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Many universities are reducing emphasis on standardized exam scores in admissions

out of concern that the exams limit college access for students from disadvantaged

backgrounds. This paper analyzes how such a policy change would affect enrollment

patterns and graduation rates at four-year colleges in the United States. To do so, I

build an equilibrium model in which colleges rebalance their admissions criteria to-

wards other measurements of students’ human capital in the absence of standardized

exam scores. The model allows high school students’ application decisions and hu-

man capital investments to respond endogenously to the admissions policy, while col-

leges adjust admissions thresholds to maximize their objectives. I estimate the model

using data from the Education Longitudinal Study of 2002. I find that banning the

SAT causes a small increase in college attendance for low-income students but has a

negligible effect on the enrollment of under-represented minority (URM) students, de-

spite estimating that many universities have substantial preferences for diversity. The

reason for this result is that endogenous human capital investment and equilibrium

responses by capacity-constrained colleges completely offset the diversifying effects

of relying more on grades and allowing non SAT-takers to apply to college. Elite col-

leges are worse off after banning the SAT, as they enroll students with lower skills and

see graduation rates drop by 3 pp, while completion rates rise at less selective schools.

A separate policy that requires all students to take the exam raises college completion

for URMs by 1.6 pp overall by helping schools to identify stronger students.
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1 Introduction

In 1935, Harvard University began requiring that all applicants take the Scholastic Apti-
tude Test (SAT) to be considered for admission. Over the ensuing decades, other colleges
followed suit until taking the SAT became a near necessity for high school students inter-
ested in attending a four-year college in the United States.1 But in the last twenty years,
this trend has reversed. Between 2001 and 2018, the percentage of four-year public and
private non-profit colleges requiring an exam score fell from eighty-five to sixty-seven
percent amid concern that the SAT may serve as a barrier to college entry. An extensive
literature supports this interpretation by showing how exam-taking mandates, financial
incentives, and the opening of testing centers raise college attendance (Klasik 2013, Bul-
man 2015, Pallais 2015, Hyman 2017, Goodman 2016). Eliminating SAT requirements,
however, has not been much studied despite its potential to significantly alter applica-
tions, attendance, sorting across schools, and even college completion.

The goal of this paper is to analyze how reducing emphasis on the SAT in admissions
would affect patterns of sorting to college and rates of college completion, with particular
emphasis on the outcomes for under-represented minorities (URMs) and low-income stu-
dents.2 I specify a model of the objectives of admissions departments and how they use
the SAT to achieve them. Within the model, eliminating the SAT generates incentives for
application behavior and human capital investment among high school students. These
behavioral responses may alter the composition of college applicants and subsequently
induce capacity-constrained colleges to modify their admissions criteria. This paper takes
seriously the notion that students respond to changes in admissions criteria, and that
colleges will then have to respond to students’ behavior. In such an environment, the
theoretical effect of eliminating the SAT on patterns of college attendance and college
completion is ambiguous.

Colleges in the model aim to enroll students that are knowledgeable and racially di-
verse, and they use grades and SAT scores as signals of each student’s knowledge at
the time of application. Knowledge is treated as a dynamic latent factor that evolves
throughout high school in response to inputs that are both exogenous, like family and
school characteristics, and endogenous (study time). Eliminating the SAT has two imme-
diate effects. It causes colleges to rely more on the rest of each student’s application, their
grades and initial conditions at the start of high school, when inferring their knowledge.
And, it allows students who have not taken the SAT to apply to college.

1Throughout this paper, I use SAT to refer jointly to the SAT and ACT exams.
2Under-represented minorities include individuals who identify as Black, Hispanic, Native American,

or mixed race.
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High school students respond to these two immediate effects by altering how much
they study and where they apply to college. The direction of incentives for non SAT-takers
is clear. Eliminating the SAT removes a barrier to college entry, raising their incentive
to study and their probability of applying to college. However, former SAT-takers may
face a reduced incentive to study if grades are not a sufficiently precise signal of their
knowledge. The overall effect on patterns of college attendance depends on how these
endogenous student responses affect the distribution of knowledge among applicants.

I estimate the model using the Education Longitudinal Study of 2002 (ELS 2002), a rich
longitudinal survey of a cohort of students as they transition from high school to college.
The ELS 2002 contains extensive information on high school grades, SAT scores, college
applications, admissions decisions, and college attendance. I combine the ELS 2002 with
data on SAT testing locations and dates, first used in Bulman (2015), and a comparable
data set I gathered for the ACT. Consistent with prior literature, I find that greater access
to the SAT raises college applications. Distance to college provides an additional source
of variation that affects both whether and where to apply to college. Variation in SAT
access and distance to college serve as exclusion restrictions that help to identify college
preferences. I estimate the model by maximum likelihood using a nested fixed point
algorithm. I then use the estimated model to evaluate several counterfactual admissions
policies.

I find that eliminating the SAT from consideration at all schools has a negligible ef-
fect on the enrollment of URM students and causes a small increase in the enrollment
of low-income students. After eliminating the SAT, 30.2% of low-income students enroll
in college, compared with 28.9% in the status quo. The policy, however, significantly re-
duces sorting by knowledge: The average knowledge of students attending elite private
colleges falls by 0.20 sd, while it increases by 0.06 to 0.08 sd at the least selective schools.
The reduction in assortative matching causes college completion at elite private colleges
to fall by 3 pp and to rise at less selective universities.

These key results conflate the effects of the model’s four key mechanisms, and an
instructive pattern emerges when examining the contribution of each component in iso-
lation. The four mechanisms are a change in admissions criteria when the SAT is elimi-
nated, endogenous applications, endogenous human capital investment, and college op-
timization in equilibrium. Holding fixed the distribution of applications and test scores
in the data, eliminating the SAT muddies application signals and results in less assorta-
tive matching by knowledge and household income, which is correlated with knowledge.
Allowing for endogenous applications while holding studying constant further reduces
sorting and raises enrollment among URMs, who are disproportionately unlikely to take
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the SAT.

However, allowing for endogenous study time increases stratification by income and
knowledge. I estimate that grades are noisy measures of knowledge, so eliminating the
SAT reduces the incentive to study among former SAT-takers. Poorer students, who are
estimated to have a greater cost of studying, reduce their studying by more and nar-
rowly miss the cut at elite colleges, while richer students remain. In equilibrium, colleges
respond to the increase in applications by raising admissions standards and rejecting ap-
plicants who would have been marginal admits in partial equilibrium, further reducing
college access for low-income and URM students.

Model simulations show that banning the SAT does not raise college attendance for
URMs, because there are too few who do not take the exam and who could out-compete
those already applying to college in the status quo. Banning the SAT causes applications
from URMs to increase by 30% versus 17% for white and Asian students, but the new
applicants, who are on average less-skilled than the status quo applicants, mostly fail to
gain admission as the surge in applications bids up admissions thresholds. I show how
a hypothetical intervention that could raise skills at the start of high school for URMs
who do not take the SAT would instead enable many of them to out-compete SAT-takers,
causing an increase in both college attendance and college completion for URM students.

My approach to modeling admissions is a significant departure from the prior litera-
ture, which typically models admission to college as a threshold crossing model in terms
of a continuous index of observed variables (for example, Kapor 2020). Such a method
falters when some of the measurements comprising the index, say SAT scores, are no
longer used. By microfounding admissions criteria as a search for a dynamically evolv-
ing latent factor using whatever measurements colleges observe under a specific policy
regime, my approach causes admissions offices to automatically rebalance their criteria
towards grades when SAT scores are gone. This method delivers a probability of admis-
sion for every student, with or without an SAT score.

I modify the standard dynamic factor model of Cunha, Heckman, and Schennach
(2010) and Agostinelli and Wiswall (2020) by including demographic-specific measure-
ment parameters and by letting the initial distribution of knowledge vary by a set of
covariates – such as mother’s education, income, and race – that are likely correlated
with investment prior to high school.3 Together with the use of threshold rules for ad-

3Typically, dynamic factor models that estimate the technology of skill formation for students are esti-
mated on young children, and an assumption of equal starting conditions is reasonable (Cunha, Heckman,
and Schennach 2010, Agostinelli and Wiswall 2020). However, the model in this paper begins in the ninth
grade, and a history of unequal educational investments will result in students commencing the ninth grade
with different skills. Allowing for differences in the initial distribution of knowledge turns out to have large
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mission that vary by demographic, these modifications reproduce a unique feature of the
college market in the United States, namely that admissions offices interpret grades and
test scores relative to each student’s background.4 Within this framework, the same grade
or SAT score will cause admissions offices to more aggressively update their prior if the
measurement is particularly informative for that student or if observable factors put that
student at an initial disadvantage. Admissions departments in my model use the Kalman
Filter, which corrects for any biases present in grades and SAT scores, to generate these
updates. Given the intense scrutiny of admissions practices by parents, the media, and
the courts, it seems reasonable to assume that admissions officers conduct some sort of fil-
tering process when forming educated guesses of each student’s academic preparation.5

Estimates of the dynamic factor model reveal that studying is productive: An increase
of ten hours per week causes knowledge to rise by 0.08–0.10 sd each year. I also find that
much has been decided by the start of high school. The difference in ninth grade knowl-
edge between students whose mother has a graduate degree and those whose mothers
are high school dropouts is 0.90 sd. URMs begin high school at a 0.65 sd disadvantage
relative to white and Asian students. I do not find any evidence of bias in the SAT math
or verbal exams. If anything, GPAs show more evidence of bias than standardized tests.
Moreover, GPAs are noiser than the SAT, and they are noisier for URMs than for white
and Asian students. This suggests that colleges will struggle to identify highly skilled
URM candidates for admission if they must rely more on grades.

In light of the inability of the No-SAT policy to enroll additional URM students, I in-
vestigate an alternative policy, recommended in Dynarski (2018), that mandates all high
school students take the SAT. Like the No-SAT counterfactual, this policy removes a bar-
rier to college application, but it does so without reducing the amount of information
available to colleges. Relative to the No-SAT policy, SAT-for-All causes the fraction of
URMs attending a four-year college to rise by 1.4 pp and college completion to increase
by 1.6 pp as colleges manage to identify more skilled students for admission. Low-income
student enrollment is similar to the No-SAT policy. I also evaluate an SAT-Optional policy
at elite colleges and find that it slightly increases URM attendance at elite private colleges.

effects on college attendance and completion in the model.
4Interpreting grades and test scores in the context of each student’s educational opportunities and family

background has been common since at least the 1990s. Bowen and Bok (2016) provide examples of conver-
sations with admissions deans that reveal how the same grades and SAT scores may affect the admissions
probabilities of several hypothetical applicants in heterogeneous ways.

5The Massachusetts Institute of Technology explains that they use a combination of factor analysis and
thresholds to determine whether a student qualifies for admission. A blog on their website explains their
recent decision to reinstate the SAT, stating “. . . we do not consider an applicant’s [SAT] scores at all beyond
the point where preparedness has been established as part of a multifactor analysis.” (Schmill 2022)
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This paper shows that modeling general equilibrium is important in analyzing the
effects of large changes in college admissions. Papers that estimate equilibrium models
of the market for college admissions in the United States include Epple, Romano, and
Sieg (2006, 2008) and Fu (2014). The paper with the closest modeling approach to this
one is Kapor (2020), which analyzes the Texas Top Ten Percent Plan (TTP), a policy that
granted all students graduating in the top ten percent of their high school class acceptance
to any Texas public university. My paper shares the three-part application-admission-
matriculation equilibrium of Kapor (2020) and Fu (2014), but I add several novel features.
I allow the distribution of grades and test scores observed by colleges to be endogenous
with respect to the policy, I microfound college preferences for student characteristics,
and I analyze the effects of admissions policies on college completion.6

The endogenous mechanisms in the model are motivated by a growing literature that
shows how pre-college human capital investment responds to changes in admissions
policies. Tincani, Kosse, and Miglino (2021) and Cotton, Hickman, and Price (2022) con-
duct experiments to show that high school students trade off leisure and the probability
of admission to college when deciding how much to invest in their skills. Leeds, McFar-
lin, and Daugherty (2017), Golightly (2019), and Akhtari, Bau, and Laliberté (2020) exploit
changes in admissions policies at Texas public universities to show that effort increases
when policies render admission more likely but decreases when admission becomes cer-
tain. Grau (2018) and Bodoh-Creed and Hickman (2017) similarly find that effort in high
school is shaped by admissions criteria in Chile and the US. Bond et al. (2018) and Good-
man, Gurantz, and Smith (2020) show how applications respond endogenously to SAT
scores. This paper incorporates these multiple mechanisms in an equilibrium framework
and demonstrates the quantitative importance of each channel.

This paper is organized as follows. The next section describes the data used for the
analysis and presents summary statistics. Section 3 describes the model that is taken to
the data and discusses some of its properties. Sections 4 and 5 discuss identification and
estimation of the model. Section 6 shows the estimated model parameters, while section
7 presents estimates of counterfactual policies and explains the mechanisms behind the
results. Section 8 concludes.

6Several empirical papers analyze how affirmative action affects labor market outcomes and whether
it could lead to mismatch between students and colleges (Otero, Barahona, and Dobbin 2021, Arcidiacono
et al. 2011, Arcidiacono 2005). Dillon and Smith (2017) consider whether uncertainty in the admissions
process leads to mismatch. Arcidiacono, Kinsler and Ransom (2022a, 2022b) show how preferences at
Harvard University vary by race.
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2 Data

This study uses data from the Education Longitudinal Study of 2002 (ELS 2002). The ELS
2002 randomly samples a nationally representative cohort of students who were in the
tenth grade in 2002 and follows them through high school, college, and into the labor
market. Students are surveyed four times, in 2002, 2004, 2006, and 2012. In 2006, students
are either in college or participating in the labor market and receive surveys tailored to
their status. The 2012 survey wave, eight years after graduation from high school, records
educational attainment.

The ELS 2002 contains multiple measurements of cognitive skills throughout high
school. Grade-point averages (GPAs) for each year of high school have been converted
to a common scale and are weighted by Carnegie units.7 The ELS 2002 also contains SAT
scores in math and verbal skills obtained from the College Board, and ACT scores in math,
English, reading, and science obtained from ACT, Inc. In addition, the National Center
for Education Statistics (NCES) administers exams in math and reading to all students in
the ELS 2002 in grades ten and twelve. These multiple measurements across time make it
possible to estimate a dynamic factor model of skill formation for students in high school.

I merge additional sources of data into the ELS 2002. I combine a database of SAT
testing center dates first used in Bulman (2015) with information from yearly ACT test
registration booklets I obtained from ACT, Inc. to construct a measure of exam access. I
define access to be the number of testing dates at one’s own high school during spring
of the junior year, when students typically take the SAT. Figure 1 plots the distribution of
exam access across students in the sample. The modal number of testing dates per school
is zero, the mean is 1.09 days, and some schools that host both the SAT and ACT exams
have up to seven testing dates during the course of the semester.

Test centers open after an employee at a particular school, typically a teacher or guid-
ance counselor, volunteers to act as a test coordinator and applies to the College Board
or ACT, Inc. to host the exam on a specific day. Testing sites must satisfy certain criteria,
like having a quiet examination room and a secure location to store materials, but most
applications are approved. The key factor in a school becoming a testing center is there-
fore whether someone at that school takes the initiative to apply. Bulman (2015) surveys
fifty testing coordinators to understand their motivations. Many expressed concern that
nearby testing centers were at capacity and a desire to offer their students the exam in a
familiar environment. In this paper, I control for school type (private, public, Catholic),

7A Carnegie unit corresponds to one course taken every day, for one period per day, for a full school
year.
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Figure 1: SAT and ACT Testing Dates per School

The figure shows the number of dates reserved for SAT or ACT examinations during the spring of 2003
at schools in the ELS 2002. SOURCES: College Board, ACT, Inc. and U.S. Department of Education,
National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”

total enrollment, and poverty rates within the school district, all of which are likely to
influence demand for testing facilities. I argue that residual variation in SAT access is
quasi-random, stemming in part from differences across schools in whether an employee
decides to apply.

This paper also exploits variation in distance to college to shift college applications.
Figure 2 shows that, relative to distance to all colleges, the distribution of distance to
colleges where students apply is heavily weighted towards zero, suggesting that distance
may shape application decisions. Carneiro and Heckman (2002) and Cameron and Taber
(2004) express concern that distance to school may be correlated with student ability and
thus endogenous. The model that I describe in the next section addresses this concern
by letting distance shift demand for college conditional on a precise measure of ability, a
student’s posterior knowledge after grades and test scores in each year of high school are
revealed.

After removing observations with missing data, the sample has 9, 910 observations.8

Tables 1 and 2 present summary statistics for this sample. The measurements, standard-
ized to have zero mean and unit variance, indicate that URMs have lower standardized

8Appendix A provides details regarding the construction of the sample.
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Figure 2: Distance to College

The figure shows the density of distance to college for students in the ELS 2002. Distance is computed
between the centroid of each student’s home census block in the ELS 2002 and the latitude and lon-
gitude of each college in IPEDs. The figure plots both the unconditional density of distance in blue
and the density of distance to schools applied to in red. Distances above 3,000 miles (relevant only for
Alaska and Hawaii) have been truncated. SOURCE: National Center for Education Statistics, Education
Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

test scores and GPAs. URMs have less educated mothers, are more likely to grow up in
a household headed by a single parent (typically a mother), and are more likely to have
been retained prior to high school. They also attend schools with higher class sizes, where
more students qualify for free or reduced-price lunch, and they grow up in families with
an average income that is about $23,000 less than white and Asian families. URMs ac-
tually attend schools with more SAT and ACT testing dates in the spring of their junior
year, but this is largely due to white and Asian students attending smaller schools and
Catholic or private schools where the exams are rarely held. After controlling for school
size, location, type, and the poverty of the school district, URM students have lower exam
access, as indicated by the variable “Residualized Num Testing Dates.”

Table 2 demonstrates that URM students are less likely to take the SAT, less likely to
attend college, less likely to complete college, and less likely to complete conditional on
attending college. They also study fewer hours while in high school. When URMs attend
college, they attend very different colleges than white and Asian students. Figure 3 indi-
cates that URMs are under-represented at highly selective colleges and state flagships, but
are over-represented at less selective private universities and public satellite colleges. The
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Table 1: Summary Statistics, I

URM White & Asian

Mean SD Mean SD

Measurements

GPA, 9th grade -0.31 0.98 0.22 0.91
GPA, 10th grade -0.31 0.97 0.22 0.91
NCES Reading, 10th grade -0.34 0.94 0.22 0.95
NCES Math, 10th grade -0.40 0.93 0.26 0.92
GPA, 11th grade -0.32 0.98 0.20 0.92
SAT Math -0.57 0.90 0.08 0.93
SAT Verbal -0.51 0.92 0.09 0.95
GPA, 12th grade -0.35 1.02 0.19 0.92
NCES Math, 12th grade -0.38 0.92 0.25 0.94

Exogenous Variables

Student-teacher Ratio 17.40 4.46 16.19 4.13
Free Lunch 0.28 0.23 0.15 0.16
Num Testing Dates 1.06 1.53 0.96 1.44
Residualized Num Testing Dates -0.02 1.47 0.05 1.35
Household Income 50,000 40,500 72,800 49,000

The table presents summary statistics for knowledge measurements and high school
inputs in the ELS 2002. The knowledge measurements have been standardized by
their population mean and standard deviation. NCES refers to standardized exams
administered to all students as part of the ELS 2002. Free Lunch refers to the per-
centage of students at the student’s school who qualify for a free or reduced-price
lunch. Num Testing Dates refers to the number of SAT or ACT testing dates held at
a student’s school during the spring of their junior year of high school. This num-
ber is then residualized on controls for school type, enrollment, and district poverty
rates. SOURCE: U.S. Department of Education, National Center for Education Statis-
tics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year through Second
Follow-up, 2002-2006.”
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Table 2: Summary Statistics, II

URM White & Asian

Choices

Study Hours, per week 5.87 6.49
Take SAT 0.63 0.79
Attend 4-yr College 0.33 0.49
Complete 4-yr College 0.19 0.34
Complete 4-yr College Given Attendance 0.59 0.70

Initial Conditions

Female 0.52 0.50
Retained before High School 0.10 0.06
Single Parent 0.32 0.16
Mother : High School 0.25 0.27
Mother : Some College 0.35 0.34
Mother : 4-year Degree 0.14 0.22
Mother : Postgraduate 0.07 0.11

Observations 2860 7050

SOURCE: U.S. Department of Education, National Center for Education
Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”

model I describe in the next section will offer an explanation for why URM students are
less likely to complete college and evaluate whether alternative admissions mechanisms
can raise college completion.

3 Model

In this section, I present the model that I use to analyze how eliminating the SAT affects
patterns of college attendance and completion. The model describes high school students’
endogenous application and human capital investment behavior and colleges’ optimiza-
tion problem, which is affected by whether they observe the SAT.

3.1 Timing

The model has three time periods: high school, college transition, and college completion.
I treat ninth grade GPA as an initial condition, and at the beginning of tenth grade stu-
dents choose how much time to allocate to studying and whether they will take the SAT.
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Figure 3: Type of College Attended Among College-Goers

The figure shows the fraction of all college students of each demographic group that are enrolled at each
college tier. The grouping of colleges into tiers is described in section 3.9. SOURCE: U.S. Department of
Education, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

This choice of study time will take effect for three years. At the end of high school, grades
and SAT scores are realized for each student. These measurements depend on a student’s
grade nine knowledge, as well as time devoted to study, educational inputs, and idiosyn-
cratic shocks. After these measurements are realized, the second period of the model, the
transition to college, begins.

Similar to Kapor (2020) and Fu (2014), the transition to college consists of three parts:
the application phase, admissions, and matriculation. First students apply to college, and
then colleges decide whom to admit conditional on the applications they’ve received.
Once students receive a set of admissions offers, they decide where to matriculate.

College completion, up to eight years later, occurs in the final period of the model.
Completion depends on students’ knowledge when matriculating to college, the type of
college they attend, and exogenous factors including first generation college attendance,
household income, and race.

3.2 Technology and Measurement System

Knowledge evolves deterministically as a result of prior knowledge, study time, and ed-
ucational inputs, Ii,t.9 The technology of skill formation is allowed to differ by whether an

9Throughout the paper, I use bold font to denote vectors and matrices.
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individual belongs to an under-represented minority to allow for the possibility that dif-
ferences in the marginal productivity of study time and schooling inputs may influence
study decisions. Knowledge evolves according to the following value-added equation:

logKi,t = γK,R logKi,t−1 + βH,Rhi,t + I′i,tβ
I,R , (1)

where R ∈ {URM,WA} denotes parameters that are specific to either URM or white and
Asian students.

I model grade point averages (GPAs) and standardized tests as noisy measures of
knowledge. In each grade, this mapping is

yR
i,t = µR

t +αR
t logKi,t + εRi,t , (2)

where µR
t is a vector of constants, αR

t is a vector of factor loadings, and εRi,t is a vector
of normally-distributed disturbances with mean zero and a diagonal covariance matrix.
As with the technology of skill formation, the measurement system is allowed to vary by
URM status in an unrestricted way. This parameterization allows me to conduct inference
on whether the SAT is biased against URMs and whether the informativeness of grades
varies by demographic groups. I define bias and differential signal informativeness for
measurement j in year t as follows:

Bias := µURM
t,j − µWA

t,j , (3)

Differential Signal Informativeness :=
αURM
t,j

σURM
t,j

−
αWA
t,j

σWA
t,j

. (4)

In section 6, I will conduct inference on bias and differential signal informativeness for
each measurement in the ELS 2002. The informativeness of grades, in particular, may
affect college completion in a world without the SAT by potentially impeding colleges’
ability to select qualified students for admission.

3.3 Initial Conditions

The first observed measure of knowledge for students in the ELS 2002 is in the ninth
grade, and it is unlikely that all students begin high school on a level playing field. Pro-
vided that the skill accumulation equation in (1) holds in middle and elementary school,
we can use backwards substitution to write knowledge in the ninth grade as a function
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of an entire history of study decisions and educational inputs as follows:

logKi,9 = f(hi,1, . . . , hi,9, Ii,1, . . . , Ii,9, Ki,0) .

This equation means that even if children were born with equal endowments, Ki,0, a his-
tory of unequal investments would generate differences in the distribution of Ki,9. While
the ELS 2002 does not record the entire history of inputs and study decisions prior to high
school, I do allow the distribution of Ki,9 to vary according to a set of predetermined co-
variates, Wi, that are likely to be correlated with prior investments. Hence, rather than
imposing the normalization that logKi,9 ∼ N(0, σ2

k), as is common in the literature es-
timating dynamic factor models, I instead allow the distribution of initial conditions to
vary by Wi as follows:(

logKi,9

yR
i,9

)
∼ N

((
W′

ia

µR
9 +αR

9 W
′
ia

)
,

(
σ2
k(Wi) σ2

k(Wi)α
R′
9

σ2
k(Wi)α

R
9 σ2

k(Wi)α
R
9 α

R′
9 +ΣR

9

))
, (5)

where the variance of ninth grade knowledge is given by σ2
k(Wi) = exp(W′

ib) and ΣR
9 =

E(εRi,9εR
′

i,9).

3.4 The Kalman Filter

The model treats grades and test scores as noisy measures of a dynamically evolving la-
tent state. Admissions officers observe these measurements and form expectations over
each student’s knowledge at the time of application by using the Kalman Filter. Elimi-
nating the SAT affects admissions decisions through changing the set of measurements
available to filter this latent state.

Let URMi ∈ {0, 1} indicate whether a student belongs to an under-represented minor-
ity, and define the initial information set by

Ωi,9 := {URMi,Wi,yi,9, {Ii,k}12k=10} ,

and subsequent updates as Ωi,t := {Ωi,t−1,yi,t, hi,t}.10 The Kalman Filter yields the follow-
ing update for knowledge after observing the initial conditions and ninth grade GPA:

logKi,9 | Ωi,9 ∼ N(mi,9, Pi,9) ,

10Individuals have full information over the realization of future educational inputs. The sources of
incomplete information in the model are over future actions, realizations of test scores, admissions, and
college completion.
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where

mi,9 := σ2
k(Wi)α

R′

9 F−1
i,9

(
yi,9 − (µR

9 +αR
9 W

′
ia)
)
,

Pi,9 := σ2
k(Wi)− σ2

k(Wi)α
R′

9 F−1
i,9α

R
9 σ

2
k(Wi) ,

Fi,9 := σ2
k(Wi)α

R
9 α

R′

9 +ΣR
9 .

For an individual with information set Ωi,t−1 who chooses to study hi,t hours, the predic-
tion for period t knowledge is

logKi,t | Ωi,t−1, hi,t ∼ N(mi,t|t−1, Pi,t|t−1) ,

mi,t|t−1 := γK,Rmi,t−1 + βH,Rhi,t + I′i,tβ
I,R ,

Pi,t|t−1 := γK,R2
Pi,t−1 ,

and the subsequent update of knowledge is

logKi,t | Ωi,t ∼ N(mi,t, Pi,t) ,

mi,t := Pi,t|t−1α
R′

t F−1
i,t

(
yi,t − (µR

t +αR
t mi,t|t−1)

)
,

Pi,t := Pi,t|t−1 − Pi,t|t−1α
R′

t F−1
i,t α

R
t Pi,t|t−1 ,

Fi,t := αR
t Pi,t|t−1α

R′

t +ΣR
t .

3.5 Preferences

3.5.1 Colleges

Colleges are grouped into tiers, c = 1, . . . , C, each comprising a continuum of capacity-
constrained colleges that have preferences over the knowledge and diversity of matricu-
lating students.

An application to college is defined to be a pair, (Sc
i , URMi), where Sc

i is a scalar signal
of student i’s knowledge at the time of application and URMi is the student’s demo-
graphic. The signal is a draw from the distribution of twelfth grade knowledge condi-
tional on scores observable by each college: Sc

i ∼ f(logKi,12 | Ωi,12) = N(mi,12, Pi,12).11

I define an admissions policy to be a mapping from applications to acceptances and

11Drawing signals from f(logKi,12 | Ωi,12) presumes that colleges observe study effort. A more realistic
approach would have colleges integrate over the distribution of study effort, rather than observing it, when
deciding whom to admit. It is, however, unlikely that after observing measurements in each year of high
school, yi,9, . . . , yi,12, integrating over study time would generate markedly different predictions of Ki,12.
For computational reasons, this approach was not adopted.
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rejections:

Policy : RN × {0, 1}N → {0, 1}N . (6)

Define λc
URM to be the fraction of students matriculating to college c who belong to an

under-represented minority: λc
URM := P(URMi = 1 | Attendi,c = 1). Colleges in tier c

have a production function that is increasing in a signal of knowledge and diversity, and
they choose an acceptance policy to solve

max E[κSc
i + (1− κ) log λc

URM ] (7)

s.t.
N∑
i=1

P(Attendi,c = 1 | Ωi,12) = N c ,

where N c is the number of students in the ELS 2002 who attend college c. The expectation
is taken over the probability that a student matriculates conditional on the admissions
policy. This specification assumes that admissions offices maximize a weighted sum of
a signal of knowledge and diversity and that they satisfy their capacity constraints in
expectation.12 The weights are allowed to vary by college tier. While an admissions policy
is defined to be a mapping from the space of applications to the space of acceptances and
rejections, the structure of the problem leads to the following proposition, which states
that admissions policies can be characterized by a pair of threshold rules.

Proposition 1. The optimal policy for college c is a pair of demographic-specific threshold rules:
(Sc

0
∗, Sc

1
∗).

Proof. Let the policy rule for students with URMi = 1 be arbitrary. Suppose the policy
rule for students with URMi = 0 is not a threshold rule. Then there exist two students,
l and m, with probabilities of matriculation conditional on admission given by pl and
pm, such that Sc

l > Sc
m but P(Acceptl) < 1 and P(Acceptm) > 0. Consider the following

modified admission policy: P̃(Acceptl) = P(Acceptl) + ε , P̃(Acceptm) = P(Acceptm)− ε pl
pm

.
The modified acceptance rule satisfies the constraint and leaves λc

URM unchanged, but
improves the objective function by εκ (Sc

l − Sc
m) pl > 0. Hence, the optimal policy for

URMi = 0 students is a threshold rule in Sc
i .

Let the policy rule for students with URMi = 0 be arbitrary. By similar argument,
the optimal admissions policy for URMi = 1 students is a threshold rule. Hence, the

12I do not directly model tuition and assume that both tuition setting and financial aid formulas are
invariant to the counterfactuals explored in this paper.
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optimal admissions policy is a pair of threshold rules, (Sc
0
∗, Sc

1
∗), that (potentially) differ

by demographic.

The use of threshold rules combined with a preference for URMs implies that colleges
would choose to accept only URM students if they had greater average knowledge than
white and Asian students and existed in the population in sufficient proportions. This is,
however, not an empirically relevant scenario. The distribution of skills in the ELS 2002
together with a value of κ < 1 will cause the threshold to be lower for URMs than for
white and Asian students, Sc∗

1 < Sc∗
0 .

3.5.2 Students

Students in the model choose how much to study, whether to take the SAT while in high
school, and where to apply to college upon graduation. I first describe the three parts
of the college transition phase – application, admission, and matriculation – in reverse
chronological order before characterizing the problem of a high school student.

Matriculation: The indirect utility function for a student who attends college c is ex-
pressed as the following linear function of a fixed effect for that school, tuition, distance to
college, financial aid, the probability of completing college, and a shock that is distributed
Type 1 extreme value:

Ui,c(Ωi,12) = Ūc + βTTuitioni,c + βD,cDisti,c + βAAidi,c + βPP (Completei,c = 1 | Ωi,12, c)︸ ︷︷ ︸
Vi,c

+εi,c .

(8)

The probability of completing college depends on Ωi,12, meaning that students form their
expectation based on measurements that are observed by both students and colleges. Dis-
taste for distance, βD,c, varies by whether the college is public or private. Vi,c represents
the deterministic component of utility. I normalize the deterministic value of not attend-
ing college to zero, Vi,0 = 0.13 Students choose from among their admissions portfolio, B,
the option that maximizes their utility. The chosen option, Ci, satisfies

Ci = argmax
c∈B

{Ui,c} , (9)

13A future version of the paper, currently being estimated, allows Vi,0 to vary with local wages.

17



and the probability of making choice Ci given admissions portfolio B is

P (Ci = c | B,Ωi,12) =
exp(Vi,c)

1 +
∑

k∈B exp(Vi,k)
. (10)

The value of being admitted to portfolio B is given by the following log-sum term:

Ui,B := E[max
c∈B

Ui,c] = log

(
1 +

∑
c∈B

expVi,c

)
.

Admissions: Each student’s application portfolio is transformed into an admissions
portfolio depending on whether their application signals exceed the thresholds at the
schools where they apply. I assume that application signals are iid draws from f(logKi,12 |
Ωi,12), so the probability that student i obtains admissions set B given application set A is

P (B | A,Ωi,12) =
∏
c∈B

P(Sc
i > Sc∗

URMi
| Ωi,12)

∏
d∈A\B

P(Sd
i < Sd∗

URMi
| Ωi,12) . (11)

The distribution f(logKi,12 | Ωi,12) is fully characterized by its mean and variance,
(mi,12, Pi,12), so I replace P (B | A,Ωi,12) with P (B | A,mi,12, Pi,12). This means that, re-
gardless of the number of measurements in Ωi,12, the state space for each individual is
only two-dimensional. High school students who are deciding how much to study and
whether to take the SAT form expectations over (mi,12, Pi,12) rather over the realization of
each individual GPA and exam score.

Application: Applicants to portfolio A pay a fixed cost of applying to each school and
then a marginal cost of applying to additional schools within the same tier. Fixed and
marginal costs may vary by school, so that the total application cost can be written as

costi(A) =
C∑
c=1

FCi,c(A) +MCi,c(A) + εi,A , (12)

where εi,A represents unobserved factors that shift application costs and is modeled as a
Type 1 Extreme Value shock with scale parameter λA. The fixed cost varies with house-
hold income, whether the mother has a college degree, and the distance between student
i’s home while in high school and college c, while the marginal cost is a fraction of the
fixed cost. Letting nc(A) denote the number of applications to school c in portfolio A, I
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specify the fixed and marginal costs as follows:

FCi,c(A) = 1c∈A
(
δ(1)c + δ(2)c Inci + δ(3)c MomCollegei + δ(4)c Disti,c

)
,

MCi,c(A) = max{nc(A)− 1, 0}
(
δ(5)c FCi,c(A)

)
,

where MomCollegei = 1 if individual i’s mother has a college degree.

Students who apply to a portfolio, A, obtain a benefit that integrates over the expected
utility of every possible admissions subset, B, that could be obtained from A. Formally,
the utility of submitting application portfolio A is:

V Coll
i (mi,12, Pi,12, A) =

∑
B∈A

P (B | A,mi,12, Pi,12)Ui,B(mi,12, Pi,12)− costi(A) , (13)

where Ui,B is written as a function of the state variables (mi,12, Pi,12) to denote that the
value of admissions set B depends on the probability of completing college at each school
within B, which in turn varies with the mean and variance of the student’s knowledge
when enrolling in college.

The student’s portfolio choice problem is

Ai(mi,12, Pi,12, SATi) = argmax
A∈A(SATi)

{V Coll
i (mi,12, Pi,12, A)} . (14)

The set of possible application portfolios, A(SATi), depends on whether the student took
the SAT while in high school. A(1) is the universe of all possible application portfolios,
while A(0) = {0}, because all four-year colleges required the SAT during this time. I vary
A(0) under counterfactual policy regimes that allow students to apply to college even
without an SAT score. The probability of applying to application set A is

P (A | mi,12, Pi,12, SATi) =
exp

(
V Coll
i (mi,12,Pi,12,A)

λA

)
∑

A′∈A(SATi)
exp

(
V Coll
i (mi,12,Pi,12,A′)

λA

) . (15)

The value of beginning the college application phase with state variables (mi,12, Pi,12, SATi)

is given by the log-sum term

V
Coll

i (mi,12, Pi,12, SATi) := E[maxA∈A(SATi)V
Coll
i (mi,12, Pi,12, A)]

= λA log

 ∑
A∈A(SATi)

exp

(
V Coll
i (mi,12, Pi,12, A)

λA

)
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High School: Students in high school have preferences over hours spent studying,
taking the SAT, and their expectation of admission to college as follows:

UHS
i (a) = (γH + γInc

H Inci)Hi(a) + (γS + γZ
SZ

SAT
i + γInc

S Inci)SATi(a) + εi(a)+∫
V

coll

i (mi,12, Pi,12, SATi(a))dF (mi,12, Pi,12 | Ωi,9, a) , (16)

where a refers to the action chosen by the student. The disutility for hours spent studying
is allowed to vary by household income, Inci, and the preference for taking the SAT is
allowed to vary by both income and exam access, ZSAT

i , as defined in section 2. This
permits the model to capture logistical challenges that limit students’ ability to take the
exam and thus apply to college. Hi(a) denotes the average amount of time spent studying
each week while in high school. Students make this decision at the beginning of 10th
grade, and study time is assumed to take effect for three consecutive years, i.e. hi,t(a) =

Hi(a) for t = 10, 11, 12 in equation 1. εi(a) is a Type 1 Extreme Value shock.

High school students choose an action to maximize their utility subject to the technol-
ogy of skill formation and the measurement system. Their problem is written as follows:

max
a

UHS
i (a) (17)

subject to

logKi,t = γK,R logKi,t−1+βH,RHi(a) + I′i,tβ
I,R ,

yR
i,t = µR

t +αR
t logKi,t+εRi,t for t = 10, 11, 12 and R ∈ {URM,WA} .

Note that students do not observe Ki,t. The model assumes that students perform the
Kalman Filter to forecast the distribution of (mi,12, Pi,12) given their initial conditions, Ωi,9,
and their choice, a. From the point of view of the student, what matters is how their
actions while in high school influence their probability of admission to college and their
chance of completing college. The true value of Ki,t is irrelevant for admissions deci-
sions, because colleges base their decisions on signals drawn from f(logKi,12 | Ωi,12) and
Ki,12 /∈ Ωi,12. Regarding college completion, knowing the true value of Ki,12 might help
students predict their chances of completing college at each school in their admissions
set. However, for simplicity’s sake, I do not add Ki,t as an additional state variable, and
instead let college completion depend on the same state variables, (mi,12, Pi,12), as college
admission. This implies that students do not precisely know their own cognitive skill but
learn about it from grades and SAT scores.
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3.6 College Market Equilibrium

A College Market Equilibrium is defined as a set of policy functions for students {ai, Ai, Ci}Ni=1,
a set of threshold rules {Sc∗

URM}1URM=0 for colleges c = 1, . . . , C, and a distribution of
grades and SAT scores, Ωi,12, such that

1. Given the admissions thresholds {Sc∗
URM}1URM=0 for c = 1, . . . , C, and the state vari-

ables in each period, the policy functions, {ai, Ai, Ci}Ni=1, solve students’ maximiza-
tion problems in 17, 14, and 9; and

2. The admissions thresholds, {Sc∗
URM}1URM=0 for c = 1, . . . , C, maximize colleges’ ob-

jective function in 7 subject to their capacity constraints, taking as given the realized
distribution of student test scores, {Ωi,12}Ni=1, the applications that have been sub-
mitted, {Ai}Ni=1, and the actions of other colleges; and

3. The distribution of realized scores {Ωi,12}Ni=1 that colleges take as given is consis-
tent with the initial conditions, {Ωi,9}Ni=1, and the student actions that produce these
scores, {ai}Ni=1.

The equilibrium notion is a standard Nash Equilibrium, and it is characterized by a
system of equations in terms of the best response functions for all C colleges. These best
response functions are derived from the first-order conditions of the college optimization
problem in equation 7 and form a system of 2 × C equations in 2 × C unknowns. These
equations are:

∂P(Attendi,c=1)

∂K1
c
∗

∂P(Attendi,c=1)

∂K0
c
∗

=

∂E[Sc
i |Attendi,c=1]

∂K1
c
∗ − κc

∂P(i=URM |Attendi,c=1)

∂K1
c
∗ (P(i = URM |Attendi,c = 1)− λURM)

∂E[Sc
i |Attendi,c=1]

∂K0
c
∗ − κc

∂P(i=URM |Attendi,c=1)

∂K0
c
∗ (P(i = URM |Attendi,c = 1)− λURM)

,

N∑
i=1

P(Attendi,c = 1 | Ωi,12) = N c ,

where λURM is the population fraction of under-represented minorities.
I do not prove existence or uniqueness of the equilibrium. For certain extreme param-

eter values, colleges will be unable to satisfy their capacity constraints and an equilibrium
will not exist. However, such a scenario is not empirically relevant. I have always been
able to solve for an equilibrium, and I have never found multiple equilibria for a fixed set
of parameter values. Different starting guesses for the admission thresholds converge to
the same equilibrium, and small perturbations of the parameters produce equilibria with
nearby thresholds. This suggests that the optimizer is not jumping between equilibria as
it searches over the parameter space.
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3.7 College completion

The ELS 2002 records whether each individual obtains a bachelors degree within eight
years of graduating from high school. I model college completion as a function of Ki,12

and the tier of school, c, the student attends:

Completei,c = 1(ω(1)
c + ω(2)

c logKi,12 +X′
iω

(3) + ηi > 0) , (18)

where ηi ∼ N(0, 1). Oi,c can be thought of as a production function for degree attainment
that depends on student inputs, Ki,12, college inputs, ω(1)

c , and controls, Xi ⊆ Wi.14 I let
the constants in equation 18 vary by college, thereby capturing both observed and unob-
served factors that influence rates of completion at each college. Students, who do not
observe Ki,12, compute their completion probability by integrating over it using the dis-
tribution f(logKi,12 | Ωi,12) when deciding where to matriculate. Hence, P (Completei,c =

1 | Ωi,12) in equation 8 is given by

P (Completei,c = 1 | Ωi,12) =

∫
P(Completei,c = 1 | logKi,12)dF (logKi,12 | Ωi,12) (19)

3.8 Discussion

The model assumes that each college prioritizes the knowledge and racial diversity of
its student body. Specifying college preferences in this way is consistent with their mis-
sion statements, nearly all of which express a desire to enroll diverse and academically
prepared students.15 Papers that model college admissions all assume that colleges value
cognitive skill, but the literature is divided over what else they value. Epple, Romano, and
Sieg (2006) give colleges preferences over socioeconomic diversity, while Kapor (2020)
and Epple, Romano, and Sieg (2008) add preferences for racial diversity. My choice of
giving preferences for racial diversity is consistent with a principle goal of many who
advocate for eliminating the SAT, namely to increase access to college for URMs (Soares
2020). Even without giving schools direct preferences for socioeconomic diversity, the
model closely matches sorting to college by household income (section 6.4).

The model has admissions offices forming expectations of each student’s knowledge
at the time of application using the Kalman Filter. This framework treats the SAT as just

14Xi includes URM status, family income, and mother’s education.
15Of the top 50 universities currently ranked by US News and World Report, 47 have clearly defined

mission statements, of which 42 mention knowledge directly in the statement and 41 mention diversity or
have a separate statement affirming a commitment to diversity. Schools that do not directly mention these
words use related words like intellectual, discovery, and inclusion.
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one of many signals of latent knowledge, albeit one whose bias and informativeness may
differ from grades. The assumption that admissions offices are sophisticated, rational
agents is strong but not unreasonable. Admissions offices at the most popular colleges
typically employ over twenty full-time workers, and hire many others each winter, to
read applications. Many schools make decisions only after multiple meetings in which
admissions officers make arguments for and against admitting each student (Tough 2019).

Eliminating the SAT in the model sets in motion a range of behavioral responses by
high school students. First, it allows a new pool of students to apply to college. The model
predicts that those who actually apply will have a low application cost, as determined
by income, distance to college, and mother’s education, and either a high probability
of admission or a high value for college attendance. The estimated model will show that
students greatly value a college degree (βP in equation 8), meaning that the students most
likely to apply to college under the new policy are the ones most likely to complete it.

Second, removing the SAT generates contrasting effects on study behavior. Students
in the model trade off the cost of studying today with a greater probability of admission
to college after high school. The model lets the cost of studying vary by income, which is
a flexible way of capturing various factors, like working for pay or having limited space
at home to study, that may affect the study decision of low-income teenagers. Students
who do not take the test will now be able to apply to college, raising their incentive to
study.16 At the same time, the removal of a potentially informative signal weakens the link
between studying and college acceptance. Which of these effects prevails likely depends
on the student’s place within the initial skill distribution and her cost of effort.17 The total
effect of removing the SAT on college attendance boils down to how these endogenous
mechanisms affect the distribution of knowledge among college applicants in the new
equilibrium.

There is some debate over whether rational expectations (RE) or some other form of
expectations best characterize student perceptions of the admissions process.18 In this

16At the time students in the ELS 2002 were applying to college, over 85% of colleges within each tier
required an SAT or ACT score. The model assumes that an exam score is required to apply to college.

17The model suggests that one reason URM students may study less than white and Asian students are
the barriers to taking the SAT and thus applying to college. When these barriers are removed, URMs may
close the study gap with their white and Asian peers.

18Cotton, Hickman, and Price (2022) show in a field experiment that investment in human capital in the
presence of affirmative action (AA) is consistent with rational expectations. Arcidiacono et al. (2020) col-
lect data on subjective earnings expectations and occupational choice probabilities and find that they are
highly predictive of future earnings and occupational choices. On the side of biased expectations, Hastings,
Neilson, and Zimmerman (2015) demonstrate that students who choose unprofitable college degree pro-
grams considerably overestimate the earnings of past graduates while high-ability students have relatively
accurate beliefs. Wiswall and Zafar (2015) and Delavande and Zafar (2019) find that providing accurate in-
formation about wages causes students to update their beliefs but has little effect on their choices, suggesting
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paper, I give students RE over their probability of admission to college and over the effect
of study time on academic performance. The ELS 2002 does not provide sufficiently rich
data on subjective expectations to permit a major departure from RE. Nevertheless, the
model does an impressive job of matching patterns in the data (section 6.4).

3.9 Aggregation

This paper analyzes attendance and completion at four-year colleges. I group colleges ac-
cording to a combination of their Barron’s selectivity ranking and type (public vs private
non-profit). The exact groupings are depicted in Table 3. These groupings have been cho-
sen so that the analysis can speak to admissions practices at an identifiable set of schools
– like elite public and private universities and state flagships – while retaining a suffi-
ciently large sample size in each group to estimate preferences. Tiers one through three
correspond to private colleges and universities, ranked in descending order of selectivity,
while tiers four through six are public universities, ranked in descending order of selec-
tivity. Community colleges are grouped together with no college as part of the outside
option. Colleges in the same tier are assumed to have the same admissions threshold and
colleges of the same type are assumed to have the same preferences. The model therefore
allows, say, private colleges to have a stronger preference for diversity than public col-
leges. Classifying colleges in this manner is consistent with the purpose of the Barron’s
selectivity rankings, which aim to group schools together that have a common admissions
standard. In addition, allowing preferences for diversity to differ by type can capture the
extent to which state legislatures and the courts have placed limits on the discretion of
admissions offices at public universities.

Although it is computationally convenient, aggregation creates challenges. Prefer-
ences for college (equation 8) depend on tuition and the distance student i would need
to travel to attend school c. Which of the many schools within tier c should should deter-
mine the values of tuition and distance, (Disti,c, Tuitioni,c)? In the analysis that follows, I
choose the reference school for individual i to be the closest school within tier c.19 Tuition
for this reference school is in-state tuition when the student and school are located in the
same state and out-of-state tuition otherwise.

I allow students to send multiple applications to each college tier. To limit the size of

the presence of large nonpecuniary preferences for the type of college and field of study.
19In many cases, this is the very school to which students apply. When students in the ELS 2002 apply

to a school within in particular tier, the school they apply to is the closest one to their home between 20%
and 50% of the time, depending on the tier. When the school that students are considering is not the closest
within a given tier, it will often be the second closest, and distance to the school under consideration will
be correlated with distance to the closest school, thereby limiting the severity of measurement error.
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Table 3: College Groupings

Type Tier Barron’s Rank Description Examples

Private 1 1 Elite Harvard, Swarthmore,
Northwestern, USC

2 2/3 Highly selective University of Miami, De-
Paul, Pepperdine

3 4/5/6 Less selective University of Mobile, Con-
cordia University-St. Paul,
Monmouth University

Public 4 1/2 Elite UCLA, UIUC, Georgia
Tech, UNC-Chapel Hill

5 3 Most state flagships Wisconsin-Madison, Uni-
versity of Arizona, most
SUNY campuses

6 4/5/6 Satellite campus,
some flagships

Alabama A&M, Boise
State, Northern Kentucky

the choice set, however, I limit applications to two per tier. Any student sending more
than two applications to a given tier is coded as sending exactly two. I do not allow
students to send applications to all possible permutations of colleges, but instead limit the
application set to the set of unique application portfolios in the data. Hence, while there
are 36 = 729 potential portfolios with up to two applications per tier, I allow students in
the model to choose from among the 584 unique portfolios observed in the data.

3.10 Financial Aid

The model allows financial aid to shape matriculation choices through equation 8. Any
study of college attendance must deal with the fact that aid is unobserved at schools to
which the student does not apply. Another challenge is that the ELS 2002 contains data
on federal financial aid, but not state or institutional aid.

I address this problem of partially observed data by training a random forest on data
from a more recent NCES educational survey, the High School Longitudinal Study of 2009
(HSLS 2009). The HSLS 2009 is a longitudinal survey of the transition from high school to
college with many of the same measurements as the ELS 2002 (GPA, SAT scores, college
attended). One advantage of the HSLS 2009 over the ELS 2002 is that it records federal,
state, and institutional financial aid awarded to each student.20 I use the HSLS 2009 data

20The main disadvantage of the HSLS 2009 relative to the ELS 2002 and the reason it was not used for
this study is that it does not record each student’s entire admissions and acceptance portfolio.
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set to construct a set of predictors that are likely to influence the amount of financial aid
received – grades, SATs, family structure, number of siblings, state of residence, college
attended – and train a random forest using five-fold cross validation to predict the pro-
portion of tuition covered by financial aid at each college tier. I then construct the same
predictors in the ELS 2002 and use the random forest to predict the proportion of tuition
that would be covered by financial aid for each individual in the ELS 2002 at each college
tier. I work with proportions rather than aid dollars to control for the growth in college
tuition between the 2002 and 2009 cohorts. Aidi,c is therefore the predicted proportion of
tuition at school c that would be covered by financial aid awarded to individual i.21

4 Identification

4.1 Dynamic Factor Model

When students submit an application to college, the admissions office observes a signal
drawn from the distribution of latent knowledge conditional on Ωi,12. Estimating the
model requires identifying the parameters that determine this distribution, which consist
of the skill technology (equation 1) and the measurement system (equations 2 and 5).

Identification of the dynamic factor model follows from arguments in the literature
(Cunha, Heckman, and Schennach 2010; Agostinelli and Wiswall 2020; Williams 2020).
Because knowledge is a deterministic function of observables, it is possible to write the
entire vector of measurements throughout high school as a function of the initial knowl-
edge draw, logKi,9.22 To reduce notational clutter, the following equations condition on
µi,t, Hi, Wi, and Ii,t: 

yi,9

yi,10

yi,11

yi,12

 =


αR

i,9

γK,RαR
i,10

γK,R2
αR

i,11

γK,R3
αR

i,12


︸ ︷︷ ︸

A

logKi,9 +


εRi,9

εRi,10

εRi,11

εRi,12

 ,

21The model gives students perfect foresight over financial aid, Aidi,c. If students instead had to form
expectations over aid, their applications would likely appear more random and less targeted to their pre-
ferred school. An important extension of this paper would have students form expectations over financial
aid. More research is needed to understand how the prospect of aid shapes application decisions.

22Appendix B explores whether adding a stochastic shock to equation 1 affects the inferences drawn from
the dynamic factor model. It does not, and since identifying a model with this shock requires additional
normalizations beyond those discussed in this section, the main analysis was conducted using a determin-
istic skill technology.
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where logKi,9 is one-dimensional, and yi,t, αR
t , and εRi,t are vectors with lengths that vary

by t. As long as A contains at least three measurements, A satisfies the row deletion prop-
erty and it is possible to separately identify AΦA′ from Σε, where Φ := var(logKi,9).23 A
further normalization is needed to separately identify A and Φ. This is achieved by ex-
cluding a constant from Φ(Wi) = exp(W′

ib), so that Wi = 0 implies that Φ(Wi) = 1. With
this normalization, (AΦA′)1,1 identifies α9.

A is now separately identified from Φ, but it is still necessary to identify γK,R sep-
arately from the other factor loadings, αi,10, αi,11, and αi,12. It would, in principle, be
possible to scale up γK,R by c and scale down αi,10, αi,11, and αi,12 by c, c2, and c3, respec-
tively. I am able to rule out this observational equivalence, because the NCES math exams
in grades 10 and 12 are scored on the same vertical scale, which Agostinelli and Wiswall
(2020) show implies that αR

10,j = αR
12,j and µR

10,j = µR
12,j for j equal to the NCES math exam

for both URM and non-URM students.24

The mean of the latent factor is not separately identified from the mean of the measure-
ments and is typically normalized to zero. Out of concern that a history of prior inputs
produces a different initial distribution for different students, I let the mean of logKi,9 de-
pend on a vector of initial conditions: E[logKi,9 | Wi] = W′

ia. Note that it is not possible
to identify a level shift in the mean of ninth grade measurements for under-represented
minorities, µURM

9 , from a shift in the initial mean of knowledge for under-represented mi-
norities, E[logKi,9 | URMi = 1]. A normalization is necessary, and I constrain the NCES
math exams to have the same constants regardless of race: µURM

10,j = µWA
10,j and µURM

12,j = µWA
12,j

for j equal to the NCES math exam. This way, E[logKi,9 | URMi = 1] can be identified
separately from E[logKi,9 | URMi = 0].25

4.2 Identification of College Completion and Preference Parameters

College preferences for diversity, κ, are identified by the measurements of marginally
admitted URM and white and Asian applicants. If, for example, the marginal URM admit
to a specific school has lower GPAs and SAT scores than the marginal white and Asian
admit, then this school must have a positive preference for diversity. This paper exploits
variation in exam access and distance to college, which serve as exclusion restrictions
that shift the probability of applying to college. Appendix C presents estimates from

23Theorem 5.1 in Anderson and Rubin (1956).
24I still allow for σR

10,j to differ from σR
12,j for the NCES math exams, so that the signal-to-noise ratios of

the two exams may differ.
25Appendix B shows that the inferences drawn from the dynamic factor are robust to alternative normal-

izations.
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first-stage regressions of applications to college on exam access (Table C-1) and distance
to college (Table C-2). The regressions show that exam access increases applications to
college, while distance to college affects the decision of which school to apply to. The
exclusion restrictions provide reassurance that the model is not identified solely on the
basis of functional form assumptions.

This paper will analyze how counterfactual admissions policies influence sorting to
college and rates of college completion. The model generates estimates of treatment ef-
fects for college completion at school j relative to school k, Oi(Ki,12, j)−Oi(Ki,12, k). These
treatment effects are identified by randomness in admissions signals that causes students
with the same Ki,12 to have different admissions sets and thus attend different colleges.
Distributional plots of logKi,12 by school in section 6 reveal that there is considerable over-
lap in the knowledge distribution across colleges and thus sufficient support to analyze
these treatment effects.

The scale of the extreme value shock for each school εi,c is normalized to 1, and the
mean value of not attending college has been normalized to zero for all students. How-
ever, the scale of the application cost shock, λA, has not been normalized. It is identified,
because the benefit of the application portfolio in equation 13 is not multiplied by a pa-
rameter, and so the application choice does not face the usual observational equivalence
in discrete choice models: It is not possible to increase the preference parameters and the
scale parameter by a constant factor and leave the application probabilities in the like-
lihood function unchanged. In practice, it is important to let λA vary in optimization,
particularly when the choice set is large, as is the case here. Constraining λA to be a small
value, as is sometimes done in the literature on school choice, implies that the model can
perfectly rationalize the large number of potential applications with a small number of
parameters. Even after controlling for a rich set of observable characteristics of students
and colleges, it is unlikely that any model could fully explain the heterogeneity in appli-
cation patterns among American students.

5 Estimation

I estimate the model by deriving the likelihood function and using a Nested Fixed Point
algorithm (NFXP). In estimation, I make use of the three NCES exams present in the ELS
2002, which are not observed by colleges, to aid in identification of the dynamic factor
model. For clarity I distinguish between yi,10 and ỹi,10 = (yi,10, y

(j)
i,10, y

(k)
i,10) for j and k equal

to the NCES math and reading exams, and between yi,12 and ỹi,12 = (yi,12, y
(j)
i,12) for j again
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equal to the NCES math exam. Colleges observe Ωi,12 while the econometrician observes

Ω̃i,12 := {Ωi,9, ỹi,10,yi,11, ỹi,12, hi,10, hi,11, hi,12} .

For each student, I observe the college attended, Ci, the admissions set, Bi, the appli-
cation set Ai, their observed measurements, (yi,9, ỹi,10,yi,11, ỹi,12), their actions while in
High School, ai, and their initial conditions, Ωi,9. I also observe whether an individual
graduates from college, Completei,c. Letting θ denote the entire set of model parameters,
the likelihood contribution for individual i is

li(Completei,c, Ci, Bi, Ai, ỹi,12,yi,11, ỹi,10,yi,9, ai | Ωi,9, θ) =P (Completei,c | Ci, Ω̃i,12, θ)×

P (Ci | Bi,Ωi,12, θ)×

P (Bi | Ai,Ωi,12, θ)×

P (Ai | Ωi,12, ai, θ)×

f(ỹi,12,yi,11, ỹi,10 | ai,Ωi,9, θ)×

P (ai | Ωi,9, θ)×

f(Ωi,9; θ) , (20)

where P (Completei,c | Ci, Ω̃i,12, θ) comes from equation 19; P (Ci | Bi,Ωi,12, θ) comes from
equation 10; P (Bi | Ai,Ωi,12, θ) comes from equation 11; P (Ai | Ωi,12, ai, θ) comes from
equation 15; f(ỹi,12,yi,11, ỹi,10 | Ωi,9, ai, θ) comes directly from the technology and mea-
surement system in equations 1 and 2; P (ai | Ωi,9, θ) is the solution to the problem of a
high school student in 17; and f(Ωi,9; θ) are the initial conditions that vary with Wi.

I choose θ to minimize the log-likelihood function:

L(θ) =
N∑
i

log li(Completei,c, Ci, Bi, Ai, ỹi,12,yi,11, ỹi,10,yi,9, ai | Ωi,9, θ) .

Several components of the log-likelihood function depend on different sets of param-
eters, so I first optimize partial likelihoods on the relevant set of parameters before opti-
mizing the full likelihood. It is possible to obtain consistent estimates of the measurement
and technology parameters by optimizing over the following partial likelihood,

N∑
i=1

log f(yi,12,yi,11,yi,10 | ai,Ωi,9, θ) + log f(Ωi,9; θ) ,

which does not require solving for equilibrium in the college market. The second step is
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to search for the college completion parameters by maximizing

N∑
i=1

log f(Oi | Ci,Ωi,12, θ) ,

which also does not require solving the college equilibrium. I then search over the pref-
erence parameters for both students and colleges by maximizing the remainder of the log
likelihood function:

N∑
i=1

logP (Ci | Bi,Ωi,12, θ) + logP (Bi | Ai,Ωi,12, θ) + logP (Ai | Ωi,12, ai, θ) + logP (ai | Ωi,9, θ)

After obtaining consistent estimates from maximizing the partial likelihoods, I optimize
the full information likelihood to obtain a set of efficient estimates.

The College Market Equilibrium in section 3.6 assumes that colleges take as given the
distribution of student test scores and applications, {Ωi,12, Ai}Ni=1. Hence, despite the large
number of application portfolios, solving for the equilibrium in the NFXP algorithm is not
computationally costly: I need only to calculate the probabilities of admission and matric-
ulation given the application/admission pairs observed in the data. However, computing
P (ai | Ωi,12, θ) is very costly, because for every student and every action they may take,
I must integrate over the distribution of (mi,12, Pi,12) given (Ωi,9, a), and compute the in-
clusive value, V

Coll

i (mi,12, Pi,12, SATi(a)), which depends on all 584 possible application
portfolios. To make the computation feasible, I precompute V

Coll

i (mi,12, Pi,12, SATi) on a
grid for each student and use interpolation to simulate the values between grid points.
V

Coll

i (mi,12, Pi,12, SATi) varies smoothly with mi,12, and Monte Carlo simulations (avail-
able upon request) reveal that interpolation introduces negligible error. A similar inter-
polation is used to solve for the college market equilibrium in counterfactual simulations.

6 Results

6.1 Dynamic Factor Model

The parameters of the initial conditions distribution, in Table 4, reveal dramatic differ-
ences in initial knowledge across individuals. The mean and log variance of logKi,9 have
been normalized to zero, so that the coefficients in the column labeled Mean can be in-
terpreted in terms of standard deviations. The table shows that average knowledge in
ninth grade is 0.65 sd lower for URMs relative to white and Asian students. I also find
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Table 4: Parameters Governing Initial Distribution of Knowledge

Mean Log Variance

URM -0.65 0.09
(0.02) (0.06)

Female -0.02 -0.12
(0.02) (0.03)

Retain -0.74 -0.25
(0.04) (0.08)

Single Parent -0.13 0.01
(0.02) (0.05)

Mother: High School 0.24 -0.02
(0.03) (0.04)

Mother: Some College 0.41 -0.07
(0.02) (0.03)

Mother: Bachelors 0.71 0.02
(0.03) (0.05)

Mother: Postgraduate 0.90 0.05
(0.05) (0.05)

HH Income 0.08 -0.02
(0.01) (0.01)

The table presents estimates of parameters governing the initial distribution of
skills in the ninth grade. The mean and variance have been normalized to 0 and
1, respectively, for individuals whose covariates are all equal to 0. Details re-
garding the distribution of knowledge are provided in section 3. SOURCE: U.S.
Department of Education, National Center for Education Statistics, Education
Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up,
2002-2006.”

that students who were retained prior to high school have three-quarters of a sd lower
knowledge, students who grow up with a single mother lag behind by 0.13 sd, and initial
knowledge is sharply increasing in mother’s education. The coefficient on household in-
come indicates that initial knowledge is higher by 0.08 sd for each additional $100 spent
on the child per week.26

The variance of the initial knowledge distribution differs by a subset of these variables.
URMs have a higher variance of initial knowledge (by 0.09 log points) while variance is
lower for girls and students growing up in richer households. Retained students have
lower variance by 0.25 log points, consistent with them typically being selected from the
left tail of the skill distribution.

26I assume, consistent with a range of estimates reviewed in Donni (2015), that families spend one quarter
of their household income on the child. The median value of this variable in the data, 3, corresponds to a
yearly income of $62,400 (3× 4× 100× 52 = 62400).
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Table 5: Estimates of µR
t

URM White & Asian Difference

GPA, 9th grade -0.20 -0.19 -0.01
(0.03) (0.02) (0.02)

GPA, 10th grade -0.21 -0.18 -0.03
(0.02) (0.02) (0.02)

GPA, 11th grade -0.23 -0.17 -0.06
(0.02) (0.02) (0.02)

GPA, 12th grade -0.28 -0.12 -0.16
(0.02) (0.02) (0.02)

SAT Math -0.69 -0.71 0.02
(0.03) (0.03) (0.02)

SAT Verbal -0.63 -0.63 0.00
(0.03) (0.03) (0.02)

NCES Reading, 10th grade -0.21 -0.22 0.01
(0.03) (0.02) (0.02)

NCES Math, 10th grade -0.25 -0.25 0
(0.03) (0.03) (-)

NCES Math, 12th grade -0.25 -0.25 0
(0.03) (0.03) (-)

The table displays estimates of µR
t in equation 2. Details regarding the

the measurement system are provided in section 3. SOURCE: U.S. De-
partment of Education, National Center for Education Statistics, Educa-
tion Longitudinal Study of 2002 (ELS:2002), “Base Year through Second
Follow-up, 2002-2006.”

Table 5 displays estimates of µR
t for R = URM,WA. The table can be used to assess

whether grades and exams are biased against URMs, as µR
t governs level shifts in the

measurements across demographic groups after controlling for knowledge. Recall that
the identifying normalization discussed in section 4.1, µURM

10,j = µWA
10,j for j equal to the

NCES math exam, rules out bias in this exam. The numbers in Table 5 should therefore be
interpreted as bias relative to this exam.27 There does not appear to be evidence that the
SAT is biased against URMs. In fact, URMs score marginally higher on all of the standard-
ized tests than might be expected conditional on knowledge. The estimated parameters
in Table 5 suggest that, if anything, eleventh and twelfth grade GPAs are more biased
against URM students than are standardized exams.28

27Appendix B provides additional analysis to show that the inferences in the table are robust to alternative
normalizations.

28Implicit bias among teachers, as measured by the Implicit Association Test, has been shown by Carlana
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Table 6: Signal-to-Noise Ratios (αt,j

σt,j
)

URM White & Asian Difference

GPA, 9th grade 0.67 0.93 -0.26
(0.02) (0.01) (0.04)

GPA, 10th grade 0.68 0.92 -0.25
(0.02) (0.01) (0.03)

GPA, 11th grade 0.60 0.80 -0.20
(0.01) (0.01) (0.09)

GPA, 12th grade 0.48 0.60 -0.12
(0.02) (0.01) (0.06)

SAT Math 1.65 1.87 -0.22
(0.03) (0.02) (0.02)

SAT Verbal 1.29 1.25 0.04
(0.06) (0.01) (0.04)

NCES Reading, 10th grade 1.13 1.04 0.08
(0.02) (0.01) (0.03)

NCES Math, 10th grade 1.83 1.65 0.17
(0.03) (0.02) (0.04)

NCES Math, 12th grade 2.06 1.92 0.14
(0.04) (0.01) (0.05)

The table displays estimates of signal-to-noise ratios, αt,j

σt,j
, for all mea-

surements in the data. The NCES exams are used to identify the technol-
ogy of skill formation, but are not available to colleges when determin-
ing whom to admit. More details regarding the the measurement system
are provided in section 3. SOURCE: U.S. Department of Education, Na-
tional Center for Education Statistics, Education Longitudinal Study of
2002 (ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

Even if the SAT is not biased against URMs, its informativeness as a signal may still
vary across demographic groups. Table 6 presents estimates of signal-to-noise ratios for
all the measurements in the data. For a given measurement, yt,j , the signal-to-noise ratio
is computed as αt,j/σt,j . A signal-to-noise ratio that exceeds unity indicates that the mea-
surement contains more information than noise. The table indicates that GPAs become
worse signals in later years of high school. It also shows that the standardized exams
convey significantly greater information than GPAs, with the math portion of the SAT
and the math exams administered by the NCES being particularly informative. GPAs in
every grade are less informative for URMs than for white and Asian students. The math

(2019) and Van den Bergh et al. (2010) to predict both gender and racial test scores gaps and could be a
source of the GPA biases seen here.
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Table 7: Technology of Skill Formation

URM White & Asian

Knowledge(-1) 0.99 1.02
(0.01) (0.02)

Study, 10 hours/wk 0.10 0.08
(0.01) (0.02)

Private School 0.05 0.01
(0.01) (0.02)

Free Lunch -0.14 -0.20
(0.04) (0.04)

Student Teacher Ratio 0.07 -0.07
(0.08) (0.17)

Mother: High School -0.02 -0.02
(0.02) (0.03)

Mother: Some College -0.03 -0.03
(0.02) (0.02)

Mother: Bachelors -0.04 -0.04
(0.02) (0.03)

Mother: Postgraduate -0.04 -0.04
(0.02) (0.05)

The table displays estimates of parameters governing the
technology of skill formation. Study refers to the effect of
studying 10 hours per week on next year’s skills. More de-
tails on the technology are provided in section 3. SOURCE:
U.S. Department of Education, National Center for Education
Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

portion of the SAT is also a worse signal for URMs, while the other standardized tests are
marginally more informative for URMs.

The parameters of the measurement system therefore indicate that the SAT does not
appear to be biased against URMs. But, there is merit to the concern that the math portion
of the SAT may not be as informative for a URM student as it is for a white or Asian
student. The same can also be said for grades in school. Much of the literature on grading
practices, for example Botelho, Madeira, and Rangel 2015 and Rauschenberg 2014, has
focused on the first moments of grades. The results presented here suggest that second
moments may also vary across demographic groups.

Table 7 presents estimates of the technology of skill formation. I find no evidence of
differences in this technology for URMs and white and Asian students. Both have an au-
toregressive parameter for knowledge equal to one, indicating that knowledge does not
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depreciate throughout high school. This suggests that it may be difficult for students who
enter high school with a low level of knowledge to catch up to their peers by the time they
apply to college. I also find that an additional ten hours of study time per week increases
knowledge by 0.08–0.10 sd. Hence, a URM student who studies 10 hours per week will,
all else equal, improve her skills by 0.30 sd between the end of 9th grade and the end
of high school. Studying may therefore deliver significant marginal returns for students
whose initial conditions place them on the cusp of gaining admission to college. Students
at poorer high schools, as indicated by the proportion of students qualifying for a free or
reduced-price lunch, accumulate less knowledge. The effect of class size on skill develop-
ment is insignificant. Attending a private school, either catholic or nondenominational,
has a small positive effect on knowledge accumulation for URMs. In contrast to the effects
of mother’s education on initial knowledge, students with more highly educated mothers
tend to regress slightly toward the mean throughout high school.

6.2 Estimated Preferences

Table 8 presents estimates of the preference parameters for students and colleges. The
fixed effects for each college are ordered in a way that is consistent with selective univer-
sities being more highly valued. Private colleges (tiers 1-3) are also more preferred than
public colleges (tiers 4-6) with a similar degree of selectivity. Distaste for distance is sim-
ilar for both private and public colleges and equal to three-quarters of the magnitude of
the coefficient on tuition, indicating that students are indifferent between attending a col-
lege that is 100 miles closer and paying tuition that is higher by $75 per week ($3,900 per
year). Students are more likely to attend a school where a higher proportion of the cost
of attendance is covered by financial aid. They also have a strong preference for college
completion. Comparison with the fixed effects, U1, . . . , U6, reveals that college is highly
valued because of the degree that it confers rather than because of amenities unrelated
to the degree. A comparison between the coefficients on tuition and completion suggests
that a college degree is valued at 5.12/0.16 × 100 = $3, 200 dollars per week, or $166, 400
per year.

Students dislike studying, but studying is less costly if they come from richer house-
holds.29 Likewise, SAT-taking is costly but greater income and logistical access make it
less so. To put some of the numbers in Table 8 in perspective, the disutility of studying
ten hours a week for a student from a median income family is (−0.12 + 0.01 × 3.00) ×

29This is consistent with poorer students having a higher opportunity cost for studying. The probability
of working for pay while in high school is negatively associated with family income in the ELS 2002.
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Table 8: Preference Parameters

Value Standard Error

Student Preferences for Universities

College 1, U1 -0.04 0.19
College 2, U2 -1.62 0.18
College 3, U3 -1.83 0.18
College 4, U4 -0.96 0.27
College 5, U5 -2.16 0.15
College 6, U6 -2.29 0.12
Portfolio Shock, Scale 1.14 0.03
Distance, Public -0.11 0.08
Distance, Private -0.13 0.08
Tuition -0.16 0.03
Aid 0.59 0.10
Completion 5.12 0.10

Student Preferences in High School

Hours, γH -0.12 0.00
Hours × Income, γInc

H 0.01 0.00
SAT, γS -1.48 0.07
SAT × Access, γZ

S 0.09 0.02
SAT × Income, γInc

S 0.17 0.02

College Preferences

Preference for Knowledge, Private 0.89 0.00
Preference for Diversity, Private 0.11
Preference for Knowledge, Public 0.91 0.00
Preference for Diversity, Public 0.09

The table displays estimates of preference parameters of students
and colleges in the model. More details are provided in section 3.
SOURCE: U.S. Department of Education, National Center for Edu-
cation Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

10 = −0.90. This equates to −0.90/0.16 × 100 = 562.50 dollars a week, and is worth
0.90/5.12 = 0.18 of a college degree. This median student would therefore study 10 addi-
tional hours a week if doing so increased his probability of attaining a college degree by
18% or more.

Private colleges value knowledge less and diversity more than public colleges: Eleven-
hundredths of private universities’ utility is derived from the diversity of its student
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Table 9: Admissions Thresholds

Raw Standardized

White/Asian URM White/Asian URM

Tier 1 1.59 0.92 1.00 0.42
Tier 2 0.56 -0.06 0.10 -0.43
Tier 3 -0.01 -0.57 -0.39 -0.88
Tier 4 1.11 0.61 0.58 0.15
Tier 5 0.56 0.09 0.10 -0.31
Tier 6 0.07 -0.38 -0.33 -0.72

The table displays estimated admissions thresholds for each tier of college.
Students who apply to a school with an application signal that exceeds their
demographic-specific threshold are granted admission. Columns labeled Raw in-
dicate the threshold in terms of logKi,12, while in the columns labeled Standard-
ized, the thresholds have been normalized by subtracting the mean dividing by the
standard deviation of logKi,12. SOURCE: U.S. Department of Education, National
Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

body, while the corresponding fraction for public universities is nine out of one hundred.
This difference is statistically significant. The weight placed on diversity causes a wedge
to arise between the two admissions thresholds at each college. Table 9 displays these
thresholds scaled by the population mean and standard deviation of logKi,12. The table
shows that colleges that are more highly valued according to the fixed effects in Table 8
have higher admissions thresholds. Additionally, for each college tier, the threshold is
lower for URM than for white and Asian students.

Table 10 shows estimates of the application cost parameters. Fixed costs – which vary
by income, mother’s education, distance, and a tier-specific constant – capture both mone-
tary and nonmonetary deterrents to applications. A single application to a tier one school
is over five times as costly as an application to a tier six school, all else equal. The signs
on income are consistent with Hoxby and Avery (2012) who find that higher income stu-
dents prefer to apply to state flagships and dislike nonselective schools. At the same
time, the evidence in Table 10 suggests that nonmonetary costs are more salient. Having
a mother with a college degree dramatically reduces the fixed cost of applying to a tier
one school. This effect, −1.05, is greater than the effect of moving from the poorest to
the richest household in the sample (−0.1 × (9.62 − 0.24)) = −0.938. Distance is also an
important determinant of where students apply, especially at lower-ranked universities.

Marginal costs, which are modeled as a fraction of fixed costs, are lowest at the most
selective schools (tiers one and four). These schools have high fixed costs, indicating
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Table 10: Application Cost Parameters

Fixed Cost Marginal Cost

Constant Income Mother’s Ed Distance Fraction

Tier 1 4.26 -0.10 -1.12 0.29 0.02
(0.17) (0.02) (0.11) (0.05) (0.02)

Tier 2 2.82 -0.10 -0.74 0.49 0.40
(0.10) (0.01) (0.06) (0.07) (0.03)

Tier 3 2.16 0.02 -0.19 1.44 0.65
(0.08) (0.01) (0.06) (0.13) (0.03)

Tier 4 2.83 -0.09 -0.73 0.52 0.38
(0.11) (0.01) (0.07) (0.05) (0.03)

Tier 5 1.78 -0.07 -0.37 0.55 1.11
(0.07) (0.01) (0.05) (0.05) (0.05)

Tier 6 0.77 0.02 0.07 1.22 0.71
(0.05) (0.01) (0.04) (0.09) (0.05)

The table displays estimates of parameters governing the cost of applying to college.
Mother’s Ed is an indicator for whether an individual’s mother has a bachelor’s de-
gree. Marginal costs are a fraction of fixed costs. Fixed and marginal costs are school-
specific. More details on application costs are provided in section 3. SOURCE: U.S.
Department of Education, National Center for Education Statistics, Education Longi-
tudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

that it is relatively rare for a student to apply to them, but conditional on sending at
least one application, the low marginal cost indicates that many students send multiple
applications to schools within these tiers.

6.3 College Completion

Table 11 displays estimates of the parameters governing college completion. The esti-
mates reveal that greater knowledge when enrolling in college increases the probability of
completion at all schools. Tier six schools are the only ones with a statistically significant
constant, indicating that completion is lower at these schools after controlling for knowl-
edge. Although URMs are 11 pp less likely to complete college conditional on enrolling
(Table 2), I find that there is no significant difference in completion rates by demographic
group after controlling for knowledge and the college attended. I also find that having
a college-educated mother has no effect on college completion and that family income
is marginally significant. The results suggest that, if colleges could enroll URMs with
similar skill levels as white and Asian matriculants, the college completion gap would
disappear.

38



Table 11: College Completion Model

Estimate Standard Error

Tier 1 -0.03 0.25
Tier 2 0.22 0.22
Tier 3 0.01 0.15
Tier 4 0.23 0.26
Tier 5 -0.02 0.16
Tier 6 -0.29 0.08
logKi,12× Tier 1 0.28 0.10
logKi,12× Tier 2 0.28 0.04
logKi,12× Tier 3 0.31 0.03
logKi,12× Tier 4 0.20 0.05
logKi,12× Tier 5 0.35 0.04
logKi,12× Tier 6 0.43 0.02
URM -0.02 0.06
Income 0.02 0.01
Mother has college degree 0.06 0.06

The table displays parameters of the college completion model, equation 18.
The constant and slope with respect to knowledge, logKi,12, are allowed to
vary by college tier. More details on college completion are provided in sec-
tion 3. SOURCE: U.S. Department of Education, National Center for Educa-
tion Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”
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6.4 Goodness of Fit

Table 12 shows that the model successfully replicates many data moments. The model
does a good job of matching the proportions of students at each type of college, as well
as the overall percentage of students, 43%, attending any four-year university. The model
somewhat overpredicts attendance by URMs at tiers 2 and 5 and underpredicts it at tiers
3 and 6. The model also closely replicates rates of college completion conditional on
enrollment, both overall (68% in the data, 69% in the model) and by demographic groups
(59% for URMs and 70% for whites and Asians in the data versus 62% for URMs and 71%
for whites and Asians in the model).

The model is able to replicate the clear pattern of sorting by SAT scores to universities
that exists in the data. The third panel of Table 12 shows mean standardized scores on
both the math and verbal SAT examinations for students who attend each tier of college.

The model closely replicates hours spent studying across all students in the sample:
6.21 hours in the data versus 6.24 hours in model simulations. However, the model some-
what overpredicts study time by URMs (5.69 hours in the data versus 6.00 hours in the
model) and underpredicts it among white and Asian students (6.41 hours in the data
versus 6.33 hours in the model). A similar story holds for SAT-takeup rates: The model
replicates take-up overall, but slightly overpredicts take-up for URMs (by 2 pp). Put an-
other way, by controlling for family income, exam access, and the chance of admission to
college, this model can explain 80% of the gap in SAT take-up by race.

The model matches overall patterns of sorting to college by family income. Family
income affects both the initial conditions of the skill distribution as well as the cost of
applying to college, so the model can quite precisely target the skill and income of appli-
cants to each tier of college. What the model is unable to replicate is the finding that URM
students at elite private universities (tier 1) come from lower income families than those
attending tier 2 universities. This feature of the data may be due to aggressive outreach
by elite colleges to magnet schools in urban areas as documented in Hoxby and Avery
(2012). This sort of targeting is outside the scope of the model.

Figure 4, which plots densities of logKi,12 by the school attended, depicts patterns of
sorting by knowledge across college tiers. The figure reinforces the patterns of sorting by
SAT scores seen in Table 12, as there is a definite ordering to the peaks of each density.
The figure also reveals substantial overlap in the knowledge distribution at all colleges,
even between students who attend no college and those who attend elite colleges. In the
next section, I will evaluate counterfactual policies that may send a new pool of students
to college. The overlap of ability across colleges provides reassurance that the predictions
of college completion in the next section are supported by the data .
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Table 12: Goodness of Fit

Data Model

All URM WA All URM WA

Fraction Attending

Tier 1 0.019 0.016 0.020 0.025 0.017 0.028
Tier 2 0.072 0.035 0.086 0.077 0.057 0.085
Tier 3 0.066 0.068 0.065 0.06 0.047 0.065
Tier 4 0.048 0.032 0.054 0.054 0.038 0.060
Tier 5 0.063 0.022 0.079 0.066 0.043 0.075
Tier 6 0.165 0.160 0.167 0.149 0.108 0.165
Any College 0.433 0.333 0.47 0.432 0.310 0.478

SAT Math Score

Tier 1 1.20 0.68 1.35 1.04 0.49 1.16
Tier 2 0.56 0.48 0.57 0.34 -0.16 0.46
Tier 3 -0.10 -0.72 0.14 0.01 -0.43 0.14
Tier 4 0.80 0.40 0.89 0.70 0.25 0.80
Tier 5 0.38 -0.16 0.43 0.37 -0.07 0.46
Tier 6 -0.04 -0.42 0.10 0.13 -0.3 0.24
No College -0.58 -0.92 -0.45 -0.88 -1.21 -0.74

SAT Verbal Score

Tier 1 1.25 0.88 1.37 0.96 0.50 1.06
Tier 2 0.69 0.58 0.70 0.32 -0.12 0.43
Tier 3 -0.04 -0.48 0.14 0.03 -0.37 0.14
Tier 4 0.76 0.43 0.84 0.65 0.27 0.74
Tier 5 0.34 -0.18 0.40 0.35 -0.04 0.43
Tier 6 -0.03 -0.39 0.10 0.14 -0.24 0.24
No College -0.50 -0.84 -0.38 -0.79 -1.11 -0.64

Household Income

Tier 1 103K 69K 113K 105K 92K 108K
Tier 2 84K 78K 85K 90K 77K 93K
Tier 3 73K 59K 79K 73K 59K 77K
Tier 4 102K 91K 105K 99K 87K 101K
Tier 5 86K 61K 89K 89K 74K 92K
Tier 6 69K 56K 74K 72K 60K 75K
No College 54K 43K 60K 52K 40K 58K

Complete College 0.678 0.594 0.701 0.689 0.619 0.706
Hours Study 6.21 5.69 6.41 6.24 6.00 6.33
Take SAT 0.76 0.66 0.79 0.76 0.68 0.79

The table compares moments in the data with their model counter-
parts by simulating the model according to the estimated parameters.
Simulated moments are computed using 200 simulated data sets. WA
refers to the population of white and Asian students. SAT scores are
normalized by the population mean and standard deviation in the data.
SOURCE: U.S. Department of Education, National Center for Education
Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”
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Figure 4: Latent Knowledge, by College Attended

The figure shows the simulated distribution of logKi,12 by college attended. Densities are computed
using 200 simulated data sets.

7 Counterfactuals

In this section, I evaluate several counterfactual policies. The first is a policy that bans
the SAT. In this counterfactual, colleges rely on grades and the variables governing the
initial skill distribution when determining whom to admit. Students can respond to the
policy by changing where they apply to college and by studying more or less while in
high school. The choice of whether to take the SAT is eliminated from students’ choice
set. Universities optimally set admissions thresholds so that the expected demand for
university enrollment equals capacity. A second policy mandates all students take the
SAT. As before, students respond along the application and study margins, and colleges
respond by adjusting thresholds.

7.1 Main Findings

Table 13 shows that eliminating the SAT slightly reduces URM enrollment at elite public
and private colleges, while mandating it slightly increases URMs overall. Both policies
generate nonnegative changes in the enrollment of students from below median-income
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Table 13: Access to College

URM Attendance Low-Income Attendance

Status Quo No SAT SAT-for-All Status Quo No SAT SAT-for-All

Tier 1 0.017 0.016 0.017 0.010 0.010 0.010
Tier 2 0.057 0.057 0.057 0.044 0.045 0.046
Tier 3 0.047 0.048 0.051 0.049 0.051 0.052
Tier 4 0.038 0.036 0.038 0.024 0.026 0.026
Tier 5 0.043 0.041 0.043 0.04 0.042 0.043
Tier 6 0.108 0.107 0.113 0.123 0.128 0.131
Any College 0.310 0.305 0.319 0.289 0.302 0.309

The table displays the rates of attendance for URM and low-income students at each college tier
under three separate policies: the status quo, a policy where the SAT is banned, and a policy in
which all students take the SAT and submit the scores with their applications. Low-income refers
to students whose families earn less than the median ($52,500 per year). Simulated moments are
computed using 200 simulated data sets. SOURCE: U.S. Department of Education, National Center
for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year through
Second Follow-up, 2002-2006.”

families at all colleges.30 The reason why banning the SAT fails to raise URM enrollment
is due to the offsetting effects of two separate phenomena, as shown in Table 14. Removal
of the SAT barrier causes a rise in applications to college. This increase is larger for URMs,
who are less likely to take the exam, than for white and Asian students (30% versus 17%).
White and Asian students, however, send more applications at baseline (1.60 per student
versus 1.20), and so the fraction of total college applications coming from URMs rises only
slightly, from 22% to 24%. This might be large enough to raise URM enrollment were it
not for another phenomenon. URMs who are induced to apply to college after banning
the SAT are weaker candidates than marginal white and Asian applicants. The value of
logKi,12 for the average URM applicant declines by 0.16 sd, while it declines by 0.12 sd for
white and Asian applicants. The combination of more URM applicants but lower average
quality of their applications leads to no change in URM enrollment.

The No-SAT and SAT-for-All policies have little effect on URM enrollment, but they
cause changes along other dimensions. Figure 5 shows that the two policies have con-
siderably different effects on college sorting by knowledge. Eliminating the SAT renders
the distributions of knowledge more homogeneous across colleges, while mandating the
SAT has the opposite effect. By giving each college access to two additional high-quality
signals in the SAT math and verbal exams, colleges are better able to draw an inference on
each applicant’s latent knowledge. This allows more sought-after schools to better select

30Median family income in the estimation sample is $52,500.
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Table 14: Application Patterns

Status Quo No SAT SAT-for-All

All URM WA All URM WA All URM WA

Apps per student 1.49 1.20 1.60 1.79 1.57 1.88 1.77 1.57 1.85
Application Growth (%) 20 30 17 19 31 15
% Applications from URMs 22 24 24

E[logKi,12] per applicant 0.74 0.12 0.93 0.60 -0.04 0.81 0.61 -0.01 0.83

The table displays application statistics by demographic group under three separate policies: the
status quo, a policy that bans the SAT, and a policy in which all students take the SAT and submit
their scores with their applications. Simulated moments are computed using 200 simulated data
sets. WA refers to the population of white and Asian students. SOURCE: U.S. Department of Edu-
cation, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

highly-skilled applicants for admission, leading to greater assortative matching.

Changes in assortative matching cause changes in college completion. Table 15 shows
that banning the SAT causes completion rates at tiers 1 and 4 to fall by as much as 3 pp.
Less selective schools instead experience higher graduation rates, as they enroll stronger
students who are turned away by elite schools because of noisier application signals. By
contrast, the SAT-for-All policy increases completion at lower ranked schools without
lowering it at elite schools. Rather than drawing students away from elite colleges, the
SAT-for-All policy enables schools in tiers 2, 3, 5, and 6 to identify qualified students for
admission among those who did not take the SAT and thus did not apply to college in the
status quo. College completion rises by 1.4–1.6 pp overall.

The results show that elite private and public colleges (tiers 1 and 4) have the most to
lose from a policy that bans the SAT. Average knowledge, college completion, and URM
attendance all decline at these schools. The increase in signal variance causes all colleges
to inadvertently reject skilled candidates, however less selective colleges are able to enroll
students rejected by higher tiers, but there is no higher tier for elite colleges to draw from.
Hence, they experience the largest declines in the skill of their student body.

The mean of knowledge across all four-year colleges does not change under the No-
SAT policy, while the SAT-for-All policy results in an increase in logKi,12 of 0.12 (0.09)
sd for URM (white and Asian) matriculants. It seems surprising that removing the SAT
does not lower the mean knowledge of college students. One might expect that the lower
signal quality provided by grades would lead to the admission of weaker students. The
next section explains that the equilibrium response by colleges forestalls this outcome.
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Table 15: Counterfactuals

Status Quo No SAT SAT-for-All

All URM WA All URM WA All URM WA

Complete College

Tier 1 0.761 0.694 0.776 0.734 0.669 0.748 0.759 0.701 0.773
Tier 2 0.745 0.687 0.760 0.750 0.686 0.766 0.761 0.698 0.777
Tier 3 0.645 0.57 0.665 0.648 0.571 0.670 0.655 0.584 0.677
Tier 4 0.757 0.718 0.766 0.746 0.712 0.754 0.763 0.722 0.772
Tier 5 0.722 0.666 0.734 0.721 0.652 0.735 0.730 0.676 0.741
Tier 6 0.626 0.538 0.648 0.64 0.555 0.661 0.651 0.571 0.671
All Schools 0.689 0.619 0.706 0.692 0.619 0.709 0.703 0.635 0.72

Household Income

Tier 1 105K 92K 108K 103K 91K 106K 103K 90K 106K
Tier 2 90K 77K 93K 88K 77K 91K 87K 73K 90K
Tier 3 73K 59K 77K 71K 59K 74K 71K 58K 75K
Tier 4 99K 87K 101K 97K 87K 99K 96K 85K 99K
Tier 5 89K 74K 92K 87K 73K 90K 86K 70K 89K
Tier 6 72K 60K 75K 71K 60K 73K 70K 58K 73K
No College 52K 40K 58K 53K 41K 59K 54K 41K 60K

Attend Any College 0.432 0.310 0.478 0.432 0.305 0.481 0.432 0.319 0.476
Hours Study 6.24 6.00 6.33 6.36 6.14 6.45 6.35 6.11 6.45
E[logKi,12]: Any 4-yr College 0.65 0.20 0.76 0.65 0.18 0.76 0.74 0.32 0.85
E[logKi,12]: No College -0.49 -0.86 -0.31 -0.49 -0.84 -0.32 -0.56 -0.92 -0.39

The table displays summary statistics under three separate policies: the status quo, a policy that
bans the SAT, and a policy in which all students take the SAT and submit their scores with their
applications. Simulated moments are computed using 200 simulated data sets. WA refers to the
population of white and Asian students. SOURCE: U.S. Department of Education, National Center
for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year through Sec-
ond Follow-up, 2002-2006.”
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Figure 5: Latent Knowledge Distribution, Counterfactuals

The figure shows the simulated distributions of logKi,12 by college attended under two counterfactual
policies. The first eliminates the SAT in college admissions, while the second mandates that every high
school student take the SAT and submit their scores with their college application. Densities are computed
using 200 simulated data sets.
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7.2 Model Mechanisms

Eliminating the SAT causes four changes in the model: a shift in the set of measurements
used to determine admission, endogenous applications, endogenous study decisions by
high school students, and reoptimization by capacity-constrained colleges. To under-
stand the quantitative importance of each of these elements, I simulate the model five
times, starting from the status quo and adding one element at a time until I arrive at the
full No-SAT counterfactual. Summary statistics for five major variables – URM atten-
dance, knowledge, household income, college completion, and total attendance – under
each model simulation are presented in Table 16. The second column, labeled No Sat,
holds applications and study effort fixed and removes the SAT from among the set of
measurements used to determine admission. The third column allows for endogenous
applications, while the fourth column allows for endogenous applications together with
endogenous effort. The final column imposes equilibrium in the college market.

A clear pattern emerges from the analysis. Knowledge and household income become
more equalized across colleges in the No SAT and No SAT + Endogenous Applications
simulations. The spread of logKi,12 between students at top tier colleges and those not
attending college falls by nearly 0.5 sd. The percentage of URMs attending college rises
dramatically, from 31.0% to 39.2%. However, the introduction of endogenous effort raises
sorting by knowledge and household income. The imposition of equilibrium furthers this
stratification, and dramatically reduces access to college by URMs, as marginal entrants
are shut out of college by higher admissions standards. The last line in the table shows
how, in the absence of the capacity constraints imposed in equilibrium, college attendance
would be 8.2 pp higher.

The reason why endogenous effort increases assortative matching in partial equilib-
rium is subtle. When the SAT is eliminated, average effort increases from 6.21 to 6.34
hours a week. This increase in average effort masks two countervailing changes: Stu-
dents who did not take the SAT in the status quo increase their study hours dramatically,
from 4.25 to 5.93 hours. But, the reduction in signal quality arising from the SAT’s elim-
ination causes those formerly taking the SAT to reduce their hours worked, from 6.85 to
6.47 hours. Reduction in study hours pulls in the right tail of logKi,12, which explains
why enrollment in Tier 1 colleges falls between columns 3 and 4 of Table 16. Students
from families with high incomes reduce study hours by less, because effort is less costly
for them, which results in a modest strengthening of the correlation between household
income and logKi,12, from 0.35 to 0.36, and a rise in assortative matching.

When college sorting by knowledge changes, so do rates of college completion. Ban-
ning the SAT and allowing for endogenous applications reduce completion at all colleges
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Table 16: Model Mechanisms

Status Quo No Sat + Endogenous Apps + Endogenous Effort + Equilibrium

URM Attendance

Tier 1 0.017 0.015 0.023 0.018 0.016
Tier 2 0.057 0.037 0.068 0.071 0.057
Tier 3 0.047 0.067 0.058 0.063 0.048
Tier 4 0.038 0.036 0.047 0.043 0.036
Tier 5 0.043 0.033 0.053 0.055 0.041
Tier 6 0.108 0.128 0.142 0.148 0.107
Any College 0.310 0.317 0.392 0.399 0.305

E[logKi,12]

Tier 1 1.35 1.03 0.88 1.14 1.15
Tier 2 0.68 0.66 0.50 0.57 0.67
Tier 3 0.36 0.23 0.26 0.27 0.44
Tier 4 1.03 0.83 0.72 0.87 0.92
Tier 5 0.71 0.61 0.52 0.59 0.68
Tier 6 0.47 0.34 0.32 0.36 0.53
No College -0.49 -0.39 -0.47 -0.55 -0.49

HH Income

Tier 1 105K 100K 94K 102K 103K
Tier 2 90K 85K 83K 85K 88K
Tier 3 73K 73K 67K 67K 71K
Tier 4 99K 97K 90K 96K 97K
Tier 5 89K 84K 82K 84K 87K
Tier 6 72K 70K 66K 67K 71K
No College 52K 54K 54K 52K 53K

Complete College

Tier 1 0.761 0.716 0.700 0.731 0.734
Tier 2 0.745 0.747 0.726 0.735 0.750
Tier 3 0.645 0.618 0.619 0.630 0.648
Tier 4 0.757 0.738 0.730 0.740 0.746
Tier 5 0.722 0.711 0.700 0.705 0.721
Tier 6 0.626 0.607 0.600 0.607 0.640
All Colleges 0.689 0.671 0.663 0.669 0.692

Total Attendance

Tier 1 0.025 0.027 0.032 0.025 0.025
Tier 2 0.077 0.070 0.089 0.091 0.077
Tier 3 0.060 0.057 0.068 0.074 0.060
Tier 4 0.054 0.053 0.065 0.060 0.054
Tier 0.066 0.064 0.076 0.078 0.066
Tier 6 0.149 0.153 0.177 0.186 0.149
Any College 0.432 0.424 0.507 0.514 0.432

Each column in the table presents moments from a different simulation. The leftmost column simulates
the status quo policy. The second column removes the SAT from admissions but holds applications and
study effort fixed. The third column lets applications respond endogenously. The fourth column lets
study effort respond endogenously, and the final column imposes equilibrium in the college market.
Simulated moments are computed using 200 simulated data sets. SOURCE: U.S. Department of Educa-
tion, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base
Year through Second Follow-up, 2002-2006.”
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by up to 6.1 pp. The introduction of endogenous effort and college optimization in equi-
librium instead raises completion. In the full equilibrium without the SAT, elite private
colleges have lower rates of completion, because noisier application signals cause them to
lose out on some highly-skilled candidates, who then enroll in less selective universities.
This, together with the admission of some strong students who do not take the SAT in the
status quo, causes graduation rates at public satellite colleges (tier 6) to rise.

The trend moving from left to right in Table 16 of decreasing and then increasing
stratification suggests that a lack of income at the application margin does not pose a pro-
hibitive barrier to college access. The model allows the cost of application to vary with
family income, but allowing for endogenous applications actually reduces stratification
by income. Instead, unequal pre-college human capital investment generates a distribu-
tion of cognitive skills that results in children attending markedly different colleges based
on their income. Restrictive supply at four-year colleges exacerbates this trend.

7.3 SAT-Optional Policy at Elite Colleges Only

Because I find that elite colleges suffer the most from banning the SAT, in this section
I evaluate a policy in which elite private and public colleges allow students to apply
whether they have an SAT score or not, while other colleges continue to require the SAT.
This policy gives students who do not take the exam the option to apply to either elite
colleges or to no college at all. For simplicity, I abstract away from the strategic decision
of whether an SAT-taker should send an SAT score and instead assume that all students
who take the SAT send their scores.

Table 17 shows the pattern of college sorting by knowledge under the SAT-Optional
policy. The first two sets of columns show sorting under the status quo and under the No-
SAT policy analyzed previously for comparison. Relative to the status quo, there is little
change in sorting by knowledge to college when elite colleges go SAT-Optional. Average
knowledge at tier one schools falls only marginally, while it actually increases from 1.03

to 1.10 sd above the mean at elite public colleges (tier four). This result contrasts with the
decline in average knowledge under the No-SAT policy, and it arises because elite colleges
receive applications from students who applied in the status quo with an SAT score, for
whom there is no loss of information, plus additional applications from students who
did not take the SAT. Because some of these new applicants have quite high admissions
signals, admissions thresholds at tier one (tier four) schools increase by nearly one-tenth
(two-tenths) of a standard deviation (Table 18). The effect of raising thresholds offsets
the cost of not having the SAT for some of the applicants and leaves elite colleges with
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Table 17: SAT-Optional at Elite Schools

Status Quo No SAT SAT-Optional

E[logKi,12] All URM WA All URM WA All URM WA

Tier 1 1.35 0.87 1.46 1.15 0.63 1.27 1.34 0.82 1.46
Tier 2 0.68 0.21 0.80 0.67 0.20 0.79 0.67 0.21 0.78
Tier 3 0.36 -0.09 0.48 0.44 -0.03 0.58 0.34 -0.11 0.46
Tier 4 1.03 0.63 1.12 0.92 0.47 1.01 1.10 0.65 1.20
Tier 5 0.71 0.29 0.80 0.68 0.23 0.78 0.69 0.26 0.79
Tier 6 0.47 0.04 0.57 0.53 0.08 0.63 0.44 0.02 0.55
Any College 0.65 0.20 0.76 0.65 0.18 0.76 0.65 0.20 0.76
No College -0.49 -0.86 -0.31 -0.49 -0.84 -0.32 -0.48 -0.85 -0.29

The table presents simulated estimates of mean knowledge by college tier under the sta-
tus quo, No SAT, and SAT-Optional policies. The SAT-Optional Policy allows students
who have not taken the SAT to apply to elite public and private colleges (tiers one and
four). Simulated moments are computed using 200 simulated data sets. WA refers to the
population of white and Asian students. SOURCE: U.S. Department of Education, Na-
tional Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

similar, or even more knowledgeable, students.
Going SAT-Optional raises the matriculation of URM students, who are disproportion-

ately unlikely to take the exam, to private elite colleges. Public elite colleges, however,
do not see an increase in enrollment, because of the sharp increase in their URM admis-
sion threshold. SAT-Optional admissions helps elite colleges enroll more low-income stu-
dents and the average household income of students attending these colleges falls, from
$105,000 to $100,000 at elite private colleges and from $99,000 to $94,000 at elite public
schools. Enrollment at schools that still require the exam falls for low-income and URM
students, who become less likely to take the SAT.

7.4 Hypothetical Scenarios

Model estimates have demonstrated the existence of differences in measurement param-
eters and the mean of initial skills by demographic groups. In this section, I explore how
patterns of attendance might be affected if some external agent could alter these param-
eters. These hypothetical scenarios clarify how patterns of college enrollment are deter-
mined not simply by admissions policies in isolation, but by how they interact with the
distribution of student skills and the way in which skills map into grades and test scores.
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Table 18: Admissions Thresholds, SAT-Optional

Status Quo SAT-Optional

White/Asian URM White/Asian URM

Tier 1 1.00 0.42 1.09 0.52
Tier 2 0.10 -0.43 0.07 -0.46
Tier 3 -0.39 -0.88 -0.46 -0.94
Tier 4 0.58 0.15 0.77 0.33
Tier 5 0.10 -0.31 0.07 -0.34
Tier 6 -0.33 -0.72 -0.40 -0.79

The table presents admissions thresholds at each college tier under the status quo and SAT-
Optional policies. The SAT-Optional Policy allows students who have not taken the SAT to
apply to elite public and private colleges (tiers one and four). Thresholds have been standard-
ized by the mean and sd of logKi,12. Simulated moments are computed using 200 simulated
data sets. SOURCE: U.S. Department of Education, National Center for Education Statistics,
Education Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-
2006.”

Table 19: URM Enrollment and Household Income

URM Attendance Household Income

Status Quo No SAT SAT-Optional Status Quo NoSAT SAT-Optional

Tier 1 0.017 0.016 0.019 105K 103K 100K
Tier 2 0.057 0.057 0.055 90K 87K 91K
Tier 3 0.047 0.048 0.046 73K 71K 73K
Tier 4 0.038 0.036 0.037 99K 96K 94K
Tier 5 0.043 0.041 0.042 89K 86K 90K
Tier 6 0.108 0.107 0.108 72K 70K 73K

The table presents simulated estimates of the fraction of URMs attending each tier of college
and mean household income under the status quo, No SAT, and SAT-Optional policies. The
SAT-Optional Policy allows students who have not taken the SAT to apply to elite public and
private colleges (tiers one and four). Simulated moments are computed using 200 simulated
data sets. SOURCE: U.S. Department of Education, National Center for Education Statistics,
Education Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-
2006.”
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Table 20: Status Quo with E[logKi,9 | URMi = 1] Raised by 0.5 sd

URM Attendance E[logKi,12|URMi = 1, Attendi = j]

Original Hypothetical Original Hypothetical

Tier 1 0.017 0.021 0.869 1.017
Tier 2 0.057 0.070 0.212 0.351
Tier 3 0.047 0.059 -0.092 0.035
Tier 4 0.038 0.050 0.626 0.731
Tier 5 0.043 0.058 0.288 0.400
Tier 6 0.108 0.141 0.041 0.214
Any College 0.310 0.400 0.203 0.345

The table displays the fraction of URMs attending each school together with their
average knowledge under two scenarios. The first scenario simulates the status quo
policy using parameter estimates obtained in estimation, while the second, labeled
Hypothetical, raises the initial knowledge for every URM student by 0.5 sd before
simulating the status quo policy. The third and fourth columns have been standard-
ized by the population mean and sd of logKi,12. Simulated moments are computed
using 200 simulated data sets. SOURCE: U.S. Department of Education, National
Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

In the first exercise, I raise the initial level of knowledge in the ninth grade by 0.5 sd for
URMs and examine how this would affect college attendance in the status quo.31 Table 20
shows that URM enrollment would increase at all colleges, with gains of over 30% at all
public colleges. The average skill level of URMs at each college increases as well.32 This
exercise size shows that, even holding racial preferences fixed, changes in the distribution
of skills can cause changes in access to college for URM students.

The second hypothetical exercise explores how patterns of sorting to college would
differ if the SAT were eliminated and grades were 50% more informative for URMs than
for white and Asian students. The estimated measurement parameters in Table 6 revealed
that GPAs were less informative for URM students, which may hinder colleges’ attempts
to enroll skilled URM students in a world without the SAT. Table 21 displays estimates
of sorting by knowledge under this second hypothetical exercise. The estimates suggest
that, even in the absence of any change in underlying skills, better signals would en-
able all colleges, but especially elite colleges, to admit stronger URM candidates. With

31I do this by increasing the coefficient on URM in the initial skills distribution in Table 4 from −0.65 to
−0.15. I do not adjust the distribution of income, which also puts URMs at a disadvantage.

32Knowledge of URMs on campus appears to increase by less than the initial investment of 0.5 sd, but
this is due to the fact that estimates in the table are standardized by the population mean and sd of logKi,12,
which exceeds one.
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Table 21: No SAT Policy with Grades 50% More Informative for URMs

Original Hypothetical Scenario

All URM WA All URM WA

E[logKi,12]

Tier 1 1.15 0.63 1.27 1.28 0.86 1.38
Tier 2 0.67 0.20 0.79 0.68 0.27 0.79
Tier 3 0.44 -0.03 0.58 0.43 0.03 0.55
Tier 4 0.92 0.47 1.01 0.98 0.61 1.07
Tier 5 0.68 0.23 0.78 0.71 0.34 0.79
Tier 6 0.53 0.08 0.63 0.51 0.17 0.6
No College -0.49 -0.84 -0.32 -0.50 -0.94 -0.29

Complete College 0.692 0.619 0.709 0.688 0.628 0.703
Hours Study 6.36 6.14 6.45 6.36 6.11 6.46

The table displays average knowledge for college students in a scenario where the SAT is
eliminated and grades are 50% more informative for URM students than white and Asian
students. logKi,12 has been standardized by its mean and standard deviation. Simulated
moments are computed using 200 simulated data sets. SOURCE: U.S. Department of Ed-
ucation, National Center for Education Statistics, Education Longitudinal Study of 2002
(ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

grades now more informative, average knowledge among URMs at elite private colleges
increases by over 0.20 sd. These changes in sorting are significant enough to raise URM
college completion by 1 pp, comparable with the SAT-for-All policy analyzed earlier.

One reason why banning the SAT does not raise college enrollment for URMs is that
the average knowledge of URM applicants falls as more apply to college (Table 14). This
suggests that whether banning the SAT increases access to college depends on whether
there is a sizable share of strong URM applicants who do not take the SAT but who would
apply to college if an SAT score were no longer required. To investigate this, I simulate
a policy that eliminates the SAT, but I raise logKi,9 for every URM student who does not
take the exam by 0.75 sd so that their initial knowledge is level with typical white and
Asian students who take the SAT. Table 22 shows statistics on URM attendance, knowl-
edge, and college completion when banning the SAT under this hypothetical scenario.
The fraction of URMs attending college rises by nearly 7.4 pp, and rates of completion
rise at every college. This scenario shows that the effects of banning the SAT depend
on how the skills of URM students who do not take the exam compare with those who
already take it.
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Table 22: No SAT Policy with non SAT-Takers more Skilled than Takers

Status Quo No SAT

Attendance E[logKi,12] Complete Attendance E[logKi,12] Complete

Tier 1 0.016 0.64 0.669 0.020 0.69 0.682
Tier 2 0.057 0.20 0.686 0.068 0.27 0.713
Tier 3 0.048 -0.03 0.571 0.058 0.10 0.629
Tier 4 0.036 0.47 0.712 0.045 0.54 0.716
Tier 5 0.041 0.23 0.652 0.052 0.32 0.676
Tier 6 0.107 0.08 0.555 0.136 0.24 0.605
Any College 0.305 0.18 0.619 0.379 0.29 0.655

The table displays attendance rates, average knowledge, and college completion rates for URM stu-
dents at each college tier under the status quo and No-SAT policies under a hypothetical scenario in
which logKi,9 for URM non-takers is raised by 0.75 sd. Details regarding the scenario are provided
in the text. Simulated moments are computed using 200 simulated data sets. SOURCE: U.S. Depart-
ment of Education, National Center for Education Statistics, Education Longitudinal Study of 2002
(ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

8 Conclusion

The main goal of this paper is not to provide a single number summarizing the effect of
eliminating the SAT on access to four-year colleges for low-income and URM students.
Reasonable scholars may disagree over the assumptions, such as how colleges use the
SAT, that are necessary to generate such a number. The main goal of the paper is instead
to show that when colleges stop using the SAT, they must focus more on other criteria,
and this has immediate consequences for who attends college (holding applications fixed)
and further affects who applies to college and how well-prepared they are.

The paper has shown that four mechanisms – the shift towards alternative admissions
criteria, endogenous applications, endogenous human capital investment, and optimiza-
tion by capacity-constrained colleges – are quantitatively important in shaping patterns
of sorting to college and that they may work against each other. This paper does not find
a large effect of eliminating the SAT on access to college for under-represented minori-
ties or for low-income students. But, apart from this null effect, the model has clarified
that predicting the effects of eliminating the SAT depends on the answer to the follow-
ing question: Does there exist a sizable population of low-income, mostly URM students
who do not take the exam but who are better-prepared for college than current applicants
and who will apply when the exam is removed? If yes, then eliminating the SAT may
increase access for disadvantaged students. But if the answer is no, then the mechanisms
of endogenous human capital investment and college optimization work to undo the im-
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mediate effect of the policy, and colleges will be unable to generate opportunities for
disadvantaged applicants without altering their admissions criteria. Such a move could
create real economic costs. Estimates from the model reveal that completion at all schools
depends strongly on a student’s knowledge at the time of matriculation. Accepting less
skilled students may lower rates of completion.

There are several important extensions of this research. I have assumed that colleges
have preferences over racial diversity and a single latent variable, which I have referred
to as knowledge. Anecdotal evidence suggests that colleges also care about other char-
acteristics like extracurricular skills. Although the ELS 2002 does contain self-reported
information on extracurricular participation, these variables do not predict admission to
college in the ELS 2002 conditional on grades and SAT scores. If future data sets have
high quality measures of extracurricular skill (say, athletic or musical skill), I see an im-
portant extension in allowing for a two-dimensional set of latent skills and estimating
college preferences for diversity and a weighted combination of these two skills. As the
ability to invest in extracurriculars like music and art is correlated with income, a greater
reliance on these skills in admissions may provide students from richer households with
another way of gaining admission in the absence of the SAT. Allowing for a second skill
would also reduce uncertainty about the admissions process.

The paper has shown that, without significant changes in preferences or in the dis-
tribution of skills, URMs will continue to be under-represented at four-year colleges. It
has also shown, consistent with a large literature on early interventions, that policies that
raise the skills of URMs prior to high school can raise college attendance and comple-
tion (Campbell et al. 2014, Almond, Currie, and Duque 2018, Garcı́a et al. 2020). Many
universities already invest in after-school tutoring and mentoring programs for under-
privileged students in their neighborhood. The University of Southern California has for
several decades operated a program, the Neighborhood Academic Initiative, that identi-
fies promising middle school students in south Los Angeles and provides them with addi-
tional weekend courses on USC’s campus to help make them college-ready. USC has also
founded several charter schools in south Los Angeles. Together, these investments have
provided the university with a steady stream of qualified applicants from under-served
backgrounds. The evidence suggests that colleges have the tools to increase opportunity,
but that it requires more than a change in admissions criteria.
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Appendices

A Sample Selection Criteria

Of the 16,200 students who were initially sampled in the ELS 2002, 12,880 responded in
both the base year and the first follow-up survey in 2004. The most common reasons
for exclusion are nonresponse (12.05 % of the sample), dropping out of high school be-
tween 2002 and 2004 (3.76% of the sample), and graduating early (2.43% of the sample).
Other, infrequent, reasons include being out of the country, language difficulties making
the survey impossible, and death. 370 students lack information on the amount of time
they spend studying. A further 2,370 students either lack information on GPA, school
characteristics, or geocode data. 610 individuals lack an SAT score despite applying to
colleges that required the exam. Finally, I exclude a small number of individuals (< 10)
with extremely low grades and SAT scores who are admitted to elite colleges, possibly
because of athletics. These students cause the model likelihood function to return infinite
values for large regions of the parameter space. These exclusions result in a sample of
9,910 observations.

During the second follow-up survey in 2006, students report the full list of colleges
they applied to, where they were admitted, and where they first matriculated. To ad-
dress concerns regarding whether use of this self-reported measure may result in biased
admissions probabilities, I compare admission probabilities derived from the survey re-
sponses in the ELS 2002 to the official probabilities in the Integrated Postsecondary Ed-
ucation Data System (IPEDS) for the same year (2004/05 cohort) in Table A-1. The table
disaggregates admission probabilities by type (private non-profit vs public) and Barron’s
Selectivity Ranking.33 The IPEDs statistics are weighted by the enrollment of the institu-
tion. The table shows that admissions rates are somewhat lower in IPEDS than in the ELS
2002. The differences, of eleven to thirteen percentage points (pp) for private colleges,
and between six and eight pp for public colleges, indicate that students in the ELS 2002
selectively under-report applications to colleges at which they are rejected. The implica-
tion for the empirical results is that the cost of applying to college, which is identified by
the number of applications to college, could be over-estimated in the model. This sug-
gests that model forecasts of application growth resulting from policy changes are likely
to be a lower bound for the true application growth.

33This grouping of colleges into six tiers will be maintained throughout the paper.
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Table A-1: Admission Rates, IPEDS and ELS 2002

Rate of Admission

Type Tier Barron’s Rank IPEDS ELS 2002

Private 1 1 0.29 0.40
2 2 and 3 0.66 0.79
3 4, 5 and 6 0.72 0.84

Public 4 1 and 2 0.53 0.61
5 3 0.69 0.75
6 4, 5, and 6 0.72 0.80

The table compares rates of admission at six college tiers based on self-
reported application and admission information in the ELS 2002 together
with data from IPEDs for the same set of schools. Admission rates for
each school are weighted by enrollment to compute the IPEDs statistics.
SOURCES: IPEDS and National Center for Education Statistics, Education
Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-
up, 2002-2006.”
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B Alternative Normalizations and Specifications for the Dy-

namic Factor Model

The identification of dynamic factor models requires normalizations. In this paper, I ex-
ploit the fact that the tenth and twelfth grade NCES math exams are scored according to
item response theory to reduce the number of necessary normalizations. However, as I
explain in section 4.1, since both the parameters of the measurement system and the mean
of the initial conditions vary by whether a student belongs to an under-represented mi-
nority, an additional normalization is required. The approach I adopted in this paper is to
impose that the exams scored by item response theory have the same constants in equa-
tion 2, namely that µURM

10,j = µWA
10,j and µURM

12,j = µWA
12,j for j equal to the NCES math exam. In

this section, I explore whether the inferences I draw from the dynamic factor model are
robust to alternative normalizations and alternative specifications for the technology of
skill formation.

Tables B-1 and B-2 present estimates from a dynamic factor model that instead imposes
the normalization that GPA in the ninth grade has the same constant for URM students
as it does for white and Asian students, µURM

9,j = µWA
9,j for j equal to the ninth grade GPA.

The NCES math exams are now permitted to have different constants by URM status.
The estimates of bias in Table B-1 are qualitatively and quantitavely very similar to the
main specification. Despite using a different normalization, I estimate that neither of the
SAT exams, nor any of the NCES exams are biased. Similar to the main specification, the
only evidence of bias is in GPA in the twelfth grade, which appears to be biased against
URMs. The estimates of signal-to-noise ratios in table B-2 are qualitatively very similar
to those from the main specification. I estimate that GPAs are less informative for URMs
during each year of high school, and I find that the standardized exams are typically more
informative for URMs than for white and Asian students.

The model in the main part of the paper specificies a deterministic skill technology
(equation 1). I now explore whether the results are robust to the inclusion of a shock
in this equation. Because of the inclusion of the shock, the identification argument in
section 4.1 breaks down, and additional normalizations are needed. Since there is only
one measurement in grade nine, it is not possible to separately identify the variance of
the technology shock, the variance of the measurement shock, and the factor loading, so
I normalize the factor loading on GPA in the ninth grade to equal the factor loading on
GPA in the tenth grade, αR

9,j = αR
10,j for j = GPA and R = URM,WA. For the same

reason, I normalize the factor loadings on eleventh and twelfth grade GPAs to be the
same, αR

11,j = αR
12,j , again for j = GPA and R = URM,WA.
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Table B-3 presents estimates from this dynamic factor model. The estimated variance
of the shock is not statistically different from zero, and the rest of the parameters are
nearly identical to the main specification in the paper (Table 7). The results presented
here should alleviate concern that the use of a deterministic skill formation equation,
which aids in identification, has significant effects on the results.

Table B-1: Bias

URM White & Asian Difference

GPA, 9th grade -0.17 -0.17 0
(0.03) (0.03) (NA)

GPA, 10th grade -0.18 -0.16 -0.02
(0.03) (0.03) (0.03)

GPA, 11th grade 11 -0.20 -0.15 -0.05
(0.03) (0.02) (0.03)

GPA, 12th grade 12 -0.26 -0.10 -0.15
(0.03) (0.02) (0.05)

SAT Math -0.66 -0.69 0.03
(0.04) (0.03) (0.03)

SAT Verbal -0.59 -0.6 0.01
(0.04) (0.03) (0.03)

NCES Reading, 10th grade -0.17 -0.20 0.03
(0.04) (0.03) (0.03)

NCES Math, 10th grade -0.22 -0.23 0.02
(0.04) (0.03) (0.03)

NCES Math, 12th grade -0.22 -0.23 0.02
(0.04) (0.03) (0.03)

The table displays estimates of µURM
t in equation 1 when ninth grade

GPA is normalized to have no bias. SOURCE: U.S. Department of Edu-
cation, National Center for Education Statistics, Education Longitudinal
Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-
2006.”
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Table B-2: Signal-to-Noise Ratios

URM White & Asian Difference

GPA, 9th grade 0.77 0.93 -0.15
(0.03) (0.03) (NA)

GPA, 10th grade 0.77 0.92 -0.16
(0.04) (0.03) (0.03)

GPA, 11th grade 0.69 0.8 -0.12
(0.03) (0.03) (0.03)

GPA, 12th grade 0.55 0.6 -0.05
(0.02) (0.02) (0.03)

SAT Math 1.87 1.87 0.00
(0.09) (0.06) (0.08)

SAT Verbal 1.47 1.25 0.22
(0.09) (0.04) (0.08)

NCES Reading, 10th grade 1.28 1.04 0.23
(0.06) (0.03) (0.05)

NCES Math, 10th grade 2.07 1.65 0.42
(0.11) (0.05) (0.01)

NCES Math, 12th grade 2.34 1.92 0.41
(0.09) (0.06) (0.06)

The table displays estimates of signal-to-noise ratios in equation 2 when
ninth grade GPA is normalized to have no bias. SOURCE: U.S. De-
partment of Education, National Center for Education Statistics, Educa-
tion Longitudinal Study of 2002 (ELS:2002), “Base Year through Second
Follow-up, 2002-2006.”
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Table B-3: Technology of Skill Formation

URM White & Asian

Knowledge(-1) 0.98 1.01
(0.04) (0.01)

Study, 10 hours/wk 0.10 0.08
(0.03) (0.01)

Private School 0.05 0.01
(0.04) (0.02)

Free Lunch -0.14 -0.19
(0.00) (0.01)

Student Teacher Ratio 0.07 -0.06
(0.06) (0.07)

Mother: High School -0.02 -0.02
(0.01) (0.01)

Mother: Some College -0.04 -0.03
(0.02) (0.02)

Mother: Bachelors -0.04 -0.04
(0.06) (0.07)

Mother: Postgraduate -0.04 -0.04
(0.01) (0.01)

σ2
k 0.00 0.00

(0.40) (0.40)

The table displays estimates of parameters the technology of
skill formation with a stochastic shock. SOURCE: U.S. Depart-
ment of Education, National Center for Education Statistics,
Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”
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C First Stage Regressions

Table C-1: Effect of Testing Availability and Income

Take SAT Apply to College

Testing Dates 0.055 0.056 0.042 0.057 0.059 0.047
(0.016) (0.016) (0.017) (0.015) (0.015) (0.015)

School Type Yes Yes Yes Yes Yes Yes
School Size Yes Yes Yes Yes Yes Yes
Local Poverty Rate No Yes Yes No Yes Yes
Mother’s Education No No Yes No No Yes
N 9910 9910 9910 9910 9910 9910

The table displays the results of logit regressions of binary indicators for taking the
SAT and applying to college on the number of SAT testing dates in one’s own school
during spring of the junior year of high school. Controls for the type of school, en-
rollment, district level poverty rates, and mother’s education (5 categories) are also
included. SOURCE: U.S. Department of Education, National Center for Education
Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year through
Second Follow-up, 2002-2006.”
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Table C-2: Effect of Distance on Applications

Apply to College
Private Public

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tier 6

Distance : 50-150 miles -0.0121∗∗∗ -0.0156∗∗∗ -0.0122∗∗∗ -0.0479∗∗∗ -0.0686∗∗∗ -0.0645∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039 (0.0020)
Distance : 150 - 250 miles -0.0155∗∗∗ -0.0203∗∗∗ -0.0145∗∗∗ -0.0735∗∗∗ -0.0942∗∗∗ -0.0773∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039) (0.0020)
Distance : 250 - 500 miles -0.0179∗∗∗ -0.0221∗∗∗ -0.0152∗∗∗ -0.0800∗∗∗ -0.1034∗∗∗ -0.0807∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039 (0.0020)
Distance : over 500 miles -0.0199∗∗∗ -0.0230∗∗∗ -0.0153∗∗∗ -0.0893∗∗∗ -0.1056∗∗∗ -0.0817∗∗∗

(0.0016) (0.0009) (0.0006) (0.0043) (0.0039) (0.0020)

N 9910 9910 9910 9910 9910 9910
Num Schools 60 270 480 40 80 380
Individual FEs Yes Yes Yes Yes Yes Yes
Clustered SEs Individual Individual Individual Individual Individual Individual

The table shows the coefficients from linear probability models of application decisions. The unit of observation is
an individual-college. All four-year public and private non-profit colleges are included. Distance is calculated using
the individual’s home census block while in high school and the latitude and longitude of each school in IPEDs.
Each regression includes individual fixed effects and controls for tuition, acceptance rates, and interactions between
acceptance rates and an individual’s performance on the 12th grade NCES math exam. SOURCE: U.S. Department
of Education, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”
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D Knowledge Predicts Admission

This paper has modeled each student’s probability of admission to college as a function
of her demographic and her knowledge at the time of application, logKi,12, as filtered
through the observable measurements in Ωi,12. This section shows that knowledge filtered
in this way is highly predictive of admission.

Figures D-1 through D-6 provide estimates of nonparametric regressions of admission
to college as a function of the mean of each student’s twelfth grade knowledge as derived
in the model, E[logKi,12 | Ωi,12]. The regressions are all estimated using an Epanechnikov
kernel and a bandwidth of one. The nonparametric functions are plotted only over the
support of mean knowledge among applicants to each school in the ELS 2002. The figures
show that admission probabilities are increasing in the mean of knowledge at all schools.
While many colleges observe characteristics that are not in the ELS 2002, such as writing
samples and teacher recommendations, the nonparametric regressions provide reassur-
ance that the measurements observed in the data are still highly predictive of admission.

Figure D-1: Probability of Admission, Elite Private Colleges
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Figure D-2: Probability of Admission, Highly Selective Private Colleges

Figure D-3: Probability of Admission, Less Selective Private Colleges
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Figure D-4: Probability of Admission, Elite Public Colleges

Figure D-5: Probability of Admission, Typical State Flagships
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Figure D-6: Probability of Admission, Typical State Satellites
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