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Abstract

A large literature argues that technological change since the 1980s altered the demand for

workers’ skills, increasing wage inequality and polarization. By estimating a model of occupa-

tional choice using panel data from the Survey of Income and Program Participation (SIPP), I

find that changes in the supply of workers’ skills were also major driving factors in increasing

inequality and polarization. Specifically, I find that (1) as tasks in high-skill jobs have become

increasingly complex, the distribution of workers’ ability to perform those tasks has become

more dispersed, (2) workers’ ability to perform low-skill work tasks has become more homoge-

nous, and (3) workers have increasingly sorted into occupations by skill level, even if this does

not maximize their income. These results suggest that skill formation has been a key channel

through which long run changes in the nature of work have affected wage inequality. Finally, to

obtain my estimates I prove a new identification result in a multi-dimensional potential outcome

model and show how to robustly estimate it semiparametrically adapting results from mixture

models.
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1 Introduction

Wage inequality has been increasing in the United States since the 1980s, but this trend has not be uniform.

Notably, there was an episode of polarization around the turn of the century, in which wages and employment

in middle-income occupations fell relative to both high- and low-income occupations. One of the most

influential explanations for this has been the Routine-Biased Technological Change (RBTC) hypothesis that

technology began to substitute for workers who performed tasks that could be automated. This theory was

formalized most notably in a model proposed in Acemoglu and Autor (2011), which has inspired an empirical

literature focused on testing the predictions of the model, particularly that the relative prices for occupations

involving routine tasks fell during the period of polarization (e.g., Cortes 2016; Cavaglia and Etheridge 2020;

Gottschalk, Green, and Sand 2015; Böhm 2020).

The model in Acemoglu and Autor (2011) and related work (e.g., Jung and Mercenier 2014; Costinot and

Vogel 2010) provide a compelling explanation for how automation could cause a decline in employment and

wages in middle-income jobs. However, the predictions of this stylized model focus on the short-run effects

of a labor demand shock, maintaining two key assumptions on labor supply: (1) that workers’ skills are

fixed before and after the labor demand shock, and (2) that workers respond to a labor demand shock by

switching into the occupation that maximizes their income. The first assumption is plausible in the short-

run, but growing evidence suggests that there have been important changes in the skills of workers on a

longer time frame (e.g., Altonji, Bharadwaj, and Lange 2012). The second assumption is called into question

by a growing literature that has shown that non-pecuniary considerations play a significant role in workers’

occupational choices (e.g. Arcidiacono et al. 2020; Wiswall and Zafar 2018).

In this paper, I develop an approach to identifying and estimating a model of occupational choice which

relaxes these two assumptions in order to explore how changes in workers’ skills and occupational sorting

patterns have contributed to trends in wage inequality. Following the insight in Acemoglu and Autor (2011)

that workers cannot immediately update their skills when skill prices change, I maintain the assumption that

individual workers’ skills are approximately fixed in a period of three years. However, I allow the distribution

of workers’ skills to change over a longer time frame as new cohorts enter the labor market who received

different training and education, and as workers build different skills on the job. To explore the importance

of changing occupational sorting patterns, my identification strategy does not impose any restrictions on

how workers sort into occupations by skill level.

Estimating changes to the skill distribution over time without imposing assumptions on the way workers

sort into occupations presents an empirical challenge. Many of the seminal works on wage polarization and

RBTC in the United States use cross-sectional data such as the Census and the American Community Survey

(ACS) (Autor et al. 2006; Autor, Katz, and Kearney 2008; Autor and Dorn 2013; Beaudry, Green, and Sand

2016). But it is well known that even a model with pure Roy sorting — in which workers choose occupations

to maximize their earnings — is not point identified from cross-sectional labor market data without strong

parametric assumptions (Heckman and Honore 1990; Mourifie, Henry, and Meango 2018). One strand of

the empirical literature on wage polarization has focused on combining the assumption of pure Roy sorting

with additional data such as skill measurements or panel data (Böhm 2020; Gottschalk, Green, and Sand

2015). On the other hand, common identification approaches to a generalized Roy model typically impose

stringent data requirements, relying on exogenous measurements such as cognitive test scores or instruments
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for occupational choice with large support (see e.g., Carneiro, Hansen, and Heckman 2003).

In this application, however, the assumption that individuals’ skills are fixed in the short term suggests an

alternative panel data approach to identification using only commonly available labor market data. In par-

ticular, I provide a result showing that the joint distribution of skills and occupational choice probabilities

can be point identified using a short panel of wage observations. The key assumptions in this approach

are that skills are low dimensional compared to the number of wage measurements, and that time-varying

productivity shocks are independent from skills. These are similar to the identifying assumptions in stan-

dard panel data models with multidimensional individual effects (Freyberger 2018). Under a suitable rank

condition essentially requiring that wages in all occupations are sufficiently informative about skills, I show

that identification can be established using wages in endogenously selected occupations as measurements of

skills.

I estimate the model using data from the Survey for Income and Program Participation (SIPP). The SIPP is

an ideal fit for this empirical strategy because it provides a sequence of nationally representative samples who

are tracked for 3-4 years. While the panel dimension of this data is short compared to some alternative panel

datasets, it is long enough to satisfy the identifying assumptions of the identification result for each panel.

The sequence of nationally representative samples provides a basis for measuring change in workers’ skills

over time. Practically, the distinction between the short-term stickiness of skills and the long-term evolution

of the skill distribution is operationalized by assuming that skills are fixed during each panel, but that the

skill distribution can evolve between panels. Because of the focus on flexibly estimating changes in workers

skills and occupational sorting patterns, I employ a semiparametric estimation approach which estimates

the joint distribution of skills and choice probabilities nonparametrically. As this can be a high-dimensional

object, I develop an accelerated Expectation Maximization (EM) method, which builds on advances in

semiparametric estimation of mixture models to make computation feasible.

Estimation results reveal that changes in the skills and occupational sorting patterns of workers played an

important role in the major trends in wage inequality. First, I find workers have increasingly sorted into

occupations by skill level, which has increased wage inequality. An interesting aspect of this result is that

this sorting pattern does not appear to be driven by income maximization. Under the estimated results,

many workers in lower-income occupations pass up potential wage premia they could get from switching

to high-income occupations, and this has increased over time. This result adds to the evidence in several

recent papers, which have highlighted the importance of non-pecuniary factors in occupational choices (e.g.

Arcidiacono et al. 2020; Wiswall and Zafar 2018). While prior work has focused on the occupational choices

of college graduates, the findings in this paper suggests this is true more broadly across all workers.

The finding that this sorting pattern has increased wage inequality underscores the importance of flexibly

estimating workers’ occupational sorting patterns. Classic analysis of the Roy model (Heckman and Honore

1990) showed that under the relatively mild conditions, pure Roy sorting decreases overall dispersion in

wages. However, as this result does not hold in the absence of pure Roy sorting, the relationship between

occupational sorting and inequality is a question for empirical research. I find that sorting does appear to

be part of the story of rising wage inequality and that the role of occupational sorting reversed during this

period of study. Compared to randomly assigning workers to occupations, the estimated sorting pattern
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decreases wage inequality at the beginning of the period but increasing inequality at the end.1

The second major finding is that the aggregate pattern of wage polarization was driven by changes in the skills

of workers within occupations. One measure of wage polarization is increasing inequality in the upper tail of

the wage distribution and decreasing inequality in the lower tail. The RBTC hypothesis focuses on explaining

this pattern through declining skill prices in middle-income occupations, which implies that polarization was

driven by changes between occupational groups. I find evidence of a slight decline in the potential wages for

production occupations, relative to the other two occupations, which is a central prediction of the theoretical

analysis of wage polarization. But the magnitude of that decline does not account for most of the change in

wage inequality. The decline in lower tail inequality was largely driven by declining dispersion in the skills

of workers in service occupations. This effect of homogenization in the skills of service workers appears to

account for nearly all the decline in lower tail inequality in the wage distribution. On the other hand, I

find that the increase in upper tail inequality was driven primarily by increasing dispersion in the wages of

professional workers.

These results highlight the importance of relaxing the assumptions of pure Roy sorting and long-run fixed

skills in order to understand the most important trends in the market for workers’ skills. Occupational

sorting on nonpecuniary factors is important not only in understanding the short-term response of workers

to labor demand shocks, but also contributes to the long-term increase in wage inequality. On the other

hand, the finding that changes in the skill distribution were the major driver of the observed patterns of

wage polarization suggests that any theory of technological change needs to focus on the direct and indirect

effects of technological change on shaping workers’ skills.

The rest of the paper is organized as follows. I conclude this section with a brief review of several literatures

related to this paper. In section 2, I describe the SIPP data and explore the basic trends in wage inequality

since the 1980s. I show that the major trends described in the literature on wage polarization are present

in the SIPP and highlight several trends suggesting there have been major changes in workers’ skills. In

section 3, I describe a flexible model of occupational choice and wage determination, and show how it

can be specialized to encompass the task-based model used frequently in the literature. In section 4, I

show how this model can be nested by a general multidimensional potential outcome model, and develop a

general identification result for models with endogenously selected measurements. In section 5, I describe the

semiparametric specification I will use to estimate the model, and describe the Accelerated EM algorithm

that I will use to feasibly estimate the model. In Section 6, I present the results from estimating the model.

In section 7 I summarize the findings and discuss future directions to extend this research.

Related Literature

This paper contributes more broadly to an extensive literature which examines how the skill-biased techno-

logical change (SBTC) or routine-biased technological change (RBTC) affected wage inequality in this period.

This paper returns to a classic concern in the SBTC literature on measuring and interpreting changes in

residual wage inequality after account for demographic change (Autor, Katz, and Krueger 1998; Lemieux

1Interestingly, the finding that sorting decreased inequality at the beginning of the sample is consistent with work

in Heckman and Sedlacek (1985) estimating a parametric version of the generalized Roy model from cross-sectional

data.
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2006; Autor, Katz, and Kearney 2008). While increasing in wage inequality within demographic groups was

sometimes taken to be evidence of increases in the price for high-skill labor, it was not generally possible to

measure these price changes directly. I provide an approach to identifying and estimating the contributions

of changes in skill prices and the distribution of skills in explaining residual wage inequality.

After the seminal work of Autor, Levy, and Murnane (2003), and the observation that changes in wage

inequality was not monotone after the 1980s, much of the focus in the literature shifted to task framework.

The core insight of this framework is that the price paid for labor is not for a worker’s skills (as it is e.g.,

in the ”cannonical model” described in Acemoglu and Autor (2011)), but rather for the tasks they perform.

The arguments laid out in it provide a compelling way to explain the decline in middle-wages jobs after the

1980s: automation made it possible to use machines to replace ”routine” tasks, driving down the price for

those tasks. I adopt the task framework in estimating prices for job tasks, which empirically are tied to

groupings of occupations as is common in the literature. The main innovation in my approach is to provide

an empirical strategy that allows me to relax the two assumptions on labor supply discussed above.

Most closely related to my approach is the small but growing literature of papers that adopt the task

framework and estimate the evolution of (unobserved) prices for the tasks performed by workers. Aside

from the papers mentioned above that use Roy sorting as part of their identification strategy, another set

of papers uses a panel data approach more closely related to my approach (Cortes 2016; Cavaglia and

Etheridge 2020). Using a slightly stronger time-homogeneity assumption,2 these papers estimate changes in

task prices by taking first differences among workers who stay in the same occupation. The main difference

in my approach is that I estimate changes in the distribution of skills as well as skill prices. The short-panel

approach taken here makes it possible to distinguish between short-term effects when skills are fixed, and

long-term evolution in the distribution of skills.

The finding in this paper that nonpecuniary considerations are important in workers’ occupational choices is

not new. In early work generalizing the Roy model to allow for nonpecuniary preferences over occupations,

Heckman and Sedlacek (1985, 1990) reject the hypothesis of pure Roy sorting between manufacturing and

nonmanufacturing occupations. Much of the subsequent work on the generalized Roy model has focused

on the related question of the returns to schooling. A major theme in this literature is analyzing how a

cluster of unobserved personality traits or “non-cognitive skills” jointly affect labor market outcomes and

educational choices, potentially accounting for the ”psychic costs” of schooling that lead workers to pass up

monetary gains (Heckman, Stixrud, and Urzua 2006). More recent work (Arcidiacono et al. 2020; Wiswall

and Zafar 2018) has confirmed that nonpecuniary factors play an important part in occupational choices of

college graduates. In another related context, Sorkin (2018) finds that worker’s preferences over firms is also

not captured well by maximizing income.

Building on this body of literature, this paper confirms the finding that nonpecuniary considerations are

important in workers’ occupational choices and provides new quantitative estimates of its importance. My

approach complements the work in Arcidiacono et al. (2020) and Wiswall and Zafar (2018) by consider-

ing choices over broad occupational categories without a restriction to college graduates. Connecting this

2In addition to assuming that skills are fixed, Cortes (2016), and Cavaglia and Etheridge (2020) also assume

that the productivity of skills in each occupation is fixed over time. This follows the theory of RBTC discussed in

Acemoglu and Autor (2011), but seems to rule on the possibility that technology changed the way people work.
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population-level measure of sorting to the overall trends in inequality, I am able to quantify the effects

of these sorting papers on the secular trends in wage equality. The methodology I employ builds on the

econometric work on the generalized Roy model especially Carneiro, Hansen, and Heckman (2003). No-

tably, I follow their approach of modeling the joint distribution of potential wages as a factor model, but

I focus on using endogenous wage measurements rather than exogenous measurements and instruments for

occupational choice with large support.

2 Trends in Wage Inequality

In this section I describe several major trends in wage inequality in the United States since the 1980s using

data from the Survey of Income and Program Participation (SIPP). The SIPP is an ideal dataset for studying

changes in the skills and occupational sorting patterns of workers because it combines a short panel dimension

with repeated representative samples of the US population. The panel dimension of the data helps reveal

information about the underlying abilities and preferences of each sample of workers, while the sequence

of representative samples makes it possible to analyze change over time at a population level. Data from

the SIPP has been used for a number of related applications such as analysis of wage volatility (Moffitt

et al. 2022; Carr, Moffitt, and Wiemers 2020), but research on wage polarization has typically used either

standard cross-sectional datasets (e.g., Census and ACS) or long panels (e.g., the Panel Study of Income

Dynamics for the United States (PSID)). I confirm here that the major empirical trends outlined in Autor,

Katz, and Kearney (2008), Acemoglu and Autor (2011) characterizing wage polarization hold in the SIPP.

I also highlight change in the distribution of wages within occupations, which does not fit neatly with the

theory of RBTC, and calls for a more flexible investigation of how the distribution of workers’ skills and

their occupational sorting patterns changed over this period.

Data

The SIPP is a nationally representative survey of the U.S. population, which began in 1984 and continues

through the present day. In contrast to other popular longitudinal surveys such as the Panel Study of Income

Dynamics for the United States (PSID) or the National Longitudinal Survey of Youth (NLSY), the SIPP

collects data on each panel for only two to five years, but a new representative sample is formed for each

panel. To date, there have been a total of 17 SIPP panels. While this short panel design can make some

analysis of lifecycle dynamics difficult, it achieves a sample size similar to the CPS while providing some

repeated measurements of individuals over time. In this section I focus on cross-sectional aspects of the

data. In the remainder of the paper, I build an identification strategy that exploits the panel dimension of

the data to identify the unobserved skills of works. An advantage of the SIPP in this application is that it

provides a sequence of new representative samples from 1985 to the present day with sample sizes that are

large enough to analyze how the distribution of skills has changed over time.

The SIPP collects data on wages and job characteristics for up to two concurrent employment spells. I

construct primary employment spells by choosing the longer spell whenever there is an overlap. For each

employment spell, data is collected on the total monthly earnings, usual hours worked per week, and hourly

wage for workers who are paid by the hour. I use the hourly wage as the primary measure of wages, because

it corresponds to the concept of the price per unit of labor output. In order to include workers who are not
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Table 1: Sample Size with Sample Restrictions

SIPP Panel Starting Year (A) (B) (C)

Demographic Subsample Employed During Period Three Periods of Employment Data

1984 15,639 14,076 7,500

1985 10,802 9,523 4,861

1986 8,957 8,001 3,943

1987 8,802 7,926 4,880

1988 9,173 8,062 3,754

1990 19,616 17,416 9,728

1991 12,728 11,208 6,214

1992 17,502 15,530 7,786

1993 17,548 15,459 7,840

1996 32,279 28,766 15,958

2001 29,875 26,152 13,067

2004 37,093 32,538 18,081

2008 36,628 31,534 12,174

Table 2: Demographics of Sample under Sample Restrictions

Year 1984 1985 1986 1987 1988 1990 1991 1992 1993 1996 2001 2004 2008

Age Group

18 to 24 0.20 0.18 0.18 0.17 0.18 0.18 0.16 0.17 0.16 0.15 0.15 0.15 0.14

(0.18) (0.16) (0.17) (0.15) (0.16) (0.15) (0.13) (0.14) (0.14) (0.13) (0.13) (0.13) (0.08)

25 to 39 0.41 0.43 0.44 0.45 0.44 0.44 0.46 0.44 0.43 0.42 0.39 0.36 0.35

(0.45) (0.47) (0.47) (0.48) (0.46) (0.47) (0.48) (0.47) (0.46) (0.44) (0.41) (0.38) (0.37)

40 to 64 0.38 0.37 0.37 0.37 0.37 0.36 0.37 0.39 0.40 0.43 0.45 0.48 0.50

(0.36) (0.36) (0.36) (0.37) (0.37) (0.37) (0.38) (0.38) (0.40) (0.43) (0.46) (0.49) (0.55)

Education Level

Less than High School 0.16 0.16 0.15 0.15 0.14 0.14 0.12 0.12 0.12 0.13 0.14 0.12 0.11

(0.15) (0.15) (0.13) (0.13) (0.13) (0.13) (0.11) (0.11) (0.11) (0.12) (0.12) (0.11) (0.09)

High School Degree 0.59 0.59 0.60 0.59 0.59 0.60 0.60 0.61 0.60 0.63 0.60 0.62 0.61

(0.60) (0.59) (0.61) (0.60) (0.59) (0.59) (0.59) (0.61) (0.60) (0.63) (0.61) (0.62) (0.60)

College Degree 0.24 0.25 0.25 0.26 0.27 0.26 0.28 0.27 0.28 0.24 0.26 0.26 0.28

(0.25) (0.26) (0.27) (0.26) (0.28) (0.28) (0.30) (0.28) (0.29) (0.26) (0.27) (0.27) (0.31)

paid on an hourly basis, I follow the usual practice of constructing an hourly wage variable by calculating

the approximate number of hours worked each month and dividing the monthly earnings by monthly hours

worked. Wages are deflated using the CPI and pegged to 1985 prices.

The occupational classification for each job is recorded using the the most recent U.S. census classification of

occupations. Throughout the analysis, I follow the approach taken in Acemoglu and Autor (2011) to group

occupations into broad groupings largely defined by the census occupational coding. These groups are:

1. Professional, technical, managerial

2. Production, operations, sales, clerical, administrative support

3. Service

For brevity, I refer to these simply as professional, production, and service occupations throughout the text.
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Acemoglu and Autor (2011) argue that this occupational classification broadly captures the primary tasks

performed in different jobs, with the first corresponding to jobs with “non-routine cognitive” tasks, the

second corresponding to jobs with “routine” tasks, and the third corresponding to jobs with “non-routine

manual” tasks. I adopt this framework primarily to be consistent with this theoretical analysis and the

subsequent empirical work on job polarization which also use this classification of occupations.

In the analysis that follows, I consider a restricted sample of male workers aged 25-60.3 Sample sizes for each

SIPP panel under this restriction are shown in Column (A) of Table 1. The sample size under the restriction

that an individual is employed sometime during the panel is given in column (B). Finally, in the empirical

strategy laid out in the rest of the paper, I will further restrict the sample to workers who have complete

employment data for three periods. This restriction ensures that there is enough information to identify the

underlying skills of the sample of workers and reduces the sample size roughly in half.

Table 2 reports demographic characteristics of the SIPP samples. In line with other standard data source,

it shows the workforce became older and more educated during this period. Demographics with the sample

restriction to workers with three periods of data are reported in parentheses. The overall levels and trends

of these demographics closely follow the employed sample, but there is over-representation of older and more

educated workers, which is around 1-2 percentage points in most periods.

Figure 1: Trends in Wage Dispersion
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(b) Upper and Lower Tail Inequality
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Stylized Facts

The simplest measure of wage inequality is the variance of observed wages. Panel (a) of Figure 1 shows that

overall variance in wages increased during this period. In addition to overall increasing variance, a central

3The restriction to male workers is made for several reasons. First, the trends in wage inequality between men

and women follow very different patterns during this period and have to be treated separately. Second, endogenous

non-participation is an important complication in the empirical strategy I develop in the rest of the paper, so I focus

here on the sample with the highest labor force participation. Extending the approach in this paper to account for

endogenous non-participation will be an important avenue for further research.
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finding in the literature on labor market polarization is that dispersion has increased at the top of the wage

distribution, but declined at the bottom. The most common way of illustrating this is to look at changes

over time in the difference between the 90th and 50th percentile of the wage distribution, and the difference

between the 50th and 10th percentile. These trends are shown in Panel (b) of Figure 1. Similar to the results

reported in Autor, Katz, and Kearney (2008), this shows that inequality in the upper tail of the distribution

increased over the period, while lower tail inequality declined.

One of the most prominent explanations that has been proposed for the divergent trends in upper and lower

tail wage inequality has been that labor demand for middle-wage occupations declined relative to high- and

low-wage occupations. Descriptive evidence for this hypothesis is presented in Figure 2. Panel (a) shows the

monthly employment shares in each of the three occupations, while panel (b) shows the monthly mean hourly

wage in each occupation. Regression lines are shown in red on each panel. Employment in the production

occupations declined by 5%, while employment in professional occupations increased by 2% and employment

in the service category increased by 3%. These changes in employment combined with the trend of increasing

mean wages in professional occupations and decreasing mean wages in professional occupations could have

contributed to the changes in inequality observed.

Figure 2: Between Occupation Contributions to Wage Polarization

(a) Employment Shares by Occupation
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(b) Mean Hourly Log Wage by Occupation
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While the theory of RBTC emphasizes the importance of changing inequality between occupations, changes

among workers in each occupation played an important role in the growth in inequality and polarization.

Figure 3 shows the variance of log wages within each occupational category. Variance increased within the

wages of workers in production occupations, while they remained relatively flat in the other two categories.

However, considering the changes in lower and upper tail inequality separately in Figure 4 shows that there

were significant distributional changes among workers within occupations. Within both the production and

service occupations, upper- and lower-tail inequality diverge mirroring the overall pattern in wages.

These patterns of wage polarization within occupations could be explained by changes in skill prices, the

distribution of skills, occupational sorting, or some combination of these. To gain some intuition for how

these different factors could affect within-occupation wage distributions, consider the following simplified
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Figure 3: Within Occupation Wage Dispersion: Variance
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version of the model I develop in the next section. Assume that workers, indexed by i, have a scalar skill,

xi ∈ R, and they can choose to work in one of the three occupations, D = {service,production,professional}.
In each occupation, d ∈ D, worker i can produce exp(λ(d)x) units of output per hour, and is paid a rate of

P (d) per unit of output. Under these assumptions, the log of the potential hourly wage a worker with skills

x can earn by working in occupation d is

y(d, x) = log(P (d)) + λ(d)x

In this setting, P := {P (d) : d ∈ D} are equilibrium market prices, while λ := {λ(d) : d ∈ D} are

technological parameters representing the productivity of skills. The first thing to notice about this model is

that log(P (d)) is additively separable from λ(d)x, so holding the assignment of occupations fixed, changing

the prices P cannot change upper or lower tail inequality in log wages. Similarly, increasing λ(d) increases

both lower and upper tail inequality. This is because ∂(y(d,x′)−y(d,x))
∂λ(d) = x′ − x ≥ 0 for any x′ ≥ x, which

holds with x′ and x selected to be any two quantiles of the distribution of workers’ skills in the population.

In the context of this simplified model, therefore, diverging trends in upper and lower tail inequality within

an occupation must be explained by changes in the distribution of skills of workers who select into that

occupation. In the analysis of Acemoglu and Autor (2011) and Jung and Mercenier (2014), the only mech-

anism for skills to change in response to a change in P or λ is for workers to reoptimize their occupational

choices to maximize income. However, the trends displayed in Figure 4 are difficult to fully explain with this

adjustment mechanism. In the case where the price for the production occupation declines, holding the other

two prices fixed, these models predict that the highest and lowest skilled workers in production occupations

would switch into service or professional occupations respectively. However, this would decrease both upper

and lower tail inequality in the wages of production workers, whereas upper tail inequality increases in the

data.

The preceding analysis suggests that in the context of this simplified model, changes in within-occupation

distribution of workers’ skills are an important part of the story of polarization and are not fully explained

by Roy sorting. In the following section, I turn to developing a model which is flexible enough to explain
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these changes in within-occupation wage inequality. An important motivation in the following sections will

be to develop an approach to identifying the roles that changes in skill prices, the distribution of skills, and

occupational sorting play in these trends.

Figure 4: Within Occupation Wage Dispersion: Upper and Lower Tail Inequality
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3 Model

In this section, I develop a model of wage determination and occupational choice, which I will use to

empirically evaluate how the distribution of workers’ skills and their sorting patterns have changed over time.

The model is sufficiently general to evaluate the role of three factors in the evolution of wage inequality: (1)

the distribution of workers’ skills, (2) the patterns of worker sorting into occupations, and (3) the prices of

skills in each occupation. In order to flexibly evaluate the importance of each of these factors, the model

allows for an arbitrary relationship between workers’ skills and occupational choices.

Assumptions

The follow assumption describes a general model of wage determination and occupational choice.

Assumption M For the set of workers, I, the following hold,

1. Worker i ∈ I can produce gt(d, xit) units of output in occupation d in period t, where xit are a set of

factors that affect productivity.

2. Worker i derives a utility ut(xit, zit) from working in occupation d in period t where zit are additional

factors that affect their decision, and chooses a sequence of occupations (di1, . . . , dit̄) to maximize their

utility in each period.

3. A worker who works in occupation d in period t and produces y units of output is paid a wage of

wt(d, y), where wt is strictly increasing in y for each choice d ∈ D
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Notice that these assumptions have not yet imposed any restrictions on the joint distribution of (xit, zit).

Hence this model is consistent with any arbitrary pattern of productivity and occupational choices. For

example, assumption M.2 is consistent pure Roy sorting. Assumption M.2 appears to impose that agents

choose between all occupations each period, but zit can contain a variable specifying which choices are

feasible.

The most restrictive assumption is M.3, which imposes that wages are strictly increasing in a worker’s

productivity. This is critical to the identification argument I make in the following section, because it allows

us to treat wages as a measurement of underlying productivity. This assumption holds most naturally if the

labor market is competitive, in which cases the wage schedule is wt(d, y) = wt(d)y.

The following additional assumptions provide sufficient conditions to identify the model,

Assumption I

1. The factors that affect productivity can be separated into a vector of skills xi which is constant for

t = 1, . . . , t̄, and time-varying productivity shocks, {εit(d) : d ∈ D}.

2. The productivity shocks, {εit} are serially independent, and independent of skills and preferences

{xi, zit}.

3. Utilities do not depend on the time-varying productivity shocks, i.e., ut(xit, zit) = ut(xi, zit).

4. The productivity function g is multiplicatively separable in εit and xi, i.e., gt(d, xi, εit) = ht(d, xi) exp(εit)

Assumptions I.1 and I.2 are motivated by the permanent income hypothesis. This is one of the starting

points for a large literature which attempts to decompose income dynamics into permanent and transitory

components (see e.g., Hu, Moffitt, and Sasaki 2019; Shin and Solon 2011; Moffitt and Gottschalk 2012; Gu

and Koenker 2017). The canonical variance components model used in that literature decomposes earnings

yit as,

yit = ptµi + εit

Assumptions M and I generalize this canonical model in three ways: First, it allows workers to endogenously

choose between multiple potential occupations which have different wage schedules; second, it allows the

permanent component to be multidimensional; and third, it allows the distribution of the transitory shocks

to be different for different occupations.

Recent work decomposing income dynamics into transitory and permanent components have focused on

relaxing the canonical model in a different direction. Hu, Moffitt, and Sasaki (2019), for example, allow the

“permanent” component to change over time following a random walk and for the εit to follow an ARMA

process. These models are non-nested, since assumption I maintains analogues to the canonical assumptions

that xi is fixed over time and (εit(0), . . . , εit(d̄)) are independent over time.

Maintaining these assumptions can be justified in this setting for several reasons. First, in contrast to that

literature which typically uses a long panel covering much of the life cycle, I focus on short time frame

(3-4 years) during which skills can be considered to be approximated fixed. Second, while this literature is

agnostic about what the shocks to permanent income are, the model laid out in M provides a mechanism to
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explain shocks to permanent income through changes in labor prices and productivity across occupations.

This model can be understood then as a way of explaining the “black box” shocks to permanent income

under the assumption that skills are fixed.

On the other hand, these assumptions do not require that the distribution of skills in the population is fixed

over time. Therefore, estimating the model across successive panels can show how the distribution of skills

have changed over time through the changing composition of the population.

Assumptions I.2 and I.3 require that transitory productivity shocks do not affect workers’ occupational

choices. This can be interpreted most naturally as an assumption that these shocks are realized after

occupational choices are made. This assumption is common in many areas of labor economics such as

analysis of firm and work heterogeneity (e.g. Abowd, Kramarz, and Margolis 1999; Bonhomme, Lamadon,

and Manresa 2019; Card, Heining, and Kline 2013) and migration decisions (e.g. Kennan and Walker 2011).

This the only restriction on the choice model. The assumption is consistent, for example with a dynamic

choice model in which workers maximize future earnings, as well as labor market frictions such as switching

costs, and nonpecuniary preferences which can be arbitrarily correlated with skills.

Finally, Assumption I.4 is a functional form assumption, which means that the log productivity is additively

separable in the time-varying component. This assumption can be relaxed, but as discussed in section 4,

this requires making a higher level rank assumption, which is generally hard to interpret or verify.

Relationship to task-based occupational choice

The model described by assumptions M and I is closely related to the task-based models of occupational

choice. Autor and Handel (2013), for example, develop a cross-sectional model of the labor market which is

nested by assumptions M and I, by setting

h(d, xi) = exp(λ(d)′xi)

p(d, y) = p(d)y

This leads to the log-linear potential wage schedule in each occupation as,

w(d, x) = µ(d) + λ(d)′x+ ε

where µ(d) = log(p(d)). In their model, this productivity function has the following interpretation: workers

perform K tasks in one occupation. Each occupation produces a different output which firms combine to

make a composite good. The productivity of performing one unit of each task varies across occupations,

which is described by λ(d) ∈ RK . A worker can perform xi ∈ RK units of each tasks. Hence, a worker with

skills x can produce λ(d)′x log units of output in occupation d.

An important aspect of this model is that it provides a justification for skills to be priced different across

different occupations (see e.g., Heckman and Scheinkman 1987; Autor and Handel 2013). Rosen (1978),

Teulings (1995), Costinot and Vogel (2010), and Jung and Mercenier (2014) develop models of labor market

sorting which use this as a basis to derive models of sorting across occupations, and explain trends in wage

inequality (see e.g., Acemoglu and Autor 2011).
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A focus in empirical work has been extending this to a panel-data model and estimating µ(d) over time, as

this can be interpreted as a change in the labor price for each occupation. Under additional assumptions the

changes of these equilibrium prices can be interpreted as evidence of changes in labor demand which have

driven changes.

Cortes (2016), Gottschalk, Green, and Sand 2015, Böhm (2020), and Cavaglia and Etheridge (2020) provide

various approaches to estimating µt(d). The approach in each of these papers, requires additional identifying

assumptions. Cortes (2016) assumes that productivity is fixed over time, i.e., gt(d, xi) ≡ g(d, xi), implying

that changes in tasks prices can be recovered from taking first differences among workers who stay in the

same occupation. Cavaglia and Etheridge (2020) extends this approach by allowing productivity to also

depend on time-varying observed variables. Gottschalk, Green, and Sand (2015) exploit an assumption of

Roy-style selection in which workers choose the occupation which gives them the highest wage. Böhm (2020)

requires non-selected measurements of xi.

In contrast to these approaches, I do not require that the productivity of skills, g is fixed over time or that

workers choose an occupation to maximize income, or that external measurements of skills are available.

The identification strategy and estimation method I develop in this paper also diverges from this work by

focusing on identification of the full joint distribution of potential wages and choices rather than focusing on

task prices.

4 Identification

The model laid out in the previous section has a natural factor structure that can be used to establish point

identification. In particular, the low dimensional vector of skills can be viewed as an unobserved latent

variable, while observed wages can be viewed as measurements of these unobserved variables, where the

time varying shocks are assumed to be independent from the factor. If there were no endogenous selection

into occupations, a viable approach to establishing identification would be to verify the conditions of high-

level theorems from the non-classical measurement error literature, e.g., Theorem 2.4.2 in Hu (2017), or

specializing to the linear factor model of Theorem 2 in Freyberger (2018). However, a complication in using

these existing results is that the particular set of wage measurements observed is endogenously selected. In

this section, I develop a new identification result which extends the work of these papers to a setting with

endogenously selected measurements. I then establish that the assumptions of this theorem are satisfied

under the model of occupational choice laid out in the previous section.

Notation

Throughout this section I will use the notation [n] = {1, . . . , n} for n ∈ N. I define an = (a1, . . . , an) for

n ∈ N

Setup

Consider a vector of potential outcomes of length t̄ ∈ N: Y (d) = (Y1(d1), . . . , Yt̄(dt̄)), where dt ∈ [d̄t],

d̄t ∈ N for each t. The discrete random variable D with support [d̄1] × . . . ,×[d̄t̄] can be thought of as

a vector of endogenous choices or treatments. The realized outcomes and choices are (Y,D), where Y =
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(Y0(D0), . . . , Yt̄(Dt̄)) and D = (D0, . . . , Dt̄). In the application, the components of Y are outcomes in

different time periods, but t could also index other outcomes such as multiple test scores.

The following is the main identification assumption.

Assumption PO-I

1. Potential outcomes can be written as:

Yt(dt) = µt(dt, X) + Ut(dt)

Where, Ut = (Ut(0), . . . , Ut(d̄t)) is a random variable on Rd̄t , X is random variable on X , and µt :

[d̄t]×X 7→ R.

2. Ut is independent of (Dt, X) for all t ∈ [t̄].

3. {Ut : t ∈ [t̄]} are mutually independent.

These assumptions are closely related assumptions M and I in the previous section, which are substantive

assumptions about the labor market. Assumption PO-I.1 is implied by assumptions M.1, M.3, and I.1, and

I.4, setting potential wages in each outcome Yt(d). Assumption PO-I.2 is implied by assumptions M.2, I.2,

and I.3. Finally, assumption PO-I.3 is implied by assumption I.2.

By themselves, these assumptions are not restrictive, because we have not restricted the domain of X or the

µt functions. If X = R
∏

t d̄t , and µt(d, x) = xt(d) and Ut(d) = 0 then potential outcomes can be arbitrarily

correlated across time and outcomes. In order to get some identifying power, it is necessary to restrict the

dimension of X .

The following assumption provides a set of sufficient conditions to point identify the model. For sequences

tn and dn, I will denote µt
n

(dn, x) = (µt1(d1, x), . . . µtn(dn, x)):

Assumption PO-R

1. X ⊆ Rk̄ for some k̄ > 2t̄.

2. For each sequence of periods and choices of length k̄, denoted dk̄ and tk̄ respectively, µt
k̄

(dk̄, ·) is

continuous and µt
k̄

(dk̄,X ) = Rk̄.

3. X is continuous and has a density which is strictly positive for almost every x ∈ X
4. For each (t, dt), Ut(dt) is continuous and it’s characteristic function is infinitely differentiable and

strictly positive almost everywhere.

5. The function µt
k̄

(dk̄, ·) is injective for every pair of k̄-length sequences tk̄, dk̄.

Assumptions PO-R.2 captures the idea that any set of realized outcomes of the same dimension of the

latent variable X can be viewed as a measurement of X. Assumption PO-R.1 allows us to then treat

outcomes as repeated measurements, by ensuring that there are enough outcomes to form more than two

full measurements of X . Assumption PO-R.4 is a regularity condition on the idiosyncratic errors, which is

common in the deconvolution literature. It holds for the noise-free case, where Ut(d) = 0 and for all of the

typical families of distributions such as Gaussian.
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Under assumptions PO-I and PO-R, the parameters of the model are the functions µ = (µ0, . . . , µt̄), the

joint distribution of X and D, F and the distributions of Ut for each t, Gt, with G = (G0, . . . , Gt̄). The

identified set, Θ0, as those (µ, F,G) for which assumptions M and I hold, and for which the distribution of

(D,Y (D,X)) under (µ, F,G) is equal to the true distribution, F 0
D,Y

Since the functions µ and the distributions of both X and Ut are unknown, there are two fundamental

indeterminacies in the model. The first is the labeling of X. Suppose π is a bijective transformation on X ,

we can define µ̄t(d, x) = µt(d, π
−1(x)) so that µt(d, x) = µ̄t(d, π(x)). The second comes from additivity of

the idiosyncratic errors. For any model, there is an equivalent model with Ut(d) + α and µt(d, x)− α.

The following theorem says the parameters of this model are identified up to these two indeterminacies.

Theorem 1. For any (µ, F,G), (µ̄, F̄ , Ḡ) ∈ Θ0, there is a bijective function π : X 7→ X and a set of constants,

αt(d) such that:

� Ḡt(u) = Gt(u− αt)
� F̄ (d, x) = F (d, π(x))

� µ̄t(d, x) = αt(d) + µt(d, π
−1(x))

The full proof is given in Appendix A, which I sketch here. The first step in the proof is to show that for

each sequence of choices d = (d0, . . . , dt̄), the conditional distribution of X, x 7→ FX|D(x, d), and the mean

function x 7→ (µ(d0, x), . . . µ(dt̄, x)) are identified up to the labels of x. This is established by adapting results

from the literature on nonclassical measurement error with three measurements (Hu and Schennach 2008).

These results provide sufficient conditions to identify the joint distribution of a random vector (Y1, Y2, Y3, X)

under the conditions that (Y1, Y2, Y3) is observed Y1 ⊥ Y2 ⊥ Y3|X. A key condition in these results is that

for j = 1, 2, 3, variable X induces a sufficient amount variation in Yj . More precisely, this requires that the

operator, Lj defined by,

[Ljg](y) =

∫
fYj |X(y|x)g(x)dx

is invertible. This high-level condition, sometimes called bounded completeness can be difficult to verify,

but D’Haultfoeuille (2011) provides sufficient conditions which exactly match the assumptions of Theorem

1. In particular, the assumptions that µ(d,X) is additively separable from Ut(d) and that x 7→ µt(dt, x) is

invertible are sufficient to establish that the invertibility of Lj for each j.

Finally, since identification is established conditionally for each choice sequence, it remains to show that it

is possible to choose a consistent labeling of the support of X for the entire joint distribution of (X,D).

This established following an argument similar to the proof of Theorem 2 in Freyberger (2018): because for

any two choice sequences, we can consider a third which includes elements of both. Each choice sequence

must have consistent labeling, so these overlapping choice sequences provide a link between conditional

distributions.

Theorem 1 is similar to Theorem 2 in Freyberger (2018) and Theorem 1 in Bonhomme, Lamadon, and

Manresa (2019). While Freyberger (2018) uses the results of D’Haultfoeuille (2011) to establish the injectivity

condition, he makes the stronger assumption that µ is linear, and does not allow the factor loadings to depend

on an endogenous variable. Bonhomme, Lamadon, and Manresa (2019), on the other hand, places fewer
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restrictions on the functional form of µ and do not require additive separability of µ(d, x) and U(d), but rely

on higher level identification conditions. In particular, they assume directly that the bounded completeness

condition holds4. To the best of my knowledge, the result in D’Haultfoeuille (2011) is the most flexible set

of primitive conditions known to guarantee the injectivity condition in this setting. A valuable extension of

this result would be to explore when deviations from additive separability still satisfy this condition.

Sufficient Conditions for Injectivity

Theorem 1 provides non-parametric identification of the function µ with the condition that µ is injective.

It is also possible to restrict the function space that µ lies in and derive specific conditions to establish

injectivity. One simple choice is to assume that µ is linear:

Assumption PO-R.5′ µt(dt, x) = αt(dt) + λt(dt)
′x, and for any sequence (tk̄, dk̄) of length k̄, the k̄ × k̄-

dimension matrix Λ(tk̄, dk̄) := [λt1(d1) . . . λtk̄(dk̄)] has full rank.

By modeling µ as a linear function, we can establish the required injectivity of µ with this rank condition

on λ.

Under assumption PO-R.5’, we can also derive a more concrete representation of the mappings, π, between

parameters in the identified set. This is given in the following theorem. The theorem will use the notation

ΣZ|D(d) = V ar(Z|D = d) for a random vector Z = (Z1, . . . , ZT ) and D = (D1, . . . , DT ),

Theorem 2. Suppose assumptions PO-I, PO-R.1-4 and PO-R.5’, then for any (Λ,ΣX|D(x|d)), (Λ̄, Σ̄X|D(x|d))

such that,

ΣY |D(d)−ΣU |D(d) = Λ(d)TΣX|D(d)Λ(d) = Λ̄(d)T Σ̄X|D(d)Λ̄(d)

There is a nonsingular matrix M such that for each choice sequence d:

Λ̄(d) = Λ(d)M−1 (1)

Σ̄X|D(d) = MΣX|D(d) (2)

The rank condition under linearity does impose some constraints. Notably, when k̄ > 1, it rules out the

possibility that µt(dt, ·) = µ̄(dt, ·) for all t. If that were the case, then for the choice sequence dk̄ = (1, . . . , 1),

the matrix Λ([k̄], dk̄) would have rank 1.

Another limitation of restricting µ to linear functions is that it imposes that the marginal effect of a com-

ponent of x potential outcomes is constant for every potential outcome. This can be relaxed, by expanding

this set to include monotonic transformations of each component of x. That is: µt(dt, x) = αt(dt, x) =

αt(dt) + λt(dt)
′ht(dt, x), where ht(dt, x) = (ht1(dt, xt1), . . . , htk̄(dt, xtk̄)), where each component function is

a strictly increasing function. These functions are also injective since each htj function is injective and the

rank condition on β holds.

4In the statment of the theorem and the proof they also require that unobserved heterogeneity is discrete. In

this case, the operator Lj is simply a matrix and bounded completeness is equivalent to invertibility of the matrix.

They argue their results can be extended to the continuous case. If this is correct, it would require assuming the

invertibility condition directly.
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Linearity also rules out the possibility of complementarities between components of the latent variable. There

are many common classes of functions, however, that would allow for more complementarity between inputs.

Perhaps the most straightforward is a constant elasticity of substitution production function:

µt(dt, x) = αt(dt) +
νt(dt)

γt(dt)
log

 k̄∑
k=1

λtk(dt) exp(γt(dt)xk)


This is a composition of strictly increasing functions, so the rank condition on λ is still sufficient to establish

the injectivity of µ.

5 Estimation

In this section, I describe the specification of the model I will estimate and the estimation procedure employed.

Because of the goal of understanding the changes in workers’ skills and selection into occupations, I focus

on estimating the joint distribution of skills and choices nonparametrically. In order to make this feasible,

I impose several simplifying assumptions on the other aspects of the model. First, I assume that skills are

scalar-valued. While this assumption is restrictive, it is commonly made in the theory of wage polarization

(e.g., Jung and Mercenier 2014; Acemoglu and Autor 2011), and I show that a scalar-value model fits the

data well. Second, while the distribution of Ut(d) is identified nonparametrically, I assume that Ut(d) have

a Gaussian distribution. I also maintain the assumption that potential outcomes are linear as is common in

the task framework.

Under these assumptions, it is possible to extend a semiparametric estimation methods used to estimate

mixture models to this application. In a simple mixture model, likelihood contributions can be written as:

`(y) =

∫
g(y, x)dF (x),

where the distribution F is estimated nonparametrically. Several recent papers (e.g., Koenker and Mizera

2014; Fox, Kim, and Yang 2016; Chernozhukov et al. 2013) have proposed estimating F by searching over

discrete distributions with a fixed (but potentially large) grid of support points. This fixed-grid estimator can

be viewed as a particular sieve estimator (Chen 2007), and is motivated by a result that with a sample size of

n, there exists a finite distribution with at most n points of support that maximizes the likelihood function

(Lindsay 1995). In practice Koenker and Mizera (2014) show that this estimator can be computed efficiently

and has good performance in simulations. Fox, Kim, and Yang (2016) and Chernozhukov et al. (2013) show

that the estimator is consistent in two contexts.

In this setting, unobserved skillsX can depend arbitrarily on the endogenous choice variablesD = (d1, . . . , dT ).

The component mixture distribution g is also parameterized by a finite-dimensional vector of parameters, θ,

which has a non-trivial dimension in several of the model specifications I estimate.

I therefore propose several refinements to the implementation of the fixed-grid estimator to allow for efficient

computation in this context. First, I propose an accelerated expectation maximization (EM) algorithm which

exploits the computational properties of the fixed-grid estimator and the linearity of the outcome equation.

The algorithm reduces the optimization problem to alternately solving two simpler problems. Next, I use

the linearity of the outcome equation to derive a consistent first-stage estimator of the finite parameters, and
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show that the full MLE estimator converges to the global minimum when using this first-stage estimator for

a starting value of the finite parameters.

Likelihood function.

Under the assumptions PO-I, and PO-R.1-4, PO-R.5′, the potential wage in occupation dt ∈ [d̄t] in period

t ∈ [t̄] is,

Yt(dt) = αt(dt) + λt(dt)X + Ut(dt) (3)

I also assume that Ut(dt) is a mean zero Gaussian random variable with variance σ2
t (dt). The finite-

dimensional parameters of the model to be estimated are:

θ = {αt(dt), λt(dt), σ2
t (dt) : t ∈ [t̄], dt ∈ [d̄t]}

Together with the joint distribution of (X,D), (θ, FX,D) fully specifies the model.

Under these assumptions, the likelihood contribution for an observation with outcomes Y = (y1, . . . , yt̄) and

choices D = (d1, . . . , dt̄) is,

`(y, d; θ, FX,D) = fD(d)

∫ ∏
t

1

σt(dt)
φ

(
yt − αt(dt)− λt(dt)Tx

σt(dt)

)
dFX|D(x|d)

where fD(d) = P (D = d), FX|D is the distribution of X conditional on D, and φ is the distribution of a

standard normal random variable. Note that by writing the likelihood function with the conditional mixing

distribution FX|D, the nonparametric conditional choice probabilities P (D = d|X = x) do not need to be

estimated directly.

Profile Likelihood.

Maximizing the likelihood function, Ln(θ, FX|D) =
∑
i log `(yi, di; θ, FX,D), can be broken down into two

steps. In the first step, the likelihood is maximized over FX,D for a fixed value of θ. A computationally

feasible approach to estimating FX,D is to use the fixed-grid sieve estimator. Using this sieve space, this

inner maximization problem can be written as a convex optimization problem which can be solved efficiently

using modern convex optimization solvers.

The fixed-grid sieve space is defined as follows: for each n, let (xn1, . . . , xnR(n)) := Xn ⊂ X be a finite subset

of the support of X with R(n) points, where R(n) → ∞. The sieve space, then is defined as the set of

conditional distributions, which each have support:

F (n)
X|D =

∑
d̄∈D

∑
r∈[R(n)]

ardχ(−∞,xr]×{d̄} : {ard, r ∈ [R(n)], d ∈ D} ∈ ∆(|Xn|)


Where ∆(A) is the set of probability distributions over the finite set of support points A. Given (θ, {Xn :

n ∈ N}), we can define,

g
(n)
idr (θ) = 1(d = di)

(∏
t

1

σt(dt)
φ

(
yit − αt(dit)− λt(dit)Txnr

σt(dt)

))
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Fixing θ, this maximization problem over {ard, r ∈ [R(n)], d ∈ D} ∈ ∆(|Xn|)} can be written as follows,

maximizea
∑
i

log(`i)

subject to
∑
d

∑
r

g
(n)
idr (θ)ard = `i for each i ∈ [n]∑

r

ard = 1 for each d ∈ D

This is a well-understood convex optimization problem which can be written in terms of linear and expo-

nential cone constraints, and can be solved very efficiently with an interior point solver. In practice, I use

Mosek’s interior point solver. In all the specifications I estimate in this paper, this subproblem can be solved

in less than one second.

Accelerated EM algorithm

Writing the solution of the maximization problem above as a function of θ,

θ 7→ argmax
FX,D

Ln(θ, FX,D),

defines the profile likelihood function. One approach to solving the full MLE problem would be to simply

search over the parameter space for θ to maximize the profile likelihood function. In this application, I

propose an accelerated expectation maximization (EM) algorithm which takes advantage of the linearity of

the outcome equation. This allows for efficient computation and bypasses the need to calculate the derivative

of the profile likelihood function with respect to θ.

Let the following sequence (fm, θm) be defined recursively as follows,

θm+1 = argmax
θ∈Θ

∑
i

∑
t

∑
r

qmir log gt(yi, di|xr; θm)

fm = argmax
f∈F(n)

X|D

∑
i

∑
r

f(xr, di)
∏
t

gt(yit, dit|xr; θm)

where,

qmir =
fm(xr, di)g(yi, di|xr; θm)∑
r f

m(xr, di)g(yi, di|xr; θm)

Further let (θmn , f
m
n ), which follows the recursive definition above for each n. The following theorem estab-

lishes that this sequence converges to the global maximum of the likelihood function.

Theorem 3. For any such sequence (θm, fm) converge to a local maximizer or Ln(θ, f). Furthermore, if θ0
n

is a consistent estimator for θ0, then

lim
m→∞

(θmn , f
m
n ) = argmax

θ,f
Ln(θ, f)

with probability approaching 1.
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The proof of Theorem 3 is given in Appendix A. This algorithm is closely related to the standard EM

algorithm. In the EM algorithm, fm maximizes En(log[g(yi, di|x; θ)f(x)]|yi, di;φm−1). Instead, fm+1 max-

imizes the likelihood function itself given θm+1. Dempster, Laird, and Rubin (1977) show that the former is

sufficient to increase the likelihood at each step. Since this choice of fm is at least as good as the EM step,

this is sufficient to show this sequence will converge to a local minimum. Since it improves the likelihood

more at each step and is the global maximum given θ, we should expect significantly faster convergence.

The model specifications I estimate have the following functional form,

gt(yit, dit|xr; θ) =
1

2σt(dit)

(
yit − λt(dit)Txr

σt(dit)

)2

(4)

With this functional form, the θ update step has a particularly convenient form. To state the following

result, I will use the following notation,

q̄mtdtr =
∑
i

1(dit = dt)q
m
ir

ȳmtdtr =
∑
i

qmir
q̄mtdtr

yit

σ2
tdtr =

∑
i

qmir
q̄mtdtr

(yit − x′rλt(dt))2

Corollary. When gt is defined as in (4),

λm+1
t (dt) =

(∑
r

q̄mtdtrxrx
T
r

)−1∑
r

q̄mtdtrȳ
m
tdtrxr

σt(dt) =
∑
r

q̄mtdtrσ
2
tdtr(dt)

First step estimator

An important aspect of Theorem 3 is that it guarantees that the estimator will converge to the global

maximum if we have a consistent first stage estimator for θ. To get this estimator, can use an approach

suggested in Heckman and Scheinkman (1987) and stated formally in Freyberger (2018) to derive a consistent

first stage estimator of θ.

Assume that X ∈ Rk. Partitioning [T ] into (t1, t2, t3), where t1 and t2 are of length k and t3 is of length

T − 2k, then for a sequence d, partitioned in the same way.

Y t1 = α1(d1) + Λ1(d1)X + U1

=
(
α1(d1)− Λ1(d1)Λ−1

2 (d2)α2

)
+ Λ1(d1)Λ−1

2 (d2)Y t2 +
(
U1 − Λ1(d1)Λ−1

2 (d2)U2

)
,

where Λ1(d1) = (λt11(d1), . . . , λt1k(dk))T

Using Y3 as an instrument for Y2, we get,

Cov(Y t1 , Y t3 |D = d) = Λ1Λ
−1
2 Cov(Y t2 , Y t3 |D = d) (5)

If every k × k submatrix of Λ is invertible, then there will be one of these moment conditions for every

combination of the partitions of [T ] and choice sequences d. The following theorem provides tractable way

of combining these moment conditions which maintains the linearity of the estimator:
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Proposition 1. Let

Mn =


m

(1)
n φ

(1)
1 − φ

(1)
0

...

m
(Q)
n φ

(Q)
1 − φ(Q)

0


where Q = |D|

(
T
k

)(
T−k
k

)
, mj

n is a 2SLS estimand based on the moment condition in (5), φ
(j)
1 , φ

(j)
2 are the

(k × |Dt|T ) and (1× |Dt|T ) matrices defined in appendix B.

For any positive definite weighting matrix W , the GMM estimator λ̂n := minΛ vec(Λ)T (Ik ⊗Mn)TW (Ik ⊗
Mn)vec(Λ)→p vec(Λ0)

Proof. See Appendix A

The GMM estimator proposed in this proposition is less efficient than the full GMM estimator of λ, but

it still uses all the moment conditions of the form (5). Because of the large number of potential choice

sequences and different ways to partition the periods, this results in a large number of moment conditions.

The simplification of stacking 2SLS estimands maintains the linearity of the minimization problem, so the

solution is simply the solution to a linear least squares problem.

6 Results

In this section, I present the results from estimating the model. I begin by showing that the model fits the

cross-sectional trends reviewed in section 2 as well as the joint distribution of individuals’ wages over time. I

next turn to exploring the role of endogenous sorting into occupations, and show that non-wage factors appear

to play a large role in workers’ occupational choices. I then explore how the patterns of occupational sorting

have contributed to changes in wage inequality since the 1980s. I find that sorting across occupations by skill

level has led to increasing wage inequality compared to the situation where workers are randomly allocated

to occupations. Finally, I analyze the contribution of temporal changes in the distribution of workers’ skills

to the trends in wage inequality, and show that changes in the skill distribution among workers who select

into service occupations account for the largest share of the changes to wage inequality.

Model Fit

A parsimonious specification with univariate skills and independent, Gaussian productivity shocks captures

the main the cross-sectional trends in wage inequality outlined in section 2 and key patterns in the joint

distribution of individual workers’ wages over several periods. Beginning with the cross-sectional trends,

Figure 5 shows the estimates of my model’s parameters fit the trends reviewed in section 2. Panel (a) of

Figure 5 shows that the mean log hourly wages by occupation follow the pattern shown in Panel (a) of Figure

2. As in the raw data, there is a slight pattern of polarization in the mean wages, with the high skill and

low skill occupations increasing slightly, while the middle-skill occupation declined. Similarly, Panel (b) of

Figure 5 shows that the trends observed in upper and lower tail inequality are captured in the fitted model.

Under the estimation results, lower tail inequality decreases somewhat while upper tail inequality increases.
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Figure 5: Estimated Trends in Inequality

(a) Mean Realized Wages by Occupation
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(b) Upper and Lower Tail Inequality
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Next, I explore how well the univariate skill model fits the observed patterns of individual workers’ sequences

of wages and occupational choices. Under assumptions PO-M and PO-I, each observation of an individual’s

wage can be viewed as a measurement of their skills. For a worker i who chooses occupation Dit in period

t, we can define a measurement of individual i’s skills as follows,

Ȳit :=
Yit − αt(Dit)

λt(Dit)
= Xi +

Uit(Dit)

λt(Dit)

Now consider the distribution of a pair of skill measurements for worker i conditional on choosing the

occupational sequence Di := (Di1, Di2) = (d1, d2). This can be written as,

Ȳi :=

[
Ȳi1

Ȳi2

]
=

[
Xi

Xi

]
+

[
Ui1(d1)/λ1(d1)

Ui2(d2)/λ2(d2)

]

Notice that under assumption PO-I.2, these Ȳi is the sum of two terms that are independent conditional on

Di. The first is perfectly correlated between period 1 and period 2 and the second is spherical noise centered

at the origin. If the variance of Ui is small relative to the variance of Xi, then the bivariate distribution of

Ȳi should be clustered along the 45 degree line with symmetrical deviations around that line.

Figure 6, shows the bivariate relationship for all pairs of rescaled outcomes, (Ȳt, Ȳs) for all individuals

included in the sample for all survey years estimated. In order to evaluate whether the single factor model

accurately captures the transferability of skills across occupations, the relationship is plotted separately for

pairs of measurements that involve a change of occupation and those that do not. The figure shows that

measurement pairs are clustered around the 45 degree line, consistent the model predictions.
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Figure 6: Bivariate Relationship Between Pairs of Skill Measurements

These predictions do not hold when Xi is not univariate. In particular, when Xi is multidimensional, there

is generally not a linear association between the pair of skill measurements. The association between pairs

of skill measurements also varies depending on the choice sequences when Xi is multidimensional.

To see why, consider an alternative case where Xi is bivariate. A measurement of the form above for any

arbitrary choices of ` := (`1, `2), conditional on the choice sequence (Di1, Di2) = (d1, d2) can be written as,

Ȳi(`) :=

[
Ȳi1(`1)

Ȳi2(`2)

]
=

[
λ11(d1)/`1

λ21(d1)/`2

]
X1i +

[
λ12(d2)/`1

λ22(d2)/`2

]
X2i +

[
Ui1(d1)/`1

Ui2(d2)/`2

]

From this expression we can see that if Xi1 and Xi2 are not independent from each other or perfectly

correlated, there would generally be a nonlinear association between Ȳi1(`1) and Ȳi2(`2). Consider, for

example, setting `1 = λ11(d1), `2 = λ21(d2). As in the scalar case, the term associated with X1i would

be perfectly correlated between period 1 and 2, and the term associated with Ui would be spherical noise

centered at the original. However, unless X2i is independent from X1i, the mean of the term associated with

X2i could vary with X1i, inducing a nonlinear deviation from the 45 degree line in the association between

Ȳ1i and Ȳ2i. Notice also that the association between X1i and X2i would not generally be independent of the

choice sequence. Therefore, the association between pairs of skill measurements could vary with the choice

sequence.

While the evidence presented here is not a formal specification test, the linearity of the association between

Ȳt and Ȳ2, and the similarity in the results for occupation switchers and occupation stayers gives some

confidence that this model captures the main features of the data.

Endogenous sorting patterns

Turning to the main results, I first consider how workers sort into occupations. Since skills are univariate

in the estimated model, choice probabilities can be viewed on a continuum from low to high skill workers.
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Figure 7 shows the probabilities that workers at a given quantile of the skill distribution will choose each of

the occupations. Each panel shows the choice probabilities for one SIPP panel on the year that panel began.

The approach of comparing successive panels provides a way to explore the evolution of population-level

sorting patterns over time.

Across panel years, there is a consistent pattern of selection into occupations by skill level. The probability

of selecting service occupations declines at higher quantiles in the skill distribution, while the probability

of choosing professional occupations increases. Production occupations have a higher overall probability of

selection, but peak toward the middle of the skill distribution. There is a trend for workers to increasingly

sort by skill level. This is most clear in the selection into professional occupationss: workers at the top of

the skill distribution increasingly select professional occupations toward the end of the sample.

Figure 7: Occupational Choice Probabilities conditional on quantile of skills
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This occupational sorting pattern could be consistent with selection based on comparative advantage, as

implied by the pure Roy model. Jung and Mercenier (2014) provide a theoretical analysis under which the

equilibrium wage schedule could accommodate this sorting pattern with pure Roy sorting even when skills

are univariate. In particular, this sorting pattern can arise if there is a negative relationship between the

intercepts (α) and the coefficients on skills (λ) in the occupation-specific log wage equations given in (3).

The necessity of this negative association was noted in Autor and Handel (2013) and elaborated in Jung and

Mercenier (2014) for the case where unobserved skills are scalar-valued.

The estimation results however, suggest that many workers do not choose an occupation to maximize their

income as implied by a pure Roy model. In order to provide a quantitative assessment of the wage premia

that workers forgo, I calculate the potential gains in wages that workers could get from switching occupations.
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In particular, for each quantile of the distribution of skilles, X, I calculate the difference in potential log

wages for each pair of occupations. To state this formally, for a random variable, Z, let the α-quantile be

defined as, Qα(Z) = inf{q : P (Z < q) ≤ α}. We can then define the following parameter,

∆α,α′(d, d′) = E(Yt(d)− Yt(d′)|Qα(X) < X ≤ Qα′(X))

This is the average gain in log wages that a worker with skills between the α and α′ quantiles of the

skill distribution, in occupation d′ would get by switching to occupation d. These parameters describe

the comparative advantage of workers at different skill levels. A worker with skills X has a comparative

advantage in occupation d if he has a positive potential wage gain by switching to occupation d from any

other occupation. These parameters can be calculated from the estimation results, because of the flexible

approach to recovering the skill distribution.

Figure 9 presents the estimated potential wage gain of switching to a professional occupation from either of

the two alternatives at different quantiles in the skill distribution. One important feature of the results is that

the treatment effects of switching from either service or production occupations to professional occupations

is larger at lower skill levels. Recall that the results presented in Figure 7 showed that the probability of

choosing a professional occupation increased with skill level under the model estimates. Given that the wage

premium for choosing this occupation is actually smaller at higher skill levels, this indicates that occupational

choice is not generated by a Pure Roy model of earnings maximization.

Figure 8: Potential Wage Gains of Switching to Professional Occupations from either Service or

Production Occupations
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The evolution of potential wage gains for workers who switch out of service occupations points to notable

change in the structure of this sector. At the beginning of the period, there was much more heterogeneity in
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the potential wage gains for service workers, including some workers who earned more in service occupations

than they would in professional occupations. Over time, however, these positive wage premia for service

occupations disappeared, until at the end of the period, all service workers would have earned more in the

professional occupation. This pattern could reflect a homogenizing effect of technology. In early periods

high skill workers may have been relatively more productive at specialized service tasks. With the adoption

of new technologies that simplified service tasks, there may be a smaller role for a worker’s skills to increase

their productivity in these tasks.

Wage premia for production occupations relative to the other two occupations are presented in Figure 9.

These results also suggest that non-wage factors played a large role in the choice to work in production

occupations. In the later periods, starting in 1996, treatment effects are positive across all skill levels for

service occupations and negative for professional occupations, suggesting that workers at all skill levels in

production and service occupations could have increased their wage by changing occupations. Similar to

the analysis of professional occupations, the premium for professional occupations also seems to decline at

higher skill levels even though high-skill workers are more likely to choose this occupation. Before 1996,

two features are of note. First, at high skill levels, there is a very slightly positive wage premium for

production occupations relative to professional occupations in some early periods. As in the analysis above,

this disappears over time and is consistent with the hypothesis about the homogenizing effect of technology.

Figure 9: Treatment Effect conditional on quantile of skills: Switching to “Routine” Occupation
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Occupational Sorting and Wage Inequality

I next turn to the question of how sorting into occupations affected wage inequality. The results from the

previous section showed that workers in service and production occupations often forgo potential wage gains

they could get from switching to the professional occupation. Since these workers also tend to have a lower

skill level than workers who choose professional occupations, this sorting pattern could potentially exacerbate

the wage inequality arising from the skill distribution alone.

In order to investigate this and quantify the contribution of sorting to inequality, I compare the sorting

pattern estimated in the model against counterfactual distribution in which workers are randomly assigned

to occupations. This comparison helps to assess the effect of the estimated sorting pattern of the wage

distribution compared to a neutral sorting pattern in which skills are not related to occupational choice.

For each panel of the SIPP, I have estimated the joint distribution of (X,D), F̂X,D. From this, we can obtain

the estimated marginal distribution of X,

F̂X(x) =
∑
d

F̂X,D(x, d).

The counterfactual distribution with random assignment to occupations can be constructed as follows,

F̂RAX (x, d) := F̂X(x)P̂ (D = d).

I then calculate the counterfactual variance for each of F̂X , F̂
RA
X ,∫

y(d, x)2dF (x, d)−
(∫

y(d, x)dF (x, d)

)2

for each of F̂X , F̂
RA
X . The standard deviations under the two distributions are, respectively, σ̂Y and σ̂RAY .

The results of this analysis are presented in Table 3. At the beginning of the period, in 1985, sorting into

occupations resulted in lower variance in wages than there would be under random assignment. Interestingly,

the result in the initial period, is similar to the estimate in Heckman and Sedlacek (1985) showing that sorting

reduced the standard deviation of wages by 5.8%. However, this pattern reverses over the course of the sample

period, with sorting increasing the standard deviation of wages 4.12%.

Table 3: Contribution of Sorting to Wage Inequality: Standard Deviation of Log Wages under

Estimated and Counterfactual Distributions

1985 1987 1990 1993 1996 2001 2004

σ̂Y 0.49 0.56 0.53 0.52 0.56 0.55 0.51

σ̂RA
Y 0.52 0.56 0.51 0.51 0.55 0.54 0.49

Difference -5.80 % -1.55 % 1.87 % 4.15 % 2.97 % 1.67 % 4.12 %

Decomposing Trends in Wage Inequality

The comparison to randomly allocating workers to occupations illustrates the importance of occupational

sorting to wage inequality. However, this does not directly answer the question of what changes during
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the period of study led to the increase wage inequality. In the framework of this model, there are three

factors that can explain changes in wage inequality: (1) changes in the wage schedules for each occupation,

(2) changes in the way workers sort into each occupation by skill level, and (3) changes in the marginal

distribution of workers’ skills. In this section, I present a several counterfactual wage series derived from the

model estimates which isolate the contributions of change in each of these components to change in wage

inequality.

I begin by examining the evidence that changes in the relative prices of labor in occupations led to increasing

wage inequality. In order to isolate changes in labor prices from changes in the skills of workers who select

into occupations, I compare the potential log wages of a worker in each occupation at a fixed skill level.

Panel (A) of Figure 10, shows how the potential log wage of a worker at the mean skill level for each period

evolved over time. The differences between the log potential wages in each occupation show how much wage

inequality is induced by occupational choice compared to a situation in which skill prices are equal across

occupations. To put the scale of these differences in perspective, recall that the difference between the mean

observed log wages in professional and services occupations displayed in Panel (A) of Figure 2 is on the order

of .6 log points. As displayed in Panel (A) of Figure 10, the overall magnitude of differences in potential log

wages between occupations holding skills fixed at the mean skill level are on the order of .1 to .2 log points.

Differences in log wages between the three occupations increased over the late 1980s and early 1990s and

are generally stable afterward. On the other hand, there is limited evidence that the prices of production

occupations fell relative to service occupations, as predicted by the theory of routine biased technological

change.

Figure 10: Trends in Potential Wages and Skills
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Differences in wages between occupations that are not explained by the prices of labor must be explained

by differences in the skills of workers who select into each occupation. To quantify this, I next consider

the opposite counterfactual excerise: rather than fixing skills to isolate the effect of switching occupations,

I instead fix the occupation to isolate the effect of switching between conditional skill distributions. Panel
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(B) of Figure 10 shows the evolution of potential log wages in the service occupation at the mean skill level

of workers who choose each of the three occupations. This provides a measure of how much wage inequality

is induced by differences in the skill levels of workers who choose each occupation.

The magnitude of differences in the counterfactual wages in this exercise are significantly larger than the

differences in skill prices, and are similar in magnitude to the differences in the mean observed log wages in

Panel (A) of Figure 2. This result indicates that in each time period, most of the difference in observed wages

between occupations is due to sorting by skill level, rather than differences in skill prices. The differences in

these counterfactual wages were relatively stable up to the mid 1990s, at which point the gap between the

mean skills of professional workers started to increase relative to workers in the other two occupations.

Together, these results indicate that there were two distinct periods in this sample. Up to the middle of the

1990s, differences in skill prices between occupations widened; after that, these gaps were relatively stable,

but sorting by skill level increased. This result has a possible interpretation in light of the evidence presented

in Beaudry, Green, and Sand (2016) that there was a structural shift in the adoption of new information

technology around the turn of the century. In particular, the first period can be understood as a time of

rapid technological change, during which changes to the production process led to changes in productivity of

labor in different occupations. In the second period, the prices of labor are more stable, but as the workforce

adapted to the new technology.

Figure 11: Mean of Potential Log Wage by Occupation Holding Initial Marginal Distribution of

Skills Fixed
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In the analysis so far, I have considered two counterfactuals in which either the occupational choice or the

quantile of the skill distribution is held fixed during a given time period. However, the skill distribution

changed over time under the model estimates, so the temporal changes shown in Figure 10 include changes

in the skill distribution. The potential wages in Panel (A) of Figure 10 are evaluted at the mean skill level

in each period, and the counterfactual log wages in Panel (B) of Figure 10 are evaluated at the mean of the
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conditional skill distributions for each period.

In order to isolate the effect of changes in workers’ sorting patterns from changes in the distribution of skills,

I next consider a counterfactual in which the marginal distribution of skills is held fixed at the initial period.

Panel (A) of Figure 11 shows the potential wages in each occupation at the mean skill level in the initial

period. Holding the skill level fixed in this analysis does not significantly change the picture. The major

difference is that holding skills fixed, wages do not decline across all occupations.

Panel (B) of Figure 11 shows the potential log wage in the service occupation holding the marginal distri-

bution of skills fixed. This is the distribution of skills that would arise if the marginal distribution of skills

remained the same over time, but the probability that workers choose each occupation change as estimated

by the model. Formally, this is the distribution,

F̂X;0F̂D|X;t(d|x)

where F̂X,D;t is the distribution of skills and occupational choices estimated for period t.

Recall that in the previous section, I compared the wage inequality that would arise if workers where

randomly allocated to occupations to wage inequality under the estimated sorting pattern in each period. In

that analysis, the marginal distribution of skills and skill prices were not fixed; under the model estimates,

they change from period to period. The current counterfactual exercise, I fix the other two contributors to

wage inequality (the marginal distribution of skills, and skill prices) and consider the impact of changes in

sorting to wage inequality alone. The results in Panel (B) of Figure 11 show that holding these factors fixed,

sorting did not appear to be a significant driver of rising inequality. When holding the marginal distribution

of skills fixed, the differences between the mean skills of professional workers and production workers actually

narrow in the first half of the period and are relatively stable afterward.

Figure 12: Difference between the 90th and 10th Percentile of the Distribution of Skills
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What explains the apparent discrepency in these results and the findings in the previous sections? The key

observation is that rising inequality in the marginal distribution of skills can lead to increasing inequality

between the skills of workers who select each occupation even if workers do not sort more conditional on

their skill level. If there are comparatively more workers at a high skill level, this can shift the distribution of
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skills among professional workers up if high skill workers are more likely to choose professional occupations.5

The model estimates of the marginal distribution of skills confirm that the distribution of skills did become

more disperse during this period. Figure 12, shows that the difference between the 90th and 10th percentiles

of the marginal skill distribution increased significantly at the beginning of this period. The increasing

dispersion throughout the first half of the 1990s helps to explain the differences in patterns observed in

Panel (B) of Figure 10 and Panel (B) of Figure 11. Though changes in sorting conditional on skills by itself

would have led to decrease in the gap between the skills of professional and production workers over this

period, the sharp increase dispersion in the skill distribution resulted in relative stability in this gap.

Figure 13: Upper and Lower Tail Inequality in Potential Wages
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Returning to the three factors affecting changes in wage inequality, these results suggest that up the 1990s,

increasing wage inequality was driven largely by increasing dispersion of the marginal distribution of skills

with a smaller contribution from the relative prices across occupations. After accounting for these factors,

changes to sorting patterns did not increase inequality more. In the period after the mid-1990s, the overall

dispersion of the marginal wage distribution began to level off and differences in skill prices also stabilized.

This mirrors the trend observed in raw wage data as shown in Panel (A) of Figure 1.

The analysis up to this point has focused on explaining rising wage inequality during the first half of the

period. Recall that the other major trend during this period is the divergence between inequality in the

upper and lower tails of the wage distribution. As show in in Panel (B) of Figure 4, inequality in the upper

half of the wage distribution increased while inequality in the lower half of the distribution decreased. The

Routine-Biased Technological Change (RBTC) hypothesis attempts to explain this by a decline in relative

5To make this more concrete, consider a simplified setting where there are two skill levels, X ∈ {0, 1} and two

occupations {L,H} in two period, t ∈ {0, 1}. Suppose the probabilities of selecting the “high skill” occupation, H,

decreases from P0(D0 = H|X = x) = (x+ 1)/3 in period 0, to P1(D1 = H|X = x) = (x+ 1 +K)/(3 + 2K) in period

1 for some K > 0. Notice that 1/2 < P1(D1 = W |X = 1) < P0(D0 = H|X = 1) = 2/3. Suppose also that the

maginal distribution of X changes from P0(X = 1) = 1/2, to P1(X = 1) = 2/3. Then after applying Bayes rule, we

find that E0(X|D0 = H) = 2/3, and E1(X|D1 = H) = (4 + 2K)/(5 + 3K) ∈ (2/3, 4/5). This illustrates how even

decreasing the probability of choosing the high-skill occupation conditional on having a high skill level, the overall

level of inequality increase if the marginal distribution of skills becomes more right skewed.
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prices for production occupations. Under the parameter estimates from my model, there is limited evidence

of a decline in prices for labor in production occupations. In Panel (B) of Figure 11, the wage of a production

worker at the mean skill level increased relative to service workers over much of the period.

An alternative explanation for the divergence of inequality in the lower and upper tails of the log wage

distribution is change within the skills of workers in each occupation. Figure 13 presents the upper and lower

tail inequality in the skills of workers who select into each occupation. Upper and lower tail wage inequality

decline in service occupations while both increase in the other two occupations. This presents a different

explanation for changes wage polarization: since service workers have lower wages overall, decreasing wages

inequality among service workers led to a decrease in inequality at the lower tail of the wage distribution.

This indicates that change in the composition of workers in the service sector was an important factor in

wage polarization.

7 Conclusion

In the debates surrounding increasing wage inequality and polarization in recent history, it has been widely

acknowledged that workers’ skills are not fully captured by simple measures such as education and work

experience. In this paper, I develop an approach to identifying and estimating the changes in the unobserved

skill distribution over time, and how workers of different skill levels have been reallocated across occupations.

Using this approach, I document several features of the changing skill distribution over time which are new

to the literature.

First, I find that sorting into occupations by skill level explains the majority of wage differences between

occupations. Workers sort into occupations largely by skill level: the lowest skill workers tend to select service

occupations, which have the lowest returns to skills and the highest skill workers tend to select professional

occupations, which have the highest return to skills. However, in contrast to common theoretical predictions,

this sorting does not appear to be based on comparative advantage. In fact, the estimation results suggest

that most workers who are not working in professional occupations could increase their wage by switching

occupations.

This finding adds to a growing literature showing that many labor market choices appear to be driven by

nonpecuniary considerations. In contrast to the classic analysis of the Roy model showing that if workers

select an occupation to maximize their income, this reduces overall wage inequality, the observed sorting

patterns increases wage inequality relative to a baseline of random selection into occupations.

Second, I find that the distribution of workers’ skills has become more disperse over time, and that the

diverging patterns of wage inequality in the upper and lower tails of the wage distribution were due primarily

to changes in the skills of workers within the production and service occupations. While the literature on

routine-biased technological change focused on the hypothesis that changes in wages and employment in the

production sector drove wage polarization, I find that falling lower-tail inequality in the service occupations

account for most of the overall pattern of wage polarization.

Methodologically, this paper demonstrates that employment and wage data alone can reveal features about

workers’ skills which are not captured well by other measures. One major avenue for future research would
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be to push this methodology further to reveal clusters of occupations that use the same kinds of skills and

how that has changed over time. Most research on the transferability of skills across occupations has relied

on external measurements of the task content of occupations, such as the O*NET, which collects data on

the requirements and tasks involved in different occupations.

Labor force data is an important complement to these datasets: the wages of occupations switchers provide

direct evidence on how similar workers’ skills are in different occupations, and occupational choice patterns

reveal similarities in amenities in occupations and workers’ preferences for them. The contributions of this

paper to the analysis of the identification and computation of this model provide a foundation to estimate

specifications of this model with higher-dimensional skills and finer-grained classifications of occupations,

which can address these questions.
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A Appendix A: Identification Proofs

A.1 Proof of Theorem 1

The proof of Theorem 1 follows the approach developed in Hu and Schennach (2008) applied to panel data

models in Freyberger (2018). I first establish a general lemma using high level conditions which is similar to

the approach in Hu and Schennach (2008), and then in the main proof of Theorem 1, I follow an approach

similar to Freyberger (2018), extending the result to allow for all parameters to depend on the choices and

using a higher level condition on the functional form of the factor structure. The approach in this proof also

differs in establishing the equivalence class of factor structures in the identified set rather than imposing

normalizing assumptions along with the other assumptions to establish point identification. This makes it

possible to then analyze the set of parameters that are point identified.

I will use the following notation. An integral operator L on an L2(X , µ) with a kernel f is defined by:

[Lg](y) =

∫
f(y, x)g(x)dµx(x)

It’s adjoint, L∗ is defined by:

[L∗h](x) =

∫
f(y, x)h(y)dµy(y)

Lemma (A.1). Let Y0 and X be random variables with support Y0 = Y1 × Y2 × Y3 and X . And let Yj

be the projection of Y onto Yj . For j = 0, 1, 2, 3, assume Yj is absolutely continuous with respect to the

measure µj and let fYj be its density.

Suppose that for each s ∈ S, there exist integral operators, Lsj : L(X ) 7→ L(Yj) with associated kernels,

fsj : Yj ×X 7→ R, for each j = 0, 1, 2, 3, and a function fs : X 7→ R, which satisfy the following properties,

1. fsj are strictly positive and bounded, fs0 (y, x) =
∏3
j=1 f

s
j (yj , x) with

∫
fj(yj , x)dµj(yj) = 1 for all

x ∈ X
2. Ls1 and (Ls3)∗ are invertible

3. For all x ∈ X :
∫ ∫
|f2(y, x)− f2(y, x′)|dµ2(y)dµX(x′) > 0

4. fs is strictly positive on and bounded on X and Lsjf
s = fYj for j = 0, 1, 2, 3

then for s, s′ ∈ S there is a bijective function π : X 7→ X such that fs
′

j (y|x) = fsj (y|π(x)), and fs
′

is the

density with respect to µX for the probability measure, µ̄(B) =
∫
X 1(π(x) ∈ B)fs(x)dµx(x).
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Proof. The proof will make use of the following linear operators. First, for any y ∈ Y2, the operators

M(y2) : L(X ) 7→ L(X ), M̄ : L(X ) 7→ L(X ) are defined by,

[M(y2)g](y1) =

∫
fY0

(y1, y2, y3)g(y3)dµ3(y3)

[M̄g](y1) =

∫ ∫
fY0

(y1, y2, y3)g(y3)dµ2(y2)dµ3(y3)

Next, for s ∈ S, j = 1, 2, 3, and y ∈ Yj , the operator, Ds
j (y) : L(X ) 7→ L(X ) is defined by,

[Ds
j (y)g](x) = fsj (y, x)g(x)

And the operator Hs : L(X ) 7→ L(X ) is defined by,

[Hsg](x) = fs(x)g(x)

First I show that for any s ∈ S,

M(y2) = Ls1D
s
2(y2)Hs(Ls3)∗

M̄ = Ls1H
s(Ls3)∗

The first is obtained from the following derivation,

[M(y2)g](y1) =

∫
fY0

(y1, y2, y3)g(y3)µ3(y3)

=

∫
Ls0f

s(y1, y2, y3)g(y3)dµ3(y3)

=

∫ ∫
fs1 (y1, x)fs2 (y2, x)fs3 (y3, x)fs(x)dµx(x)g(y3)dµ3(y3)

=

∫
fs1 (y1, x)fs2 (y2, x)fs(x)

∫
fs3 (y3, x)g(y3)dµ3(y3)dµx(x)

=

∫
fs1 (y1, x)fs2 (y2, x)fs(x)[(Ls3)∗g](x)dµX(x)

=

∫
fs1 (y1, x)Ds

2(y2)[(Ls3)∗g](x)dµX(x)

= Ls1D
s
2(y2)Hs(Ls3)∗g](y1)

The second line follows from condition 4, the third line applies the definition of the operator Ls0 and condition

1, and the fourth line is an application of Fubini’s theorem. The rest are applications of the definitions of

the linear operators. The decomposition of M̄ follows analogously.

Hs is invertible because, under condition 4, we can define (Hs)−1 by,

[(Hs)−1g](x) = 1/fs(s)

which can be verified to be an inverse as follows,

[Hs(Hs)−1g](x) = Hs(1/fs(x))g(s) = fs(x)/fs(x)g(x) = g(x)

Combining this with condition 2, this implies that M̄ is invertible and for each y2 ∈ Y2,

M(y2)M−1 = Ls1D(y2; fs2 )(Ls1)−1 (6)
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Decompositions of this form, which are analogous to an eigenvalue decomposition, are studied in Hu and

Schennach (2008) and Freyberger (2018). Hu and Schennach (2008) shows that under condition 5, this

decomposition is unique up to the three potential indeterminancies. These three indeterminancies can be

decribed by showing how to satisfy an alternative function, f̄j , which would satisfy (6).

1. Scale: For any positive function a : X 7→ R+, f̄1(y, x) = a(x)fs1 (y, x)

2. Eigenvalue degeneracy: If there is a subset X̄ ⊆ X , fs2 (y2, x) = fs2 (y2, x
′) for all x, x′ ∈ X̄ , y2 ∈ Y2,

then there is a function b : X × X 7→ R such that, f̄1(x) =
∫
X̄
b(x, x′)fs1 (x′)dx′.

3. Ordering: For one-to-one function π : X 7→ X , set, f̄j(x) = fj(π(x)) for j = 1, 2, 3.

As in Hu and Schennach (2008) and Freyberger (2018), the first indeterminancy is ruled out by condition 1,

and the second indeterminancy is ruled out by condition 3.

This leaves the only third indeterminancy, which shows that if there exists s′ ∈ S such that s′ 6= s such

that fs
′

j (y, x) = fsj (y, π(x)), for some bijective function π : X 7→ X . Finally, recall that under condition 4, if

s ∈ S, then fYj
(y) = Lsjf

s(y) for each j = 0, 1, 2, 3, and that fs defines a probability density with respect to

µx. For s′ ∈ S,

fYj (y) =

∫
fsj (y, π(x))fs

′
(x)dµx(x)

This probability density s′ can be found by noticing that it is the density of a random variable Xs′ = π(Xs)

where Xs is a random variable with the density fs. Finally, since Ls1 is invertible, it is unique.

Proof of Theorem 1

For a sequence of choices partition the choices into d = (d1, d2, d3), where d1 and d3 are length k̄ and d2

is length t̄ − 2k̄. Let the operator Lj to be an integral operator with the kernel fY tj (dj)|X , and let L0 be

the integral operator with kernel fY t̄(dt̄)|X . Under assumption M, Y t1(d1), Y t2(d2), Y t3(d3) are mutually

independent conditional on X, and LsjfX = fYj
by construction. This establishes conditions 1 and 4 of

lemma A.1, so it is sufficient then to establish that Lj are invertible for j = 1, 2, 3.

For each j ∈ 1, 2, 3, invertibility of Lj is established by verifying the conditions of Theorem 2.1(i) in

D’Haultfoeuille (2011). Y t̄(dt̄) has the additive structure used in D’Haultfoeuille (2011), and we can verify

the conditions of theorem 2.1(i) as follows:

� A.1: under assumption 1, X ⊥ U t(d) for all (t, d)

� A.2: under assumption 5, for each (t, d), µt(d, ·) is continuous, and under assumption 4, X is absolutely

continuous so µt(d,X) is absolutely continuous. Furthermore under assumption 5, µt(d,X ) = Rk̄.

� A.3, A.4: under assumption 3, U t(d) is continuous and has a non-zero, infinitely differential charac-

teristic function

This shows that Y tj (dj) is bounded complete for X, which is equivalent to invertibility of Lj operator on the

space bounded integrable functions. Invertibility of L3 combined with the assumption that the conditional
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densities are bounded, imply that L∗3 is invertible. Finally, invertibility of L2 also establishes condition 3 in

Lemma A.1.

This shows that for each sequence d, the conditional density, fY t(dt)|X , and conditional density of X, fX|D

are identified up to a bijective map of the support of X, π : X 7→ X . It is left to show that the same mapping

π relates the full joint distribution of (Y,D) across all choices sequences.

Suppose (µ0, F 0, G0) and (µ, F,G) are in the identified set and for choice sequences d 6= d′, FX,D(x, d) =

F 0
X,D(π(x), d) and FX,D(x, d) = F 0

X,D(π′(x), d′). I will show this implies that π = π′. Partition t = (t1, t2, t3)

and d = (d1, d2, d3), and d′ = (d′1, d′2, d′3). Now consider the choice sequence d′′ = (d1, d′2, d′3).

Applying the previous result for t ∈ t1, µt(dt, x) = µ0(dt, π(x)) and for t ∈ (t2, t3), µt(dt, x) = µ0(dt, π
′(x)).

But since there is a unique function π̃ for µt(dt, x) = µ0
t (dt, π̃(x)) and FX|D(x|d′′) = FX|D(π̃(x)|d′′), this

implies π = π′.

A.2 Proof of Theorem 4

Define the following notation. Bolded variables are tuples6 of length less than T , that is:

x = (x1, . . . , xS) : for some S ≤ T

For any (t,d), y(t,d) is the (n × S) matrix with entries, yit(t,d) = ỹit(t,d) − n−1
∑
j ỹit(t,d), where for

each i ∈ [n], t ∈ t, ỹit(t,d) is:

ỹit(t,d) =

 ∏
s∈t,d∈d

1(dis = d)

 yit

For each (t, d) ∈ [T ]×Dt, define the set:

A(t, d) =
{

(t1, t2,d1,d2) : |t1| = k, {t} ∪ t1 ∪ t2 = [T ], dt ∈ Dt,d1 ∈ Dt1 ,d2 ∈ Dt2
}

This set gives all the ways to partition the set of time periods such that one partition is t and another has

length k, and covers all possible choices sequences for each partition. Using this, for each (t, d) ∈ [T ] × Dt,
we have the following set of moment restrictions. For each (t1, t2,d1,d2) ∈ A(t, d),

y(t2,d2)T
(
y(t, d)− y(t1,d1)Λt1

(d1)−1λt(d)
)

= 0

To simplify notation further, define the set,

Y(t, d) = {(y(t1,d1),y(t2,d2), Λt1(d1) : (t1, t2,d1,d2) ∈ A(t, d)}

Then for each (t, d), and (y1,y2, Λ1) ∈ Y(t, d), we have,

yT2 y − yT2 y1Λ
−T
1 λt(dt) = 0

Premultiplying this by L(y1,y2) = Λ−T1 (yT1 y2(yT2 y2)−1yT2 y2)−1yT1 y2(yT2 y2)−1, we get:

L(y1,y2)yT2 y − yT2 y1Λ
−T
1 λt(dt) =

(
ΛT1 m̂(y,y1,y2)− λ

)
= 0

6I define a tuple here as an enumerated set. The union of two tuples as a union of the set with any arbitrary

ordering. Two tuples are equal if the sets are equal, regardless of ordering.
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where,

m̂(y,y1,y2) = (yT1 y2(yT2 y2)−1yT2 y2)−1yT1 y2(yT2 y2)−1yT2 y

which is simply a 2SLS estimator of Next, let φ1, φ0 be the k × T |D| and 1 × T |D| matrices, such that,

ΛTφT1 = ΛT1 and ΛTφT0 = λ.

Assuming that the relevant matrices are invertible, we can rewrite the moment conditions as:

0 = ΛTφT1 m̂(y,y1,y2)− ΛTφT0
⇐⇒ 0 = (m̂T (y,y1,y2)φ1 − φ0)Λ

Enumerating {(y(q),y
(q)
1 ,y

(q)
2 , φ

(q)
1 , φ

(q)
0 ) : q = 1, . . . , Q}

M̂ =


m̂T (y(1),y

(1)
1 ,y

(1)
2 )φ

(1)
1 − φ

(1)
0

...

m̂T (y(Q),y
(Q)
1 ,y

(Q)
2 )φ

(Q)
1 − φ(Q)

0


Finally, let Λ = A+ Λ̃, where A are a set of normalizations. Let M̂0 = M̂A. Then we can write the system

of equations as:

0Q×k = M̂Λ̃− M̂0

0Qk×1 = (Ik ⊗ M̂)vec(Λ̃)− vec(M̂0)

41


	Introduction
	Trends in Wage Inequality
	Model
	Identification
	Estimation
	Results
	Conclusion
	Appendix A: Identification Proofs
	Proof of Theorem 1
	Proof of Theorem 4


