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Abstract

Poor air quality negatively affects workers’ health and cognitive functions, but we know little

about the countrywide consequences for firms. In this paper, we estimate the causal effects

of fine particulate matter (PM2.5) exposure on workers’ absenteeism and firms’ monthly sales

using unique employer-employee data and granular measures of air pollution in France from

2009 to 2015. We exploit variation in air pollution induced by changes in monthly wind

directions at the postcode level. We find that a 10% increase in monthly PM2.5 exposure

increases worker absenteeism in the same month by 1% and reduces sales in manufacturing,

construction, and professional services, with different lags. Sales losses are several orders of

magnitude larger than what we would expect if workers’ absenteeism was the only factor

affecting firms’ performance. This suggests a potentially large effect of pollution on the

productivity of non-absent workers. We estimate that reducing air pollution in France in

line with the World Health Organization’s guidelines would have saved at least 0.3% of GDP

annually in terms of avoided sales losses.
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1 Introduction

It is widely acknowledged that air pollution has detrimental effects on human health.1 Air pol-

lution exposure causes higher emergency admissions and mortality (Schlenker and Walker, 2016;

Deryugina et al., 2019), higher medical expenditures (Barwick et al., 2018), and a higher num-

ber of work loss days (Holub et al., 2021). Cognitive functions and intellectual performance may

also be impaired (Aguilar-Gomez et al., 2022). These large health costs directly affect the utility

of many individuals and are sufficient to justify public intervention. Yet, there might even be

wider economic implications to air pollution shocks if workers’ productivity decreases as a result

of pollution-induced health effects. While several papers have examined how pollution affects

workers and firms in specific settings, often based on a handful of production sites, there is limited

evidence on the economy-wide costs of air pollution for firms.

In this paper, we assess quantitatively to what extent air pollution health costs on workers

translate into economic costs for their employers. We estimate countrywide effects of air pollution

on workers’ sick leave and on firms’ sales using confidential employer-employee data from France.

We focus on exposure to fine particulate matter pollution (PM2.5) since it can penetrate deep into

the respiratory tract and enter the brain, with particularly detrimental health effects.2 It can

also easily penetrate indoors, thus affecting most workers while at work. We assemble a unique

dataset which combines detailed data on sick leave episodes for a representative sample of 400,000

French private sector employees with monthly sales data of the firms that employ them, as well

as granular measures of air pollution and weather conditions at their workplace between 2009 and

2015. Two key challenges with identifying the causal effects of pollution exposure on countrywide

work absenteeism and firms’ sales is that air pollution is often a co-product of production, and

individual exposure to pollution exposure is always measured with noise.3 To circumvent these

challenges, our analysis leverages variation in air pollution induced by changes in monthly wind

directions at the postcode level.

The identifying assumption of our instrumental variable (IV) approach is that, after flexibly

controlling for postcode and month-by-year fixed effects and other weather variables, changes in

a postcode’s monthly wind direction are unrelated to changes in the postcode’s work absenteeism

except through their influence on air pollution. The benefit of our approach is that it does not

1Exposure to fine particulate matter (PM2.5), for instance, is associated with approximately 4.2 million prema-
ture deaths every year globally (WHO, 2014a). Even in Europe, where air pollution has been regulated for several
decades, an annual 307,000 premature deaths are attributed to PM2.5 pollution (European Environment Agency,
2020).

2The 2.5 subscript in PM2.5 means that these particles have a size lower than 2.5 µm.
3In an ideal setting, pollution exposure would be measured by multiplying pollution levels from each location

where an individual spend some time by the number of hours spent in each location. In this paper, we proxy
pollution exposure by pollution levels measured at the postcode of the workplace, where workers spend most of
their waking hours.
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require identifying the sources of pollution in each area. Instead, we allow wind directions to

influence pollution differently across 100km-by-100km grid cell areas covering all metropolitan

France. Our analysis thus employs a similar strategy to Deryugina et al. (2019) and Anderson

(2020), except that Deryugina et al. (2019)’s instrument is made of binary variables indicating

the dominant wind direction at the daily level whereas we use continuous variables measuring the

share of hours in each month where the wind blows from each direction (North, East, and West,

with South winds being the excluded category).4 We further address the additional challenge

coming from multi-establishments firms when estimating the effects of air pollution on monthly

sales. Many firms own several establishments that are not located in the same postcode, rendering

the previous IV approach inapplicable. We therefore exploit another IV approach by computing

a weighted average of predicted pollution exposure at the firm-month level.

Our study has three main results. First, we estimate that a 1 microgram per cubic meter

(µg/m3) increase in monthly PM2.5 exposure causes 0.15 additional sickness leave episodes per

1,000 workers within the month of exposure, which corresponds to a 0.6 percent increase relative

to the mean. It also increases the number of sick days by 2.7 per 1,000 workers and the associated

sickness leave spending by e86.5 per 1,000 workers. Our estimate implies that a 10 percent increase

in monthly PM2.5 increases by 1 percent the number of sickness leaves per 1,000 workers in the

same month. Our results are robust to various specifications and placebo tests, including studying

the relationship between pollution and work absenteeism at the weekly level or at the individual

level and excluding months with air quality alerts. We also find that the effect of pollution on

work absenteeism is larger than average for relatively low-wage workers, and varies in magnitude

across sectors of activity.

Second, we find that firm-level PM2.5 exposure has heterogeneous effects on sales depending

on the economic sector. We estimate that a 1 µg/m3 increase in firm-level pollution exposure in

month t decreases manufacturing sales by 0.24 percent and construction sales by 0.44 percent in

the following month. This is consistent with the existence of a lag between the timing of production

– when workers are directly affected by air pollution – and the timing of recorded sales for these

sectors. By contrast, we detect a decrease in sales by 0.55 percent in the contemporaneous month

of exposure in the professional services sector.5 These results also hold for the subsample of single-

establishment firms, for which pollution exposure is measured in only one location. We perform

a range of robustness checks, including discarding 2009 – when France was hit by the Great

4We use wind directions as instruments for air pollution rather than infrequently occurring events, such as
thermal inversions, because Bagilet and Zabrocki (2022) show that an IV strategy with low frequency events as
instruments may lead to inflated estimates due to low statistical power when estimating acute health effects.

5Professional services refer to business-to-business specialized services and include two types of firms: about
two-third of the firms provide high-skilled services such as legal and financial advice, engineering and consulting;
about one-third of the firms provide low-skilled services such as cleaning, security, or are temporary work agencies.
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Recession, discarding months with air quality alerts, including ozone, and two-way clustering

standard errors, which corroborate our results for the construction and professional services sector

whereas the effects for manufacturing are less precisely estimated. We fail to detect a significant

effect of pollution on sales in other services sectors (including retail and restaurants, business-to-

consumer services and other business-to-business services).

We present a conceptual framework that describes how workers and firms can be impacted

by pollution shocks. The framework highlights three channels through which air pollution can

influence sales: i) a decrease in labor supply, as measured by an increase in work absenteeism

in our context; ii) a decrease in productivity among non-absent workers, which can result from

non-absent workers suffering from mild health symptoms or reduced cognitive capacities, as well as

from the potential disruptions in production value chains when their co-workers take sick leaves;

and iii) a decrease in demand.6 Finding a negative effect of air pollution only for firms in the

manufacturing, construction and professional services sectors indicate the potentially detrimental

cumulative effects of ambient pollution and work emissions in some sectors, the role of comple-

mentarities among workers in production value chains, and sectoral differences in the ability of

firms’ managers to temporarily replace sick workers. In professional services, where a fraction

of the workers is high-skilled, non-absent workers may mostly suffer from the negative effects of

pollution on their cognitive abilities.

With our previous estimates, we can evaluate the cost of pollution-induced work loss days

valued at the marginal product of labor, a proxy for the sales loss imputable to the first chan-

nel. This cost is several orders of magnitude smaller than the total sales loss in manufacturing,

construction and professional services sectors. Thus, the productivity and demand channels must

play an important role in reducing firms’ sales. While we cannot rule them out entirely, we argue

that demand responses to pollution shocks should be limited in our context because awareness of

air pollution levels is low in our study period and we fail to detect a significant decrease in sales

in business-to-consumers services.7 Our results thus reflect the importance of the productivity

channel among non-absent workers.

Third, we quantify the benefits associated with reducing pollution levels so as to meet the

World Health Organization (WHO)’s recommendations of not exceeding 15 µg/m3 for daily PM2.5

exposure, a threshold exceeded 37% of the days in our data. Based on our estimates, bringing

pollution levels down to 15 µg/m3 every day would have avoided annually 2 million of sick days,

6In our study, we define the labor supply response in terms of whether or not a worker calls sick to work, which,
in France, requires a medical certificate signed by a general practitioner. If a worker chooses to go to work while
shortening his number of hours per day, we consider that the channel is lower productivity.

7There is no air quality alert system in place for PM2.5 in France. Even in the most polluted city of France,
Paris, air pollution alerts for PM10 – which involve recommendations from the health authorities targeting the
most vulnerable individuals – were issued on 4% of the days in our study period. More severe alerts involving
restrictions in car traffic were issued on 0.7% of the days only.
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corresponding to 1% of total sickness leave spending, and between e6 billion and e11 billion

of foregone sales (between 0.3 and 0.5% of French GDP) on average between 2009 and 2015.

The lower bound excludes manufacturing sales losses, for which the point estimate is less precise,

and the upper bound includes them. While there is no readily available estimate for the cost

of meeting the WHO threshold, we compare our estimated benefits with existing estimates for a

scenario reducing particulate emissions by 16% (lower bound) and for a scenario reducing them

by 33% (upper bound) and evaluate that they represent between 80% and 150% of the cost.

While we only consider benefits from short-term reductions in exposure and ignore population-

wide morbidity and mortality benefits, our results already provide evidence of large benefits from

tightening regulatory standards, even at the firm level.

To the best of our knowledge, this paper provides the first countrywide estimates of the effect

of air pollution on firms’ performance and their workers in a high-income country. Previous

literature has examined how pollution affects workers, in terms of productivity (Graff Zivin and

Neidell, 2012; Chang et al., 2016; Lichter et al., 2017; Meyer and Pagel, 2017; He et al., 2019;

Chang et al., 2019; Adhvaryu et al., 2022) and decision-making (Meyer and Pagel, 2017; Dong

et al., 2019), based on specific settings where workers are paid by the hour or productivity is

easy to observe. Other studies have examined pollution effects on labour supply (Aragón et al.,

2017) or firms’ performance (Fu et al., 2021) using representative data at the country level in

the context of developing countries. We expect pollution to affect workers’ health, labor supply

and productivity differently in high-income countries, where the levels and saliency of pollution

are lower, the sectoral composition of the economy is different, and workers often benefit from

institutionalized sickness leave. Average pollution levels in France are similar to those in Europe

and slightly above those in the US.8 Thus, we expect our results to have external validity for other

high-income countries.

A closely related study by Holub et al. (2021) estimates the effects of PM10 on sickness leaves in

Spain and derive an economic cost associated with pollution-induced work loss days by multiplying

the number of work loss days with workers’ daily wage. We differ from this study in the type of

pollutant, in the choice of instrument – adopting wind directions instead of episodes of Sahara

wind –, but more importantly in the combination of employer-employee data that allows us to

estimate the cost of pollution in terms of foregone sales, which we find to be much larger than

the cost related to work absenteeism only. Furthermore, another related study by Borgschulte

et al. (2022) finds that air pollution shocks induced by wild-fire smoke in the US reduce per capita

earnings in the medium run, using county-level data. Combining worker- and firm-level data, our

8In 2015, population-weighted PM2.5 exposure was 13 µg/m3 in France, 8 µg/m3 in the US, 11 µg/m3in Spain
and the UK, 13 µg/m3 in Germany, and 17 µg/m3 in Italy. Source: https://www.who.int/data/gho/data/

themes/air-pollution/modelled-exposure-of-pm-air-pollution-exposure.
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study sheds light on two possible mechanisms at play: first, workers may not be fully (or at all)

compensated for the income loss associated with taking a sickness leave; second, lower sales in

some sectors may reduce the demand for labor.

Our paper contributes to the literature that evaluates the cost of air pollution based on micro-

level data. This literature has focused almost exclusively on the health costs to individuals

(Deryugina et al., 2019; Barwick et al., 2018; Mink, 2022). For instance, Mink (2022) estimates

that reducing nitrogen dioxide concentrations by 27% would save at least e5.2 billion in healthcare

costs in France. Our results suggest that considering only the health effects from pollution while

ignoring its effects on firms may widely underestimate the economic costs associated with pollu-

tion shocks. This corroborates the findings in Dechezleprêtre et al. (2019) that a 10% increase in

annual PM2.5 decreases real GDP by 0.8%, based on GDP data from European regions. By using

micro data, our study highlights the heterogeneous effects across economic sectors and provide

suggestive evidence of the channels underlying the output loss.

More broadly, our paper adds to the literature on the effects of environmental shocks on

workers and firms. Previous literature has examined the effects of high temperatures on workers’

productivity (Somanathan et al., 2021), labor supply (Graff Zivin and Neidell, 2014), firms’ sales

(Addoum et al., 2020), and work accidents (Park et al., 2021) in the context of climate change. In

contrast to our findings using pollution shocks, Addoum et al. (2020) fails to detect a significant

impact of temperature shocks on US firms’ economic performance. This difference may arise from

the fact that temperature shocks are salient, which may trigger a private adaptation response

which consists in using air conditioning at the workplace, whereas air pollution shocks are largely

unnoticed in our context and adaptation is limited.

The rest of the paper is organized as follows. Section 2 provides a brief background on the

effect of fine particulate matter on health and presents a conceptual framework that encompasses

the potential channels through which pollution can affect firms’ sales. Section 3 describes our

data. Section 4 describes our empirical strategy. Section 5 presents the results, and section 6

some robustness checks. Section 7 discusses the magnitudes and implications of the effects on

workers’ absenteeism and firms’sales, and section 8 concludes.

2 Background and Conceptual Framework

2.1 Effects of Particulate Matter on Health and Productivity in the

French Context

Particulate matter with a diameter below 2.5 micrometers (PM2.5) enters the lungs and can pass

into the bloodstream, resulting in significant health problems such as increased mortality and car-
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diovascular diseases (World Health Organization, 2016; European Environment Agency, 2020).9

A large literature has shown the negative effects of short- and long-term exposure to PM2.5 on

human health, even at low levels of exposure. For instance, Deryugina et al. (2019) found that, in

the US, a 1 µg/m3 increase in PM2.5 exposure for one day causes 0.69 additional deaths per million

elderly individuals over the three following days. PM2.5 also readily penetrates indoors (Chang

et al., 2016; Krebs et al., 2021), thereby being likely to affect individuals in their working environ-

ment. Exposure to fine particulate matter can temporarily affect cognitive functions: mounting

toxicological evidence suggests that it can enter the brain and increase neuro-inflammation and

oxidative stress in the central nervous system. Furthermore, PM2.5 can travel far (hundreds of

kilometres) and remain in the atmosphere for a long period of time (US EPA, 2018).

As in many high-income countries, air quality in France is regulated via command and control

taking the form of maximum concentration thresholds defined at the European level. Depending

on the pollutant, the thresholds are defined at the annual and/or 24-hour level.10 For PM2.5, the

annual threshold is 25 µg/m3 and there is no threshold for daily exposure. By contrast, the recent

recommendations from the WHO set the threshold at 15 µg/m3 for daily exposure for PM2.5.
11

The recent literature has put forward different ways through which air pollution can affect

workers’ productivity and firms’ performance. In the context of developing countries or in settings

where workers are paid by the hour, several studies find that pollution reduces workers’ produc-

tivity primarily through a decrease in output per hour (Graff Zivin and Neidell, 2012; Chang

et al., 2016; Adhvaryu et al., 2022; Chang et al., 2019; He et al., 2019). Other papers find that

air pollution reduces labor supply, both in the short run (Hanna and Oliva, 2015; Aragón et al.,

2017; Holub et al., 2021) or in the medium run (Borgschulte et al., 2022). By reducing non-absent

workers’ productivity or by reducing labor supply, air pollution will likely also reduce firms’ output

and sales. Fu et al. (2021) shows that air pollution decreases annual firm-level productivity for a

large representative sample of Chinese manufacturing firms. However, in few cases where firms’

response could be explored, studies find that firms can dampen the productivity loss from their

most affected employees by reallocating tasks among all employees (Adhvaryu et al., 2022), by

hiring new employees (Fu et al., 2021), or by asking unaffected workers to work longer hours.

9PM2.5 is related to other air pollutants. In particular, it is by definition included in PM10 concentration
levels, but it is deadlier because smaller-sized particles penetrate deeper into the respiratory system. PM2.5 can
be either directly emitted as “primary” particles, for which the main contributors are the residential and tertiary
sector (52%), transportation (20%), manufacturing (18%) and agriculture (11%) (CITEPA, 2021) or formed in the
atmosphere as “secondary” particles from the chemical reactions of gaseous pollutants, including SO2 and NO2.

10The legal thresholds are defined in European Union legislation and transposed into French law. The French
government must comply with these thresholds or risks incurring sanctions: in 2020, France has been referred to the
Court of Justice of the European Union for exceeding the daily thresholds for particulate matter PM10 (European
Commission, 2020).

11See the 2021 recommendations from the World Health Organization at
https://apps.who.int/iris/handle/10665/345329.
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We expect that labour market institutions, industry, and the saliency of pollution shocks

influence how workers and firms respond to these shocks. In particular, workers may benefit from

different levels of job protection across countries, sectors, and firms, which will lead to different

abilities to take sick leaves when being ill. In France, private sector employees are entitled to

relatively generous sickness allowances, under some conditions. Sickness allowances consist of

three parts, all conditioned on providing a medical certificate and having worked at least 150

hours in the past three months. First, workers receive publicly funded benefits from the fourth

day of a sickness leave episode (hereafter, SLE), which amount to roughly 50% of their gross

daily wage, with a cap of 1.8 times the daily equivalent of the minimum wage (i.e., e43 per day

in 2015). Second, they receive an allowance from mandatory employer-funded funds from the

eighth day of leave, which amounts to 40% of their gross daily wage initially and then decreases to

16% after 30 to 90 days, and is paid for a maximum of 60 to 180 days, depending on the workers’

seniority in the firm. Third, they receive an optional employer-funded allowance that is negotiated

in collective agreements and generally covers the difference between the gross daily wage and the

publicly-funded plus mandatory employer-funded benefits. According to survey evidence (Pollak,

2015), two-thirds of private sector employees receive this optional allowance and are granted a 100

percent replacement rate from the first day of leave.

While developing countries such as India or China face very high air pollution levels that may

render pollution shocks more visible to managers and firms, the moderate levels of pollution in

high-income countries such as France have ambiguous effects on the severity of economic conse-

quences for firms. On the one hand, few workers may suffer severe health symptoms or impaired

productivity under such moderate pollution levels. This would suggest that firms would experi-

ence small decline in their productivity and output. On the other hand, pollution shocks being

less salient implies that managers are less able to respond appropriately to mitigate the reduction

in output.

2.2 Conceptual Model

We illustrate how pollution shocks might affect workers and firms in a stylized model that connects

workers’ exposure to air pollutants with firms’ productivity and sales. We model the production

function (in logs) for firm f in industry i at time t as:

qfit = Fit(kfit, lfit) + ωfit, (1)

where q denotes the quantity of output; k and l denote capital and labor, respectively, and ω is

a persistent Hicks-neutral productivity shock that is known to the firm when making its period t

decisions. Capital is assumed to be chosen a period ahead in t− 1 whereas labor is chosen flexibly
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in period t. The observed quantity of output is given by:

yfit = qfit + µZfit + εfit, (2)

where the discrepancy between the originally planned output quantity q and the actual final

quantity y can arise from either pollution-induced productivity shocks µZfit or from other ex-post

shocks to output εfit capturing measurement error or demand shocks. Z denotes the concentra-

tion of air pollution measured at the firm location. Both ex-post shocks are not known to the

firm when making its period t decisions and cannot be anticipated. Assuming that both labor

productivity and labor supply are affected by air pollution and that consumers may potentially

respond to pollution shocks by staying home and reducing their consumption, pollution-induced

ex-post shocks can be decomposed in the following way:

µZfit =
∂Fit

∂lfit

∂lfit
∂Zfit

∣∣∣∣
lfit=l∗fit

+
∂Fit

∂σL
fit

∂σL
fit

∂Zfit

∣∣∣∣
lfit=l̃fit

+ ζfit, (3)

where the first term in the right hand side of equation (3) captures the loss in output associated

with reduced labor force if observed labor l̃fit is lower than originally hired labor l∗fit assuming

that the marginal product of labor σL
fit ≡ ∂Fit

∂lfit
remains unaffected; the second term captures the

loss in output associated with reduced marginal product of labor given labor force l̃fit, and the

third term captures pollution-induced ex-post demand shocks.

We assume an exogenous first-order Markov process for persistent productivity shock: ωfit =

g0 + g1ωfit−1 + ηfit, where ηfit denotes an innovation to productivity that is by assumption uncor-

related with any lagged choice variables of the firm. Combining (2) with the Markov process for

ω yields the following equation:

yfit = Fit(kfit, lfit) + µZfit + g0 + g1ωfit−1 + ξfit, (4)

where the error term ξfit combines both εfit and ηfit. Assuming orthogonality between pollution

shocks and the original input choices of the firm and ωfit−1, we can directly estimate the firm-level

pollution-induced ex-post shock by regressing observed sales on pollution levels and controls.12

The focus of this paper is twofold. First, we assess the workers’ response to pollution shocks

through the sickness-induced labor supply channel,
∂lfit
∂Zfit

∣∣∣∣
lfit=l∗fit

. We explore this channel by

focusing on missed work days due to sickness. Second, we directly estimate µZfit, the total

response of sales to air pollution shocks.

12Anticipating our empirical analysis, we abstract from any price response to pollution shocks either because of
perfect competition or because we expect that firms do not adjust their prices at the monthly level.
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3 Data

We combine nationwide gridded reanalysis pollution and weather data, a representative panel

dataset of French private sector employees affiliated to France’s universal sickness-leave insurance,

and value added tax records for the universe of French firms, over the period spanning 2009 to

2015. This section describes the data sources, cleaning steps and key variables used in the analysis.

3.1 Pollution Data

We use air pollution data from the French National Institute for Industrial Environment and Risks

(INERIS), which provides gridded reanalysis historical pollution data for metropolitan France

(Real et al., 2021). The dataset combines background measurements of air quality from monitoring

stations with modelling from the chemistry-transport model CHIMERE, using a kriging method

(Real et al., 2021). It contains hourly concentrations of PM2.5, PM10, NO2, and O3 with a spatial

resolution of approximately 4 km x 4 km for the period 2000-2018. We refer to the grid scale of

this data as delimited by “Chimere grid cells”. We aggregate pollution data at the monthly level,

focusing on PM2.5, for the 33,252 Chimere grid cells located in metropolitan France. We limit the

analysis to the 2009-2015 period, the coverage of the absenteeism data.

Gridded reanalysis pollution data are better suited to capture the average pollution exposure

of local residents than pollution-monitor readings. Indeed, monitors are sparse and sometimes

strategically placed to capture locally produced emissions (e.g., from a highway).13 As a result,

monitor readings may not be informative of the average pollution exposure in a given grid cell. By

contrast, reanalysis data combine these monitor readings with a chemistry-transport model that

takes account of all sources of pollution to give a measure of average exposure.

The average PM2.5 exposure of French workers, based on the postcode of their workplace, is

15.4 µg/m3 over the study period. Figure B.4 shows the spatial distribution of annual exposure

at different points in time whereas Figure 1 shows the distribution of average monthly exposure.

Pollution has been decreasing over the period, a trend also observed in the US and in the rest

of Europe (Champalaune, 2020; Currie et al., 2020; Sicard et al., 2021). While the annual EU

standard of 25 µg/m3 is rarely exceeded, the WHO recommended threshold of 15 µg/m3 for daily

exposure is exceeded for 37% of the sample of worker-days.

13The network of PM2.5 background monitoring stations is particularly sparse in France. Over the study period,
there are between 62 and 105 stations for this pollutant, to be compared with between 173 and 251 for PM10,
between 318 and 385 for ozone, and between 282 and 337 for NO2. The reanalysis data take into account the
correlation between PM2.5 and PM10 using a co-kriging method to exploit the higher density of PM10 monitoring
stations for estimating PM2.5.
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3.2 Weather Data

We use gridded reanalysis weather data derived from the ERA5 dataset of the Copernicus Climate

Change Service (C3S).14 We obtain hourly precipitations, surface temperatures, wind direction,

and wind speed at the 0.25◦ x 0.25◦ resolution, which corresponds to grid cells of around 28 km

x 28 km. We aggregate weather data at the monthly level for the 1,156 Copernicus grid cells in

metropolitan France. We take the monthly averages of daily maximum temperatures and hourly

wind speeds, and we sum hourly precipitation over each month. For wind direction, we compute

for each month the share of hours when the wind blows from each of four directions: North

(below 45◦ or above 315◦), East (between 45◦ and 135◦), South (between 135◦ and 225◦) and West

(between 225◦ and 315◦).

3.3 Sickness Leave Episodes

We obtain data on sickness leave episodes (SLE) from the Hygie dataset, which is a representative

sample of private sector employees born between 1935 and 1989 and affiliated to France’s universal

sickness-leave insurance.15 For each worker, we know the exact start date and duration of each

SLE that occurred during the period 2009-2015, the associated state-funded sickness benefits,

and characteristics such as age, gender, annual wage, contract type, and annual medical expen-

ditures. We restrict our dataset to employees that we can match to their exact workplace via an

establishment-level identifier denoted SIRET used by all French administrations (see Appendix A

for more details). This restriction allows us to precisely geolocate the workplace so as to allocate

pollution exposure and to link employees information from the Hygie panel to other establishment-

and firm-level datasets.16 We have three primary measures of absenteeism: an indicator for an

individual starting a SLE in a given month, a count of sick days associated with SLEs that started

in a given month, and the total sickness leave spending associated with SLEs that started in a

given month. In the main analysis, we only consider SLEs lasting less than three months, which

represent 93% of SLEs.17

14We acknowledge using the ERA5 dataset (Hersbach et al., 2018) downloaded from the Copernicus Cli-
mate Change Service (C3S) Climate Data Store. See https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels?tab=overview
15The Hygie dataset combines administrative data on health from the organization managing the public health

insurance (CNAM) with administrative data on employees’ careers from the organization managing the public
pension system (CNAV).

16French administrations have created a unique identifier for each establishment composed of 14 digits, of which
the first 9 digits correspond to the unique identifier of the firm that owns the establishment (denoted SIREN).

17In our data, the average sickness leave episode lasts 29 days whereas the median duration is only 9 days.
Figure A.2 shows the small proportion of SLEs that last more than 3 months and their strong influence on the
average number of sick days. We therefore focus on SLEs lasting less than 3 months to avoid that our results for
the number of sick days are driven by long-term illnesses.
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The resulting workers’ sample is a monthly unbalanced panel of around 450,000 individuals

working in roughly 430,000 private sector establishments over the period 2009-2015. Employees are

55 percent male and 40 years old on average; they earn an average annual gross wage of e25,910,

and 75 percent of them are full time employed (see Table A.1). On average, roughly 22 workers

per 1,000 start a sickness leave episode in a given month. Comparing our data with the exhaustive

matched employer-employee data called DADS-Postes, we validate the representativeness of our

sample of private sector employees.

We geolocate workers based on their establishment’s postcode. We link this dataset to the

corresponding pollution and weather information by identifying the Chimere and Copernicus grid

cells which includes each postcode’s centroid. As a result, our measurement of pollution exposure

rests on exposure at the workplace.18 To overcome limited computational power associated with

our access to confidential datasets, we aggregate the data and run the analysis at the postcode

level (with roughly 6,000 postcodes in France).19 In a robustness test, we take advantage of the

individual panel dimension and estimate a model with individual-fixed effects on a 10% subsample.

Table 1 shows descriptive statistics at the postcode level.

3.4 Firm-Level Data

We observe monthly sales for almost the universe of French firms from monthly VAT records.

We restrict the sample to firms that declare their VAT every single month in a year and employ

workers identified in the Hygie dataset (see Appendix A for details).20 We define six sectors of

activity based on the sectoral classification available at the establishment level: manufacturing,

construction, retail and restaurants, other business-to-consumer services, professional services, and

Information and Communications Technologies (ICT) and other business-to-business services. The

final sample includes 182,929 firms. Table 1 shows that firms employ on average 65 workers. 17%

of firms belong to the manufacturing sector, 14% to the construction sector, 21% to retail and

restaurants, 11% to other business-to-consumer services, 16% to professional services and 21% to

ICT and other business to business services. Average monthly sales amount to e1,311,465 whereas

median monthly sales amount to e141,676.

18Individual exposure depends on the location of residence, the location of work, transportation between the two,
as well as the location of leisure activities. Based on the 2015 population census, we note that 27% of employees
actually live and work in the same postcode. Additionally, the median commuting distance was only 9.2 kilometres
in 2017 (INSEE, 2021). Comparing the distributions of pollution exposure at the workplace and at the place of
residence for the population of French workers using exhaustive matched employer-employee data (DADS-Postes),
we find that the two distributions almost overlap.

19Access to the data is obtained through the CASD (Secure Data Access Center), which provides the service of
making confidential data sets available to researchers using a secured server, for which there are constraints on the
size devoted to each project, thereby computational constraints.

20Firms with monthly VAT declarations represent 66% of French firms, but 91% of total sales (France Stratégie
and Inspection générale des Finances, 2021).
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To link firm-level sales data to pollution and weather data, we address a challenge regard-

ing multi-establishment firms. Indeed, 37% of the firms – representing 75% of total sales– own

more than one establishment in the VAT sample of 2015. Whereas we simply attribute pollu-

tion and weather exposure to single-establishment firms based on their postcode as before, for

multi-establishment firms we build a measure of weighted exposure to pollution and weather char-

acteristics, where the weights are the annual number of workers in each plant owned by the firm.

To compute these weights, we exploit exhaustive matched employer-employee data called DADS-

Postes, which records the number and location of establishments owned by a firm and the number

of workers in each of these establishments.

4 Empirical Strategy

4.1 Air Pollution Effects on Sickness Leaves

Fixed-effects specification. We model the relationship between short-run exposure to fine

particulate matter and workers’ sickness leave outcomes with the following equation:

Yg,t = α + βPM2.5g,t +Wg,tγ + hg⊂d,tδ + νg + θt + εg,t, (5)

where the dependent variable Yg,t is the sickness leave outcome measured in month-of-sample t in

postcode g. PM2.5g,t measure monthly pollution exposure at the postcode level, and the parameter

of interest is β. Postcode fixed effects νg isolate monthly variation in pollution exposure at the

postcode level, absorbing any time-invariant area-specific characteristic at a fine geographical scale.

In a robustness test, we examine the sensitivity of our results to the inclusion of postcode-year

fixed effects to isolate monthly variation in pollution exposure within a year assuming that area-

specific characteristics may vary over the years. Controlling for month-of-sample fixed effects θt

captures time-specific shocks influencing both pollution and absenteeism nationwide.

Weather conditions can jointly affect pollution and health. For example, high levels of PM2.5

are more frequent in winter when low temperatures can also affect health. For this reason, we

generate indicators for monthly averages of daily maximum temperatures, wind speed and pre-

cipitation in each postcode.21 We then generate a set of indicators for all possible interactions of

these weather controls and include it in all our regressions as Wg,t. We also include the count of

days in month t associated with school holidays and the monthly average of flu cases per week per

100,000 individuals in the departement d where postcode g is located as variable hg⊂d,t (where the

21Monthly average of daily maximum temperatures falls into 8 potential bins. The bins span 5◦C each, except
for the first bin including all negative temperatures, and for the eighth bin including all temperatures above 30◦C.
For wind speed and precipitation, we compute indicators for each quintile of these variables.
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departement is an administrative and jurisdictional unit).22 Many workers go on vacation during

school breaks in France, and they would likely not take a sickness leave if they fall sick during

their vacation. At the same time, economic activity and pollution are typically lower during these

holiday periods. Flu epidemics spread at the local level and influence both the number of sickness

leaves and potentially the economic activity in the region. We weight all estimates by the number

of workers present in each postcode in a given year.

Equation (5) assumes a linear relationship between pollution concentration and work absen-

teeism. We assess the plausibility of this assumption by looking at a residualized binned scatter

plot of the two variables. Figure 3 reports the binned scatterplot of the residualized number

of SLEs for each bin (of equal size) of residualized monthly average PM2.5 concentrations, con-

trolling for the fixed effects and control variables from equation (5). The scatter plot suggests

that the effect of PM2.5 on sickness leave episodes is approximately linear in the monthly average

concentration of particulate matter.

Instrumental variable approach using local changes in wind direction. Despite the use

of high-dimensional fixed effects, OLS estimates of equation (5) are prone to bias because exposure

to PM2.5 is likely to be measured with noise. Indeed, measuring pollution exposure based on the

workplace location fails to capture exposure to pollution at the other places (e.g., location of

residence and leisure activities) where workers spend time during the month. Assuming that the

measurement error is classical – mean zero and i.i.d – , this gives rise to an attenuation bias, which

can be exacerbated by the use of fixed effects (Griliches and Hausman, 1986). Another potential

source of bias pertains to unobserved local shocks that may influence pollution concentration

while also affecting workers’ absenteeism (e.g., road work). Finally, there may be a simultaneity

bias if high levels of absenteeism lead to lower economic activities and lower commuting, thereby

decreasing local pollution levels.

To address these remaining potential biases, we rely on an instrumental variable approach ex-

ploiting month-to-month variation in wind direction at the postcode level, in the spirit of Deryug-

ina et al. (2019) and Anderson (2020). We instrument monthly pollution in a postcode g with

the share of hours in a month where wind blows from each of three directions (excluding South

winds). We allow wind directions to influence pollution differently in different areas. This flexible

approach acknowledges that a given wind direction might not affect pollution in the same way in

all postcodes in France. In our main specification, we define these areas as 100km-by-100km grid

22In metropolitan France, the median size of a departement is 5 880 km2, which is equivalent to 3.5 times the
size of a median US country. Beside the July-August school break, which is the same for all schools in France,
nationally the two-week school breaks in the Fall, Winter, and Spring are staggered by region. The data on flu
cases is publicly available on the following website that records the prevalence of different diseases and epidemics
in France: https://www.sentiweb.fr/france/fr/?page=table&maladie=25.
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cells (see Figure B.7).23 Imposing that all postcodes within a 100km-by-100km grid cell see their

pollution exposure respond to wind direction in similar ways reduces the influence of pollution

variation coming from local sources and rather capture pollution variation coming from nonlocal

sources and transported by the wind (Deryugina et al., 2019). In a robustness check, we check

that our results are similar with smaller grid cells of 50 km by 50 km.

The specification of our first stage is:

PM2.5g,t = α +
4∑

j=2

K∑
k=1

βjkWINDj,k,t1(g ⊂ k) +Wg,tγ + hg⊂d,tδ + νg + θt + εg,t. (6)

The excluded instruments are WINDj,k,t1(g ⊂ k), where WINDj,k,t identifies the share of hours

in month t where the wind blows from direction j, with j = 1 being from the South (omitted

category), j = 2 from the West, j = 3 from the East, and j = 4 from the North. The variable

1(g ⊂ k) is an indicator for postcode g to be included in 100km-by-100km area k, with K being

the total number of such areas. The other variables are defined as in equation (5). The parameters

of interest are the βjks. For a given wind direction j and 100km x 100km grid cell area k, βjk

captures the effect of a marginal increase in wind blowing from j on pollution in postcode g located

in area k (relative to South winds).

For the identification of the βjks, we rely on within-postcode variation in wind direction, where

wind direction is observed at the Copernicus grid cell level. Therefore, we cluster standard errors at

the Copernicus grid cell level. Figure B.6 shows that there is substantial within-postcode variation

in monthly wind directions for three postcodes located in different parts of France (Paris, Marseille,

center of France).

4.2 Air Pollution Effects on Firms’ Sales

To examine the total response of sales to variation in air quality, we amend our previous em-

pirical strategy in four ways. First, since we observe sales only at the firm level and not at the

establishment level, we calculate firms’ exposure to pollution as a weighted average of pollution

exposure at each establishment owned by the same firm, where the weights correspond to the rel-

ative number of workers in each establishment in each year. Since establishments are not located

in the same area, we can no longer rely on wind direction to instrument firms’ pollution exposure.

Instead, we adopt another instrumental variable approach where we instrument firms’ observed

pollution exposure by their predicted pollution exposure according to equation (6) averaged across

23We use a publicly available gridded dataset splitting metropolitan France into 94 such areas. See https:

//geo.data.gouv.fr/fr/datasets/d97be74ddacf262d81737f783da1b5264deb0adb. On average, there are 61
postcodes and 14 Copernicus grid cells in each 100km-by-100km area.
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establishments.

Second, we use firm-by-year fixed effects instead of postcode fixed effects. This isolates variation

in pollution exposure around the mean exposure of a firm at the annual level, thereby absorbing

any time-invariant firm characteristics while also controlling for annual shocks jointly affecting

exposure to pollution and sales. Such shocks include any productivity shock or any change in the

number or location of establishments belonging to a firm, which we only observe at the annual

level.

Third, we run our firm-level analysis sector by sector to account for the differing lag between

production and sales across sectors. As pollution shocks potentially impair workers’ health and

productivity, we expect that only shocks occurring at the time of production will affect sales.

The lag between production and sales may differ across sectors. For instance, in manufacturing,

production may take a few months for some products, and products are sold whenever they meet

a demand. In the construction sector, clients sign for a project, pay some percentage of the bill

in advance, but only pay the full amount at the end of the project. Similarly, professional and

business-to-business services may face similar lags between the time of production that starts

after signing a contract and the payment by the client at the end of the contract. By contrast,

the retail and restaurant sectors are characterized by simultaneity between the service provided

to consumers and the payment. Additionally, the rules defining the business month when the firm

must declare sales and the VAT to the tax administration are different for goods vs for services, as

well as for domestic sales vs for exports.24 In the absence of data on the exact lag between the time

of production or service delivery and the time of the sales declaration, we explore dynamic effects

separately for each sector. Finally, we use month-of-sample-by-industry fixed effects instead of

month-of-sample fixed effects to capture time-varying shocks that are common across firms in the

same industry, where 38 industries are defined according to the European nomenclature (A38).

The main specification is as follows:

Yi,t+l = α +
l∑

n=0

βnPM2.5i,t+n +
l∑

n=0

Wi,t+nγn +
l∑

n=0

hi,t+nδn + νi,y + θc,t + εi,t, (7)

where Yi,t refers to the inverse hyperbolic sine transformation of the sales of firm i in month-of-

sample t. This specification resembles a log-linear model while better accommodating the 2.5%

of observations with zero monthly sales (Burbidge et al., 1988).25 Variables PM2.5i,t, Wi,t and

24Specifically, the VAT on the sales of domestic goods has to be declared in the month where the good is
delivered to the buyer; the VAT on the sales of domestic services has to be declared when the service is paid for;
the VAT on exported goods and services has to be paid one month after the delivery. For a service that runs over
several months or years, the VAT on the sales of the year are allowed to be declared at the end of the year. See
https://entreprendre.service-public.fr/vosdroits/F31412.

25The log-linear model is the most widely used approach in the literature linking environmental shocks and sales
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hi,t correspond to the weighted averages of pollution exposure, weather controls, flu incidence and

holidays across establishments j belonging to firm i, where the weights are the number of workers

in establishment j at the end of the calendar year t. θc,t are month-of-sample-by-industry fixed

effects and νi,y are firm-year fixed effects. In a robustness test, we control for firm fixed effects

only to absorb time-invariant firms’ characteristics.

The coefficients of interest are βn, with n ∈ {0, 1, ..., l}. If we expect no lag between production

and sales, l = 0 and equation (7) captures the contemporaneous effect of air pollution on sales.

When we expect a one-month lag between production and sales, we impose l = 1 and thus also

control for the leads of PM2.5i,t, Wi,t and hi,t to avoid capturing the impact of contemporaneous

pollution or weather conditions. Similarly, when we expect a two-month lag, we consider l = 2 and

control for two leads. Future air pollution shocks, by contrast, should have no effect on current

sales. Hence, we provide a placebo check by studying the effect of pollution at time t on sales at

time t− 1, while also controlling for one lag of Wi,t and hi,t.

Similar endogeneity issues arise at the worker level and at the firm level. The risk of reverse

causality is accentuated at the firm level: any increase in sales is likely to increase pollution as

a by-product of higher production. Measurement error in the allocation of pollution exposure

still threatens identification at the firm level when the effects of pollution on sales are channelled

through workers’ labor force and productivity. We therefore also rely on an instrumental variable

approach and proceed in two steps. First, we run equation (6) at the postcode level and save

the vector of estimated β̂jk. For each postcode, we compute the predicted pollution exposure as

̂PM2.5g,t =
∑K

k=1

∑4
j=2 β̂jkWINDj,k,t1(g ⊂ k). Weather controls and other variables beside wind

directions from equation (6) are not used to build the instrument in this specification. Otherwise,

the exclusion restriction assumption would not hold.

Second, we compute the weighted average of predicted pollution exposure across the establish-

ments belonging to a firm. We obtain a firm-level predicted pollution measure, ̂PM2.5i,t, which

we use as an instrument for PM2.5i,t in equation (7).26 We cluster the standard errors at the firm

level, the scale at which the instrument varies. As a robustness checks, we cluster standard errors

two-way at the firm and year-month level. We explore the robustness of our results by comparing

estimates using predicted pollution exposure as an instrument and using the same IV strategy as

the one described in section 4.1 for the subsample of single-plant firms. For these firms, pollution

and weather exposure is simply the one observed at the postcode of their unique establishment –

(see, for example, Dechezleprêtre et al. 2019; Fu et al. 2021; Addoum et al. 2020). After an inverse hyperbolic sine
transformation of the outcome variable, the estimated coefficient can be interpreted as a semi-elasticity when the
outcome variable takes large values (Bellemare and Wichman, 2020) – which is our case.

26In OLS models, inference using predicted regressos should be corrected for first-stage sampling variance.
When the predicted regressor is used as an instrumental variable, like we do here, the standard errors of the 2SLS
regression are unbiased under a set of weak assumptions (Wooldridge, 2010). Predicted regressors have similarly
been used as instruments in Schlenker and Walker (2016) and Dahl and Lochner (2012).
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similar to the analysis on workers’ absenteeism.

4.3 First Stage Results: Wind Direction and Air Pollution

Local variations in wind direction are a strong predictor for local PM2.5 concentrations. Figure 2

shows a map of the estimated β̂jk coefficients obtained with an OLS regression of equation (6) and

their associated t-stat. Compared to South winds, winds blowing from the West (from the Atlantic

ocean) significantly decrease pollution levels in the vast majority of postcodes. By contrast, winds

blowing from the East increase pollution in the North-West, and decrease pollution in the South,

which reflects the importance of South winds bringing dust from the Sahara, thereby increasing

pollution, for the Southern region.27 We show in the results section that the Kleibergen-Paap rk

Wald F statistics of the two-stage least square estimation is well above critical values, suggesting

that we do not have a weak instrument problem.

Given that each wind direction can affect pollution differently depending on the location of

the postcode, we cannot perform the reduced form analysis linking the instrument directly to

our outcomes. Yet, Figure 2 reveals that Eastern winds tend to increase pollution and Western

winds tend to decrease pollution in areas concentrating economic activities (North, East, and

Rhone region in the South-East). To provide intuition, Figure 4 shows the relationship between

residualized West and East winds and residualized absenteeism in a binned scatter plot. On

average for the whole country, more hours under West (East) wind decrease (increase) the number

of sick leaves.

The main threat to the exclusion restriction assumption in our context is that other pollu-

tants that also affect health outcomes co-vary with wind direction. Of the four other regulated air

pollutants (SO2, NO2, PM10 and ozone), SO2 and NO2 are primary pollutants that convert to par-

ticulate matter within two to three days. By aggregating pollution concentration at the monthly

level, we cannot estimate their effect on health independently. Additionally, PM10 is highly cor-

related with PM2.5 (Pearson correlation coefficient: ρ=0.93) and actually includes PM2.5. As a

result, caution should be taken in interpreting our causal estimates as reflecting only the effect

of PM2.5. By contrast, ozone is a pollutant that is typically anti-correlated with other pollutants

due to how it is formed in the atmosphere: ozone results from the chemical reaction between solar

radiation, nitrogen oxide and volatile organic compound (Nasa Earth Observatory, 2003). In our

data, the Pearson correlation coefficient between monthly PM2.5 and ozone is -0.3. Figures 1 and

B.5 illustrate this anti-correlation by showing the reverse seasonality of ozone vs PM2.5 and NO2

concentrations. In section 6, we show that when we instrument ozone with wind direction, we fail

to detect a significant effect on absenteeism, suggesting that PM2.5 is the main driver of the effect.

27In contrast to Spain (Holub et al., 2021), France does not report these dust events associated with Sahara
winds.
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5 Results

5.1 Effects on Workers’ Sickness Leaves

Main results. Table 2 reports the main OLS and IV estimates of the effect of PM2.5 on sick-

ness leave outcomes. Panel a reports the estimates based on equation (5) using postcode fixed

effects whereas panel b reports estimates of the same equation using postcode-by-year fixed ef-

fects. Column (1) of panel a shows that a one unit (1 µg/m3) increase in monthly average PM2.5

concentrations is associated with a significant increase of 0.07 workers taking a sickness leave per

1,000 workers. Column (2) of panel a shows that the IV estimate is about twice as high, with an

increase of 0.15 workers taking a sickness leave per 1,000 workers. The effect corresponds to a 0.6

percent increase given the baseline average of 22 per 1,000 workers.

The IV estimate is also larger than the OLS estimate for the two other outcomes considered,

which we interpret as evidence of an attenuation bias due to classical measurement error in the

OLS estimate, potentially combined with a downward simultaneity bias. The Kleibergen-Paap

F-statistic is 815, suggesting that weak instrument is not an issue in our setting. Hence, we base

our interpretation of the results on the IV estimates in the rest of the paper. Column (4) of panel

A shows that an increase by 1 µg/m3 in monthly PM2.5 concentrations increases the number of

sick days associated with SLEs starting the same month by 2.7 days per 1,000 workers (about

a 0.8 percent increase relative to the mean for SLEs that last less than 3 months). Column (6)

shows that the associated increase in sickness leave spending amounts to e86.5 per 1,000 workers

(about a 1 percent increase relative to the mean). Panel B shows that using postcode-year fixed

effects yields similar effects to using postcode fixed effects.

One way to assess the magnitude of our results is to compare our IV estimates to prior studies

of the effect of air pollution on labor supply. Consider our estimate on the number of work loss

days (for sickness spells shorter than 3 months), which resembles the outcomes used in previous

studies: a 10% increase in monthly PM2.5 yields an elasticity of labor supply to pollution shocks

of –0.12. Aragón et al. (2017) shows that a 10% increase in PM2.5 exposure in the previous week

reduces weekly hours worked by 2% for working adults in Peru, which implies an elasticity of

labor supply to pollution shocks of –0.20. Holub et al. (2021) examines a representative sample of

Spanish workers and shows that a 10% reduction in weekly PM10 concentration in the main urban

areas in Spain reduces sickness-related absenteeism by 0.8% of the mean, implying an elasticity of

the labor supply of –0.08. While these studies and ours differ in the type of pollutant, the time

horizon, the IV strategy and the source of data, it is interesting that the elasticity of 0.12 of our

study aligns with these other estimated elasticities.
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Dynamic specification. Figure 5 shows dynamic specification coefficients that reflect the effect

of future exposure to PM2.5 on current outcomes as placebo checks (in event months t − 1 and

t−2) and the contemporaneous and lagged effects of previous months’ exposure to PM2.5 (in event

months t, t + 1, and t + 2). Panel a in Figure 5 shows significant effects of air pollution on work

absenteeism not only in the month of exposure, but also in the following month, with a smaller

magnitude. This indicates that some pollution-related health symptoms take time to set in. The

small non-statistically significant estimates of the effects of pollution in event month t+ 2 suggest

that pollution-related health shocks only last two months on average and allow us to rule out a

displacement effect.28 We fail to detect an impact of pollution at t on absenteeism in the previous

periods. As a result, changes in pollution induced by wind direction can be interpreted as quasi-

random. Panel b of Figure 5 reveals that the number of sick days per 1,000 workers significantly

increase in the month of exposure, while the effect in the following month is smaller in magnitude

and not statistically significant at the 5% level. This suggests that the effects of pollution are more

severe (as evaluated by the number of missed days from work) in the contemporaneous month than

in the following month.

Heterogeneous effects by wage, industry, and firm size. We report IV estimates of

the effect of PM2.5 on sickness leave episodes by wage, industry, and firm size. Workers with

different working status and wages may face different incentives to take a sick leave from work.

For instance, low-wage employees in precarious contracts may be less willing to take a sickness

leave if it endangers their job security. However, they may also be exposed to higher environmental

risks (Hsiang et al., 2019). By contrast, high-wage employees may have a lower replacement rate

given the cap on publicly funded sickness leave benefits and may also feel that their skills are

less substitutable, inducing them to take sick leave less often (Hensvik and Rosenqvist, 2019).

Only considering full-time employees, we break down annual wages in 2009 by deciles and run the

2SLS estimation outlined in equations (5) and (6) on 10 postcode-level datasets that only include

workers from a given wage decile in 2009.

Figure B.8 reports estimated effects on sickness leaves separately by wage decile. We find that

workers with relatively low wages (D2, D3, and D4) experience the largest absolute effect of air

pollution on work absenteeism, with roughly a doubling of the positive effect observed overall.

These estimates are also all statistically significant at the 5% level. By contrast, workers with

the lowest annual wage (D1), as well as workers with above-median annual wages (especially,

D5, D6, and D9), have lower absolute and non-significant effects of air pollution on absenteeism.

Interestingly, workers in higher income deciles are exposed to higher pollution concentrations on

28If pollution only caused already vulnerable workers to fall sick earlier than they would have under a counter-
factual with no pollution shock, we would see a decrease in absenteeism in month t+ 2.
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average, as indicated by the average level reported below each decile in Figure B.8. In France,

high-wage jobs are concentrated in large and highly polluted urban areas, such as Paris. As a

result, the observed heterogeneity in the pollution-sickness leave relationship cannot be driven by

different exposures to air pollution, but rather by different vulnerabilities and different incentives

to take sick leave.

Firms differ in the work conditions they offer to their employees, labor contracts, as well as

moral pressure relative to absenteeism, which influence the ability of workers to take sick leave.

Figure B.9 reports estimated effects by economic sector. We run the regression at the establishment

level instead of the postcode level and use establishment fixed effects. The magnitudes and relative

effects are largest in the retail and restaurant sector and in the other business-to-consumer services

sector, followed by the manufacturing sector. The fact that point estimates are often imprecise

within a sector suggests substantial within-sector heterogeneity. In the professional services sector,

workers rarely take any sick leave and the effect of pollution on absenteeism is not statistically

different from zero. There are two explanations corresponding to the two categories of workers in

that sector. First, for workers from temporary work agencies, job security is low and they may

not be willing to enter sickness leave even if they feel sick. Second, for high-skilled professional

workers, there may be a composition effect, since the marginal effect of pollution on absenteeism

is lower for high-wage workers in Figure B.8. Finally, Figure B.10 reports estimated effects by firm

status and size, also running the regression at the establishment level. We do not find substantial

differences in the effect when comparing single and multi-establishment firms, nor when comparing

firms with sales above and below the median.

5.2 Effects on Firms’ Sales

Main results. Due to substantial heterogeneity across sectors in the lag between production

and reported sales, we examine the effect of pollution by sector. Figure 6 reports the dynamic

effects of air pollution on firms’ sales for the six different sectors. Both OLS and IV estimates are

reported for the whole sample, and we additionally report the IV estimates for the subsample of

single-establishment firms, for which pollution exposure only depends on one location.

Panel a in Figure 6 shows that the OLS estimate is positive and statistically significant at t

but decreases at t + 1 and t + 2 for manufacturing firms. In contrast, the IV estimates reveal

a significant and negative effect of air pollution on sales in the two months following exposure:

a one-unit increase of pollution at t decreases sales by 0.24% in t + 1 and by 0.29% in t + 2.

The discrepancy between the OLS and the IV estimates is probably reflecting an upward bias

due to reverse causality: within a firm-year and controlling for country-wide time-varying shocks,

months with a greater economic activity bring more sales but also more emissions, and thus,
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pollution concentration. The patterns for all manufacturing firms are similar to the patterns

for single-establishment firms only. Although single-establishment firms may differ from multi-

establishment firms in many dimensions (e.g., in size, productivity, capacity to export, capacity

to innovate), finding similar results gives some credibility to our empirical strategy where multi-

establishment firms’ exposure to pollution is measured by a weighted average of establishments’

exposure.

Panel b in Figure 6 also reveals significant negative effects of air pollution on sales for con-

struction firms in months t, t + 1 and t + 2. A one-unit increase of pollution at t decreases sales

by 0.30% in t, by 0.44% in t + 1 and by 0.58% in t + 2. By contrast, the OLS point estimates

are higher, consistent with an upward bias. The magnitudes of the IV estimates are larger in the

construction sector than in manufacturing, which is consistent with construction workers being

more exposed to air pollution since they work outside and cumulate ambient air pollution with

construction emissions (especially, dust, ultra fine particulate matter, and nitrogen dioxide). From

Figure B.9, we previously found that construction workers tend to have a low labor force response

to air pollution shocks. As a result, we can infer that even though construction workers do not

often take sickness leaves, they experience lower productivity while at work when air pollution is

high.

The IV estimates of panel c suggest that air pollution exposure in month t reduces sales at t

for firms supplying professional services, while the effects on sales at t − 1, t + 1, and t + 2 are

negligible, and the OLS estimates are close to 0 at all periods. The patterns are similar for single-

establishment firms and for all firms. The magnitude of the effect in the contemporaneous month

is large: a one-unit increase in pollution at t reduces sales by 0.55%. While we failed to detect

an effect of pollution on sickness leave in that sector (see Figure B.9), the large impact on sales

could be explained by the fact that workers still suffer from pollution-induced physical symptoms

while at work, thereby experiencing a decrease in their productivity. They may also adjust their

labor force at the margin by leaving their job early during these episodes. Interestingly, there is

no significant rebound in sales in the following months t+ 1 and t+ 2. This indicates that workers

are not be able to postpone some of their tasks to smooth the effects of pollution shocks over time.

Panel d in Figure 6 reveals that pollution shocks do not reduce sales in the ICT and other

business-to-business services sector at t and t+ 1, but it slightly decreases sales at t+ 2 for multi-

establishment firms. This is compatible with the payment occurring a few months after the service

is provided to the client firm. The decrease is not statistically significant for single-establishment

firms.

Services to consumers record their sales at the time of the payment, which often corresponds

to the time when the service is provided. This suggests there will be no lag between the time of

pollution exposure and sales effects. Panels e and f in Figure 6 shows that the IV point estimate
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is negative at all time periods considered, including at t − 1, which renders the interpretation of

the results as a causal effect of pollution at t difficult. This correlation may be driven by some

specific seasonality patterns in these industries, which we fail to capture with the firm x year fixed

effects.

Heterogeneous effects by firm size by sector. We investigate heterogeneous effects by firm

size within each sector, based on the total annual sales of the firm in 2012. Tables C.2 and C.3

show that the effect on manufacturing firms’ sales at t + 1 is significant only for smaller firms

whereas pollution affects larger and smaller construction firms in similar ways at t+ 1. The effect

of pollution on firms in the professional services sector is only significant for larger firms at t. We

detect a positive effect of pollution on sales for large firms in the retail and restaurant sector, in

contrast to a negative effect for large firms in other business to consumer services. Again, a causal

interpretation of these results is problematic because we also find a negative effect of pollution at

t on sales at t− 1 for these two sectors.

6 Robustness checks

6.1 Worker-Level Robustness Checks

Time and unit dimensions. To validate the evidence of a causal effect of PM2.5 concentrations

on sickness leave episodes, we explore the unit and time dimensions of analysis. Panel A of Table

3 reports the effect of PM2.5 on worker-level sickness leave episodes using a 10% sub-sample where

the data have not been aggregated at the postcode level, so that individual fixed effects are used

instead of postcode fixed effects. We thus control for time-invariant individual characteristics

that may influence the decision to call sick from work. Magnitudes differ from the main results

due to sampling variation, but we still find significant effects of PM2.5 on the likelihood to start

a sickness leave episode, the number of days spent in sickness leave, and the total spending at

the individual level. Panel B of Table 3 reports the effect of PM2.5 on the usual outcomes when

the data is aggregated at the weekly level instead of the monthly level. Since PM2.5 affects the

human body within hours of exposure, we should be able to detect an impact of weekly pollution

exposure on weekly absenteeism. Magnitudes are lower than in the main results at the monthly

level, with two possible explanations. First, increasing weekly concentrations by 1 µg/m3 entails

a smaller pollution shock than increasing monthly concentrations by the same amount. Second,

the outcome only captures pollution-induced sickness leave on the contemporaneous week of the

shock, while the monthly specification captures also lagged responses within the month.
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Other pollutants. One concern with interpreting our estimates as the causal effects of PM2.5

is that other pollutants – ozone in particular – may also be influenced by wind directions while

being omitted from our main specification. Given our specification of monthly concentration in

PM2.5, as mentioned in section 4.3 we are not able to disentangle the independent effects of SO2,

NO2 and PM10 from those of PM2.5. By contrast, ozone (O3) is anti-correlated with PM2.5 and

may have independent effects that we can capture. In column (2) of Table 4, we instrument ozone

with wind direction instead of PM2.5. Although the first stage is still strong, we fail to detect any

impact on sickness leave incidence. This could be due to a lack of causal effect of ozone on work

absenteeism, potentially because high ozone levels occur mostly during summer vacation period

(see figure B.5b), when French workers are less likely to be at work and thus take a sickness leave.

But this lack of effect may also reflect a downward bias from omitting PM2.5, which is negatively

correlated with ozone and positively correlated with absenteeism.

To mitigate the risk of violating the exclusion restriction, we also examine the relationship

between the French air quality index, a synthetic index based on the daily concentrations of

different pollutants (SO2, NO2, PM10, PM2.5 and ozone), ranging from 1 (best air quality) to

6 (worst air quality). We build the index using daily data for four pollutants available in the

CHIMERE dataset and take the monthly average in each postcode.29 Column (3) shows that

a one-unit increase in the air quality index increases the number of workers starting a sickness

leave that week by 2.9 workers per 1,000 workers. Although the magnitude of the effect is not

comparable with our main results, the positive and statistically significant relationship between

pollution and absenteeism holds when pollution is measured with this synthetic air quality index.

Other robustness checks. We report a series of additional robustness checks in Table 5. Col-

umn (1) reports our baseline estimate of the effect of PM2.5 on the number of SLEs per 1,000

workers. In Column (2), weather controls take the form of three continuous variables – monthly

averages of daily maximum temperatures and daily wind speeds, and total rainfall – rather than

a set of indicators and interactions, as in the main specification. The results are similar to the

baseline estimates.

To be able to interpret our IV estimates as local average treatment effects (LATE), the mono-

tonicity assumption must hold. In our setting, the monotonicity assumption implies that each 90◦

wind direction should either increase pollution for all postcodes located in a given 100 x 100 km

area, or decrease it for all of them. Like Deryugina et al. (2019), we note that this assumption

could be violated if the wind direction-pollution relationship varies across postcodes or over the

29Following the method used by the regional air quality agencies, we first create a sub-index ranging from 1
to 6 for each pollutant based on official thesholds; then we allocate the maximum value of all sub-indices to the
air quality index that day. In the data, PM2.5 takes the maximum value of all sub-indices 70% of the days from
October to March, while ozone takes the maximum value 80% of the days From April to September.
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course of the year within a given area. To test whether the monotonicity assumption is likely

to hold in our setting, we check whether the point estimate varies when we allow the first stage

coefficients to vary over smaller geographic areas and over the course of the year. Column (3) uses

50km-by-50km areas instead of 100km-by-100km areas, and Column (4) allows the interaction

between wind direction and local areas to vary by quarter. We find that the results are similar to

the one from the baseline specification.

Another potential concern is that some SLEs starting at the end of December might have been

censored or reported as starting in January by the social security administration. To the extent

that this reporting error holds for the entire country, its effect should be captured by month-by-

year fixed effects. We however re-run the main analysis excluding December and January (column

(5)) to verify that the results are not driven by this potential measurement error. We confirm that

our results are robust to these restrictions.

Last, we check that our results are not driven by a behavioural response to air quality alerts.

Air quality alerts do not exist for PM2.5 in France but are issued for PM10. Owing to the high

correlation between PM10 and PM2.5, we use the regulatory thresholds for the issuance of PM10

alerts.30 For each postcode-month we build a variable corresponding to the number of days where a

PM10 air quality alert was issued, and we re-run the IV regression after excluding all the postcode-

months with at least one day of air quality alerts. From column (6), we see that the point estimate

slightly increases after excluding these observations, but remains similar to the main estimate.

6.2 Firm-Level Robustness Checks

Since we only find significant effects of air pollution on the sales of firms in the manufacturing,

construction, and professional services sectors using our main specification, we also focus on these

sectors for our robustness checks.

Comparing empirical strategies for single-establishment firms. By definition, single-

establishment firms have a unique geographic location and their workers’ pollution exposure is

simply the pollution exposure at their unique establishment. This allows us to use an empirical

strategy akin to the one adopted for work absenteeism: the first stage equation corresponds to (6),

except that we examine effects at t+1 for manufacturing and construction controlling for one lead of

the instrument and control variables, and at t for professional services. Figure 7a shows that point

estimates are similar across specifications, especially for construction and professional services

30Two levels of alerts exist: level 1 provides information on air pollution levels and advises vulnerable individuals
to avoid physical activities outside ; level 2 adds strict enforcement measures such as driving restrictions (see
https://www.airparif.asso.fr/procedure-dinformation-et-dalerte for more information). Until November
2014, level 1 was triggered when daily average PM10 exceeded 80 µg/m3 and level 2 when it exceeded 125 µg/m3.
From November 2014 onwards, the thresholds were lowered to 50 µg/m3 for level 1 and 80 µg/m3 for level 2.
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sectors. This robustness check validates that using predicted pollution as an instrument instead

of wind direction yield relatively similar results. For the manufacturing sector, the point estimate

has a lower magnitude with the wind direction instrument, rendering the result not statistically

different from zero at conventional significance levels. This small difference in magnitude might

be related to the sample of single-establishment firms in manufacturing or might suggest that a

wind direction instrument could yield slightly more conservative results.

Polynomial Distributed Lag. In contrast to the 2SLS regression on workers’ absenteeism,

we can explore dynamic effects of pollution on firms’ sales over 6 months using a distributed lag

specification. This allows us to explore the timing of the effects of pollution on sales assuming

relatively long lags between production and sales. To reduce the noise due to the serial correlation

in wind direction and pollution exposure over time, we use a polynomial distributed lag (PDL)

(Schwartz, 2000; He et al., 2019), where we impose a smooth polynomial function on the lag

structure to discipline the coefficients. Assuming a cubic polynomial functional form, we examine

in a single regression the effects of pollution at t, t−1,... up to t−5 on sales at t by sector. It implies

that we impose the following relationships on the coefficients βl, for l ∈ {0, .., 5}: βl =
∑3

k=0 γkl
k,

resulting in β0 = γ0, β1 = γ0 + γ1 + γ2 + γ3, and β2 = γ0 + 2γ1 + 4γ2 + 8γ3 for the first parameters.

Using these relationships, we rewrite the regression equation as a function of γks and estimate by

OLS and by 2SLS the coefficients γ1, γ2, and γ3. Combining these point estimates and associated

standard errors, we recover the point estimates βls and associated standard errors by sector. We

report in Figure 7 the OLS and IV estimates for β0 with label t, β1 with label t + 1, up to β5

with label t+ 5. The OLS and IV results from t to t+ 2 are similar to our main results described

above. Focusing on the IV estimates, adding more time periods reveal that the negative effect of

pollution on sales is the largest at t + 3 in manufacturing, at t + 1 or t + 2 in construction, and

at t for professional services. The effect of pollution on sales slowly fades out over time until it

reaches zero at t+ 5.

Other robustness checks. Table 6 shows that the effects of pollution shocks at t on sales at

t+ 1 for manufacturing and construction and sales at t for professional services obtained with our

main specification are robust to various checks. First, we exclude 2009 from the sample since it was

the year where an economic crisis strongly affected manufacturing and construction. Second, we

use continuous weather variables instead of indicators and interactions, and column (3) shows that

the magnitudes of the effects are slightly larger when doing so. Third, we use firm fixed effects

instead of firm-year fixed effects, which cannot absorb annual productivity shocks and changes

in the number of plants over time, and also find in column (4) that the magnitudes are higher.

Fourth, in column (5) we discard the months with at least one day of PM10 alerts and find that
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the magnitude barely changes. Fifth, beside the correlation of the error terms across time within

a firm, there could also be a correlation of the error terms across firms within a time period. In

column (6) we cluster the standard errors both at the firm and month-by-year level to account

for this second type of correlation. We find that two-way clustered errors are larger, resulting

in a non statistically significant point estimate for manufacturing sales but robust findings in

construction and professional services sector. Table 7 reproduces the same robustness test as in

Table 4 and tests for the effect of ozone only and of the multi-pollutant air quality index on sales.

From column (2), instrumented ozone has no significant effect on sales across the three sectors

considered. From column (3), a one-unit increase in the air quality index has a negative but

non-statistically significant effect on manufacturing sales, and a negative and significant effect on

sales in construction and professional services.

Spillover effects among competing firms A potential concern would arise if firms that are

non-exposed in a given month and compete with firms that are exposed increase sales due to the

decrease in productivity among their exposed competitors. When competition occurs within a

relatively local market, such as for firms in the retail and restaurant sector or in the construction

sector, spillovers are by construction excluded because firms in other cities cannot compete for the

same customers. When competition occurs at the national or international level, as for manufac-

turing firms for instance, the temporary nature of the labor force and productivity responses to

pollution shocks at the monthly level (as evidenced by Figures 5 and 7) make changes in pricing,

and therefore within-industry spillovers, unlikely. Our data does not allow us to test for a price

effect of air pollution shocks. Yet, past evidence suggests that manufacturing firms adjust their

prices every six months whereas business-to-business services firms adjust their prices every twelve

months (Gautier, 2007). These time intervals are therefore longer than the impacts of air pollution

shocks.

7 Discussion

7.1 Pollution-Induced Costs on Workers and Firms

In this section, we compare the magnitude of the total response of sales to air pollution shocks

and the labor supply channel measured by work absenteeism by sector.

To provide back-of-the-envelope estimates of the magnitude of the labor supply channel, we

need to multiply the number of missed work days by the average marginal product of labor in each

sector. From the statistical agency INSEE, we obtain average marginal products of labor equal to
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e257 per day in manufacturing and to e189 per day in construction.31 Combining our estimate of

2.75 work loss days per 1,000 workers with an average of 92 workers per manufacturing firm implies

0.25 work loss days for the average manufacturing firm for a one-unit increase in PM2.5, which

results in a monthly cost of e65. This small cost contrasts with the total pollution-induced monthly

loss in sales of roughly e5,488, given the average monthly sales of e2,386,088 in manufacturing.

Work absenteeism valued at the marginal product of labor thus represents only 1.2% of total sales

losses. Similarly, for construction, we calculate a labor supply cost of roughly e18 per month,

which represents only 0.7% of the pollution-induced monthly loss in sales of roughly e2,440. Our

results suggest that the increase in absenteeism due to pollution is not the main driver of the total

response of sales.

We can offer three potential explanations for why the cost associated to work absenteeism

represents such a small share of the total sales losses, and also for why the sales losses are negligible

in some sectors. First, we expect that firms can compensate for the temporary decrease in labor

supply with an increase in the productivity of non-absent workers, for example by readjusting

working hours or changing the allocation of tasks across workers, or even by hiring temporary

workers. Such strategies could explain why sales in the retail and restaurant sector and in other

business-to-consumer services sector seem unaffected by pollution shocks. In sectors where workers

are complementary along a production value chain, such as manufacturing, such strategies may

not be available.

Second, some sectors probably face stronger negative effects of pollution on non-absent work-

ers’ productivity. While we are unable to quantify this productivity channel, we can formulate

hypotheses on the types of workers most likely to be affected by it: first, workers who breathe a

more polluted air while working, either because they are working outdoors or because they also

breath specific work emissions, such as construction and manufacturing workers; second, high-

skilled workers, who may be particularly vulnerable to the effects of pollution on their cognitive

skills. Third, some sectors may face a strong decrease in demand due to pollution. While we

cannot quantify this channel either, we would expect demand responses to be stronger in the

business-to-consumer non-tradable services, where sick consumers may avoid grocery shopping or

going to a restaurant. By contrast, customers in professional services or manufacturing sectors

are less likely to live in the vicinity of sellers, which implies that they probably will not be ex-

posed to the same pollution shocks. We interpret the lack of significant decrease in sales in the

business-to-consumer services as suggestive evidence for a limited role of the demand channel.

Lastly, firms within a sector may differ widely in the lag between the time of production and the

time when sales are recorded depending on the time necessary for production, on their contracts,

or on their exporting behaviors. This generates measurement error. As a result, our inability to

31See INSEE webpage: https://www.insee.fr/fr/statistiques/4255787?sommaire=4256020.
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detect any significant effect of air pollution on sales in some sectors (for instance, for business-

to-business services) may be related to a wider within-sector heterogeneity in the lag between

production and sales.

7.2 Benefits from Meeting the Daily PM2.5 Threshold from WHO

To illustrate the economic significance of our results, we provide back-of-the-envelope calculation

of the benefits of meeting the daily PM2.5 WHO target in terms of avoided sickness leave spending

and avoided lost sales. Over our 7-year study period, the 15µg/m3 threshold is exceeded for 37%

of the worker-days. Bringing each day above the threshold to 15µg/m3 would decrease monthly

average pollution exposure from 15.4 to 11.5µg/m3, a 25% decrease compared to the levels observed

over 2009-2015.

Avoided sickness leave spending. To quantify the monetary benefits in terms of avoided

sickness days, we compute, for each postcode-month, (i) the decrease in PM2.5 that is required to

meet the 15 µg/m3 threshold; (ii) the associated number of avoided sickness days from Table 2

column (4)’s estimates; (iii) the associated avoided sickness leave benefit spending from Table 2

column (6)’s estimates. For each postcode-month, we multiply the estimated marginal effect

of a one-unit change in pollution on absenteeism by the required decrease to reach the WHO

recommendations. Scaling the coefficients obtained at population size, we obtain that meeting

the WHO thresholds would have saved an annual 1.9 million sick days and avoided e66 million

of publicly funded sickness leave benefits.32 This represents 3% of the social security spending

on episodes shorter than 3 months and 1% of the total spending.33 Additionally, using data on

the average duration of SLEs and the schedule for employer-funded sickness leave benefits, we

estimate that it would have avoided e65 million in employer-funded sickness leave spending.34 In

total, the avoided sickness leave spending amounts to e130 million, shared equally between the

employer-funded and state-funded benefits.

Our analysis is restricted to private sector employees, so any avoided sickness leave spending

for public sector employees is excluded from the calculation. The analysis does not include other

32Our sample has on average 344,052 individuals per year, 1.84% of the total population of private sector
employees, which amounts to 18,730,000 workers in 2015. (See INSEE: https://www.insee.fr/fr/statistiques/
2496914).

33Total public spending for private employees’ sickness leaves amounted to e7,091 million each year over the
period (DREES, 2020).

34Among SLEs lasting less than three months, the average duration is 16 days. The avoided 1.9 million of sick
days per year correspond to 1, 932, 965/16 = 120, 810 avoided sickness leave episodes. Given the average daily
wage of 25, 865/365 = 71e, the benefit of avoiding one 16-day SLE for private sector employers is approximately
(16−7)×0.4×71+(2/3)[3×71+4×0.5×71+(16−7)×0.1×71] =e534. The avoided spending is 534×120, 810 =
64, 512, 540.
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benefits from reduced air pollution for workers, such as avoided healthcare costs, avoided disutility

from being sick, and additional income losses associated to a low replacement rate.

Additional sales. We combine the estimates from Figure 6 with the decrease in pollution

exposure at the firm level implied by meeting the WHO thresholds. To be conservative, we focus

on effects at period t + 1 for manufacturing and construction, although sales also decrease at

t + 2. For professional services, we focus on effects at period t. We obtain that annual sales

would be higher by e1.9 billion for the construction sector, by e4.2 billion for the professional

services sector, and by e5.3 billion for the manufacturing sector – although the estimates for the

manufacturing sector are less robust than for construction and professional services. In total,

meting the WHO targets would have increased annual sales by e6.1 billion in an average year

between 2009 and 2015 excluding manufacturing – or 0.3% of the French GDP in 2015 –, and

e11.3 billion if we include manufacturing – or 0.5% of the French GDP in 2015.

Comparison of benefits to the costs of meeting the WHO thresholds. To our knowledge,

there is no estimate of the cost of bringing PM2.5 concentrations down to the daily WHO thresholds

for France. Drawing on Dechezleprêtre et al. (2019), we rely on the estimates of the cost of

reducing PM2.5 emissions – not concentrations – obtained in a report published by the European

Commission.35 The cost estimates are country-specific and available for different scenarios with

varying levels of emission reductions. Absent a scenario reducing emissions by 25% (as implied by

the respect of the WHO threshold), we consider the two closest scenarios for France: the scenario

reducing emissions by 16 (option 6C) would cost e375 million annually whereas the scenario

reducing emissions by 33% (option 6D) would cost e7,675 million annually. Our estimate of the

economic benefits of meeting the WHO targets therefore largely exceeds the lower bound, and

represents 80% of the upper bound if we exclude effects on the manufacturing sector and 150% if

we include them.

7.3 Policy implications

Our results have several policy implications. First, introducing a daily threshold of 15µg/m3

in France could generate substantial economic benefits, in addition to the benefits from avoided

pollution-induced healthcare consumption which we do not quantify. These benefits may partly

compensate for the costs of implementing such regulations. If we consider that manufacturing firms

will have to invest in cleaner technologies to abate their air emissions, we could compare these

investment costs with the increased profits from enhanced worker productivity. Given that France

35See part 3, page 43 of the following report: https://ec.europa.eu/environment/archives/air/pdf/

Impact_assessment_en.pdf.
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is similar to the average EU member state in terms of pollution levels and composition of the

economy, we could use our results to inform the debate about a future tightening of the regulatory

standards at the European Commission to bring them closer to the WHO recommendations.36

Our analysis sheds light on the large economic benefits it could bring for a lof of firms.

Second, cost-benefit assessments of policies improving air quality typically do not take into

account the positive effects that cleaner air could have on firms’ economic performance, beyond

reducing work absenteeism. For example, in a flagship report, the OECD mentions the importance

of including productivity losses in air pollution cost assessments (OECD, 2016). Their recommen-

dation is to use the average market wage rate as a proxy for the marginal cost of labour and

multiply it by the number of work loss days due to pollution. Our results show that the direct

effect of pollution on sales goes well beyond this monetary value of work loss days in several sec-

tors. Thus, this approach – also used by the WHO (WHO, 2014b) – will tend to underestimate

the economic cost from air pollution.

8 Conclusion

In this paper, we show that an increase in workers’ exposure to particulate matter causes an

increase in sickness-related absenteeism. Separately, we identify a negative effect on sales in three

sectors: construction, manufacturing, and professional services. We find that the economic cost

of pollution associated with these firm-level sales losses exceeds by far the monetary value of

pollution-induced absenteeism valued at the marginal product of labor.

Our analysis has several implications for research and policy. First, our analysis suggests that

the productivity channel plays an important role in the transmission of pollution shocks to firms’

sales. Based on the sectors where the sales losses are the largest, we laid out potential explanations

of the importance of this channel: difficulty to substitute sick workers, complementarities in the

production value chain, cumulative effects of work emissions, and cognitive impacts of pollution.

Developing research designs to better understand the underlying mechanisms for each affected

sector could be a promising path for future research.

Second, there is a large literature in economic geography and urban economics that relates

high density with a high productivity, one of the benefits of agglomeration (Combes et al., 2012;

Ahlfeldt and Pietrostefani, 2019). Recent work separately shows that high density also causes high

levels of air pollution (Carozzi and Roth, 2019). Our work suggests that pollution levels may be

an important omitted variable in the estimation of agglomeration effects. This omitted variable

is expected to bias the effect of density on productivity downward, given the positive relationship

36see https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/

12677-Qualite-de-lair-revision-de-la-reglementation-de-lUE_fr
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between density and pollution and the negative relationship between pollution and productivity.

Revisiting estimates of agglomeration effects on productivity net of pollution effects would be an

interesting avenue for urban and environmental economists.

Third, ex-ante cost-benefit analyses of environmental regulation that do not account for the

negative effect of pollution on firms’ performance will significantly underestimate the net benefits

of these regulations. As the European Commission is currently considering to change regulatory

standards to bring them closer to the WHO recommendations, it seems all the more important

to properly quantify the costs and benefits of doing so. In our analysis, we provide an estimate

of the benefits of bringing daily exposure to PM2.5 down to the WHO recommendations that

represents between 80% and 150% of an available cost estimate. Adding health benefits for the

entire population to our estimates that depend exclusively on work loss days and sales losses, the

benefits will significantly exceed the costs.
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des relevés de prix à la production. Economie et Statistique 407, 3–26.

Graff Zivin, J. and M. Neidell (2012). The Impact of Pollution on Worker Productivity. American

Economic Review 102 (7), 3652–3673.

Graff Zivin, J. and M. Neidell (2014). Temperature and the Allocation of Time: Implications

for Climate Change. Journal of Labor Economics 32 (1), 1–26. Publisher: [The University of

Chicago Press, Society of Labor Economists, NORC at the University of Chicago].

33



Griliches, Z. and J. A. Hausman (1986, February). Errors in variables in panel data. Journal of

Econometrics 31 (1), 93–118.

Hanna, R. and P. Oliva (2015). The effect of pollution on labor supply: Evidence from a natural

experiment in Mexico City. Journal of Public Economics 122, 68–79.

He, J., H. Liu, and A. Salvo (2019). Severe Air Pollution and Labor Productivity: Evidence from

Industrial Towns in China. American Economic Journal: Applied Economics 11 (1), 173–201.

Hensvik, L. and O. Rosenqvist (2019). Keeping the Production Line Running Internal Substitution

and Employee Absence. Journal of Human Resources 54 (1), 200–224. Publisher: University of

Wisconsin Press.

Hersbach, H., B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas,
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Figure 1: Average monthly exposure to PM2.5 (µg/m3)

Notes: Figure presents the monthly average of workers’ exposure to PM2.5 measured at workers’ postcodes. The
sample of workers is the one used for the analysis of pollution effects on sickness leaves described in section 3.3
(unbalanced panel, N≈450,000). The European standard for annual exposure is 25µg/m3 while the WHO’s recom-
mendation for daily exposure is 15 µg/m3.
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(a) West winds estimates β̂West,k (b) Associated t-stat for β̂West,k

(c) East winds estimates β̂East,k (d) Associated t-stat for β̂East,k

(e) North winds estimates ̂βNorth,k (f) Associated t-stat for ̂βNorth,k

Figure 2: First stage results - point estimates and t-stat

Notes: Figure presents the estimated coefficients β̂jk and associated t-stat from equation (6) for wind direction
j = 2 for West in panels a and b, j = 3 for East in panels c and d, and j = 4 for North in panels e and f, respectively.

β̂jk express the average increase in monthly PM2.5 concentration in the postcodes located in a given 100km x 100km
grid k in month t when wind blows 10 percentage point more from direction j, compared to blowing from the South
in month t. In panels b, d, f, the red cells are those where the estimated coefficient is not statistically significantly
different from zero at the 5% level. The grey outline shows the postcode boundaries.
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Figure 3: Binned scatter plot of work absenteeism and particulate matter pollution

Notes: The data is split into equal-sized bins based on the value of the x-variable – monthly PM2.5 concentrations.
Each data point shows the mean residual of that bin for the x-axis and y-axis variables after controlling for
postcode and month-by-year fixed effects, as well as all weather variables (and their interactions) and flu incidence
and holidays. Observations are weighted by the number of workers in each postcode. The graph is done using the
stata command binscatterhist by Pinna (2022).

Coef = -.02**  (0)
N = 418319

-.5

-.25

0

.25

.5

R
es

id
ua

l -
 W

or
ke

rs
 fa

llin
g 

si
ck

 p
er

 1
,0

00
 w

or
ke

rs

-15 -10 -5 0 5 10 15
Residual - Share of hours in month where wind blows from the West

(a) Wind from West
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(b) Wind from East

Figure 4: Binned scatter plot of work absenteeism and monthly wind direction

Notes: The data is split into equal-sized bins based on the value of the x-variable – the share of hours in a month
where wind blows from wind direction Est (Figure a) and West (Figure b). Each data point shows the mean
residual of that bin for the x-axis and y-axis variables after controlling for flu incidence and the number of holiday
days in the departement ; for a flexible weather controls including interactions between categories of average daily
maximum temperatures, quintiles of average daily wind speed and quintiles of total daily precipitations; grid cell
level fixed effects and month by year fixed effects. Observations are weighted by the number of workers in each
postcode. The graphs are done using the stata command binscatterhist by Pinna (2022).
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(a) Effects on work absenteeism
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(b) Effects on the number of sick days

Figure 5: Dynamic effects of PM2.5 on work absenteeism and on the number of sick days per 1,000
workers

Notes: Figure shows the point estimates and 95% confidence intervals for the effect of PM2.5 measured at t on
sickness leave at t − 2, t − 1, t, t + 1 and t + 2. All regressions include month-by-year fixed effects, postcode
fixed effects, weather controls, and holidays and flu controls at t. For the effects on sickness leave at t + 1 and
t + 2, controls for weather, holiday and flu and the instrument at the relevant leads are added. For the effects on
sickness leave at t− 11 and t− 2, controls for weather, holiday and flu at the relevant lags are added. Observations
are weighted by the number of workers in each postcode. The confidence intervals are based on standard errors
clustered at the Copernicus grid cell level.
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(b) Construction
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(c) Professional services
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(d) ICT and other B-to-B services
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(e) Retail and restaurants
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(f) Other business-to-consumer services

Figure 6: Dynamic effects of PM2.5 on firms’ sales, by sector

Notes: Figure shows the OLS and IV point estimates and 95% confidence intervals from equation (7) for the effect
of PM2.5 on t on firms’ sales by sector at t−1, t, t+ 1 and t+ 2. All regressions include month-by-year-by-industry
fixed effects, firm-by-year fixed effects, weather controls, and holidays and flu controls. For the leads, controls for
weather, holiday and flu at the relevant leads and lags are added, and both PM25 at t (for which the coefficient is
reported) and PM2.5 for the relevant leads are instrumented. For the placebo test at t − 1, controls for weather,
holiday and flu at t−1 are added. The confidence intervals are based on standard errors clustered at the firm level.
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(c) PDL - Construction
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Figure 7: Robustness checks for the effects of PM2.5 on firms’ sales, by sector

Notes: Panel a) compares, for the subsample of single-establishment firms, two point estimates and their confidence
intervals for the effect of pollution at t on manufacturing and construction sales at t+ 1, and sales in professional
services at t: the point estimate obtained with the predicted pollution instrument (main result), and the point
estimate obtained with the wind direction instrument. Panels b), c) and d) show the OLS and IV point estimates
and 95% confidence intervals for the effect of contemporaneous PM2.5 (t) and five lags of PM2.5 on firms’ sales at
t using a polynomial distributed lag (PDL) model with a cubic polynomial specification. All regressions include
month-by-year-by-industry fixed effects, firm-by-year fixed effects, weather controls, and holidays and flu controls.
The confidence intervals are based on standard errors clustered at the firm level.
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10 Tables

Table 1: Summary Statistics, 2009-2015

Mean Sd Count

Panel a: Postcode-level summary statistics for Workers

Age 40.43 2.17 393,756

Annual wage (euros e) 25,909.84 6,569.49 393,756

Annual total medical expenditures (e) 462.51 132.18 393,756

Annual total out-of-the-pocket expenditures (e) 143.18 39.29 393,756

Monthly exposure to PM2.5 (µg/m3) 15.37 6.32 393,756

Nb workers falling sick each month, per 1,000 workers 23.85 20.42 393,756

incl: for <93 days 22.13 19.48 393,756

Nb of associated sick days per 1,000 workers 758.77 1,605.93 393,756

incl: for <93 days 354.94 448.23 393,756

Sickness leave spending per 1,000 workers (e) 21,477.44 51,624.77 393,756

incl: for <93 days 9,099.00 12,769.65 393,756

Panel b: Firm-level summary statistics

Share of single-establishment firms 0.63 0.48 10,991,760

Number of workers 65.06 888.24 10,991,760

Share in: Manufacturing 0.17 0.37 10,991,760

Construction 0.14 0.35 10,991,760

Retail and Restaurants 0.21 0.41 10,991,760

Other business to consumer services 0.11 0.31 10,991,760

Professional services 0.16 0.36 10,991,760

ICT and other business to business services 0.21 0.42 10,991,760

Monthly exposure to PM2.5 (µg/m3) 15.22 6.23 10,991,760

Monthly sales (e) 1,311,465.43 18,385,016.90 10,483,016

Monthly sales (e) in: Manufacturing 2,386,087.68 27,111,797 1,790,571

Construction 532,055.97 3,140,304 1,464,654

Retail and Restaurants 946,355.82 16,002,400 2,216,708

Other business to consumer services 545,468.55 13,594,881 1,106,004

Professional services 754,394.65 10,944,304 1,646,831

ICT and other business to business services 2,067,678.96 23,498,297 2,258,248
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Table 2: Pollution and Sick Leave Episodes

Nb. of workers falling sick Nb. of sick days Sickness leave spending

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel a: Postcode Fixed Effects

PM2.5 0.0659∗∗∗ 0.146∗∗∗ 0.811∗∗ 2.734∗∗∗ 26.54∗∗∗ 86.54∗∗∗

(0.0206) (0.0313) (0.339) (0.754) (9.779) (22.46)

Kleibergen Paap F-statistic 815 815 815

N 382,187 382,187 382,187 382,187 382,187 382,187

R-squared 0.23 0.23 0.10 0.10 0.08 0.08

Panel b: Postcode-Year Fixed Effects

PM2.5 0.0674∗∗∗ 0.167∗∗∗ 0.676∗∗ 2.594∗∗∗ 20.87∗∗ 78.23∗∗∗

(0.0207) (0.0316) (0.337) (0.749) (9.725) (22.47)

Kleibergen Paap F-statistic 637 637 637

N 382,187 382,187 382,187 382,187 382,187 382,187

R-squared 0.30 0.30 0.18 0.18 0.16 0.16

Dep. var. mean 22 22 355 355 9,099 9,099

Notes: Table reports OLS and IV estimates from equation (5) for the effect of PM2.5 on the number of
workers taking a sick leave in a postcode (columns 1 and 2), on the number of sick days associated with
this leave (columns 3 and 4), and on the sickness leave spending (columns 5 and 6). All regressions include
month-by-year fixed effects, weather controls, and holidays and flu controls. Panel a also includes postcode
fixed effects, while Panel b includes postcode-by-year fixed effects. Observations are weighted by the number
of workers in each postcode. Standard errors in parentheses are clustered at the Copernicus grid cell level.
∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table 3: Pollution and Sickness Leave Episodes, Varying Unit and Time Dimensions

Nb. of workers falling sick Nb. of sick days Sickness leave spending

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel a: 10% Sample and Individual Fixed Effects

PM2.5 0.106∗∗ 0.256∗∗∗ 0.912 5.024∗∗ 19.96 159.0∗∗

(0.0439) (0.0912) (1.037) (2.217) (28.98) (66.89)

N 2,531,172 2,531,172 2,531,172 2,531,172 2,531,172 2,531,172

R-squared 0.0525 0.0525 0.0301 0.0301 0.0257 0.0257

Panel b: Weekly Outcomes and Pollution

PM2.5 0.00459∗∗∗ 0.0132∗∗∗ 0.0509 0.391∗∗∗ 1.448 12.86∗∗∗

(0.00160) (0.00376) (0.0306) (0.0776) (0.904) (2.233)

Dependant variable mean 5.2 5.2 85 85 2,079 2,079

N 1,711,430 1,711,430 1,711,430 1,711,430 1,711,430 1,711,430

R-squared 0.0645 0.0644 0.0226 0.0225 0.0178 0.0177

Notes: Table reports OLS and IV estimates from equation (5) for the effect of PM2.5 on the number of
workers taking a sick leave in a postcode (columns 1 and 2), on the number of sick days associated with this
leave (columns 3 and 4), and on the sickness leave spending (columns 5 and 6). Panel a reports estimates
from a 10% sample of Hygie using worker fixed effects instead of postcode fixed effects. Panel b reports
estimates when outcomes and all controls are defined at the weekly level and using quarter-by-year fixed
effects instead of month-by-year fixed effects.Observations are weighted by the number of workers in each
postcode. Standard errors in parentheses are clustered at the Copernicus grid cell level. ∗: p < 0.10, ∗∗:
p < 0.05, ∗∗∗: p < 0.01.
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Table 4: Pollution and Sickness Leave Episodes, the exclusion restriction and the role of Ozone

(1) (2) (3)

Baseline O3 only AQI index

PM2.5 exposure 0.145∗∗∗

(0.0313)

Ozone exposure 0.0342∗∗

(0.0171)

Air quality index (higher: worse air quality) 2.922∗∗∗

(0.495)

N 393,755 393,755 393,755

R-squared 0.2299 0.2300 0.2300

Notes: Table reports IV estimates from equation (5) for the effect of PM2.5 on the
number of workers taking a sick leave in a postcode using the baseline specification
(column 1), for the effect of ozone only (column 2), and considering the effect of a
one-unit increase in the French air quality index ranging from 1 (best air quality)
to 6 (worst air quality), instead of a one-unit increase in PM2.5 (column 3). All
regressions include month-by-year fixed effects, weather controls, holidays and flu
controls, and postcode fixed effects. Observations are weighted by the number
of workers in each postcode. Standard errors in parentheses are clustered at the
Copernicus grid cell level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.

Table 5: Pollution and Sickness Leave Episodes, Various Robustness Checks

(1) (2) (3) (4) (5) (6)

Baseline
Cont.

weather 50km grid

Quarter
-specific

Interactions No dec & jan

No month
with

PM10 alerts

PM2.5 exposure 0.145∗∗∗ 0.193∗∗∗ 0.138∗∗∗ 0.161∗∗∗ 0.166∗∗∗ 0.180∗∗∗

(0.0313) (0.0398) (0.0307) (0.0316) (0.0349) (0.0361)

Holiday and flu controls Yes Yes Yes Yes Yes Yes

Weather controls Yes No Yes Yes Yes Yes

Month by Year FE Yes Yes Yes Yes Yes Yes

Postcode FE Yes Yes Yes Yes Yes Yes

N 393,755 393,756 393,755 393,755 328,130 384,276

R-squared 0.2299 0.2287 0.2300 0.2299 0.1603 0.2186

Notes: Table reports IV estimates from equation (5) for the effect of PM2.5 on the number of SLEs for
1,000 workers using the baseline specification (column 1), using three weather controls for average daily
maximum temperature, total monthly precipitation, and average wind speed, instead of the interaction
of categorical weather variables (column 2), using smaller grid cell areas of 50 km x 50 km (column 3),
allowing the influence of wind direction to vary not only by grid cell area but also by quarter (column 4),
removing January and December (column 5), and removing the postcode-months where at least one day
has PM10 levels corresponding to an air quality alert level 1. All regressions include month-by-year fixed
effects, weather controls, holidays and flu controls, and postcode fixed effects. Observations are weighted
by the number of workers in each postcode. Standard errors in parentheses are clustered at the Copernicus
grid cell level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Table 6: Pollution and Sales, Various Robustness Checks

(1) (2) (3) (4) (5) (6)

Baseline No 2009 Cont. weather Firm FE

No month
with

PM10 alerts
Two-way
clustering

Panel a: Manufacturing – Effect at t+ 1

PM2.5 exposure -0.00240∗∗ -0.00245∗∗ -0.00335∗∗∗ -0.00426∗∗ -0.00259∗∗ -0.00240

(0.000989) (0.00107) (0.00102) (0.00193) (0.00110) (0.00162)

N 1,726,477 1,472,433 1,726,477 1,728,519 1,706,923 1,726,477

R-squared 0.8268 0.8285 0.8267 0.7192 0.8262 0.8262

Panel b: Construction – Effect at t+ 1

PM2.5 exposure -0.00442∗∗∗ -0.00490∗∗∗ -0.00540∗∗∗ -0.00809∗∗∗ -0.00498∗∗∗ -0.00442∗∗

(0.00123) (0.00133) (0.00121) (0.00180) (0.00138) (0.00189)

N 1,409,093 1,205,874 1,409,093 1,410,660 1,346,239 1,409,093

R-squared 0.7565 0.7533 0.7563 0.6119 0.7562 0.7565

Panel c: Professional services – Effect at t

PM2.5 exposure -0.00552∗∗∗ -0.00520∗∗∗ -0.00527∗∗∗ -0.00849∗∗∗ -0.00612∗∗∗ -0.00552∗∗∗

(0.00127) (0.00132) (0.00132) (0.00250) (0.00147) (0.00159)

N 1,636,769 1,414,198 1,636,771 1,637,481 1,636,769 1,525,976

R-squared 0.7184 0.7173 0.7173 0.5623 0.7186 0.7186

Weather controls Yes Yes No Yes Yes Yes

Holidays and Flu Yes Yes Yes Yes Yes Yes

Month-Year-Sector FE Yes Yes Yes Yes Yes Yes

Firm-Year FE Yes Yes Yes No Yes Yes

Firm FE No No No Yes No No

Notes: Table reports IV estimates from equation (7) for the effect of PM2.5 on firms’ sales in manufacturing (panel
a), construction (panel b), and professional services (panel c). Column (1) reports the baseline result, column (2)
uses a sample that excludes 2009, column (3) uses continuous weather variables as controls, column (4) uses firm
fixed effects instead of firm-year fixed effects, column (5) discards months with at least one day of PM10 alert,
and column (6) reports standard errors in parentheses clustered at the firm and month x year level instead of the
firm level. Standard errors in parentheses are clustered at the firm level, except in column (6). ∗: p < 0.10, ∗∗:
p < 0.05, ∗∗∗: p < 0.01.
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Table 7: Pollution and Sales, the exclusion restriction and the role of Ozone

(1) (2) (4)

Baseline O3 only AQI index

Panel a: Manufacturing – Effect at t+ 1

PM2.5 exposure -0.00240∗∗

(0.000989)

Ozone exposure -0.00055

(0.00089)

Air quality index (higher: worse air quality) -0.0131

(0.0164)

N 1,726,477 1,726,477 1,706,923

R-squared 0.8268 0.8267 0.8267

Panel b: Construction – Effect at t+ 1

PM2.5 exposure -0.00442∗∗∗

(0.00123)

Ozone exposure 0.00069

(0.00107)

AQI index -0.0422∗∗

(0.0189)

N 1,409,093 1,409,093 1,393,402

R-squared 0.7565 0.7562 0.7562

Panel c: Professional services – Effect at t

PM2.5 exposure -0.00552∗∗∗

(0.00127)

Ozone exposure 0.00135

(0.000866)

AQI index -0.0603∗∗∗

(0.0204)

N 1,636,769 1,636,769 1,622,131

R-squared 0.7184 0.7183 0.7182

Notes: Table reports IV estimates from equation (7) for the effect of PM2.5 on firms’
sales in manufacturing (panel a), construction (panel b), and professional services (panel
c). Column (1) reports the baseline result, column (2) reports results when ozone is
instrumented and column (3) reports the estimated effect of an increase by one unit of
the multi-pollutant air quality index, ranging from 1 (best air quality) to 6 (worst air
quality). Standard errors in parentheses are clustered at the firm level, except in column
(5). ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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Appendix

A Data Appendix

A.1 Sickness Leave Episodes

We obtain data on sickness leave episodes (SLE) from the Hygie dataset, which follows roughly

900,000 employees during the period 2009-2015. To build our sample of analysis, we make three

restrictions. First, we only keep individuals to whom we are able to assign a place of work based

on the establishment’s unique identifier. This makes us discard individuals with no employment

history declared between 2009 and 2015, who represent 25% of the sample. Although we cannot

check the exact reason for missing information, these individuals are probably retired, unemployed

or out of the labour force over the whole period. Two-thirds of them should be retired in 2009 given

their age. We also discard individuals for whom we do not have an establishment identifier despite

the fact that they did work and contribute to the pension system over the 2009-2015 period, who

represent 6% of the sample. Two third of these individuals have zero employers declared over the

period. They may have switched to the public sector or to the agricultural sector or started their

own business, or they may work in the domestic care sector, where there is no establishment-level

identifier (since they are employed by private individuals).

Second, we discard individuals whose establishment identifier corresponds to a public institu-

tion such as hospital or schools, because we want to focus the analysis on private sector employees.

Some individuals working in these institutions have a private sector type of contract and are thus

eligible to enter the Hygie sample.

Third, we discard a few individuals who did not work enough to contribute to the public

pension system for any of the years included in the period. Each year, these individuals worked

less than 150 equivalent hours valued at the minimum wage per year, which is the minimum to

contribute to public pension. With such a low labour supply, they are unlikely to experience

sickness leave episodes.

We assign each worker to the postcode of her workplace (there are around 6,000 postcodes

in France). Figure A.1 shows the geographic distribution of the employees’ workplaces in 2009,

which is consistent with the distribution of the French population across the territory.

We use the exhaustive matched employer-employee data (DADS-Postes) to compare the char-

acteristics of our sample of workers to the characteristics of the whole population of private sector

employees. Applying the same restrictions as in the Hygie dataset,37 we find that those workers

37Namely, we keep private sector employees born between 1935 and 1989, less those older than 71 who should be
retired. Note that in the matched employer-employee data, a worker having two different employers appears twice.
We aggregate wage information at the worker level, summing up the wages she receives from different employers.
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Figure A.1: Location of workers from the Hygie dataset based on the workplace postcode, in 2009

representing the population from which our sample is drawn are 55% male, 41 on average, and

earn an average annual gross wage of e26,204. Thus, the average individual in our final worker

sample – as shown in Table A.1 – is very close to the average private sector employee.

In our sample, 21 percent of employees take at least one sickness leave episode within a year.

By comparison, a national survey on Working Conditions estimated that 28 percent of private

sector employees in France took at least one sick leave during 2013.38

38Source: https://www.fonction-publique.gouv.fr/files/files/statistiques/rapports annuels/2015/RA2015 dossier 1.pdf
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Table A.1: Summary statistics at the worker (top) and sickness leave episode (bottom) level,
2009-2015

Mean Sd Median Count

Share men 0.55 0.50 2,395,035

Age 40.43 10.98 2,395,035

Annual wage 25,907.65 26,176.07 2,395,035

Share full-time employed 0.75 0.43 2,395,035

Works in a single-establishment firm 0.38 0.49 2,395,035

Works in: Manufacturing 0.17 0.37 2,395,035

Construction 0.07 0.26 2,395,035

Retail and Restaurants 0.12 0.33 2,395,035

Other business to consumer services 0.07 0.25 2,395,035

Professional services 0.17 0.37 2,395,035

Financial services 0.04 0.19 2,395,035

ICT and other business to business services 0.15 0.36 2,395,035

Health, education and charitable organizations 0.14 0.35 2,395,035

Other 0.07 0.25 2,395,035

Sick at least once 0.21 0.41 2,395,035

Nb. sickness leave episodes in a year 0.29 0.68 2,395,035

SLE duration (days) 29 69 9 753,522

SLE benefits (publicly-funded component) (e) 808 2,291 183 753,522
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Figure A.2: Number of workers falling sick and number of sick days per 1,000 workers

Notes: Figure presents the average number of workers falling sick and average number of sick days per 1,000 workers
over time. While the spells larger than 3 months represent a small proportion of total spells, their tend to strongly
increase the average number of sick days.
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A.2 Firm-Level Sales

We compute firms’ monthly sales by adding up different components included in the VAT records,

following the methodology of France Stratégie and Inspection générale des Finances (2021). In the

raw data, total sales are broken down into different components based on two main criteria that

determine VAT liability: the location of the buyer (whether in France, in another EU country,

or in a non EU-country) and whether the buyer is herself liable to VAT. In addition, the sales

value of goods and services subject to specific tax rules is reported separately.39 Our measure

of sales includes both domestic sales and exports to EU and non-EU countries. The French tax

administration imposes monthly declarations to firms with annual sales above e818,000 for the

manufacturing sector and the hospitality industry and to those with annual sales above e247,000

for the other sectors. Firms below this threshold are allowed to fill declarations on a quarterly

basis.

We discard the entire firm-year series for firms not reporting sales each month within a year.

However, we make one exception for zero sales records in July since it is a relatively common

pattern in the data. A large number of French firms close for vacation during some weeks in August,

the month where the July VAT declaration is expected since the VAT declaration corresponding

to the business month t is typically made on month t + 1. French tax authorities allow firms

to report their July sales together with the August sales.40 We indeed observe in the data that

when the sales are 0 in July, the sales for August are frequently twice as high as those in June

or September. We re-allocate sales for July and August by splitting August sales in two. After

implementing this correction for zero sales in July followed by high sales in August, we discard

around 3% of firm-year observations with at least one zero sales value.

We determine sectors of activity based on the sectoral classification available at the establish-

ment level and we use the mode of sector categories across establishments for multi-establishment

firms. Following a methodology developed by the statistical agency INSEE (https://www.insee.

fr/fr/statistiques/1372801?sommaire=1372813), we define 6 sectors: manufacturing, con-

struction, retail and restaurants, other business-to-consumer services (including, hospitality in-

dustry, passenger transport, real estate, travel agencies, recreational services, repairing services),

professional services, and ICT and other business-to-business services. We discard firms belonging

to the financial services sector and the health, education and charitable sectors, which are often

not-for-profit.

We check the quality of the reported data in two different ways. First, for a few large French

39For instance, the sales of natural gas and electricity is subject to a specific VAT rule in the French tax code,
so they have their own subcomponent in the VAT records. See https://www.impots.gouv.fr/sites/default/

files/formulaires/3310-ca3-sd/2022/3310-ca3-sd_3947.pdf
40See https://www.impots.gouv.fr/professionnel/questions/comment-declarer-ma-tva-en-periode-de-conges-payes
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companies for which annual financial reports are publicly available, we manually check that the

sum of monthly sales of a given year is close to the official annual sales value. Second, we compare

the time series of monthly sales value aggregated by economic sector to the data published at the

industry level by the French statistical institute, using the same source. Figure A.3c shows the

time series of monthly sales in construction (A.3a), manufacturing (A.3b) and all services (A.3c)

as constructed from the VAT micro-data compared with the INSEE index. Differences may arise

between our sales value and the statistical agency’s because of different choices in data cleaning

or the subcomponents entering the sales variable, but the correlation between the two series are

above 0.9 for the three broad sectors.
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(a) Construction
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(b) Manufacturing
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Figure A.3: Average firms’ nominal sales in construction, manufacturing and service sector,
2009=100

Notes: Figure presents the average nominal sales from our VAT micro-data in blue for construction, manufacturing,
and services and the INSEE sales index in dashed green, using January 2009 as the reference point. We exclude
several service industries (trade - sector G in NACE classification, banking - sector K and health - sector Q) to
compare with the INSEE index which also excludes these industries.
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B Additional Figures

2009 2011

2013 2015
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Figure B.4: Average annual concentrations of PM2.5 (µg/m3)

Notes: Figure shows the average annual concentration of PM2.5 measured at the 4km x 4 km grid cell level using
the reanalysis CHIMERE data, for selected years. There are 33,252 Chimere grid cells in metropolitan France.

54



0

10

20

30

40

5050

60

M
ic

ro
gr

am
 p

er
 c

ub
ic

 m
et

er

20
09

m1

20
09

m7

20
10

m1

20
10

m7

20
11

m1

20
11

m7

20
12

m1

20
12

m7

20
13

m1

20
13

m7

20
14

m1

20
14

m7

20
15

m1

20
15

m7

Monthly exposure to NO2
European standard for annual exposure
WHO recommendation for daily exposure

(a) NO2

0

20

40

60

80

100

120

140

M
ic

ro
gr

am
 p

er
 c

ub
ic

 m
et

er
20

09
m1

20
09

m7

20
10

m1

20
10

m7

20
11

m1

20
11

m7

20
12

m1

20
12

m7

20
13

m1

20
13

m7

20
14

m1

20
14

m7

20
15

m1

20
15

m7

Monthly exposure to Ozone
European standard for 8-hour exposure
WHO recommendation for 8-hour exposure

(b) Ozone

Figure B.5: Average monthly exposure to other pollutants

Notes: Figure presents the monthly average of workers’ exposure to PM2.5 measured at workers’ postcodes. The
sample of workers is the one used for the analysis of pollution effects on sickness leaves described in section 3.3
(unbalanced panel, N≈450,000). For NO2, the European standard for annual exposure is 40µg/m3 while the WHO’s
recommendation for daily exposure is 25µg/m3. For ozone, the European standard for 8-hour exposure is 120µg/m3

while the WHO’s recommendation for 8-hour exposure is 100µg/m3. Exposure in each postcode is weighted by the
number of workers working in that postcode.
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Figure B.6: Variation in monthly wind direction within local areas

Notes: Figure shows for each local area (Paris/Marseille/countryside in the center of France) the share of hours in
a month in which the wind blows from a given direction, demeaned by the average for the year, for four different
months (Month 3=March, Month 6=June, Month 9=September, Month 12=December and three different years
(2009, 2012, 2015).
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Figure B.7: 100 x 100 km grid and French departements

Notes: The figure shows the 100 x 100 km areas k used in equation (6 in blue, and the borders of French departements
in black
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Figure B.8: Effect of pollution on sickness leaves by wage level

Notes: Figure shows the point estimates and 95% confidence intervals for the effect of PM2.5 on sickness leave by
wage decile. We run equations (5) and (6) for 10 postcode-level datasets that only include workers from a given wage
decile in 2009. Number of observations varies between 274,067 (D1) and 172,391 (D10). On the x-axis, we report
the average monthly PM2.5 exposure below the relevant subsample. Observations are weighted by the number of
workers in each postcode. The confidence intervals are based on standard errors clustered at the Copernicus grid
cell level.
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Figure B.9: Effect of pollution on sickness leaves by sector

Notes: Figure shows the point estimates and 95% confidence intervals for the effect of PM2.5 on sickness leave
by sector. We run equations (5) and (6) with individual establishment-months as the unit of observation instead
of postcode-months. Establishment fixed effects replace postcode fixed effects. Absenteeism is measured as the
number of workers starting a sickness leave on a given month in that establishment, per 1,000 workers. The
regressions are weighted by the number of workers for whom we observe absenteeism in each establishment. The
regressions are run separately for 6 subsamples of establishments, that only include establishments part of firms
from a given sector. Number of observations varies between 1,413,286 (construction) and 2,805,238 (retail). The
confidence intervals are based on standard errors clustered at the Copernicus grid cell level.
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Figure B.10: Effect of pollution on sickness leaves by firms’ size and status

Notes: Figure shows the point estimates and 95% confidence intervals for the effect of PM2.5 on sickness leave by
firm type. We run equations (5) and (6) with individual establishment-months as the unit of observation instead
of postcode-months. Establishment fixed effects replace postcode fixed effects. Absenteeism is measured as the
number of workers starting a sickness leave on a given month in that establishment, per 1,000 workers. The
regressions are weighted by the number of workers for whom we observe absenteeism in each establishment. The
regressions are run separately for 2 subsamples of establishments for each heterogeneity dimension: establishments
part of firms with above-median vs. below-median sales (above), and establishments part of multi-plant vs. single-
establishment firms (below). Number of observations varies between 3,293,614 (establishments part of firms with
below median sales in 2012) and 5,855,816 (establishments part of multi-plant firms). The confidence intervals are
based on standard errors clustered at the Copernicus grid cell level.
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C Additional Tables

Table C.2: Effect of pollution on sales by firm size (1/2)

All firms (t) Manufacturing (t+ 1) Construction (t+ 1) Professional services (t)
Below
median

Above
median

Below
median

Above
median

Below
median

Above
median

Below
median

Above
median

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 exposure -0.00095 -0.00121∗ -0.00326∗∗ -0.00108 -0.00567∗∗∗ -0.00412∗∗∗ -0.00286 -0.00348∗

(0.00101) (0.00068) (0.00154) (0.00125) (0.00203) (0.00149) (0.00176) (0.00194)

N 4,534,726 4,861,799 780,574 824,185 599,272 659,826 697,766 739,016

R-squared 0.69 0.67 0.71 0.73 0.70 0.62 0.69 0.59

Notes: Table reports IV estimates from equations (7) (columns (1)-(2) and (7)-(8)) and (??) (columns (3)-(6)) for the effect
of PM2.5 on firms’ sales by sector. Regressions are run separately for each sector and each sector is split in two subsamples:
one for firms with below-median sales in 2012 and one for firms with above-median sales in 2012. All regressions include
month-by-year fixed effects, weather controls, and holidays and flu controls. Standard errors in parentheses are clustered
at the Firm level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.

Table C.3: Effect of pollution on sales by firm size (2/2)

ICT and other BtoB services (t) Retail and Restaurants Other consumer services
Below
median

Above
median

Below
median

Above
median

Below
median

Above
median

(1) (2) (3) (4) (5) (6)

PM2.5 exposure -0.00033 -0.00033 -0.00199 0.00248∗ 0.00483 -0.0128∗∗∗

(0.00141) (0.00137) (0.00283) (0.00142) (0.00159) (0.00170)

N 997,506 1,041,220 926,620 1,020,672 461,249 523,473

R-squared 0.70 0.66 0.71 0.69 0.69 0.54

Notes: Table reports IV estimates from equation (7) for the effect of PM2.5 on firms’ sales by sector.
Regressions are run separately for each sector and each sector is split in two subsamples: one for firms
with below-median sales in 2012 and one for firms with above-median sales in 2012. All regressions include
firm-year and month-by-year fixed effects, weather controls, and holidays and flu controls. Standard errors
in parentheses are clustered at the firm level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.
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