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Abstract

This paper studies the problem of estimating individualized treatment rules when treat-

ment effects are partially identified, as it is often the case with observational data. By

drawing connections between the treatment assignment problem and classical decision the-

ory, we characterize several notions of optimal treatment policies in the presence of partial

identification. The proposed framework allows to incorporate user-defined constraints on

the policies, such as restrictions for transparency or interpretability, while also ensuring

computational feasibility. We show that partial identification leads to a novel statistical

learning problem with risk directionally – but not fully – differentiable with respect to an

infinite-dimensional nuisance component. We propose an estimation procedure that ensures

Neyman-orthogonality with respect to the nuisance component and provide statistical guar-

antees that depend on the amount of concentration around the points of non-differentiability

in the data-generating process. The proposed method is illustrated using data from the Job

Partnership Training Act study.
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1 Introduction

The problem of choosing an optimal treatment assignment based on data is ubiquitous in eco-

nomics and other fields, including medicine and marketing. Individuals often display heteroge-

neous responses to the same treatment. Decision-makers in policy and industry are therefore

interested in leveraging the growing availability of rich granular data to tailor treatment as-

signment to individuals based on their characteristics. As a result, a fast-growing literature

has emerged focused on developing procedures for estimation of individualized treatment rules.

While a variety of approaches have been recently established, these typically assume that the

available data allow to provide credible point estimates for the effect of the treatment, that is

treatment effects are point identified. While of important stylized value, this assumption is often

hard to justify in many empirical settings. For example, economists have long been aware that

popular quasi-experimental and observational research designs, such as instrumental variables

(IV), allow to point identify treatment effects only for specific sub-populations (Imbens and

Angrist, 1994). Even in randomized control trials, point identification of the treatment effects is

often precluded due to non-random attrition, e.g. when participants dropout from a program or

the researcher is denied information on the outcome variable (Lee, 2009). In such settings, the

data may only provide partial knowledge about the treatment response in the form of credible

bounds, i.e. the treatment effects are partially identified. As a result, the decision-maker may

have ambiguous evidence on whether a candidate policy should be preferred to another, so that

only a partial ordering of policies can be deduced in general. While informative from a scientific

perspective, a partial ordering of policies is unsatisfying when the ultimate goal of the analysis is

to select a single policy to be implemented in the real world. In this scenario, a decision-maker

has to confront two sources of ambiguity. The first source concerns ambiguous knowledge of

the treatment response τ conditional on knowledge of distribution of the data P , due to partial

identification. The second source is the lack of knowledge of the distribution P , which must be

estimated from the data.

In this paper, we develop methods to handle both sources of ambiguity within the framework

of “empirical welfare maximization” (Kitagawa and Tetenov, 2018), also referred to as “policy

learning” (Athey and Wager, 2021). This approach considers treatment policies that are exoge-

nously constrained to have low complexity in terms of Vapnik-Chervonenkis (VC) dimension.

This encompasses many practical settings of interest, as policies often have to satisfy require-

ments imposed for institutional or practical reasons, such as fairness, budget or interpretability.

The empirical welfare maximization (EWM) method selects the optimal policy as the maximizer

of the empirical analogue of the population welfare, formulated as the average of the individual

outcomes in the target population. The EWM estimation procedure has the convenient struc-
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ture of an empirical risk minimization problem, which is exploited by Kitagawa and Tetenov

(2018) and Athey and Wager (2021) to study its statistical properties.

We extend the EWM framework to settings with partial identification by making several

contributions. First, we study the problem of assigning treatment under partial identification at

the population level (i.e. where the distribution of data P is known) from a general perspective.

In particular, we show how classic optimality criteria for decision under ambiguity, such as

minimax risk and minimax regret, can be applied in the context of welfare maximization. Our

unified framework accommodates different attitudes towards ambiguity and a wide range of

popular identification assumptions, including Manski (1990) and Manski and Pepper (2000)

bounds. Our analysis delivers several notions of optimal treatment policies, which we refer

to as ambiguity-robust : they are “robust” in the sense that each of them delivers a notion

of single optimal policy in the presence of partial identification, while they all reduce to the

same optimal treatment assignment in the special case of point-identification. As part of this

analysis, we establish general conditions on the identification sets under which the treatment

assignment problem can be expressed in a simplified form, leading to computationally tractable

sample analogues. In particular, we show that all ambiguity-robust policies can be represented

as maximizers of a “surrogate” welfare, in which identification bounds are combined to form

a proxy for the partially identified CATE. The surrogate welfare depends on several nuisance

components, and its specific form is determined by the identification assumptions and attitude

towards ambiguity held by the decision-maker.

We then propose an algorithm for computing the estimated ambiguity-robust policy and

provide statistical guarantees on its performance in terms of the regret convergence of the sur-

rogate welfare. Similarly to Athey and Wager (2021) and Foster and Syrgkanis (2019), our

procedure leverages insights from the literature on double/de-biased machine learning (Cher-

nozhukov et al., 2022) by making use of Neyman-orthogonalized estimates of the surrogate

welfare. This, coupled with sample-splitting, allows us to guarantee rates of convergence for the

estimated ambiguity-robust policy while imposing minimal requirements on the estimation of

the nuisance components. One unique feature of the partially identified setting studied in this

paper is the restricted degree of smoothness enjoyed by the welfare criterion. In particular, we

show that popular choices of identification assumptions and optimality criteria for choice under

ambiguity lead to surrogate welfare criteria that are only directionally differentiable with respect

to the data-generating process. We highlight the importance of this feature for the problem at

hand and develop new theoretical results showing how the extent of non-differentiability in the

data-generating process affects the statistical properties of the learning procedure. To the best

of our knowledge, we are the first to investigate the role of non-differentiabilities in the context of

semiparametric statistical learning problems. Our results are therefore of independent interest
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and may be relevant beyond the treatment assignment problem of this paper.

The results of this paper contribute to the recent literature on EWM methods, e.g. Kitagawa

and Tetenov (2018), Athey and Wager (2021), Mbakop and Tabord-Meehan (2021), and more

broadly to the literature studying statistical treatment choice (see Hirano and Porter, 2020, and

references therein). Kitagawa and Tetenov (2018) introduced the EWM method and provided

theoretical results showing its optimality when implemented with experimental data. Athey

and Wager (2021) leverage insights from the recent literature on orthogonal machine learning

(Chernozhukov et al., 2022) and propose doubly-robust estimation of the treatment effect which

leads to optimal learning rates even with observational data. We build on their work by adopting

Neyman-orthogonal estimates while we relax the fundamental assumption that treatment effects

are point identified. Cui and Tchetgen (2021) also develop procedures for learning optimal

treatments rules with instrumental variables but consider unconstrained policy classes. Similarly

to Athey and Wager (2021), they ensure point-identification of treatment response by restricting

their analysis to the effect on compliers.

Kasy (2016), Han (2019) and Byambadalai (2022) provide methods for comparing policies

in the presence of covariates and partially identified treatment effects. The focus of their work

is on characterizing the partial ordering of policies in terms of their associated welfare rather

than resolving the ambiguity and estimating an optimal treatment rule.

In a series of papers, Manski (2009, 2010, 2011) studies the problem of a social planner who

must choose treatment for a population under partial knowledge of the treatment response in

the absence of covariates. He shows that when the sign of the treatment effect is ambiguous, the

minimax regret criterion leads to policies that randomize treatment in the population. While

our study of the population problem is inspired by Manski’s work in this area, the focus of

our paper is on deterministic rules assigning individualized treatment, i.e. based on (potentially

continuous) covariates. Stoye (2012), Ishihara and Kitagawa (2021) and Yata (2021) consider

treatment assignment under partial identification from a finite-sample minimax perspective,

while Christensen et al. (2022) adopt a local-asymptotic approach. However, these works do not

consider individualization of the treatment assignment.

More closely related to our work is Kallus and Zhou (2018), who extend the EWM frame-

work to learn an optimal policy in the presence of partially identified treatment effects under

violations of unconfoundedness. In particular, they target welfare improvement with respect to

a baseline pre-existing policy and consider partial-identification of the welfare criterion through

Rosenbaum’s sensitivity model (Rosenbaum, 1987). Adjaho and Christensen (2022) and Kido

(2022) examine policies with minimax welfare guarantees when the target population lies in a

Wasserstein neighborhood of the experimental population. The identification assumptions (and

associated estimation procedures) considered in these papers are distinct and do not nest those
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covered by our framework. As a result, our contributions are complementary to these works. In

independent work, Pu and Zhang (2021) study policy learning under ambiguity from a classifi-

cation perspective and derive an optimal policy which coincides with one notion of ambiguity-

robust policy studied in this paper. However, our estimation procedure crucially differs from

theirs for the use of Neyman-orthogonalization which, combined with a refined proof-strategy

that accounts for the lack of full-differentiability in the welfare criterion, allows us to guarantee

considerably faster rates of convergence. In this sense, our results extend and improve on those

in Pu and Zhang (2021).

Finally, we contribute to a body of literature dealing with estimation and inference for

directionally-differentiable functionals. Hirano and Porter (2012) show that if a target esti-

mand is not differentiable in the parameters of the data distributions, then no asymptotically

unbiased or regular estimator exists. Ponomarev (2022) studies efficient estimation of direction-

ally differentiable functionals from a local minimax perspective. Fang and Santos (2018) and

Kitagawa et al. (2020) provide inference results for directionally differentiable functions from

a frequentist and Bayesian perspective, respectively. Also motivated by partial identification,

Christensen et al. (2022) consider estimation of treatment rules when the welfare criterion is

only directionally differentiable with respect to a finite-dimensional nuisance component. Our

framework instead involves infinite-dimensional nuisance components and therefore our analysis

must account for the lack of differentiability with novel theoretical results that substantially

differ from Christensen et al. (2022).

The rest of this paper is organized as follows. Section 2 introduces the setup. Section 3

presents several notions of ambiguity-robust optimal policy. Section 4 presents the proposed

estimation procedure for the ambiguity-robust optimal policy. Section 5 provides statistical

guarantees for the estimated optimal policy. Section 6 presents an empirical illustration based

on the Job Training Partnership Act Study. Section 7 concludes the paper. Proofs and extensions

are given in the Appendix.

Notation. Throughout the paper, for d ∈ N, let Rd denote the Euclidean space, with ‖ · ‖p
and 〈·, ·〉 being the usual `p-norm and inner product, respectively. For two vectors x ∈ Rp and

y ∈ Rq, x ⊂ y means that x is a sub-vector of y. For a symmetric matrix A, λmax(A) denotes its

largest eigenvalue. Unless otherwise stated, the expectation E[·], probability P(·), and variance

Var(·) operators will be taken with respect to the underlying distribution of observables P .

Given a random variable Z ∈ Z with Z ⊆ Rd, the associated probability measure PZ , and a

function f : Z → W with W ⊆ Rq, we define ‖f‖Lp(PZ) = (EPZ [‖f(Z)‖pp])1/p
for p ∈ (0∞).

We extend this definition to p =∞ in the natural way. For a sequence of real numbers xn and

yn, xn = o(yn) and xn = O(yn) mean, respectively, that xn/yn → 0 and xn ≤ Cyn for some
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constant C as n → ∞. For real numbers a, b, a . b means that there exists a constant C such

that a ≤ Cb. For a positive real number a, bac denotes its nearest smallest integer. The notation

→p denotes convergence in probability.

2 Setup

Let Yi ∈ R be an outcome measuring utility, Di ∈ {0, 1} a binary treatment, Xi ∈ X ⊆ Rkx

a set of pre-treatment covariates for an individual i from an i.i.d. population of interest. We

use standard notation to define the potential outcomes Yi(0), Yi(1). The conditional average

treatment effect (CATE) τ : X → R is then defined as

τ(x) = y1(x)− y0(x), yd(x) = E[Yi(d)|Xi = x], d = 0, 1,

where the expectation is taken with respect to the distribution of the population, and we will

henceforth suppress the i-subscript for convenience. The decision-maker (DM) is interested in

choosing a deterministic treatment assignment rule (or policy) π : X → {0, 1}, which maps from

the space of individual covariates to the binary decision “treat” (π(x) = 1) or “do not treat”

(π(x) = 0). Following Manski (2004), we define the utilitarian social welfare associated with a

policy π and a given configuration of the expected potential outcomes y0(·), y1(·) as

Wy0,y1(π) = EPX [y1(X) · π(X) + y0(X) · (1− π(X))]

= EPX [π(X) · τ(X)]︸ ︷︷ ︸
=:Iτ (π)

+EPX [y0(X)] , (1)

where Iτ (π) represents the average impact of policy π. The optimal policy for a given configu-

ration of the CATE function is the one that maximizes the associated welfare:

π∗ = argmax
π∈Π

Wy0,y1(π) = argmax
π∈Π

Iτ (π), (2)

where Π is a family of candidate policies.1 The DM has knowledge of the CATE through the

distribution P ∈ P of observable random variables W , where (Y,D,X) ⊆ W . In particular,

we denote T (P ) the set of plausible CATE functions associated with a certain distribution

of observables. When the DM has perfect knowledge of P and T (P ) is a singleton, i.e. τ is

point-identified, she can obtain π∗ by solving (2).

Suppose now that T (P ) is a non-singleton set, i.e. τ is partially identified. In that case,

even under perfect knowledge of P , there exists a set of plausible values for the impact Iτ (π)

of a candidate policy π. Notice that partial identification of the CATE does not necessarily

1Throughout the paper, we will assume that the maximization problem in (2) has at least one solution. If

multiple solutions exist, the DM is assumed to arbitrarily pick π∗ from the set of maximizers.
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imply that the DM cannot obtain the optimal policy π∗. In particular, it is easy to see that

under point-identification of the CATE one has π∗(x) = 1{τ(x) ≥ 0} when the class of candidate

policies Π is unrestricted, so that identification of the sign of the CATE is sufficient to obtain the

optimal policy.2 However, the unrestricted policy class has limited relevance in many practical

settings. For example, the policy space Π may be exogenously constrained for institutional

reasons, e.g. as policies may be required to satisfy specific requirements for budget, fairness or

interpretability. While the DM may still hope that his specification of Π contains the first-best

policy 1{τ(X) ≥ 0}, it is useful to interpret π∗ as the “best-in-class” policy for the chosen class

Π, when this does not contain the first-best. When Π is constrained, the DM is not able to

obtain π∗ in general without full knowledge of the CATE, although a partial ordering of policies

can still be deduced (see Kasy, 2016; Han, 2019; Byambadalai, 2022).

Under partial identification, the DM therefore faces two sources of ambiguity. First, she does

not know the distribution P . However, we assume that she has access to a sample (Wi)i=1,...,n

from which she can learn about P . Second, she does not have knowledge about τ within the

identified-set T (P ), even under perfect knowledge of P . The broad objective of this paper

is to provide a framework that allows the DM to handle both sources of ambiguity. We will

approach the problem in two steps. First, we will study the decision problem faced by the

DM under perfect knowledge of P . In particular, we will handle the ambiguity arising from

partial identification of τ using well-known optimality criteria for decision under ambiguity.

Each of the optimality criteria we consider will deliver a corresponding notion of optimal policy,

which we call “ambiguity-robust”. The ambiguity-robust optimal policy is a unique treatment

assignment rule that is preferred to all other policies in Π according to preferences of the DM,

and that coincides with the usual notion of optimal policy π∗ in (2) in the special case of point

identification of the CATE. In the next section, we study several notions of ambiguity-robust

optimal policy.

In the second part of our analysis, we study how to handle the ambiguity in P by showing how

a sample (Wi)i=1,...,n can be used to obtain an estimate π̂n for the ambiguity-robust optimal

policy. The estimation procedure and the associated statistical guarantees are presented in

Section 4 and 5, respectively.

Remark 1. Unrestricted policy classes may also be precluded for practical reasons related to

the estimation of the optimal policy. For example, the researcher may need to condition on a

large number of covariates X for identification of the treatment effects, but only be interested

in assigning treatment based on a restricted set of the covariates X̃ ⊂ X (e.g. because she

may not observe the full set of covariates when assigning treatment to new individuals from the

2Cui and Tchetgen (2021) study a case in which sole point-identification of the sign of the CATE via an

instrumental variable allows to obtain the optimal policy.
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population). In that case, a practical way to side-step computation of an estimate for the lower-

dimensional CATE, E[Yi(1)|X̃i = x̃]− E[Yi(0)|X̃i = x̃], is to impose restrictions directly on the

policy class Π and estimate the optimal policy based on the estimated higher-dimensional CATE

via the sample analogue of (2).

3 Ambiguity-robust optimal policies

The study of decision under ambiguity has a long tradition in decision theory and has received

considerable attention in the context of treatment assignment problems (see Manski, 2011, for a

review). In this section we review some classical optimality criteria for decision under ambiguity

and study how they can be applied in the context of the treatment assignment problem at hand,

leading to several notions of ambiguity-robust optimal policy.

A well-known optimality criterion for decision under ambiguity is minimax risk (see, e.g.

Wald, 1950). In the context of our treatment assignment problem we can interpret welfare as

negative risk, and this criterion leads to the optimal maximin welfare policy

π∗MMW = argmax
π∈Π

min
(y0,y1)∈Y(P )

Wy0,y1(π), (3)

where Y(P ) is the ambiguity set for (y0(·), y1(·)) identified from the distribution P of observables

random variables. The optimal maximin welfare policy maximizes the lowest possible welfare

under any configuration of the expected potential outcome functions in the identified set Y(P ).

An alternative application of minimax risk optimality in the context of treatment assignment is

maximin impact, leading to the optimal policy

π∗MMI = argmax
π∈Π

min
τ∈T (P )

Iτ (π), (4)

where T (P ) denotes the ambiguity set for the CATE function. The optimal maximin impact

policy maximizes the lowest possible impact under any configuration of the CATE in the identi-

fied set T (P ). Notice that the minimax welfare criterion reflects an extreme degree of pessimism

with regards to outcomes associated with both treatment and non-treatment scenarios; on the

other hand, the minimax impact criterion reflects an extreme degree of pessimism with regards to

the impact of the policy, thus directly raising the threshold for treatment.3 Despite its intuitive

appeal, minimax optimality has been criticised for being too conservative and often delivering

decisions that are especially sensitive to changes in the ambiguity set.4

3In the empirical application of Section 6, both minimax welfare and minimax impact criteria result in π(x) = 0

for the entire population.
4In his classic textbook, Berger goes as far as saying that “In actually making decisions, the use of the minimax

principle is definitely suspect.” (Berger, 1985).
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An alternative criterion that alleviates some of these concerns is minimax regret, with cor-

responding optimal policy

π∗MMR = argmin
π∈Π

max
(y0,y1)∈Y(P )

[(
max

π :X→{0,1}
Wy0,y1(π)

)
−Wy0,y1(π)

]
= argmin

π∈Π
max
τ∈T (P )

[(
max

π :X→{0,1}
Iτ (π)

)
− Iτ (π)

]
,

(5)

The minimax regret criterion delivers a policy that minimizes the largest possible distance

between attained welfare and the highest level of welfare attainable by the “oracle” treatment

rule π∗ = I {τ(x) ≥ 0} that has knowledge of the true τ . Minimax regret optimality has been

advocated by Manski (2004) for its balanced consideration of the possible states of nature and for

delivering more “reasonable” decisions rules in practice, compared to minimax risk approaches.

Remark 2. An alternative version of the minimax regret criterion is minimax regret with respect

to the welfare attained by the best-in-class policy in Π, resulting in the objective

π∗MMR2 = argmin
π∈Π

max
τ∈T (P )

[(
max
π∈Π

Iτ (π)

)
− Iτ (π)

]
. (6)

While these two versions can be expected to enjoy similar properties, the first version we have

considered is considerably more tractable. In fact, the innermost maximization in (5) has the

closed-form solution maxπ :X→{0,1}Wτ (π) = EPX [max {τ(X), 0}]. As we show in Proposition 2

below, this allows to more explicitly characterize the properties of the optimization problem and

the resulting optimal policy, as well as reduce the computational burden in solving the empirical

analogue of the problem. For this reason we will focus on the version in (5) of the criterion. We

also note that whenever the class Π is “well-specified”, in the sense that I {τ(x) ≥ 0} ∈ Π for

all τ ∈ T (P ), the two optimality criteria are equivalent.

One critical drawback in the application of the optimality criteria just presented to the

treatment assignment problem of this paper is that the optimal policies cannot be obtained in

closed form. This is due to the form of (3), (4) and (5) involving several nested optimizations

whose solutions cannot be easily characterized at the current level of generality when X includes

continuously distributed covariates and Π may be arbitrarily restricted, which are both primary

cases of interest of this paper. To make progress, we impose the following restrictions on the

ambiguity sets for the expected potential outcomes and CATE.

Assumption 3.1 (Rectangular identified set for (y0, y1)). The identified set for (y0, y1) is rect-

angular, that is, Y is of the form

Y = {(y0(·), y1(·)) : (y0(x), y1(x)) ∈ Y(x)},

where Y(x) is a compact subset of R2.
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Assumption 3.2 (Rectangular identified set for τ). The identified set for τ is rectangular, that

is, T is of the form

T = {τ(·) : τ(x) ∈ [τ(x), τ(x)]},

where |τ(x)| <∞, |τ(x)| <∞ for all x ∈ X .

Assumptions 3.1 and 3.2 impose separation of the identified sets for the expected potential

outcomes and CATE across the support of the covariates X .5 They are typically satisfied by

identification schemes that do not impose shape restrictions on counterfactual outcomes with

respect to the covariates Xi. These assumptions are widely adopted in the partial identification

literature, and we refer the reader to Appendix B in Kasy (2016) for an extensive review of

identification schemes that result in rectangular identified sets. Below we present three examples

of identification schemes for the CATE that satisfy this assumption.

Example 3.1 (Manski bounds). Suppose there exists a binary instrument Zi ∈ {0, 1} that

satisfies the well know exogeneity and exclusion restrictions Yi(0), Yi(1), Di(0), Di(1) ⊥ Zi|Xi,

where Yi(d) and Di(z) denote the counterfactual outcome and treatment functions, respectively.

If the instrument Zi also satisfies the overlap condition

η ≤ P(Zi = 1|Xi) ≤ 1− η, η > 0,

and the monotonicity condition (also known as no-defiers condition):

P
(
Di(1) ≤ Di(0)|Xi

)
= 1 or P

(
Di(1) ≥ Di(0)|Xi

)
= 1,

then seminal work by Imbens and Angrist (1994) shows point-identification of the conditional

local average treatment effect (LATE):

E[Yi(1)− Yi(0) |Di(1) 6= Di(0), Xi = x].

Let us now assume that Y ∈ [YL, YU ], i.e. the outcome is bounded, and define

h(z, x) = E[Yi|Zi = z,Xi = x],

m(d, z, x) = E[Yi|Di = d, Zi = z,Xi = x],

p(z, x) = P(Di = 1|Zi = z,Xi = x),

z(x) = P(Zi = 1|Xi = x).

5Notice that Assumption 3.1 implies Assumption 3.2, but not viceversa.
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The identified sets for the expected potential outcomes y0(x) and y1(x) are contained within the

bounds

y0(x) = min
z∈{0,1}

{
m(0, z, x) · (1− p(z, x)) + YU · p(z, x)

}
,

y
0
(x) = max

z∈{0,1}

{
m(0, z, x) · (1− p(z, x)) + YL · p(z, x)

}
,

and

y1(x) = min
z∈{0,1}

{
m(1, z, x) · p(z, x) + YU · (1− p(z, x))

}
,

y
1
(x) = max

z∈{0,1}

{
m(1, z, x) · p(z, x) + YL · (1− p(z, x))

}
.

The identified set for the CATE is then contained within the bounds

τ(x) = y1(x)− y
0
(x),

τ(x) = y
1
(x)− y0(x).

If no further functional form assumption on the distribution of potential outcomes is made, these

bounds are sharp (Heckman and Vytlacil, 2001) and the sharp identified sets for the average

potential outcomes and CATE respectively satisfy Assumption 3.1 and Assumption 3.2.

Example 3.2 (Balke-Pearl). Suppose that the same assumptions as in Example 3.1 hold, and

additionally the monoticity assumption is strengthened to

P
(
Di(1) ≥ Di(0)|Xi

)
= 1,

that is, the direction of the monotonicity is known and positive. The bounds for the potential

outcomes simplify to

y0(x) = m(0, 0, x) · (1− p(0, x)) + YU · p(0, x),

y
0
(x) = m(0, 0, x) · (1− p(0, x)) + YL · p(0, x),

y1(x) = m(1, 1, x) · p(1, x) + YU · (1− p(1, x),

y
1
(x) = m(1, 0, x) · p(0, x) + YL · (1− p(0, x)),

and the CATE is contained within the bounds

τ(x) = h(1, x)− h(0, x) + p(0, x) ·
(
m(1, 0, x)− YL

)
+ (1− p(1, x)) ·

(
YU −m(0, 1, x)

)
,

τ(x) = h(1, x)− h(0, x) + p(0, x) ·
(
m(1, 0, x)− YU

)
+ (1− p(1, x)) ·

(
YL −m(0, 1, x)

)
.

where p(0, x) and 1−p(1, x) identify the proportions of always-takers and never-takers at Xi = x,

respectively. If no further functional form assumption on the distribution of outcomes for non-

compliant populations is made, these bounds are sharp (Balke and Pearl, 1997) and the sharp
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identified sets for the average potential outcomes and CATE respectively satisfy Assumption 3.1

and Assumption 3.2.

Example 3.3 (Manski-Pepper bounds). Suppose that instead of full exogeneity, the instrumental

variable Zi satisfies the weaker “monotone IV” condition

E[Yi(d)|Zi = 0, Xi] ≤ E[Yi(d)|Zi = 1, Xi], d = 0, 1. (7)

Manski and Pepper (2000) show that when the outcome is bounded one has∑
z=0,1

P (Zi = z|Xi) ·max
z1≤z
{m(d, z1, Xi) · P(Di = d|Zi = z1, Xi) + YL · P(Di = 1− d|Zi = z1, Xi)}

≤ E[Yi(d)|Xi] ≤∑
z=0,1

P (Zi = z|Xi) · min
z2≥z
{m(d, z2, Xi) · P(Di = d|Zi = z2, Xi) + YL · P(Di = 1− d|Zi = z2, Xi)} .

Upper (lower) bounds for the CATE are obtained by combining upper (lower) bounds for

E[Yi(1)|Xi = x] with the lower (upper) bound for E[Yi(0)|Xi = x]:

τ(x) = z(x) · ψ1,1(x;YU ) + (1− z(x)) ·min {ψ0,1(x;YU ), ψ1,1(x;YU )}

− z(x) ·max {ψ0,0(x;YL), ψ1,0(x;YL)} − (1− z(x)) · ψ0,0(x;YL),

τ(x) = z(x) ·max {ψ0,1(x;YL), ψ1,1(x;YL)}+ (1− z(x)) · ψ0,1(x;YL)

− z(x) · ψ1,1(x;YU )− (1− z(x)) ·min {ψ0,0(x;YU ), ψ1,0(x;YU )} , .

where

ψz,d
(
x;Y(·)

)
= m(d, z, x) · (d · p(z, x) + (1− d) · (1− p(z, x)) + Y(·) · (d · (1− p(z, x)) + (1− d) · p(z, x)).

Under no further assumption on the distribution of potential outcomes, these bounds are sharp

(Manski and Pepper, 2000) and satisfy Assumptions 3.1 and 3.2.

Having restricted the identified sets Y and T as in Assumptions 3.1-3.2, we are now able to

provide a simpler characterization of the maximin welfare and maximin impact policies.

Proposition 1. Define y
d
(x) = minyd(x)∈Y(x) yd(x) and yd(x) = maxyd(x)∈Y(x) yd(x). Under

Assumption 3.1 the optimal maximin welfare policy is

π∗MMW = argmax
π∈Π

EPX

[
(2π(X)− 1) · (y

1
(X)− y

0
(X))

]
. (8)

Furthermore, under Assumption 3.2 the optimal maximin impact policy is

π∗MMI = argmax
π∈Π

EPX

[
(2π(X)− 1) · τ(X)

]
. (9)
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Proposition 1 shows that the optimal maximin welfare and maximin impact policies maximize

surrogate versions of welfare substituting the unidentified CATE with the difference in the lower

bounds of potential outcomes y
1
(x)− y

0
(x) and the lower bound for CATE τ(x) at every point

in the covariate space, respectively. Notice that when Y(x) is rectangular with respect to the

two potential outcomes, i.e. y0(x) ∈ Y0(x), y1(x) ∈ Y1(x) and Y(x) = Y0(x) × Y1(x), we have

τ(x) = y
1
(x)−y0(x), thus highlighting the “pessimistic” nature of the maximin impact criterion.

Remark 3. The maximin welfare and maximin impact optimal policies coincide when y0(·) is

point-identified. This case is relevant when y0(x) represents the (conditional) average outcome

under the status-quo in the entire population and is typically point-identified from observational

data.

The simplification of these two maximin problems into single maximisation problems has

important benefits for the study of the optimal policies and their estimation from the data. In

fact, the sample analogues of optimizations (8) and (9) are amenable to standard computation

procedures for a variety of policy classes Π. Furthermore, their solution can be studied using

tools for empirical risk minimisation problems, as discussed in Section 4.

Despite the involvement of an additional maximization problem compared to maximin wel-

fare and maximin impact, Assumption 3.2 allows to provide a simpler characterization also for

the minimax regret optimal policy.

Proposition 2. Under Assumption 3.2 the optimal minimax welfare regret policy is

π∗MMR = argmax
π∈Π

EPX

[
(2π(X)− 1) · τ̃(X)

]
(10)

where

τ̃(x) = τ(x) · 1
{
τ(x) ≥ 0

}
+ τ(x) · 1

{
τ(x) ≤ 0

}
(11)

This simpler characterization of the minimax regret problem as a single maximization sheds

light on the properties of its associated optimal policy. In particular, we see that the objective

function symmetrically treats individuals whose expected treatment effect sign is identified by

assigning as surrogate for the CATE their outer bound, i.e. the CATE upper (lower) bound

for individuals with identified positive (negative) sign for CATE. Individuals for which the sign

of the treatment effect is ambiguous are assigned an intermediate point within their respective

CATE bounds, which depends on the extent to which the identified set lies in the positive or

negative region. Intuitively, the criterion prioritizes correct treatment allocation to individuals

who unambiguously benefit from (or are harmed by) the treatment and down-weights the impor-

tance of individuals for which the sign of the treatment response is ambiguous in the treatment
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allocation problem. As an extreme case, individuals with CATE bounds exactly symmetric

around 0 (i.e. τ(x) = −τ(x)) are given no consideration in the solution of the treatment allo-

cation problem. This intuition can be further supported by noticing that the original welfare

maximization under point-identification in (2) can be re-casted as the weighted classification

problem

π∗ = argmin
π∈Π

EPX

[
1
{

(2π(X)− 1) 6= sign(τ(X))
}
· |τ(X)|

]
,

of which the minimax welfare regret optimal policy in (11) turns out to solve the minimax

version under Assumption 3.2:

π∗MMR = argmin
π∈Π

max
τ∈T

EPX

[
1
{

(2π(X)− 1) 6= sign(τ(X))
}
· |τ(X)|

]
.

It is from this minimax classification risk perspective that Pu and Zhang (2021) obtain and

study the minimax regret policy, which they call the “IV-optimal policy”.

An alternative version of minimax regret optimality which has been used in the context of

treatment choice is minimax regret with respect to a baseline policy. Kallus and Zhou (2018)

assume the existence of a fixed policy πB from which the DM does not want to unnecessarily

deviate. They define the optimal policy as minimizing regret with respect to this baseline policy:

π∗MMRB = argmin
π∈Π

max
τ∈T

(Iτ (πB)− Iτ (π))

= argmax
π∈Π

EPX

[
(2π(X)− 1) · (τ(X) · 1 {πB(X) ≥ 0}+ τ(X) · 1 {πB(X) < 0})

]
,

where the second equality uses Assumption 3.2. While potentially appealing in certain settings,

e.g. when πB represents the existing standard of care in a medical setting, this optimality

criterion suffers the potential drawback of requiring the DM to specify (and motivate) the

baseline policy for it to be operational. Adopting the never-treat baseline policy, i.e. πB(x) =

0, ∀x ∈ X , could be seen as an appealing “agnostic” choice, which however makes this criterion

default to maximin impact and thus inherit its potentially undesirable properties.

The last notion of ambiguity-robust optimal policy that we present in this section is based on

the Hurwicz criterion (Hurwicz, 1951), arguably one of the most widely used in decision-making

under ambiguity. In the context of the treatment assignment problem at hand, the Hurwicz

criterion leads to the ambiguity-robust policy

π∗HurW,δ0,δ1 =

argmax
π∈Π

EPX

[
(2π(X)− 1) ·

(
{δ1 · y1(X) + (1− δ1) · y

1
(X)} − {δ0 · y0(X) + (1− δ0) · y

0
(X)}

)]
,
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where δ1 ∈ [0, 1] and δ0 ∈ [0, 1] are user-defined weights reflecting the degree of optimism with

respect to the outcomes under treatment and non-treatment, respectively. It is easy to see that

the maximin welfare criterion in (3) corresponds to the choice δ1 = 0, δ0 = 0. An analogous

notion of optimality focused on impact rather than welfare, leads to the optimal policy

π∗HurI,δ = argmax
π∈Π

EPX

[
(2π(X)− 1) ·

(
δ · τ(X) + (1− δ) · τ(X)

)]
,

where δ ∈ [0, 1] controls the degree of optimism with respect to the effect of treatment, with the

maximin impact optimal policy corresponding to the choice δ = 0. Interestingly, when δ = 1/2

and Π is well-specified, in the sense that it contains the first-best assignment 1{τ(x)+τ(x) ≥ 0},
we have

π∗MMR = 1{τ̃(x) ≥ 0} = 1{τ(x) + τ(x) ≥ 0} = π∗
HurI, 1

2

.

Therefore the minimax regret and Hurwicz impact optimal policies coincide, as they assign

treatment based on the middle point between the upper and lower CATE bounds. When Π is

not well-specified, however, minimax regret optimality is not nested into any of the Hurwicz-

type criteria just presented, thus highlighting the radically different attitude towards ambiguity

implied by minimax regret compared to maximin welfare/impact. In particular, minimax regret

is the only criterion of those presented (along with Hurwicz impact under δ = 1/2) that treats

symmetrically individuals with CATE bounds symmetric around 0, in the sense that Γ(P1;x) =

−Γ(P2, x) whenever τ1(x) = −τ2(x) and τ1(x) = −τ2(x). For this reason, minimax regret does

not reflect an optimistic/pessimistic attitude towards ambiguity but rather an “opportunistic”

one, in light of its prioritization of correct treatment assignment to individuals whose CATE

sign is unambiguously identified.
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Figure 1: Relationship between ambiguity-robust optimal policies

3.1 A common framework

While accommodating a wide range of attitudes towards ambiguity, the notions of optimality

presented in Section 5.2 share a common structure. In fact, by virtue of Assumptions 3.1 and

3.2, the corresponding optimal policies can all be written as

π∗(P ) = argmax
π∈Π

Q(P ;π), Q(P ;π) := EPX
[

(2π(X)− 1) · Γ(P ;X)
]
, (12)

for a specific score function6 Γ(P ; · ), where we have highlighted the dependence of the score

on the distribution P . The specific dependence on P is determined by the optimality criterion

(as summarized in Table 1) as well as the identification assumptions (e.g. Balke-Pearl, Manski-

Pepper etc.). This common structure also nests the point identified setting as the special case

Γ(P ;X) = τ(X) and thus suggests that existing estimation procedures for this special case can

be extended to the partially identified setting.

However, one peculiar feature of the partially identified setting is the restricted degree of

smoothness enjoyed by the objective function, in particular the differentiability of the scores with

respect to P . Under point-identification of the CATE via standard unconfoundedness assump-

tions, one has Γ(P ;x) = E[Y |D = 1, X = x]−E[Y |D = 1, X = x] and the full differentiability of

the score with respect to the expectation E[Y |D,X] is immediately apparent. However, for the

6The term ‘score function’ is borrowed from Athey and Wager (2021).
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minimax regret criterion we notice that the score is directionally differentiable7 with respect to

P at τ(x) = 0 or τ(x) = 0. Even when Γ(P ;x) depends smoothly on expected outcomes/CATE

bounds, lack of full differentiability of the scores can arise through a lack of differentiability of

the expected outcomes and CATE bounds themselves. In fact, many popular identification as-

sumptions, including the Manski and Manski-Pepper bounds from Examples 3.1 and 3.3, deliver

bounds that are only directionally differentiable with respect to identified parameters due to the

presence of min /max operators (see Chernozhukov et al., 2013, and examples therein). Whether

a consequence of the optimality criterion or the identification assumptions, lack of full differ-

entiability of the scores is a unique and pervasive feature of the treatment assignment problem

under partial identification, one that has not been explicitly acknowledged in the most recent

contributions in this area.8 A major contribution of this paper is to account for the role played

by the lack of full differentiability when we establish procedures for estimating ambiguity-robust

optimal policies in Section 4.

Table 1: Optimality criteria and associated scores

Optimality criterion Γ(P ;x)

Maximin Welfare y
1
(x)− y

0
(x)

Maximin Impact τ(x)

Minimax Regret (oracle) τ(x) · 1
{
τ(x) ≥ 0

}
+ τ(x) · 1

{
τ(x) ≤ 0

}
Minimax Regret (baseline) τ(x) · 1

{
πB(x) = 1

}
+ τ(x) ·

{
πB(x) = 0

}
Hurwicz (welfare)

(
{δ1 · y1(x) + (1− δ1) · y

1
(x)} − {δ0 · y0(x) + (1− δ0) · y

0
(x)}

)
δ1, δ0 ∈ [0, 1]

Hurwicz (impact) δ · τ(x) + (1− δ) · τ(x), δ ∈ [0, 1]

7 Let P ∈ P be a probability distribution on which the function f : P → R depends. We say that f is

directionally differentiable at P0 if the limit

lim
t↓0

f(P0 + t(h− P0))− f(P0)

t
= ḟP0 [h]

exists for every h ∈ P, in which case ḟP0 [·] denotes the directional derivative of f at P0. If it exists, the directional

derivative ḟP0 [·] is positively homogeneous of degree one but not necessarily linear. If ḟP0 [·] is linear then f is fully

differentiable at P0.
8The only exception is Christensen et al. (2022), who deal with estimation of optimal treatment decisions in

the absence of individualization.
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4 Estimation

In this section we present the statistical framework underlying the problem of estimation of

optimal treatment rules under partial identification. We will discuss heuristics underlying several

features of the estimation problem, and then present our proposed estimation procedure.

We work in a learning setting where the estimand π∗(P ) is as in (12), and we observe an i.i.d.

sample (Wi)i=1,...,n of size n from the unknown distribution P for the observed random variables

W ∈ W, X ⊂W . To retain generality of the framework, we do not specify the exact dependence

of the functional Γ(P ;x) on P , which will depend on the choice of optimality criterion for the

resolution of ambiguity (maximin welfare, minimax regret etc.) and identification assumptions

determining the sets Y(P ), T (P ). However, we will assume that the scores depend on P only

through a vector of nuisance functions g : V → RJ specified by the moment equations

E[U − g(V ) | V ] = 0, (13)

where U and V are random vectors with U ⊆ W and X ⊆ V ⊂ W . Furthermore, we will

stipulate that the dependence of Γ(g;x) on the nuisance functions g from the possibly infinite-

dimensional space G can be reduced as

Γ(g;x) = Γ(θ(x), x),

where, for a fixed x, the parameter θ(x) ∈ Θx ⊆ RM is a finite-dimensional vector of conditional

moments of U deduced from g. This latter restriction rules out scores Γ(g;X) that at a single

point in the covariate space depend on exhaustive evaluations of the nuisance functions g over

continuous supports. This is the case, for example, in versions of the CATE bounds from

Examples 3.1-3.3 featuring instruments with continuous support Z. In those settings, the CATE

bounds depend on objects such as supz∈Z E[Y | Z = z, X = x], and are therefore not covered

by the results of this paper. Finally, we will assume that that Γ(θ(x);x) can be expressed as

Γ(θ(x);x) = ϕ0(θ(x);x) +
L∑
`=1

a` · ϕ`(θ(x);x) · 1 {ϕ`(θ(x);x) ≥ 0} , a` ∈ {−1, 1}, (14)

where the functions ϕ`(θ(x);x) : Θx × X → R are fully differentiable with respect to θ(x) for

all x ∈ X . While seemingly ad-hoc, this restriction is sufficiently general to accommodate a

wide range of popular partial identification assumptions for the CATE as well as optimality

criteria for the resolution of ambiguity. In particular, formulation (14) accommodates linear

combinations of min/max operators, which typically feature in many identification bounds for

the CATE with discrete instruments. In fact, our framework can be shown to be applicable to
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any combination of the optimality criteria discussed in Section 3 and the identification schemes

contained in the recent survey paper by Swanson et al. (2018).9

Example 3.2 (Continued). Under the identification assumptions of the Balke-Pearl bounds and

resolution of ambiguity via Minimax Regret, we have

g = (h,m, p),

θ(x) = (h(1, x), h(0, x),m(1, 0, x),m(0, 1, x), p(1, x), p(0, x)),

and

Γ(g;x) = ϕ1(θ(x);x) · 1 {ϕ1(θ(x);x) ≥ 0} − ϕ2(θ(x);x) · 1 {ϕ2(θ(x);x) ≥ 0} ,

where ϕ1(θ(x);x) = τ(θ(x);x), ϕ2(θ(x);x) = −τ(θ(x);x) are differentiable with respect to θ(x).

In this framework, a natural approach for estimation is via the so-called “empirical risk

minimisation” (ERM) principle (Vapnik, 1998), in which the estimate for the optimal policy is

obtained as the maximiser of a sample analogue of the population objective Q:

π̂n = argmax
{
Q̂n(π) : π ∈ Π

}
, Q̂n(π) =

1

n

n∑
i=1

(2π(Xi)− 1) · Γ̂i (15)

where Γ̂i is some suitable estimate for Γ(g;Xi). The ERM approach is a cornerstone of statistical

learning theory and is at the foundation of many traditional and modern estimation methods in

statistics, econometrics and machine learning. The ERM principle has also guided much of the

recent literature on individualized treatment rules, where different variations have been applied

under the names of “outcome-weighted learning” (Zhao et al., 2012) and “empirical welfare

maximization” (Kitagawa and Tetenov, 2018). A major challenge in the implementation of (15)

comes from the presence of the nuisance functions g, which are typically unknown and thus

need to be estimated. Assuming that we have access to appropriate algorithms/nonparametric

procedures for estimation the nuisance functions, one simple approach would be to use the

sample (Wi)i=1,...,n to obtain the estimates ĝ and then form plug-in estimates for the score

as Γ̂i = Γ(ĝ;Xi). While seemingly natural, this “naive plug-in” approach has undesirable

properties. In particular, policies estimated via the naive plug-in approach can typically only be

shown to converge at sub-optimal rates to their population counterparts, unless very restrictive

assumptions are imposed on first-stage estimators for the nuisance components (see, e.g., Foster

and Syrgkanis, 2019).

9Even though not accommodated by formulation (14), our framework and theoretical results also apply to scores

that feature a finite number of nested linear combinations of min /max operators. We discuss this extension in

Appendix A.
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One crucial reason underlying the undesirable statistical properties of the naive plug-in

approach is that the resulting objective function estimate Q̂n is overtly sensitive to error in

estimating the nuisance functions g. In order to gain intuition, it is useful to consider the

following expansion of the population objective function Q(g;π) = EPX [(2π(X)− 1) · Γ(g;X)],

Q(g̃;π)−Q(g;π) =
∂Q(g + t(g̃ − g);π)

∂t

∣∣∣∣
t=0

+ ∆(g̃, g;π) +O
(
‖g̃ − g‖2L2(P )

)
(16)

where

∆(g̃, g;π) =

EPX

[
(2π(X)− 1) ·

(
L∑
`=1

a` · ϕ`(g;X) · (1 {ϕ`(g̃;X) ≥ 0} − 1 {ϕ`(g;X) ≥ 0})

)]
.

Von Mises expansions like the above are at the heart of the theory of orthogonal machine learning

(Chernozhukov et al., 2022). In our setting, it allows to describe the impact of a small deviation

from g in the direction g̃−g as consisting of three terms. The first term is the so-called “pathwise

derivative” of Q(g;π) and typically scales with ‖g̃ − g‖L1(P ). The second term ∆(g̃, g;π) is

due the presence of the type of non-differentiabilities arising under partial identification, and

is unique to the framework of this paper. This term accounts for the bias that arises from

misclassifying whether the component functions ϕ` are above or below 0, as we move away from

g in the direction g̃ − g. The third term is a second-order remainder scaling with the mean-

square distance between g̃ and g. A central feature of our proposed estimation procedure is the

construction of a new objective function, called Neyman-orthogonal, with reduced sensitivity to

local perturbations away from g. For this purpose, we will assume that there exists functionals

α`({g, f};V ) such that for every g̃ ∈ G

ϕ`(g̃;x) = E[〈α`({g̃, f};V ), g̃(V )〉 | X = x], ` = 1, . . . , L,

where f ∈ F is a vector of additional nuisance functions defined analogously to g.10 We then

construct Neyman-orthogonal formulations for the component functions as

ϕNO
` ({g, f};w) = ϕ`(θ;x) + φ`({g, f};w), φ`({g, f};w) = 〈α`({g, f}, v), u− g(v)〉.

The functionals α` are the Riesz-representers of ϕ`, while the functionals φ` are their so-called

influence function adjustments. We refer the reader to Ichimura and Newey (2022) for their

10We will also assume that for the j-th entry of the Riesz-representer we have α
(j)
` ({(g̃−j , g̃j), f̃}, x) =

α
(j)
` ({g̃−j , f̃}, x), where g̃−j denotes the exclusion of the j-th entry g̃j from the vector of nuisance functions

g̃. This restriction is sufficiently general to accommodate component functions ϕ`(θ(x);x) that feature linear

combinations of products of the parameters θ(x), thus encompassing all the discussed identification schemes,

including Examples 3.2-3.3.
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properties and general methods for their calculation, while we provide below their specific form

for the Balke-Pearl CATE bounds of Example 3.2.11

Example 3.2 (Continued). Following Ichimura and Newey (2022), we compute the influence

function adjustment φU ({g, f},Wi) for the CATE upper bound by taking the Gateaux derivative

of τ(g;X), which yields

φU ({g, f};Wi) =

[
Zi

z(Xi)
− 1− Zi

1− z(Xi)

]
︸ ︷︷ ︸

α
(1)
U ({g,f},Vi)

·
(
Yi − h(Zi, Xi)

)

+

[
Di(1− Zi)
1− z(Xi)

+
(1−Di)Zi
z(Xi)

]
︸ ︷︷ ︸

α
(2)
U ({g,f},Vi)

·
(
Yi −m(Di, Zi, Xi)

)

+

[
(m(1, 0, Xi)− YL) · 1− Zi

1− z(Xi)
− (YU −m(0, 1, Xi)) ·

Zi
z(Xi)

]
︸ ︷︷ ︸

α
(3)
U ({g,f},Vi)

·
(
Di − p(Zi, Xi)

)
,

where the associated Riesz-representer is αU ({g, f}, Vi) = (α
(1)
U , α

(2)
U , α

(3)
U )′ with f = z(x) and

Vi = (Di, Zi, Xi)
′. The influence function and Riesz-representer for the CATE lower bound are

obtained by interchanging YU and YL in the expressions above.

Finally we form Neyman-orthogonal formulations for the scores as

ΓNO({g, f};w) = ϕNO
0 ({g, f};w) +

L∑
`=1

a` · ϕNO
` ({g, f};w) · 1 {ϕ`(g;x) ≥ 0} ,

which are then used to form the Neyman-orthogonal objective function

QNO({·, ·};π) = EPW
[

(2π(X)− 1) · ΓNO({·, ·};W )
]
.

Our construction of Neyman-orthogonal scores features the addition of the influence function

adjustments φ` to the component functions ϕ` outside the indicators, but crucially not inside.

Heuristically, the influence function adjustments serve the purpose of reducing the bias induced

by the evaluation of the component functions ϕ`(·;x) away from g. Since the indicators vary

discontinuously with g it is not possible to linearly approximate the dependence of the indicators

on the nuisance functions at the point of discontinuity ϕ`(g;x) = 0. As a result, it is not possible

to reduce the bias induced by the presence of the indicators (represented by the term ∆(g̃, g, π) in

(16)) by means of influence function adjustments, whose de-biasing properties implicitly rely on

11See also Kennedy (2022) for a user-friendly discussion of methods for computation influence function adjust-

ments.
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the validity of such linear approximation.12 Notice that QNO({g, f};π) = Q(g;π) by the mean-

zero property of the influence function adjustments, so that orthogonalization of the objective

does not change the notion of optimal policy π∗(P ). Nonetheless, for the orthogonalized objective

it can be shown that

QNO({g̃, f̃};π)−QNO({g, f};π) = ∆(g̃, g;π) +O
(
‖g̃ − g‖2L2(P ) + ‖f̃ − f‖2L2(P )

)
. (17)

Comparing the above with (16), we see that the von Mises expansion for the orthogonalized

objective does not feature the pathwise derivative term, implying that QNO( · ;π) is less sensitive

to deviations away from g compared to the original objective Q( · ;π). As shown in Section 5, this

property will generally translate in improved statistical guarantees for the estimated policy when

the nuisance functions have to be learned from the data. It should however be noticed that the

term ∆(g̃, g;π) still appears in the relevant expansion after orthogonalization. The contribution

of this term is quantified in Section 5, and it is shown to be of first-order importance for the

statistical properties of the estimation procedures.

The second key component of our approach is the use of sample-splitting, which is a com-

monly employed method in semiparametric inference (Chernozhukov et al., 2022) and statistical

learning (Foster and Syrgkanis, 2019). The main purpose of sample-splitting is to reduce the risk

of overfitting that generally arises from using the same data to estimate the nuisance functions

as well as the optimal policy, as in the naive plug-in approach. Similarly to Athey and Wager

(2021), we employ a particular form of sample-splitting known as K-fold cross-fitting (described

below). This procedure ensures that in the estimate for ΓNO({g, f};Wi), the estimates for the

nuisance functions {g, f} are independent from the data-point Wi for that same unit. This

independence property is crucial for the theoretical guarantees of our proposed method.

Our proposed estimation procedure is therefore as follows. We first randomly split the data

into K evenly-sized folds and for each fold k = 1, . . . ,K we obtain estimates {ĝ(−k), f̂ (−k)}
using the remaining K − 1 folds. These are then used to form cross-fitted Neyman-orthogonal

estimates for the scores

Γ̂i = Γ̂NO
(
{ĝ−k(i), f̂−k(i)};Wi

)
, i = 1, . . . , n, (18)

where k(i) ∈ {1, . . . ,K} denotes the fold containing the i-th observation. Finally, the estimated

optimal policy rule π̂n is obtained via the optimization problem (15).

12On the contrary, naively adding the influence function adjustments inside the indicators would lead to a bias

increase, rather than a reduction.
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5 Statistical guarantees for the estimated policy

Let π̂n be the estimated treatment policy defined in (15), with estimated scores as in (18).

Following Manski (2004), we assess the performance of the estimated treatment policy in terms

of (statistical) regret with respect to population optimal policy. Let the population ambiguity-

robust optimal policy be π∗n(P ) ∈ argmaxπ∈Πn Q(P ;π), where we have included the n-subscript

to the policy class Πn to allow this to depend on the sample size for generality. The statistical

regret of an estimated policy π̂n is defined as

Rn(P ; π̂n) = EPn
[
Q(P ;π∗n)−Q(P ; π̂n)

]
≥ 0, (19)

where EPn is the expectation with respect to the i.i.d. sample of observable random variables

(Wi)i=1,...,n used to estimate π̂n. The next few subsections build up to a final result providing

asymptotic convergence guarantees for π̂n to π∗n in terms of statistical regret.

5.1 Assumptions

We make the following assumptions.

Assumption 5.1 (VC-class). There exists constants 0 ≤ ν < 1/2 and N ≥ 1 such that

VC(Πn) . nν for all n ≥ N .

Assumption 5.1 restricts the policy class to have finite VC-dimension, which is a standard

requirement for controlling the complexity of a policy class in the classification literature. The

VC-dimension of the policy-class Π is defined as the largest interger m such that there exist

points x1, . . . , xm that are shattered by Π, i.e. where the policy values π(x1), . . . , π(xm) can take

on all 2m possible combinations in {0, 1}m (for more on VC-dimension, see Wainwright, 2019).

Several practically relevant classes of treatment rules satisfy this requirement, including the

linear-index and quadrant rules used in the empirical application of Section 6. Our assumption

allows the VC-dimension of the policy class to grow moderately with the sample size, thus

allowing the treatment rule to depend on high-dimensional covariates.

Assumption 5.2 (Regularity conditions for data-generating process).

(i) There exist constants C1,ϕ, C1,α such that for all {g̃, f̃} ∈ G × F

‖ϕ`(g̃;X)− ϕ`(g;X)‖L∞(PX) ≤ C1,ϕ · ‖g̃ − g‖L∞(PV ),∥∥∥α`({g̃, f̃};V )− α`({g, f};V )
∥∥∥
L∞(PV )

≤ C1,α ·
(
‖g̃ − g‖L∞(PV ) +

∥∥∥f̃ − f∥∥∥
L∞(PV )

)
,

for ` = 0, . . . , L.
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(ii) There exist constants C2,ϕ, C2,α such that for all {g̃, f̃} ∈ G × F

‖ϕ`(g̃;X)− ϕ`(g;X)‖L2(PV ) ≤ C2,ϕ · ‖g̃ − g‖L2(PV ),∥∥∥α`({g̃, f̃};V )− α`({g, f};V )
∥∥∥
L2(PV )

≤ C2,α ·
(
‖g̃ − g‖L2(PV ) +

∥∥∥f̃ − f∥∥∥
L2(PV )

)
,

for ` = 0, . . . , L.

(iii) There exist constants C3,ϕ, C3,α such that for all {g̃, f̃} ∈ G × F

‖ϕ`(g̃;X)‖L∞(PX) ≤ C3,ϕ,∥∥∥α`({f̃ , g̃};V )
∥∥∥
L∞(PV )

≤ C3,α,

for ` = 0, . . . , L.

(iv) The irreducible noise εi := Ui − g(Vi) is a sub-Gaussian vector conditional on Vi, with

conditional variance Var(εi | Vi) = Σ(Vi) satisfying ‖λmax(Σ(V ))‖L∞(PV ) ≤ λ <∞.

Assumptions 5(i) and 5(ii) impose Lipschitz continuity of the component functions and Riesz-

representers with respect to the nuisance component in the L∞ and L2-norm, respectively. These

requirements are typically met under mild conditions within the framework of this paper. For

the Balke-Pearl bounds of Example 3.2, these assumptions hold under the overlap condition

whenever G and F are subsets of the space of bounded functions13, which is automatically satis-

fied since Ui = (Yi, Di, Zi)
′ is a vector of random variables with bounded support. Assumption

5.2(iii) is a uniform bound on the component functions and Riesz-representers, the former im-

plying uniform boundedness of the scores Γ(g; ·). Assumption 5.2(iv) is a standard requirement

in statistical learning theory restricting the tail behaviour of statistical noise. It is automat-

ically satisfied when Ui has bounded support, as in the Balke-Pearl bounds, but also allows

for outcomes with unbounded support whose conditional distribution has sufficiently thin tails.

Together with Assumption 5.2(iii), this assumption implies sub-gaussianity of ΓNO({g, f},Wi).

The next two assumptions impose requirements on the estimators for the nuisance compo-

nents.

Assumption 5.3 (Regularity conditions for fist-step estimators).

(i) The estimators of the nuisance functions {ĝn, f̂n} belong to the function classes G×F with

probability 1.

13That is, there exists a constant B > 0 such that ‖{g̃, f̃}‖L∞(PV ) ≤ B, ∀{g̃, f̃} ∈ G × F
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(ii) There exists a constant C4 > 0 such that

‖ĝn − g‖L∞(PV ) ≤ C4,∥∥∥f̂n − f∥∥∥
L∞(PV )

≤ C4,

with probability approaching 1 as n→∞.

Part (i) of Assumption 5.3 is needed to ensure the validity of the Lipschitz continuity require-

ments of Assumption 5.2 for the component functions and Riesz-representers when evaluated at

the first-stage estimates. In the context of the Balke-Pearl bounds, it is satisfied when ĝn, f̂n are

uniformly bounded and the estimated propensity score ẑ(Xi) is uniformly bounded away from 0

and 1, with probability one. The first condition is satisfied by virtually any estimation procedure

when the outcomes Ui have bounded support. The second requirement can be guaranteed under

appropriate trimming of the estimated propensities. Part (ii) requires that estimation errors

for the nuisance components are uniformly bounded, which is satisfied under Assumption 5.3(i)

when G × F is a subset of the space of bounded functions. When Ui has unbounded support

and G × F includes unbounded functions, a more primitive condition for (ii) would be uniform

consistency of the first stage estimates, that is ‖{ĝn, f̂n} − {g, f}‖L∞(PV ) →p 0.14

Assumption 5.4 (L2 convergence rates). The estimators of the nuisance functions satisfy

EPn
[
‖ĝn − g‖2L2(PV )

]
≤ rn

n1/2
,

EPn
[∥∥∥f̂n − f∥∥∥2

L2(PV )

]
≤ rn

n1/2
,

for some sequence rn = o(1).

The above requirement on the L2-convergence rates for the learners of the nuisance functions

is a standard assumption in the semiparametric inference literature (see, e.g., Farrell, 2015, and

Chernozhukov et al., 2022). It can be shown to provably hold for traditional nonparametric

estimation methods such as sieve methods (Chen, 2007) as well as modern black-box machine

learning algorithms including Lasso (see, e.g., Farrell, 2015), deep neural networks (Farrell et al.,

2021), boosting and others, for which stronger guarantees such as Donsker-type properties are

typically not available. The ability to invoke a mild L2-convergence requirement is a virtue of the

combined use of Neyman-orthogonalization and sample-splitting, a key insight brought forward

by Chernozhukov et al. (2022) for semiparametric GMM inference, and subsequently leveraged

14However, it should be noted that the uniform consistency requirement is not completely innocuous when

{ĝn, f̂n} are machine learning estimators (Farrell et al., 2021).
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by Athey and Wager (2021) and Foster and Syrgkanis (2019) in the context of statistical learning

problems.15

Finally, we present an assumption that concerns the distribution of the component functions

ϕ` at the population level.

Assumption 5.5 (Margin). There exist constants Cm > 0 and γ ≥ 0 such that

PX
(

0 < |ϕ`(g;X)| ≤ t
)
≤ Cmtγ , ∀ t > 0.

for ` = 1, . . . , L.

The above assumption restricts the extent to which the distribution of the component func-

tions ϕ`(g;X) can concentrate around the point of non-differentiability 0 and it is a form of

“margin assumption”, first introduced by Mammen and Tsybakov (1999). Such an assumption

has been widely used in statistics to obtain fast learning rates in classification problems (see,

e.g., Arlot and Bartlett, 2011). Notice that the above formulation for the margin assumption

restricts the concentration of probability for the distribution of the components functions in a

neighbourhood of 0, but still allows for arbitrary probability mass at 0.

Example 5.1 (γ = 1). Suppose X contains an absolutely continuous covariate x̃ and ϕ`(g;X) ·
1{x̃ 6= 0} is absolutely continuous with density bounded above by f for ` = 1, . . . , L. Then

Assumption (5.5) holds with γ = 1 and Cm = 2f .

Example 5.2 (γ = ∞). Suppose there exists a t0 > 0 such that PX (0 < |ϕ`(X)| < t0) = 0 for

` = 1, . . . , L. Then Assumption (5.5) holds with γ =∞ and some Cm > 0.

In the context of the Balke-Pearl bounds from Example 3.2 with resolution of ambiguity

via Minimax Regret, Assumption 5.5 restricts the extent to which the CATE bounds τ , τ can

concentrate around 0 in the data-generating process. Under γ =∞ the support of each CATE

bound is required to be fully separated from 0, while γ = 1 requires that each CATE bound has

bounded density in a neighborhood of 0.

In the next section we present our theoretical results based on Assumptions 5.1-5.5.

5.2 Regret convergence rates

In this section, we provide asymptotic rates of convergence for the regret of the estimated policy

Rn(P ; π̂n) as defined in (19). In line with the existing literature, we study uniform regret

15Unlike Athey and Wager (2021), our assumptions do not allow to trade-off accuracy in the estimation across

the different nuisance functions. This is because our framework allows for ϕ`(g;x) to be a potentially non-linear

functional of the nuisance functions g, as is the case in Examples 3.1-3.3, thus precluding such double-robustness

property.
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bounds that are valid for all distributions P ∈ P satisfying Assumptions 5.1-5.5. All results

in this section are thus intended to hold uniformly in the above sense, and we will drop the

dependence on P for notational convenience.

We begin by noticing that controlling the convergence of π̂n to the best-in-class policy π∗n

intuitively requires accounting for: 1) the estimation error in the component functions and

influence function adjustments due to estimation of the nuisance components {g, f}, 2) the

difference between the population Neyman-orthogonal score and true score16, and 3) the fact

that we estimate our policy using a sample from the distribution of the covariates Xi rather

than their true distribution. We define the following quantities:

Q̂NO
n (π) =

1

n

n∑
i=1

(
2π(Xi)− 1

)
· ΓNO({ĝ, f̂};Wi),

QNO
n (π) =

1

n

n∑
i=1

(
2π(Xi)− 1

)
· ΓNO({g, f},Wi),

and formalize this intuition in the next proposition.

Proposition 3. The regret of π̂n obeys the following bound:

Rn(π̂n) ≤2E
[

sup
π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣]+ E

[
sup
π∈Πn

∣∣QNO
n (π)−Q(π)

∣∣] . (20)

The second term in the above bound accounts for points 2) and 3). Qn(π) − Q(π) is a

centred (mean-zero) empirical process and therefore its uniform expectation can be shown to be

O
(√

VC(Πn)/n
)

using symmetrization and chaining arguments (see, e.g., Wainwright, 2019,

Ch. 5.3). Controlling the first term, which accounts for point 1), is particularly challenging and

requires tailored arguments that deal with the particular form of the population scores in (14),

in particular their lack of full differentiability.

Lemma 1. Suppose that Assumptions 5.1-5.5 hold and define κn = bn(1 − 1/K)c. Then we

have

EPn
[

sup
π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣] = O

(
rκn√
n

+

√
VC(Πn)

n
+

(
rκn√
n

) γ+1
γ+2

)
.

Lemma 1 is the central result of this paper. It provides an asymptotic rate of convergence

to zero of the empirical process
∣∣∣Q̂NO

n (π)−QNO
n (π)

∣∣∣ uniformly over the policy class Πn, which

depends on the VC-dimension of the class and the degree of concentration of the component

16That is, we need to account for the fact that we have added the influence function adjustments to the

component functions.
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functions ϕ`(g;X) around 0, as indexed by γ. In order to convey intuition on this result we

provide a brief outline of the proof, which is based on the decomposition

Q̂NO
n (π)−QNO

n (π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
Γ̂NO

(
{ĝ−k(i), f̂−k(i)},Wi

)
− ΓNO ({g, f},Wi)

]
= A0(π) +

L∑
`=1

a` · [A1,`(π) +A2,`(π) +A3,`(π)] ,

(21)

where

A0(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
ϕNO

0 ({ĝ−k(i), f̂−k(i)},Wi)− ϕNO
0 ({g, f},Wi)

]
,

A1,`(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
ϕNO
` ({ĝ−k(i), f̂−k(i)},Wi)− ϕNO

` ({g, f},Wi)
]
· 1
{
ϕ`

(
ĝ−k(i);Xi

)
> 0
}
,

A2,`(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · φ`({g, f};Wi) ·
[
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

]
,

A3,`(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · ϕ`(g;Xi) ·
[
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

]
.

Terms A0(π) and A1,`(π) can be controlled using similar arguments to Athey and Wager (2021)

and are responsible for the O (rκn/
√
n) term in the bound of Lemma 1. The de-biasing properties

of Neyman-orthogonalization combined with sample-splitting play a crucial role in this context,

as they ensure that the error in estimating ϕ`(g;x) only has a second-order contribution. As

a result, term A1,`(π) scales with the mean-squared estimation error in the nuisance functions

and, under Assumption 5.4, its expectation decays faster than 1/
√
n uniformly over Πn.17 If

plug-in (non-orthogonalized) estimates for ϕ` are instead used to form the score estimates Γ̂i, the

estimation error in the nuisance functions has a first-order impact on term A1,`(π). As a result,

its uniform expectation would scale with the L1 estimation error which, under Assumption 5.4,

implies the much slower convergence E[supπ∈Πn |A1,`(π)|] = o(n1/4).

For term A2,`(π), the mean-zero property of the influence function adjustments together with

sample-splitting ensures that this term is a centred empirical process and thus it is responsible

for a O
(√

VC(Πn)/n
)

contribution again by symmetrization and chaining arguments.

Finally, for term A3,`(π) we show that

E
[

sup
π∈Πn

A3,`(π)

]
≤ E

[ ∣∣∣ϕ`(g;Xi) ·
(
1

{
ϕ
−k(i)
` (ĝ−k(i);Xi) ≥ 0

}
− 1 {ϕ`(g;Xi) ≥ 0}

)∣∣∣ ],
17Notice that, by virtue of sample-splitting, the presence of the indicator 1{ϕ`(ĝ−k(i);Xi) ≥ 0} is immaterial

when controlling the expectation of A1,`(π) uniformly over Πn.
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where the RHS can be recognized to be the classification loss of an estimator for the sign

of ϕ`(g;x) based on thresholding ϕ`(ĝ
−k(i);x). Rates of convergence in binary classification

problems intuitively depend on the degree of separation of the true regression function from 0,

as indexed by γ. We thus leverage results from the literature on classification (Audibert and

Tsybakov, 2007) to quantify the contribution of A3,` in the bound of Lemma 1 in terms of γ.

We are now ready to combine the rates of convergence for the three terms in Proposition 3

to obtain a final regret bound for our proposed estimation procedure.

Theorem 2. Suppose Assumptions 5.2-5.5 hold. Then the regret obeys

Rn(π̂n) = O

(√
VC(Πn)

n
∨
(
rκn√
n

) γ+1
γ+2

)
.

We see that regret convergence for our policy learning procedure happens at a rate corre-

sponding to whichever is the leading term in the asymptotic expansion of Lemma 1, which de-

pends on ν and γ. When the policy class Πn has fixed VC-dimension (ν = 0), regret convergence

happens at rates ranging from o(n1/4) in the least favourable case (γ = 0) to O(
√

VC(Π)/n)

in the most favourable case (γ = ∞). The latter case is in line with existing results for pol-

icy learning with point identified CATE, in which full-differentiability of the scores leads to√
VC(Πn)/n learning rates (see Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Foster

and Syrgkanis, 2019). For the intermediate case γ = 1 of Example 5.1 our procedure guarantees

regret convergence at rate o(n1/3).

It is useful to compare the performance guarantees in this paper with Pu and Zhang (2021),

whose procedure involves the use of non-orthogonalized estimates for the scores with sample-

splitting. They show that the regret of a policy estimated via the maximization (15) based on

cross-fitted non-orthogonalized scores is upper bounded by the L1-norm of the estimation error

in the nuisance functions. Under Assumption 5.4, this implies o(n1/4) convergence for the regret,

which is strictly slower than our rates for all values of γ > 0. The faster speed of convergence

guaranteed by our procedure is not just due to a refined proof strategy but crucially depends

on the use of Neyman-orthogonalization, as elucidated by our discussion of Lemma 1.

Remark 4. The procedure of Pu and Zhang (2021) also differs from ours in its final implemen-

tation, which in their case is carried out via support vector machines (SVM) with Πn assumed to

be a reproducing kernel Hilbert space. While the use of surrogate losses (such as the hinge loss in

SVM) to convexify problem (15) can bring considerable computational benefits in terms of speed

and scalability, it comes at the cost of even slower convergence guarantees than the o(n−1/4)

discussed above. We stress that our insights regarding the benefits of Neyman-orthogonalization

in terms of faster learning rates apply irrespective of the final implementation. Notice also that

the use of surrogate loss functions does not guarantee convergence of the estimated optimal policy
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to the best-in-class π∗n in general when the policy class Πn does not contain the “first-best” policy

1{Γ(g;x) ≥ 0}, as shown by the recent work of Kitagawa et al. (2021).

6 Empirical application

In this section we apply the methods discussed in this paper to data from the National Job Train-

ing Partnership Act (JTPA) Study. This study randomly selected applicants to receive various

training and services, including job-search assistance, for a period of 18 months. The study

collected background information on applicants before random assignment and then recorded

their earnings in the 30-month period following treatment assignment. Kitagawa and Tetenov

(2018) apply their EWM method to a sample of 9,223 adult JTPA applicants to estimate the

optimal allocation of eligibility into the programme that maximizes individual earnings across

the population. In particular, they take total individual earnings in the 30 months after as-

signment as the welfare outcome measure Yi, and consider policies that allocate eligibility in

the programme based on the individual’s observable characteristics. Kitagawa and Tetenov’s

analysis is from an intent-to-treat perspective as they focus on the problem of deciding who

should be given eligibility to participate in the programme. Since eligibility in the JTPA study

is randomly assigned, the effect of eligibility on earnings is point identified from the data and

methods for policy learning under point-identification can be applied in this setting. We depart

from Kitagawa and Tetenov (2018) and instead consider optimal assignment of actual partic-

ipation in the training. This analysis would be of interest to a policy-maker that expects to

achieve (close to) perfect compliance to her treatment decision, e.g. when participation is made

a condition for receipt of a sufficiently generous unemployment benefit. Compliance in the JTPA

study is imperfect as roughly 23% of applicants’ participation status Di = 0, 1 deviates from

their assigned eligibility status Zi = 0, 1, as shown in Table 2. As a result, random assignment

of the eligibility instrument Zi is not sufficient to point-identify the effect of participation in the

training, motivating the use of the methods of this paper.

For partial identification of the CATE we consider the Balke-Pearl scheme of Example 3.2,

where bounds for the 30-month post-treatment earnings are YL = $0 and YU = $59, 640.18 We

compare this with point-identification of the CATE as the conditional local average treatment

effect (LATE), predicated under the assumption of no unobserved heterogeneity. We subtract

$1200 from both the CATE bounds and the conditional LATE; this is the average cost of services

18The outcome upper bound corresponds to the 97.5th percentile of the earnings distribution rather than highest

recorded value of $155, 760. Outcome bounds in Balke-Pearl bounds effectively impute unidentified expected

earnings for never-takers and always-takers. Restricting expected earnings to be below such high quantile is in

effect a mild requirement which brings considerable identification power.
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Table 2: Joint distribution of eligibility and participation, JTPA study

Eligibility (Zi)

Participation (Di) 0 1 Total

0 3047 2118 5165

1 43 4015 4058

Total 3090 6133 9233

Data source: Kitagawa and Tetenov (2018) and

Abadie, Angrist, and Imbens (2002).

per actual treatment, estimated from Table 5 in Bloom et al. (1997). Following Kitagawa

and Tetenov (2018), we condition treatment assignment on two pre-treatment variables: the

individual’s years of education and earnings in the year prior to assignment. Estimation of

the optimal policy follows the procedure described in Section 4, with K = 10 evenly-sized

data folds used to form cross-fitted Neyman-orthogonal estimates for the CATE bounds and

conditional LATE functions. The nuisance functions are estimated via boosted regression trees,

performed by the MATLAB function fitrensenmble.19 Figure 1 demonstrates cross-fitted plug-

in estimates for the CATE bounds (a) and LATE/MMR scores (b), where the size of the dots

indicates the number of individuals with different covariate values. We notice that the estimated

CATE lower bounds are negative for the whole sample, and thus the maximin impact policy

never assigns treatment in this application. We will therefore focus our analysis on minimax

regret (MMR).20

We consider two alternative choices for the candidate policy class Π. The first is the class of

quadrant treatment policies. To be assigned to treatment according to this policy, an individual’s

education and pre-program earnings have to be above (or below) some specific threshold. Figure

3 illustrates the quadrant treatment policies selected by our proposed method, where the colored

shaded areas indicate individuals assigned to treatment by the two respective policies. The

optimal MMR policy assigns treatment to individuals with education below 15 years and pre-

treatment earnings below $23,551. The optimal LATE policy features the same threshold for

education, but selects individuals with pre-treatment earnings above $200 for treatment.

19Tuning parameters have been chosen via cross-validation within each data-fold. For further details on the

estimation procedure we refer to the MATLAB documentation for the command.
20Maximin welfare also results in no treatment for the whole population in this application.
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Figure 2: JTPA - Plug-in cross-fitted estimates (net of $1200)
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Table 3: Treatment proportions of alternative treatment assignment policies

Share of Population
to be treated

Share of Population receiving
same treament under MMR and LATE

Quadrant Rule 0.68

Minimax Regret 0.96 –

LATE 0.64 –

Linear Index Rule 0.70

Minimax Regret 0.95 –

LATE 0.69 –

The rows labeled “Minimax Regret” give information on estimated optimal minimax regret policies

based on the scores in Equation (11) with Balke-Pearl CATE bounds. The rows labeled “LATE” give

information on optimal policies for scores that identify the conditional LATE.

While the two policies appear similar, they substantially differ in the proportion of population

assigned to treatment (96% by the MMR policy versus 64% by the LATE policy). This is

due to the large concentration of individuals with pre-treatment earnings close to (or equal)

zero. As a result, 32% of individuals receive a different treatment assignment across the two

policies. Second, we consider the class of linear treatment policies. This class consists of policies

that assign treatment to an individual according to whether a linear index in his observable

characteristics is above a certain threshold. Figure 4 illustrates how the direction of treatment

assignment as a function of prior earnings differs between the MMR and LATE policy in a

similar fashion to the quadrant rules; contrary to the LATE policy, MMR prioritizes treatment

assignment to individuals with lower pre-program earnings. Nonetheless, 70% of the population

still receives the same treatment under the two different policies, in light of the relatively low

concentration of individuals in the areas of the covariate space where the two policies differ.

Similarly to the quadrant policy rule, the MMR policy assigns treatment to a larger share of

the population (95%) compared to the LATE policy (69%).
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Figure 3: Estimated optimal policies from the quadrant policy class

Figure 4: Estimated optimal policies from the linear-index policy class
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7 Conclusion

This paper develops a general policy learning framework for estimation of individualized treat-

ment rules when treatment effects are partially identified. By drawing connections between the

treatment assignment problem and classical decision theory, we have characterized several no-

tions of optimal treatment policies in the presence of partial identification. We have shown how

partial identification leads to a new policy learning problem where the risk is only directionally-

differentiable with respect to a nuisance infinite-dimensional component. We have proposed an

estimation procedure that ensures Neyman-orthogonality with respect to the nuisance compo-

nents and we have provide statistical guarantees that depend on the amount of concentration

around the points of non-differentiability in the data-generating process. Our proposed meth-

ods are illustrated with an application to the Job Training Partnership Act study, where we

have shown that allowing for partial identification delivers substantially different programme

participation policies compared to existing methods that assume point-identification.

There are several avenues for future research. First, it would be interesting to extend the

theory of this paper to partial identification via instrumental variables with continuous sup-

port. Second, it would be useful to extend the methods to more general identification sets

that incorporate smoothness restrictions on unobserved counterfactual quantities, such as those

considered in Kim et al. (2018). Finally, it would be interesting to assess the optimality of

our proposed estimation procedure by deriving minimax lower bound rates for semiparametric

statistical learning problems with directionally-differentiable risk.
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Appendices

A Extension to nested min/max operators

In this section we describe how the proposed estimation procedure and the theoretical re-

sults of Section 4 can be extended to scores Γ(g;X) that feature nested linear combinations

of min /max operators. This extension comprises min /max operators over multiple compo-

nents, since max{a, b, c} = max{max{a, b}, c}.
We begin by noticing that our proposed estimation described in Section 4 can be also defined

as follows. First, for each min{a(g;x), b(g;x)} (or max) operator contained in Γ(g;x), one substi-

tutes the operator with a(g;x) or b(g;x) based on their cross-fitted plug-in (non-orthogonalized)

estimates âi := a(ĝ−k(i);Xi) and b̂i := b(ĝ−k(i);Xi). Then, the selected component is estimated

(a(g;x) or b(g;x)) is estimated by their cross-fitted Neyman-orthogonal analogue (âNOi or b̂NOi ).

In the presence of nested min /max operators, our estimation is generalized as follows. First, in

succession from the most inner to the most outer min /max, each operator is substituted with

their smallest/largest argument based on cross-fitted non-orthogonalized estimates. Then, the

selected components are estimated by their cross fitted Neyman-orthogonal analogue. As an

illustration, consider the hypothetical score

Γ(g;x) = d(g;x) + max{c(g;x) + min{a(g;x), b(g;x)}, 0}

= d(g;x) + max{c(g;x) + b(g;x) + (a(g;x)− b(g;x)) · 1{a(g;x)− b(g;x) ≤ 0}︸ ︷︷ ︸
%(g;x)

, 0}

= d(g;x) + %(g;x) · 1 {%(g;x) ≥ 0} .

Applying the above procedure to this example gives the following expression for the estimated

Neyman-orthogonal score:

ΓNO({ĝ−k(i), f̂−k(i)},Wi) = d̂NOi +
[
ĉNOi + b̂NOi + (âNOi − b̂NOi ) · 1{âi − b̂i ≤ 0}

]
· 1 {%̂i ≥ 0} ,

where

%̂i = ĉi + b̂i + (âi − b̂i) · 1{âi − b̂i ≤ 0}.

We will now show how the theoretical results of Section 5 can be generalized to this example.21

21 The extension to general scores containing an arbitrary finite number of nested min /max operators follows

immediately from our discussion of this example.
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Following the arguments of Section 5.2, we have

Q̂NO
n (π)−QNO

n (π) =
n∑
i=1

(2π(Xi)− 1) · (d̂NOi − dNOi )

+
n∑
i=1

(2π(Xi)− 1) · (ĉNOi + b̂NOi − cNOi − bNOi ) · 1{%̂i ≥ 0}

+
n∑
i=1

(2π(Xi)− 1) · (âNOi − b̂NOi ) · 1{âi − b̂i ≤ 0} · 1{%̂i ≥ 0}

+
n∑
i=1

(2π(x)− 1) · (aNOi − bNOi ) ·
[
1{âi − b̂i ≤ 0} − 1{ai − bi ≤ 0}

]
· 1{%̂i ≥ 0}

+
n∑
i=1

(2π(x)− 1) · %NOi · [1{%̂i ≥ 0} − 1{%i ≥ 0}] .

The first term in the expansion has the same structure as A0,` and thus obeys the same bound.

The second and third term obey the same bound as A1,` since, by virtue of sample-splitting,

the indicators 1{%̂i ≥ 0} and 1{âi − b̂i ≥ 0} are immaterial when controlling the expectation of

these term uniformly over Πn (see arguments in the Proof of Lemma 1). The fourth term has

the same structure as A2,`+A3,` except for the presence of the indicator 1{%̂i ≥ 0}, which again

can be shown to be immaterial for controlling the A2,`-like term by virtue of sample-splitting.

For the A3,`-like term we instead have the bound

E

[
sup
π∈Πn

1

n

n∑
i=1

(2π(x)− 1) · (ci − bi) ·
(
1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}

)
· 1{%̂i ≥ 0}

]

≤ E

[ ∣∣∣(ci − bi) · (1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}
)∣∣∣ · |1{%̂i ≥ 0}|

]

≤ E

[ ∣∣∣(ci − bi) · (1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}
)∣∣∣ ],

which can be bounded in the same fashion as A3,` under a margin assumption on a(g;X) −
b(g;X). Finally, the fifth term also has the same structure as A2,` +A2,`, and can be controlled

using arguments from Section 5.2 under a margin assumption on ρ(g;X).

B Proofs

B.1 Proof of Proposition 1

For the maximin welfare policy we have

min
(y0,y1)∈Y

EPX
[
π(X) · yπ(X)(X)

]
= EPX

[
min

(y0(x),y1(x))∈Y(x)
π(X) · yπ(X)(X)

]
= EPX

[
π(X) · y

1
(X) + (1− π(X)) · y

0
(X)

]
,
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where the first equality is justified by 3.1. Thus we have

argmax
π∈Π

min
(y0,y1)∈Y

Wτ (π) = argmax
π∈Π

EPX
[
π(X) · y

1
(X) + (1− π(X)) · y

0
(X)

]
.

For the maximin impact policy we have

min
τ∈T

EPX [π(X) · τ(X)] = EPX

[
min
τ∈T

π(X) · τ(X)

]
= EPX [π(X) · τ(X)] .

where the first equality is justified by Assumption 3.2. Thus we have

argmax
π∈Π

min
τ∈T

Wτ (π) = argmax
π∈Π

EPX [π(X) · τ(X)] .

The statement of the proposition again follows from the invariance of the maximizer to positive

affine transformations of the objective function.

B.2 Proof of Proposition 2

We notice that

max
τ∈T

(
max

π :X→{0,1}
Wτ (π)−Wτ (π)

)
= max

τ∈T
EPX

[(
1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)

]
= EPX

[
max
τ∈T

(
1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)

]
= EPX

[
max
τ∈T

1
{
τ(x) ≥ 0

}
· (1− π(X)) · τ(X)︸ ︷︷ ︸

=(1−π)·1{τ(x)≥0}·τ(X)

]
+ EPX

[
max
τ∈T

1
{
τ(x) ≤ 0

}
· −π(X) · τ(X)︸ ︷︷ ︸

=−π·1{τ(x)≥0}·τ(X)

]

+ EPX

[
max
τ∈T

1
{
τ(x) < 0 < τ(x)

}
·
(

1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)︸ ︷︷ ︸

=−π·1{τ(X)<0<τ(X)}(τ(X)−τ(X))+1{τ(X)<0<τ(X)}·τ(X)

]

= −EPX
[
π ·
(
1
{
τ(X) ≥ 0

}
· τ(X) + 1

{
τ(X) ≤ 0

}
· τ(X) + 1

{
τ(X) < 0 < τ(X)

}
·
(
τ(X)− τ(X)

))]
+ EPX

[
τ(X) · 1

{
τ(X) ≥ 0

}
+ 1 {τ(X) < 0 < τ(X)} · τ(X)

]
,

where the first equality uses the fact argmaxπ :X→{0,1}Wτ (π) = 1
2 + 1

2sign(τ(X)), and the second

equality uses Assumption 3.2. The statement of the proposition then follows from the invariance

of the maximizer to positive affine transformations of the objective function.

B.3 Proof of Proposition 3

We being by decomposing regret as follows:

Q(π∗n)−Q(π̂n) =
[
Q(π∗n)−QNO

n (π∗n)
]

+
[
QNO
n (π∗n)− Q̂NO

n (π̂n)
]

+
[
Q̂NO
n (π̂n)−Q(π̂n)

]
. (22)
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The first term is zero in expectation. The second term can be upper bounded as[
QNO
n (π∗n)− Q̂NO

n (π̂n)
]
≤
[
QNO
n (π∗n)− Q̂NO

n (π∗n)
]

+
[
Q̂NO
n (π∗n)− Q̂NO

n (π̂n)
]
≤ sup

π∈Πn

∣∣∣QNO
n (π)− Q̂NO

n (π)
∣∣∣ ,

where we have used that Q̂NO
n (π∗)− Q̂NO

n (π̂n) ≤ 0, which follows from π̂n being the maximizer of

Q̂NO
n (·). The third term can be further expanded and upper bounded as follows

Q̂NO
n (π̂n)−Q(π̂n) ≤ sup

π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣+ sup

π∈Πn

∣∣QNO
n (π)−Q(π)

∣∣ .
Using the last two displays and taking expectations in (22) yields the desired conclusion.

B.4 Proof of Lemma 1

We will establish each of the following bounds in turn:

E
[

sup
π∈Πn

|A0(π)|
]

= O

(√
VC(Πn) · rκn

n3/2
+

rκn
n1/2

)
,

E
[

sup
π∈Πn

|A1,`(π)|
]

= O

(√
VC(Πn) · rκn

n3/2
+

rκn
n1/2

)
,

E
[

sup
π∈Πn

|A2,`(π)|
]

= O

(√
VC(Πn)

n

)

E
[

sup
π∈Πn

|A3,`(π)|
]

= O

((rκn
n

) γ+1
γ+2

)
Combining the above through decomposition (21) gives the desired final bound.

Bound for A0 and A1,`

We prove a bound for supπ∈Πn |A1,`(π)|; it will be immediate that A0(π) obeys the same bound.

We begin with the following decomposition

A1,`(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · 〈α̂i − αi, Ui − g(Vi)〉, (= B1(π)) ,

+
1

n

n∑
i=1

(2π(Xi)− 1) · 〈α̂i − αi, gi − ĝi〉, (= B2(π)),

+
1

n

n∑
i=1

(2π(Xi)− 1) ·
(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi) + 〈αi, gi − ĝi〉
)
, (= B3(π)),

where we have used the shorthand notation ĝi := ĝ−k(i)(Vi), gi = g(Vi), α̂i := ({ĝ−k(i), f−k(i)};Vi),
αi := ({g, f};Vi). Starting with B1(π), the contribution of the k-th fold is

B
(k)
1 (π) =

1

n

∑
i:k(i)=k

(2π(Xi)− 1) · 〈α̂i − αi, εi〉 · 1{ϕ̂i ≥ 0}.
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The sample-splitting procedure guarantees that {ĝ−k(i), f̂−k(i)} only depend on data from the

remaining K − 1 folds, and thus conditioning on these estimates for the nuisance components

makes B
(k)
1 (π) a sum of independent mean-zero terms, in light of

E
[
Ui − g(Vi) | Vi, ĝ−k(i), f̂−k(i)

]
= 0.

Furthermore, the terms are also sub-Gaussian since it is a linear combination of sub-Gaussian

random variables with bounded weights w.p.a 1, in light of

‖1{ϕ̂i ≥ 0} · (α̂i − αi)‖L∞(PV ) ≤
∥∥∥ĝ−k(V )− g(V )

∥∥∥
L∞(PV )

+
∥∥∥f̂−k(V )− f(V )

∥∥∥
L∞(PV )

≤ 2 · C2 · C3,

w.p.a 1, where the first inequality uses Assumption 5.2(i) and the second inequality uses As-

sumption 5.2(iii). Having computed the variance of B
(k)
1 (π) conditional on

(
ĝ−k, f̂−k

)
Vn(k) = E

[
(α̂−ki − αi)

′Σ(Vi) (α̂−ki − αi) · 1 {ϕ̂i ≥ 0} | ĝ−k, f̂−k
]
,

we can apply Corollary 3 in Athey and Wager (2021) to establish the bound

n

nk
E
[

sup
π∈Π

∣∣∣B(k)
1 (π)

∣∣∣ | ĝ−k] = O

√Vn(k)
VC(Πn)

nk

 , (23)

where nk denotes the number of observations in the k-th fold. Using Assumptions 5.2(ii) and

5.4, we have

E [Vn(k)] ≤ EPn
[
λ · ‖α̂i − αi‖2L2(PV )

]
≤ 2 · λ · C2

2,α · EPn
[∥∥∥ĝ−k(i) − g

∥∥∥2

L2(PV )
+
∥∥∥f̂−k(i) − f

∥∥∥2

L2(PV )

]
= O

(
rκn√
n

)
.

(24)

Finally, we apply (23) repeatedly for each of the K data-folds and using Jensen’s Inequality and

(24) and obtain the final bound

E
[

sup
π∈Π
|B1(π)|

]
= O

(√
VC(Πn) · rκn

n3/2

)
. (25)
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We now turn to B2(π), for which we have

B2(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · 〈α̂i − αi, ĝi − gi〉 · 1{ϕ̂i ≥ 0}

=
J∑
j=1

[
1

n

n∑
i=1

(2π(Xi)− 1) · (α̂(j)
i − α

(j)
i ) · (ĝ(j)

i − gi) · 1{ϕ̂i ≥ 0}

]

≤
J∑
j=1

[
1

n

n∑
i=1

|α̂(j)
i − α

(j)
i | · |ĝ

(j)
i − gi|

]

≤
J∑
j=1

√√√√ 1

n

n∑
i=1

(
α̂

(j)
i − α

(j)
i

)2
×

√√√√ 1

n

n∑
i=1

(
g

(j)
i − gi

)2
,

where the last inequality uses Cauchy-Schwarz inequality. This bound does not depend on π

and thus holds uniformly over Πn. We then apply Cauchy-Schwarz again and use Asuumption

5.4 to verify that

E
[

sup
π∈Π
|B2(π)|

]
≤

J∑
j=1

EPn
[∥∥∥α̂(j)

i − α
(j)
i

∥∥∥2

L2(PV )

]1/2

× EPn
[∥∥∥ĝ(j)

i − g
(j)
i

∥∥∥2

L2(PV )

]1/2

,

≤ J · EPn
[
‖α̂i − αi‖2L2(PV )

]1/2
× EPn

[
‖ĝi − gi‖2L2(PV )

]1/2

. J · EPn
[∥∥∥f̂−k(i) − f

∥∥∥2

L2(PV )
+
∥∥∥ĝ−k(i) − g

∥∥∥2

L2(PV )

]1/2

× EPn
[∥∥∥ĝ−k(i) − g

∥∥∥2

L2(PV )

]1/2

= O

(
rκn√
n

)
.

We now turn to B3(π). We begin by considering the following telescoping

ĝi − gi =

J∑
j=1

[
(g

(•:j−1)
i , ĝ

(j:•)
i )− (g

(•:j)
i , ĝ

(j+1:•)
i )

]
=

J∑
j=1

(
0, 0, . . . , ĝ

(j)
i − g

(j)
i , 0, . . . , 0

)
,

where g(•:j) and g(j:•) denote, respectively, the first and last j entries of g(Vi), where we adopt

the convention g(•:0) = g(J+1:•) = ∅. We can therefore decompose B3(π) as follows:

B3(π) =
J∑
j=1

1

n

n∑
i=1

(2π(Xi)− 1)

×
(
ϕ((g(•:j−1), ĝ

(j:•)
i );Xi)− ϕ((g

(•:j)
i , ĝ

(j+1:•)
i );Xi)− α(j)({(g(•:j−1), ĝ(j:•), f}) ·

(
ĝ

(j)
i − g

(j)
i

))
· 1{ϕ̂i ≥ 0}

−
J∑
j=1

1

n

n∑
i=1

(2π(Xi)− 1) ·
[(
α

(j)
i − α

(j)({(g(•:j−1, ĝ(j:•)), f})
)
·
(
ĝ

(j)
i − g

(j)
i

)]
· 1{ϕ̂i ≥ 0}.

By the definition of the Riesz-representer and cross-fitting we have

E
[
ϕ((g(•:j−1),ĝ

(j:•)
i );Xi)− ϕ((g

(•:j)
i , ĝ

(j+1:•)
i );Xi)

− α(j)({(g(•:j−1), ĝ(j:•), f},Wi) ·
(
ĝ

(j)
i − g

(j)
i

)
| Vi, ĝ−k(i), f̂−k(i)

]
= 0,
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where we have used the property α
(j)
` ({(g̃−j , g̃j), f̃}, x) = α

(j)
` ({g̃−j , f̃}, x). Furthermore, the

term within the expectation operator is sub-Gaussian since uniformly bounded by Assumption

5.2(iii). Therefore the first term in the expansion of B3(π) can be controlled uniformly using

identical arguments as for B1(π) and obeys the same bound. The second term in the expansion

of B3(π) can be bounded with identical arguments as for B2(π) and obeys the same bound. We

therefore conclude that

E
[

sup
π∈Π
|B3(π)|

]
= O

(√
VC(Πn) · rκn

n3/2
+
rκn√
n

)
.

Combining the bounds for B1(π),B2(π) and B3(π) via the triangle inequality finally gives the

desired bound for E
[
supπ∈Πn |A1,`(π)|

]
.

Bound for A2,`

We first notice that

E
[
φ`({g, f};Wi) ·

(
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)
| Vi, ĝ−k(i)

]
= 0, (26)

by the mean-zero property of the influence function adjustments φ` and cross-fitting. Fur-

thermore, the term inside expectation is sub-Gaussian by uniform boundedness of the Riesz-

representer, guaranteed by Assumption 5.2(iii). Thus we can use similar arguments to those

used for B1(π) to show

E
[

sup
π∈Πn

|A2,`(π)|
]

= O

(√
VC(Πn)

n

)
.

Bound for A3,`

We begin by noticing that ϕ`(g;Xi)
(
1
{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)
≤ 0 and thus,

since the “never treat” policy belongs to any policy class Π for which VC(Π) ≥ 1, we have

sup
π∈Πn

A3,`(π) =
1

2n

n∑
i=1

∣∣∣ϕ`(g;Xi) ·
(
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)∣∣∣ ,
and thus we obtain the uniform bound22

E
[

sup
π∈Πn

A3,`(π)

]
=

1

2
E

[ ∣∣∣ϕ`(g;Xi) ·
(
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)∣∣∣ ]. (27)

22For a policy class of zero VC-dimension, (27) holds as an inequality.
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For the RHS in (27), we closely follow Lemma 5.2 in Audibert and Tsybakov (2007), but we

report the steps of the proof for completeness. For γ > 0 and any t > 0 we have

E

[ ∣∣∣ϕ`(g;Xi)
(
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)∣∣∣ ]

≤ E

[
|ϕ`(g;Xi)| · 1

{∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ ≥ |ϕ`(g;Xi)|

}]

≤ E

[
|ϕ`(g;Xi)| · 1

{∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ ≥ |ϕ`(g;Xi)|

}
· 1 {0 < |ϕ`(g;Xi)| ≤ t}

]

+ E

[
|ϕ`(g;Xi)| · 1

{∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ ≥ |ϕ`(g;Xi)|

}
· 1 {|ϕ`(g;Xi)| > t}

]

≤ E

[ ∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ · 1 {0 < |ϕ`(g;Xi)| ≤ t}

]

+ E

[ ∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ · 1{∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)

∣∣∣ > t
}]

≤ E
[(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi)
)2
]1/2

· P
(
0 < |ϕ`(g;Xi)| ≤ t

)1/2
+

E
[(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi)
)2]

t

≤ C1/2
0 E

[(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi)
)2
]1/2

tγ/2 +
E
[(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi)
)2]

t
,

where the penultimate inequality uses Cauchy-Schwarz and Markov inequalities, and the last

inequality uses the Margin Assumption. Minimizing the last display over t gives

E
[

sup
π∈Πn

A3,`(π)

]
≤ (γ + 2) ·

(
2

γ

)γ/(γ+2)

· C1/(γ+2)
m · E

[(
ϕ`(ĝ

−k(i);Xi)− ϕ`(g;Xi)
)2
] γ+1
γ+2

≤ (γ + 2) ·
(

2

γ

)γ/(γ+2)

· C1/(γ+2)
m · C

2(γ+1)
γ+2

2,ϕ · EPn
[∥∥∥ĝ−k − g∥∥∥2

L2(PX)

] γ+1
γ+2

For γ = 0, a similar argument gives

E

[ ∣∣∣ϕ`(g;Xi)
(
1

{
ϕ`(ĝ

−k(i);Xi) ≥ 0
}
− 1 {ϕ`(g;Xi) ≥ 0}

)∣∣∣ ]

≤ E

[ ∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ · 1 {0 < |ϕ`(g;Xi)| ≤ t}

]

+ E

[ ∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)
∣∣∣ · 1{∣∣∣ϕ`(ĝ−k(i);Xi)− ϕ`(g;Xi)

∣∣∣ > t
}]

≤ 2EPn
[∥∥∥ϕ`(ĝ−k;X)− ϕ`(g;X)

∥∥∥2

L2(PX)

]1/2

≤ 2 · C2
2,ϕ · EPn

[∥∥∥ĝ−k − g∥∥∥2

L2(PX)

]1/2

.
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Combining the cases γ > 0 and γ = 0, and using the L2-risk bounds for ĝ−k from Assumption

5.4 we finally get

E
[

sup
π∈Πn

A3,`(π)

]
= O

((
rκn√
n

) γ+1
γ+2

)
.

B.5 Proof of Theorem 2

The Neyman-orthogonalized score ΓNO({g, f};Wi) satisfies the assumptions of Corollary 3 in

Athey and Wager (2021), and thus it can be applied verbatim to show that

E
[

sup
π∈Πn

∣∣QNO
n (π)−Q(π)

∣∣] = O

(√
VC(Πn)

n

)
.

Combining the above bound with Lemma 1 via Proposition 3 gives the statement of the theorem.
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