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Abstract

I develop a framework to quantify which features of investors’ trading strategies
lead to momentum in equilibrium. Specifically, I distinguish two channels: persistent
demand shocks, capturing underreaction, and the term structure of demand elasticities,
representing an intensity of arbitrage activity that decreases with investor horizon. I
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the model using the joint behavior of portfolio holdings and prices. I estimate the
demand of institutional investors in the U.S. stock market between 1999 and 2020. On
average, investors respond more to short-term than longer-term price changes: the term
structure of elasticities is downward-sloping. My estimates suggest that this channel is
the primary driver of momentum returns. Moreover, in the cross-section, stocks with
more investors with downward-sloping term structures of elasticities exhibit stronger
momentum returns by 7% per year.
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1 Introduction

Momentum, the tendency for past winners to outperform past losers (Jegadeesh and Titman,

1993), is one of the most challenging anomalies to understand in stock returns.1 While many

explanations for momentum have been proposed, tests of these theories have mainly focused

on the behavior of returns.2 In this paper, I take a different approach by looking at the joint

behavior of investor portfolio holdings and prices. I propose a framework to measure the

dynamic trading strategies of each investor and quantify how they contribute to the making

of momentum in equilibrium. Looking jointly at quantities and prices gets to the heart of

how momentum is created — investors’ dynamic trading — and yields new insights into who

are the investors driving momentum.

I highlight two broad mechanisms that generate momentum: the persistence of demand

shocks, representing relative underreaction, and a downward-sloping term structure of de-

mand elasticities, which captures different intensities of arbitrage activity across time hori-

zons. I introduce these mechanisms into an asset demand system in the style of Koijen and

Yogo (2019) and estimate it from data on portfolio holdings. My estimates show that equi-

librium momentum is primarily the result of the downward-sloping term structure of demand

elasticities. Market participants respond more strongly to price changes over the most recent

quarter than to longer-term variation over one year.3 My framework also predicts higher

momentum returns in stocks owned by investors with a downward-sloping term structure of

elasticities. Accordingly, I sort stocks based on their aggregate term structure of elasticities

and find 7% higher momentum returns in stocks where it is more steeply downward-sloping.

Which aspects of how people trade lead to momentum? The first one is, in the language of

demand systems, about the persistence of demand shocks. It is the mechanism behind classic

1Fama (2014), in his Nobel Prize Lecture, acknowledges momentum as “the biggest challenge to market
efficiency.”

2Some notable exceptions include early work by Grinblatt, Titman, and Wermers (1995) and Grinblatt
and Keloharju (2000) and more recent work by Chui, Subrahmanyam, and Titman (2022).

3I specifically compare quarterly and yearly horizons to align with the empirical definition of momentum
formation periods (e.g., Jegadeesh and Titman, 1993). So when I say that the term structure of elasticities
is downward-sloping, I mean that it is downward-sloping at these specific frequencies.
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momentum explanations through underreaction to information (e.g., Chan, Jegadeesh, and

Lakonishok, 1996): Upon receiving fundamental news, investors respond only partially when

incorporating it into their demand. Over time, they react more and more strongly to the

information, creating a drift in prices.4 But there is another potential source of momentum,

distinct from underreaction in demand shocks: differences in investors’ ability to absorb

shocks across horizons, the term structure of demand elasticities. For example, consider Elon

Musk selling 10 million shares of Tesla to raise capital for the acquisition of Twitter (and

abstract from information effects). Initially, this demand shock is absorbed predominantly by

relatively higher-frequency arbitrageurs on the lookout for fast opportunities, so the price of

Tesla does not decrease much. But higher-frequency traders have short investment horizons

and soon turn their attention elsewhere. So they sell their Tesla shares to investors with

longer horizons, for example, active mutual funds. If the higher-frequency traders are more

willing to absorb the Tesla shares than the active mutual funds, then the price of Tesla stock

will decrease further. More generally, when there is a mismatch in the aggregate risk-bearing

capacity at the short versus the long horizon — the term structure of demand elasticities

— then the equilibrium price impact of a demand shock will increase over time. In other

words, when short-run arbitrage exceeds long-run arbitrage, the term structure of demand

elasticities is downward-sloping, and momentum arises.

To quantify the importance of these two channels, I incorporate the term structure of

elasticities into an asset demand system in the tradition of Koijen and Yogo (2019). Intro-

ducing dynamics into a demand system leads to new challenges for identification, especially

in separating the two explanations for momentum. The inclusion of price changes at different

horizons creates a dynamic simultaneity problem, resulting from the combination of persis-

tent demand shocks with the classic simultaneity problem of prices and demand. In other

words, it is difficult to disentangle the dynamics of demand shocks from the evolution of

4The literature has put forward many foundations for such underreaction. I use the term “underreaction”
in a broad sense to capture relative patterns in beliefs across time, encompassing models of delayed over-
reaction alongside underreaction stricto sensu. Section 2.5 summarizes these theories and shows how they
generate persistence in investor demand.
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investors’ equilibrium responses to said shocks across time. Starting from the idea of mutual

fund flow-induced trading (Lou, 2012) — facing outflows, mutual funds scale down their ex-

isting holdings to meet redemptions, thereby putting downward price pressure on the stocks

they hold — I show how to construct appropriate instruments for recent and longer-term

price changes to overcome the dynamic simultaneity issue. However, the relation between

mutual fund flows and past fund returns, retail investors chasing fund performance, threatens

exogeneity.5 To account for it, I orthogonalize mutual-fund flows to past fund returns and

past fund flows.

I estimate the model for institutional investors in the U.S. stock market between 1999 and

2020. My estimates suggest that, on average, the term structure of elasticities is downward-

sloping: The market is 25% less elastic in its response to price movements over the past

year compared to the past quarter. To put this number into context, consider homogenous

investors with an elasticity of 4 to returns over the most recent quarter but a lower elasticity

of 3 to longer-term variation at the horizon of a year. Here, investors are (4 − 3)/4 = 25%

less elastic at longer horizons, so the term structure of elasticities is downward-sloping. How

does a $100 inflow affect prices? Initially, the recent elasticity of 4 implies that the extra $100

raise the value of the stock by $100/4 = $25. Subsequently, driven by the downward-sloping

term structure of elasticities, the price impact rises to $25/(1− 25%) ≈ $33.

There is substantial variation in elasticity estimates across investors. In particular, my

estimates identify a group of investors who are very active at a quarterly horizon but less so

in the long run. These investors drive much of the overall pattern of downward-sloping term

structures. And because of cross-sectional variation in how much they own, I find substantial

variation in the slope of the aggregate term structure of elasticities across stocks as well. It

is more strongly decreasing in stocks that are unprofitable, small, or have a high dividend

yield.

A distinct advantage of the demand-system approach is that it is an equilibrium frame-

5The flow-performance relation between mutual fund flows and past fund returns was originally docu-
mented in Ippolito (1992), Chevalier and Ellison (1997), and Sirri and Tufano (1998).
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work. That is, it ensures that observed prices are the equilibrium of the individual behavior of

all investors. In particular, this allows me to decompose the evolution of momentum returns

into components representing dynamic trading against prices, fundamentals, and demand

shocks.

The downward-sloping term structure of elasticities is the primary driver of momentum

returns. On its own, this phenomenon would create annualized momentum returns of about

24% between 1999 and 2020. More specifically, if investors had not changed their demand

from period to period for any reason other than the term structure of elasticities, then the

equilibrium-implied period-to-period price changes would have resulted in annualized mo-

mentum returns of 24%. In contrast, investor demand shocks mean-revert, creating reversal

rather than momentum.6 This observation is at odds with theories that generate momentum

through underreaction. But it does not mean that underreaction to news does not exist.

First, it might have played a less dominant role only recently, which is in line with ideas of

momentum anomaly attenuation (Chordia, Subrahmanyam, and Tong, 2014) and the overall

poor performance of classic momentum strategies between 1999 and 2020. Second, underre-

action might occur under specific conditions. For example, I find that past latent demand

predicts future stock fundamentals that enter investors’ demand functions, consistent with

Novy-Marx (2015).

I use the model estimates to design a demand-system-boosted momentum strategy. In

particular, the model predicts larger momentum returns in stocks with steeply downward-

sloping term structures of elasticities. Accordingly, I sort stocks into two portfolios based

on their term structures of elasticities. Then, within each subset, I examine the returns to

a standard momentum strategy that goes long the tercile of past winners and short past

losers. While the returns to a conventional momentum strategy were low at an annualized

2% between 1999 and 2020, the returns to momentum among stocks with more steeply de-

creasing term structures of elasticities were higher by 7% than among stocks with flatter

6Similarly, Koijen and Yogo (2019) generate a profitable reversal strategy based on the mean-reversion of
demand shocks.
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term structures. This difference cannot be attributed to common risk factors, including the

momentum factor itself, and is robust to controlling for stock size. Interestingly, momentum

among stocks with steeply decreasing term structures avoids momentum crashes that stan-

dard momentum strategies experience following stock market crashes (Daniel and Moskowitz,

2016).

My results highlight the importance of incorporating both the persistence of investors’

demand shocks and the downward-sloping term structure of demand elasticities into models

that generate momentum in equilibrium. Most models focus on the first aspect, which

captures underreaction to news by behavioral investors. However, I show this channel to

be less important empirically. At the same time, existing models often ignore what my

model estimates to be the primary driver of momentum: the term structure of elasticities,

could reflect representing investors’ differential responses to short- and long-term variation

in prices. Such dynamic responses to prices could represent frictions rooted in the industrial

organization of the financial industry or reflect investors’ behavioral biases in processing the

information contained in equilibrium prices (Bastianello and Fontanier, 2021). They are likely

also important for other anomalies based on time-series patterns in prices. Most notably, my

framework can be adapted to study the drivers of price reversals at short horizons below a

quarter and long horizons beyond a year.7

Contribution to the literature. Momentum, the tendency of past winners to outperform

past losers, is one of the most widely studied anomalies (Jegadeesh and Titman, 1993, 2001).

It is robust: to different formation-period definitions (Grinblatt and Moskowitz, 2004; Novy-

Marx, 2012), on industry, style and factor level (Moskowitz and Grinblatt, 1999; Barberis

and Shleifer, 2003; Chen and De Bondt, 2004; Ehsani and Linnainmaa, 2022), across asset

classes (Asness, Moskowitz, and Pedersen, 2013; Burnside, Eichenbaum, and Rebelo, 2011;

7The term structure might look different at such different horizons. For example, Duffie (2010) emphasizes
the role of financial intermediaries’ limited risk-bearing capacity at the time of a shock for the generation
of short-term reversal in prices, consistent with an upward-sloping term structure of elasticities at horizons
below a quarter.
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Menkhoff et al., 2012), and in the time series (Moskowitz, Ooi, and Pedersen, 2012). Many

mechanisms have been proposed, including both rational (Berk, Green, and Naik, 1999;

Johnson, 2002; Pastor and Stambaugh, 2003; Sadka, 2006) and behavioral explanations (Long

et al., 1990; Chan, Jegadeesh, and Lakonishok, 1996; Daniel, Hirshleifer, and Subrahmanyam,

1998; Barberis, Shleifer, and Vishny, 1998; Hong and Stein, 1999; Grinblatt and Han, 2005;

Daniel, Klos, and Rottke, 2021). The term structure of elasticities is conceptually related

to Lou and Polk (2021), who show how momentum can arise from aggregate overreaction

by arbitrageurs but use the behavior of prices for measurement. A small number of papers

study momentum strategies in the context of mutual funds’ portfolio holdings. For example,

Grinblatt, Titman, and Wermers (1995) show that mutual funds, on average, hold past

winners. Dong, Kang, and Peress (2022) find that persistent but not transient flows to

mutual funds predict factor-level returns because fund managers only reinvest persistent

flows into factor strategies, generating factor momentum. I contribute to this literature by

measuring how the dynamic trading strategies of each institutional investor make momentum

in equilibrium and by emphasizing the role of arbitrage intensities across horizons.

I also contribute to the recent literature on demand systems pioneered by Koijen and

Yogo (2019). Demand systems have been used to study the role of investors in the U.S. stock

market (Koijen and Yogo, 2019; Koijen, Richmond, and Yogo, 2020), in an international

context (Koijen and Yogo, 2020; Jiang, Richmond, and Zhang, 2020, 2022), in government-

and corporate bonds (Koijen et al., 2021; Bretscher et al., 2020), and in ESG investing (Noh

and Oh, 2020; van der Beck, 2021). Balasubramaniam et al. (2021) and Gabaix et al. (2022)

focus on the role of households in India and the United States. Gabaix and Koijen (2020)

estimate macro elasticities for the aggregate stock market. Haddad, Huebner, and Loualiche

(2022) employ a demand system to study the effects of the rise of passive investing. Similar

to van der Beck (2022), I identify institutions’ elasticities based on their reactions to shocks

from mutual funds’ flow-induced trading. As a result, my elasticity estimates are higher

than in static demand-based demand models (e.g., Koijen and Yogo, 2019) by a factor of
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about three, in line with estimates from Pavlova and Sikorskaya (2022). My key innovation

to this literature is introducing the term structure of demand elasticities, which I show to be

substantially downward-sloping.

Finally, I relate to the literature on segmentation in financial markets (Merton, 1987;

Grossman and Miller, 1988; Shleifer and Vishny, 1997; Gromb and Vayanos, 2002; Green-

wood, Hanson, and Liao, 2018). Segmentation between market participants occurs in gov-

ernment bonds (Guibaud, Nosbusch, and Vayanos, 2013; Greenwood and Vayanos, 2014), op-

tions (Gârleanu, Pedersen, and Poteshman, 2009), currencies (Gabaix and Maggiori, 2015),

mortgage-backed securities (Gabaix, Krishnamurthy, and Vigneron, 2007), and credit de-

fault swaps (Eisfeldt et al., 2022), all asset classes in which financial intermediaries play a

prominent role (Haddad and Muir, 2021). Segmentation is often the result of some form of

preferred habitat (e.g., Vayanos and Vila, 2021). Siriwardane, Sunderam, and Wallen (2021)

analyze segmentation in the cross-section of arbitrages. Greenwood and Vissing-Jorgensen

(2018) and Jansen (2021) emphasize the role of long-term investors. I contribute to this lit-

erature by emphasizing a related but distinct form of segmentation: differences in arbitrage

activity across investment horizons. This is not unlike how short-term reversal is generated

through slow-moving capital (Mitchell, Pedersen, and Pulvino, 2007; Duffie, 2010), but at

longer-term horizons, creating momentum rather than reversal.

2 Equilibrium Momentum from Dynamic Trading

I present an equilibrium framework for how the evolution of investor demand can lead to

momentum. Two distinct mechanisms shape momentum in equilibrium: persistent demand

shocks, capturing underreaction to information, and the term structure of demand elasticities

representing how investors respond to price changes across horizons. I proceed by first intro-

ducing a model that incorporates both mechanisms. Then, I show how the model generates

momentum and how it relates to canonical foundations of momentum from the literature.
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2.1 Framework

I introduce the model of this section. There are three investors who choose how much to

buy of a single asset in fixed supply S.8 The short-term investor ST and long-term investor

LT decide their demand based on the short-term return signal Pt/Pt−1 and past long-term

return signal Pt−1/Pt−s of the asset. One period corresponds to one quarter, and s captures

long horizons of one year. Investor N has noisy demand, which is persistent.

These three investors play distinct roles in the model. The role of the investor with noisy

demand, N , is to generate persistent demand shocks. While I do not explicitly model the

source of this persistence, it is designed to capture underreaction to information shocks. The

other two investors represent institutions such as mutual funds with different investment

horizons, using different price signals when forming demand. More generally, institutions

exist on a spectrum ranging from high-frequency traders as fast investors trading on short-

term signals on the one extreme and Warren Buffet’s Berkshire Hathaway as an institutional

value investor on the low-frequency end of the spectrum. My investors are not placed on

either extreme but live at frequencies of a quarter (ST ) and a year (LT ), which is to align

with formation periods from momentum strategies (e.g., Jegadeesh and Titman, 1993).

I parametrize this intuition through demand functions for the three investor types. Specif-

ically, I log-linearize demand D(Pt/Pt−1) in recent and long-term returns around zero:

dSTt = dST − Erecent × (pt − pt−1) (1)

dLTt = dLT − Elong-term × (pt−1 − pt−s) (2)

DN
t = ϕ×DN

t−1 + ϵNt , (3)

where lowercase letters denote log values, pt − pt−1 denotes the recent log return between

times t− 1 to t, and pt−1 − pt−s is the longer-term return.

8In the quantitative model of Section 3, I will re-introduce heterogeneity in the full cross-sections of stocks
and investors.
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The recent elasticity Erecent captures how aggressively the short-horizon investor ST trades

against price changes over the most recent quarter. The higher Erecent, the more elastic the

demand of the short-horizon investor to variation in the price pt relative to a recent reference

level, pt−1. That is, if prices decrease by 1% relative to the previous period, the short-horizon

investor will increase her demand by Erecent%. Beyond that, dST captures an average baseline

demand for the short-horizon investor. This price-insensitive component can, for example,

reflect preferences for the asset based on ESG criteria.

In contrast, the long-horizon investor LT only scans prices at a lower frequency, meaning

they only form demand based on prices one quarter ago. The elasticity Elong-term captures

how contrarian the long-term investor is, or equivalently, how elastically she trades against

longer-term variation at the frequency of a year. And again, dLT captures baseline demand

for the investor.

Finally, the demand of investorN includes demand shocks ϵNt , which represent information

shocks that enter her demand slowly based on the persistence parameter ϕ. If ϕ < 1, the

investor initially overreacts to shocks, but subsequently, the impact of the shock decays.

For ϕ = 1, demand is a random walk where shocks are permanent. Finally, if ϕ > 1, a

demand shock at time t − 1 is exacerbated further at time t. The persistence captures

underreaction to information: As the investor receives a signal about fundamentals, she

initially only partially adjusts her position but subsequently increasingly incorporates the

information into her demand.

Market Clearing. In equilibrium, the demand of all three investors has to sum to the

supply of the asset, as shown in the standard market-clearing equation (4):

S −DN
t = DST

t +DLT
t , ∀t (4)

Substituting demand functions (1), (2), and (3) into the market-clearing equation (4) and
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solving for equilibrium price changes ∆pt yields:

∆pt =
1

Erecent
(
dST − log

(
S −DLT

t −DN
t

))
(5)

Equation (5) shows how following a demand shock from noisy demand investor N , the

short-term investor is the only marginal investor willing to absorb the shock. Consequently,

the price reflects her demand elasticity. Appendix A provides additional details and shows

all derivations underlying results of this section.

2.2 Momentum from persistent demand shocks

Next, I show how the framework from the previous section can generate momentum. I start

by emphasizing the persistence of demand shocks, representing underreaction. To illustrate

the mechanism in the simplest way possible, I focus on the model without differentiating

between short- and long-horizon investors. This corresponds to a flat term structure of

elasticities, i.e., Erecent = Elong-term = E . Then, we can aggregate the two investors into one,

dt = d− E × (pt − pt−s), (6)

with s again capturing longer horizons of one year. To generate momentum, consider

demand shocks that increase in magnitude over time, ϕ > 1.9 When investor N receives pos-

itive new information, she partially incorporates this into her demand, ϵNt , and prices reflect

the additional demand, but not enough to fully reflect the new information. Over time, the

investor increasingly incorporates the news into prices; as the demand shock grows, prices

increase further. This process represents underreaction to information similar to Chan, Je-

9To retain stationarity, one could use more complex autocorrelation patterns that lead to a build-up of
shocks over short horizons but reversal over longer horizons (e.g., Lochstoer and Muir, 2022).
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gadeesh, and Lakonishok (1996). In section 2.5.1, I discuss other mechanisms that generate

persistent demand shocks, such as slow information diffusion of private information between

many smaller investors (e.g., Hong and Stein, 1999) or delayed overreaction from belief dy-

namics with self-attribution bias (e.g., Daniel, Hirshleifer, and Subrahmanyam, 1998).

So what happens following at time t, following a demand shock ϵNt−1 that moves equilibrium

returns ∆pt−1 at t− 1? The equilibrium follow-on return is

∆pt =

(
ϕ

Dt

Dt−1

− 1

)
∆pt−1 ≈ (ϕ− 1)∆pt−1, (7)

which is greater than ∆pt−1 for ϕ > 1 and sufficiently small demand shocks. Because

the demand shock from time t − 1 builds up further at t, there is additional price pressure,

raising prices further: momentum.

A critical feature of this model is that while the price-sensitive investor is contrarian in her

trading against prices, she does not anticipate the dynamics of the noisy investor’s demand

shocks. Yet even in the presence of such arbitrageurs, theories of underreaction (e.g., Hong

and Stein, 1999) can still play a role in equilibrium. This is especially the case if arbitrageurs’

ability to correct mispricings is subject to limits-to-arbitrage (Shleifer and Vishny, 1997) or

if it is difficult to distinguish between information and noise in prices.

2.3 Momentum from the term structure of demand elasticities

Above I have shown how time-series patterns in demand shocks build up to form momentum.

Next, I propose an alternative mechanism, the term structure of demand elasticities, and

show how it creates momentum from investors’ differential responses to price signals across

horizons. For expositional purposes, I fix the persistence of demand shocks at ϕ = 1, a

random walk.
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Short-term price impact. Consider an initial equilibrium perturbed by the noise trader

shock, ϵNt . How much does the demand shock move the equilibrium return ∆pt? To see this,

first, define the effective supply S̃:

S̃t ≡ S −DLT
t −DN

t (8)

S̃ captures the effective supply after accounting for price-insensitive demand and repre-

sents the total demand the short-run investor has to absorb. We can now express the price

impact of the demand shock as a function of effective supply. For example, consider a 1%

shock to the supply of Tesla because Elon Musk sells shares. What happens to the price of

Tesla? The answer depends on how willing the short-run investor is to absorb the shock. In

the presence of a hyper-elastic (Erecent = ∞) short-run arbitrageur, who responds infinitely

strongly to any tiny mispricing, Tesla’s price will remain anchored at its efficient level. In

contrast, with inelastic demand, for example, Erecent = 2 and the short-run investor owning

50% of Tesla, the short-run investor’s response is 2%×0.5 = 1% when prices decrease by 1%,

fully offsetting the size of the shock. Consequently, in equilibrium, the price of Tesla stock

declines by 1%. With fewer or less elastic short-run investors, the shock is only fully absorbed

when the price response grows in magnitude. More formally, define aggregate elasticities as:

Ērecent,t ≡ DST
t Erecent (9)

Ēlong-term,t ≡ DLT
t Elong-term (10)

Then, equilibrium condition (5) can be re-written as:

∆pt = −Ē−1
recent,t∆S̃t. (11)
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The price impact of a shock to the effective supply is proportional to the inverse of the

aggregate recent elasticity Ērecent,t.10 The more elastic the short-run investor, the steeper the

demand curve she is moving along, and the more willing she becomes to absorb the demand

shock at small price discounts. Thus, the less the price changes in the perturbed relative to

the initial equilibrium.

Long-term price impact. Now move forward one quarter. What is the impact of a

demand shock ϵNt−1 on the equilibrium price change ∆pt? Again, assume that the size of the

demand shock is constant between t− 1 and t, i.e., ϕ = 1. From equilibrium condition (5):

∆pt = −Ēlong-term,t − Ērecent,t−1

Ērecent,t
∆pt−1 ≈ − Ēlong-term,t − Ērecent,t

Ērecent,t︸ ︷︷ ︸
term structure of
demand elasticities

∆pt−1 (12)

∆pt−1 denotes the original price impact of the demand shock ϵNt−1 at time t − 1. The

follow-on price impact of a past shock, ∆pt, is controlled by the term structure of demand

elasticities: When Ēlong-term,t = Ērecent,t, the term structure of elasticities is flat. Due to the

different investment horizons, the short-horizon investor passes the asset on to the longer-

horizon investor. Still, since they are equally elastic in their aggregate responses, meaning

they are equally willing to absorb shocks, they do so at the same price the short-term investor

purchased the asset for. Consequently, the past demand shock has no additional impact on

current prices beyond the last period’s initial price impact, and ∆pt = 0. When Ēlong-term,t >

Ērecent,t, long-horizon investors are more elastic than short-horizon investors. In this case,

a shock’s initial price impact partially reverses. In contrast, when Ēlong-term,t < Ērecent,t, the

term structure of elasticities is downward-sloping. This is what I find to be the case in the

data. Investors are less responsive to longer-term price variation, so the initial price changes

must be amplified to maintain equilibrium, generating momentum.

10Equivalently, Gabaix and Koijen (2020) show that the price impact of aggregate flows is the inverse of
their macro elasticity.
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2.4 Aggregation

In reality, the distinction between short-horizon and long-horizon investors is less clear-cut

than described so far. Instead, investors live on a spectrum regarding how aggressively they

trade against recent versus longer-term price changes. To capture this, I leave behind the

strict separation of short- and long-horizon investors and introduce a decentralized version

of the model instead. It contains many investors, indexed by i, whose behavior is defined

through their recent elasticity Erecent,i, longer-term elasticity Elong-term,i, and baseline demand

di:

dit = di − Erecent,i × (pt − pt−1)− Elong-term,i × (pt−1 − pt−s) (13)

Demand shocks are still the result of a separate investor with noisy demand for this

section, as described in equation (3).11 This model aggregates well; the aggregate elasticity

on the stock level is equal to the demand-weighted average of elasticities across investors,

similar to equations (9) and (10):

Ērecent,t ≡
∑
i

Dit Erecent,i (14)

Ēlong-term,t ≡
∑
i

Dit Elong-term,i (15)

This enhanced model combines both channels into one equation,12

11Alternatively, I could decentralize the demand shocks to institutions as well. I do so in the data. Moreover,
in the empirical measurement, I allow for arbitrary time-series patterns of demand shocks, which can differ
across institutions. Therefore, my empirical findings do not require the existence of a single persistence
parameter ϕ.

12Equation (17) corresponds to an approximation of the follow-on price change because compositional
changes in ownership structure lead to time-series variation of aggregate elasticities. Equation (16),

∆pt =

(
(ϕ− 1)

Ērecent,t−1

Ērecent,t
− Ēlong-term,t − Ērecent,t−1

Ērecent,t

)
∆pt−1, (16)
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∆pt =

(
ϕ− 1︸ ︷︷ ︸

persistent
demand shocks

− Ēlong-term − Ērecent
Ērecent︸ ︷︷ ︸

term structure of
demand elasticities

)
∆pt−1. (17)

Equation (17) shows that the price change ∆pt−1 from a demand shock at time t − 1

is followed by a “momentum return” ∆pt proportional to ∆pt−1. When demand shocks are

persistent, ϕ > 1, a high (demand-shock-implied) return ∆pt−1 is followed by an additional

positive return ∆pt because the shock builds up further in size. This is the channel described

in section 2.2. Similarly, when investors in aggregate get less responsive to the demand shock,

(Ēlong-term − Ērecent)/Ērecent < 0, then there again is an additional positive price change con-

trolled by the magnitude of the downward slope of the term structure of demand elasticities.

I collect these results about the making of momentum in Proposition 1:

Proposition 1. For price-elastic investors with demand (13), noisy demand investors (3),

and fixed supply S, the time t follow-on price impact of a t − 1 demand shock that initially

moved prices by ∆pt−1 is

∆pt ≈
(
ϕ− 1 − Ēlong-term − Ērecent

Ērecent

)
∆pt−1, (18)

where the aggregate recent elasticity Ērecent and longer-term elasticity Ēlong-term are defined in

equations (14) and (15), respectively.

Momentum arises if:

(a) Demand shocks are persistent, ϕ > 1.

(b) The term structure of demand elasticities is downward-sloping, (Ēlong-term −

Ērecent)/Ērecent < 0.

exhibits the precise formulation for the follow-on price changes, incorporating a wedge between the ag-
gregate recent elasticities as of t− 1 and t. However, such composition-driven time-series changes are small
from period to period, motivating the approximation in equation (17), which treats aggregate elasticities as
locally constant.
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The results from Proposition 1 follow directly from derivations in Appendix A. Proposition

1 shows that two distinct channels drive time-series patterns of price changes: the persistence

of demand shocks and the aggregate term structure of demand elasticities. Momentum arises

when there is a build-up in demand shocks over time, ϕ > 1, and when the term structure of

demand elasticities is downward-sloping, (Ēlong-term − Ērecent)/Ērecent < 0. In contrast, mean

reversion in demand shocks, ϕ < 1, and an upward-sloping term structure of elasticities

create reversals in stock returns. This paper’s goal is to quantify the importance of these

two channels for making momentum in equilibrium. To this end, I show how to incorporate

these two channels into an asset demand system in section 3. My estimates suggest that a

downward-sloping term structure of demand elasticities is the primary driver of momentum

returns between 1999 and 2020.

2.5 Foundations of momentum

The framework above shows how stock momentum arises from investors’ dynamic trading. It

distinguishes between underreaction that manifests itself through investors’ demand shocks

and investors’ dynamic response to prices. As I show below, many economic channels op-

erate within these two broad categories. In practice, all of these mechanisms play some

role in making momentum. By remaining agnostic about specific foundations, my empirical

framework can separate the net importance of what lies at the core of creating momentum:

demand shocks vis-à-vis differential responses to price changes across horizons.

First, I outline some theories of why investors would trade in a way that generates mo-

mentum through persistent demand shocks: underreaction to information, slow information

diffusion, self-attribution bias, and earnings extrapolation. Second, I highlight theories that

shape the term structure of demand elasticities: the evolution of arbitrage intensities across

horizons, learning from prices, and the disposition effect.
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2.5.1 Persistent demand shocks

Underreaction to information. Persistent demand shocks are the first mechanism

through which my model can generate momentum. Some models create persistent demand

shocks through underreaction to information, as in Chan, Jegadeesh, and Lakonishok (1996).

Investors initially only partially react to earnings surprises. Over time, however, they in-

creasingly incorporate the news into their demand, leading to a drift in prices. In the data,

this gradual adjustment leads to persistence in demand shocks, as modeled in section 2.2,

with ϕ > 1.

Slow information diffusion. A similar example is slow information diffusion by

newswatchers in Hong and Stein (1999). When some but not all investors receive private

signals, then the initial total response to fundamental news is weak, underreaction. This

aggregate underreaction is more pronounced if early informed investors cannot strategically

front-run the demand from investors who receive the signal later. Then, as information slowly

spreads, more investors respond, generating price drifts: momentum. Aggregated into one

investor, this is the same mechanism as for underreaction to information. However, these

channels differ in whether underreaction occurs within one investor or spread across many.

Self-attribution bias. Biased confidence dynamics, as in Daniel, Hirshleifer, and Sub-

rahmanyam (1998) or Luo, Subrahmanyam, and Titman (2020) can also create time-series

patterns in returns that resemble momentum. Investors get asymmetrically more confident

when their views are validated. In particular, an investor who initially receives a positive

private signal and invests will subsequently, following a positive public news release, overreact

and invest too much. This overreaction stems from self-attribution bias: Investors update

their positions more aggressively if observed signals align with their prior beliefs. This ex-

ample of delayed overreaction leads to momentum because, more often than not, a change in

demand is followed by another demand change: persistet demand shocks.
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Earnings extrapolation. Extrapolation of fundamentals, for example, earnings or cash

flows, can also create persistence in demand shocks. This happens in models like Barberis,

Shleifer, and Vishny (1998) when investors underreact to earnings shocks because they mis-

takenly believe the shock to be mean-reverting, or in more recent work by De La O and

Myers (2021) and Bordalo et al. (2022). However, earnings extrapolation differs from return

extrapolation, which, as I show below, creates momentum through the term structure of

demand elasticities. Therefore, my framework can be used to contrast the distinct roles of

extrapolation based on fundamentals and prices.13

2.5.2 Term structure of demand elasticities

Arbitrage across horizons. Non-flat term structures of demand elasticities can arise

from segmentation in arbitrage activity across different horizons. Section 2.3 outlined a

model in this spirit. When two sets of arbitrageurs operate at different frequencies and differ

in their aggregate willingness to absorb shocks, then prices will generally vary as the asset

changes hands from being owned by the shorter-horizon to the longer-horizon arbitrageur.

In particular, if short-horizon arbitrageurs are relatively more willing to absorb shocks, then

the term structure of demand elasticities is downward-sloping. Specifically, long-horizon

arbitrageurs might be less inclined to absorb shocks because of limits to arbitrage (e.g.,

Shleifer and Vishny, 1997): They might have to take on more long-run fundamental risk or

might be subject to funding frictions resulting from a misalignment between the investment

horizon of their assets compared to the maturity structure of their liabilities.

Learning from prices. The model of Hong and Stein (1999) features momentum traders

alongside newswatchers. Momentum traders are investors who use past returns as a signal

for future expected returns,14 which is informative due to the slow information diffusion of

13McCarthy and Hillenbrand (2021) entertain the possibility of both return- and cash flow extrapolation
and time-varying risk aversion as potential drivers for stock market fluctuations. In their estimates, they
ascribe approximately equal roles to each of them.

14A conceptually related yet less rigorous version of learning from past prices is outright positive-feedback
“trend-chasing” behavior, as in Long et al. (1990).
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newswatchers’ private information. In the model, momentum traders cannot post demand

curves conditional on prices in the style of Grossman and Stiglitz (1980) and, therefore,

only learn from past prices. Thus, the behavior of momentum traders is inelastic at short

horizons, Erecent = 0, and, due to the learning channel, exhibits negative elasticity to longer-

term variation in prices, Elong-term < 0. This combination of zero recent elasticity and neg-

ative longer-term elasticity generates a downward-sloping term structure of elasticities (i.e.,

Erecent > Elong-term) and hence, momentum in stock returns.1516 More generally, learning from

prices leads to more inelastic demand (Haddad, Huebner, and Loualiche, 2022), especially

for uninformed investors who cannot distinguish between information and noise in prices

(Davis, Kargar, and Li, 2022).1718 To the extent that learning from prices is instantaneous

and long-lasting, it shifts elasticities at all horizons up or down but does not create differen-

tial behavior in relative terms. However, there are many examples of deviations from these

assumptions. First, Davis (2021) argues that across many canonical portfolio choice models

(e.g., Brandt, Santa-Clara, and Valkanov, 2009), investors learn about expected returns from

past returns but do not post demand curves that enable learning from current equilibrium

prices (e.g., Grossman and Stiglitz, 1980; Veldkamp, 2011). Second, past returns can enter

belief formation through weights that are not constant across time. Richer term structures

of elasticities represented through more than two elasticities could model such patterns in

belief-formation weights. Non-constant weights in belief formation can occur rationally when

investors learn about moving targets (e.g., Collin-Dufresne, Johannes, and Lochstoer, 2016).

Alternatively, it can reflect a wedge between subjective and objective expectation formation,

for example, when investors’ lived experiences decay slowly (Malmendier and Nagel, 2011,

2016; Nagel and Xu, 2022) or as the consequence of investors extrapolating past returns (Bar-

15More precisely, momentum traders exacerbate the price drift caused by slow information diffusion. Re-
latedly, Hong, Lim, and Stein (2000) show that momentum strategies work better for stocks with slow
information diffusion, as proxied by less analyst coverage and smaller firm size.

16Lou and Polk (2021) show that the larger the momentum crowd, that is, the more momentum traders
there are, the more prices overshoot fundamentals and revert subsequently.

17See Adam and Nagel (2022) for a review of the role of expectation formation in asset pricing.
18Consistent with this idea, the pass-through from exogenous variation in prices to investors’ expected

returns (Charles, Frydman, and Kilic, 2022; Chaudhry, 2022) and portfolios (Giglio et al., 2021) is weak.
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beris and Shleifer, 2003; Greenwood and Shleifer, 2014; Barberis et al., 2015, 2018; Cassella

and Gulen, 2018).19 Notice how in contrast to earnings extrapolation, which in the above

framework works through persistent demand shocks, return extrapolation affects the term

structure of demand elasticities.

Disposition effect. As a final example, Grinblatt and Han (2005) show that the dispo-

sition effect, investors’ tendency to sell winners too early and losers too late, can generate

momentum in stock prices. Consider a setting in which investors’ demand has a rational com-

ponent based on deviations of equilibrium prices from fundamental values but also features

deviations of equilibrium prices from some perceived reference prices, their cost bases. This

corresponds to a demand function with two elasticities. As long as the reference price corre-

sponds to past stock prices, it is equivalent to two elasticities for different time horizons. To

align the time horizons with momentum frequencies, consider the stock price from one quar-

ter ago as the reference price. Then investors overreact to recent price changes; that is, they

are more elastic to variation in prices over the most recent quarter, Erecent > Elong-term, which

corresponds to a downward-sloping term structure of elasticities and generates momentum.

3 Estimating Dynamic Trading

In this section, I estimate the two channels that create momentum in equilibrium: the evo-

lution of demand shocks and the term structure of demand elasticities. I start by putting

forth a demand system in the style of Koijen and Yogo (2019) that accounts for equilibrium

and incorporates both demand shocks and the term structure of demand elasticities. Then,

I introduce a novel identification strategy for demand estimation in the presence of dynamic

trading and implement it for all institutional investors in the U.S. stock market between 1999

19As emphasized by Da, Huang, and Jin (2021), extrapolation models generate reversals because the impact
of past shocks decays over time. However, they differ in terms of their ability to generate momentum based
on whether investors’ response to past returns is hump-shaped across horizons. This occurs when investors
do not immediately incorporate returns into belief formation. Once they do, their impact starts to decay.
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and 2020.

3.1 Quantitative model

Investor demand. Unlike in the model from section 2, investors choose portfolios of stocks.

Koijen and Yogo (2019) show that a logit of portfolio weights is a good way of modeling

portfolio choice, as it ensures that portfolio weights for each investor sum to 1 and allows

for substitution across assets.20 I follow this approach. In particular, I use a log-linear

specification to model portfolio weights relative to an outside asset 0, log (wit(n)/wit(0)),

where wit(n) indexes the investor i’s portfolio weight in stock n at time t. The resulting

portfolio demand is

log
wit(n)

wit(0)︸ ︷︷ ︸
demand

= (1− Erecent,i) ∆pt(n)︸ ︷︷ ︸
contemporaneous elasticity

+(1− Elong-term,i)

(
3∑

s=1

∆pt−s(n)

)
︸ ︷︷ ︸

dynamic elasticity

+ d0it + d′1iXt(n)︸ ︷︷ ︸
characteristics demand

+ ϵit(n).︸ ︷︷ ︸
latent demand

(19)

The first two components of the demand system capture price-elastic demand: when the

price of an asset rises, investors’ demand for it decreases. The larger the elasticities, the

more aggressive is the investor in trading against prices. In contrast to previous studies, I

allow investors to respond differentially to recent and longer-term variation in prices, which

is captured through two separate parameters, Erecent,i and Elong-term,i. When an investor

has Erecent,i > Elong-term,i, I say that this investor has a downward-sloping term structure of

elasticities. In order to align my elasticity estimates with the time horizons in the momentum

literature (Jegadeesh and Titman, 1993), I separate the price change over the last year into

the most recent quarter and the three preceding quarters. That is, I model the demand as

of December 31 as a log-linear function of the return between October and December 31

(the contemporaneous price-elastic demand), and the return between December 31 of the

20Koijen and Yogo (2020) allow for more flexible substitution patterns across countries and asset classes.
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previous year and October 31 (the longer-term price-elastic demand). In the estimation, I

impose downward-sloping demand curves for the contemporaneous elasticity, Erecent,i ≥ 0,

which is necessary for the decomposition of section 4 (Koijen and Yogo, 2019). However, I do

allow negative longer-term elasticities to capture learning from past prices, or trend-chasing

more generally, as is the case for momentum traders in Hong and Stein (1999).21

The third component of the demand function is d0it + d′1iXt(n) and captures investor-

specific functions of common stock characteristics. I include book equity, profitability, in-

vestment, and dividend yield. These characteristics can be used by investors to form beliefs

about firm fundamentals and expected returns. Finally, latent demand captures unobserved

demand shocks. Such shocks may correspond to private information, but could also capture

investor tastes or noise trading.

My model does not, strictly speaking, nest the constant elasticity model of Koijen and

Yogo (2019), because I do not allow for flexible long-term elasticities beyond the horizon of

one year. Instead, I assume that long-term elasticities are 1 across investors.22

Investor assets. While the assets-under-management process is less important for the

estimation of investor portfolio demand, it does play a role in counterfactuals: If the return

to an asset an institution holds had been different, the evolution of its asset dynamics would

have changed as well. Therefore, I partially endogenize the asset dynamics of institutions.

That is, I separate out the portions of asset dynamics that are endogenous through portfolio

returns from a flow component, which I consider invariant to the equilibrium. This is unlike

previous papers in the demand-system literature, which treat the evolution of an institution’s

21One might be concerned that downward-sloping term structure of elasticities estimates might simply be
the result of allowing negative elasticities with respect to long-term but not recent returns. If that were the
case, I should find strongly negative elasticity term structures among the initially inelastic investors. This is
counterfactual to the estimation results depicted in Figure 1, and therefore unlikely to pose an issue.

22In an alternative specification, I consider subtracting prices from the left-hand side of equation (19) and
omit the ones as parts of the contemporaneous- and dynamic elasticity terms. This would correspond to
setting investors’ unmodeled long-term elasticities to zero. However, it would generate strong momentum
at long horizons, which is counterfactual to long-term overreaction and reversal (e.g., De Bondt and Thaler,
1985). Therefore, I use a long-term target elasticity of 1, which is slightly higher than the average elasticities
estimated in Koijen and Yogo (2019).

22



assets under management as exogenous.

Ait = Ait−1 (1 + fit + wit−1(n)
′∆pt(n)) , ∀i. (20)

The assets under management Ait of institutions in equation (20) are functions of past

assets Ait−1, flows fit and equilibrium portfolio returns wit−1(n)
′∆pt(n).

23

Equilibrium returns. Equilibrium returns are determined as market-clearing returns,

solving the equilibrium of individual demands. Normalizing the number of shares to 1,

the market-clearing equation for the log equilibrium return is

∆pt(n) = pt(n)− pt−1(n) = log

( ∑
i Aitwit(n)∑

i Ait−1wit−1(n)

)
, ∀n, (21)

where the portfolio weight wit(n), and thus the right-hand-side of equation (21), is decreas-

ing in the return ∆pt(n).
24 This guarantees the existence of equilibrium for the decomposition

in Section 4.1.25

Momentum from dynamic investor trading. As I demonstrated in section 2, the model

can generate momentum from two dimensions of investor trading. First, momentum is gen-

erated from investors with a downward-sloping term structure of elasticities. These are

investors who react to prices in a more aggressively contrarian way at short horizons, but

23Unlike for mutual funds, exact flows and returns for institutions are not readily available in the data. I
manually separate them by making an assumption about the timing of portfolio changes between quarter-end
cutoff dates: I assume that institutions keep their quarter-end holdings until just before the next quarter-end.
Under this assumption, I can separate out an institution’s portfolio return w′

it−1∆pt(n) and reverse-engineer
inflows as fit ≡ (Ait −Ait−1) /Ait−1 − w′

it−1∆pt(n).
24Technically, there is also the wealth effect from equation (20). As I show in Appendix B.3, this effect

can, in principle, generate negative elasticities for passive investors with concentrated portfolios. Practically,
however, I do not find this to be of issue. In particular, in counterfactual exercises my numerical algorithm
converges to an equilibrium within few iterations.

25For uniqueness of the equilibrium, there needs to be at least one non-passive investor with Erecent,i > 0
(Haddad, Huebner, and Loualiche, 2022) in the stock. The condition is satisfied for every stock at each time.
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subsequently become less aggressive. In the data, I find strong support for this mechanism,

which could reflect the dynamics of arbitrage, price-chasing behavior, or learning from past

prices.

Second, there is the evolution of demand shocks, ϵit(n). This is the component of the

demand system that captures many theories of underreaction. For example, when an investor

receives a private signal, she will incorporate it into her latent demand. But if initially, she

does not fully incorporate the information into her demand, then there will be persistence in

her demand shocks, which is underreaction. Latent demand will capture both the dynamics of

underreaction within the same investor across time and underreaction “in aggregate”, which

occurs when a demand shock of some investor predicts future shocks of others. That is,

underreaction can occur within the same investor, but it can also occur when some investor

has early access to information, and information diffusion is slow (Hong and Stein, 1999).

Either way, it generates persistence in aggregate latent demand.

3.2 Data

I follow Koijen and Yogo (2019) and Haddad, Huebner, and Loualiche (2022) in obtaining

stock-level data and data on portfolio holdings for the U.S. stock market. Data on stock

prices, returns, dividends, and shares outstanding are from CRSP, and book equity, prof-

itability, and investment are from COMPUSTAT.

In addition, I source data on institutional investors’ portfolio holdings between Q4 1999

and Q4 2020 from regulatory 13F filings available on the SEC EDGAR website using the

method of Backus, Conlon, and Sinkinson (2019, 2020). Institutions with at least $100mn in

assets under management are required to file quarterly reports of their entire stock positions

to the SEC, which sums to a total coverage of about 80% of total U.S. stock market capi-

talization. I follow Koijen and Yogo (2019) in grouping the remainder in an investor that I

label the household sector.26

26I use the term “household sector” in a slight abuse of language, as it captures direct household holdings
alongside, for example, holdings by small institutions below the reporting threshold.
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Finally, I obtain mutual fund data from the CRSP Survivor-Bias-Free US Mutual Fund

Database. It contains information on mutual fund flows, returns, and holdings,27 all used to

construct the instrument for returns: flow-induced trading (Lou, 2012).

3.3 Identification

3.3.1 Identification problems

By substituting portfolio demand (equation (19)) into market-clearing (equation (21)), one

can immediately see that latent demand affects equilibrium returns: positive demand shocks

put upwards-price pressure on prices. Moreover, demand shocks may be correlated across

investors. Both lead to mechanical correlation between returns and latent demand, i.e.

cov (ϵit(n),∆pt(n)) ̸= 0, and therefore introduce a bias in estimating the real-time elasticity

Erecent,i, which is the investor’s response to the return ∆pt(n), via OLS. This is the standard

simultaneity issue common to any setting of demand estimation. Below, I introduce an in-

strument that allows me to disentangle an investor’s response to contemporaneous returns

from their demand shocks.

But first, there is also a dynamic simultaneity issue specific to my setting. To see this,

think of an investor with an underreaction type of demand shock. For example, at time t− 1

an investor, Elon, receives a positive private signal and buys some shares of Tesla. At time

t, he buys even more.28 In such a setting, it is difficult to disentangle investors’ dynamic

responses to the shock from the dynamics of the shock itself. Investor demand correlates with

longer-term price changes, but is that because of the response we want to identify — how

investors react to long-term returns — or because of investors reacting to Elon’s additional

buying of Tesla stock at time t? More formally, consider the moment condition under a valid

instrument for returns, with ∆̂pt(n) denoting instrumented returns:

27Like Dou, Kogan, and Wu (2020), I use the CRSP mutual fund holdings data as of Q3 2008, but the
Thomson Reuters Mutual Fund Holdings Data prior to that date.

28Slow trading by insiders can be optimal in models in which insiders try to conceal their private information
(e.g., Kyle, 1985).
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Ei

[
ϵit(n)|Xt(n), ∆̂pt(n),

3∑
s=1

∆pt−s(n)

]
= 0, ∀i (22)

This moment condition requires that latent demand ϵit(n) would have to be uncorre-

lated with the past returns ∆pt−1,∆pt−2, and ∆pt−3. However, past returns are themselves

equilibrium objects and have to satisfy the market clearing equations at time t − 1, t − 2,

and t− 3, respectively. By the exact same argument as for the standard simultaneity issue,

cov (ϵit−1(n),∆pt−1(n)) ̸= 0. This implies that the only way that ϵit(n) can be orthogonal to

∆pt−1(n) is if latent demand itself is uncorrelated across time, i.e. cov(ϵit(n), ϵjt(n)) = 0,∀j.

However, the assumption of uncorrelated demand shocks across time is rejected both by the

data and conceptually, as it rules out any momentum- or reversal generating persistence of

demand shocks.

The dynamic simultaneity issue reflects a combination of persistent demand shocks and

classic simultaneity issues. In order to solve it and identify investors’ response to longer-term

variation in returns, Elong-term,i, I proceed in a way that is analogous to solving the classic

simultaneity problem: I isolate exogenous variation in longer-term price changes through an

instrument orthogonal to ϵit(n). Assuming a valid instrument for longer-term returns, the

moment condition then weakens to

Ei

[
ϵit(n)|Xt(n), ∆̂pt(n),

3∑
s=1

∆̂pt−s(n)

]
= 0, ∀i. (23)

3.3.2 Instruments for recent and long-term returns

I proceed by introducing instruments for recent and longer-term returns. My instrument for

recent returns is based on mutual fund flow-induced trading from Lou (2012).29 The idea

29Flow-induced trading can be viewed as a generalization of mutual fund fire sales induced flows as in
Coval and Stafford (2007).
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of this instrument is that when mutual funds face redemptions, they are forced to partially

liquidate their holdings. Assuming that funds sell proportional to their past holdings, a

mutual fund’s flows will generate cross-sectional variation in price pressure proportional to

the fund’s holdings.30 The instrument then aggregates this flow-induced price pressure across

funds on the stock level.

FITt(n) ≡
∑
j

Ajt−1wjt−1(n)

Pt−1(n)
fjt =

∑
j

ojt−1(n)fjt (24)

Equation (24) shows the definition of flow-induced trading more formally. Subscript j

captures mutual funds, which is in contrast to before when variables were defined on the

institution level more broadly. Pt−1(n) captures the t − 1 market capitalization of stock n,

fjt are the net inflows fund j received between t− 1 and t, and ojt−1 captures the share fund

j holds of stock n at time t− 1.

Appendix section B.2 derives equation (24) by starting at the market clearing equation

for returns (21), and making three adjustments to avoid sources of endogeneity: (i) replacing

endogenous assets Ajt by Ajt−1(1+fjt), (ii) replacing current portfolio weights wjt(n) by past

weights wjt−1(n), and (iii) filtering from the set of all investors to mutual funds only. The

latter is due to the availability of mutual-fund flow data, which is not the case for all financial

institutions more generally. On the flip side, the variation that the instrument does use comes

from mutual fund flows and past mutual-fund ownership: Stocks that last period were owned

by mutual funds that subsequently received a lot of inflows have high flow-induced trading.

The key identification assumption is that mutual-fund flows are uncorrelated with latent

demand. Yet, there is robust evidence that mutual fund flows follow past fund performance.

For example, retail investors might use past fund returns to learn about fund manager skill.31

30Mutual funds could smooth in- and outflows through cash holdings, or not scale holdings up or down
proportionally. Lou (2012) shows that indeed the pass-through of redemptions to proportional selling is close
to 1 for 1, but somewhat lower for inflows, where only about 60 to 80 cents of each inflow dollar are used to
scale up existing holdings.

31Early empirical evidence of the flow-fund relationship include Ippolito (1992), Chevalier and Ellison
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Could the flow-performance relation potentially induce correlation between fund flows and

latent demand? Yes, because as I have argued above in the context of the dynamic simul-

taneity issue, persistent demand shocks can lead to correlation between between ϵjt(n) and

past returns. In order to overcome the identification problem posed by the fund-performance

relation, I orthogonalize mutual fund flows with respect to past fund performance and past

fund flows. That is, I regress quarterly mutual fund flows on the fund flows and fund perfor-

mance of the four proceeding quarters, and extract orthogonalized flows f̃jt. The regression

results are shown in Appendix Table IA.1.32 Controlling for past fund performance and past

flows allows me to isolate exogenous components of mutual fund flows. I then construct

orthogonalized flow-induced trading, F̃ IT t(n), analogously to before:

F̃ IT t−1→t(n) ≡
∑
j

ojt−1(n)f̃jt (25)

In addition to the instrument for contemporaneous returns, I also require an instrument

for longer-term returns,
∑3

s=1∆pt−s(n). I proceed analogously to above, and define the

instrument for longer-term returns as

F̃ IT t−4→t−1(n) ≡
∑
j

ojt−4(n)
(
f̃jt−3 + f̃jt−2 + f̃jt−1

)
. (26)

Relevance condition. Table 1 shows the results from first-stage regressions of recent

and longer-term returns onto recent and longer-term flow-induced trading. In particular,

columns 1 and 2 show first-stage results for current returns, while columns 3 and 4 focus on

momentum-frequency returns. Columns 1 and 3 use raw FIT as proposed by Lou (2012).

(1997), and Sirri and Tufano (1998). Berk and Green (2004) is an example of a rational model that incorporate
retail investors learning about mutual fund skill.

32I use specification 2 from Appendix Table IA.1, which introduces time-fixed effects to control for time-
series variation in aggregate flows.
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Table 1. Relevance conditions for the recent and longer-term return
instruments.

Return pt − pt−1 Past Return pt−1 − pt−4

(1) (2) (3) (4)

FITt−1→t(n) 1.399*** 1.430***
(0.233) (0.310)

FITt−4→t−1(n) -0.354*** 1.396***
(0.095) (0.207)

Orthogonalized F̃ IT t→t−1(n) 1.576*** 0.338
(0.285) (0.396)

Orthogonalized F̃ IT t−4→t−1(n) -0.280* 2.298***
(0.130) (0.197)

Date Fixed Effects Yes Yes Yes Yes
Controls Yes Yes Yes Yes

N 257,941 257,941 257,941 257,941
R2 0.216 0.216 0.137 0.136
F 22.000 24.169 49.638 56.982
F -test p value 0.000 0.000 0.000 0.000

Table 1 reports first-stage regressions of returns over the most recent quarter, pt−pt−1, and the three preceding
quarters, pt−1 − pt−4, onto flow-induced trading instruments between 1999 and 2020. Specifications (1) and
(3) use flow-induced trading, as defined in equation (24), based on Lou (2012). Specifications (2) and (4)
employ the enhanced instruments, as defined in equations and (25) and (26). That is, they are based on
mutual-fund flows orthogonalized with respect to past fund flows and fund returns. All specifications use
date-fixed effects and control for cross-sectionally de-meaned and standardized stock characteristics: log book
equity, profitability, investment, and dividend yield. Standard errors are 2-way clustered by date and stock.

In contrast, columns 2 and 4 use my orthogonalized flow-induced trading measures, which

constitute the basis for my empirical findings. All regressions include time-fixed effects and

controls for profitability, investment, book equity, and dividend yield.

Across all regressions, the F statistic is above 10, and instruments are strongly statis-

tically significant based on standard errors that are two-way clustered by date and stock.

Coefficients on returns at the same horizon range between 1.4 to 2.3. A coefficient of 1 would

be interpreted as a flow-induced inflow of 1% to a stock predicting a 1% return of the same

stock.

The orthogonalized instruments in columns 2 and 4 cleanly separate instrumenting for
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longer-term and recent returns. While this does not constitute a formal test of the exclusion

restrictions, it is nevertheless reinsuring because it suggests the instrument is only correlated

with returns at the same horizon. Otherwise, one could be worried that the instrument does

not affect demand based on the price-pressure channel described above but because it is

correlated with expected returns going forward. However, that does not appear to be the

case in terms of longer-term returns.

I use the approach of Two-Sample Two-Stage Least Squares (Arellano and Meghir, 1992;

Angrist and Krueger, 1992), meaning I estimate the first- and the second stage from different

samples. This constitutes a deviation from Koijen and Yogo (2019) and Koijen, Richmond,

and Yogo (2020), who estimate both within an investor’s investment universe, defined as

stocks the investor has held within the past three years.33 However, investors might not only

use stocks they held in the past in their formation of expected returns, which is connected to

the first stage. Consequently, I relax this assumption and allow investors to learn from the

entire cross-section of stocks, irrespective of which stocks they hold or are in their investment

universe. Yet I do follow Koijen and Yogo (2019) in estimating the second stage within an

investor’s investment universe, as for many investors, the portfolio weights in most stocks are

zero.

My approach has an additional, more practical advantage. Exogenous yet relevant in-

struments for returns that are readily available for all stocks at all times are rare, especially

for investors who hold relatively few stocks and have short time series of data available to

begin with. Using the full panel of stocks and time in the first stage, I can satisfy relevance

conditions without excluding or grouping investors with few observations.

33This approach has a potential identification issue coming from investors’ investment universes being
potentially larger than identified from past holdings, with investors endogenously not holding certain stocks.
Under such a model, the stocks with low expected returns within the investment universe will be omitted
from the formation of expected returns in the first stage.
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3.4 Estimates

I estimate the model between 1999Q4 and 2020Q4 for each institution using a panel ap-

proach.34 That is, for each institution I obtain one estimate for the recent elasticity Erecent,i

and longer-term elasticity Elong-term,i.

Figure 1 visualizes my estimates for recent and long-term elasticities through a scatterplot.

Each point represents an institution with recent elasticity Erecent,i on the x-axis and longer-

term elasticity Elong-term,i on the y-axis. The black dashed line has intercept zero and slope 1,

meaning that any institution below the line has Elong-term,i < Erecent,i, or a downward-sloping

term structure of elasticities. The thick blue line is a fitted trend line based on a cubic

regression.

As the smoothed blue line indicates, for institutions with recent elasticity Erecent,i below

2.5, recent and longer-term elasticity are on average the same. Consequently, for low elasticity

institutions, the term structure of elasticities is approximately flat. The types of institutions

in this corner of the figure would include large institutional asset managers such as Fidelity

who have elasticities close to zero across horizons (Haddad, Huebner, and Loualiche, 2022).

Notably, the residual household sector also falls into this sector.

To the right of a real-time elasticity of 2.5, the trend line diverges from slope 1. Such

institutions, on average, have downward-sloping elasticity term structures with Elong-term,i <

Erecent,i. This class of institutions broadly captures arbitrageurs, who initially are willing to

respond very elastically to shocks. Subsequently, however, they are less willing to do so, as

captured by their downward-sloping elasticity term structures. In section 4.2, I show that

this behavior is a major driver of momentum in the cross-section of stocks.

As of Q1 2016, about a third of institutions have elasticities above 2.5, representing

about 48% of assets under management, and including large asset management firms such

as Citadel LLC or Berkshire Hathaway. Another example of institutions in this area is AQR

34I follow Koijen, Richmond, and Yogo (2020) and a robustness specification in Haddad, Huebner, and
Loualiche (2022) in using a panel approach. In contrast, other demand-system studies (e.g., Koijen and Yogo,
2019) estimate cross-sectionally and produce separate estimates at each point in time.
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Figure 1. Estimates for elasticities Erecent,i and Elong-term,i

Figure 1 shows a scatterplot of elasticity estimates for elasticities with respect
to price changes over the past quarter, Erecent,i, on the x-axis, and variation over
the three preceding quarters, Elong-term,i, on the y-axis. Each dot represents one
institutional investor in the sample. The solid blue line is a fitted trend line based
on cubic regression, and the black dashed line represents flat term structures
of elasticities, Elong-term,i = Erecent,i. Dots below the dashed line are institutions
with downward-sloping term structures of elasticities. The estimation equation is
equation (19).

Capital Management, one of the strongest proponents of factor investing, and is particularly

active in the spaces of value- and momentum investing.35 As a value investor, AQR seeks

to overweight cheap and underweight expensive stocks: when a stock becomes cheap, AQR

wants to hold more of it. Such a contrarian strategy can be expressed through a high price

35https://www.aqr.com/Insights/Systematic-Investing
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Table 2. Summary statistics for the term structure of elasticities
Elong-term − Erecent

Erecent Elong-term − Erecent
Average 1.93 −0.55

Standard Deviation 2.35 2.12

Quantile 10% 0.00 −2.86

Quantile 25% 0.00 −1.40

Quantile 33% 0.30 −0.97

Median 1.31 −0.33

Quantile 67% 2.29 0.25

Quantile 75% 2.92 0.59

Quantile 90% 4.77 1.52

Table 2 reports summary statistics for the cross-institution distribution of recent elasticities, Erecent, and the
term-structure of elasticities, Elong-term − Erecent, based on estimates of the model described in equation (19)
using data between 1999 and 2020.

elasticity of demand. Indeed, AQR has a real-time elasticity Erecent of 4.15, which in Q1

2016 corresponds to the 85th percentile in the cross-section of institutions. On the flip side,

AQR is also a strong proponent of momentum investing, which can be expressed through

longer-term elasticities lower than recent elasticities. Consistent with this, AQR’s difference

between recent and long-term elasticity, Elong-term−Erecent, is about −1.25, which corresponds

to the 25th percentile across institutions.

Table 2 shows time-series averages of cross-investor summary statistics for real-time elas-

ticities Erecent and differences between real-time and long-term elasticity, Elong-term − Erecent.

Time-series variation of these measures is purely driven by composition effects, as I estimate

one real-time and one longer-term elasticity for each investor, similar to Koijen, Richmond,

and Yogo (2020).

Median and average real-time elasticities are about 1.3−1.9, which is substantially higher
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than constant elasticity estimates from previous asset-demand systems, by a factor of about 3

(Koijen and Yogo, 2019; Gabaix and Koijen, 2020; Haddad, Huebner, and Loualiche, 2022),36

but in line with some estimates from other research designs (e.g., Pavlova and Sikorskaya,

2022).37 Yet all of these are at least three orders of magnitude below the elasticity implied

from a standard frictionless model (Petajisto, 2009).38

Around 25% of investors have recent elasticity Erecent equal to zero.39 On the other side,

about 10% of investors have elasticities above 5.

The difference between recent and long-term elasticity captures the term structure of

elasticities and can drive momentum. When investors are initially willing to trade against

a shock but subsequently leave, the initial price impact of the shock has to increase in

equilibrium. This channel would be parametrized through Elong-term − Erecent < 0, meaning

that investors’ initial response to a shock Erecent is larger than they response Elong-term to a past

shock, which corresponds to a downward-sloping term structure of elasticities. The cross-

sectional average and median differences across investors are about −0.33 to −0.5, meaning

that investors’ responses to past shocks are typically about 25% weaker than their immediate

responses.

There is substantial heterogeneity across investors in how they respond to prices dy-

namically. On the one hand, there are investors with strongly decreasing term structure of

elasticities. For example, the fraction of investors whose elasticity with respect to longer-term

variation in prices is lower than to recent variation in prices, by at least 1, is about 33%. On

the other hand, there are also about 15% of investors whose long-term elasticity is higher

than their recent elasticity by at least 1.

36A notable exception to this is van der Beck (2022), who also uses flow-based identification to find similar
magnitudes for elasticities.

37See Gabaix and Koijen (2020) for a detailed summary of elasticity estimates from the literature.
38Davis, Kargar, and Li (2022) argue that information frictions among uninformed investors can rationalize

inelastic demand curves.
39The estimation procedure imposes that real-time elasticities Erecent have to be non-negative, as otherwise

the existence of equilibrium in the counterfactuals of section 4.1 would not be guaranteed (Koijen and Yogo,
2019).
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3.4.1 Estimates aggregated on stock level

Above I have argued that there is a large degree of heterogeneity in investors’ term structure

of demand elasticities. I use this variation in section 4.2, combined with variation from

ownership structure across stocks. Individual investor heterogeneity aggregates up to stock-

level heterogeneity, based on variation in ownership across stocks. This source of variation

allows me to predict where momentum should be the strongest.

More precisely, I aggregate investor-level recent and longer-term elasticities into an ag-

gregate stock-level elasticity term structure, equivalent to equations (14) and (15):

Ērecent,t(n) ≡
∑
i

oit(n)Erecent,i (27)

Ēlong-term,t(n) ≡
∑
i

oit(n), Elong-term,i (28)

ηt(n) ≡
Ēlong-term,t − Ērecent,t

Ērecent,t
(29)

Here the ownership share oit(n) captures the proportion of shares investor i holds of stock

n at time t, such that Ērecent,t(n) and Ēlong-term,t(n) are the ownership-weighted average real-

time and longer-term elasticities for stock n at time t, respectively. The variable ηt(n) then

captures the aggregate term structure of elasticities in the stock, like in section 2.

Table 3 provides the results of panel regressions of aggregate real-time elasticities

Ērecent,t(n) and term-structures of elasticities ηt(n) onto stock characteristics.

Stocks with a log market capitalization of one standard deviation above average have

recent elasticities Ērecent that are 0.7 standard deviations above average. This is consistent

with the idea that large stocks are more liquid, a common result in the asset-demand system

literature as liquidity and elasticities are conceptually related (Koijen and Yogo, 2019; Had-

dad, Huebner, and Loualiche, 2022). Beyond size, elastic stocks tend to be profitable and

have a low dividend yield.
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Table 3. Aggregate term structures of elasticities and stock character-
istics

Recent Elasticity Elasticity Term Structure

(1) (2)

Log Market Capitalization 0.711*** 0.269***
(0.018) (0.020)

Log Book Equity -0.120*** 0.044*
(0.017) (0.020)

Profitability 0.121*** 0.163***
(0.008) (0.010)

Investment 0.007 -0.015**
(0.005) (0.005)

Dividend Yield -0.210*** -0.111***
(0.012) (0.010)

Date Fixed Effects Yes Yes

N 257,941 257,941
R2 0.395 0.139

Table 3 reports coefficient estimates from panel regression of elasticities onto stock characteristics: log mar-
ket capitalization, log book equity, profitability, investment, dividend yield. The dependent variables are the
aggregate recent elasticity, Ērecent,t(n), in the first column, and the aggregate term structure of elasticities,
ηt(n), in the second column. All variables, including elasticities, are cross-sectionally demeaned and stan-
dardized at each date. Both specifications include date-fixed effects. The sample period is between 1999 and
2000. Standard errors are 2-way clustered by date and stock.

Similarly, stocks with one standard deviation higher log market capitalization tend to have

about 0.25 standard deviations more upward-sloping elasticity term structures. And again,

profitable stocks tend to have increasing elasticity term structures, while high dividend-yield

stocks tend to have more decreasing term structures.

4 Implications for the making of momentum

4.1 Decomposing momentum returns

In this section, I provide a positive account of momentum returns between 1999 and 2020.

I decompose momentum into how much of it results from the persistence of demand shocks
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and how much is due to the term structure of demand elasticities. This is where the asset

demand system provides unique insights due to its ability to account for equilibrium. In the

demand system, observed prices at each point in time are the equilibrium of the individual

behavior of all investors. In other words, by taking all components of the demand system

— stock characteristics (excluding recent equilibrium returns), parameter estimates from

the demand system, including residual latent demand ϵit(n), and investor assets — one can

reconstruct the market clearing equilibrium stock price, or equivalently, equilibrium return.

Next, I evaluate each component’s role in the demand system by tracing their evolution from

time t − 1 to time t, at each step solving for the counterfactual market clearing price, and

combine them into counterfactual momentum portfolio returns based on classic momentum

sorts.

More formally, I follow Koijen and Yogo (2019) in defining a function g that maps time-

invariant demand system estimates θ ≡ {Erecent,i, Elong-term,i, d1i}∀i, longer-term price changes

pt−1 − pt−4, exogenous stock characteristics Xt, and unobserved latent demand ϵt extracted

from the demand system, to market clearing equilibrium price, based on equation (21).40

In other words, the function g determines the equilibrium price pt that is consistent with

individual demand (19), the assets-under-management dynamics (20), and the equilibrium

condition (21).

Equation (30) confirms that observed returns are the difference in market clearing prices

based on the demand system, which is true by definition of the demand-system estimates:

pt − pt−1 = g (pt−1 − pt−4,Xt, ϵt; θ)− g (pt−2 − pt−5,Xt−1, ϵt−1; θ) (30)

= ∆pt(pt−1 − pt−4) + ∆pt(X) + ∆pt(ϵ) (31)

More importantly, the demand system allows me to trace the contribution of each of the

40There are more components to the demand system, for example, the dynamics of asset-under-
management. But since they empirically do not contribute to the making of momentum, they have been
omitted for brevity.
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terms: long-term past returns, stock characteristics, and latent demand, as shown in equation

(31). That is, I update each component of the demand system step-by-step and calculate its

counterfactual returns:

∆pt(pt−1 − pt−4) = g (pt−1 − pt−4,Xt−1, ϵt−1; θ)− g (pt−2 − pt−5,Xt−1, ϵt−1; θ) (32)

∆pt(X) = g (pt−1 − pt−4,Xt, ϵt−1; θ)− g (pt−1 − pt−4,Xt−1, ϵt−1; θ) (33)

∆pt(ϵ) = g (pt−1 − pt−4,Xt, ϵt; θ)− g (pt−1 − pt−4,Xt, ϵt−1; θ) . (34)

Up to this point, I followed Koijen and Yogo (2019) in the definition of counterfactual

returns. But next, I form counterfactual momentum portfolio returns to assess which com-

ponents are responsible for momentum in equilibrium. In particular, I perform standard

momentum sorts as of time t − 1, meaning that I sort stocks into tercile portfolios based

on their performance during the formation period, which is 4 to 15 months before t. Then,

within each momentum-signal tercile, I calculate value-weighted portfolio returns and calcu-

late the long-short of past winners minus past losers between t − 1 and t. Based on t − 1

momentum sorts I calculate long-short returns based on the observed capital gains ∆pt —

observed momentum — and also for each of ∆pt(pt−1 − pt−4), ∆pt(X) and ∆pt(ϵ), corre-

sponding to the portion of momentum driven by the term-structure of demand elasticities,

fundamentals, and demand shocks, respectively.

Table 4 implements the decomposition. First, the term structure of demand elasticities is

the primary driver of momentum between 1999 and 2020. On its own, it would have generated

annualized momentum returns of about 24%. Investors, in aggregate, are more responsive to

recent returns than longer-term variation in prices. They respond relatively more elastically

to a shock over a horizon of one quarter, limiting its impact on prices. However, as investors

subsequently become less willing to continue to absorb the shock, its equilibrium price im-

pact increases, creating momentum. Second, demand shocks are generally mean-reverting,
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Table 4. Decomposition of momentum returns

Momentum Decomposition

Annualized Return (1999-2020) Elasticities Fundamentals Demand Shocks

2.09% 24.65% 22.11% −45.71%

Table 4 decomposes total annualized momentum returns between 1999 and 2020 into contributions from the
term structure of demand elasticities in column 2, the evolution of demand for fundamentals in column 3,
and the persistence of demand shocks in column 4. All reported numbers represent annualized momentum
returns.

capturing overreaction rather than underreaction and leading to reversal that undoes most

momentum originating from the term structure of elasticities. This is consistent with the

overall low momentum returns of about 2% over the sample period, consistent with ideas of

anomaly attenuation (Chordia, Subrahmanyam, and Tong, 2014). These two observations

could potentially be related if the decline of overall momentum profitability is the result of less

persistent demand shocks. For example, Martineau (2021) provides evidence that the post-

earnings announcement drift (e.g., Bernard and Thomas, 1989, 1990), a common example of

underreaction, has recently disappeared. Third, we can split the impact of baseline demand

into the part coming from unobserved demand shocks and the demand for stock characteris-

tics. The component capturing momentum from fundamentals strongly contributes toward

momentum. This behavior could be driven by fundamental stock characteristics drifts, such

as earnings momentum (Chordia and Shivakumar, 2006). But then rational investors should

take such drifts in fundamentals into account when forming their beliefs. An alternative

explanation is that the demand for characteristics and latent demand are related, generating

a specific form of underreaction. Similar to Novy-Marx (2015), the observed behavior is con-

sistent with past latent demand predicting future stock characteristics that enter investors’

demand functions: In the demand system, this mechanism generates both mean-reversion in

latent demand and momentum due to investors’ demand for fundamentals. Overall, however,

mean reversion prevails.
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4.2 Demand-system enhanced momentum returns

In the previous section, I showed that the evolution of investor responses to demand shocks

is the primary driver of momentum in the cross-section of stock returns. Next, I incorporate

this finding into forming a “demand-system enhanced” momentum strategy.

More precisely, I use cross-sectional variation in stock ownership across stocks to predict

in which stocks momentum strategies are most profitable.41 In stocks disproportionally held

by momentum-generating investors, that is, investors with downwards-sloping elasticity term

structures, the price impact of past shocks gets exacerbated over time. This generates positive

serial correlation in stock returns and, thus, stock momentum.

I sort stocks in the cross-section based on their aggregate elasticity term structure ηt(n)

from section 3.4.1, and then test if momentum strategies’ profitability varies based on these

sorts. In the context of Table 5, I first sort stocks into two categories based on whether they

are above or below the time t cross-sectional median of aggregate stock-level elasticity term-

structures, ηt(n). Then, within each category, I separately implement momentum strategies.

That is, I sort stocks into terciles based on past performance between months t− 12 to t− 1,

and build portfolios that go long past winners, and short past losers.

Columns 1 to 4 of Table 5 exhibit returns to momentum strategies that value-weight

both the long and short legs, while columns 5 to 8 equal-weight returns. The first and fourth

column show returns to a standard momentum strategy in all stocks, irrespective of their term

structure of elasticities. Momentum returns are generally for the sample period from October

1999 to December 2020: Momentum returns range from an annualized 0 to 5%, depending

on whether they are value- or equal weighted, and on whether they average returns or α with

respect to standard factor models. These low momentum returns are generally consistent

41There are many examples of the importance of ownership structure for returns: Gompers and Metrick
(2001) argue that the attenuation of the size premium is partially driven by institutional ownership. Antón
and Polk (2014) show that common stock ownership affects stock return correlations. Rzeźnik and Weber
(2022) demonstrate that fire sales only generate price pressure in the absence of specialized investors. More
generally, intermediary ownership drives returns (Adrian, Etula, and Muir, 2014; He, Kelly, and Manela,
2017; Kargar, 2021), especially for heavily intermediated asset classes (Haddad and Muir, 2021; Eisfeldt
et al., 2022).
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Table 5. Momentum returns sorted by term structure of elasticities η

All Stocks Low η High η Lo−Hi All Stocks Low η High η Lo−Hi

Average Returns: Value Weighted Average Returns: Equally Weighted

2.09 6.11 −0.72 6.82∗∗ 1.87 3.87 0.08 3.79∗∗

(4.04) (4.26) (4.31) (3.43) (4.41) (4.62) (4.23) (1.77)

Fama-French 3 Factor α: Value Weighted Fama-French 3 Factor α: Equally Weighted

5.51∗ 10.09∗∗∗ 2.45 7.64∗∗ 5.33 7.33∗ 3.77 3.56∗∗

(3.07) (2.98) (3.88) (3.68) (3.76) (3.99) (3.56) (1.81)

Carhart 4 Factor α: Value Weighted Carhart 4 Factor α: Equally Weighted

0.40 4.86 −2.16 7.03∗ 0.41 2.16 −0.83 2.98

(1.82) (3.56) (1.76) (4.07) (1.57) (2.31) (1.24) (2.07)

Table 5 reports the returns to momentum strategies, where the long leg consists of the tercile of winners
during the formation period and the short leg of the tercile of losers during the formation period. The four
left columns report the returns to value-weighted momentum portfolios, while the four right columns use
equal weighting. Columns 1 and 5 look at the performance of momentum among all stocks. Columns 2 and
6 filter to stocks with a term structure of elasticity η that is more steeply decreasing than the cross-sectional
median. Columns 3 and 7 use stocks not used in columns 2 and 6, and columns 4 and 8 report their difference.
The first panel reports average returns, while the second and third panels show the anomaly α with respect
to the Fama and French (1993) and Carhart (1997) factor models. The sample period is from 1999 to 2020.
Standard errors are estimated using Newey-West with 12 lags. ∗ ∗ ∗, ∗∗, and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

with ideas of anomaly attenuation as in Chordia, Subrahmanyam, and Tong (2014).

However, there is substantial variation in momentum returns based on elasticity-term

structures ηt(n): Momentum returns are more pronounced in low elasticity-term structure

stocks (columns 2 and 6) relative to momentum returns based on the entire universe of stocks

by an annualized 4% value-weighted (2% value-weighted). Consistent with this, momentum

returns are only economically and statistically significant within low η stocks after controlling

for risk as captured by the Fama-French 3 Factor model (Fama and French, 1993). This

corresponds to the idea of an “enhanced momentum strategy”: Instead of implementing a

momentum strategy based on the past performance of the entire universe of stocks, limiting
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the universe of stocks to those that are more prone to exhibit momentum – low elasticity

term-structure stocks – produces superior risk-adjusted performance.

Across specifications, stocks with low η, i.e., stocks with more decreasing elasticity-term

structures, have higher momentum returns by about 7% value-weighted (column 4), and 3.5%

equally weighted (column 8). Appendix Table IA.2 shows the robustness of these results in

a battery of additional tests involving variations on the construction of momentum and

elasticity term-structure portfolios and size controls, which are designed to capture issues

related to illiquidity.42 Moreover, these Lo-Hi differences remain constant irrespective of the

choice of factor model they are evaluated against. This finding suggests a new strategy:

Going long momentum in low η stocks and going short momentum in high η stocks, which

are expected to feature reversal rather than momentum. Conceptually, this idea is similar

to combining elements of momentum and reversal strategies. In fact, it is equivalent to

combining a momentum strategy in high η “momentum stocks” with a reversal strategy

in low η “reversal stocks”. However, unlike Asness, Moskowitz, and Pedersen (2013), who

combine momentum with long-term reversal, I separate stocks based on their momentum- or

reversal properties at the same horizon.

The finding that the difference in returns of momentum strategies between low and high

elasticity- term structure stocks remains constant across choices of factor models is particu-

larly striking in the context of the Carhart 4 factor model (Carhart, 1997), which contains

a momentum factor. It suggests that the variation in momentum strategy returns based

on elasticity-term structures is not merely the result of recovering stocks with high βMom,

that is, a high factor-beta with respect to the momentum factor, but instead can point at

42First, illiquidity and informational efficiency are particularly relevant for small stocks (Lo and MacKinlay,
1990; Jegadeesh and Titman, 1993; Lakonishok, Shleifer, and Vishny, 1994; Hong, Lim, and Stein, 2000). To
see the impact of small stocks, one of the robustness checks in Appendix Table IA.2 looks at the profitability
of momentum across the size distribution and shows that my results are robust to conditioning on size.
Second, Haddad, Huebner, and Loualiche (2022) show that elasticities are empirically related to measures of
liquidity: stocks with low elasticities tend to be more illiquid. This raises the concern that dividing by the
aggregate real-time elasticity in equation (27) emphasizes illiquid stocks. Consequently, one of the robustness
checks in Appendix Table IA.2 considers sorting on the absolute instead of the relative difference between
Ērecent,t(n) and Ēlong-term,t(n), which does not affect results.
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variation in momentum profitability that remains unspanned by the momentum factor itself.

Specifically, the factor-beta of the Lo-Hi strategy, or equivalently, the difference in momen-

tum factor exposures between momentum strategies in low versus high η stocks, is close to

zero, at βMom = 0.12.

Momentum strategies are known to suffer from momentum crashes (Daniel and

Moskowitz, 2016), periods during which momentum performs exceptionally poorly. If the

high returns of the proposed enhanced momentum strategy were driven by high factor-betas

with respect to the momentum factor, then the strategy would necessarily suffer from mo-

mentum crashes as well. In fact, its momentum crashes would be proportionally more severe.

As it is, that need not be the case. Below, I examine the performance of the proposed

enhanced strategies during times when traditional momentum strategies crash.

4.2.1 Momentum crashes

Daniel and Moskowitz (2016) identify two prolonged periods they label momentum crashes,

following the Great Depression (June 1932 to December 1939) and the 2008-2009 financial cri-

sis (March 2009 to March 2013). I study the performance of enhanced momentum strategies

during the latter of these two momentum crashes.43

Table 6 is equivalent to Table 5, but zooms into the momentum crash period from March

2009 to March 2013. Columns 1 and 4 show that average annualized momentum returns

based on the full universe of stocks were low, at about −7.5% equal-weighted and −9% value-

weighted. Accounting for factor exposures accounts for most of this negative performance.

Implementing a momentum strategy in low elasticity term structure stocks would have

largely avoided the momentum crash. Most strikingly, the gap in momentum performance

between low and high η stocks during momentum crashes is particularly wide at an annualized

43One caveat for the results of this section is that I study the only large momentum crash that occurred
during my already relatively short sample period. Consequently, results may not be representative of other
momentum crashes. Nevertheless, as Table 6 shows, the difference between momentum performance in
low- and high-term-structure of elasticity stocks is strongly statistically significant, despite the short sample
period.
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Table 6. Momentum returns sorted by term structure of elasticities η
during the March 2009 to March 2013 momentum crash

All Stocks Low η High η Lo−Hi All Stocks Low η High η Lo−Hi

Average Returns: Value Weighted Average Returns: Equally Weighted

−8.97 −3.48 −12.35 8.88∗∗∗ −7.61 −3.85 −11.19 7.33∗∗∗

(11.94) (11.45) (11.55) (3.06) (14.84) (14.28) (15.10) (1.97)

Fama-French 3 Factor α: Value Weighted Fama-French 3 Factor α: Equally Weighted

−0.45 7.39 −5.17 12.56∗∗∗ −1.16 3.26 −4.57 7.82∗∗∗

(6.05) (5.60) (6.46) (4.36) (8.85) (8.94) (8.60) (1.83)

Carhart 4 Factor α: Value Weighted Carhart 4 Factor α: Equally Weighted

2.23 10.01∗∗ −2.83∗∗ 12.84∗∗∗ 1.27 5.43 −1.97 7.40∗∗∗

(2.51) (4.60) (1.11) (4.74) (3.18) (4.09) (2.31) (2.29)

Table 6 reports the returns to momentum strategies from March 2009 to March 2013, a momentum crash
period identified by Daniel and Moskowitz (2016). Besides filtering to a period of momentum crashing,
the construction of the table is equivalent to table 5: The left four columns report the returns to value-
weighted momentum portfolios, while the right four columns use equal weighting. Columns 1 and 5 look at
the performance of momentum among all stocks. Columns 2 and 6 filter to stocks with a term structure
of elasticity η that is more steeply decreasing than the cross-sectional median. Columns 3 and 7 use stocks
not used in columns 2 and 6, and columns 4 and 8 report their difference. The first panel reports average
returns, while the second and third panels show the anomaly α with respect to the Fama and French (1993)
and Carhart (1997) factor models. The sample period is from March 2009 to March 2013. Standard errors
are estimated using Newey-West with 12 lags. ∗ ∗ ∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

9− 12.5% value-weighted and 7.5% equal-weighted across specifications.

Since momentum crashes typically occur immediately following stock market crashes,

they likely coincide with high marginal utility states. This would suggest that unconditional

outperformance of momentum in low η stocks could be fully consistent with rational expla-

nations as compensation for momentum-crash-related risk if low η stocks would suffer from

particularly strong momentum crashes. Instead, the opposite is the case. Low term-structure

of elasticity stocks do not only have larger momentum returns unconditionally; they even have

larger momentum returns during times when marginal utility is likely to be high. Relatedly,
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Daniel and Moskowitz (2016) show that this is true for momentum returns more generally,

as crashes are partially predictable, such that timing momentum improves performance.44

5 Conclusion

Momentum in stock returns is one of the most widely studied anomalies, with many papers

proposing explanations for momentum based on some form of underreaction. In this paper,

I emphasize the role of a complementary channel: the term structure of demand elasticities,

representing investors’ differential responses to short- and longer-term price variation. I put

forward a framework incorporating both the direct evolution of demand shocks over time and

investors’ dynamic reactions to price changes across horizons. Finally, I estimate the model

for institutional investors in the U.S. stock market between 1999 and 2020.

My estimates suggest that the main driver of momentum returns is the downward-sloping

term structure of elasticities. On average, investors are 25% less responsive to longer-term

variation in prices than to recent price changes over the previous quarter. Institutions ex-

ceptionally responsive to recent price changes drive this overall pattern. In contrast, demand

shocks exhibit mean reversion and thus generate reversal.

My results suggest the need to incorporate dynamic investor responses into models of

momentum generation. Yet beyond the application in this paper, differential responses to

price changes that are more nuanced across horizons could also help us understand a larger

class of price-based anomalies in a unified framework. For example, besides momentum,

there are short-term and long-term reversals. A rich term structure of elasticities could

reproduce such time-series patterns. Initially, it would be upward-sloping within the first

month, potentially capturing inattention (Duffie, 2010). Next comes the effect documented

in this paper: Investors respond more strongly to recent price changes than medium-term

variation, generating a downward-sloping term structure of elasticities between a month and a

44Similarly, Burnside et al. (2011) show that peso problems cannot fully explain the performance of currency
carry trades because carry remains profitable after hedging out extreme disaster risk.
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year. And finally, long-term value investors step in, which could be captured by an increasing

term structure at long horizons beyond one year.
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A Equilibrium Momentum from Dynamic Trading

This appendix details formal derivations for Section 2. In particular, the focus of this
section is on deriving the results of Proposition 1 in the presence of heterogeneous investors
as detailed in Section 2.4. That is, investors have demand curves

dit = di − Erecent,i × (pt − pt−1)− Elong-term,i × (pt−1 − pt−s) (IA.1)

DN
t = ϕ×DN

t−1 + ϵNt , (IA.2)

where lower-case and upper-case letters represent logs and levels, respectively. Here
i denotes an investor with elasticity Erecent,i to recent and Elong-term,i to longer-term price
changes. Investor N has persistent demand with demand shock ϵNt and persistence ϕ.

Next, define the aggregate, holdings-weighted recent and longer-term elasticities Ērecent,t
and Ēlong-term,t:

Ērecent,t ≡
∫

exp(dit)Erecent,idi (IA.3)

Ēlong-term,t ≡
∫

exp(dit)Elong-term,idi. (IA.4)

Based on fixed supply S, the market-clearing equation is:

∫
Ditdi =

∫
exp(dit)di = S −DN

t . (IA.5)

The model of Section 2.1 represents a special case of this setup with I = 2 investors:
investor ST with dST = dST , Erecent,ST = Erecent, Elong-term,ST = 0, and investor LT with
dLT = dLT , Erecent,LT = 0, Elong-term,LT = Elong-term. Section 2.2 further collapses these two
investors into one, and Section 2.3 sets ϕ = 1. Below, I only provide derivations for the
general case with heterogenous investors and ϕ ≥ 0 as in Section 2.4. All results in previous
sections follow directly.

A.1 Derivations underlying the price impact of a recent demand
shock

How much do prices move when a demand shock ϵNt arrives in the market? The answer
depends on how strongly investors respond to recent price changes and, specifically, is pro-
portional to the inverse of the aggregate elasticity, Ē−1

recent,t. Below I show the derivations
behind this result.

Start with an exogenous shock to demand, ϵNt . Such a shock moves the effective supply
of the asset, and consequently, the price of the asset increases. Differentiating both sides of
the market-clearing equation (IA.5):
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d

dϵNt

∫
exp(dit)di = −

∫
exp(dit)Erecent,i

d∆pt
dϵNt

di = −Ērecent,t
d∆pt
dϵNt

= −1 =
d

dϵNt

(
S −DN

t

)
.

(IA.6)

The immediate price impact of a demand shock is:

d∆pt
dϵNt

= Ē−1
recent,t. (IA.7)

Define effective supply S̃t as S̃t ≡ S−DN
t . Then equation (11) follows. That is, one unit

of an effective supply shock moves prices by the inverse aggregate recent elasticity, Ē−1
recent,t.

A.2 Derivations underlying the dynamic price impact

Now move forward one period. Is there a follow-on price impact to a shock to a demand shock
from the previous period? Again start with an exogenous demand shock, ϵNt−1, but already
occurring at time t − 1, such that it moves prices at t − 1. Based on the market-clearing
equation (IA.5):

d

dϵNt−1

∫
exp(dit)di = −dDN

t

dϵNt−1

(IA.8)

−
∫

exp(dit)

(
Erecent,i

d∆pt
dϵNt−1

+ Elong-term,i
d∆pt−1

dϵNt−1

)
di = ϕ

dDN
t−1

dϵNt−1

(IA.9)

−Ērecent,t
d∆pt
dϵNt−1

− Ēlong-term,t
d∆pt−1

dϵNt−1

= ϕ (IA.10)

Ērecent,t d∆pt
dϵNt−1

+ Ēlong-term,t
d∆pt−1

dϵNt−1

Ērecent,t−1
d∆pt−1

dϵNt−1

= ϕ (IA.11)

Ērecent,t d∆pt
dϵNt−1

+ Ēlong-term,t
d∆pt−1

dϵNt−1

Ērecent,t d∆pt−1

dϵNt−1

= ϕ
Ērecent,t−1

Ērecent,t
(IA.12)

d∆pt
dϵNt−1

d∆pt−1

dϵNt−1

+
Ēlong-term,t − Ērecent,t−1

Ērecent,t
= (ϕ− 1)

Ērecent,t−1

Ērecent,t
. (IA.13)

Rearranging leads to the follow-on price impact of a past demand shocks, as displayed in
equations (16) and (17):
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d∆pt
dϵNt−1

=

(
(ϕ− 1)

Ērecent,t−1

Ērecent,t
− Ēlong-term,t − Ērecent,t−1

Ērecent,t

)
d∆pt−1

dϵNt−1

(IA.14)

≈
(
ϕ− 1− Ēlong-term,t − Ērecent,t

Ērecent,t

)
d∆pt−1

dϵNt−1

. (IA.15)

The approximation in (IA.15) replaces Ērecent,t−1 with Ērecent,t. It shuts down a second-
order effect based on local time-series variation in aggregate recent elasticities from period to
period. In my estimates, such variation is solely driven by composition effects in stock own-
ership. However, a stock’s ownership distribution is strongly persistent over time, motivating
this approximation.
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B Identification Strategy

B.1 Moment Conditions

I estimate the model for each investor i using an instrumental variables approach. The
identifying assumption is:

Ei

[
ϵikt|Xkt, ∆̂pikt, ∆̂pik,t−1

]
= 0. (IA.16)

The resulting moment conditions are:

Ei [ϵikt] = 0,∀i, ∀t (IA.17)

Ei [ϵiktXkt] = 0,∀i (IA.18)

Ei

[
ϵikt∆̂pikt

]
= 0,∀i (IA.19)

Ei

[
ϵikt∆̂pik,t−1

]
= 0,∀i (IA.20)

There are precisely as many moment conditions as parameters in the model.

B.2 Deriving flow-induced trading

I start by deriving the flow-induced trading instrument proposed by Lou (2012) by shutting
off variation in equilibrium returns from equation (21) that is driven by endogenous sources.

∆pkt = log

(∑
j Ajt(∆pt)wjkt(∆pkt)∑

j Aj,t−1wjk,t−1

)
(IA.21)

≈ log

(∑
j Ajt(∆pt)wjk,t−1∑

j Aj,t−1wjk,t−1

)
(IA.22)

≈ log

(∑
j Aj,t−1(1 + fjt)wjk,t−1∑

j Aj,t−1wjk,t−1

)
(IA.23)

= log

(
1 +

∑
j Aj,t−1wjk,t−1fjt∑
j Aj,t−1wjk,t−1

)
(IA.24)

≈
∑

j Aj,t−1wjk,t−1fjt∑
j ̸=i Aj,t−1wjk,t−1

(IA.25)

=
∑
j

ojk,t−1fjt ≡ FITkt. (IA.26)

Equation (IA.21) starts with the same market-clearing equation for equilibrium returns as
equation (21). Even if we were to exclude investor i, there would be an identification problem
from indirect effects by investors moving along their demand curves are excluded by replacing
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portfolio shares wjkt by past portfolio shares wjk,t−1 in equation (IA.22). Indirect effects also
operate through wealth effects, which are excluded by replacing institutions’ AUM Ajt by
past their past AUM Aj,t−1 in equation (IA.23). Equation (IA.25) applies the well-known
approximation log(1 + x) ≈ x, for x close to zero. Finally, equation (IA.26) introduces
the instrument, flow-induced trading (FITkt): The past-ownership weighted average of fund
flows. This is a commonly used instrument for returns in the literature (Lou, 2012).

B.3 The identification of elasticities

Are E i
0 and E i

1 the elasticities of investor i’s demand with respect to current and past returns,
respectively?

Denote by qikt the log number of shares investor i demands of asset k at time t:

qikt = log (Aitwikt)− pkt (IA.27)

= log (Aitwikt)−
∑
s≥0

∆pk,t−s. (IA.28)

The contemporaneous return elasticity of demand is:

− dqikt
d∆pkt

= 1− d

d∆pkt
log (Aitwikt) (IA.29)

= 1− 1

Aitwikt

Ait
dwikt

d∆pkt︸ ︷︷ ︸
=wikt(1−Ei

0)(1−wikt)

+wikt
dAit

d∆pkt︸ ︷︷ ︸
=Ai,t−1wik,t−1

 (IA.30)

= 1− (1− E i
0)(1− wikt︸︷︷︸

≈0

)− Ai,t−1

Ait

wik,t−1︸ ︷︷ ︸
≈0

(IA.31)

≈ E i
0. (IA.32)

Similar to Koijen and Yogo (2019), the elasticity implied by the demand equation of
investor i is not exactly E i

0, but approximately equal to E i
0 for present and past portfolio

weights close to zero, which is the empirically relevant case. While the factor 1 − wikt on
1 − E i

0 comes from substitution through the outside asset as in their demand system, the

term
Ai,t−1

Ait
wik,t−1 is unique to this setup: it captures a wealth effect from the dynamics of

an institution’s assets.
The past return elasticity of demand is:
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− dqikt
d∆pk,t−1

= 1− d

d∆pk,t−1

log (Aitwikt) (IA.33)

= 1− (1− E i
1)(1− wikt︸︷︷︸

≈0

)− Ai,t−2

Ai,t−1

wik,t−2︸ ︷︷ ︸
≈0

(IA.34)

≈ E i
1. (IA.35)

A similar derivation as for contemporaneous returns shows that the past return elasticity
implied by the model is approximately E i

1.
Investors are less elastic in stocks they hold a lot of because high returns carry a bigger

wealth effect.
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Table IA.1. Fund flow persistence and flow-performance relationship

Quarterly Fund Flow fit

(1) (2) (3) (4) (5)

Lagged Fund Flow fi,t−1 0.222*** 0.219*** 0.218*** 0.120** 0.127***
(0.037) (0.037) (0.037) (0.039) (0.037)

Lagged Fund Flow fi,t−2 0.135*** 0.137*** 0.136*** 0.065** 0.072**
(0.026) (0.026) (0.026) (0.024) (0.023)

Lagged Fund Flow fi,t−3 0.089*** 0.091*** 0.090*** 0.045*** 0.052***
(0.021) (0.021) (0.021) (0.013) (0.013)

Lagged Fund Flow fi,t−4 0.059** 0.059** 0.059** 0.026* 0.032**
(0.019) (0.020) (0.020) (0.012) (0.012)

Lagged Fund Return ∆pi,t−1 0.035* 0.150*** 0.157*** 0.164*** 0.176***
(0.016) (0.027) (0.027) (0.035) (0.030)

Lagged Fund Return ∆pi,t−2 0.013 0.045 0.053* 0.078*** 0.092***
(0.014) (0.026) (0.027) (0.021) (0.021)

Lagged Fund Return ∆pi,t−3 -0.002 0.011 0.020 0.049* 0.064***
(0.013) (0.020) (0.020) (0.020) (0.018)

Lagged Fund Return ∆pi,t−4 0.008 -0.013 -0.004 0.035* 0.047**
(0.015) (0.021) (0.021) (0.016) (0.016)

Date Fixed Effects Yes Yes Yes Yes
Size Decile Fixed Effects Yes Yes
Fund Fixed Effects Yes Yes

N 203,222 203,222 203,222 203,222 203,222
R2 0.158 0.173 0.179 0.257 0.281

Table IA.1 reports coefficients from a panel regression of quarterly fund flows fit on past fund flows fi,t−s

and past fund returns ∆pi,t−s, for s between 1 and 4 quarters. Column 2 adds date-fixed effects. Column 3
adds size-decile fixed effects: Funds are sorted into deciles based on funds’ past quarter’s fund size, i.e. its
total net assets. Column 4 uses date-fixed effects and fund-fixed effects. Column 5 combines all three types
of fixed effects. The sample period is 1999-2020. Standard errors are 2-way clustered by date and fund for
all columns.
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Table IA.2.
Robustness of momentum returns based on the term-structure of elas-
ticities

Lo-Hi η of Value-Weighted Momentum Returns

Average Fama-French 3 α Carhart 4 α

(1) Baseline Specification 6.82∗∗ 7.64∗∗ 7.03∗

(2) Momentum Deciles 12.73∗∗ 13.23∗∗ 12.64∗∗

(3) Elasticity Term-Structure η Quintiles 6.14 8.37∗ 6.14∗

(4) Portfolio Sorts with Size Controls 3.73∗ 4.05∗ 3.67
(5) Absolute Elasticity Differences 6.79∗∗ 7.41∗∗ 6.67∗

(6) BE-based Instrument 6.92∗∗ 6.57∗∗ 6.43∗

Table IA.2 reports the difference of value-weighted momentum returns in stocks with a steeply decreasing
term structure of elasticities, i.e. stocks with η lower than the median, versus in stocks with a flatter term
structure. Column 1 reports average returns, while columns 2 and 3 show the anomaly α with respect
to the Fama and French (1993) and Carhart (1997) factor models. Specification (1) is the baseline
specification from column 4 of table 5. The baseline specification uses the top tercile of winners during
the formation period for the long leg, and the bottom tercile for the short leg. Specification (2) instead
defines the long and short legs at the top and bottom deciles. While the baseline specification sorts
stock based on whether the term structure of elasticities η is above or below the median, specification
(3) contrasts the performance of momentum across η quintiles. Specification (4) non-linearly controls for
size by initially sorting stocks by size quintiles and subsequently averaging across them. Specification (5)
considers the absolute instead of the relative difference between aggregate real-time and past elasticities,
i.e. instead of sorting by η as defined in equation (29), it initially sorts by the difference of the elasticities
in equations (27) and (28). Finally, specification (6) uses an alternative instrument that uses book-equity-
based pseudo holdings in the construction of the instrument. The sample period is from 1999 to 2020.
Standard errors are estimated using Newey-West with 12 lags. ∗ ∗ ∗, ∗∗, and ∗ indicate significance at
the 1%, 5%, and 10% level, respectively.



D Appendix Figures

Figure IA.1. Estimates for elasticities Erecent,i and Elong-term,i among
institutions with long data histories
Figure IA.1 shows a scatterplot of elasticity estimates for elasticities to price
changes over the past quarter, Erecent,i, on the x-axis, and variation over the three
preceding quarters, Elong-term,i, on the y-axis. Compared to Figure 1, it filters
to institutions that appear in the data for at least 30 quarters throughout the
sample period between 1999 and 2020. Each dot represents one institutional
investor in the sample. The solid blue line is a fitted trend line based on cubic
regression, and the black dashed line represents flat term structures of elasticities,
Elong-term,i = Erecent,i. Dots below the dashed line represent downward-sloping term
structures of elasticities. The estimation equation is equation (19).
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Figure IA.2. Unconstrained estimates for elasticities Erecent,i and
Elong-term,i controlling for the past price level
Figure IA.2 shows a scatterplot of elasticity estimates for elasticities to price
changes over the past quarter, Erecent,i, on the x-axis, and variation over the three
preceding quarters, Elong-term,i, on the y-axis. Compared to Figure 1, it allows
for (i) negative elasticities to price changes over the previous quarter and (ii)
controls for the market-to-book ratio one year ago, instrumented by a Koijen
and Yogo (2019) type of instrument. Each dot represents one institutional in-
vestor in the sample. The solid blue line is a fitted trend line based on cubic
regression, and the black dashed line represents flat term structures of elastici-
ties, Elong-term,i = Erecent,i. Dots below the dashed line represent downward-sloping
term structures of elasticities. The estimation equation is:

log
wit(n)

wit(0)
=(1− Erecent,i) ∆pt(n) + (1− Elong-term,i)

(
3∑

s=1

∆pt−s(n)

)
+ (1− EKY,i)) (pt−s(n)− bet−s(n)) + d0it + d′1iXt(n) + ϵit(n). (IA.36)
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Figure IA.3. Grouped estimates for elasticities Erecent,i and Elong-term,i

Figure IA.3 shows a binned scatterplot of elasticity estimates for elasticities to
price changes over the past quarter, Erecent,i, on the x-axis, and variation over the
three preceding quarters, Elong-term,i, on the y-axis. That is, it shows a binned ver-
sion of Figure 1. Each dot represents one of twenty bins of institutional investors
in the sample. The black dashed line represents flat term structures of elastici-
ties, Elong-term,i = Erecent,i. Dots below the dashed line represent downward-sloping
term structures of elasticities. The estimation equation is equation (19).
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