N and T .

Deriving the asymptotic properties of plug-in estimators of average partial effects of the type
δ̂NT = ∆(β̂, α̂, γ̂) should follow similar arguments as in Fernández-Val and Weidner (2016).

6 Monte Carlo Simulations

In this section, I conduct Monte Carlo experiments to assess the numerical performance of NGFE
estimators in finite samples, in terms of bias, root mean squared errors (RMSE), classification
(Precision, Recall, Rand Index), execution (CPU) time, and inference accuracy (standard errors,
standard deviation and coverage). I compare the results with currently available competitors. I
consider Chamberlain (1980); Rasch (1960)’s conditional logit (CMLE), nonlinear two-way fixed ef-
fects (NLTWFE, see, e.g. Fernández-Val and Weidner, 2016; Mugnier and Wang, 2022), Bonhomme,
Lamadon, and Manresa (2022)’s 2-step grouped fixed effects (2GFE), pooled OLS regression, linear
two-way fixed effects (LTWFE), and Bonhomme and Manresa (2015)’s GFE estimators.34

As in Bonhomme and Manresa (2015), I focus on settings of moderate size (N = 90, T = 7)
to highlight the performance of NGFE with small datasets as often encountered in macro/meso-
economics (e.g., in my empirical application). Having large N is not computationally demanding.
When T is very large, computation of the NGFE estimate might be demanding and results in
Mugnier (2022) could probably be adapted. I consider static and dynamic logit models, and four
DGPs for the time-varying covariates (more or less correlated with the unobserved heterogeneity,
UH hereafter), where the number of groups G0 each time varies across {2, 3, 5}. Variation across
time periods in the covariates is not necessary for NGFE but allows for comparisons (e.g., with
CMLE).

Overall, I find that NGFE estimators perform best uniformly across competitors in the design
they are meant to adress: correlated time-varying unobserved heterogeneity (DGP 1). In other
DGPs, where the unobserved heterogeneity does not vary with time, they might be slightly more
noisy than well-suited estimators (e.g., CMLE or NLTWFE) and have a larger finite sample bias.

6.1 Static Logit Model

The data generating process is

Yit = 1 {Xitβ + αgit > εit} , i = 1, ..., N, t = 1, ..., T, (22)

where β = 1 and εit ∼Logit(0, π2/3), gi ∼Unif{1, ..., G0} for G0 ∈ {2, 3, 5}, and, letting with µ =
(−1, 1)′ if G0 = 2, µ = (−π/

√
3, 0, π/

√
3)′ if G0 = 3, and µ = (−2π/

√
3,−π/

√
3, 0, π/

√
3, 2π/

√
3)′

34I leave comparison with Charbonneau (2017)’s conditional logit and Chen, Fernández-Val, and Weidner (2021)’s
nonlinear factor models for further research. A definition of the metrics and more details are given in Appendix D.
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if G0 = 5, Vi such that Pr(Vi = −2) = 1/12,Pr(Vi = −1) = 1/4,Pr(Vi = 0) = 1/3,Pr(Vi = 1) =
1/4,Pr(Vi = 2) = 1/12, and Wit ∼ N (0, 1):

• DGP1 (grouped patterns of time-varying UH): αg0 = µg, for t ≥ 1, αgt = 0.1αgt−1+(−1)g−1Ugt,
Ugt ∼Unif[0, 1], Xit = 0.5Vi + 0.8Ug0

i t
.

• DGP2 (grouped patterns of time-invariant UH): αgt = µg, Xit = 0.3µgi
+ Vi + 0.8Wit.

• DGP3 (continuous time-invariant UH): αi ∼ N (0, 1), Xit = αi + 0.5Vi + 0.8Wit.

• DGP4 (No UH): αgt = 0, Xit = 0.5Vi + 0.8Wit.

The variables Ugt, Vi,Wit, gi and εit are independent and i.i.d. across individuals and time periods.
All the results are based on 50 Monte-Carlo replications and computed using Algorithm 1 with 200
randomized initialization points (results improve by increasing this number).

Table 1 reports the bias and RMSE of NGFE and five competing estimators. It shows that NGFE
estimates minimize both metrics across all estimators in DGP 1 (e.g., one order of magnitude less
than CMLE or 2STEPGFE, the best competitors). If there is no UH (DGP 4), NGFE keeps a
reasonable RMSE compared to CMLE but has small bias (e.g. RMSE of .151 v.s. .152 if G0 = 2
and .178 v.s. .118 if G0 = 5, Bias of 0.040 v.s. -0.002 and 0.114 v.s. 0.018 respectively). All linear
estimators perform very poorly. The 2-step GFE is more noisy in general.

Table 2 shows that any measure of the clustering accuracy remains at a high level because
of the high level of UH. For instance, the misclassification rate falls below 50% when G0 = 2
only. Unreported simulations show that it actually drops to 5% when G0 = 2 and cluster-specific
effects are not correlated with the covariates. There is a continum between the two regimes that
merits further investigation. Precision also improves with the number of iterations of Lloyd (1982)’s
algorithm. The CPU time of the method is comparable to that of other clustering methods such as
Bonhomme, Lamadon, and Manresa (2022)’s 2-step GFE.

Table 3 suggests that estimates of the standard errors based on the large-T clustered variance
formula match on average the effective finite sample dispersion of the NGFE estimates. The re-
sulting confidence intervals have an almost correct coverage though showing a small finite-sample
under-coverage.35 In particular, Table 3 suggests good coverage rates around the prescribed theo-
retical level of 95% (e.g., .86, .80, .84 in DGP 1 and .92, .92, .88 in DGP 4), which fall with the
number of groups and, more generally, with the degree of continuity of the UH (e.g., below .5 in
DGP 3 but still .82 in DGP 2 with G0 = 2).

35A similar finite-sample undercoverage phenomenon is also reported in Bonhomme and Manresa (2015), who
suggest the use of a bootstrap estimator instead.
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6.2 Dynamic Logit Model

The data generating process is

Yit = 1 {Yit−1β1 +Xitβ2 + αgit > εit} , i = 1, ..., N, t = 1, ..., T,
Yi0 = 1 {Xi0β2 + αgi0 > εi0} , i = 1, ..., N, (23)

where β1 = 0.5 and β2 = 1. Tables 4-6 report the same statistics as Tables 1-3 but for the dynamic
model. Results for β2 are very similar to that for β. On the other hand, the precision of NGFE
estimates of β1 is more mixed (the conditional independence assumption 9(a) does not hold here).
Previous comparisons still apply there.

7 Empirical Application: Revisiting the Inverted-U Rela-
tionship Between Innovation and Competition

Does more competition lead to more innovation? This fundamental question (e.g., for Antitrust and
Competition policy) has been the subject of a longstanding academic debate in the fields of industrial
organization and macroeconomics of endogeneous growth theory (for surveys, see, e.g., Griffith
and Van Reenen, 2021; Gilbert, 2006).36 On the one hand, more competition reduces profit and
postinnovation rents, and therefore disincentivizes innovation: this is the so-called Schumpetarian
effect. On the other hand, more competition may reduce a firm’s preinnovation rent by more than it
reduces its postinnovation rent and thus foster innovation and growth: this is the escape-competition
effect.

In an influential paper, Aghion, Bloom, Blundell, Griffith, and Howitt (2005)[ABBGH hence-
forth] reconcile these two contradictory views by documenting an inverted-U relationship between
the number of citation-weighted patents and a measure of product market competition using a panel
data set of seventeen UK industries (i) observed over the period 1973-1994 (t). The inverted-U shape
is predicted by a model of endogeneous growth and estimated after controlling for multiplicatively
separable industry and year fixed effects, aimed at capturing permanent unobserved technological
levels and common trends. The authors’ preferred specification is a conditional fixed effects (FE)
Poisson model: for all p ∈ {0, 1, ...}

Pr(cwpatentit = p | compit, νi, ξt)

= exp(p(g(compit) + νi + ξt) exp(− exp(g(compit) + νi + ξt)))
p! , (24)

where cwpatentit represents the number of citation-weighted patents in industry i in year t, compit
36For public coverage, see, e.g, Lohr, Steeve “How Software Is Stifling Competition and Slow-

ing Innovation”, The New York Times, 7 Jul, 2022. Last consulted on September 29, 2022 at:
https://www.nytimes.com/2022/07/21/business/software-james-bessen-book.html.
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is one minus the average Lerner index in industry i in year t, νi is an unobserved industry-specific
permanent level of innovation, ξt captures macroeconomic trend, and g(·) is a second-degree polyno-
mial.37 Figure 1 shows ABBGH’s original inverted-U relationship, by replicating ABBGH’s Figure
II, a scatterplot comparing the fit of the exponential model (24) with that of a nonparametric
spline.38

While model (24) is in line with a large body of the previous literature (see, e.g., Hausman,
Hall, and Griliches, 1984; Gourieroux, Monfort, and Trognon, 1984), it imposes strong assumptions
on the data generating process: conditional Poisson distribution and multiplicative separability
of unobserved effects. In particular, the inverted-U relationship seems fragile as recent empirical
research has reported both increasing and decreasing monotonic relationships depending on the
controls included (Aghion, Van Reenen, and Zingales, 2013), whether accounting or not for the
presence of structural breaks (Correa, 2012), or the country data used (Hashmi, 2013; Askenazy,
Cahn, and Irac, 2013), etc. This has spurred a variety of explanations and theoretical models.

To the best of our knowledge, however, no paper has assessed the robustness of the inverted-
U relationship to modeling choices regarding unobserved heterogeneity. As ABBGH and Correa
(2012) argue, innovation is a dynamic process and endogeneity issues might comes from unobserved
forces that drive both innovation and the market structure in a dynamic way.39 Moreover, while
industry might be a good level to control for permanent scaling, it is likely that among the 311
firms of the panel, a few time-varying paths emerge. A natural question is then: to which extent
are all industries subject to the same economic trend (i.e., time effect) during the 1973-1994 period
where, e.g., the development of I.T. has been exponential and plausibly shaped market structures?

In this section, I illustrate how the class of NGFE models together with semiparametric NGFE
estimators introduced in this paper can be used to adress this question, challenging the view that
firms are all subjects to the same macroeconomic trends and that the unobserved propensity to
innovate and compete is industry-specific and fixed across time.

Data. I use ABBGH’s original data set available at N. Bloom’s website.40 This is an unbalanced
industry-level panel based on 311 firms listed on the London Stock Exchange and grouped in 17
two-digit SIC code industries, which received patent grants from the United States Patent and
Trademark Office (USPTO). The period covered by the dataset is from 1973 until 1994 and there
are 354 observations. In particular, here N = 17 and T = 22 and I assume that missing observations

37The fact that the number of patents is weighted and averaged at the industry level makes it a “continuous”
variable with a mass point at 0. This is probably a reason why the authors apply a discrete model. See the summary
statistics in Table 7. See Aghion, Bloom, Blundell, Griffith, and Howitt (2005) for details on the construction of
each variable.

38I note that the scale of the y-axis in ABBGH’s Figure II is incorrect, as well as the legend of their Figure I since
the graph in fact corresponds to specification (1) in their Table I (and not (2) as claimed).

39Fernández-Val and Weidner (2016) estimate model (24), including one lag of the dependent variable as an addi-
tional regressor and find ABBGH’s results to be robust to this change. Yet, unobserved time-varying heterogeneity
could still remain.

40https://nbloom.people.stanford.edu/sites/g/files/sbiybj4746/f/abbgh.zip.
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are missing-at-random.41 Table 7 reports summary statistics borrowed from Hashmi (2013). In
particular, one can see that some industries are never granted patents.42 Table 8 describes the
industries present in the sample.

Evidence of Time-Varying Unobserved Heterogeneity. Before estimating a NGFE model,
I investigate the existence of a latent clustering structure by applying the pairwise differencing
estimator developed in Mugnier (2022) to ABBGH’s residuals:

cwpatentit − Ê[cwpatentit | compit, ν̂i, ξ̂t] = cwpatentit − exp(ĝ(cwpatentit) + ν̂i + ξ̂t),

plotted in Figure 2. This smooth exploration method allows for an unconstrained number of clusters,
run in polynomial time, provides a regularization path for the number of groups and estimate
time-varying effects without relying on k-means or computing the NGFE which is subject to local
minima.43 Figure 3 and Figure 4 plot the regularization path corresponding to the largest plateau,
i.e., for a choice of the regularization parameter such that Ĝ = 3, and time effects respectively.
Figures 4 reveals one cluster with residuals centered around zero and low variance (in red), one
cluster with higher volatility and statistically different from zero at several periods and whose CI
does not intersect that of the first cluster at least at one period (in blue), and a very high volatility
cluster (in green) that consists of industries with missing values. There is evidence of time-varying
unobserved heterogeneity.

A Mildly Inverted-U Relationship. I now estimate the following NGFE model:

Pr(cwpatentit = p | compit, gi, αgit)

= exp(p(g(compit) + αgit) exp(− exp(g(compit) + αgit)))
p! , ∀p ∈ {0, 1, ...} , (25)

where gi ∈ {1, ..., G} is industry i’s unknown cluster membership and (α1t, ..., αGt)′ ∈ RG are time-
specific unobserved effects accounting for unobserved confounding variations in the propensity to
patent and product market competition in each of the G clusters. Given the small number of
industries, I report results for G ∈ {2, 3, 4}. Models (24) and (25) are non-nested as G << N .

Table 9 and Figure 5 replicate ABBGH’s Table I and Figure I, and additionally show results of
NGFE estimation for the choices G ∈ {2, 3, 4}, and using 2, 000 random initializers around 02+GT .
Two results are striking. When G = 2, the in-sample relationship (no extrapolation) is a significant
but mildly increasing relationship. This can be explained by the structure of the cluster effects

41While the time dimension is large, the cross-sectional dimension is slightly at odd with the asymptotic framework
considered in the paper. Still the economic point applies and it is likely that larger datasets with more digits will be
available in the near future.

42This does not mean that such industries do not innovate. Patenting is an imperfect measure of innovation in
several aspects (Boldrin and Levine, 2013). Many studies perform robustnes checks by using R&D expenses as an
alternative measure (Aghion, Bloom, Blundell, Griffith, and Howitt, 2005).

43Yet, its statistical guarantees are currently not known in the Poisson model.
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discussed in the next paragraph: when G = 2, the two estimated clusters do not exhibit a lot of
variation over time. Estimation then acts as a constrained classical fixed effect estimator (where
industry-specific effects only have two points of support). When G increases, I find strong evidence
of a mildly inverted-U relationship. Estimates of the competition parameters are still significantly
different from zero but the inverted-U relationship is dramatically less pronounced (the curve is
flatter) when unobserved heterogeneity is allowed to be time-varying.

Clustered Unobserved Innovation Dynamics. The 70-90’s are characterized by the extremely
rapid development of electronics, networks and the Internet. It is likely that economies of scale,
shocks and unobserved innovation trends are not the same for each industry. Figure 6 confirms this
intuition by plotting the estimated cluster-specific effects obtained in specifications (3)-(5) from
Table 9, where the data-driven clustering of industries is displayed in Figure 7.

The NGFE estimates of the unobserved determinants of innovation reveal heterogeneous, time-
varying patterns, in particular for G ≥ 3. Setting G = 2 delivers two clusters that experience
stable innovation paths over time, albeit at very different levels. Cluster 1, which I refer to as
the “high-innovation” cluster, mostly contains highly-patenting, highly-competitive industries. It
includes Manufacture of office machinery and data processing equipment, Electrical and electronic
engineering, Manufacture of motor vehicles and parts therof, and Manufacture of other transport
equipment, but also Chemical industry. Cluster 2, which I refer to as “low-innovation” mostly
includes low-patenting, low-competition: metal manufacturing, textile industry, and processing
of rubber and plastics, among others. This clustering structure of unobserved heterogeneity is
broadly consistent with an additive fixed-effects representation, as the cluster effects α̂1t and α̂2t

are approximately parallel over time. In contrast, when allowing for more than two clusters, newly
estimated clusters are not consistent with a fixed effects model. ForG = 3, Cluster 2 does not change
significantly but the vast majority of industries from Cluster 1 now belongs to Cluster 3 (“steady-
catchers”) as they experience a steadily increase during the all period towards the unobserved
innovation level of Cluster 1. Only the car, food and tobacco, and chemical industries remain in
the stable “high-innovation” Cluster 1 whereas Cluster 3 now includes electrical and electronical
engineering, office machinery and data processing equipment. Finally, when G = 4, Cluster 3 further
splits into two neck-to-neck catching-up clusters of industries. The new Cluster 4 (“Noisy-catchers”),
which is more volatile in the race, contains other manufacturing industries and transport equipment.
Steadily increasing industries now include, among others: Manufacture of office machinery and data
processing equipment, and Electrical and electronic engineering.

Figure 8 plots estimated cluster effects, competition and innovation by estimated cluster mem-
berships. It suggests that the relationship between observables and unobservables is complex and
hardly predictable from observables only.

Endogeneity. Because competition is likely to be an endogeneous variable, ABBGH use a control
function approach by including the residual of a first-stage where the lerner index is predicted by a
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set of policy instruments such as the Thatcher era privatizations, the EU Single Market Programme,
and the Monopoly and Merger Commission investigations at the industry level (see Table II in
ABBGH), as an additional regressor in their main specification. The first and fourth columns of
Table 10 show that coefficient estimates are similar to Table 9 in the case of NGFE models.

Testing for Structural Break. Finally, I revisit Correa (2012) who tests for the existence
of a structural break in 1981. The author finds a decreasing relationship before but no effects
of competition afterwards, which would spuriously explain ABBGH’s inverted-U relationship. In
contrast, a NGFE specification with four clusters shows evidence of a mildly relationship before
1981, but still no significant relationship afterwards (see Table 10).

8 Conclusion

In this paper, I study the nonparametric identification and estimation of a new class of nonlinear
panel data models that accomodates clustered patterns of time-varying unobserved heterogeneity.
Sufficient low-level conditions delivering identification of all parameters are provided. Because non-
parametric estimation might be overwhelmingly cumbersome in panel data with moderate length, I
propose semiparametric NGFE estimators that are free of the incidental parameters problem when
T = o(N), which sharply contrasts with many competing approaches. Individuals are uniformly
classified in the limit as T grows at least as some power of N , and cluster-specific and slope co-
efficient estimates are asymptotically normal (and centered at the true value). A simple Lloyd’s
algorithm is shown to perform well in Monte-Carlo simulation. By applying this new estimator
to revisit Aghion, Bloom, Blundell, Griffith, and Howitt (2005), I demonstrate that their so-called
inverted-U relationship between innovation and product market competition is sensitive to the
researcher’s choice of whether controling for time-varying grouped effects or not. I document a
data-driven clustering of industries. In particular, once controlling for two groups, the relationship
becomes increasing. Once controlling for 3 ≤ G ≤ 4 clusters, the relationship becomes a mildly
inverted-U.

Interesting research avenues include improving computational execution time and developing an
estimation approach that would estimate the number of groups with theoretical guarantees (e.g.,
consistency). In Mugnier (2022), I propose such an estimator for linear versions of NGFE models
and obtain this result under relatively weak conditions (see Proposition 3.1). Given such a promising
result, it would be nice to extend the approach and prove similar large sample properties for more
general nonlinear models, including those considered in this paper. I leave such extensions for future
work.
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Appendix

A Proof of the Results

I introduce some notation. For any (a, b) ∈ R2, I let a ∨ b := max {a, b} and a ∧ b := min {a, b}.
λ denotes the Lebesgue measure on (R,B(R)), where B(R) collects the Borel sets on R. The
abbreviation “a.e.” stands for “almost everywhere” (with respect to an appropriate measure). Let
d−→ and p−→ denote convergence in distribution and convergence in probability respectively. For

any sequence of random variables {Un : n ∈ N} such that Un
p−→ U , let plimn→∞Un := U .

Un = Op(1) (resp. op(1)) means Un is bounded in probability (resp. converges in probability to
zero). Un = Op(Rn) means that Un = Rn × Vn with Vn = Op(1); Un = op(Rn) means that
Un = Rn × Vn with Vn = op(1).

A.1 Proof of Theorem 1

Part 1.
Identification of W 0

N ∈ {0, 1}N×N for all N ∈ N∗. Let N ∈ N∗. By Assumption 2, there ex-
ist X 0 ⊂ X , y ∈ Y , and a known functional ϕ such that, for all (i, j) ∈ N 2, the (i, j)-th en-
try of W 0

N , W 0
ijN , satisfies W 0

ijN := 1
{
g0
i = g0

j

}
= ϕ (ρi, ρj) with ρi(x) : X 0 ∋ x 7→ Pr(Yi2 =

y | Xi2 = x, g0
i , µ

0
i , ξ

0
i ). It is then sufficient to show that, for all i ∈ N , ρi is identified. Let

(i, x) ∈ N × X 0. Under Assumptions 1(b) and 3(a), and conditional on the σ-algebra gen-
erated by (g0

i , µ
0′

g0
i
, ξ0′
i )′, the time-series process

{
(Yit, X ′

it)
′ : t ≥ 2

}
is strictly stationary strong

mixing and satisfies regularity conditions given in Hansen (2008) to obtain consistency of the
Nadaraya-Watson estimator of E

[
1 {Yit = y} | Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
. Hence, point identification of

E
[
1 {Yi2 = y} | Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= ρi(x) follows by pooling unit i’s choices when (Yit, X ′

it)
′ ∈

{y} × BT (x), where BT (x) is a well-chosen shrinking neighborhood of x as T → ∞ (e.g., using any
well-chosen kernel K and bandwidth hT ).

Identification of G0. For any fixed N ∈ N∗, let R0
N denote the number of distinct rows in W 0

N . By
the previous paragraph, R0

N is identified. But R0
N , which is also the rank of W 0

N , is exactly the
number of clusters represented in the finite sample of size N . Under Assumptions 1(a) and 2(b),
G0 = lim supN→∞ R0

N is thus identified.44

Part 2.
Identification of β0. Let (i, t) ∈ N∗2. By Part 1, C0(i) :=

{
j ∈ {1, ..., N} : g0

j = g0
i

}
is identified for

allN ∈ N∗. Under Assumption 1(a) and 2(b), conditional on (γ0′
, α0′

, λ0′
, µ0′)′,

{
(Yjt, X ′

jt)′ : j ∈ C0(i)\ {i}
}

is an identified infinite sequence of i.i.d. random variables. By applying Theorem 4.1 in Ichimura
44From an estimation perpective, one would need conditions on the joint rate of convergence of (N, T ) to ensure

adequate controls of the error terms (ρi should typically be estimated in sup-norm on X 0 at some polynomial rate
in T ).
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(1993) with φ(·) = ∑
y∈Y yh

0(y, · + α0
g0

i t
), whose conditions 4.1 and 4.2(1-3) hold under Assump-

tions 1(c) and 3, β0 is identified up-to-scale. Because
∥∥∥β0

∥∥∥ = 1, β0 is identified.

Identification of cluster-specific time effects α0
gt for all (g, t) ∈ G0 × N∗, up to cluster relabeling.

Given identification of W 0
N for all N ∈ N∗, I build the G0 groups sequentially starting from N = 2,

N = 3,... and regrouping at each step units with same rows in W 0
N . Without loss of generality,

I assume that the resulting labeling matches the true labeling. Let t ∈ N∗, x ∈ X , and y ∈ Y
verifying Assumptions 4. By pooling choices of individuals in cluster g and g̃ at time t for which
Yit = y and Xit = x, and applying a standard LLN using Assumptions 1(a) and 1(c), the following
probabilities are identified:

Pr
(
Y1t = y | X1t = x, g0

1 = g, α0
gt

)
= h0

(
y, x′β0 + α0

gt

)
,

Pr
(
Y1t = y | X1t = x, g0

1 = g̃, α0
g̃t

)
= h0

(
y, x′β0 + α0

g̃t

)
.

By Assumption 5 (eq. (8)), I can find x1, x2 ∈ X such that

Pr
(
Y1t = y | X1t = x2, g

0
1 = g, α0

gt

)
= Pr

(
Y1t = y | X1t = x1, g

0
1 = g̃, α0

g̃t

)
,

or, equivalently,
h0
(
y, x′

2β
0 + α0

gt

)
= h0

(
y, x′

1β
0 + α0

g̃t

)
. (26)

By strict monotonicity of h0(y, ·), I can invert (26) and identify α0
g̃t

− α0
gt = (x2 − x1)′β0. As β0 is

already identified, it follows that α0
g̃t

− α0
gt is identified. Because the result holds for all (g, g̃, t), it

holds for g = t = 1 (for which α0
gt = 0 by the normalization assumption), thus (α0

g1)g∈G0 is identified.
A similar reasoning but now identifying x1, x2 ∈ X such that eq. (9) holds in place of eq. (8) yields
identification of α0

gt̃
− α0

gt for all (g, t, t̃), and, in turn, that of (α0
1t)t∈N∗ . Identification of α0

gt for all
(g, t) then follows because, for all (g, t) with g ̸= 1 and t ̸= 1, α0

gt can be decomposed as

α0
gt = α0

gt − α0
1t︸ ︷︷ ︸

:=a

+ α0
1t︸︷︷︸

:=b

,

where a and b are identified. Finally, h0(y, z) is identified as a function of y ∈ Y and index
z = X ′

itβ
0 + α0

g0
i t

.
The proof of Theorem 1 is complete.

A.2 Sufficient Condition for Assumption 2(a)

Consider the following assumption.

Assumption 10

(a) There exists an open set X 1 ⊂ X such that, for all (i, j, g, g̃, x) ∈ N∗2×G02×X 1, the conditional
distribution α0

g2 | Xi2 = x, g0
i = g, µ0

g0
i
, ξ0
i admits a fully supported density fα0

g2|Xi2=x,g0
i =g,µ0

g ,ξ
0
i
(α)
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with respect to the Lebesgue measure such that

fα0
g2|Xi2=x,g0

i =g,µ0
g ,ξ

0
i
(α) = fα0

g̃2
|Xj2=x,g0

j =g̃,µ0
g̃
,ξ0

j
(α), λ(α)-a.e.

if and only if g = g̃.

(b) There exists k ∈ {1, ..., p} such that β0
k ̸= 0 and Xi2,k ⊥⊥ α0

g0
i 2 | Xi2,(−k), g

0
i , µ

0
g0

i
, ξ0
i . Moreover,

almost surely, Supp
(
Xi2,k | Xi2,(−k), g

0
i , µ

0
g0

i
, ξ0
i

)
is open.

(c) There exists y ∈ Y such that ψy : v 7→ h0(y, v) is stricly monotonic, real analytic with bounded
first derivative ψ′

y such that
∫ ∣∣∣ψ′

y

∣∣∣ dλ < ∞.45 Moreover, the characteristic function of ζ with

density fζ(z) = |ψ′
y(z)|∫

|ψ′
y|dλ does not vanish and is infinitely often differentiable in R\A for some

set A such that λ(A) = 0.

Assumption 10(b) requires the existence of a special regressor (as in Honoré and Lewbel, 2002),
but (possibly) without large support (it depends on the support of the unobserved heterogeneity).
Assumption 10(c) imposes smoothness conditions including real-analyticity of the link functions.
Example of distributions satisfying these are given in, e.g., D’Haultfoeuille (2010). Real-analyticity
can be relaxed to continuous differentiability by strenghtenning the support in Assumption 10(b)
to be the full real line, which is equivalent to having a special regressor with large support à la
Honoré and Lewbel (2002).

Lemma 1 If Assumptions 1(c) and 10 hold, then Assumption 2(a) holds.

Proof of Lemma 1 W.l.o.g. I assume that k = 1 and denote x(−1) = (xj)j∈{2,...,p}. Let x =
(x1, x

′
(−1))′ ∈ X 1, and y ∈ Y verifying Assumption 10(c). I proceed in two steps. In the first step, I

construct X 0 ⊂ X 1. In the second step, I construct ϕ that fulfills Assumption 2.
Step 1: Let (i, x) ∈ N × X 1 and ρi(x) := Pr

(
Yi2 = y | Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

)
. By the law of total

expectations, Assumption 1(c), using equation (2), and Assumption 10(a), I obtain

ρi(x) = E
[
Pr
(
Yi2 = y | Xi2 = x, g0

i , α
0, λ0, µ0, ξ0

)
| Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= E

[
Pr
(
Yi2 = y | Xi2 = x, g0

i , α
0
g0

i 2

)
| Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= E

[
ψy
(
x′β0 + α0

g0
i 2

)
| Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
=
∫
R
ψy
(
x′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

(27)
45Let I ⊂ R be an open set. A function f : I → R is called “analytic” if for any x0 ∈ I there is a neighborhood

J of x0 and a power series
∑

an(x − x0)n such that f(x) =
∑

n an(x − x0)n ∀x ∈ J (see, e.g., Krantz and Parks,
2002).
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By Assumption 10(b), there exists ϵ > 0 and an open set X 0 = {x+ (v, 0′)′ : v ∈ (−ϵ, ϵ)} ⊂ X 1

with Pr (Xi2 ∈ X 0) > 0 such that, for all w ∈ X 0, almost everywhere fα0
g0

i
2
|Xi2=w,g0

i ,µ
0
g0

i

,ξ0
i
(α) =

fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α). Since X 0 ⊂ X 1, eq. (27) yields, for all w ∈ X 0,

ρi(w) =
∫
R
ψy
(
w′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

By Assumption 10(c), w 7→ ρi(w) is differentiable on X 0 and, for all w ∈ X 0,

∂ρi(z1, ..., zp)
∂z1

∣∣∣∣
z=w

= β0
1

∫
R
ψ′
y

(
w′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α)

= β0
1

(
1 − 21

{
ψ′
y(0) < 0

}) ∫
R

∣∣∣ψ′
y

(
w′β0 + α

)∣∣∣ fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α),

(28)

where the second equality follows from the strict monotonicity of ψy(·).
Step 2: Let ∆(a, b) := a − b and ∂1 be the partial differencing operator with respect to the first
argument (for multivalued functions). I prove below that ϕ(f, g) := 1 {∆(∂1f, ∂1g) = 0} verifies
Assumption 2(a). I have to show that, for all (i, j) ∈ N 2,

∂ρi(z1, ..., zp)
∂z1

∣∣∣∣
z=w

= ∂ρj(z1, ..., zp)
∂z1

∣∣∣∣
z=w

∀w ∈ X 0 ⇐⇒ g0
i = g0

j . (29)

Let (i, j) ∈ N 2.
⇐= : Suppose that g0

j = g0
i and let w ∈ X 0. By Assumption 10(c), I have

fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α) = fα0

g0
j

2
|Xj2=x,g0

j ,µ
0
g0

j

,ξ0
j
(α), λ(α) − a.e..

Equation (28) then implies ∂ρi(z1,...,zp)
∂z1

∣∣∣∣
z=w

= ∂ρj(z1,...,zp)
∂z1

∣∣∣∣
z=w

.
=⇒ : Suppose that, for all w ∈ X 0,

∂ρi(z1, ..., zp)
∂z1

∣∣∣∣
z=w

= ∂ρj(z1, ..., zp)
∂z1

∣∣∣∣
z=w

.

Dividing each side of this equation by
∫ ∣∣∣ψ′

y

∣∣∣ dλ > 0, using (28) and the fact that

∣∣∣(1 − 21
{
ψ′
y(0) < 0

})
β0

1

∣∣∣ =
∣∣∣β0

1

∣∣∣ > 0,

I obtain, denoting fα0
g0

i

(α) := fα0
g0

i
2
|Xi2,g0

i ,µ
0
g0

i

,ξ0
i
(α), for all w ∈ X 0,

∫
R
fζ
(
w′β0 + α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 + α

)
fα0

g0
j

(α)dλ(α).
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I show below that this constraint is equivalent to fα0
g0

j

= fα0
g0

i

a.e., which, by Assumption 10(a), in

turn implies g0
i = g0

j . Specifically, I show that the solution set S∗ ⊂ L1(R,B(R), λ) to the integral
inverse problem: fα ∈ S∗ if and only if∫

R
fζ
(
w′β0 + α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 + α

)
fα(α)dλ(α) ∀w ∈ X 0, (30)

verifies S∗ =
{
f ∈ L1(R,B(R), λ) : fα = fα0

g0
i

a.e.
}

. Suppose f ∗
α ∈ S∗ and consider the change of

variable z = w′β0 + α in (30). Then, for all δ ∈ (x′β0 − β0
1ϵ, x

′β0 + β0
1ϵ) ⊂ R,∫

R
fζ(z)f−α0

g0
i

(δ − z)dλ(z) =
∫
R
fζ(z)f ∗

−α(δ − z)dλ(z). (31)

Note that both sides of eq. (31) are convolutions of fζ with df−α0
g0

i

or df ∗
−α. By letting

W : δ 7→
∫
R
fζ(δ − z)

[
f−α0

g0
i

(z) − f ∗
−α(z)

]
dλ(z),

and using commutativity of the convolution product, eq. (31) implies that there exists an open set
U ⊂ R such that

W(δ) = 0, ∀δ ∈ U. (32)

Given Assumption 10(c), it can be shown that W : R → R is real-analytic (see footnote 45). A
continuation theorem for real analytic functions (see e.g. Corollary 1.2.5 in Krantz and Parks, 2002)
implies that eq. (32) holds for all δ ∈ R, i.e.:

∫
R
fζ(δ − z)

[
f−α0

g0
i

(z) − f ∗
−α(z)

]
dλ(z) = 0, ∀δ ∈ R. (33)

Since the functions fζ , f−α0
g0

i

, and f ∗
−α belong to L1(R,B(R), λ), I can apply Fourrier transformation

on both sides of eq. (33) to obtain

φfζ
(v) ×

φf−α0
g0

i

(v) − φf∗
−α

(v)
 = 0, ∀v ∈ R, (34)

where φf is the Fourrier transform of f . By Assumption 10(c) again, the set

{v ∈ R : φζ(v) = 0}

is of zero Lebesgue measure. Equation (34) therefore implies φf−α0
g0

i

= ψf∗
−α

a.e.. Since Fourrier

transforms are continuous, I obtain φf−α0
g0

i

= φf∗
−α

everywhere and thus fα0
g0

i

= f ∗
α everywhere.
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The proof of Lemma 1 is complete.

A.3 Proof of Theorem 2

The key argument is to linearize problem (18) by mean of a second-order Taylor expansion, bounding
the log-likelihood function by below by a quadratic function similar to that appearing in Lemma
A.2 in Bonhomme and Manresa (2015). For all θ = (β′, α′, γ′)′ ∈ B × G0N × AG0T , define

Q̂(θ) = 1
NT

N∑
i=1

T∑
t=1

− ln (Ψ (QitZit)) ,

where Zit = X ′
itβ + αgit and Qit = 2Yit − 1. Note that Zit is an implicit function of θ but I drop

this conditioning for the sake of clarity and let Z0
it = X ′

itβ
0 + α0

g0
i t

denote Zit evaluated at the true
parameter value θ0. Note that the NGFE estimator θ̂ minimizes Q̂(·) over all θ ∈ B × G0N × AG0T .
Define the auxiliary quadratic function:

Q̌(θ) = 1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β − β0

)
+ αgit − α0

g0
i t

)2
,

and let z := sup(β′,α′,g,x)′∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit) |Zit| and Z = [−z, z]. Note that Z is a well-
defined segment of R by Assumptions 7(a) and 7(b). By second-order Taylor expansion, for any
z1, z2 in Z,

− ln Ψ(z1) = − ln Ψ(z2) − (ln Ψ)′(z2)(z1 − z2) − 1
2(ln Ψ)′′(z∗)(z1 − z2)2,

for some z∗ ∈]z1 ∧ z2, z1 ∨ z2[. By continuity of z 7→ −(ln Ψ)′′(z) and because −(ln Ψ)′′(z) > 0 by
Assumption 6(b), there exists a constant bmin > 0 such that, for all z ∈ Z,

bmin ≤ −(ln Ψ)′′(z).

Hence, for all z1, z2 ∈ Z

− ln Ψ(z1) ≥ − ln Ψ(z2) + s(z2)(z1 − z2) + bmin

2 (z1 − z2)2, (35)

where s(z) = −(ln Ψ)′(z). Now substitute QitZit for z1 and QitZ
0
it for z2, and averaging (35) over

i, t, I have, for all θ ∈ B × G0N × AG0T ,

Q̂(θ) − Q̂(θ0) ≥ bmin

2 Q̌(θ) + 1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))
, (36)

34



where Eit = s (QitZ
0
it). Since the estimated parameter θ̂ minimizes Q̂(·), deduce

0 ≥ Q̂(θ̂) − Q̂(ϕ0) ≥ bmin

2 Q̌(θ̂) + 1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Ẑit − Z0

it

))
, (37)

where Ẑit = X ′
itβ̂ + α̂ĝit

. I start by showing the following uniform convergence result, which is
reminiscent of Lemma A.1 in Bonhomme and Manresa (2015).

Lemma 2 Let Assumption 6 and Assumptions 7(a)-(b) hold. Then,

sup
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))
= op(1).

Proof of Lemma 2: The proof closely follows that of Lemma A.1 in Bonhomme and Manresa
(2015), up to a few adjustments.

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))

= 1
NT

N∑
i=1

T∑
t=1

QitEit
(
X ′
it

(
β − β0

)
+ αgit − α0

g0
i t

)

=
(

1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′ (
β − β0

)
+ 1
NT

N∑
i=1

T∑
t=1

EitQitαgit − 1
NT

N∑
i=1

T∑
t=1

EitQitα
0
g0

i t
.

Let Ft = σ
({
γ0, α0,X(t)

− , ε
(t−1)
−

})
denote the σ-field generated by γ0, α0,X(t)

− , and ε
(t−1)
− . Under

Assumptions 6(a) and 6(b), for all s < t, I have

E (QitQisEitEisX
′
itXis) = E (E(QitQisEitEisX

′
itXis | Ft))

= E (X ′
itXisQisEisE(QitEit | Ft))

= E
(
X ′
itXisQisEisE

(
Yit − Ψ(Z0

it)
Ψ(Z0

it)(1 − Ψ(Z0
it))

Ψ′(Z0
it) | Ft

))

= E

X ′
itXisQisEis

E(Yit − Ψ(Z0
it) | Ft)

Ψ(Z0
it)(1 − Ψ(Z0

it))
Ψ′(Z0

it)︸ ︷︷ ︸
=0


= 0,

where the penultimate equality follows because Ψ′(Z0
it) is Ft-measurable, and the last equality

follows from E(Yit | Ft) = Ψ(Z0
it). By Cauchy-Schwarz (CS) inequality, and using Assumption 6(b),

7(b) and Q2
it = 1, there exists a constant M ′ > 0 such that, for s = t,

E (QitQisEitEisX
′
itXis) = E

(
E2
it

∥∥∥Xit

∥∥∥2
)

≤
√
E (E4

it)E
(∥∥∥Xit

∥∥∥4
)

≤ M ′ < ∞.
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Hence, I have ∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

T∑
s=1

E (QitQisEitEisX
′
itXis)

∣∣∣∣∣ ≤ M ′. (38)

By (38), I have

E
(

1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

QitEitXit

∥∥∥2
)

≤ M ′

T
,

so it follows from the Markov inequality that

1
NT

N∑
i=1

T∑
t=1

QitEitXit = op(1).

In addition,
∥∥∥β − β0

∥∥∥ is bounded under Assumption 7(a), hence

(
1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′

(β − β0) = op(1).

I next show that 1
NT

∑N
i=1

∑T
t=1 QitEitαgit is op(1), uniformly on the parameter space. This will

imply that 1
NT

∑N
i=1

∑T
t=1 QitEitα

0
g0

i t
= op(1). I have

1
NT

N∑
i=1

T∑
t=1

QitEitαgit =
∑
g∈G0

[
1
NT

N∑
i=1

T∑
t=1

1 {gi = g}QitEitαgt

]

=
∑
g∈G0

[
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1 {gi = g}QitEit

)]
.

Moreover, by the CS inequality and for all g ∈ G0:

(
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1 {gi = g}QitEit

))2

≤
(

1
T

T∑
t=1

α2
gt

)
×

 1
T

T∑
t=1

(
1
N

N∑
i=1

1 {gi = g}QitEit

)2 ,
where, by Assumption 7(a), 1

T

∑T
t=1 α

2
gt is uniformly bounded. Now, note that

1
T

(
1
N

N∑
i=1

1 {gi = g}QitEit

)2

= 1
TN2

N∑
i=1

N∑
j=1

1 {gi = g} 1 {gj = g}
T∑
t=1

QitQjtEitEjt

≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

QitQjtEitEjt

∣∣∣∣∣
≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣

+ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
∣∣∣∣∣ .
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Since E(QitQjtEitEjt) = 0 for i ̸= j, there exists a constant M ′′ > 0 such that

1
N

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣ ≤ M ′′ < ∞,

and, therefore, 1
N2
∑N
i=1

∑N
j=1

∣∣∣ 1
T

∑T
t=1 E(QitQjtEitEjt)

∣∣∣ ≤ M ′′

N
. Moreover, by the CS inequality,

 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
∣∣∣∣∣
2

≤ 1
N2

N∑
i=1

N∑
j=1

(
1
T

T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
)2

. (39)

Similarly again, I can show that there exists a constant M ′′′ > 0 such that∣∣∣∣∣∣ 1
N2T

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

Cov(QitQjtEitEjs, QisqjsEisEjs)

∣∣∣∣∣∣ ≤ M ′′′ < ∞.

Hence, the term in the right-hand side of (39) is bounded in expectation by M ′′′/T . This shows
that 1

NT

∑N
i=1

∑T
t=1 QitEitαgit is uniformly op(1), and ends the proof of Lemma 2. □

Next, by Lemma A.2 in Bonhomme and Manresa (2015), it follows that

Q̌(θ̂) ≥ ρ̂
∥∥∥β̂ − β0

∥∥∥2
, (40)

where plimN,T→∞ρ̂ = ρ > 0. Hence, combining (37), Lemma 2, and (40) I obtain

0 ≥ bminρ

2
∥∥∥β̂ − β0

∥∥∥2
+ op(1),

from which it is concluded that β̂ = β0 + op(1).
Lastly, to show convergence in quadratic mean of the estimated unit-specific effects, note that

1
NT

N∑
i=1

T∑
t=1

(
α̂ĝit

− α0
g0

i t

)2

= Q̌(θ) − 1
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

)
X ′
it

(
β0 − β̂

)
− 2
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

) (
α0
g0

i t
− α̂ĝit

)

≤ Q̌(θ) − 1
NT

N∑
i=1

T∑
t=1

∥∥∥Xit

∥∥∥2
×
∥∥∥β0 − β̂

∥∥∥2

+
(

4 sup
α∈A

|α|
)

× 1
NT

N∑
i=1

T∑
t=1

∥∥∥Xit

∥∥∥×
∥∥∥β0 − β̂

∥∥∥,
which is op(1) by Assumptions 7(a)-7(b), by consistency of β̂, and because Lemma 2 and (37)
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together imply Q̌(θ̂) = op(1).
This completes the proof of Theorem 2.

A.4 Proof of Theorem 3

A.4.1 Step 1: A Useful Asymptotic Equivalence

Lemma 7 below provides an asymptotic equivalence result which is key to prove Theorem 3. I first
prove three lemmas (3, 4, and 5) that help in showing that NGFE estimators achieve uniformly
consistent classification of individuals (Lemma 6). This, in turn, allows me to prove Lemma 7.

First, consistency of α̂ for α0 can be established as in Bonhomme and Manresa (2015). Because
the objective function is invariant to relabeling of the cluster labels, the consistency result holds
with respect to the Hausdorff distance dH in RG0T , defined by

dH(a, b)2 = max
{

max
g∈G0

(
min
g̃∈G0

1
T

T∑
t=1

(
ag̃t − bgt

)2
)
,max
g̃∈G0

(
min
g∈G0

1
T

T∑
t=1

(
ag̃t − bgt

)2
)}

.

Lemma 3 Let Assumptions 6-7, and 8(a)-8(b) hold. Then, as N and T tend to infinity,

dH
(
α̂, α0

)
p−→ 0.

Proof of Lemma 3: Given Theorem 2, the proof is identical to that of Lemma B.3 in Bonhomme
and Manresa (2015). □

Second, I rely on the use of exponential inequalities for dependent processes. Lemma 4 and
Lemma 5 are direct consequences of Theorem 6.2 in Rio (2000) (see also Merlevède, Peligrad, and
Rio, 2011) and Theorem 3.2 in Lesigne and Volný (2001), respectively.

Lemma 4 (Bonhomme and Manresa (2015), Lemma B.5) Let zt be a strongly mixing pro-
cess with zero mean, with strong mixing coefficient α[t] ≤ exp(−atd1), and tail probabilities Pr(|zt| <
z) ≤ exp

(
1 −

(
z
b

)d2
)

, where a, b, d1, and d2 are positive constants. Then, for all z > 0, for all δ > 0,

T δPr
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
→ 0, as T → ∞.

Lemma 5 46 Let {zt,Ft}Tt=1 be a martingale difference sequence and assume that there exists δ,M >

0 such that E(exp(δ |zt|)) ≤ M for all t = 1, ..., T . Then, for a > 0, there exist positive constants
46I found this result in a 2013 unpublished manuscript by A.-B. Kock entitled “Oracle inequalities and variable

selection in high-dimensional panel data models” (Lemma 2). For completeness, I report the original proof of the
author here.
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A and B such that for all z ≥ a/
√
T

Pr
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
≤ A exp

(
−B(z2T )1/3

)
.

Proof of Lemma 5: In the proof of their Theorem 3.2 Lesigne and Volný (2001) show that if
E(exp(|zt|) ≤ M for all t = 1, ..., T , then for any x > 0 and t ∈ (0, 1), I have

Pr
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣ > Tz

)

<

(
2 + M

(1 − t)2

[1
4t

4/3(z−2T−1)1/3 + t2/3(z−2T−1)2/3 + 2z−2T−1
])

× exp
(

−1
2t

2/3(z2T )1/3
)
. (41)

Note that Pr
(∣∣∣∑T

t=1 zt
∣∣∣ > Tz

)
= Pr

(∣∣∣∑T
t=1(δzt)

∣∣∣ > T (δz)
)

where {δzt}1≤t≤T , by assumption now
satisfy the conditions of Theorem 3.2 in Lesigne and Volný (2001) and so replacing z by δz in (41)
yields

Pr
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣ > Tz

)

<

(
2 + M

(1 − t)2

[1
4t

4/3δ−2/3(z−2T−1)1/3 + t2/3δ−4/3(z−2T−1)2/3 + 2δ−2z−2T−1
])

× exp
(

−1
2t

2/3δ2/3(z2T )1/3
)
.

Restricting z to be greater than a/
√
T , implying that z−2T−1 ≤ 1/a2, and using that M, t and δ

are constants the conclusion of the lemma follows. □

I am now in position to prove Lemma 6 which extends Lemma B.4 in Bonhomme and Manresa
(2015) and shows that ĝi(β, α) achieves uniformly consistent classification of individuals over a
neighbourhood of the true parameter values (β0, α0). Note that by the same arguments as in the
proof of Lemma B.3 in Bonhomme and Manresa (2015), there exists a permutation σ : G0 → G0

such that
1
T

T∑
t=1

(
α̂σ(g)t − α0

gt

)2 p−→ 0. (42)

By simple relabeling of the elements of α̂, I may take σ(g) = g. I adopt this convention in the rest
of the proof. For any η > 0, I let Nη denote the set of parameters (β, α) ∈ B × AG0T that satisfy∥∥∥β − β0

∥∥∥2
< η and 1

T

∑T
t=1

(
αgt − α0

gt

)2
< η for all g ∈ G0.

Lemma 6 For η > 0 small enough, I have, for all δ > 0 and as N and T tend to infinity,

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β, α) ̸= g0

i

}
= op(T−δ).
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Proof of Lemma 6: Note that, from the definition of ĝi(·), for all g ∈ G0,

1 {ĝi(β, α) = g} ≤ 1
{

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
≤

T∑
t=1

ln (Ψ (Qit (X ′
itβ + αgt)))

}
,

so

1
N

N∑
i=1

1
{
ĝi(β, α) ̸= g0

i

}
=
∑
g∈G0

1
N

N∑
i=1

1
{
g0
i ̸= g

}
1 {ĝi(β, α) = g}

≤
∑
g∈G0

1
N

N∑
i=1

Wig(β, α),

where

Wig(β, α) = 1
{
g0
i ̸= g

}
× 1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
≤

T∑
t=1

ln (Ψ (Qit (X ′
itβ + αgt)))

}
.

I start bounding Wig(β, α), for all (β, α) ∈ Nη, by a quantity that does not depend on (β, α).
To proceed first note that, by Assumption 6(b), and 7(a)-7(b), v 7→ ln (Ψ (Qit (X ′

itv + αgt))) is
uniformly Lipschitz over (i, t, α, g) ∈ {1, ..., N} × {1, ..., T} ×AG

0T × G0, i.e., there exists a constant
Lβ > 0 such that, for all (i, t, α, g) ∈ {1, ..., N}×{1, ..., T}×AG

0T ×G0, all β1, β2 ∈ B, almost surely

|ln (Ψ (Qit (X ′
itβ1 + αgt))) − ln (Ψ (Qit (X ′

itβ2 + αgt)))| ≤ Lβ
∥∥∥β1 − β2

∥∥∥. (43)

Similarly, a 7→ ln (Ψ (Qit (X ′
itβ + a))) is uniformly Lipschitz over (i, t, β) ∈ {1, ..., N}×{1, ..., T}×B,

i.e., there exists a constant Lα > 0 such that, for all (i, t, β) ∈ {1, ..., N}×{1, ..., T}×B, all a, b ∈ A,
almost surely

|ln (Ψ (Qit (X ′
itβ + a))) − ln (Ψ (Qit (X ′

itβ + b)))| ≤ Lα |a− b| . (44)

Then, by choosing g = g0
i , β1 = β0 and β2 = β in (43), I have, for all (β, α) and all i,

Wig(β, α) ≤ 1
{
g0
i ̸= g

}
× 1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 + αg0
i t

)))
≤

T∑
t=1

ln (Ψ (Qit (X ′
itβ + αgt))) + TLβ

∥∥∥β − β0
∥∥∥} .

By choosing a = αg0
i t

, b = α0
g0

i
, and β = β0 in (44), I have, for all (β, α) and all i,

Wig(β, α) ≤ 1
{
g0
i ̸= g

}
× 1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 + α0
g0

i t

)))
≤

T∑
t=1

ln (Ψ (Qit (X ′
itβ + αgt)))

+TLβ
∥∥∥β − β0

∥∥∥+ TLα
∥∥∥α0

g0
i

− αg0
i

∥∥∥} ,
40



where I used the norm inequality
∥∥∥u∥∥∥

1
≤

√
T
∥∥∥u∥∥∥ ≤ T

∥∥∥u∥∥∥ for all u ∈ RT , T ∈ N∗, where
∥∥∥ ·
∥∥∥

1
is the

ℓ1-norm. Next, a second-order Taylor expansion of z 7→ ln Ψ(z) at QitZit around QitZ
0
it combined

with (A.3), yields

Wig(β, α) ≤ 1
{
g0
i ̸= g

}
× 1

{
0 ≤

T∑
t=1

Yit − Ψ (Z0
it)

Ψ (Z0
it) (1 − Ψ (Z0

it))
Ψ′
(
Z0
it

) (
X ′
it

(
β − β0

)
+ αgt − α0

g0
i t

)
−bmin

2
(
X ′
it

(
β − β0

)
+ αgt − α0

g0
i t

)2
+ TLβ

∥∥∥β − β0
∥∥∥+ TLα

∥∥∥α0
g0

i
− αg0

i

∥∥∥}

≤ max
g̃ ̸=g

1
{

0 ≤
T∑
t=1

[
Yit − Ψ (Z0

it)
Ψ (Z0

it) (1 − Ψ (Z0
it))

Ψ′
(
Z0
it

) (
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)
−bmin

2
(
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)2
]

+ TLβ
∥∥∥β − β0

∥∥∥+ TLα
∥∥∥α0

g̃ − αg̃

∥∥∥} ,
Now, let define Vit = Yit−Ψ(Z0

it)
Ψ(Z0

it)(1−Ψ(Z0
it))

Ψ′ (Z0
it), and

AT =
∣∣∣∣∣
T∑
t=1

[
Vit
(
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)
− bmin

2
(
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)2
]

+ TLβ
∥∥∥β − β0

∥∥∥
+TLα

∥∥∥α0
g̃ − αg̃

∥∥∥−
T∑
t=1

Vit
(
α0
gt − α0

g̃t

)
+ bmin

2
(
α0
gt − α0

g̃t

)2
∣∣∣∣∣ .

As I have

AT ≤
∣∣∣∣∣
T∑
t=1

VitX
′
it

(
β − β0

)∣∣∣∣∣+
∣∣∣∣∣
T∑
t=1

Vit
(
αgt − α0

g̃t

)
−

T∑
t=1

Vit
(
α0
gt − α0

g̃t

)∣∣∣∣∣+ bmin

2

∣∣∣∣∣
T∑
t=1

X ′
it

(
β − β0

)∣∣∣∣∣
+ bmin

∣∣∣∣∣
T∑
t=1

X ′
it

(
β − β0

) (
αgt − α0

g̃t

)∣∣∣∣∣+ bmin

2

∣∣∣∣∣
T∑
t=1

(
α0
gt − αgt

) (
α0
gt − 2α0

g̃t

)∣∣∣∣∣
+ TLβ

∥∥∥β − β0
∥∥∥+ TLα

∥∥∥α0
g̃ − αg̃

∥∥∥,
it is easy to show using the CS inequality that, for (β, α) ∈ Nη,

AT ≤ T
√
η

(
1
T

T∑
t=1

V 2
it

)1/2 ( 1
T

T∑
t=1

∥∥∥Xit

∥∥∥2
)1/2

+ TC1
√
η

(
1
T

T∑
t=1

V 2
it

)1/2

+ bmin

(
1
2 + 2 sup

α∈A
|α|
)

√
η

T∑
t=1

∥∥∥Xit

∥∥∥
+ T

√
η

3bmin

2 sup
α∈A

∥∥∥α∥∥∥+ T
√
η (Lβ + Lα)

≤ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα] ,
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where C1, C2, C3,

c1 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/Ψ(Zit),

c2 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/(1 − Ψ(Zit)),

are positive constants, independent of η and T . I thus obtain that

Wig(β, α) ≤ max
g̃ ̸=g

1
{

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2

+T√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]} .

Noting that the right-hand side of this inequality does not depend on (β, α), it follows that
sup(β,α)∈Nη

Wig(β, α) ≤ W ig, where

W ig = max
g̃ ̸=g

1
{

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2
(45)

+T√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]} . (46)

As a result,

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β, α) ̸= g0

i

}
≤ 1
N

N∑
i=1

∑
g∈G0

W ig. (47)

I have, using standard probability algebra and for all g ∈ G0,

Pr
(
W ig = 1

)
≤
∑
g̃ ̸=g

Pr
 T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]


≤
∑
g̃ ̸=g

Pr
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤
cg,̃g
2

)

+ Pr
 T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −T

cg,̃gbmin

4

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

.
(48)

To end the proof, let Ft = σ
({

X(t)
− , ε

(t)
− , γ0, α0

})
denote the σ-field generated by X(t)

− , ε
(t)
− , γ0,

and α0 and set Sit = ∑t
s=1 Vis

(
α0
g̃s

− α0
gs

)
. Then, {(Sit,Ft), 1 ≤ t ≤ T} is a martingale under
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Assumptions 6(a) and 6(b) since

E
(

t∑
s=1

Vis
(
α0
g̃s − α0

gs

)
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s − α0

gs

)
+
(
α0
g̃t − α0

gt

)
E
(

Yit − Ψ (Z0
it)

Ψ (Z0
it) (1 − Ψ (Z0

it))
Ψ′
(
Z0
it

)
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s − α0

gs

)
+
(
α0
g̃t − α0

gt

)
E
(
E
(

Yit − Ψ (Z0
it)

Ψ (Z0
it) (1 − Ψ (Z0

it))
Ψ′
(
Z0
it

)
| Ft−1, σ

(
X(t)

−

))
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s − α0

gs

)
,

where the last equality follows from independence of εt and (X(t)
− , ε

(t−1)
− , γ0, α0) and

E
(
Yit | Xi1, ..., Xit, α

0, γ0
)

− Ψ
(
Z0
it

)
= 0.

By Assumption 7(b), for all i ∈ {1, ..., N},
{
Vit
(
α0
g̃t

− α0
gt

)
: t
}

is such that
∣∣∣Vit (α0

g̃t
− α0

gt

)∣∣∣ ≤
(c̃1 ∨ c̃2) < ∞, where the positive constants c̃j = 2cj supα∈A |α| > 0, for j ∈ {1, 2}, do not depend
on (i, t). Let a > 0. By Lemma 5, there exist positive constants A and B, independent from (i, t),
such that for all z > a/

√
T ,

Pr
(∣∣∣∣∣ 1T

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)∣∣∣∣∣ ≥ z

)
≤ A exp

(
−B(z2T )1/3

)
. (49)

I now bound the two terms on the right-hand side of (48).

• By applying Lemma 4, and conducting the same reasoning as in the first bullet point page
1176 in Bonhomme and Manresa (2015), under Assumptions 7(a) and 8(b)-(c), for all δ > 0
and as T tends to infinity,

Pr
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤
cg,̃gbmin

2

)
= o(T−δ).

• Lastly, to bound the second term on the right-hand side of (48), I denote as c the minimum
of cg,̃g over all g ̸= g̃ and I take

η ≤
(

c

8[(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)2

. (50)

Note that this upper bound on η does not depend on T . Taking η satisfying (50) yields, for
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all g̃ ̸= g,

Pr
(

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −T

cg,̃gbmin

4 + T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)

≤ Pr
(

1
T

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −

cg,̃g
8

)
.

Lastly, by applying (49) with z =
c

g,̃g

8 , for T sufficiently large, I obtain

Pr
(

1
T

T∑
t=1

Vit
(
α0
g̃t − α0

gt

)
≤ −

cg,̃g
8

)
= O(exp(−C3T

1/3)) = o(T−δ), (51)

for all δ > 0, and for some constant C3 that does not depend on i, T , and g.

Combining results, I thus obtain, using (48), that for η satisfying (50) and for all δ > 0,

1
N

N∑
i=1

∑
g∈G0

Pr
(
W ig = 1

)
≤
∣∣∣G0

∣∣∣ (∣∣∣G0
∣∣∣− 1

) [
o(T−δ) + o(T−δ)

]
= o(T−δ). (52)

To complete the proof of Lemma 6, note that, for η that satisfies (50), I have, for all δ > 0 and all
ε > 0,

Pr
(

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β, α) ̸= g0

i

}
> εT−δ

)
≤ Pr

 1
N

N∑
i=1

∑
g∈G0

W ig > εT−δ


≤

E
(

1
N

∑N
i=1

∑
g∈G0 W ig

)
εT−δ = o(1),

where I have used (47), the Markov inequality, and (52), respectively. This ends the proof of
Lemma 6. □

I am now in position to prove the three parts of the following asymptotic equivalence result.

Lemma 7 (Asymptotic Equivalence) Let Assumptions 6, 7, and 8 hold. Then, for all δ > 0
and as N and T tend to infinity

Pr
(

sup
i∈{1,...,N}

∣∣∣ĝi − g0
i

∣∣∣ > 0
)

= o(1) + o(NT−δ), (53)

and
β̂ = β̃ + op(T−δ), (54)

and
α̂gt = α̃gt + op(T−δ) for all g, t. (55)

Proof of Lemma 7: The proof closely follows pages 1178-1180 in Bonhomme and Manresa (2015).
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#1. Properties of β̂. Define

Q̂(β, α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ + αĝi(β,α)t

)))
, (56)

Q̃(β, α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
. (57)

Notice that Q̂(·) is minimized at (β̂, α̂) and Q̃(·) is minimized at (β̃, α̃). Let η > 0 be small enough
such that the conclusion of Lemma 6 holds. Using Assumptions 7(a) and 7(b), it is then easy to
see that, for all δ > 0,

sup
(β,α)∈Nη

∣∣∣Q̂(β, α) − Q̃(β, α)
∣∣∣ = op(T−δ). (58)

By consistency of β̂ (Theorem 2) and α̂ (Lemma 3), and because β̃ and α̃ are also consistent under
the conditions of Theorem 2, I have, as N and T tend to infinity,

Pr
((
β̂, α̂

)
̸∈ Nη

)
→ 0, (59)

Pr
((
β̃, α̃

)
̸∈ Nη

)
→ 0. (60)

Then, the same arguments as those appearing between (B-14) and (B-17) in page 1179 in Bonhomme
and Manresa (2015) can be used to show that eq. (58)-(60) imply

Q̃(β̂, α̂) − Q̃(β̃, α̃) = op(T−δ). (61)

Now, using that (β̃, α̃) minimizes the twicely continuously differentiable function Q̃(·), I obtain
under Assumption 6(b)

Q̃(β̂, α̂) − Q̃(β̃, α̃) ≥ bmin

2
1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β̃ − β̂

)
+ α̃g0

i t
− α̂g0

i t

)2
,

≥ bmin

2
(
β̃ − β̂

)′
(

1
NT

N∑
i=1

T∑
t=1

(
Xit −Xg0

i t

) (
Xit −Xg0

i t

)′
)(

β̃ − β̂
)

≥ ρ̂bmin

2
∥∥∥β̃ − β̂

∥∥∥2
,

where ρ̂ p−→ ρ > 0 as a consequence of Assumption 7(c). Hence, β̃ − β̂ = op(T−δ) for all δ > 0.
This shows (54).

#2. Properties of α̂. The proof is identical to page 1180 in Bonhomme and Manresa (2015).
#3. Properties of ĝi = ĝi(β̂, α̂). The proof is identical to page 1180 in Bonhomme and Manresa

(2015).
The proof of Lemma 7 is complete. □
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A.4.2 Step 2: Asympotic Properties of the Oracle MLE

By Lemma 7 and Slutsky’s lemma, it is sufficient to analyze the limiting distribution of the unfeasible
maximum likelihood estimator, (β̃, α̃), defined as

(β̃, α̃) = arg min
(β,α)∈B×AG0T

Q̃(β, α),

where
Q̃(β, α) = 1

NT

N∑
i=1

T∑
t=1

∑
g∈G0

1
{
g0
i = g

}
× [− ln (Ψ (Qit (X ′

itβ + αgt)))] .

First, I show √
NT

(
β̃ − β0

)
d−→ N

(
0,Σ−1

β

)
. (62)

Second, I show for all g, t,
√
N
(
α̃gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (63)

and conclude by Slutsky’s lemma.
# 1. (62) holds. Under Assumption 9, results in Hahn and Newey (2004) (eq. (3)) and Arellano
and Hahn (2007) (in case of multi-dimensional fixed effects of size G0) ensure

√
NT

(
β̃ − β0

)
= SNT +

√
T

N
B +Op

√ T

N3

 ,
for some deterministic B ∈ Rp×p and SNT d−→ N

(
0,Σ−1

β

)
. The result then follows from T = o(N).

#2. (63) holds. Let (g, t) ∈ G0 × N∗. For all β ∈ B, define the optimal α̃gt(β) as

α̃gt(β) = arg min
α∈A

1
N

N∑
i=1

−1
{
g0
i = g

}
× ln (Ψ (Qit (X ′

itβ + α))) .

The first-order optimality condition for α̃gt(β) writes

1
N

N∑
i=1

1
{
g0
i = g

}
Qit (ln Ψ)′ (Qit (X ′

itβ + α̃gt(β))) = 0. (64)

Differentiating eq. (64) with respect to β yields

dα̃gt(β)
dβ = −

(
1
N

N∑
i=1

1
{
g0
i = g

}
(ln Ψit)′′

)−1 ( 1
N

N∑
i=1

1
{
g0
i = g

}
(ln Ψit)′′ Xjt

)
, (65)

where (ln Ψit)′′ := (ln Ψ)′′
(
Qit

(
X ′
itβ + α̃g0

i t
(β)

))
. By Taylor’s theory, eq. (65) and Assumptions 7(a)-
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(b) imply that there exists C > 0 such that, almost surely,

sup
β,β′∈B

|α̃gt(β) − α̃gt(β′)| ≤ C
∥∥∥β − β′

∥∥∥. (66)

Deduce that

√
N
(
α̃gt − α0

gt

)
=

√
N
(
α̃gt(β0) − α0

gt

)
+

√
N
(
α̃gt(β̃) − α̃gt(β0)

)
=

√
N
(
α̃gt(β0) − α0

gt

)
+Op

(√
N
∥∥∥β̃ − β0

∥∥∥)
=

√
N
(
α̃gt(β0) − α0

gt

)
+Op(1/

√
T )

=
√
N
(
α̃gt(β0) − α0

gt

)
+ op(1), (67)

where the second and third equality use eq. (66) and (62) respectively. Now, by expanding each
summand in eq. (64) at X ′

itβ
0 + α̃gt(β0) around Z0

it, Taylor’s theory ensures again that there exists
Z∗
it ∈ Z such that

α̃gt(β0) = α0
gt −

(
N∑
i=1

1
{
g0
i = g

}
(− ln Ψ)′′ (QitZ

∗
it)
)−1 ( N∑

i=1
1
{
g0
i = g

}
Qit (− ln Ψ)′

(
QitZ

0
it

))
. (68)

Equation (68) yields

√
N
(
α̃gt(β0) − α0

gt

)
= −

(
1
N

N∑
i=1

1
{
g0
i = g

}
(− ln Ψ)′′ (QitZ

∗
it)
)−1 ( 1√

N

N∑
i=1

1
{
g0
i = g

}
Qit (− ln Ψ)′

(
QitZ

0
it

))

=
(
π̃−1
gt + op(1)

)( 1√
N

N∑
i=1

1
{
g0
i = g

}
Qit (ln Ψ)′

(
QitZ

0
it

))
d−→ N

(
0, ωgt
π̃2
gt

)
,

where the second equality follows from supi=1,...,N |Z∗
it − Z0

it| = op(1) (it is easy to prove that
α̃gt(β0) − α0

gt = op(1) using (68), Assumptions 6(b), 7(a)-(b), and 9(e)) and Assumption 9(c),
and the last convergence follows by Assumption 9(e). Given (67), (63) follows by Slutsky’s lemma.

#3. Conclusion. Let δ > 0. By Lemma 7,

√
NT

(
β̂ − β0

)
=

√
NT

(
β̃ − β0

)
+

√
NT

(
β̂ − β̃

)
=

√
NT

(
β̃ − β0

)
+ op

(√
NT 1−δ

)
, (69)
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and, for all g ∈ G0, all t ∈ N∗,

√
N
(
α̂gt − α0

gt

)
=

√
N
(
α̃gt − α0

gt

)
+

√
N (α̂gt − α̃gt)

=
√
N
(
α̃gt − α0

gt

)
+ op

(√
NT−δ

)
. (70)

Since (69) and (70) hold for all δ > 0, and there exists ν > 0 such that N/T ν → 0, as N and T

tend to infinity, I obtain

√
NT

(
β̂ − β0

)
=

√
NT

(
β̃ − β0

)
+ op(1),

√
N
(
α̂gt − α0

gt

)
=

√
N
(
α̃gt − α0

gt

)
+ op(1).

This result, combined with (62), (63), and Slustky’s lemma yields (20) and (21).

B Extensions

B.1 Cluster-Specific Slopes and Time-Specific Effects

In this section, I consider the following extension of model (2): for all (i, t) ∈ N × T ,

Pr
(
Yit = y | Xi1, ..., Xit, α

0
g0

i t
, β0

g0
i
, g0
i , ζ

0
t

)
= h0

(
y,X ′

itβ
0
g0

i
+ α0

g0
i t

+ ζ0
t

)
, (71)

where h0 ∈ H,
∥∥∥β0

1

∥∥∥ = 1 and α0
11 = ζ0

1 = 0 are normalizations. Absent of correlation between the
groups and if groups were known, I could just run separate analysis of each panel data {(i, t) ∈
N × T : g0

i = g}g∈G0 . Here, the difficulty arises from the assumption that the group membership
variables g0

i are unknown to the econometrician. Let β0 := {β0
g : g}. I first adapt Assumption 1:

Assumption 11 (Random sampling)

(a) (Y ′
i , X

′
i, g

0
i )′ is i.i.d. across i ∈ N conditional on α0, β0, λ0, µ0.

(b) For all i ∈ N : {(Yit, X ′
it, α

0
g0

i t
, ζ0
t )′}t≥2 is a strictly stationary strong mixing process with mixing

coefficients τi(·) conditional on g0
i , µ

0
g0

i
, ξ0
i , β

0
g0

i
. Let τ(·) = supi τi(·) satisfy τ(l) ≤ Cml with

C > 0, and m ∈ (0, 1).

(c) For all t ∈ T : Y1t | X1t, g1, α
0, β0, λ0, µ0, ξ0 d= Y1t | X1t, g

0
1, α

0
g0

1t
, β0

g0
i
.

Assumption 12 (Latent clustering)

(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all fixed (i, j) ∈ N 2, letting
ρi(x) : X 0 ∋ x 7→ Pr

(
Yi2 = y | Xi2 = x, β0

g0
i
, g0
i , µ

0
g0

i
, ξ0
i

)
, ϕ (ρi, ρj) = 1{g0

i = g0
j}.

(b) For all g ∈ G0, almost surely Pr(g0
1 = g | α0, β0, λ0, µ0, ξ0) > 0.

Assumption 13 (Regularity and smoothness)
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(a) Conditional on g0
i , µ

0
g0

i
, ξ0
i , β

0
g0

i
, Xi2 admits a uniformly continuous density function fXi2|g0

i ,µ
0
g0

i

,ξ0
i ,β

0
g0

i

such that infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x) ≥ δ > 0 and supx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x) < ∞.

(b) Almost surely, E(
∥∥∥X12

∥∥∥2
| g0

1, α
0, β0, λ0, µ0) is finite and E(X12X

′
12 | g0

1, α
0, β0, λ0, µ0) is non-

singular.

(c) For all g ∈ G0: ∑
y∈Y yh

0(y, ·) is differentiable on R and not constant on the support of
X ′
itβ

0
g0

i
+ α0

g0
i t

.

Assumption 14 (Monotonicity) There exists y ∈ Y such that h0(y, v) is strictly monotonic in
v.

Assumption 15 (Compensating variations)

(a) For all fixed (g, t, t̃), all x1 ∈ X , there exists x2 ∈ X such that

α0
gt + x′

1β
0
g + ζ0

t = α0
gt̃

+ x′
2β

0
g + ζ0

t̃
. (72)

(b) For all fixed (g, g̃, t), all x3 ∈ X , there exists x4 ∈ X such that

α0
gt + x′

3β
0
g + ζ0

t = α0
g̃t + x′

4β
0
g̃ + ζ0

t . (73)

Theorem 4 (Identification) Let Assumptions 11, 12 and 13(a) hold, and let N and T diverge
jointly to infinity.

1. {W 0
N : N ∈ N∗} and G0 are identified.

2. If Assumptions 13(b)-15 further hold, then

• β0 is identified.

• ζ0
t + α0

gt is identified for all (g, t) ∈ G0 × N∗.

Proof of Theorem 4: The proofs of Part 1 and identification of β0 are identical to the corre-
sponding parts of the proof of Theorem 1, up to running nonparametric regressions for all g ∈ G0

to identify β0
g . Next, Assumption 15(b) ensures that, for all (g, g̃, t), I can identify (x1, x2) ∈ X 2,

such that for some y ∈ Y ,

h0
(
y, x′

1β
0
g + α0

gt + ζ0
t

)
= h0

(
y, x′

2β
0
g̃ + α0

g̃t + ζ0
t

)
.

By inverting h0(y, ·), I obtain α0
gt−α0

g̃t
= x′

1β
0
g̃
−x′

2β
0
g . Since the right-hand side is identified, α0

gt−α0
g̃t

is identified for all (g, g̃, t). In particular, (α0
g1)g∈G0 is identified. Now, suppose that G0 ≥ 2. By

Assumption 15(a), for all (g, t, t̃), I can identify (x3, x4) ∈ X 2 such that, for some y ∈ Y ,

h0
(
y, x′

3β
0
g + α0

gt + ζ0
t

)
= h0

(
y, x′

4β
0
g + α0

gt̃
+ ζ0

t̃

)
. (74)
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By inverting h0(y, ·) again, eq. (74) yields

ζ0
t − ζ0

t̃
= α0

gt̃
− α0

gt + (x4 − x3)′β0
g . (75)

Because ζ0
1 = α0

11 = 0, ζ0
t + α0

1t and ζ0
t + α0

gt = ζ0
t + α0

1t + α0
gt − α0

1t are identified for all (g, t).

B.2 Group and Time-Specific Link Functions

Consider the general model:

Pr
(
Yit = y | X t

i , g
0
i

)
= h0

t

(
y,X ′

itθ
0, g0

i

)
, i = 1, ..., N, t = 1, ..., T. (76)

Under an adaptation of Assumption 2, the same analysis can be conducted to identify g0
i and (h0

t )t≥1

up to group relabeling, and θ0 up to scale.

B.3 Grouping Time Periods

Consider a model in which time effects are also grouped: there exists (g0
i , k

0
t ) ∈ {1, ..., G0} ×

{1, ..., K0} such that

Pr
(
Yit = y | X t

i , α
0
g0

i k
0
t
, g0
i , k

0
t

)
= h0

(
y,X ′

itθ
0 + α0

g0
i k

0
t

)
, i = 1, ..., N, t = 1, ..., T (77)

When N = T , this gives rise to a so-called Holland, Laskey, and Leinhardt (1983)’s stochastic block
model on latent variables. Methods developed in the present paper and in Mugnier (2022) can be
used to obtain identification results for nonlinear multiplicative models in cases where G0 = K0

and under symmetry (α0
gg̃

= α0
g̃g

almost surely).

B.4 NGFE Large Sample Theory for Poisson Count Models

Theorem 2 can be generalized to NGFE models satisfying certain moment and concavity/regularity
conditions on the series of partial derivatives of (β, π) 7→ ln h0(Yit, X ′

itβ + π) ≡ ℓit(β, π).

Assumption 16

(a) Smoothness and moments: (β, π) 7→ ℓit(β, π) is three times continuously differentiable almost
surely. The partial derivatives of ℓit(β, π) with respect to the elements of (β, π) up to the
second order are bounded in absolute value uniformly over (β, π) ∈ B × A by a function
M(Yit, Xit) > 0 almost surely, and

max
i,t

E
[
M(Yit, Xit)4 | X(t), α0

g0
i t

]
is almost surely uniformly bounded over N, T .
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(b) Strict concavity: for all N, T , ∂2ℓit(β,π)
∂π2 < 0 almost surely for all (β, π) ∈ Rp+1.

In particular, Assumption 16(b) is verified by the Poisson count model (3).

Theorem 5 (Consistency in General Nonlinear Models) Let Assumptions 7 and 16 hold. Then,
as N and T tend to infinity:

1. β̂ p−→ β0, and

2. 1
NT

∑N
i=1

∑T
t=1

(
α̂ĝit

− α0
g0

i t

)2 p−→ 0.

The proof is available upon request.
Under the existence of a moment generating function for the score on a small interval around

zero, the concentration inequalities and most of the arguments in the proof of Theorem 3 could still
be applied to obtain asymptotic normality. A technical difficulty here is that Yit is not bounded
anymore so that uniform Lipschitz continuity in eq. (44) and (43) does not hold anymore. I only
state the result without proof for the Poisson count model. I denote as X̃gt the projection of Xit on
the space spanned by the cluster membership variable under a metric weighted by exp(Z0

it),

X̃gt =
(

1
N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it)
)−1 ( 1

N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it)Xit

)
,

i.e., the weighted mean of Xit in cluster g0
i = g. Also, let define the weighted average

π̂gt = 1
N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it).

Consider the following assumption.

Assumption 17

(a) {(Yit, X ′
it)′ : (i, t)} are independent conditional on the fixed effects.

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

exp(Z0
it)
[
Xit − X̃g0

i t

] [
Xit − X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
exp(Z0

it)
(
Xit − X̃g0

i t

)} {
Yit − exp(Z0

it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.
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(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1
{
g0
i = g

}
1
{
g0
j = g

}
(Yit − exp(Z0

it))(Yjt − exp(Z0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1
{
g0
i = g

}
(Yit − exp(Z0

it))
d−→ N (0, ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α, α0, is in the
interior of AG0T .

Theorem 6 (Asymptotic Distribution in the Poisson Count Model – Conjectured) Let eq. (4),
Assumptions 7, 8, and 17 hold, and let N and T tend to infinity such that N/T → ∞ and, for some
ν > 0, N/T ν → 0. Then: √

NT
(
β̂ − β0

)
d−→ N

(
0,Σ−1

β

)
, (78)

and, for all (g, t),
√
N
(
α̂gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (79)

where Σβ, ωgt, and π̃g are defined in Assumption 17.

C Large-N , Large-T Inference

C.1 Binary Choice Model

Assuming independent observations across individual units, the asymptotic variance of α̂gt for all
g, t can be estimated as

Var (α̂gt) =
∑N
i=1 1 {ĝi = g}

(
(ln Ψ)′

(
Qit

(
X ′
itβ̂ + α̂ĝit

)))2

(∑N
i=1 1 {ĝi = g} (− ln Ψ)′′

(
Qit

(
X ′
itβ̂ + α̂ĝit

)))2 . (80)

Given Theorem 3, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

(− ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

)) [
Xit − ̂̃

X ĝi,t

] [
Xit − ̂̃

X ĝi,t

]′
)−1

, (81)
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where

̂̃
Xgt =

(
1
N

N∑
i=1

1 {ĝi = g} (ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

)))−1

×
(

1
N

N∑
i=1

1 {ĝi = g} (ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

))
Xit

)
.

C.2 Poisson Count Model

Assuming independent observations across individual units, the asymptotic variance of α̂gt for all
g, t can be estimated as

Var (α̂gt) =
∑N
i=1 1 {ĝi = g}

(
Yit − exp

(
X ′
itβ̂ + α̂ĝit

))2

(∑N
i=1 1 {ĝi = g} exp

(
X ′
itβ̂ + α̂ĝit

))2 . (82)

Given Theorem 6, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

exp
(
X ′
itβ̂ + α̂ĝit

) [
Xit − ̂̃

X ĝi,t

] [
Xit − ̂̃

X ĝi,t

]′
)−1

, (83)

where

̂̃
Xgt =

(
1
N

N∑
i=1

1 {ĝi = g} exp
(
X ′
itβ̂ + α̂ĝit

))−1

×
(

1
N

N∑
i=1

1 {ĝi = g} exp
(
X ′
itβ̂ + α̂ĝit

)
Xit

)
.

D More Details on Monte Carlo Experiments

To measure classification accuracy, I focus on three metrics inspired from the binary classification
and clustering statistical literature, which are invariant to cluster relabeling.47 The three metrics
write

R ≡ Recall rate := TP

TP + FN
,

P ≡ Precision rate := TP

TP + FP
,

RI ≡ Rand Index := TP + TN

TP + TN + FP + FN
,

47Bonhomme and Manresa (2015) report a “Misclassification Rate” (M) defined as the minimum of∑N
i=1
∣∣ĝi − g0

i

∣∣ /N over all possible cluster relabelings for the ĝi. Beyond the fact that computing MR can be very
demanding for large G0, it is not totally fair since the final labeling of ĝi requires knowledge of g0

i to be determined.
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where

FP ≡ False Positives :=
∑
i<j

1 {ĝi = ĝj} 1
{
g0
i ̸= g0

j

}
,

TP ≡ True Positives :=
∑
i<j

1 {ĝi = ĝj} 1
{
g0
i = g0

j

}
,

FN ≡ False Negatives :=
∑
i<j

1 {ĝi ̸= ĝj} 1
{
g0
i = g0

j

}
,

TN ≡ True Negatives :=
∑
i<j

1 {ĝi ̸= ĝj} 1
{
g0
i ̸= g0

j

}
.

The Recall rate (R) measures the ability of the NGFE estimator to predict the same group for pairs
of individual who truly belong to the same group. The Precision rate (P) measures how precise the
pairing prediction is: among all the predicted pairs of individual sharing the same group, what is
the proportion of correct ones? The Rand Index (RI) is the proportion of correctly predicted pair
(true or false) made by the algorithm.

Initialization of NGFE I use 1, 000 initialization random points (θ′
init, α11init, ..., αG0T init)′ such

that θinit = v where v
iid∼ N (0, (1/4)2) and αgt,init = µg,init + w where µg,init

iid∼Unif[−4, 4] and
w

iid∼ N (0, (1/4)2).

Computation Having large N is not computationally demanding. When T is very large, compu-
tation of the NGFE estimate might be demanding. The methods developed in Mugnier (2022) could
be adapted. The statistical asymptotic results are confirmed by increasing (N, T ) in unreported
simulations.

E Tables & Figures

E.1 Monte Carlo Simulations
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Table 1: Bias and Root Mean Squared Error of β̂ (Static Model)

NGFE CMLE NLTWFE 2STEPGFE Pooled OLS LTWFE GFE
DGP G0 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 2 -0.072 0.268 -0.104 0.551 0.217 0.950 -0.252 1.516 -0.407 0.411 -0.790 0.812 -0.798 0.814

3 -0.089 0.294 0.294 0.637 0.669 1.000 0.355 0.893 -0.363 0.366 -0.724 0.734 -0.853 0.874
5 -0.022 0.264 0.167 0.538 0.359 0.824 0.104 0.779 -0.369 0.373 -0.766 0.776 -0.784 0.839

2 2 0.106 0.171 0.010 0.161 0.223 0.302 -0.278 0.309 -0.779 0.780 -0.831 0.831 -0.816 0.818
3 0.236 0.289 0.014 0.160 0.238 0.309 -0.300 0.345 -0.768 0.769 -0.867 0.867 -0.837 0.841
5 0.601 0.637 -0.004 0.169 0.250 0.332 -0.324 0.358 -0.747 0.747 -0.916 0.916 -0.853 0.860

3 2 0.352 0.385 -0.001 0.169 0.221 0.313 -0.110 0.211 -0.776 0.777 -0.857 0.857 -0.826 0.827
3 0.432 0.486 -0.002 0.170 0.219 0.308 -0.066 0.192 -0.788 0.789 -0.859 0.859 -0.845 0.846
5 0.471 0.499 0.011 0.156 0.235 0.309 -0.057 0.186 -0.787 0.788 -0.858 0.858 -0.833 0.836

4 2 0.040 0.151 -0.002 0.152 0.195 0.269 0.085 0.221 -0.789 0.789 -0.783 0.784 -0.788 0.789
3 0.095 0.159 0.016 0.124 0.223 0.269 0.109 0.213 -0.776 0.776 -0.778 0.779 -0.790 0.792
5 0.114 0.178 0.018 0.118 0.222 0.266 0.094 0.204 -0.775 0.775 -0.778 0.779 -0.803 0.809

Notes: Static logit model with β = 1, N = 90, and T = 7. G0 = true number of groups. NGFE (resp. 2STEPGFE and GFE) estimates are based on 1, 000
(resp. 100 and 100) initialization points. Results are averaged across 50 Monte Carlo replications.

Table 2: Classification Accuracy and CPU Time (Static Model)
NGFE 2STEPGFE GFE

DGP G0 P R RI M CPU P R RI M CPU Ĝ P R RI M CPU
1 2 0.51 0.87 0.51 0.44 10.62 0.54 0.24 0.51 0.77 10.19 5.38 0.54 0.55 0.54 0.38 29.27

3 0.35 0.81 0.42 0.57 11.42 0.37 0.24 0.60 0.75 11.34 5.48 0.36 0.38 0.57 0.55 29.63
5 0.21 0.80 0.35 0.70 14.75 0.24 0.25 0.69 0.71 11.73 5.88 0.24 0.25 0.69 0.63 83.18

2 2 0.56 0.86 0.57 0.36 8.02 0.64 0.45 0.60 0.53 3.57 3.06 0.61 0.61 0.61 0.29 21.95
3 0.40 0.85 0.49 0.51 8.52 0.57 0.49 0.70 0.44 4.70 3.64 0.46 0.49 0.64 0.42 22.00
5 0.22 0.87 0.34 0.69 10.15 0.44 0.53 0.77 0.44 5.78 4.44 0.35 0.40 0.74 0.54 20.93

Notes: Static logit model with β = 1, N = 90, and T = 7. G0 = true number of groups, P = Precision rate, R = Recall rate, RI = Rand Index,
M = Misclassification Rate = minimum of

∑N
i=1 1

{
ĝi ̸= g0

i

}
/N over all possible cluster relabelings, CPU = CPU time in seconds computed with

Python’s time command time.perf_counter(), Ĝ = number of groups estimated by 2STEPGFE. NGFE (resp. 2STEPGFE and GFE) estimates
are based on 1, 000 (resp. 100 and 100) initialization points. Results are averaged across 50 Monte Carlo replications.
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Table 3: Inference for β (Static Model)

NGFE CMLE
DGP G0 SE SD .95 SE SD .95
1 2 0.16 0.26 0.86 0.15 0.54 0.38

3 0.17 0.28 0.80 0.16 0.56 0.40
5 0.17 0.26 0.84 0.15 0.51 0.42

2 2 0.12 0.13 0.82 0.06 0.16 0.52
3 0.12 0.17 0.46 0.07 0.16 0.62
5 0.14 0.21 0.08 0.08 0.17 0.66

3 2 0.12 0.16 0.22 0.06 0.17 0.52
3 0.12 0.22 0.18 0.06 0.17 0.52
5 0.12 0.16 0.04 0.06 0.16 0.56

4 2 0.12 0.15 0.92 0.05 0.15 0.38
3 0.13 0.13 0.92 0.05 0.12 0.56
5 0.13 0.14 0.88 0.05 0.12 0.56

Notes: Static logit model with β = 1, N = 90, and T = 7. SE re-
ports the median of the estimates of the analytical standard errors
based on the large-N , T analytical variance formula (83) across
simulations; SD reports the median of the actual standard devi-
ation across simulations; .95 reports the empirical nonrejection
probabilities (nominal size 5%) based on the analytical standard
errors estimates. Results are averaged across 50 Monte Carlo repli-
cations.
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Table 4: Bias and Root Mean Squared Error (Dynamic Model)

NGFE CMLE NLTWFE 2STEPGFE
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

DGP G0 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1 2 -0.026 -0.128 0.229 0.328 -0.663 -0.174 0.689 0.526 -0.702 0.242 0.737 0.965 -0.032 -0.456 0.309 0.666
3 0.073 -0.144 0.323 0.447 -0.651 0.238 0.676 0.634 -0.684 0.663 0.716 0.995 -0.142 -0.282 0.254 0.745
5 0.156 -0.279 0.365 0.448 -0.592 0.090 0.629 0.524 -0.606 0.318 0.659 0.826 -0.051 0.158 0.277 0.492

2 2 0.486 0.043 0.630 0.141 -0.786 0.026 0.825 0.184 -0.839 0.248 0.893 0.337 0.695 -0.036 0.731 0.163
3 1.007 0.111 1.182 0.184 -0.780 0.017 0.820 0.156 -0.842 0.247 0.902 0.316 0.360 -0.109 0.757 0.165
5 2.144 0.297 2.272 0.358 -0.845 0.022 0.915 0.204 -0.912 0.295 1.015 0.394 0.682 0.077 1.159 0.254

3 2 0.298 0.300 0.507 0.339 -0.767 0.011 0.796 0.161 -0.821 0.242 0.859 0.325 -0.090 0.092 0.377 0.181
3 0.319 0.319 0.481 0.353 -0.797 0.016 0.842 0.166 -0.868 0.247 0.932 0.329 0.108 0.050 0.506 0.077
5 0.514 0.370 0.636 0.418 -0.734 0.030 0.770 0.161 -0.771 0.269 0.815 0.337 0.147 0.183 0.363 0.277

4 2 -0.114 0.052 0.267 0.159 -0.658 -0.003 0.676 0.143 -0.687 0.196 0.711 0.263 -0.045 0.071 0.126 0.105
3 -0.060 0.078 0.230 0.152 -0.677 0.023 0.694 0.128 -0.712 0.234 0.736 0.283 -0.084 0.114 0.242 0.187
5 -0.077 0.105 0.268 0.181 -0.685 0.018 0.713 0.118 -0.721 0.228 0.761 0.270 0.116 0.090 0.200 0.142

Notes: Dynamic logit model with β1 = 0.5, β2 = 1, N = 90, and T = 7. Results are averaged across 50 Monte Carlo replications. See Table 1 for details.

Table 5: Classification Accuracy and CPU Time (Dynamic Model)
NGFE 2STEPGFE GFE

DGP G0 P R RI MR CPU P R RI MR CPU Ĝ Failures P R RI MR CPU
1 2 0.50 1.0 0.50 0.46 11.06 0.51 0.91 0.51 0.90 0.49 2.33 0.82 0.53 0.55 0.54 0.38 29.60

3 0.33 1.0 0.33 0.62 12.98 0.34 0.94 0.36 0.93 0.38 2.14 0.86 0.36 0.39 0.57 0.55 29.62
5 0.20 1.0 0.20 0.74 16.48 0.20 0.97 0.23 0.97 0.18 2.00 0.92 0.24 0.26 0.69 0.64 29.53

2 2 0.50 1.0 0.50 0.46 8.80 0.50 0.95 0.50 0.91 0.25 2.00 0.86 0.60 0.62 0.60 0.30 21.68
3 0.33 1.0 0.33 0.61 9.69 0.34 0.99 0.35 0.97 0.10 2.50 0.96 0.45 0.47 0.63 0.43 22.91
5 0.20 1.0 0.20 0.74 10.05 0.23 0.97 0.28 0.92 0.37 2.33 0.82 0.36 0.46 0.74 0.54 21.09

Notes: Dynamic logit model with β1 = 0.5, β2 = 1, N = 90, and T = 7. Failures is the number of failures of the first step of 2STEPGFE. Results are averaged
across 50 Monte Carlo replications. See Table 2 for details.

57



Table 6: Inference for β1 and β2 (Dynamic Model)

NGFE CMLE
SE SD .95 SE SD .95

DGP G0 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1 2 0.20 0.18 0.23 0.30 0.94 0.72 0.08 0.17 0.19 0.50 0.00 0.44
3 0.20 0.19 0.31 0.42 0.82 0.64 0.09 0.17 0.18 0.59 0.00 0.34
5 0.20 0.19 0.33 0.35 0.66 0.56 0.09 0.17 0.21 0.52 0.00 0.44

2 2 0.20 0.12 0.40 0.13 0.28 0.90 0.10 0.06 0.25 0.18 0.00 0.52
3 0.23 0.13 0.62 0.15 0.30 0.72 0.12 0.07 0.25 0.16 0.00 0.60
5 0.32 0.17 0.75 0.20 0.04 0.14 0.16 0.09 0.35 0.20 0.04 0.62

3 2 0.23 0.13 0.41 0.16 0.54 0.38 0.12 0.07 0.21 0.16 0.00 0.66
3 0.23 0.13 0.36 0.15 0.48 0.28 0.12 0.07 0.27 0.17 0.02 0.62
5 0.24 0.13 0.38 0.19 0.22 0.16 0.11 0.07 0.23 0.16 0.00 0.58

4 2 0.18 0.13 0.24 0.15 0.84 0.92 0.08 0.05 0.16 0.14 0.00 0.52
3 0.18 0.13 0.22 0.13 0.88 0.92 0.08 0.05 0.15 0.13 0.00 0.68
5 0.19 0.13 0.26 0.15 0.82 0.82 0.08 0.05 0.20 0.12 0.00 0.64

Notes: Dynamic logit model with β1 = 0.5, β2 = 1, N = 90, and T = 7. See Table 3 for more details.

E.2 Empirical Application

Table 7: Summary Statistics

1-Lerner index Citation-weighted patents Technology gap
Mean 0.95 6.66 0.49
SD 0.02 8.43 0.16
p10 0.92 0 0.28
Median 0.95 3.35 0.51
p90 0.98 20.19 0.69

Notes: There are 17 industries and 354 observations over the time period 1973-94.
See Aghion, Bloom, Blundell, Griffith, and Howitt (2005) for the exact definition of
each variable.

58



Figure 1: Replicating ABBGH
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Notes: This figure replicates Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s Figure II. Data include 17
industries of 311 firms listed on the London Stock Exchange observed between 1973 − 1994. For each industry i at
year t, the prediction replaces ν̂i + ξ̂t with an estimated constant α̂ (one industry and time dummies are dropped).

Figure 2: Residuals of the Two-Way Fixed Effects Poisson Model
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Notes: Each color represents an industry in Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s dataset. There
are 17 industries observed over the period 1973-1994.
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Table 8: Industries at the 2-Digit Level

SIC 2 Name

22 Metal manufacturing
23 Extraction of minerals not elsewhere specified
24 Manufacture of non-metallic mineral products
25 Chemical industry
31 Manufacture of metal goods not elsewhere specified
32 Mechanical engineering
33 Manufacture of office machinery and data processing equipment
34 Electrical and electronic engineering
35 Manufacture of motor vehicles and parts therof
36 Manufacture of other transport equipment
37 Instrument engineering
41 Food industry
42 Food, drink and tobacco manufacturing industries
43 Textile industry
47 Manufacture of paper and paper products; printing and publishing
48 Processing of rubber and plastics
49 Other manufacturing industries

Source: 1980 Notebook of the UK Office of National Statistics available here:
https://www.ons.gov.uk /methodology/classificationsandstandards/ ukstandardindustrialclas-
sificationofeconomicactivities/uksicarchive.

Figure 3: Regularization Path of the Two-Step Pairwise Differencing Estimator
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Notes: Number of estimated clusters as a function of the regularization parameter λ2, using the pairwise distance
estimator proposed in Mugnier (2022) with β̂1(λ1) = 0 (no covariates). There are 17 industries observed over the
period 1973-1994.

60

https://www.ons.gov.uk/methodology/classificationsandstandards/ukstandardindustrialclassificationofeconomicactivities/uksicarchive
https://www.ons.gov.uk/methodology/classificationsandstandards/ukstandardindustrialclassificationofeconomicactivities/uksicarchive


Figure 4: Two-Step Pairwise Differencing Estimates (Three Clusters)

Notes: Each color represents an estimated cluster using the pairwise distance estimator proposed in
Mugnier (2022) with β̂1(λ1) = 0 (no covariates) and λ2 ∈ [140, 170]. There are 17 industries observed
over the period 1973-1994.

Figure 5: Innovation and Competition Revisited: A Mildly Inverted-U Relationship
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Notes: ABBGH (spe. (2) in Table 9) includes a constant and drop a time and an industry dummy (not included in
the fit). NGFE (spe. (3), (4), and (5) in Table 9) does not specify a constant and averages the unobserved effects to
obtain the intercept in the fit.
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Table 9: The Effect of Competition on Innovation

FE Poisson NGFE Poisson
Dependent variable: Citation-weighted patentsit (1) (2) (3) (4) (5)
Competitionit 152.80∗∗∗ 387.46∗∗∗ 171.28∗∗∗ 273.62∗∗∗ 392.23∗∗∗

(55.74) (67.74) (71.51) (70.21) (70.35)
Competition squaredit -80.99∗∗∗ -204.55∗∗∗ -85.15∗∗∗ -147.21∗∗∗ -210.19∗∗∗

(29.61) (36.17) (38.18) (37.62) (37.73)
Year effects Yes Yes
Industry effects Yes
Time-varying clustered effects Yes Yes Yes
Number of clusters 2 3 4

Notes: Analytical standard errors are under parentheses. The sample includes 354 observations from an unbalanced panel
of 17 industries over the period 1973-1994. Competitionit is measured by (1-Lerner index)it in the industry-year. NGFE
estimates are computed using Lloyd’s algorithm with 2, 000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance
at 1, 5, and 10% respectively.

Figure 6: Estimated Cluster-Specific Time-Varying Effects
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Notes: Solid red line = High-Innovation, dotted blue line = Low-Innovation, dashed orange line = Steady-Catchers,
dashdotted green line = Noisy-Catchers. See Table 9 for more details.
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Figure 7: Data-Driven Clusters of Industries
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Notes: From left to right: G0 = 2, 3, 4. Blue bar (1) = Low-Innovation, red bar (2) = High-Innovation, orange bar
(3) = Steady-Catchers, green bar (4) = Noisy-Catchers.

Figure 8: Unobserved Heterogeneity, Competition, and Innovation Vary Across
Time and Data-Driven Clusters
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Notes: Solid red line = High-Innovation, dotted blue line = Low Innovation, dashed orange line = Steady-Catchers,
dashdotted green line = Noisy-Catchers. From left to right: cluster-specific time-effects estimates (G = 4), results
are averaged across clusters.
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Table 10: The Effect of Competition on Innovation (Control Function Approach)

FE Poisson NGFE Poisson
Dependent Variable: Citation-weighted patentsit Annual Before 1983 After 1983 Annual Before 1983 After 1983
Competitionit 386.59∗∗∗ 229.18∗ 113.42 394.23∗∗∗ 265.86∗∗∗ 9.69

(67.61) (122.68) (100.73) (77.10) (128.18) (124.73)
Competition squaredit -205.32∗∗∗ -114.89∗ -60.85 -212.35∗∗∗ -144.18∗∗∗ -9.41

(36.11) (66.49) (53.37) (41.14) (67.95) (67.46)
Relationship steep inv-U increasing mildly inv-U mildly inv-U
Significance of: Competitionit, Competition squaredit 33.20 14.66 1.38

(0.000) (0.001) (0.5022)
Significance of policy instruments 3.70 1.67 1.77 3.70 1.67 1.77
in reduced form (0.001) (0.192) (0.064) (0.001) (0.192) (0.064)
Significant of other instruments 5.60 3.43 2.11 5.60 3.43 2.11
in reduced form (0.000) (0.000) (0.004) (0.000) (0.000) (0.004)
Control functions in regression 4.38 -.61 -3.56 1.54 16.14 -2.05

(3.51) (6.99) (6.13) (2.89) (7.05) (3.71)
R2 of reduced form 0.820 0.920 0.822 0.820 0.920 0.822
Year effects Yes Yes Yes
Industry effects Yes Yes Yes
Time-varying clustered effects Yes Yes Yes

Notes: Competitionit is measured by (1-Lerner index)it in the industry-year. The sample includes 354 observations from an unbalanced panel of 17 industries over the
period 1973 to 1994 (Annual), 1973-1982 (Before 1983), or 1983-1994 (After 1983). Estimates are from a Poisson regression with industry and year fixed effects (FE)
or assuming unobserved clusters of time-varying heterogeneity (NGFE) with G = 4 clusters of industries. Numbers in brackets are standard errors (not adjusted for
the control functions). NGFE estimates are computed using Lloyd’s algorithm with 2, 000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance at 1, 5, and 10%
respectively.
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